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Management Summary

This thesis is conducted as part of the Master’s in Industrial Engineering and Management
at the University of Twente, in collaboration with CAPE Groep and Wolter Koops. CAPE
Groep, a consultancy firm, facilitated the research while the assignment was carried out
for Wolter Koops, a leading logistics service provider specialising in temperature-controlled
transportation. The study examines a specific case of vehicle routing, focusing on the
challenges of routing multi-compartment vehicles in a supply chain that uses a Cross-Dock
(CD) in its customer delivery channel.

Wolter Koops operates a logistics network in which goods from multiple suppliers are con-
solidated at a CD. At this central consolidation point, incoming shipments may be sorted
and reassigned to outbound vehicles before being transported to retailers. Vehicle routing
and consolidation at the CD require careful planning because commodity incompatibilities
prevent shared transport within a single compartment, while each vehicle is equipped with
two compartments. These decisions involve complex trade-offs between vehicle availability,
time windows, and compartmentalisation constraints. Still, the company currently lacks
a standardised algorithm for these decisions, requiring planners to make these decisions
manually. This research investigates whether an algorithm can be developed to standard-
ise and improve routing and consolidation, evaluate the efficiency of the current planning
method, and identify opportunities for improvement. Thus, the central research question
is:

How can an optimisation algorithm be developed to minimise the total cost of servicing all
suppliers and retailers in Wolter Koops’ fleet routing operations?

A literature review was conducted to explore existing Vehicle Routing Problem (VRP)
solutions, particularly those considering cross-docking operations and multi-compartment
vehicle constraints. Metaheuristic approaches have shown promise in solving large-scale
VRP instances. Still, current models of the Vehicle Routing Problem with Cross-Docking
(VRPCD) do not fully capture the intricacies of multi-compartment vehicle constraints,
cross-docking synchronisation, strict time windows, and rest periods, all of which are rel-
evant to Wolter Koops’ logistics operations. This research develops a tailored approach
to address the complexity of integrating cross-docking operations and addressing fleet-
specific constraints in temperature-sensitive logistics, as it is currently underexplored in
the literature. Related work is explored in Section 3.6.

A second literature review was conducted to identify suitable methods for optimising multi-
compartment vehicle routing in a cross-docking network. While exact methods guarantee
optimal solutions, their computational infeasibility for large-scale instances renders them
impractical for real-world routing problems. Therefore, heuristic methods were explored,
and the hybrid Tabu Search–Simulated Annealing (TS-SA) solution approach was proposed
to leverage the memory-based nature of TS while incorporating SA-based diversification
to escape local optima, improving solution robustness. Furthermore, TS-based implemen-
tations have shown promising results in other VRPCD implementations.

This study develops a hybrid TS-SA approach to optimising multi-compartment vehicle
routing in a cross-docking network using past data from two days in January 2025. The



solution is generalisable in similar supply chains (for more details on generalisability, see
Section 8.2.3). The approach improves an initial solution generated by a two-stage greedy
insertion heuristic. The algorithm routes vehicles to efficiently collect, consolidate, and
deliver goods for all transportation orders. The cost model considers fixed costs associ-
ated with vehicle deployment and variable expenses related to travel time. Each order
is pre-assigned to a CD before planning, consistent with Wolter Koops’ manual planning
process. To validate the model, orders from the EG department (flowers, plants, fruits, and
vegetables) routed through the Venlo CD are used to compare with historical planning.
Additionally, multiple scenarios and sensitivity analyses, including variations in cost, time
window, and travel speed, were conducted to assess the robustness of the proposed TS-SA
model.

The algorithm was tested on a two-day dataset of 133 historical orders from Wolter
Koops to benchmark performance against manual planning. In this sample, the model
has shown:

• The hybrid TS-SA algorithm reduces total transportation costs by 31.8% compared
to the historical planning of the two-day sample.

• Load efficiency improves by 8.1%, reducing the number of vehicles required to service
all transport orders compared to the historical planning of the two-day sample.

• The algorithm successfully plans 133 orders within Wolter Koops’ cross-docking sup-
ply chain, effectively handling multi-compartment constraints while minimising costs
and ensuring solution feasibility in approximately 3.5 hours.

• The algorithm has shown superior performance to the historical planning across all
scenarios and sensitivity analyses.

