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Abstract

This thesis presents an approach for suppressing parasitic vibrations in flexure-based structures with
varying resonance frequencies by integrating an indirect adaptive Positive Position Feedback controller
with an Extended Kalman Filter estimator. Flexure-based systems experience changes in resonance
frequency due to elasto-kinematic effects, which require real-time adaptation of the PPF controller
parameters to maintain optimal performance.

The focus of this study is on the low-frequency vibration mode, therefore a reduced single-degree-
of-freedom model is used to represent the system, specifically a cantilever beam. However, to account
for the effects of higher resonance modes on the first vibration mode, a direct feed-through term is
added to the system model.

An EKF algorithm is developed to estimate the system’s resonance frequency by treating stiffness
as an additional state variable. The estimated resonance frequency is used to adaptively update the
PPF controller parameters, improving vibration suppression, and maintaining robustness.

The presence of the direct feed-through term in the system model equations leads to unconventional
correlations in the EKF formulation. Therefore, the EKF algorithm is re derived to account for these
correlations.

Finally, the proposed method is validated through numerical simulations, demonstrating its ability
to maintain system stability and effectively suppress parasitic vibrations compared to traditional PPF
controllers with fixed parameters.



1 Introduction

1.1 Background

Precision machines are designed to achieve high performance by maintaining both accuracy and speed.
Therefore it is needed to omit any kinds of inaccuracies from the design of the plant. Conventional
mechanisms often exhibit friction and hysteresis effects, introducing uncertainties into the system and
making precise positioning challenging [[f].

Flexure mechanisms can potentially overcome these challenges. These structures are characterized
by low friction, lightweight construction, and high stiffness in their support direction, also known as
the degree of constraint [2]. These qualities ensure that the parasitic resonance frequencies are as
high as possible. However, flexure mechanisms also present certain difficulties. While they exhibit
significant stiffness in their support direction, this stiffness is not infinite and tends to decrease under
large deflections. Additionally, their inherently low damping contributes to the emergence of prob-
lematic parasitic resonance frequencies at lower values, which can degrade the control bandwidth and,
consequently, the positioning accuracy of the system.

As further improvements in flexure design become increasingly challenging [3], alternative solu-
tions are being explored. One such approach involves suppressing parasitic resonance frequencies by
incorporating a damping element into the system.

Traditional passive vibration suppression methods, such as incorporating tuned mass dampers or
viscoelastic materials, aim to mitigate these resonance vibrations, come with different pros and cons.
For instance, while they are very reliable and robust, they may interfere with the design of the flexures,
adding unwanted complexities to the plant [4].

Alternatively, active vibration suppression methods have gained significant attention. These ap-
proaches typically involve structures embedded with active materials, particularly piezoelectric mate-
rials, for vibration suppression. Due to their atomic lattice structure, piezoelectric materials enable the
use of piezoelectric sensors and actuators, which convert mechanical deformation (strain) into electrical
signals and vice versa at a small scale. Notably, piezoelectric patches offer the advantage of preserving
mechanical design simplicity without adding extra mass, thereby enabling effective resonance suppres-
sion even at higher frequencies [f].

1.2 Literature Review

In recent years, various control methods have been employed to suppress vibrations, including velocity
feedback, resonant controllers, and positive position feedback (PPF). These approaches fall under
collocated control techniques, where sensors and actuators are associated with the same degree of
freedom (DOF) of the structure. A key advantage of collocated systems is their inherent closed-loop
stability concerning out-of-bandwidth dynamics [6].

In a velocity feedback controller [[7], a positive gain is chosen to enhance damping, leading to
high control effort across all frequencies and eliminating roll-off at high frequencies. Despite ensuring
closed-loop stability, this approach can introduce spillover issues. Additionally, since piezoelectric
sensors measure strain, a differentiator is required to obtain velocity from position, which is generally
undesirable as it amplifies noise.

The resonant controller operates as a second-order high-pass filter with negative feedback. Similar
to the velocity feedback controller, it does not exhibit roll-off at high frequencies and is susceptible to
spillover effects (A more detailed definition will be given later).

The PPF controller, first proposed by Goh and Caughey in 1985 [g], is another widely used control
strategy for active vibration control. PPF operates as a second-order low-pass filter that quickly
rolls off at high frequencies, thus limiting high-frequency spillover; however, it does not prevent low-
frequency spillover, which causes changes both in magnitude and frequency of lower vibration modes
in the closed-loop response [9].



The effectiveness of both PPF and resonant controllers depends heavily on the proper tuning of
their parameters, which are directly influenced by the system’s resonance frequency. Therefore, prior
knowledge of the resonance frequency is expected to enhance controller performance. However, as
demonstrated in [[10], the resonance frequency of flexure mechanisms may vary significantly with large
deflections. This variation reduces the robustness of the PPF controller and diminishes its effectiveness
in vibration suppression.

In recent years, several studies have focused on reducing vibrations in dynamic systems through
the development of adaptive controllers that adjust to changes in resonance frequency by tracking and
estimating these frequencies. These studies employ various controller methodologies in conjunction
with diverse frequency estimation algorithms.

One widely adopted method for harmonic detection is the Fast Fourier Transform (FFT), which has
been utilized extensively for frequency estimation. For instance, a real-time identification study using
the Sliding Discrete Fourier Transform (SDFT) is conducted in [11]. Their findings demonstrate that
this approach can effectively obtain real-time frequency response estimates using limited data within
a sliding window. Experimental results further validate that the SDFT method successfully tracks
and updates changes within the system. Similarly, Kang et.al [12] employed the SDFT technique
for the online estimation of mechanical resonances, utilizing this information to adjust the parameters
of a notch filter aimed at suppressing resonance effects. Mahmoodi et al. [13] developed an adaptive
modified PPF, which comprises two components: the first focuses on frequency adaptation through
FFT estimation, while the second integrates this information into the Modified PPF. Although this
frequency adaptation method has been experimentally validated, it is limited by the constraints of the
FFT, particularly its need for substantial data storage before it can operate effectively. Therefore,
alternative frequency estimation techniques should also be considered to improve speed.

The inventor of PPF control [[14] proposed an adaptive identification approach utilizing a persis-
tently excited input signal.

