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ABSTRACT 
Wildfire behaviour modelling plays an important role in the field of wildfire management and in 
conducting fire risk assessments. This research is focused on the influence fuel type aggregation on the 
accuracy of wildfire simulations outcomes, by using the Flammap fire behaviour modelling software. The 
FBFM40 fuel type classification (Scott & Burgan, 2005) has been systematically aggregated based on the 
following fire behaviour characteristics: fuel load, rate of spread, and flame lengths or no specific 
characteristic. The River Road East Fire, 2023, in the Lolo National Forest, Montana (USA), has been 
selected as the study area. This due to its representative boreal forest ecosystem and recent fire 
occurrence. This study uses the Minimum Travel Time (MTT) fire spread model to analyse changes in 
simulation accuracy across multiple levels of fuel type aggregation. The Sørensen Similarity Index (SSI) has 
been used to quantify the under- and over-simulation, while entropy levels have been calculated to 
evaluate the fuel type diversity left within the input data. The results indicate that fuel type aggregation 
mainly impacts the over-simulation, especially after the 6 aggregation steps and or when the entropy levels 
reached < 0.61. The rate of spread showed the greatest influence on the simulation accuracy. 
The findings suggest that maintaining an optimal level between the amount of unique fuel types left in the 
simulation and the fuel type diversity (entropy) is essential to balance the computational efficiency and 
simulation accuracy. This study shows potential risks of oversimplification for the input fuel type 
classification to use in fire behaviour modelling Future research should explore dynamic aggregation 
methods with more focus on small-scale differences as well as fire suppression efforts. Recommended 
would be further validation of entropy-based thresholds across diverse wildfire-prone regions or complete 
ecosystems. 
 
Key words: Wildfire simulation, fuel type aggregation, Flammap, FBFM40, fire behaviour characteristics, 
entropy, Minimum Travel Time (MTT), Sørensen Similarity Index (SSI), fire spread modelling, Boreal 
Forest fires, producer accuracy, computational efficiency, wildfire management 
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1. Introduction 
 
The annual burned areas by wildfires in the United States is expected to increase by a factor of five by 2039 
based on observations from 1961-2004 (Kitzberger et al., 2007). On top of that the length of the fire seasons 
will increase by 2-3 months in comparison with the last decades (Jolly et al., 2015). Being able to predict and 
simulate possible scenarios and outcomes in the event of a wildfire can greatly increase the safety of people 
and property involved. By using the forecasting possibilities of fire behaviour simulations, the results of 
these simulations prior- and post-fire, can gain valuable insights to the fire (risk) management. Prior to fires, 
risk assessments can be made helping to guide firefighters to focus areas, as well as giving insight into 
potential danger zones in case of a fire event. During the event of a fire, simulations can be of great help in 
adjusting firefighting strategies or evacuation plans (Šerić et al., 2005). Wildfire- and forest management 
strategies regarding restoration and recovery of past-, as well as resilience to future fire events are gaining 
useful insights by using wildfire simulations (Barros et al., 2018). 
 
Boreal forests are known to be housing an ecosystem which is critical for the storage of global carbon 
resources. In recent studies (Zhao et al., 2021a), it has been shown that a third of the total global emissions 
of fossil fuels are being absorbed by boreal forests. The soils of these ecosystems are a long-term storage 
for a significant amount of the global carbon household. Wildfires in this type of ecosystem will therefore 
also be able to contribute to a significant change in the regional, national and even global carbon household 
(Deluca and Boisvenue, 2012; Zhao et al., 2021). 
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1.1 The Wickedness in Wildfire Management 
Wildfire management is a great example for a scenario of a "wicked problem"—a term for issues that are 
complex, multifaceted, and resistant to straightforward resolution (Rittel & Webber, 1973). Wicked 
problems are characterized by their lack of clear solutions, conflicting stakeholder interests, and high levels 
of uncertainty. Looking from the field of wildfire management, the wickedness is found in the connection 
between the ecological, social, economic, and political dimensions. Each of these dimensions are playing 
their part in creating a complex environment for decision-making and long-term planning. The complexity 
of each theme is described below. 
Ecological Dimension 
Wildfire management must constantly adapt to the ecological complexity of landscapes which are prone to 
wildfires. Wildfires are not only destructive but also essential for many ecosystems. For example, with 
regards to plant regeneration and maintaining biodiversity(He et al., 2019). However, decades of fire 
suppression efforts have resulted in a change in vegetation and caused an increase in fuel loads, making 
forests more vulnerable to wildfires (Steel et al., 2015).Climate change is a major factor regarding the 
frequency and intensity of wildfires, increasing temperatures, longer periods of droughts, and changing 
weather patterns can all be traced back to climate change (Goss et al., 2020). 
At the same time, human activities, like increased housing density along the boundaries of a forest, the 
frequency in wildfires is rising due to human pressure on such area (Stein et al., 2007). Within the ecological 
dimension there are natural and manmade factors that contribute to the complexity in achieving appropriate 
and effective wildfire management strategies.  
Social and Economic Dimensions 
Balancing human community protection and allowing the ecological benefits of natural wildfires is a 
contentious issue. Over the past two decades, the effects of wildfires have increased to impact human lives. 
Losses and damage of assets like houses, cars and other property. Besides the direct loss of assets the loss 
of life of pets, cattle, wildlife and humans come on top of that (Moritz et al., 2014). 
Indirect costs such as increased healthcare expenses for smoke-related illnesses arise. As well as long-term 
ecological damages which have an impact on industries like forestry and agriculture as well slowing regional 
economies as many businesses cannot continue to operate as usual (Thomas et al., 2017). Allocating 
resources effectively is challenging, especially when economic interests conflict with ecological interests. Or 
when ecological interests are conflicting with other ecological interests.  
Wildfire prevention is often more cost-effective than wildfire suppression (e.g., fuel load management, rural 
development changes), but prevention does require upfront investments and long-term planning(Wunder 
et al., 2021). Policies that prioritize areas of high risk for specific interventions can reduce overall economic 
and social costs (Al Abri & Grogan, 2021). A consensus among all stakeholders within the economic and 
social dimension would be needed, which is often difficult to achieve due to the wickedness of such cases. 
Political and Policy Dimension 
Wildfire management is politically influenced by political dynamics. Research has shown a correlation 
between the belief in climate change and political identity in the United States (Hartter et al., 2020). Finding 
bipartisan support for long-term policy changes has proven too complicated due to opposing beliefs with 
regard to climate change and therefore adding complexity to the effectiveness of wildfire policies (Hazlett 
& Mildenberger, 2020).  
This brings more challenges to the table as policymakers navigate a landscape of competing interests, 
including those of environmental groups, industry representatives, tribal and local communities as well as 
governmental agencies (Abreu, 2021). 
The difference in priorities among these stakeholders often leads to divided, short-term policy strategies 
instead of consistent and long-term plans.  
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Future directions in wildfire management 
To address the wickedness in wildfire management, it is important to first recognize the connection between 
the dimensions involved. Policies and actions including all crucial stakeholders in developing a futureproof 
strategy to balance fire suppression with ecological restoration and socio-economic interests. A conceptual 
diagram is provided in figure 1 to visualize the following connections. 

- Climate change strengthens ecological vulnerability, which results in an increased risk and intensity 
of wildfires. 

- These wildfires increase social and economic loss, resulting in political pressures for immediate, 
short-term focused action. 

- As a result of these political decisions, resource allocation may either reduce or increase ecological 
and social vulnerabilities. 

- With the help of wildfire simulation and modelling capabilities increase the identification of areas 
of high risk. 

 
 

 
Figure 1: Conceptual diagram for wildfire management as a wicked problem. 

 
 
 
 
 
 



FUEL TYPE AGGREGATION FOR WILDFIRE SIMULATION OPTIMIZATION. 

 
 

4 
 
 

 
Aims to reduce wickedness 
Being able to improve predictive capabilities, wildfire management is using advanced simulation models to 
identify areas of high risk and incorporate this into the policy- and decision-making process. These wildfire 
simulations give insights into potential risk areas as well as supporting suppression efforts in prioritizing 
specific areas in the event of a fire (Pham et al., 2020). 
By integrating the perspectives of the stakeholders involved, future policies could be developed which 
balance the community protection by ecological restorations through a transparent long-term decision-
making process (Vogler et al., 2015).  
Promoting proactive management aims to shift practices from fire suppression efforts as a reaction to 
wildfires to a proactive approach in preventive measurements(Molina et al., 2019). Policies can be created 
towards active fuel load management, creating landscapes adapted to a certain level of fire risk as well as 
developing more resilient urban planning (Halofsky et al., 2020; Schoennagel et al., 2017). 
New forest management practices are needed in the recovery process of a burned area and its surroundings 
after the event of a wildfire (Halofsky et al., 2020; Mansoor et al., 2022). Implementing policies to strengthen 
the post-fire recovery and to improve the long-term resilience of ecosystems can be achieved by restoring 
degraded landscapes and or replanting more fire-resistant vegetation (Chuvieco et al., 2010).  

 
These aims are in line with the overall goal to reduce the wickedness involved with wildfire management 
practices. Creating strategies which have a higher adaptation to specific situations and increase inclusivity of 
stakeholders involved which are looking further ahead in the future.  
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1.2 Fire behaviour simulations, developments over the years 
 
Wildfire simulations started with the usage of mathematical models to calculate trends in fire spread. Early 
models only seemed to exist in the literature and were hardly used in practice. Models like the Fons model 
for light forest fuels (1946), the Thomas and Simms (1963), the Hottel, Williams and Stuward model (1965) 
were published before Anderson (1969) and Rothermel (1972) published their models. The Rothermel 
model was considered the most comprehensive and up to date in 1976 (Albini, 1976). These early models 
were basic and only focussed on the fire spread based on simple fuel type classifications and weather data 
(Bakhshaii & Johnson, 2019; Johnson & Wagner, 1985). Towards the 1980s a more specific approach was 
introduced which used wind patterns and fuel type classifications. With ‘’ A Mathematical Model for Predicting 
Fire Spread in Wildland Fuels’’ (Finney, 2023) it was Richard Rothermel who became a founding father in 1972 
and a known name in what we now know as wildfire simulations as Mark Finney, a leading fire behaviour 
researcher at the Missoula Fire Sciences laboratory, stated. He sat down with Richard Rothermel during an 
interview in 2022 to discuss the 50-year milestone of the publication of Rothermel’s paper, ‘’A Mathematical 
Model for Predicting Fire Spread in Wildland Fuels’’ from 1972 (Finney, 2023). 
 
The introduction of Geographical Information Software (GIS) in an era in which computer capabilities 
rapidly increased around the turn of the century, made significant improvements in wildfire simulation 
capabilities (Andrews & Queen, 2001). More focus has been aimed towards accuracy and predictions in 
more specific and complex environments (Loehman, Keane, and Holsinger 2020). The increase in 
computational power also increased the complexity of the simulation models as more specified input data 
could be used. With weather forecast models increasing in quality as well, these new forecasting methods 
were introduced in the fire simulations (Loehman et al., 2020).   
Nowadays, complex models are being used in wildfire management and are used to help the decision-making 
process in this field (van Hees 2013). The current state of the field of wildfire simulations has made it 
possible to make accurate predictions in complex environments. This is mainly used in making risk 
assessments as well as supporting the decision-making process during active fire events.  
 