As a consequence of the insights obtained in this study and the limitations of the model,
we would like to provide recommendations for Wolter Koops on how to proceed based on
the results of this study. To adopt the model and enhance operational efficiency, Wolter
Koops should:

1. Analyse data inconsistencies encountered during the development of the algorithm.
More details on these issues can be found in Section 6.1.

2. Integrate the algorithm into existing Transportation Management Systems (TMS) to
allow automated routing decision testing.

3. Conduct real-world pilot tests over an extended period to validate algorithmic per-
formance under dynamic conditions.

4. Perform more testing on the optimal parameter setup in different problem settings.

This research contributed to routing optimisation by demonstrating the effectiveness of
hybrid metaheuristics in solving a complex variant of the VRP, which, to our knowledge, is
not available in the current body of literature. Future research could provide more analysis
on (self-)tuning parameters, extend the model to dynamic routing scenarios, incorporate
stochastic demand/time variations, or optimise dock scheduling at the CD to improve
cross-docking efficiency.



Contents

1 Problem Context and Scope Definition 1
1.1 Company Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Wolter Koops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 CAPE Groep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Problem Context and Action Problems . . . . . . . . . . . . . . . . . . 3
1.2.2 Core Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Problem-Solving Approach and Research Questions . . . . . . . . . . . . . . 5
1.3.1 Phase 1: Problem Identification . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Phase 2: Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Phase 3: Solution Design . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.4 Phase 4: Modelling and Implementation . . . . . . . . . . . . . . . . . . 7
1.3.5 Phase 5: Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Current Vehicle Routing Practices at Wolter Koops 12
2.1 Planning Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Operational Roles and Decision-Making . . . . . . . . . . . . . . . . . . 12
2.1.2 Operational Data and Supporting Tools . . . . . . . . . . . . . . . . . . 13
2.1.3 Decision Factors in Vehicle Routing . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Stakeholder Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Business Objectives and Current Performance . . . . . . . . . . . . . . . . . 17
2.3 Findings and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Vehicle Routing Problem: Models and Applications 20
3.1 Introduction to the Vehicle Routing Problem . . . . . . . . . . . . . . . . . 20
3.2 VRP with Capacity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 VRP with Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 VRP with Multiple Commodities . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 VRP with Cross-Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Findings and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Problem Formulation and Mathematical Framework 35



4.1 Formal Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Graph-Based Representation of the Network . . . . . . . . . . . . . . . . . . 36
4.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Objective Function and Constraints . . . . . . . . . . . . . . . . . . . . 39

4.4 Assumptions and Simplifications . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Toy Problem Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Findings and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Adaptive TS-SA Hybrid Solution Approach 45
5.1 Exploration of Suitable Solution Methods . . . . . . . . . . . . . . . . . . . 45

5.1.1 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 (Meta)heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Proposed Tabu Search Implementation . . . . . . . . . . . . . . . . . . . . . 49
5.2.1 Initial Solution Generation . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Neighbourhood Structures . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Tabu List and Aspiration Conditions . . . . . . . . . . . . . . . . . . . 51
5.2.4 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Adaptive Simulated Annealing Integration in Tabu Search . . . . . . . . . . 52
5.3.1 Activation and Stagnation Detection . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Temperature Cooling Schema . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Probabilistic Move Acceptance and Tabu Constraints . . . . . . . . . . . 54
5.3.4 Balancing Intensification and Diversification . . . . . . . . . . . . . . . . 55

5.4 Findings and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Model Validation and Experimental Design 56
6.1 Input Data and Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Case Study Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.1 Scenarios and Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 63
6.4.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Findings and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Experimental Execution and Computational Results 67
7.1 Test Scenario Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Scenario 1: Algorithmic Variation on the Fixed Cost . . . . . . . . . . . 67
7.1.2 Scenario 2: Impact of Compartmentalisation . . . . . . . . . . . . . . . . 68
7.1.3 Results and Comparison Between Scenarios . . . . . . . . . . . . . . . . 68

7.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.1 Cost Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.2 Travel Speed Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2.3 Time Window Tightness Sensitivity . . . . . . . . . . . . . . . . . . . . 73

8 Conclusions and Recommendations 75
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Contributions to Science and Practice . . . . . . . . . . . . . . . . . . . . . 76

8.2.1 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 77



8.2.2 Practical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2.3 Generalisability and Discussion . . . . . . . . . . . . . . . . . . . . . . 78

8.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.4 Limitations and Future Research . . . . . . . . . . . . . . . . . . . . . . . . 79