Another notable approach for frequency estimation is the Extended Kalman Filter (EKF), which
has been the focus of considerable research, including contributions from La Scala and Bitmead [L5].

Moreover, significant advancements have been made in adaptive active vibration control, with many
studies concentrating on the design parameters of the PPF controller. Some researchers use Hs and
H,, minimization techniques to synthesize optimal PPF controllers [[1G], while others estimate PPF
parameters through real-time adaptive methods [13], [9].

The research gap identified is the inadequate performance of the Fast Fourier Transform (FFT)
in the work of Mahmoodi et al. [[13], particularly regarding rapidly varying resonance frequencies of a
flexure beam. To address this, we propose replacing FFT with faster estimation algorithms, such as the
Extended Kalman Filter, which has demonstrated superior performance in several studies, including
those by La Scala and Bitmead [L5].

The idea of using an adaptive active vibration control to enhance the performance of the resonance
suppression has been considered before. One example is paper [17] where an adaptive resonance con-
troller has been designed with on-line resonance frequency estimator to update the resonant controller
parameters.



2 Modeling and Controller Method

2.1 Introduction

Developing a comprehensive mathematical model of a system is essential for analyzing a plant, de-
signing a controller, and simulating the effects of any modifications. The first subsection 2.2 in this
chapter is allocated to this matter. We know that flexible structures, in general, inherently possess
infinite vibration modes and can be accurately represented using high-order transfer functions. While
such models are most useful for accurate simulations, in order to facilitate control design, a reduced-
order model of the actual plant comes in handy. This simplification, however, comes at a cost, as
high-frequency dynamics omitted from the model may impact system stability. The Positive Position
Feedback controller is expected to address this issue due to its second-order roll-off at high frequen-
cies. Subsection 2.3, explains this control technique and how tuning its parameters can give optimal
performance.

2.2 Mathematical Modeling

The plant that is considered for this study is a cantilever beam. It has the same characteristics as the
one introduced in [16]. Figure [| illustrates a schematics of the beam. The beam is supposed to be
excited by an external disturbance (w) originating from the ground. The vibrations of the tip of the
beam are intended to be suppressed. For this purpose, a capacitive sensor is used there to measure
these vibrations. As mentioned before, an active vibration control using piezo-electric patches is meant
to be used for resonance suppression. Two piezo patches are mounted on the beam in a collocated
configuration, one functioning as a sensor to measure strain and the other as an actuator to apply
control input. The placement of piezo patches is chosen considering where there is the most strain in
the system at the first vibration mode.

z T Sensor (y) w

N :

Actuator (u)
Figure 1: Schematic representation of the cantilever beam.

As previously mentioned, flexible structures exhibit an infinite number of vibration modes. How-
ever, this study focuses on suppressing the system’s low-frequency resonance. Therefore, the system
can be approximated as a Single Degree of Freedom (SDOF) oscillator, governed by the following
mathematical model:

mi + ¢z + kx = Byu + Bgwg, (1)

=L e e ] ). ®



where,
x : Generalized coordinate,

m : Equivalent mass,
k : Equivalent stiffness,
¢ : Equivalent internal damping,

[Bd Bu] : Input matrix,

[fz} : Output matrix,

fy
[dzw dz"} : Feedthrough matrix.
dyw dyu

The feed-through term is introduced in the mathematical equations of the SDOF mass-spring-
damper system to account for higher-frequency effects. An experiment conducted in [@] demonstrates
that the system’s frequency response may lack roll-off at high frequencies, which is for example typical
for systems with collocated sensing and actuation. As shown in Figure B, the absence of roll-off in the
experimental frequency response highlights the need for a feed-through term. By incorporating this
term, the model captures the low-frequency effects of higher resonances, leading to a more accurate fit
for the resonance to be suppressed.
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Figure 2: The bode plots of transfer functions, in order from top left, T%,,. top right T.,,, bottom left
Tyw, and bottom right T,,,. (This Figure is borrowed from the reference T@])

Using the low and high frequency asymptotes of the reduced plant, system parameters, Vyu, Yyw,
Yeu, and 7., can be calculated [16]. To show this, equations (1) and (2) are converted to Laplace



domain, where the transfer functions 1%, 1.y, Tyw, and Ty, are derived as follows:

Jybu
T = o e rag T
b
Tyw - .2 fcy d 2 +dyU)7
§4 4 s+ wp
Zbu
Tzu == 4f + dzuv
52+ Ss4w?
fzbd
Ty = W + dzw,
where,
B, B,
by = —2 by = —.
m m

Now as defined in [4], v parameters can be expressed as:

_ Pij|w:oo
Pijlw=0 — Pijlw=cc’

Yij

where the asymptotes of the reduced plant at low and high frequencies can be obtained as:

fybu fybd
oz oz dyy  dyw
F)ij|w=0 = [%‘L fzigd + |:dZu dZu):| 1)
(@)
dyy  dyw
Plugging in equation (4) in (3) results in:
Yyu Y pre g
[’qu ’yyw:| — w% [J}f: J;yzlzsi‘| . (5)
zu W fzbu fzbd

The 7 parameter values are calculated for this plant in [[16], so assuming the input and output
matrix are known, the feed-through matrix can be calculated.

2.3 Positive Position Feedback Control and H; Optimization

Positive Position Feedback (PPF) control is an effective strategy for vibration suppression in structures
with collocated actuator-sensor configurations. As observed in Figure P}, the T}, transfer function
lacks the expected high-frequency roll-off. This characteristic indicates that other collocated control
techniques discussed in the introduction may not be suitable for this system. While these methods
theoretically ensure closed-loop stability with appropriately chosen controller gains, in practice, even
a slight misalignment in the placement of the piezoelectric sensor and actuators can destabilize the
system due to the spillover effect.

Spillover typically occurs when the high-frequency resonances of a system, which have been trun-
cated in a reduced-order model, are inadvertently amplified by the controller. This amplification arises
when the controller distributes actuation energy across all system frequencies, as seen in velocity feed-
back control, or selectively excites high-frequency resonances, as in resonant control. Consequently,
this phenomenon can potentially destabilize the system.

On the other hand, the PPF controller operates as a second-order low-pass filter, which helps
mitigate the spillover effect due to its roll-off at high frequencies.