 
Management strategies have been shifting away from maintaining historical forest structures. Wildfire 
simulations therefore offer valuable guidance for forest managers to maintain a fire-prone landscape. The 
ability to create a more resilient ecosystem is important as these ecosystems are continuing to adapt to a 
changing climate as well (Schoennagel et al., 2017). Adapting the management strategies, which include an 
increase in prescribed fires, a reduction in fire suppression and to recognize the limits in which a regional 
fire pattern can be changed. (Loehman et al., 2020; McKenzie & Perera, 2015).  
The increase in the frequency of high severity burns in North American boreal forests have shown to be a 
large source of carbon emissions. In the last 40 years, the total burned area as well as the frequency of large 
fire (>1000km2) events in Canada has doubled. A positive correlation has been shown between the increase 
in wildfires and the global climate change. With boreal forests storing a third of the global terrestrial carbon, 
fire events in these ecosystems only speed up the combustion of these carbon emissions in the atmosphere 
(Zhao et al., 2021a). 
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1.3 Components of fire behaviour modelling 
In the field of wildfire simulation sciences, there are concepts that play a key role. After a brief run-over of 
the history and developments of this field, an introduction will be given into the fundamentals on which 
wildfire simulations stand. For successful simulations, several input models are needed, as well as validation 
and accuracy models to assess the model outcomes. These models use the input data and are used mainly 
for wildfire management purposes which will be explained further in this chapter as well.  
 
Input data 
The different input data needed to run successful simulations can be divided into fire behaviour, weather- 
and fuel data. For each of these input data types, there are several different possible data input models, the 
exact description for the ones used in this research can be found in the methods chapter.  
Behaviour Models are used to simulate how fires behave based on factors such as weather, landscape, fuel 
types, and their ignition source. These models aim to predict the flow of fire spread, the rate of spread, and 
the fire intensity, as fire characteristics in a simulation. (Cardil et al., 2021). 
The rate of spread and the length of the flames are crucial outputs of the fire behaviour models for 
emergency response teams to set up a suitable approach (Cardil et al., 2021). 
There are a few fire behaviour or so-called simulation models, with the following models being used the 
most, Farsite (Finney, 1998), Flammap (Finney, 2006), Wildfire Analyst (Ramírez et al., 2011), and Behave 
Plus (Andrews, 2013). In short, Farsite uses the Huygens’ principle as it looks at the fire perimeter based on 
a series of points that spread independently in response to the fire environment of the other points. Farsite 
is designed for maximum simulation precision, prioritizing accuracy over processing speed. It is effective 
for simulating the growth and behaviour of a single fire over a period of up to a few weeks. 
Flammap is a geospatial simulations system that calculates potential fire behaviour characteristics across the 
entire extent of a Landscape (LCP file). Flammap generates geospatial data on potential fire behaviour, such 
as spread rate, fire line intensity, flame length, and crown fire activity. Flammap lacks a temporal component, 
it uses spatial information on topography and fuels to compute fire behaviour characteristics for a single set 
of environmental conditions(Scott & Burgan, 2005).  
Wildfire Analyst is known for fast processing speeds (>60sec. for simulations) for multiple simulation 
modes. To be able to run large-scale forecasting analyses there is a cloud-based High Performance 
Computing version available. The software runs on an API (Applications Programming Interface) to 
combine to use multiple applications together. Technosylva is the commercial company behind the Wildfire 
Analyst software and works with a license and subscription platform for usage.  
The Behave Plus fire simulations system is a collection of models that describe fire behaviour, fire effects, and 
the fire environment. Behave Plus generates tables, graphs, and diagrams, making it useful for various fire 
management planning and wildfire incident management applications (Scott & Burgan, 2005). 
The second inputs are the weather data. Integrating weather data helps to improve the accuracy of fire 
behaviour predictions. Advanced weather data can provide accurate forecasts of winds, temperature, and 
humidity, which are important components for wildfire simulations (Alley et al., 2019). The rate of spread 
of fire depends for a big part on the winds, and therefore accurate weather models and forecasting are 
important in achieving accurate fire behaviour predictions. The weather data collection is running on 
observed weather data, this data has been recorded for decades (Herrera et al., 2017), which results in the 
availability of a lot of input data to be used in these datasets. As these weather models make predictions 
based on input data, the prediction accuracy increases if there is observational weather data available which 
has been collected for over decades in certain areas. The rise of the availability of small sensor weather 
stations adds real-time measurements and improves area-specific data to be used in weather forecasting 
models (Illingworth et al., 2015; Schauberger et al., 2020). Making observational weather data increase in 
spatial accuracy.  
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Finally, the fuel data, these datasets are used to show the characteristics of fuel types that are burning in the 
event of a wildfire. Data on the spatial distribution of the fuels is crucial in the process of running a fire 
simulation (Arroyo et al., 2008a). Fuel models can be sub-categorized into surface fuel model, canopy base heights, 
and the bulk density of the canopy. Each of these sub-categories influences the behaviour of the fire spread. 
The surface fire will transform into a passive crown fire as soon as the intensity of this surface fire passes a 
specific threshold. This threshold depends on the canopy base height. The fire intensity depends on the 
bulk density of the canopies once the surface fire has turned into a crown fire (Hall & Burke, 2006).  
Increasing the accuracy and spatial resolution of the fuel type modelling will increase the accuracy of the fire 
behaviour simulations, by considering the different influences that each fuel type has on the fire behaviour 
(Burgan et al., 1998). 
Outdated fuel data, when used as input for the fire behaviour simulations, can lead to inaccurate simulation 
outcomes(Benali et al., 2016). These inaccurate results can have a negative impact on the operational 
firefighting, fire mitigation efforts, and eventually the severity of the fire event. Understanding the fuel 
treatments is important to be able to suppress the fire and to be able to limit the severity of the fire (Shang 
et al., 2004) (Taneja et al., 2021). Fuel Load, Rate of Spread and Flame Length are characteristics which are 
essential in fire behaviour modelling. These characteristics can differentiate substantially between the 
individual fuel types and, therefore, often show different impacts on fire behaviour. The fuel load is often 
used as the main factor for a fuel type classification. It refers to the amount of burnable materials available 
and is often measured in weights like kilos per m2 or tons per km2. Fuel loads can be alive or dead vegetation 
and can range from pine needles to complete trees or from grasses to dead logs. With regard to  fire 
behaviour, higher fuel loads tend to lead to a higher intensity in the fires (McNorton & Di Giuseppe, 2024). 

The rate of spread refers to the speed in which a fire moves over the surface. As different fuels burn at 
different rates, fire spread often increases when fuels are dry. Topography plays an important role in the 
rate of spread as well as fire tends to move faster uphill than downhill. This is due to the pre-heating of fuels 
uphill, which increases their ignition and therefore the rate or spread. Lastly, the weather conditions and 
mainly the wind conditions are an important element in the rate of spread (Cardil et al., 2019). The flame 
length is an indicator of the fire intensity and refers to the length of the base of the fire to the tip of the 
flames. Dense and dry fuels tend to create longer flames, winds are able to stretch the length of the flames 
as well. Longer flames are showing higher-intensity fires and long flames are also harder to control during 
suppression efforts (Barboni et al., 2012; Kreider et al., 2024).  
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1.4 Validation and Accuracy 
After introducing the input data, running a simulation would be possible based on these previously 
introduced models and data. To be able to determine the quality of the simulation outputs a validation 
method must be used as well as an accuracy determination of the simulation outputs.  
By validating the wildfire simulations with real-world and/or real-time data, researchers aim to increase the 
accuracy of the predictions. Rochoux (2013) has been able to validate their simulation with real-world data 
by running small-scale, prescribed fires (Rochoux et al., 2013). By using a validation method, researchers 
are trying to decrease the uncertainties in the simulation outputs. These validations help to improve the 
reliability of the simulation results which results in better-informed decision-making around wildfires.  
 
Two commonly used validation methods are focussed on either, the arrival time of the fire or the burned 
perimeter (Filippi et al., 2013). For the burned vs unburned perimeter, the Sørensen similarity index is often 
used. This index calculates the inter-agreement between the simulated and the observed (burned) perimeters. 
The intersection of the two areas is then divided by the total area and the outcome value will be between 0 
and 1. This will be further explained in the methods section. Often, this index is approached as a hit-or-miss 
analysing method to determine the level of agreement between the simulated and observed areas (Perry, 
1999). 
The second validation method has been developed more recently. The arrival time agreement finds its base 
in the simulated arrival times versus the observed arrival times. The observed arrival time is often unknown 
because of the low availability of observations, in cases there is only one observation possible at the moment 
the fire has stopped. In practice, the observed arrival time is often chosen for a more generally used score 
to use in the calculation (Filippi et al., 2013). 
With fuel types and their spatial distribution being one of the key drivers of wildfire simulations, detailed 
data products in this field are of great importance (Arroyo et al., 2008b). Classification of fuels and fuel 
types is often difficult due to the complex structures and large variations in vegetation which can be present 
in an aera (Stefanidou et al., 2022). Individual tree mapping has produced high-resolution spatial data on 
fuel distribution (Young et al., 2022). However, the size of these study areas is still relatively small in 
comparison with wildfires which can quickly spread over several hectares.  
Detailed fuel type distribution maps are essential to improve fire behaviour modelling  and assessing fire 
risk (Penman et al., 2022), unfortunately large-scale application often remains limited by data availability and 
computational constraints. 
Eventually, the accuracy of a simulation output is one of the key parameters to be able to determine the 
quality and usefulness of the model (Penman et al., 2022).  
 
Accurate simulation outputs ensure that the model can effectively predict fire behaviour. Those predictions 
help in supporting the decision-making processes and wildfire management (Zimmerman, 2011). When a 
complex and accurate model is run with low-quality input data, the simulations outputs will be low in 
accuracy. Finding the right balance between the quality of the simulation outputs versus the (computing) 
costs and challenges of generating high-quality input (Schwerdtner et al., 2024)data has always been a key 
research focus within this field.  
 
Lowering the complexity of the simulation process can be achieved in multiple ways, for example, by 
simplification of the total model used for the simulations (Robinson, 2023). A reduction in variables used, 
scenario reduction (limiting possibilities of less likely behaviour) and hierarchical modelling (providing 
intermediate results during the process). These options are mainly based on the model itself. Another 
possibility for simulation simplification can be found in (spatial) data aggregation. This approach is aimed 
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at the input data, smaller data fields are aggregated to create larger data fields and reduce the number of 
individual data units (Bian & Butler, n.d.). 
It is essential to validate and verify the model's accuracy while aggregating fuel types to ensure the 
simulations can provide meaningful and useful insights for wildfire management purposes. Previous studies 
have shown great results in aggregating underrepresented fuel type classes. Cutting the training dataset in 
half has shown a model accuracy loss of 7.2% in a recent study conducted by using the LANDFIRE surface 
fuel model with the usage of the FBFM40 classification (Alipour et al., 2023).  
 
 
 
1.5 Limitations in current research 
Wildfire behaviour simulation uncertainties largely stay unmeasured in the literature due to the lack of 
computing power. While many improvements have been made in the field of wildfire simulations, a 
changing climate will bring new challenges to the table. Extreme weather behaviour, for example, will bring 
new challenges (Aparício et al., 2022). As stated before, an increase in the frequency of high-severity burns 
in North American boreal forests have shown to be a large source of carbon emissions (Zhao et al., 2021a).  
With an increasing amount of fuel loads burning, as well as more and larger areas becoming prone to 
wildfires, the need for abilities to simulate larger wildfires faster increases (Cardil et al., 2021).  
 