8.4.1 Methodological Limitations . . . . . . . . . . . . . . . . . . . . . . . . 79
8.4.2 Practical Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.4.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 80

A Mathematical Modelling Techniques 91
A.1 Two-index vehicle flow formulation . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Commodity-flow formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.3 Set-partitioning formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B Toy Problem Coordinates 93

C Initial Solution Generation 94
C.1 Stage 1: Retailer/Delivery Routes . . . . . . . . . . . . . . . . . . . . . . . . 94
C.2 Stage 2: Supplier/Pick Up Routes . . . . . . . . . . . . . . . . . . . . . . . 94

D Data Filtering Process 97



List of Figures

1.1 Illustration of the flow of commodities A and B from suppliers to retailers
via a cross docking facility, with consolidation of the different commodities . 2

1.2 Commodity flow between inbound and outbound docks at a cross-docking
facility. Arrows indicate the movement of goods within the facility. In
this example, inbound and outbound vehicles are not restricted to specific
terminals; their allocation depends on operational requirements [1]. . . . . . 3

1.3 Problem cluster Wolter Koops . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Tools used in the planning process and the role of the routing algorithm. . . 14
2.2 Factors Influencing Routing Decisions . . . . . . . . . . . . . . . . . . . . . 16

3.1 The VRP family hierarchy [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Graph representation of the VRPCD . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Individual route possibilities (idle state omitted) . . . . . . . . . . . . . . . 38
4.3 Toy problem solution illustration . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Example of the neighbourhood operators SWAP (a) and INSERTION (b)
for generating a neighbour solution . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Temperature cooling schema with T0 = 1000, αint = 0.9, and αext = 0.9. . . 54

6.1 Objective Value Evolution over the Running Time of Experiment 1 . . . . . 60
6.2 Optimisation History of the Optuna Parameter Tuning Process. . . . . . . . 60
6.3 Parameter Importance according to Optuna . . . . . . . . . . . . . . . . . . 61
6.4 Objective Value Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 Comparison of vehicle routes and costs between the base scenario (a) and
the current scenario (b). The timelines at the top indicate the difference in
total fixed costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Objective Value Evolution over the Running Time for Scenarios 1 and 2 . . 69
7.3 Objective Value over the Running Time for Different Travel Speeds . . . . . 72
7.4 Average Acceptance Probability per Iteration over the Running Time . . . . 72
7.5 Objective Value Evolution over the Running Time for Different Time Win-

dow Tightness Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.1 Outline of the two-stage approach employed in the constructive heuristic . . 94

D.1 Data Filtering Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



List of Tables

1.1 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Planning groups at Wolter Koops . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Three-index vehicle flow notations (CVRP). . . . . . . . . . . . . . . . . . . 24
3.2 Overview of VRPCD Literature . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Transport Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Euclidean distance/travel time/cost matrix . . . . . . . . . . . . . . . . . . 43
4.3 Vehicle schedules with arrival- and departure times . . . . . . . . . . . . . . 44

6.1 Description of Input Data Attributes . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Parameter Notation and Configuration Space . . . . . . . . . . . . . . . . . 59
6.3 Optimised Parameter Configuration . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Comparison of Historical Planning and Hybrid TS-SA Model Performance . 63
6.5 Sensitivity experiments overview. . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Historical Planning and TS-SA Model Performance (all scenarios) . . . . . . 69
7.2 Cost Sensitivity Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Travel Speed Sensitivity Analysis Results . . . . . . . . . . . . . . . . . . . 71
7.4 Time Window Tightness Sensitivity Analysis Results . . . . . . . . . . . . . 73

B.1 Toy problem node characteristics . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Abbreviations