PPF control positively feeds the position measurement into the compensator, and the compensator’s
output is then positively fed back into the structure. This intrinsic characteristic makes PPF control



particularly well-suited for piezoelectric sensors, which both measure and impose displacement on the
structure.
The PPF controller can be expressed in the form of:

G+ 2¢weq + qu = kswey

(6)

U= kaWCQ7

where, w, is the controller resonance frequency, (. is the controller damping ratio, and the low frequency
gain of the system is defined as k = ksk, > 0 where k; corresponds to sensing gain and k, for actuation
gain specifically.

Tuning the parameters of the PPF controller is essential to achieve the desired performance in
resonance suppression with an acceptable stability margin. An experimental robustness study of PPF
control for active vibration suppression of a smart flexible structure is done in [[1§]. It concludes that
increasing (., improves robustness while slightly reducing the effectiveness at the target frequency. The
findings suggest using a higher ( for robustness, around 0.5 for practical implementation. An analytical
solution to the PPF parameter tuning based on gain margin constrained Hy optimization is provided
in [16]. The minimization problem is defined as:

arg min_[|G(s)], (7)
k,we,Ce
where G(s) indicates the closed-loop system from w to z. Finally, the resulted optimally tuned con-
troller parameters are obtained as given in the following equations:

2

g )
= 5 8
1+ Tyu fybu ( )

— 1 )

3
W, _ adyu T Yyw = Vzu
\/1 9 I+vyu

Yyu —Yyw —Yzu—VywVzu

C — 1 g 1 -9 1+vyu (10)
2 \/ 1—g \/W\/l - g'yyuf'ywavzu

1+vyu

where the static open loop gain, denoted as g will be defined in next chapter.

As seen in equations (8), (9), and (10), the optimally tuned PPF parameters are highly dependent
on the system’s resonance frequency,w, . In applications where the targeted resonance frequency varies
significantly [10], it becomes crucial to estimate it with sufficient accuracy. Accurate estimation allows
for the selection of smaller values for (., leading to improved damping performance while ensuring that
system robustness is not compromised.



3 PPF Adaptation

3.1 Introduction

Effective vibration system control usually requires identifying the dominant vibration modes, espe-
cially when the system deviates from its nominal model during operation. These deviations can result
from factors such as varying payloads, additional mounted sensors and actuators, the change of capac-
itance in piezo sensors due to humidity, or mechanical fatigue over time [[14]. In this study, modeling
uncertainties are constrained to a single varying parameter: the structure’s stiffness. This chapter
presents a modified Extended Kalman Filter based observer for efficiently estimating the system'’s
varying stiffness due to elasto-kinematic effects [19], in real time, enabling a rapid adaptation of the
optimized PPF controller for resonance suppression performance.

3.2 Kalman Filtering and Parameter Estimation

In 1960, Rudolf E. Kdlman [20] introduced a mathematical technique for state estimation in linear
dynamic systems subject to noisy measurements and system uncertainties, now known as the Kalman
Filter (KF). The KF models the system state as a random variable affected by Gaussian-distributed un-
certainties, referred to as process noise. Estimation is performed based on noisy, Gaussian-distributed
measurements, known as measurement noise. Using Bayesian inference, the filter employs a recursive
algorithm in which the posterior probability of the state is updated at each iteration by combining the
likelihood of the new observation with the prior belief derived from the system dynamics.

The KF is recognized as an optimal estimation technique, as it updates the prior state estimate
using a correction factor, known as the Kalman gain, which is computed by minimizing the mean square
error. Since its inception, the KF has become a fundamental tool in numerous fields, including control
systems, robotics [21], and aerospace engineering. In this study, since the objective is to estimate the
system’s resonance frequency by tracking variations in stiffness, the KF framework is employed for
parameter estimation.

The mathematical model of the system, as defined in chapter 2, can be expressed in state-space

form as follows:
@) | O 1 x(t) 0 0 [wa(t)
[i’(t)} = [_’f;nt) e | [at)] T |ba bu) Luc) | (11)
The goal is to estimate the system’s resonance frequency by determining the stiffness while assuming

the mass remains constant throughout the experiment. The resonance frequency can be directly
calculated using:

E(t)

w(t) =4/~ . (12)
To achieve this, the state vector is augmented to include the stiffness parameter:
x(t)
Xaug(t) = |Z(t) | - (13)

k(t)

By substituting the augmented state vector into the state-space equation, the system model is
reformulated to:

; i(t) 0 0
7 Xaug(t) = —ED () — £i(t) + byult) | + |ba| wat) + [0] wi(t). (14)
0 0 1



It can be observed that the augmented system model becomes nonlinear. Therefore, the Extended
Kalman Filter (EKF), which is designed for nonlinear systems, should be employed in this case.

In parameter estimation problems using EKF, it is common to assume that the parameter to be
estimated remains constant over time while accounting for its unknown dynamics by introducing a pro-
cess noise term, denoted as wg. However, as will be discussed in the next chapter, incorporating prior
knowledge of the dynamic behavior of stiffness variations in more complex systems can significantly
enhance estimation accuracy.

The state-space equation can be in general written into the following nonlinear form:

).(aug (t) = f(xaug (t)a u(t)) + Gw(t) (15)
where,
z(t)
F(Xaug(t), u(t)) = | =EDa(t) — L) + byu(t)
0

0 0 (16)

G=|bg O

0 1

Similarly, for the output equation, we have:
Z(t) fz 0 0 dzw(t) dzu(t):| |:wd(t):|
= aug(t) + . 17
L/(t)} [fy 0 0} Xaug () |:dyw(t) dyu(t)] [ u(t) 17
Calculating the feed-through matrix using equation (5) results in:
fzbum fzbdm
2T(t) + Vau u(t Zw 0
A] | St i O] B0, 13
y(t) Fy(8) + yyu Ty u(t) T 0

YW k(t)
Additionally, the measurement output of the piezoelectric sensor is typically corrupted by a mea-
surement noise, denoted as v(t). Thus, the measurement equation can be expressed in the following
general nonlinear form:

y(t) = h(Xaug(t), u(t)) + H(t)w(t) + v(t) (19)

The term 'H (t)w(t)’ in the measurement equation (19) introduces a direct correlation between y(t)
and w(t), which is not a conventional assumption in EKF. As a result, in the next subsection, modified
EKF equations will be rederived accounting for this dependency.