In recent years, a big part of the research in this field has been evolving around increasing the spatial 
resolutions of fuel-type data, intending to increase the accuracy in wildfire simulations (Bakhshaii and 
Johnson, 2019; Rwanga and Ndambuki, 2017; Syifa, Panahi, and Lee, 2020). However, computational power 
has been a limiting factor, often resulting in decreasing the size of the research area that can be effectively 
studied. Parallel Processing Capability and Data Flow showing to be the biggest load on the computational 
power (Bakhshaii & Johnson, 2019).  
One of the oldest publications used in this research pointed already towards these struggles when published 
in 1976, ‘’limitations could be found in the model not being applicable for the research area, the accuracy could be at fault and, 
or, the input data may be inaccurate’’ (Albini, 1976).  
 
Alipour et al., (2023) have published great results in their research to decrease the input datasets, for their 
study area a hot and dry ecosystem has been used. The study area was the entire state of California, which 
has a Mediterranean ecosystem. Therefore, opportunities for research within boreal forest ecosystems stay 
untouched.  
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1.6 Research problem statement 
 
Maintaining the predictive capabilities of wildfire simulation outcomes, while simplifying input data, is 
crucial for their practical and efficient usability. 
A big challenge in this process is to maintain the accuracy of the fire behaviour simulations while lowering 
the complexity when simplifying the input data needed. 
One way to approach this challenge is by proposing a method focussed on the aggregation process of fuel 
types. Aggregating fuel types can take place in many ways, with different rule sets for each proposed 
aggregation step. Understanding the individual influence of fire characteristics on the simulation process 
and outcomes is crucial. This ensures that the simulations after aggregation maintain their essential predictive 
qualities. 
Therefore, this research focuses on the individual influence of fire characteristics of the different fuel types 
to develop an effective aggregation strategy. 
 
 
1.7 Research goal 
 
This research aims to develop a systematic fuel type aggregation method for wildfire simulations that 
balances accuracy with lowering input data complexity.  
Identifying the key fire behaviour characteristic which shows the most influence on the wildfire simulation 
outcomes is an important topic. This research will follow aggregation rules which will simplify the input 
data needed, while maintaining the predictive reliability. The goal is to broaden the usability of wildfire 
simulation modelling. And to provide a more efficient and simplified process to provide potential wildfire 
scenarios to support the decision-making process in wildfire management and response operations. 
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2. Research Questions  
 

  
Main-Hypothesis: 
Aggregating fuel types, based on the most influential fire behaviour characteristics is a way to 
simplify the input data without a substantial loss of simulation accuracy. 
Analysing the output-accuracy levels based on wildfire simulation performances by using various aggregation processes to simplify 
the input data. 
 
 
Research Question one: 
How does aggregating fuel type classes, based on the fire behaviour characteristics of each class 
or only based on presence, affect the accuracy for fire simulation outputs based on similar and 
under- and over-simulation? 
 
Hypothesis one: 
Aggregating fuel type classes, based on the fire behaviour characteristics of each class or only based 
on presence, will result in a clear loss of accuracy in fire simulation outputs. 
 
This implies aggregating fuel type classes based on a ruleset with regards to the specific fire behaviour characteristics or only by 
looking at the fuel type presence. Therefore, stopping the aggregation process when no individual fuel types which hold similar 
fire behaviour characteristics are left within the input data. 
 
 
Research Question two: 
How do the individual fire behaviour characteristics, fuel loads, rate of spread, flame length or no 
specific characteristic, impact the accuracy of wildfire simulation outcomes under different levels 
of fuel type aggregation? 
 
Hypothesis two: 
Based on the fire behaviour characteristics, the rate of spread has the greatest influence on wildfire 
simulation outcomes, shown in the trendlines representing the producer accuracy for under- and 
over-simulation during the aggregation process. 
 
The rate of spread is expected to show the greatest influence on wildfire simulation accuracy, as it directly affects fire movement. 
Therefore, analysing trendlines for producer accuracy based on under- and over-simulation, will show if the rate of spread has 
the most influence on accuracy compared to fuel load, flame length or no characteristics. 
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3. Method 
A reference dataset was created based on a historical fire event to compare fire simulations with differing 
levels of fuel type aggregations. In a systematic approach, we aggregated fuel-type input maps and simulated 
fires in a study area. These simulations were compared against a reference simulation of a historical fire 
event which was used to compare the simulations results under different aggregation levels (figure 2).  
The simulation software does not take any suppression efforts into account which have taken place during 
the historical fire events. This will show an accuracy difference between the simulated data for the burned 
area of the reference dataset and the observed burned area (figure 3). Therefore, the simulated data of this 
first run (with an unaggregated fuel type classification) has been used as the reference data instead of the 
observed burned area from the historical fire event (figure 3).  
 
After setting all parameters for the simulations, the model was run based on a constructive data aggregation 
method. This method focused on the presence and characteristics of the available fuel type classes within 
the study area. Validating the simulated burned areas with a produced reference dataset has been the 
approach to determine accuracy values of different levels of fuel type aggregation. Eventually assessing the 
quality and effect of the individual aggregation steps. The reference dataset used is the result of the initial 
simulation outcome before starting the aggregation process, therefore the producer accuracy for the model 
has been used to validate the simulation outcomes.   

 

  

Figure 2: flowchart of the proposed method. 
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3.1 Study area: River Road East fire 
The 2023 River Road East Fire in the Lola National Forest in the state of Montana, is a relevant case study 
for boreal wildfire research. This is due to the similarity in fuel composition, topography, and fire behaviour 
found in boreal forests. The Lola National Forest can be found in the Northwest of Montana, directly on 
the border with the state of Idaho. This region contains a mixed conifer forest and surface fuel loads similar 
to those found in boreal ecosystems (Walker et al., 2020). 
Boreal forests typically feature flat lowlands, rolling hills, and mountain ranges. Slow draining soils, 
permafrost, and peatlands can be found at lower elevations. Steep slopes and a network of streams, rivers 
and lakes further characterize these mountainous regions(Laamrani et al., 2014). 
With the terrain being identified by the Bitterroot and the Rocky Mountains ranges, there are valleys and 
basins in the region. The elevation levels range from 700 up to 2,100 meters and the Lolo National Forest 
shares similarities with mountainous boreal regions such as the Boreal Cordillera. 
The Boreal Cordillera is an ecozone located in northern British Columbia up until the southern Yukon. 
Forests dominate the lower elevations and other characteristics are mountain ranges, plateaus, deep valleys 
and lowlands (Demarchi, 2011) 
The FBFM40 fuel type classification contains of 40 classes (see Appendix A, organized according to 
presence in the study area). The most distinctive classes for the study area, according to Scot and Burgan 
(2005), for the boreal forests are: 
TL8: (Long-Needle Litter): ‘’ Long needle litter, moderate load long needle pine litter, may have small amounts of 
herbaceous fuel, spread rate moderate and flame low’’(Scott & Burgan, 2005). 
 
GR2: (Low Load Grass): ’’Low load, dry climate grass primarily grass with some small amounts of fine, dead fuel, any 
shrubs do not affect fire behaviour’’(Scott & Burgan, 2005). 
 
TU5: (Very High Load Timber-Shrub):  ‘’Very high load, dry climate timber shrub, heavy forest litter with shrub or 
small tree understory, spread rate and flame moderate’’(Scott & Burgan, 2005). 
 
Besides the TU5 fuel type class the TU2 is also commonly found in boreal forests which are defined as 
mountainous and dry forests conifer-dominated forests.  
TU2: (Moderate Load, Dry Climate Timber-Shrub): ‘’moderate litter load with some shrub, spread rate moderate and 
flame low’’(Scott & Burgan, 2005). 
 
The TU2 has lower fuel loads and fire intensity versus the TU5 as it is often found in a more open and dry 
forest (Scott & Burgan, 2005). 
The fire season in boreal forests runs from May to September. The peak activity occurs during the July and 
August months, often as a result of lightning strikes, high temperatures and periods of drought (Clelland et 
al., 2024). The fire was discovered on August 18th, 2023, roughly 10 kilometres southeast of the small town 
of Plains in Montana. In total, the burned area grew to around 7 hectares. The fire event took place in the 
Lola National Forest and was 100% contained on September 15th, 2023.  
The information provided to the public around this fire has been of high quality with daily updates (figure 
4) on the burned area, fire behaviour and suppression efforts. The fire event and its suppression operation 
have been documented well which provides good input data to set parameters to run simulations. The 
ecological characteristics of the study area, like the topography, fuel types and the time of occurrence of 
the River Road East Fire, these factors make it a suitable case to use as study area for this research. 
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Figure 3: Study area: River Road East fire. 

Including the observed burned perimeter as of 24th of August 2023. 
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Figure 4: Imagery published to the public during the River Road East Fire.  
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3.2 Flammap  
Flammap is a fire behaviour simulation software package. The project is set up by Charles McHugh and 
Mark Finney from the Missoula Fire Sciences Laboratory. The current software version is 6.2 (February 
2024), the first version was launched in 2013. Flammap is a fire mapping and analysing program. The model 
simulates fire behaviour under set environmental conditions, including weather and fuel moisture, using 
predefined weather files which are introduced later in this chapter. Fire behaviour is calculated for each 
pixel within the landscape file (study area), included here are fire spread dynamics and changes in fire types. 
The simulations consider both surface and crown fires. A surface fire is spreading through ground-based 
fuels, and it may turn into a crown fire if an ignition takes place based on flame length, canopy base height, 
and weather condition 
Flammap includes several fire behaviour models. Surface and fire spread are based on Rothermel’s (1972 
and 1991) models and the spread from ground into canopy is modelled with Scott and Reinhardt’s (2001) 
model. This results in a realistic representation of fire behaviour under different fuel and weather 
conditions. 
 
Flammap is running on a landscape file (.LCP) which can be accessed through the LANDFIRE program. 
This landscape file is built up by the following geospatial data layers: 
1. Topographic layer (Elevation, Slope, Aspect)  
2. Fire Behaviour Fuel Models 
3. Forest canopy cover,  
4. Canopy Height,  
5. Canopy base height,  
6. Canopy Bulk density.  
 
Keeping environmental conditions constant, the Minimum Travel Time (MTT) algorithm calculates the 
fastest path of fire spread along the grid based on the cell corners (nodes) (Finney, 2006). 
MTT is the minimum time a fire takes to travel between nodes in a two-dimensional network (Finney, 
2002). The MTT is an algorithm used to compute the fire growth over the cells in the simulation grid, and 
it exposes the effects of topography and arrangement of fuels on fire growth (Ager & Finney, 2009; 
Kalabokidis et al., 2014).  
The required steps to run the algorithm are setting: the ignitions (points, lines or polygons), the desired 
resolution as well as pre-determining the simulation period (Finney, 2002). Flammap inputs and outputs 
are visually represented in figure 5. 

 

Figure 5: Flammap processing visualization.  
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Flammap uses an internal tool to create a Weather Stream File (.WXS). This typically contains hourly 
observations of temperature, humidity, precipitation, wind speed, wind direction, and cloud cover. This 
weather stream file is based on hourly averages, as it aims to provide a practical amount of weather 
information for modelling usage. The wind grid has been created within Flammap by using the WindNinja 
Plugin.  
WindNinja uses data from weather observation stations and or user-defined wind conditions. These inputs 
are being combined with terrain data to create a gridded wind file which contains wind directions, speed 
and local turbulences and or venturi effects as a result of local terrain variations (Firelab, 2017). 
All weather data used has been obtained from the weather observation post with station ID: 241206 located 
in Plains Montana, coordinates: 47°27'57.0"N 114°52'45.0"W. 
 