ALNS Adaptive Large Neighbourhood Search

ACO Ant Colony Optimisation

B Belgium

CD Cross-Dock

CVRP Capacitated VRP

DA Deterministic Annealing

EDI Electronic Data Interchange

EG Europese Gemeenschap uitgezonderd vlees
en zuivel

ETA Estimated Time of Arrival

F France

GA Genetic Algorithm

GER Germany

GRASP Greedy Adaptive Search Procedure

IE Ireland

ILS Iterated Local Search

KPI Key Performance Indicator

LNS Large Neighbourhood Search

MCmpt-VRP Multi-Compartment VRP

MCVRP Multi-Commodity VRP

MPSM Managerial Problem Solving Method

MTVRP Multi-Trip VRP

MTZ Miller-Tucker-Zemlin

NL the Netherlands

PL Poland

PR Path Relinking

SA Simulated Annealing

SS Scatter Search

TS Tabu Search

TSP Traveling Salesman Problem

TMS Transportation Management System

UK United Kingdom

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

VRPCD VRP with Cross-Docking

VRPCDTW VRPCD with Time Windows

VRPHTW VRP with Hard Time Windows

VRPSTW VRP with Soft Time Windows

VRPTW VRP with Time Windows



1 Problem Context and Scope Definition

This thesis presents the research conducted in collaboration with CAPE Groep and Wolter
Koops as part of the requirements for the Master of Science in Industrial Engineering and
Management at the University of Twente. The study examines a specific case of vehicle
routing, focusing on the challenges of routing multi-compartment vehicles in a supply chain
that uses a Cross-Dock (CD) in its customer delivery channel. The CD serves as a cen-
tral consolidation point where incoming shipments are sorted and reassigned to outbound
vehicles without long-term storage. A key challenge arises because many commodities are
incompatible and cannot be transported together in a single compartment, necessitating
careful compartmentalisation and routing decisions. This introductory chapter starts with
Section 1.1, which presents background information on the companies where this research
is conducted. Section 1.2 identifies the problem that is the topic of this research, sets the
problem into context, and describes the research objectives. In Section 1.3, the problem-
solving approach and the research questions are outlined. Section 1.4 shapes the research
design by elaborating on the research scope, limitations, and methods used throughout
this thesis. Section 1.5 presents the deliverables of this study. The outline of this study
is presented in section 1.6, which divides the research phases over the chapters of this
study.

1.1 Company Backgrounds

This study focuses on logistical challenges faced by Wolter Koops, an international trans-
portation company specialising in cold chain logistics via road / by vehicles. Section 1.1.1
elaborates on the background information of this company. This research was conducted at
CAPE Groep, a software development and system integrator consultancy company which
provided support and expertise during the research process. Therefore, Section 1.1.2 in-
cludes background information on this company.

1.1.1 Wolter Koops

Wolter Koops, established in 1961, specialises in the temperature-controlled logistics mar-
ket. With over 2,500 employees, the company has grown into an international service
provider, operating a fleet of around 1,000 vehicles and completing, on average, over 5,500
weekly trips, where a trip is defined as any travel between two locations, such as a deliv-
ery to a retailer [3, 4]. The company’s headquarters is in Zeewolde, the Netherlands, but
Wolter Koops has established multiple locations throughout Europe. The company oper-
ates from the Netherlands (NL), Germany (GER), and Poland (PL), with specific locations
in Zeewolde, Venlo (NL), Osterweddingen (GER), Alzenau (GER), and Komorniki (PL).
While most of their customers (retailers) are based in the Netherlands and Germany, the
company also serves clients in Belgium (B), France (F), and Ireland (IE), with occasional
requests from other European countries [5].

Wolter Koops primarily serves wholesalers and distributors of perishable goods who submit
transportation requests to facilitate the delivery of products from third-party suppliers.
For instance, the distribution centre of a supermarket chain may request the collection and

1



CHAPTER 1. PROBLEM CONTEXT AND SCOPE DEFINITION

delivery of dairy products from a designated third-party supplier. In these cases, companies
specify the required product quantity, the pick up location, the delivery destination, and a
time window for the delivery. Handling hundreds of transportation requests daily, Wolter
Koops directs goods to one of its own CD facilities, where the products may be consolidated
and loaded onto one or more other vehicles for delivery to respective retailers. This concept
is exemplified in Figure 1.1, which depicts the flow of two distinct commodities through
the cross docking process.

Figure 1.1: Illustration of the flow of commodities A and B from suppliers to
retailers via a cross docking facility, with consolidation of the different commodities

1.1.2 CAPE Groep

CAPE Groep was founded in Hellendoorn, the Netherlands, in 2000 and is based in En-
schede, the Netherlands. Since its founding, the company has expanded its operations
domestically to Utrecht and internationally to Sydney, Australia and Zagreb, Croatia. It
is a consultancy firm specialising in developing custom software solutions to digitise and
optimise business processes through the low-code platform Mendix [6]. CAPE Groep is
active in the transportation, logistics, supply chain, construction, and agrifood sectors
[7].