3.2.1 Derivation of the Modified Extended Kalman Filter Equations

First, the system equations (15) and (19) are discretized using the first-order Euler approximation.
This step is essential for numerical implementation in computer simulations.

Xaug[n + 1] = f(Xaug[n], u[n]) + Gwln], (20)
y[n) = h(Xaug[n]), uln]) + H{njw[n] + vln], (21)

where,

f(Xaug[n]; uln])
h

Xaug[n]), uln])

X uy[n] + Tsf(xaug[n]7 u[n]),
Xaug[1] + Tsh(Xaug[n]), uln]),
G =T.G,



Hn]| = TsH|n],

and T is the sampling time. Kalman Filtering is based on stochastic processes, where state X4 is
considered as a random Gaussian distributed variable with mean and covariance as (Z, Py;). Addi-
tionally, process noise, w[n], and measurement noise v[n|, are both also assumed as normal distributed
zero mean white noises, defined as follows:

wln] ~ N (0,Q), (22)
v[n] ~ N(0, R), (23)

where,
Q = E[w[n]w[n]"]

R = E[v[n]v[n]T).

Moreover, all w(n], v[n] and X4.4[n] are considered to be uncorrelated.

E[w[i]v[j]*] =0 for all i and j

E[w[i]Xaug[j]*] =0 for all i and j (25)

E[v[i]Xaug[i]"] =0 for all i and j
For simplicity, the derivation is carried out by representing the augmented state, Xquq, as . It is
important to note that, since no standard Kalman Filter algorithm was found for a system exhibiting
both nonlinearity and a correlation between process noise and measurement output, the following
derivation is developed. This derivation is inspired by the EKF formulation presented in [22] and the
Kalman Filter derivations in [23] . Additionally, the presence of process noise in the measurement

equation shares similarities with the case where w[n] and v[n| are correlated, as discussed in [24].
Therefore, aspects of its derivation process have also been incorporated into this work.

Prediction Step:

The Kalman Filter is a recursive algorithm that consists of two distinctive steps, predictor and cor-
rector. In the predictor step, given an initial estimate of the state, Z[0] ~ N (zo, Py), an estimation
of state for one step in future, (n + 1), is calculated using observation information up to instant n,

Y®={y[t,....yn]}.
Zn+1|n]=Ezn+1]|Y"]
= E[f(«[n], u[n]) + Gwln] | Y"] (26)
= E[f(z[n], uln]) | Y] + GE[w[n] | Y"]
Expanding the f(.) function in Taylor series about &[n | n], we get:

f(x[n),uln)) = f(&[n | n),uln)) + A(z[n] — &[n | n]) + H.O.T. (27)
where;
of

is the Jacobian of the function f(.), and the higher order terms (H.O.T.) are considered negligible.
Hence, the EKF is also known as the First-Order Filter [22]. Thus the expected value of f(z[n], u[n])
given Y™ is approximately:

E[f(z[n], uln]) | Y] = f(2[n | n],u[n]) + AE[e[n] | Y], (29)
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where the estimation error e[n] is defined as:

e[n] = (2[n] — 2[n | n]), (30)

and due to the unbiasedness condition for the EKF:

Ele[n] | Y] = 0. (31)

The second term of the equation (26) is no longer zero, unlike the conventional EKF, due to the

direct correlation between process noise and measurement in our system model. To find the estimation
of the process noise, the following equation is used [24]:

Elw[n] | Y"] = w[n] + Pwy Py 'Ye[n], (32)

where, w[n] indicates the mean value for w[n| which is already defined to be zero. Y. is the
measurement error defined as:

Ye[n] = yln] — h(&[n | n — 1],uln]). (33)
The cross-covariance of process noise and measurement equation is given as:
Pwy = E[(w[n])(Ye[n))"]. (34)

Similar to equation (27), the h(.) function is expanded using Taylor series around Z[n | n):

h(z[n], u[n]) = h(z[z | 2],un]) + C(z[n] — 2[n | n]) + H.O.T. (35)
where;
oh
“T o #{nln] o

Again, since EKF is a first order filter, the higher order terms are neglected. Hence the measurement
error Y [n| is expressed as:

Yeln] = h(2fe | 2], uln]) + C(e[n] — &[n | n]) + HnJwln] + vln] — h(&fe | 2], uln]) = C(&n | n —1] — 2 | n])

Yeln] = C(z[n] — &[n|n—1]) + H{n)wn] + v[n).
(37)
Plugging equation (37) back into equation (34), results in:

Pywy = E[(w[n])(C(ln] — &[n | n — 1)) + H(n]wln] + v[n])"].

Considering the assumptions of (25) and the fact that the prediction error (z[n] — Z[n | n — 1]) is
not correlated with wn|, we get:

PWY = fI[n]QT (38)

Similarly, the covariance of the measurement error, denoted as Py is derived as follows:

Py = E[(Ye[n])(Ye[n])"]
=E[(C(z[n] — &[n|n—1]) + Hin]w[n] + v[n]).(C(z[n] — &[n |n—1]) + Hin]w|n] + v[n])T]

After some manipulations, it reduces to:

12



Py = CPn|n—10T + HP)QH[n)" + R. (39)
Plugging equation (38) and (39) into (32) results in:
w[n] = Hn)QT(CPn | n—1)CT + Hn]QHn)T + R)~'Y,[n]. (40)
Finally, the estimated Z[n + 1 | n] is obtained by plugging (29) and (40) into (26),

En+11|n] = f(&n|n),un]) + GHQT(CP[n | n—1]CT + Hn)QH[n]" + R)~Y.[n). (41)

Update Step:

In this step, we have the prediction of the state estimate Z[n | n — 1] and the new measurement y[n]
in hand. The updated estimate of the state, defined as &[n | n], is basically the weighted summation
of these two terms.