By keeping the weather conditions equal for all simulations, by using the same Weather Stream File, any 
change in simulation outcome is the result of aggregation of fuel types. 
 
 
Outputs 
MTT arrival time output will be used to determine the performance of the simulations by looking at under- 
and over-simulation relative to a reference simulation. The MTT arrival time shows the simulated burned 
area in combination with the arrival times of the fire during the simulation process. 
The total simulated burned area sizes are being used for further assessment of the aggregation steps. This 
process will be explained in further detail in the validation method chapter (3.6).  
  



FUEL TYPE AGGREGATION FOR WILDFIRE SIMULATION OPTIMIZATION. 

 
 

19 
 
 

3.3 Datasets 
 
Flammap input data. 
To simulate fires with Flammap data on the landscape, weather, and fuel condition (table 1) is needed. 
 

Dataset Title Attributes Format Link 

Landscape  Landscape Elevation, 
Slope,  
Aspect, Fuel Model,  
Canopy Cover,  
Stand Height,  
Canopy Base Height and  
Canopy Bulk Density. 

GeoTIFF 
Spatial resolution: 
30 meters. 

https://www.landfire.go
v/viewer/ 

Weather 
observation 
posts 

NFDRS16 Station ID 
Location 

RAW FW13 file https://cefa.dri.edu/raws
/index.php  
 

Weather and 
fire data. 

Wildland Fire 
Application 
Information 
Portal 

Date, Time, 
Temperature, windspeed, 
wind direction, 
precipitation relative 
humidity, cloud cover  

Weather 
Observation Data 
Transfer Format, 
2013 (WxObs 13) 

https://www.wildfire.go
v/application/fire-and-
weather-data 

Fuel 
Moistures  

FireFamily 
Plus 

Soil and vegetation 
moistures levels, drought 
levels and fire risks.  

Software Plugin https://www.firelab.org/
project/firefamilyplus   

Table 1: Input datasets used for Flammap. 

Reference data 
The observed fire perimeter (the actual fire) used for the burned area was obtained from the U.S. Wildland 
Fire Open Data system. This publicly open portal provides geospatial information specific to past and 
current fire incidents in the Northern Rockies. The spatial data for the observed fire perimeter for August 
26th, 2023, has been used, as this was the first available data following the ignition of the fire.   
 
Publicly available spatial data for the River Road East fire incident can be accessed through the following 
link: 
https://ftp.wildfire.gov/public/incident_specific_data/n_rockies/2023_Fires/2023_RiverRoadEast/  
 
 
 
 
 
 
 
 
 
 



FUEL TYPE AGGREGATION FOR WILDFIRE SIMULATION OPTIMIZATION. 

 
 

20 
 
 

3.4 Fuel type classification 
Four of the five commonly used fuel type classifications have been created in, and for North America. In 
Mediterranean Europe, the often used classification is the Prometheus System (García-Cimarras et al., 
2021). In the USA the Northern Forest Fire Laboratory, (NFFL) system from Anderson (1982) and the 
Fire Behaviour Fuel Model, FBFM40 from Scott and Burgan (2005) (Aragoneses et al., 2022) is commonly 
used. 
With the study area being located within North America and containing an ecosystem that holds a boreal 
forest, this research used a classification created and commonly used in North America. The NFFL 
classification has been commissioned by the US Forest Services for the Northern parts of the United States. 
The main fuel type classes are grasses, brush, timber, and slash. These 4 classes can be subdivided into 13 
subclasses in total. (Anderson, 1982). 
The Fire Behaviour Fuel Model, FBFM40, is an extended version of the NFFL model, having 40 individual 
classes which are grouped into seven main classes mainly focused on surface fuels. Each class is grouped 
by letter combinations instead of numbers. The model contains the following 7 fuel type groups: GR = 
grass, GS = grass-shrub, NB = non-burnable, SH = shrub, SB = slash-blowdown, TL = timber litter and 
TU = timber-understory. The non-burnable fuels are Urban/ Developed, Snow/Ice, Agricultural, Open 
Water and Bare Ground. Despite mainly focusing on surface fuels the FBFM40 influences canopy fire 
spread and ignitions (Scott & Burgan, 2005). The canopy layer is included in the LANDFIRE (table 1) data 
which has been obtained to create the Landscape file which has been introduced earlier.  
The FBFM40 model opens the possibility to model forest-litter, but also combinations of grasses, shrubs 
and forest-litter. To model on a wider range of humidity levels, where litter affects surface fuel behaviour, 
a wider range of modelling options for humidity levels becomes available. Increasing the possibilities to 
model fuel loads with relatively high dead fuel moistures (Scott & Burgan, 2005). The classes within this 
classification can almost all be found in any large boreal forest, which makes this classification suitable for 
this ecosystem.  
 
Upon generating the Fuel Type Map (figure 6) the available fuel types within the study area were identified 
(table 2).  
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Figure 6: fuel type classification map of the study area (colours explained in table 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



FUEL TYPE AGGREGATION FOR WILDFIRE SIMULATION OPTIMIZATION. 

 
 

22 
 
 

 
Table 2: Fuel type frequency and surface area within the study area. 

Table based on FBFM40 fuel type classification and data for the study area. 
 
 
 
 
 

 
 
Simulation period  
To determine the optimal simulation duration, wildfire simulations with Flammap 6.2 and the resulting 
MTT have been compared with the observed fire perimeter of the River Road East fire. The simulation 
period started with one day (24hours) and was increased by one day until a large over-simulation was 
observed. All other input data, such as the fuel model, landscape maps, ignition points and fire behaviour 
model have been kept constant.  
 
The daily simulated area, which shows the highest level of intersection plus the minimum under- and over-
prediction errors in the observed burned area, was used as the simulation period. The determined simulation 
period has been used as a constant parameter for all simulations with different levels of aggregation. 
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3.5 Fuel type aggregation  
Aggregating fuel type classes is a way to determine the impact of each class on the producer accuracy of 
the model. Aggregating classes based on their size and fire behaviour characteristics is an input data 
simplification method. This simplification method or, down sampling is used to adjust data resolution and 
to reduce the computational load. The size of a certain class is quantified as the percentage of the total 
simulated area.  
The influence of the aggregation steps is being determined by comparing the simulated fire perimeters 
based on aggregated input data and the reference data (non-aggregated data).  
 
Aggregation steps. 
The data processing of the fuel types starts with reducing the number of classes to consider only those 
present in the study area (table 3).  
After removing the non-present fuel types the fuel types classified as non-burnable where grouped. These 
fuel types where urban (NB1), agricultural (NB3), open water (NB8) and bare ground (NB9). All fuel types 
considered non-burnable were reclassified in the NB3 fuel type which represented the largest area of all 
non-burnable in the study area. 
To determine the influence of aggregation based on different fuel type characteristics on the model 
simulation outcomes different rulesets have been used. The characteristics and their influence on fire 
behaviour can be found in APPENDIX A. The FBFM40 gives different levels for the Fuel Load, the Rate 
of Spread and the Flame Length.  
Therefore, the aggregation process took place four times. The first series of aggregations takes place on the 
available fuel types within the study area without taking any fire behaviour characteristics into account (table 
3). For the following aggregations series, there was a rule set which states that aggregations only occur for 
fuel classes with the same fire behaviour characteristics 
In total 28 wildfire simulations have been conducted with the Flammap software (version 6.2) based on the 
FBFM40 fuel model. Categorization took place based on fire behaviour characteristics. These are: Fuel 
Loads, Rate of Spread Flame Lengths or without taking any specific characteristics into account (No 
Characteristics). When no specific characteristic was taken into account, no aggregation outside the original 
fuel group of the fuel type take place. These fuel groups are, as described in the FBFM40 classification: non-
burnable, grass, grass-shrub, shrub, timer-understory and timber-litter.   
 
Smaller fuel types were always aggregated into a bigger fuel type based on their frequency percentage. So, 
an individual fuel class, which has a relatively small frequency at the start of the aggregation process, will 
not be able to have substantial growth due to a big fuel type class being added to the smaller fuel type. 
 
Rule Description, without taking fire behaviour characteristics into account. 
For the aggregation process without taking the fire behaviour characteristics into account, the following 
rules have been applied: 
The first aggregation was done by grouping all individual fuel types which have a frequency below 0.85% 
in the study area, as these represent tiny and fragmented fuel types that shown no notable impact on the 
fire behaviour modelling.  
These minor fuel types were aggregated to their nearest significant neighbour within their Fuel Groups. This 
first aggregation step provides a balance between maintaining data accuracy and reducing noise. 
The following aggregations were based on the lowest Frequency Percentage and to be kept within the 
respectable Fuel Groups.  
The aggregation process was completed upon achieving one overall fuel type for each individual Fuel Group. 
Each step taken in this process can be found in table 3.  
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Table 3: Aggregation process without taking fire behaviour characteristics into account. 
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After six aggregation steps, all classes within the five fuel groups have been combined and further 
aggregation is not possible. The fire behaviour characteristics of the remaining fuel types can be found 
below (table 4).  
 

 
Table 4: Remaining fuel types without considering specific fire behaviour characteristics. 
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Rule Description, including fire behaviour characteristics. 
 
For the aggregation process including the fire behaviour characteristics, aggregations only occur for fuel 
classes with the same fire behaviour characteristics. These levels are defined by Scott and Anderson (2005) 
by using the following scale: very low, low, moderate, high, very high and no effect. 
 
Therefore, the ruleset applied to aggregation processes is the following: 
The first aggregation was by grouping all individual fuel types which have a frequency below 0.85% in the 
study area, as these represent tiny and fragmented fuel types that show no notable impact on the fire 
behaviour modelling.  
This first aggregation step provides a balance between maintaining data accuracy and reducing noise. These 
minor fuel types were aggregated to their nearest significant neighbour with an equal fire behaviour 
characteristic. 
 
There was no aggregation without similarity in fire behaviour influence level. For example, fuel type classes 
with a low fuel load were not aggregated with fuel types with a moderate fuel load. Aggregated to their 
nearest significant neighbour preferably within their fire behaviour characteristic. 
 
The following aggregations were based on the lowest Frequency Percentage and are to be kept within the fire 
behaviour level of the specified characteristic.   
In the case of several aggregation options within the same level in fire behaviour influence, similarity within 
the other two fire behaviour characteristics is being considered.  
When there is still a 1:1 in similarity in characteristics, the metrics used to define Packing Ratio and the Fine 
Fuel load from the FBFM40 (Scott & Burgan, 2005) was used. These metrics are used at the 5th aggregation 
step for the Rate of Spread aggregation process (APPENDIX B). 
 