Over the past two years, CAPE Groep has developed various custom software solutions for
Wolter Koops. These include a customer portal enabling retailers and suppliers to place
their orders, track shipment status, and monitor the location of returnable transport items
(such as Euro pallets, flower bins, and stackable containers). Furthermore, CAPE Groep
has built applications with functionalities for scanning and identifying products in a CD.
Recently, the company introduced a digital service that offers real-time insights into the
Estimated Time of Arrival (ETA) of shipments and departure times, hereafter referred to
as the “ETA service” [8].

1.2 Problem Identification

This research concerns the Wolter Koops’ CD located in Venlo, where approximately 18
of the 26 planners are based. These planners operate based on demand and vehicle avail-
ability to compose a routing scheme that serves all retailers (customers) in time. The
routing decision entails determining a path or sequence of routes that a fleet of vehicles
should follow to service a set of retailers or locations while minimising the relevant costs
incurred.

2



CHAPTER 1. PROBLEM CONTEXT AND SCOPE DEFINITION

At the CD, goods brought by an incoming vehicle from a supplier are unloaded, sorted,
stored for a short period, and loaded onto their respective outgoing vehicles. The commod-
ity flow between the inbound and outbound docks is illustrated in Figure 1.2. Typically,
incoming goods are scanned to identify their destination and sorted into the outbound
vehicle, often combining multiple commodities into one vehicle. The decision regarding
the unloading, sorting, and loading onto the outgoing vehicle is called the consolidation
decision. Consolidation and routing decisions are interdependent because the availability
of goods, which is determined by the consolidation decisions, serves as input for the routing
decision.

Figure 1.2: Commodity flow between inbound and outbound docks at a cross-
docking facility. Arrows indicate the movement of goods within the facility. In this
example, inbound and outbound vehicles are not restricted to specific terminals;
their allocation depends on operational requirements [1].

The remainder of this section details the problem context of this research, identifies the core
problem studied using a problem cluster, and outlines the research objectives. Problem
identification is the first phase of the research framework adopted in this research, similar to
the Managerial Problem Solving Method (MPSM) by Heerkens and van Winden [9].

1.2.1 Problem Context and Action Problems

After an inventory of existing problems was made, the problem context and its connections
were mapped into a problem cluster. According to Heerkens and van Winden [9], a problem
cluster maps all problems along with their connections. It is a model in which connections
are indicated in a cluster of causes and effects, and it serves as a valuable tool to bring
order to the problem context and to identify the core problem. Figure 1.3 depicts the
problem cluster at Wolter Koops. In the problem cluster, blocks represent problems and
the cause and effect relationships with arrows. In this subsection, the action problems are
presented, defined as anything or any situation that is not how you want it to be. It is
where a discrepancy between the norm and the reality is perceived by the problem owner
[9]. In the case of Wolter Koops, the following action problems were expressed:

Wolter Koops is obliged to hire vehicles from third-party providers at significantly higher
rates due to an insufficient internal fleet.

Hiring vehicles from third-party providers creates a discrepancy between the norm and the
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company’s reality because hiring these results in a substantial cost increase. Wolter Koops
currently hires approximately 100 vehicles externally, whereas the company’s operational
norm is to meet all demands using its internal fleet alone. As the problem cluster shows,
fleet undercapacity is caused by the many trips vehicles need to make due to the suboptimal
routing of vehicles and the underutilised vehicle capacity due to the many unnecessary
empty kilometres driven.

Wolter Koops cannot identify improvement points in the routing and consolidation
planning procedure.

Wolter Koops is unaware of potential improvements in the current planning procedure due
to its lack of standardisation, complexity, and limited transparency regarding planning
efficiency. A company representative emphasised that gaining insights into the quality of
the planning process would be valuable, as there are currently no means for management
to assess its effectiveness. Enhancing vehicle routing decisions could lead to more efficient

Figure 1.3: Problem cluster Wolter Koops

operations by reducing the number of kilometres driven and the time required to complete
all trips. This improvement may also reduce the number of vehicles used, which is partic-
ularly significant given the current situation at Wolter Koops, where over 100 vehicles are
hired externally in addition to the company’s fleet.

1.2.2 Core Problem and Motivation

In this subsection, potential core problems are identified by going back in the causal chain
of problems depicted by the problem cluster. A core problem is identified when it does
not have a direct cause. The possible core problems in the problem context provided are,
therefore:

1. The lack of a routing and consolidation planning algorithm. Currently, no standard-
ised algorithm efficiently routes vehicles from suppliers to retailers. Thus, planners
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are tasked with manually planning trips and must account for spatial and temporal
factors to determine the optimal routes and timing for all vehicles’ movements. This
becomes increasingly complex when the number of possible routes increases1.