Z[n | n)=2zn|n— 1]+ K[n]Ye[n], (42)

where K[n] is defined as the correction gain.
Then plugging the measurement error Y,[n] from equation (37), we get:

Zn|n)==2n|n-1+ K[n}(C(m[n] —Zn|n-1))+ f[[n]w[n] +v[n])

' - 43
= (I — K[n]C)&[n | n — 1] + K[n]Cxz[n] + K[n]H[n]w[n] + K[n]v[n]. (43)

The estimation error e[n] is defined as:
eln] = z[n] — &[n | n (44)

Accordingly, the error covariance matrix for the updated estimate can be found by:
Pln|n] = E[e[n]e[n]T]
=E[((I - K[n]C)(z[n] — &[n | n —1]) = K[n]H[n]w[n] — K[n]v[n]). (45)
(I = K[n]C)(z[n] — &[n | n — 1]) = K[n]H[n]w[n] — K[n]o[n])"]

Since the prior estimation error (x[n] — &[n | n — 1]), process noise w[n|, and measurement noise v[n]
are uncorrelated, this simplifies to:

Pln|n]= (I - K[n]C)P[n|n—1](I - K[n]C)T + K[n]Hn)QHNTK[n)T + Kn|RK[n]T.  (46)

Now the goal is to find the correction gain in such a way that it minimizes the update error
covariance matrix P[n | n]. Since the trace of the P[n | n] is essentially the sum of mean square errors,
and it is a convex function of the gain, K[n], taking the derivative of it w.r.t correction gain and setting
it to zero results in the optimal gain.

d
——Tr(P =0. 4
257 T (Plaln]) = 0 (47)
The trace of the update error covariance is:

Tr(P[n | n]) = Tr(Pln | n — 1]) — 2Tx(CK[n]P[n | n — 1]) + Tr(K[n]CP[n | n — 1JCT K [n]")+

- - - T (48)
Tr(K[n|H[n]QH[n]" K[n]") + Tr(K[n|RK[n]").

13



Then, taking the derivative with respect to K[n] will lead to:
K[n] = Pln|n — 1]CT(CP[n|n — 1]CT + H[n]QH[n]" + R)™". (49)

Substituting equation (49) into Equations (42) and (46) and performing the necessary mathematical
manipulations, gives:

E[n|n]=in|n—1+ Pn|n—-1CT(CPnn—1]CT + Hn)]QHN) + R)~'Y.[n]. (50)
Pln | n] = P[n | n— 1] — P[njn — 1]CT(CP[n|n — 1]CT + H[n]QH[n)Y + R)™*CP[n |n—1] (51)
To complete the recursion, we compute the covariance of the prediction estimate as follows:
Pln+1|n] =E[(z[n + 1] — #[n + 1|n]).(z[n + 1] — &[n + 1n])"]. (52)
Using the linearization of the nonlinear function f(.) as given in equation (28), we can write the
prediction error as follows:
e[n+ 1|n] = z[n+ 1] — &[n + 1|n]
= f(a[n), uln]) + Guln] = f(&[n | n],uln]) - GHRQT (Py) ™' Ye[n] (53)
= A(z[n] — 2[n|n]) + Gu(n] — GH[n]Q" (Py)~'Y[n].
Substituting equation (50) into (53), gives:

eln+1|n] = A((I - K[n)C)(z[n] — &[n | n —1]) = K[n]H[n)wln] — K[n]v[n]) + Gw(n]
~GHQ" Py (C(« [n]—f@[n|n—1]) + HinJw[n] + v[n])
= (A(I - K[n]C) — GH[n]QT Py O) ([n] — &[n [ n — 1]) (54)
—(AK[n)H[n] + GH[n)QT Py ' H{n] — G)win]
—(AKn] + GH[n]QT Py )v[n)

Plugging back equation (54) into (52) results in:

Pln+ 1| n] = El(eln + 1| n]).(eln + 1| n])"]

= A(I = K[n]C)P[n | n — 1J(A(I - K[n]C))" — (AK[n]H[n ])Q(AK[H]I:I[”])T
~(AK[n)R(AK[n)" + GQGT — (GH[n]Q" Py C)Pln | n — 1|(GHN]Q" Py C)" (55)
—(GHRIQT Py Hn)Q(GH[nQT Py H(nl)" — (GH[n ]QTP DR(GHn }QTP*)T
AP[n | n]AT + GQGT — (GHQT Py )(CPIn | n— 1JCT + H[n]QH + R)(GH[n)QT Py )T
= AP[n [ n]AT + GQG" — GHI|Q" Py 'QHn ]TGT
3.2.2 Summary of the Derived EKF
Finally, the summary of the obtained EKF is brought as follows:
e Prediction step:
#n+1|n] = f(@[n|nl,uln]) + GHRIQT Py Y.[n]. (56)
Pln+1|n]=APn|n]AT + GQGT — GH[n]Q" Py 'QH[n]"G” (57)
o Update step:
Z[n|n] =2 |n—1+ Pn|n—1CT P,/ Y,[n]. (58)
Pln|n]= (I — Pnjn—1]CTP;'C)P[n | n—1] (59)
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3.3 Real-Time PPF Control Adaptation with EKF Estimator

In this section, the control loop is completed by integrating the EKF to estimate the system’s resonance
frequency in real time and recursively update the parameters of the Hs-optimized PPF controller.
Assuming that the initial state estimate is sufficiently close to the true state, the EKF equations (56-
59), as derived in the previous section, propagate the estimate of the augmented state at each sampling
time T,. The estimated stiffness is then used to determine the estimated resonance frequency @, of
the plant, using equation (12), which serves as the reference for the controller’s parameter adaptation.

Next, utilizing equations (8-10), the PPF controller parameters, consisting of the filter’s natural
frequency w., damping ratio (., and gain k, are updated using @,, and a predefined static open-loop
gain, g. Finally, the PPF controller outputs the optimal control input, u, which is applied to the plant,
resulting in continuous suppression of resonance frequencies.

Figure B demonstrates a high-level block diagram of the proposed control system.

z Wa
- -
v Plant u
K
F
. PPF
FKF Parameter
‘—> Estimator | & | uUpdate we, (o k

Figure 3: Block diagram of the adaptive PPF controller.

3.4 Stability and Robustness analysis

In this section, the stability analysis of the closed-loop system, consisting of the plant and the PPF
controller, is conducted [16]. The closed-loop system model is governed by the following equation,
which incorporates equation (9) representing the plant and equation (14) describing the PPF controller
model.