 
 
The aggregation process was completed upon achieving an overall fuel type for each available fire behaviour 
characteristic level. An overview of the aggregation process in which the fuel loads are used as the leading fire 
behaviour characteristic can be found in table 5. In APPENDIX B and C, the aggregation process tables 
for the Rate of Spread and for the Flame Lengths are presented. 
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Table 5: Aggregation Process focused on fuel load similarity.
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3.6 Validation 
The Sørensen Similarity Index, SSI, (figure 7) is focused on measuring the similarity between two datasets 
(Equation 1). This statistical approach often used in ecology to compare the presence of certain species over 
a period.   
The intersection of the two areas is divided by the total area and the outcome value is between 0 and 1. 
Often, this index is used as a hit-or-miss analysing method to determine the level of agreement between the 
simulated and observed data. It produces a value representing the similarity. The value of 1 represents a 
perfect similarity between the two datasets, and the value 0 means there is no similarity (Perry, 1999). 

𝑺 =
𝟐(𝑺𝒐(𝒕)		 ∩    𝑺(𝒕)) 
(𝑺𝒐(𝒕)) +   (𝑺(𝒕))

	

Equation 1: The Sørensen similarity index (Filippi et al., 2013). 
The S stands for the Sørensen Similarity Index. 

𝑆"(𝑡) is Reference simulation and 𝑆(𝑡) is the Simulation with aggregated fuel type classification. 

For this research, the similarity translates to the intersection between simulations based on aggregated fuel 
type classifications, relative to simulations based on unaggregated fuel type classifications (reference 
simulation). In figure 7 this approach is visualized, where the intersection is being made by an overlay 
between  𝑺𝒐(𝒕)		 ∩   𝑺(𝒕). 

Over-simulation is defined as areas that are simulated to burn in a run with an aggregated fuel type 
classification, that was not simulated to burn in the original fuel type classification. Under-simulated refers 
to the surface size of the burned area which has not been simulated after fuel type aggregation but has its 
boundaries within the burned area of the simulation run with the complete FBFM40 fuel type classification 
(Figure 7). 
 
 
 

Equation 2: Under-simulation calculation method. 
 

 
 
 

Equation 3: Over-simulation calculation method. 
 
Results for calculating the under and or over-simulation does not always show a consistent decrease. Because 
the dividing factor includes the reference simulated area, as well as the simulated outcome after fuel type 
aggregation. The size of the simulations based on an aggregated fuel type classification, changes during the 
aggregation process. This causes the relative proportion of the under and or over-simulated areas to fluctuate 
instead of monotonous increase or decrease. 
 

𝑺(𝒕) − 𝟐(𝑺𝒐(𝒕)		∩   𝑺(𝒕)) 
(𝑺𝒐(𝒕))(  (𝑺(𝒕))

 	

𝑺𝒐(𝒕) − 𝟐(𝑺𝒐(𝒕)		∩   𝑺(𝒕)) 
(𝑺𝒐(𝒕))(  (𝑺(𝒕))
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Figure 7: Reference- vs. aggregated fuel type simulations, intersection and calculation of under- 

over-simulation based off the Sørensen Similarity Index. 
 

 
 

The Sørensen Similarity Index has been used as a percentage to present the similarity values in a more 
interpretable format. It is referred to as the SSI % in the tables presented in the results chapter.  
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Understanding errors and accuracy trends 
Instead of relying on a fixed threshold to define an error significance, observing trends was the chosen 
approach. Trends in the accuracy levels provide understanding in a larger context of the moment in which 
accuracy begins to deteriorate. This approach avoids set threshold values that may not be usable for all 
scenarios, cases or situations. 
Therefore, analysing the trend lines opened up the possibility to evaluate both the reliability and the 
consistency of the fire behaviour characteristics, individually or combined. A clear increase or decrease in 
the accuracy trends suggests potential over- or under-processing of data. By looking at the trends for 
individual fire behaviour characteristics, irregularities within these trends will have less impact on 
determining an appropriate threshold for the accuracy. 
 
This method identified when a negative trend in accuracy occurred, this information was used in deciding 
the optimal level of data aggregation. The most important point of interest within the trendlines was the 
moment when accuracy errors started to show a steep change.  
Clear identification of these trend shifts is important. The steep trend shifts represent the moment in which 
under- and or over-simulation starts to occur. The over-simulation can be seen as an overgeneralizing of 
individual fuel types. 
 
To reduce the influence of outside factors on the validation process, only the producer accuracy levels of 
the model have been used. The accuracy levels are being calculated relative to the total area predicted by the 
model (reference data). As the model used is solely simulating fire spread without taking any mitigation 
efforts into account, the observed burned perimeter has not been used as a dataset to validate the aggregation 
process. 
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Entropy 
By aggregating fuel types based on different criteria, the heterogeneity of the available fuel type classes 
changes. To assess the change in heterogeneity within the available fuel type classes, entropy can be used as 
an index of heterogeneity. 
Entropy is a concept that measures the degree of variety within the input data. In the context of fire 
behaviour simulations, entropy quantifies the variability between fuel types between different aggregation 
steps. A high entropy value indicates larger variability in size for each individual fuel type within the 
classification, whereas a low entropy value indicates a more even distribution (Carter, 2014). 
In wildfire simulations, entropy can serve as an indication on how the total composition of fuel types 
becomes more homogeneous after each aggregation step. By calculating the entropy levels for each 
aggregation step, insight is created in how much reliability is lost as fuel type diversity decreases (Parsons et 
al., 2017). 
 
When entropy drops substantially at a certain aggregation step, it indicates over-generalization, leading to 
larger increases in under- and or over-simulation. On the other hand, stable entropy values suggest that little 
variability is lost during the aggregation step (Rashmi & Ghose, 2020).  
 
 
 
Processing Time 
Throughout the entire aggregation process, the time it takes to complete each individual simulation has been 
recorded. Collecting this data gave insight into the influence the aggregation process had on the time it takes 
to complete a simulation. All simulations have been obtained on the same machine and without running any 
other program or usage other than Flammap.  
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4. Results 
 
4.1 Simulation period 
With an increasing duration of the simulation, the over-simulation increases and the under-simulation 
decreases (table 6). These trends are observed in comparison to the reference simulation, which serves as 
the reference data to calculate the over- and under-simulation. A sharp increase in over-simulation was 
observed when the simulation period became >6 days. Whereas the under-simulation trend shows a 
relatively constant decrease. When simulating for a period of 6 days the highest producer accuracy levels 
where recorded (table 6 and figure 8).  
 
Simulation outcomes without aggregation   
In the following table the sizes of the wildfire simulations are presented as well as the under- and over-
simulations levels in percentages. 
 

Sim. 
period 

Sim. 
area 

Observe
d burn 

Intersection Sim. vs. 
Obs. 

UNDER-
SIMULATION 

OVER-
SIMULATION 

Days 
Hectare

s Hectares Hectares SSI % 
Hectare

s SSI % Hectares SSI % 

1 
          

473   -  
             

412  87.24%      6,501  94.04% 
            

60  0.87% 

2      1,094   -  
         

1,000  91.36%      5,914  85.54% 
            

95  1.37% 

3      1,872   -  
         

1,705  91.10%      5,208  75.33% 
         

167  2.41% 

5      3,806   -  
         

3,130  82.24%      3,783  54.72% 
         

676  9.78% 

6      4,762  
                

6,913  
         

3,655  76.76%      3,259  47.13%     1,107  16.01% 

7   34,254  
                

6,913  
         

4,907  14.33%      2,007  29.02%  29,347  424.49% 
Table 6: Simulation data overview EAST- AND WEST- SIDE. 

 
The table shows the area sizes of the simulations for a simulation period from 1 to 7 days.  
The observed burn perimeter remained relatively stable after day 6, due to active suppression efforts. Making 
it a reference for evaluating under- and over-simulation across all time steps. Since the simulation period 
had to be pre-set within Flammap, the closest match to the observed burned perimeter had to be determined. 
Therefore, the intersection of the simulated area, relative to the observed burned area, has been calculated 
for evaluation of simulation outcome and to determine the optimal simulation period (time step). The 
observed burned perimeter (actual perimeter) has only been used in the process to determine the reference 
perimeter which has been in assessing the outcomes of the aggregation process.  
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Figure 8: UNDER- VS. Over-simulation. 

Graph table 6.  
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Fire spread is showing mainly east- and westward around the river over the duration of the simulations 
(Figure 9), and a large change in burnt area can be observed from day 6 to 7.  
 

 
Figure 9: Simulation outcomes WITHOUT AGGREGATION.  

No data aggregation steps have taken place. Simulation outcomes have been generated to determine the optimal simulation 
period in days.  

 
On the east side a large part of the actual fire is not simulated, leading to under-simulation. The fire spread 
in the west-side was showing a spread following the contour lines of the observed fire area. This was not 
the case on the east side. The outputs for a simulation for day 5 and day 6 confirmed the lack of fire spread 
in the east side but a relatively accurate spread in on the west-side.  
Even when substantial over-simulation was being observed for a 7-day simulation period, relatively large 
areas on the east side show no signs of fire spread (figure 10). 
An explanation for the underperformance of the model can be related to the fuel type classification located 
close to the burned-non-burned boundary on day 6. Only the ignition points for the west-side fire perimeter 
have been accurately determined and published in the fire reports. On the east side spread is being observed 
into areas that have already been simulated to be burning for the first six days before stopping. This would 
suggest that variations in fuel type classification, rather than ignition location uncertainty, are the cause for 
the local underperformance of the model.  
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Figure 10: Day-7 simulated- vs Observed fire perimeter. 

 
 
An over-simulation 424.49% was being observed for a simulation period of >7 days. The simulated burned 
area was reaching the outside borders of the landscape file. Whereas Flammap cannot simulate fire spread 
over water or roads this can be seen in figure 4 as well. For example, on the South side of the simulation 
area, the area is parallel to the river which runs through the study area. There was no simulated fire spread 
on the opposite side of the river. 
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When focusing only on the west-side, higher overall accuracies were found, mainly because the large under-
simulation for the eastern side was left out. Therefore, the simulation outcomes achieved higher producer 
accuracy levels for the west-side only than for the east- and west-side together. 
The results for the west-side only are being presented in table 7 and figure 11 where day 6 shows a 23.85% 
under-simulation. In table 6 the under-simulation for the east- and west-side shows a 47.13% under-
simulation for a 6-day simulation period.  

 
Table 7: Simulation data overview WEST-SIDE only. 

The entire east-side simulated fire area has been removed from the simulation outcomes, using only the west-side ignition 
points to simulate the outcomes. The east-side observed fire area has also been removed from the total observed burned area.  
 
 

 
Figure 11: WEST-SDIE ONLY UNDER- VS. Over-simulation. 

Graph table 2. 
 
 
 

Table of simulation size WEST-SIDE ONLY 

Sim. 
Perio

d 

Simulate
d area 

Burn 
perimet

er 
Intersection 

UNDER 
SIMULATION 

OVER 
SIMULATION 

Days Hectares Hectares Hectares SSI % Hectares SSI % Hectares SSI % 

1 259.65  - 258.59  99.59% 2,021.34  88.66% 1.06    0.41% 
2 609.48  - 608.94  99.91% 1,671.00  73.29% 0.54    0.09% 
3 942.21  - 939.78  99.74% 1,340.16  58.78% 2.43    0.26% 

5 1,700.10  - 1,437.31  84.54% 842.63  36.96% 262.79    
15.46

% 

6 2,244.60  2,279.94  1,736.19  77.35% 543.75  23.85% 508.41    
22.65

% 

7 21,181.77  2,279.94  2,031.21  9.59% 248.73  10.91% 19,150.56    
90.41

% 
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Looking at 6-day simulation periods for the west-side only (figure 12) a substantial increase in model 
accuracy was observed. The over-simulation was similar with 22.65% (versus 23.24 for east and west). 
However, the under-simulation decreased to 23.85% (versus 47.15% for east and west).  