2. The lack of a returning trip algorithm. A separate team of planners manages the
return trip to the CD once a vehicle has completed deliveries to its retailers. These
planners aim to reduce empty kilometres by allowing the vehicle to pick up goods
from suppliers on its way back, which can then be consolidated at the CD. However,
this practice can extend the vehicle’s time away from the CD, delaying its availability
for future deliveries. Implementing an algorithm to standardise this decision-making
process could improve fleet efficiency by optimising the balance between minimising
empty kilometres and ensuring timely vehicle availability at the CD for subsequent
trips.

Selecting a core problem involves identifying the issue that, when addressed, will yield the
most significant improvements across the related action problems. Following discussions
with representatives from Wolter Koops, the following core problem was identified:

Wolter Koops lacks a routing and consolidation planning algorithm.

1.2.3 Research Objective

This research aims to minimise the costs associated with the timely delivery of goods to
retailers for Wolter Koops by optimising routing and consolidation decisions through an
algorithm. The total cost of serving retailers is assumed to consist of fixed costs associated
with each vehicle deployed and variable costs determined by the total time travelled in
minutes. Moreover, the use of third-party logistics service providers can be minimised
when vehicles are routed efficiently, as optimised routing reduces the need for external
capacity by maximising the utilisation of available fleet resources. The proposed algorithm
will also provide insights into route planning efficiency, as the current procedure is not
standardised.

1.3 Problem-Solving Approach and Research Questions

This section presents the research framework for this applied study and details its phases
and the corresponding research knowledge questions. The framework is grounded in the
well-established MPSM methodology, which serves as the foundation for these phases.
However, minor adjustments have been made to adapt the methodology to the specific
context of this study. For a comprehensive explanation of the MPSM, readers are referred
to Heerkens and van Winden [9]. To address the research objective outlined in the previous
section, the central research question is as follows:

How can an optimisation algorithm be developed to minimise the total cost of servicing all
suppliers and retailers in Wolter Koops’ fleet routing operations?

This research’s problem-solving approach consists of five phases containing research sub-
questions. These phases and research questions constitute this paper’s outline, formulated
below. Before exploring what methods are available in the current body of literature, it
is essential to understand the current planning situation comprehensively. Consequently,

1Even for a symmetric travelling salesman problem serving N customers, (N−1)!
2

possible routes can be
composed [10]
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phase 1 formulates multiple research sub-questions to explore the planning procedure at
Wolter Koops further.

1.3.1 Phase 1: Problem Identification

This phase defines the core challenges by constructing a problem cluster and analysing
the problem context to develop a clear understanding of its complexities. Identifying key
issues early ensures that the research is well-aligned with the operational realities of the
case study. Insights are gathered through expert interviews with Wolter Koops and CAPE
Groep (Chapters 1 and 2).

1. What are the current routing and consolidation decision-making processes at Wolter
Koops?

1.1 How is the planning department organised?

1.2 What data and supporting tools are available at Wolter Koops to assist in routing
decisions?

The research questions in this phase aim to analyse the current routing and consolidation
processes at Wolter Koops, providing a foundation for identifying potential improvements.
Research question 1 examines the organisation of the planning department (1.1) and the
availability of data and decision-support tools used in routing (1.2). Understanding these
aspects is crucial for assessing the efficiency of existing operations and determining the
feasibility of implementing optimisation strategies.

2. What is the planning horizon and how many trips are routed in this time frame?

The planning horizon and the number of trips routed within this time frame directly im-
pact the complexity of routing decisions and the effectiveness of optimisation strategies.
Research question 2 aims to clearly understand these factors at Wolter Koops, as they influ-
ence operational constraints and determine the most suitable solution method. Therefore,
understanding these is essential to develop a model that aligns with real-world planning
requirements.

1.3.2 Phase 2: Theoretical Foundations

This phase establishes the foundation for developing a solution by reviewing relevant liter-
ature on existing approaches. It contributes to answering the central research question by
identifying best practices and methodologies for vehicle routing problems in cross-docking
supply chains. The insights gained help shape the modelling and optimisation strategies
used in later phases (Chapter 3).