T < 0 T w2 —weby kg x| buw
[q} + [7? 2<wJ M * [wcfyks wi(lksdyuka)} M = {dywkswc] w, (60)
2= [f. diukawc] m + doyw. (61)

The system remains stable if the mass, damping, and stiffness matrices are symmetric and positive
(semi-) definite. The mass matrix is a 2 X 2 identity matrix, which is inherently symmetric and
positive definite. Similarly, the damping matrix is symmetric and remains positive definite if = > 0
and 2¢w, > 0. These conditions hold true due to physical constraints, mass and damping coefficients
are inherently positive, and because the control parameters are restricted to positive values. Finally,
the stiffness matrix is symmetric if:
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buka = fyks. (62)

This condition holds by choosing appropriate ks and k,.
Additionally, we argue that the stiffness matrix is also positive definite if the following condition
applies.

wTQL 7wcbuka
_chyks wz(l - ksdyuka) -0 (63)
Using a Schur complement, it can equivalently be written as:
wi >0 (64)

1
W2 (1 — ksdyuka) — (wcfyks)(w—z)(wcbuka) >0

n
Jubu
wit

(65)
w2(1— kskq(dyy + ) >0

To satisfy condition (65), the term inside the parentheses is selected to ensure a positive value. In
other words, the static open-loop gain, ¢, defined as:

ubu
9= kska(dyu + fwg )a (66)

n

should be chosen within the range 0 < g < 1. Ensuring that all these conditions hold guarantees the
closed-loop stability of the system. However, this may raise the question of how to appropriately select
g ! As discussed in Chapter 2 and more in depth in [L6], the PPF controller is optimized with respect
to its parameters while treating g as a free tuning parameter. The selection of g directly influences
robustness and required actuation power. For instance, a smaller g leads to a larger gain margin in the
Nyquist plot, enhancing robustness. However, this also results in an increased Hs norm, which implies
weaker performance in resonance suppression. Additionally, reducing g necessitates higher actuation
input power, as explicitly demonstrated in [[16]. Finally, the choice of g represents a trade-off between
robustness, performance, and actuation power requirements. The appropriate value should be selected
based on the specific priorities and constraints of the system. Once a proper value for g is selected,
PPF parameters can be obtained using equations (8), (9), and (10).

Unlike the standard KF, the convergence of the EKF cannot be guaranteed in general. As previously
mentioned, the EKF operates by linearizing the system dynamics around the estimated trajectory.
Consequently, if the system shows strong nonlinearities, even small estimation errors can lead to
significant deviations during the linearization process, potentially causing the estimation to diverge
from the true state.

In our case, the system dynamics are bilinear, and the stiffness parameter is assumed to evolve at
a rate that allows the EKF to effectively track it in practice. Bilinear systems, while still nonlinear,
tend to show more favorable filtering properties compared to fully nonlinear systems, as their structure
often permits a more controlled error propagation. However, the presence of a nonlinear measurement
equation introduces an additional source of complexity, as linearization errors in the measurement
update step may further affect the filter’s robustness.

One key factor affecting the robustness of the EKF is its sensitivity to inaccurate state initialization.
Compared to the standard KF, the EKF is more prone to divergence if the initial state estimate is far
from the true state, as poor initialization can lead to incorrect linearization points [21]. This sensitivity
is particularly problematic in nonlinear systems, where the filter’s ability to recover from poor initial
conditions is limited. As it will be discussed later, methods such as adaptive covariance tuning [25],
robust filtering techniques [26], or iterated EKF approaches [27] could be considered to tackle this
problem.
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Despite these theoretical challenges, the approach remains effective in our case, as demonstrated by
the results. The specific characteristics of the bilinear system and the relatively slow-varying stiffness
parameter contribute to the EKF’s ability to maintain stable and accurate state estimation within
practical limits.
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4 Simulations

4.1 Simulation Setup

Plant Parameters

In this section, the performance of the proposed controller from the last chapter, demonstrated in
Figure B, is evaluated through numerical simulations. As previously introduced in Chapter 2 and
shown in Figure [ll, the considered plant is a cantilever beam, modeled as a single degree of freedom
system. The governing mathematical equations for this system is given in equations (1) and (2).

The parameters used for the simulations are presented in Table [I. These parameters were selected
to accurately reflect the dynamic behavior of the beam, particularly its first resonance mode of T,
which is the target for suppression by the adaptive PPF controller.

Table 1: Cantilever Beam System Parameters

Parameter Symbol Value
Equivalent Mass m 1 kg
Equivalent Stiffness k(t) [100,300] N/m
Equivalent Damping c 0.001 Ns/m
Input Matrix [Bu Bd] [10 80]
Output Matrix [ I fy] [1 1]
System Parameters %Z’Z /;Zﬂ {3207 & _ 0._11708

Simulation Framework

To validate the effectiveness of the adaptive PPF controller, the system is simulated under realistic
excitation conditions. The beam is excited by an external disturbance, wg, which originates from
ground vibrations. The system response is observed at the beam’s tip. The control input, u, is applied
through a piezoelectric actuator mounted on the beam, and a piezoelectric sensor is used to measure
the displacements corresponding to the same degree of freedom as the actuator.

The closed-loop simulation setup follows the block diagram in Figure J. At each time step (T%),
the EKF estimates the system’s stiffness parameter, which is used to update the resonance frequency
wy. The updated frequency is then used to adaptively tune the PPF controller parameters in real
time, ensuring robust suppression of resonance vibrations. Table P gives numerical values chosen for
Simulation.

Table 2: Simulation Parameters

Parameter Symbol Value
Ground disturbance wq(t) White noise, N'(0,0.012)
Measurement noise v(t) White noise, N (0, 0.012)
Sampling time T 0.001 s
Static open-loop gain g 0.1

4.2 Performance Evaluation of the EKF Estimator

In this section, the effectiveness of the EKF estimator in tracking the time-varying stiffness of the plant
is analyzed in an open-loop configuration. It is shown that due to the elasto-kinematic effect [[L9],
the stiffness of flexures in their support direction decreases under large deflections. While previous
studies [28] indicate that this variation exhibits a nonlinear behavior, for simplicity, a constant rate of
stiffness change is assumed in this study.
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Being inspired by [[10], where it is demonstrated that the resonance frequency in real applications
can double over the course of the deflection process, a constant rate of change is chosen. Specifically, in
this setup, the stiffness is assumed to vary at a rate that leads to a doubling of the resonance frequency
within a 40-second operational period.