 
Figure 12: 6-day simulation period for WEST-SIDE ONLY.  

 
The under- and over-simulation was calculated based on: 
- the simulated area after each aggregation step,  
- the base simulated area (starting situation before aggregation) and 
- intersected area.  
 
The under-simulation represents the reference data subtracted by the intersected area. And the over-
simulation represents the simulated area subtracted by the intersected area.  
The area size of the reference data before aggregation is 1,682 hectares. This area as shown in figure 12 is 
the area used for geoprocessing the intersection values with QGIS. This data was used as a constant to 
calculate the under- and over-simulation for each aggregation step. 
Based on these observations, only the west-side of the area was included in the analysis of fuel type 
aggregation this with a 6-day simulation period.  
 
Results of the fuel type aggregation process are presented in table 9. 
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4.2 Simulation results based on aggregated fuel type classifications 
In table 8 the results of each simulation run based on their corresponding aggregation step as proposed in 
the methods chapter are presented. 

Table 8: Results table aggregation process. 
Presented are the simulation results for each aggregation step, categorized by fire behaviour characteristics, showing the number 

of unique fuel type classes and their effects on the simulation outcomes.   

Fire behaviour characteristics Simulated Intersection Under-simulation Over-simulation 

Agg.  step Classes 
Run 
time               

FUEL LOADS Seconds Hectares Hectares SSI % Hectares SSI % Hectares SSI % 
1 12 52.4 1,685     1,681  99.79%          1.0  0.06% 3.5 0.21% 
2 11 52.3 1,690     1,680  99.45%          2.0  0.12% 9.4 0.55% 
3 10 52.8 1,687     1,676  99.36%          6.8  0.40% 10.8 0.64% 
4 9 52.9 1,763     1,676  95.07%          6.8  0.40% 86.9 4.93% 
5 8 52.9 1,765     1,676  94.97%          6.8  0.40% 88.8 5.03% 
6 7 52.7 1,763     1,676  95.02%          6.8  0.40% 87.8 4.98% 
7 6 54.8 2,333     1,676  71.83%          6.9  0.41% 657.2 28.17% 
8 5 100.2 3,102     1,679  54.13%          3.2  0.19% 1423.0 45.87% 

RATE OF SPREAD                
1 12 53.0 1,683     1,682  99.90%          0.9  0.05% 1.6 0.10% 
2 11 52.5 1,680     1,680  100.00%          2.3  0.13% 0.0 0.00% 
3 10 53.8 1,674     1,674  99.98%          8.6  0.51% 0.4 0.02% 
4 9 52.2 1,694     1,674  98.85%          8.4  0.50% 19.5 1.15% 
5 8 52.8 1,769     1,675  94.71%          7.1  0.42% 93.5 5.29% 
6 7 54.5 2,281     1,675  73.43%          7.2  0.43% 606.2 26.57% 

FLAME LENGTH              
1 13 52.5 1,680     1,680  99.99%          2.3  0.13% 0.1 0.01% 
2 12 52.3 1,689     1,682  99.57%          0.9  0.05% 7.3 0.43% 
3 11 52.9 1,677     1,670  99.57%        12.3  0.73% 7.2 0.43% 
4 10 51.9 1,675     1,670  99.67%        12.6  0.75% 5.6 0.33% 
5 9 52.4 1,766     1,671  94.63%        11.3  0.67% 94.9 5.37% 
6 8 50.9 1,609     1,546  96.10%     136.4  8.11% 62.7 3.90% 
7 7 55.3 2,024     1,598  78.94%        85.0  5.05% 426.2 21.06% 
8 6 60.1 2,703     1,657  61.30%        25.3  1.50% 1046.2 38.70% 

NO CHARACTHERISTICS               
1 11 42.6 1,681     1,681  99.99%          1.9  0.11% 0.2 0.01% 
2 10 48.8 1,690     1,682  99.52%          0.6  0.04% 8.1 0.48% 
3 9 50.4 1,703     1,682  98.77%          0.6  0.04% 21.0 1.23% 
4 8 56.5 1,697     1,682  99.14%          0.6  0.04% 14.7 0.86% 
5 7 53.7 1,777     1,682  94.64%          0.6  0.04% 95.3 5.36% 
6 6 55.7 1,862     1,682  90.35%          0.6  0.04% 179.7 9.65% 



FUEL TYPE AGGREGATION FOR WILDFIRE SIMULATION OPTIMIZATION. 

 
 

40 
 
 

 
Figure 13: Under- and Over-simulation based on the amount of unique fuel type classes. Showing 

Under- and over- simulation of the of the simulated area versus the reference data. 
 
Under-simulation observations 
The flame length characteristic has shown the highest under-simulation, showing 8.11% after the 6th 
aggregation step (GS2+TU5). During the first 5 aggregation steps, under-simulating was remaining stable in 
the range of 0.13%–0.75%. This suggests that after a certain threshold, the model is increasing to 
underestimate the fire behaviour, which could affect fire risk assessments. Looking at the Fuel Loads, Rate 
of Spread, and No Characteristics the under-simulation remained < 1%. This is indicating these fire 
behaviour characteristics are less affected by the aggregation process and can be aggregated without major 
accuracy loss. 
 
In wildfire management practices this indicates that aggregation based on flame lengths should be handled 
with care. Underestimating flame length can lead to misjudgement in the fire suppression needs, decreasing 
the effectiveness of resource allocation. The stability shown by the other characteristics suggested that 
aggregation is possible without substantially impacting the simulation accuracy. 
 
Over-simulation observations 
The trend showed that over-simulation increased. This increases the negative trend in accuracy as the 
number of aggregation steps rises as well. Specifically, when taking individual fire behaviour characteristics 
into account. 
An increase in over-simulation was observed from the 6th aggregation onwards, this was shown for all fire 
behaviour characteristics. In aggregation steps 7 and 8 the fuel loads and flame lengths were showing the 
highest increase in over-simulation, both aggregated the same fuel types: step 7: TU2+TL8 and step 8: 
TU2+SH2. The rate of spread showed the highest increase after the 5th step (TU2+TU5), increasing from 
5.29% at step 5 to 26.57% at step 6 (TU5+TL8). When no specific characteristics were considered the most 
gradual rate of over-simulation was being observed. 
For all characteristics, the over-simulation remained stable for the first 4 steps of the aggregation process 
showing < 1% of over-simulation, at the 5th aggregation percentages ranged from 5.03% - 5.37% as shown 
in table 8 and figure 13.  
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Figure 14: Under- and Over-simulation based on the amount of unique fuel type classes. 

These graphs represent the simulation behaviour for each of the three fire behaviour categories or without taking any specific 
category into account. Exact values have been presented in table 8. 

 
 
Figure 14 shows an inverse relationship between the number of unique fuel types within the study area and 
the simulation outcomes. Decreasing the number of unique fuel types and therefore, simplifying the fuel 
classification, was showing a decrease in accuracy. An over-simulation of more 5% in comparison to the 
simulation outcome without data aggregation was observed when the number of unique classes became < 
8.  
 
The under-simulation showed stable results, except for the flame lengths when the unique fuel classes 
reached < 8. The over-simulation showed a clear surge from the moment the number of unique fuel types, 
within the simulation, became <8.  
 
A minor decrease in over-simulation, when the number of unique fuel types turned from 8 to 7, for the fuel 
load (GR2+GS1) and flame lengths (TU2+TL8) was observed. However, these two fire behaviour 
characteristics were also showing a substantial increase in over-simulation as soon as the number of unique 
fuel types decreased to < 7.  
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4.3 Key observations 
When decreasing the number of fuel type classes, the under-simulation stayed relatively stable, while the 
over-simulation showed a loss in accuracy. Looking at the results in table 8 and figures 13 and 14 the key 
observations for the individual fire behaviour characteristics are the following: 
 
Fuel Loads 
12 unique fuel types showed a 0.21% over-simulation, where 8 unique fuel types show an over-simulation 
of 5.03%. The highest over-simulation, out of all results, 45.87% was recorded when <5 unique fuel type 
classes where left. Simplifying the classification was decreasing accurate representation of the fuels based on 
their fuel loads, resulting in over-predictions in the fuel availability. 
 
Rate of Spread 
Starting with 12 unique classes an over-simulation of 0.1% is recorded, a decline to 0.02% in over-simulation 
at 10 unique classes. Sharp over-simulation was observed when the unique fuel type classes became < 7. 
Therefore, the fire spread rates were over-predicting with less unique fuel types and a higher level of 
similarity for the rate of spread within the study area.  
 
Flame Length 
A drastic increase in over-simulation was observed when the unique fuel type classes became <8. With 5 
unique classes left an over-simulation of 38.70% was recorded, which is the second highest level over-
simulation observed. The over-simulations stayed relatively stable while reducing the number of unique 
classes from 13 to 10. However, a spike in under-simulation was recorded when the amount of unique fuel 
type classes reached 8. The remaining simulation outcomes for the aggregation steps focussing on the flame 
length show similar trends as for the fuel load and rate of spread fire behaviour characteristics.  
 
No characteristics 
Overall, the best results found for under and over-simulations are being simulated without taking specific 
fire behaviour characteristics into account. Despite the over-simulation increasing with the number of 
unique fuel types decreasing, the under-simulations remained stable throughout the aggregation process. An 
over-simulation of 9.65% was observed while having 6 unique fuel types. 
The lowest percentages for under- and over-simulation versus the number of unique fuel types have been 
observed during this aggregation process. An increase from 0.01% up to 9.65% of over-simulation was 
observed during the aggregation process when the unique fuel types decreased from 11 to 6 classes.  

 
Table 9: Optimal aggregation levels for each fire behaviour characteristics. 

For each individual fire behaviour characteristic, the optimal level of aggregation has been determinate based on trend line 
analysis as introduced in the method section.  
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Figure 15: Simulation outcomes based on fire behaviour characteristics.  

These maps show the simulation outcomes as presented in table 8. For each characteristic the outcomes of the 5th aggregation 
step and the last aggregation step is being presented. 

 
 
 
In figure 15 the fire spread is shown for each of the fire behaviour characteristics. At the 5th aggregation 
step number of unique fuel types for the fuel loads (GR2+GS1) and rate of spread (TU2+TU5) were 8. 
Whereas for the flame lengths there were 9 unique fuel types left, when taking no specific characteristic into 
account there were 7 unique fuel type classes left in the simulation. During each of the last aggregation steps 
the fuel loads (last step: (TU2+SH2) have 5 individual fuel type classes left, and the rate of spread (last step: 
(TU5+TL8) had 7 left. The Flame Lengths (last step: (TU2+SH2) and No Characteristics (last step: 
(TU2+TU5) both finished the aggregation process with 6 unique fuel type classes left.   
 
For the three individual fire behaviour characteristics, the last aggregation step shows in over-simulation 
taking place in a similar area within the study area.  
This could be identified as the north- and the south-sides of the simulation areas. For the No Characteristics 
category, the over-simulation was determined to be on the west-side as well as on the north-side of the 
simulation outcomes.   
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4.4 Flame length irregularity  
Figure 16 shows the observed peak in under-simulation after the 6th aggregation step (GS2+TU5). 
Highlighted is the area in which the under-simulation mainly was observed. During this aggregation step 8 
unique fuel type classes were left within the classification. An under-simulation of 8.11% was determined 
while the over-simulation showed 3.90%. 
At the 6th step the Grass-Shrub fuel types were aggregated with the Timber-Understory which both were 
classified with moderate flame length in the FBFM40 Fuel type classification (see appendix A).  
 