Achieving accurate estimation with the EKF relies on several key factors, including appropriately
tuned measurement and process noise covariances (R and @) and a sufficiently excitating signal. In
the following subsections, the influence of these factors on the estimation accuracy is systematically
analyzed.

Tuning Q and R

To achieve an accurate estimation of the stiffness, careful tuning of the process and measurement
noise covariances is required. The measurement noise covariance is relatively straightforward to deter-
mine. In this simulation, the measurement noise is modeled as zero-mean white noise with a standard
deviation of 0.01, resulting in a covariance value of R = 10~%. Notably, even in experimental scenar-
ios, the measurement noise covariance can be directly determined, as the noise characteristics of the
measurement signal can be extracted from the sensor data.

On the other hand, tuning the process noise covariance requires more consideration. The process
noise covariance matrix () is defined as a diagonal 2 x 2 matrix, where one element corresponds to
the disturbance noise affecting the velocity state, and the other accounts for the unknown stiffness

dynamics:
Qa4 O
- [% al

The disturbance noise wy is modeled as zero-mean white noise with a standard deviation of 0.01,
leading to Qg = 104, similar to R. However, tuning @}, requires additional attention. Since the
stiffness variation is generally unknown and is assumed to follow a constant rate in the state-space
model, selecting an appropriate value for J is crucial. The value of @) should be large enough for
the estimator to attribute output prediction errors more to stiffness inaccuracies than to measurement
noise or wq.

Figure@ illustrates the impact of tuning Qi on stiffness estimation. It is evident that increasing Q
enhances the filter’s ability to track stiffness variations. However, increasing Qi indefinitely does not
lead to perfect estimation. A high @ results in an overly aggressive estimator, introducing fluctuations
around the correct stiffness value. As shown in Figure {, larger values of @y lead to noisier and less
smooth estimates. Furthermore, as discussed later, excessive fluctuations in estimated stiffness can
degrade controller performance and negatively impact vibration suppression. Therefore, tuning the
estimator involves a bias-variance trade-off that must be carefully managed.
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Figure 4: Influence of tuning Q) on better estimation.

Additionally, it can be observed that for larger stiffness variations, higher values of Q) are required.
As the rate of stiffness change increases, the estimator must allow for more significant variations at
each time step, necessitating a larger covariance value to account for this effect. Figure [ illustrates this
phenomenon: with a fixed Qi = 10°, the estimation accuracy deteriorates as the stiffness variation
rate increases. For better demonstration, the mean stiffness estimation error over the simulation
period is calculated for each case. The results show that as the stiffness variation rate increases,
estimation errors become more significant, emphasizing the importance of properly tuning @ for
different operating conditions.
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Figure 5: Effect of stiffness variation rate on estimation accuracy for a constant Q.

4.3 Performance Evaluation of Fixed-Parameter PPF Controller

In this section, the performance of the PPF controller with fixed parameters is assessed under varying
resonance frequencies. This analysis will later highlight the necessity of adapting PPF parameters,
which is the core objective of this thesis.

To conduct this evaluation, it is assumed that the average stiffness value over the variation period
is known and is used to compute the PPF parameters using equations (8-10).

To quantify the suppression performance, two evaluation methods are employed. First, the Ho
norm of the open-loop and closed-loop frequency responses of T,,, is computed, and their ratio is used
as a measure of resonance suppression effectiveness at each time instance when the stiffness turns to a
new value.

The second evaluation method involves calculating the ratio between the Ho, norm of the closed-
loop system (T%,,) and its DC gain, referred to as the "Pseudo ¢ factor.” This terminology is inspired
and arises from the fact that, for second-order systems, this ratio is commonly known as the ”q factor.”
However, since the PPF controller increases the system order to four, the frequency response exhibits
two close resonance peaks instead of a single one. The pseudo q factor considers the resonance peak
with the highest magnitude. Although not a strict theoretical definition, this metric provides an
intuitive measure of suppression effectiveness.

Figure [ illustrates the Hs norm ratio and the pseudo q factor. The results indicate that the
best suppression performance occurs when the actual stiffness closely matches the assumed nominal
value. As the deviation between real and assumed stiffness increases, the suppression effectiveness
deteriorates.
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Figure 6: Pseudo q factor and Hy norm ratio of the closed-loop and open-loop system for a fixed
nominal stiffness of 200 N/m.

4.4 Performance Evaluation with Accurate Stiffness Knowledge

In this section, it is assumed that an accurate approximation of the real stiffness dynamics has been
obtained through system identification. As expected, under these conditions, the PPF controller
achieves optimal performance, adapting precisely to each resonance frequency variation throughout
the workspace.

Figure H illustrates the optimal suppression performance using the previously defined evaluation
metrics, demonstrating the effectiveness of the controller when exact stiffness values are available at

each time instance.
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Figure 7: Pseudo ¢ factor and Hs norm ratio of the closed-loop and open-loop system (7%,,) for
accurately known stiffness at each time instance.

4.5 Adaptive Optimal PPF Controller Based on EKF Observer

In this section, the resonance frequency of the system is estimated in real-time using the EKF, which
subsequently updates the PPF parameters accordingly. For a stiffness variation with a slope of 5 over
40 seconds, Figure E demonstrates that the EKF effectively tracks the stiffness changes throughout
the simulation. The measurement and process noise covariances are set to R = 10% and

PP
Q_10><[0 5 x 10°

respectively. It should be noted that R and @ are divided by the sampling time T to be properly
incorporated into the discrete EKF algorithm.
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Figure 8: State estimation using EKF.

Figure E provides a closer examination of the stiffness estimation error. While noticeable fluctu-
ations around the true stiffness value still remain, reducing @ would lead to a larger steady-state
deviation from the actual stiffness, which is also undesirable. This highlights the trade-off in selecting
an appropriate @i, balancing estimation accuracy and noise sensitivity.
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Figure 9: Stiffness estimation error.