During the 7th aggregation (TU2+TL8) the Timber-Understory fuel type, which have been classified to have 
a low flame length, have been aggregated with the Timber-Litter (also low flame length). Under-simulation 
decreased 5.05%, whereas the over-simulation was observed as 21.06%. Eventually finalizing the 
aggregation process after 8 steps with a 1.50% under-simulation and a 38.70% over-simulation.  
 

 
Figure 16: Simulation outcome Flame Length after 6 aggregation steps.  

With a simulated area size of 1,609 hectare versus the 1,682 hectares for the simulated size without any aggregation steps 
(figure 6). An under-simulation of 8.11% and an over-simulation of 3.90% was determined. 
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4.5 Entropy results 
The entropy levels show the variation between fuel type class sizes during the aggregation process. Entropy 
values closer to 1 indicate a more diverse classification, while lower values (closer to 0) are suggesting an 
increase in generalization. 

 
Table 10: Entropy levels across aggregation steps. 

 
Figure 17: Entropy levels across aggregation steps 

For each of the individual simulations during the data aggregation process, the entropy levels have been calculated based on the 
fuel type classification as a result of each aggregation step. 

 
The results show that most aggregation strategies yield similar entropy values across different fire behaviour 
characteristics. However, the rate of spread shows a systematic lower entropy at much earlier aggregation 
steps compared to fuel loads, flame lengths, and no characteristics. This suggests that the rate of spread is 
more sensitive to fuel type aggregation. 
All fire behaviour characteristics present similar entropy levels during the first 6 steps of the aggregation 
process. The fuel loads decrease the most, from 0.89 to 0.37 which is a loss of 0.52 in entropy during the 8 
aggregation steps. Indicating that the fuel loads are more sensitive to over aggregation. Looking at the rate 
of spread it shows the lowest level of entropy at the 5th and 6th aggregation steps, comparing this with the 
over-simulation (table 8) this could indicate that the rate of spread is less sensible to simplifying the fuel 
type classes.  
 
The entropy levels confirm that simplifying the fuel type classifications is leading to a loss of detail, which 
could affect the wildfire simulation outcome. 
The entropy trends are in line with the results of the under- and over-simulation, confirming that over 
aggregation leads to a loss in accuracy which decreases the effectiveness of the wildfire simulation results.  
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4.6 Processing time results 
 
Processing time: time to run a complete fire spread simulation of the study area. 

 

         
Table: 11.       Figure: 18.  

 
Table 11 and Figure 18: Processing times Flammap simulations. 

For each of the individual runs during the data aggregation process the run times in comparison with the aggregation step.  
 
The results observed for the processing time were in line with the expectations. The aggregation process 
based on fuel loads shows the largest area size for over-simulation this trend was also visible in the 
processing times. The difference between the fastest and the slowest simulations is 47.9 seconds.  
 
As the size of the simulated areas was increasing the run time was also increasing for all fire behaviour 
characteristics. Other than the fuel loads, all other characteristics presented a difference of <10 seconds 
throughout the aggregation process.  
 
Flammap is processing fire spread at the pixel level, by calculating how the fire spreads for each pixel 
individually. The fire spread stops when no further spread is possible, based on the fuel type assigned to a 
pixel. In other words, if a pixel has no "burning" neighbours, or no spread through spotting is possible the 
fire and the simulation will stop. 
 
The processing time, is following a similar trend as the trends for the simulated area sizes.  
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5. Discussion 
 
During this research the impact of fuel type aggregation on wildfire simulation accuracy has been studied. 
The results show that as the number of unique fuel type classes decreases, the over-simulation of the model 
rapidly increases. This rapid increase in over-simulation appears when the number of unique fuel types left 
gets lower than eight classes. Trendline analysis showed a great loss in accuracy from the moment the rapid 
increase in over-simulation appeared.  
Different aggregation strategies, based on individual fire behaviour characteristics (fuel load, rate of spread, 
flame length, and no specific characteristic) have been applied to determine which individual characteristic 
influences simulation accuracy the most. 
Understanding the impact of data aggregation can help improve computational efficiency and practical 
usability while maintaining acceptable accuracy levels for wildfire simulation outputs. 
 
5.1 Reducing the wickedness 
Wildfire management can be seen as a wicked problem due to the interconnectivity of the ecological, social, 
economic, and political dimensions. This study aims to reduce this complexity by proposing a method where 
fuel type aggregation can optimize simulation efficiency while maintaining reliable fire behaviour 
predictions.  
For the ecological dimension, a method to simulate fire spread more effectively is provided without 
oversimplifying critical ecological variations.  
Based on the social and economical dimension, an improvement in simulation usability supports increased 
use for fire risk assessments. Which helps to reduce wildfire-related losses in lives and assets, as well as 
potentially lowering wildfire response costs due to earlier and more effective suppression efforts.  
For the political dimension this study can be used as a standardized method with an adaptable aggregation 
approach to use more data-driven policies. Helping to achieve a balance between fire suppression efforts, 
ecological restoration goals, and land management practices. By introducing a structured method that can 
be adjusted to different fire-prone regions, this study increases the practical usability of wildfire simulations. 
Aiming to reduce the wickedness by offering more informed and responsive wildfire management strategies. 
 
5.2 Effect of aggregation on simulation accuracy 
This phenomenon was visible in the trendlines for all specific fire behaviour characteristics, as well as when 
an aggregation method was used without taking specific characteristics into account. As the amount of 
unique fuel type classes decreased, the input data (fuel map) becomes more homogeneous. This leads to a 
loss of local variation in fuel types. As the behaviour of a wildfire is very depending on fuel type variation, 
location and characteristics. Oversimplification of input data causes an over-simulation of fire spread. 
For example, when looking specifically at the fire behaviour characteristic for the fuel loads. When the 
aggregation process decreased the number of unique fuel types from 12 to 5, the over-simulation spiked 
from 0.21% to 45.87%. This extreme over-simulation shows that fuel load aggregation significantly impacts 
the fire spread predictions, and therefore the simulation outcomes. This is a likely output as the model is no 
longer able to identify the high-fuel-load and the low-fuel-load areas, as they have been aggregated in one 
class. As a result, simulated fires spread shows a large over-simulation. Similar outcomes have been 
presented by (Parsons et al., 2017). This reduces the predictive reliability of the model and decreases its 
practical usability and these findings. 
 
A similar pattern (as for the fuel loads) was shown in the trendlines for the aggregation outcomes based on 
the rate of spread. Also, here the accuracy decreased sharply after the 5th aggregation step. From the 
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moment the amount of unique fuel types reaches < 6, the over-simulation increased rapidly. This confirmed 
that the rate of spread is a key factor in simulating wildfires just like Rothermel, (1972) did in his publication 
‘’A mathematical model for predicating fire spread in wildland fuels’’. Other than the fuel loads, which primarily effects 
the intensity of the fire, the rate of spread has a direct influence on the growth of the fire perimeters. 
Therefore, showing that the rate of spread is crucial for accurate wildfire simulation outcomes. 
The under-simulation, on the other hand, remains relatively stable throughout the aggregation process. This 
is shows that aggregating of fuel types does not lead to a substantial under-simulation of the burned areas. 
This is as expected, because, as the amount of individual fuel types decreases, the total simulated burned 
area increases (over-simulation). This is similar to results presented by Taneja et al., (2021), as they found 
that decreasing the spatial resolution of the fuel types, does not lead to substantial under-simulation. Instead, 
it leads to an over-simulation as a result of the loss of detailed fuel type information.  
However, a sudden rise in under-simulation was observed in the flame length-based aggregation outputs. 
As a sudden spike in under-simulation occurred after step 6. This exception suggests that specific fire 
behaviour characteristics, as in this case the flame lengths, can cause unpredictable effects due to spotting 
when the aggregation creates in a high level of homogeneousness within the input data (fuel map). 
 
 
5.3 Which fire behaviour characteristic shows the most influence 
After testing all individual fire behaviour characteristics, the rate of spread showed the greatest influence on 
the simulation outcomes. The over-simulation showed a sharp increase in the trendlines between 
aggregation steps 5 and 6, where the accuracy levels decreased from 5.29% to 26.57%. Here a substantial 
drop in entropy (0.75 à 0.61) was observed confirming that a rapid loss in fuel type diversity has a negative 
impact on the producer accuracy of the model. Causing the simulations to lose the ability to realistically 
predict fire spread. 
The rate of spread is a key factor with regard to wildfire simulations because it determines how quickly fire 
is moving throughout the landscape (Rothermel, 1972). When too many individual fuel types have been 
aggregated, the model can no longer differentiate between fuel types that either slow down or speed up the 
fire spread (Cardil et al., 2023) . This results in fire modelling with a constant fire spread rate, causing high 
over-simulation in the output data. As a result of these over-simulated outputs, fire management decisions, 
could over-allocate fire suppression resources to actual areas in which substantially less fire activity is taken 
place. And therefore, decreasing the efficient use of available resources.  
 
Besides the rate of spread, the fuel loads and flame length also influence the accuracy but show less impact. 
Meaning that oversimplification of their classifications does not directly lead to extreme over-simulation for 
the burned areas. The sudden spike in under-simulation for flame length after the 6th aggregation step, may 
suggest that the flame lengths cause simulation inconsistencies. This can be related to the interactions 
between flame lengths and wind effects. Which may result in spotting taking place (Egorova et al., 2022) 
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5.4 Identifying the critical threshold for aggregation 
A key finding of this study is that 8 unique fuel types serve as a threshold to maintain wildfire simulation 
accuracy. When the amount of unique fuel types within the input data, was greater than eight, the model 
showed stable trendlines for the accuracy levels. Only minor increases in over-simulation have been 
observed throughout the aggregation process for all fire behaviour characteristics. However, from the 
moment the amount of unique fuel types became <8, a spike in over-simulation was observed. Clearly 
showing a decrease in the model’s reliability and therefore, useability. The simplification of the fuel type 
classification was also visible in the entropy levels, showing that entropy levels of > 0.8 are crucial to 
maintaining simulation accuracy.  
This threshold was observed in the outcomes of all individual aggregation methods (based on the rate of 
spread, fuel load, flame length, or no without regards to any specific characteristics). The results show all 
fire behaviour characteristics are following the same trends. Therefore, suggesting that the aggregation 
process in this study case should be stopped before the number of unique fuel types becomes <8, no matter 
the fire behaviour characteristic. In other cases, a different distribution of fuel types can result different 
behaviour in trendlines and therefore different threshold values. Keeping the entropy levels > 0.8 is 
preventing oversimplification and the loss of local variations in fuel types which can have a direct impact 
the simulation outcomes. 
Finding these thresholds is important as it provides a practical balance between computational- and data-
efficiency with regard to the simulation accuracy. And because wildfire simulations require large 
computational resources and input data specification (fuel maps), reducing the complexity of input data is 
often necessary. However, as this study shows, the data aggregation process must be monitored. Because, 
reducing the amount of unique fuel types too much, and therefore oversimplification of the input data, leads 
to unreliable predictions. And can be defeating the purpose of increasing efficiency and usability for wildfire 
simulations to support wildfire management and resource allocation decisions.  
These findings are in line with previous research (Parsons et al., 2017) on data aggregation with regards to 
wildfire fire modelling. But data aggregation often comes at the cost of a decrease in accuracy (Rösch et al., 
2024). However, previous studies have not provided a clear numerical threshold for balancing simulation 
accuracy and efficiency. This study addresses the challenges faced when simplifying a fuel type classification. 
By introducing an approach to simplify fuel maps this study shows that a classification with > 8 unique fuel 
types and entropy levels of >0.8 provides reliable wildfire simulation accuracy.  
Rather than focusing on these specific threshold values, the novelty of this work can be found in the 
methodology used to determine an optimal balance (threshold) between classification simplification and 
simulation accuracy. This approach can be used as a guideline for future wildfire modelling. Allowing 
researchers and fire management decision-makers to use similar data aggregation methods for different 
ecosystems and user-cases.   
The outcome of this study can be used directly in operational wildfire response. Wildfire simulation models 
often support the decision-making process, and therefore needing to be both efficient, reliable and have a 
practical usability.  
 
Overall, the results of this study show the importance of rate of spread as the main fire behaviour 
characteristic to be affecting the simulation accuracy. The key findings confirm that data aggregation based 
on fuel types is a suitable approach to improve computational efficiency and practical usability. For the case 
study of this research, it was essential that the amount of unique fuel types within the input data (fuel map) 
stays > 8. However, to take general usability into account it is important to state that the number of unique 
fuel type classes stay above, the defined threshold. This to make sure that the wildfire simulation model 
remains usable for large-scale simulations while still providing usable predictions for fire management 
decision-making. 



FUEL TYPE AGGREGATION FOR WILDFIRE SIMULATION OPTIMIZATION. 

 
 

50 
 
 

5.5 Comparison with existing research 
Recent research (Alipour et al., 2023) showed that aggregating fuel type classes for the input datasets led to 
a 7.2% accuracy loss when reducing the number of unique fuel type by 50%, for Mediterranean ecosystems 
in California. This study extends those findings to boreal forest ecosystems. The results are demonstrating 
that the impact of a data aggregation process depends on the type of ecosystem as well as the fire behaviour 
characteristics of the individual fuel types which present in the area of interest. Prior studies were mainly 
focused on increasing spatial resolution to increase the simulation accuracy.  
 
5.6 Practical usability 
Simplified fuel models can speed up the total simulation process as less detailed input data is needed. 
Keeping a minimum of 8 unique fuel types maintains acceptable accuracy levels for the simulation outputs 
to be used in wildfire management decision-making.  
As fire models often struggle with complex data this research shows that a substantial reduction in 
complexity for the fuel type input data comes with a minor loss of accuracy. Therefore, this shows that fuel 
type aggregation can be an effective way in reducing the need for complex fuel type input data while 
maintaining acceptable accuracy. 
Wildfire management has to constantly find a balance between real-time fire predictions and resource 
allocation. These resources always come with certain limitations as financial, technological and the lack of 
human resources. Enabling an increase of usability of wildfire simulation practices, throughout the decision-
process of wildfire management, can increase efficiency during fire events.  
Therefore, a recommendation within the decision-making policy of wildfire management should be to not 
only look at the availability of certain fuel types within an area of interest. But also keep their specific fire 
behaviour characteristics into account. Additional, when aggregating fuel types to decrease data complexity, 
the rate of spread should be considered as the primary factor within fire behaviour models.   



FUEL TYPE AGGREGATION FOR WILDFIRE SIMULATION OPTIMIZATION. 

 
 

51 
 
 

5.7 Current limitations 
This study provides valuable insights into fuel type aggregation methods for wildfire simulations, but several 
limitations must be considered. During the simulation process Flammap assumes constant environmental 
conditions as it uses a static fire behaviour model, whereas fire behaviour in the real world is also affected 
by (locally) changing winds, humidity levels, and temperatures. In addition to this, fire suppression efforts 
have not been taken into account. These limitations may prevent the direct application of the results to real 
wildfire events and therefore the user accuracy cannot be determined.  
 
Another limitation can be found within the focus of this research being on a single wildfire (River Road 
East fire) in a boreal forest ecosystem. While boreal forests are prone to wildfires, the identified threshold 
of 8 unique fuel types may not be universally applicable to other ecosystems such as Mediterranean 
ecosystems, tropical forests or boreal forests with a different spatial lay-out. This research also has been 
relying on the FBFM40 classification and fuel maps with a spatial resolution of 30 meters. This spatial 
resolution may cause an oversimplification of local fuel type variety causing a decrease in the accuracy. Data 
with a higher spatial resolution, such as LiDAR-based fuel models, could enhance data aggregation 
techniques. However, this comes with increased process complexity and a higher computational cost due to 
some characteristics of LiDAR data. 
 
5.8 Future research 
An irregularity in the trendline was observed in the outcomes of the aggregation process specific to the 
flame length. This sudden spike in under-simulation at the 6th aggregation step shows an irregular fire 
behaviour that requires further research. 
 
These challenges can be addressed by aiming future research towards using dynamic fire behaviour models. 
The aggregation process and thresholds should be tested across various ecosystems. Exploring machine 
learning methods during the aggregation process could be useful in researching irregularities in the outputs 
during an aggregation process. These improvements would enhance the total accuracy (user and producer), 
increase the usability of wildfire simulations and generalise a data aggregation method. This while 
maintaining computational efficiency and reliable simulation usability within the field of wildfire 
management.  
Whereas the current simulations used assume unrestricted fire spread, during a real fire event active 
management takes place. Suppression efforts such as creating firebreaks, backburning (using controlled fire 
to remove burnable materials to stop fire spread) and aerial suppression (water bombing) are taking place. 
Research focusing on the effects of aggregated fuel type maps and the relationship with suppression efforts 
would improve practical usability (user accuracy) within wildfire management decision-making. 
Machine learning provides dynamic aggregation strategies, increasing the fuel classification based on the 
real-time active fire behaviour. 
Finally, testing the effects of dynamic fuel type aggregation during an active fire event (including active 
suppression efforts) could determine the real-world usability for wildfire management decision-making. 
Real-time case studies on active fires could validate if and when simplified fuel classifications balance 
accuracy with computational speed and power. Making wildfire simulations a more reliable, useful and 
efficient tool for wildfire management with regards to suppression efforts and resource allocation. 
Therefore, the proposed future research areas could refine data aggregation methods as well as wildfire 
modelling, aiming to achieve aggregation methods to improve both efficiency and the total model accuracy 
(user- and producer accuracy). 
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6. Conclusion 
This research has been devoted to the effects of fuel type aggregation on wildfire simulation accuracy. 
Finding a balance between computational efficiency (simplification of the input data) and simulation 
accuracy has been a key factor. The findings show that while aggregation simplifies the data processing, 
over-simplification leads to a substantial over-simulation. These spikes in over-simulation trends are 
indicating a great decrease in the model accuracy. 
 
The first research question aims to understand if and or how aggregating fuel types, either by fire behaviour 
characteristics or only by presence, is affecting the simulation accuracy. The results show that reducing the 
number of unique fuel types within the fuel map is increasing the over-simulation of the model. With a 
critical threshold identified of 8 unique fuel types and entropy levels of < 0.8. When the unique fuel types 
left reach an amount of >8 and entropy levels reach < 0.8, the model loses its ability to identify correct fire 
spread patterns, resulting in a great loss of accuracy. 
 
The second research question analysed which fire behaviour characteristic has the most influence on the 
simulation accuracy. The rate of spread showed to be the most critical factor, with over-simulation increasing 
substantially when < 8 unique fuel types remained. The entropy levels > 0.75 at the moment the unique fuel 
types became > 8 shown greater variation between the fuel type sizes. Other than for the fuel loads or flame 
lengths, the rate of spread has a direct impact on the fire expansion, and therefore heavily influencing the 
accuracy the wildfire simulations. 
 
These findings show valuable insights into wildfire modelling. But maintaining at least 8 fuel types needs to 
be ensured so that the model accuracy is not completely compromised. In addition to the < 8 unique fuel 
types, the rate of spread should be prioritized as a fire behaviour characteristic in fuel type classifications. 
This can improve the reliability and usability of the wildfire simulations. And therefore, efficiently 
supporting wildfire management practices. 
 
Future research should test the aggregation ruleset and thresholds in other boreal forests and different 
ecosystems. As well as integrating dynamic weather models and or exploring aggregation techniques based 
on machine learning to create real time adaptive fuel type classification and wildfire simulations. 
 
Concluding, this research has determined an optimal threshold for fuel type aggregation, while balancing 
computational efficiency with wildfire simulation accuracy. 
By implementing these findings, wildfire management can be more efficient and therefore, increase effective 
response efforts, suppression strategies and optimization resource  
allocation.  
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6.1 Recommendations 
Based on the findings of this study, the following recommendations are being made.  
The entropy levels showed that over aggregation beyond the 6th step led to a substantial decline in 
simulation accuracy, especially when looking at the over-simulation results.  
 
To minimize the effects of oversimplification, it is recommended that aggregation thresholds be kept to > 
8 unique fuel type classes and to maintain entropy levels of > 0.8, to ensure sufficient fuel type diversity to 
have realistic fire spread predictions. 
Additionally, integrating dynamic aggregation approaches, in which the fuel type aggregations are based on 
unique fire behaviour for given environments, could further improve model accuracy.  
 
Further validation using real-world fire datasets is encouraged to confirm the minimum number of unique 
fuel types and the entropy-based thresholds and their usability across different fire-prone regions or even 
complete ecosystems. By incorporating entropy as a quality control metric for input data to use in wildfire 
simulation, the optimal balance between simplification and accuracy can be reached. 
 
Eventually increasing the usability and effectiveness of wildfire simulations to support the decision-making 
process in fire management and risk assessment. 
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6.2 Ethical considerations and risks 
For this research only freely, available public data has been used to minimize privacy concerns. Processing 
of this data has taken place by using freely available open-source software such as Flammap and QGIS. By      
using public data and open-source software the goal is to create transparency, accessibility as well as 
reproducibility of the results. Open-source tools also create higher levels of inclusivity as well as opening up 
for future collaborations within this specific research field. Ethical concerns regarding unequal access to the 
data and software used have been substantially reduced.  
 
However, ethical risks will stay present, especially with regard to potential misinterpretations or misuse of 
the simulation outcomes. Therefore, wildfire simulation outcomes need to be documented in a transparent 
way, to limit uncertainties and to avoid decision-making based upon wrong or incomplete assumptions.  
 
Decisions have been made during the aggregation process. Any decision has a risk involved in creating a 
potentially uneven accuracy level and or wrongly identifying areas of high- or low-risk. Therefore, the 
simulation outputs are solely used for comparison and validation with the reference data to determine the 
effects of data aggregation, based on fire behaviour characteristics, for the simulation accuracy levels.  
 
It is important to state that simulation outcomes for potential wildfire scenarios should only be used in 
consideration with other critical factors involved, such as local knowledge, experience and other forms of 
information, in any decision-making process. Simulation outcomes should just be a tool to create insight 
and to be able to make well-balanced decisions. 
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APPENDICES 
 
APPENDIX A: 
Fire behaviour characteristics and their influence on fire behaviour as described by Scott and Burgan for 
the FBFM40 classification (Scott & Burgan, 2005). 
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APPENDIX B 
Rate of Spread aggregation process. 
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APPENDIX C 
Flame Length aggregation process. 
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