Figures @ and @ illustrate the effectiveness of the proposed indirect adaptive PPF controller.
Despite initial fluctuations at the beginning of the simulation, the controller can successfully attenuate
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the resonance, demonstrating its capability in dealing with resonance frequency variations due to
stiffness changes.
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Figure 10: Performance of the adaptive PPF controller indicated by Pseudo q factor.
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Figure 11: Performance of the adaptive PPF controller indicated by Hs norm ratio of close-loop and
open-loop system.

Moreover, a decreasing trend in Figure @ is observed which is expected, as stiffer systems inherently
exhibit lower resonance peaks. Consequently, as stiffness increases throughout the simulation, the Ho
norm of the system naturally decreases, independent of the controller’s suppression effect.
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A common observation from Figures E and @ is the less robustness of the adaptive controller to
the estimation inaccuracies at lower stiffness values, particularly at the beginning of the simulation.
This behavior is further analyzed by examining the sensitivity of the adaptive PPF controller to errors
in stiffness estimation. Figure [12 illustrates the variation of the pseudo @Q-factor over a stiffness range
of [40, 140] under a fixed estimation deviation. The results indicate that the same estimation error has
more effect at lower stiffness values.
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Figure 12: Sensitivity of the adaptive PPF controller to stiffness estimation errors.

4.6 Comparison of Different PPF Control Strategies

This section presents a comparison between the previously discussed control strategies: the fixed-
parameter PPF controller, the PPF controller with foreknowledge of stiffness variations, and the
proposed adaptive PPF controller. Figures E and @ illustrate that the proposed adaptive controller
closely follows the performance of the PPF controller with exact stiffness knowledge, whereas the fixed-
parameter PPF controller exhibits weaker performance when the stiffness deviates from its assumed
nominal value.

Furthermore, Figure E depicts the gain margin (1 — g), computed using equation (66), for the
three studied cases. It can be observed that both the adaptive PPF and the_optimal PPF with
stiffness foreknowledge maintain the predefined gain margin (as noted in Table P). However, this is
not the case for the fixed-parameter PPF controller. Notably, overestimating the stiffness leads to a
reduction in the gain margin, which, as will be demonstrated in the following section, can also pose a
risk of destabilizing the system.
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5 Conclusion and Future Recommendations

In this study, a PPF controller with an EKF-based resonance frequency estimator was developed.
This controller is specifically designed to suppress parasitic resonance frequencies in a cantilever beam
excited by ground vibrations while addressing the issue of varying resonance frequencies arising from
stiffness changes due to large deflections and elasto-kinematic effects. The system model was reduced
to a single-degree-of-freedom system to only capture the dominant low-frequency resonance. It was
demonstrated that incorporating a feed-through term in the system model significantly improved the
accuracy of the reduced-order SDoF representation, allowing it to fit the real system model adequately
up to its second vibration mode.

Due to the presence of this feed-through term in the measurement equation, a modified joint EKF
algorithm was required to handle the direct correlation between external disturbances and measure-
ments. While the results of stiffness estimation using the derived EKF were promising, tuning the
process covariance matrix proved to be a challenging and tedious task. Moreover, due to the nonlin-
earities of the system, the EKF may sometimes fail to converge to the correct stiffness values during
the simulation.

Several potential directions for further research can be considered to improve the estimation ac-
curacy and robustness. The first, and perhaps the most straightforward, is to identify the stiffness
dynamics of the system beforehand and incorporate this information into the EKF equations. By doing
so, large values for the stiffness covariance can be avoided, as a general trend for stiffness variations
would already be known. Consequently, this approach would lead to smoother stiffness estimation with
lower steady-state errors (bias), which is crucial for the proposed adaptive controller. A more accurate
stiffness estimation would allow for more ambitious controller tuning, enabling higher static open-loop
gain values and achieving even better resonance suppression while ensuring robustness throughout the
simulation.

Another possible improvement involves utilizing adaptive covariance tuning, as discussed in [25]. As
previously mentioned, achieving good EKF estimation requires carefully selecting the process (Q) and
measurement (R) noise covariances. In this study, these covariances were kept constant throughout
the entire simulation. However, in practical applications, measurement noise levels may vary due to
several reasons such as payload changes, long-term fatigue effects, etc, all of which can change the
system’s state dynamics. By incorporating an adaptive covariance tuning algorithm within the EKF
estimator, as proposed in [25], the estimator can dynamically adjust to these uncertainties, ensuring
consistently reliable performance.

Additionally, the presented EKF estimator cannot be guaranteed to remain robust if the initial
state estimate deviates significantly from the true state. In such situations, the EKF, essentially a
first-order filter, may be linearized around an inaccurate state estimate, potentially leading to error
accumulation and eventual divergence. This issue could be addressed using a robust Kalman filter,
such as the method proposed in [26], where higher-order terms in the Taylor series expansion are not
simply neglected but are instead treated as functions of state estimation errors and exogenous inputs
with bounded H., norms. This approach formulates the problem as a minimax estimation problem,
which can be tackled using standard H., techniques. While this method offers superior performance
for highly nonlinear systems, its applicability should be evaluated in our case, as the system model
exhibits bilinear properties, whereas the output measurement equation appears to introduce more
significant nonlinearities.

The proposed adaptive PPF controller was shown to outperform the conventional fixed-parameter
PPF controller, achieving performance comparable to that of a PPF controller with full foreknowledge
of stiffness variations. The adaptive approach demonstrated improved robustness against uncertainties
in stiffness variation while maintaining system stability across a wide range of operating conditions.
However, as with other adaptive control strategies, this method is susceptible to the phenomenon of
“bursting,” where insufficient system excitation followed by an inaccurate parameter update results
in large deviations from the correct estimation, leading to significant transient excitations. This issue
can be mitigated by ensuring persistent excitation through exogenous input signals.
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While the proposed adaptive PPF controller demonstrates promising results, further research could
focus on refining its robustness and stability in the presence of uncertainties. Enhancing the estimation
process through adaptive covariance tuning or robust filtering techniques could mitigate convergence
issues and improve reliability. Future work could also explore real-time implementation and experimen-
tal validation to assess the controller’s practical feasibility and performance in real-world applications.
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