3. What are the key factors influencing routing and consolidation decisions in cross-
docking logistics?

Research question 3 explores the key factors that shape routing and consolidation decisions
in cross-docking logistics. Understanding these aspects is crucial for building a model that
aligns with real-world challenges and supports effective decision-making.

4. How can the vehicle routing problem in a cross-docking supply chain be modelled and
optimised?

Research question 4 focuses on formulating and optimising the vehicle routing problem
within a cross-docking supply chain. Given the complexity of such a supply chain, a
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practical model must account for consolidation, timing constraints, and cost efficiency.
This question contributes to the theoretical foundation by focusing on the mathematical
modelling and optimisation of routing decisions. It forms the basis for developing an
effective solution method at Wolter Koops.

1.3.3 Phase 3: Solution Design

This phase focuses on designing a solution to the core problem, directly addressing the cen-
tral research question. It provides a detailed model description, explores potential solution
methods, and justifies selecting the most suitable approach. Additionally, key assump-
tions and limitations are outlined to clarify the scope and applicability of the solution.
This phase ensures a structured and transparent approach to problem-solving (Chapters 4
and 5).

5. What are the key assumptions made in the solution design?

This research sub-question aims to document the assumptions made in the solution design
to ensure validity, applicability, and reproducibility. Assumptions are critical in simplifying
problem-solving, reducing computational time, and preserving solution quality wherever
possible.

6. What solution methods exist for enhancing vehicle routing decisions at Wolter Koops,
and which is most suitable for implementation?

Research question 6 focuses on identifying suitable solution methods to improve vehicle
routing decisions at Wolter Koops, and given the complexity of cross-docking logistics,
selecting the right approach—whether exact, heuristic, or hybrid—is crucial for balancing
solution quality and computational efficiency.

1.3.4 Phase 4: Modelling and Implementation

This phase focuses on developing the solution method outlined in the previous phase to
address the central research question. It involves key decisions regarding the model’s
search process, including parameter tuning, input data validation, and defining termination
criteria. By refining these aspects, this phase ensures the model is both effective and
applicable in a real-world setting (Chapters 6 and 7).

7. How can the input data be processed and validated to ensure the model operates reli-
ably?

Research question 7 examines how input data can be processed and validated to ensure the
model functions reliably and produces reproducible results. Accurate and well-structured
data is essential for maintaining solution quality, as inconsistencies or errors can compro-
mise validity and performance. This question focuses on preprocessing steps and validation
techniques to ensure consistent outcomes.

8. What key parameters influence the model’s performance, and how can they be effec-
tively tuned?

Research question 8 explores the key parameters that impact the model’s performance
and how they can be effectively tuned. Parameter tuning is essential to the performance
of the model, as it influences solution quality, computational efficiency, and convergence
behaviour. This question focuses on identifying the tunable parameters and determining
the optimal parameter configuration.
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9. How can the model be evaluated in a case study to assess its applicability to real-world
routing scenarios?

Research question 9 examines how the model can be evaluated through a case study to
assess its applicability to real-world routing scenarios. A case study provides practical in-
sights into how well the model performs under realistic conditions, considering operational
constraints and business requirements. This question focuses on defining the evaluation
criteria and comparing model outcomes to actual routing decisions.

10. What experimental setup is required to systematically test the model’s performance
and robustness?

Research question 10 focuses on designing an experimental setup to systematically test the
model’s performance and robustness. A well-structured experiment ensures that the model
is evaluated under diverse conditions, assessing its reliability, scalability, and sensitivity to
parameter changes. This question aims to define the testing framework to evaluate the
model under changing conditions.

1.3.5 Phase 5: Evaluation

This phase evaluates the solution model and its performance, assessing whether it effec-
tively addresses the core problem and meets the research objective (refer to Section 1.2.3).
It examines Key Performance Indicators (KPIs), compares results to benchmark scenarios,
and identifies potential areas for improvement. Additionally, recommendations for imple-
mentation are provided to ensure the model’s practical applicability. Ultimately, this phase
verifies whether the proposed solution achieves the intended outcomes and aligns with the
research objectives (Chapter 8).

11. What are the key findings, implications, and recommendations for practical imple-
mentation and further research?

Research question 11 aims to summarise the study’s key findings, assess their implications,
and provide recommendations for both practical implementation and future research. Un-
derstanding how the proposed solution impacts real-world operations helps determine its
feasibility and potential benefits. Additionally, identifying areas for further exploration en-
sures continuous improvement and refinement of vehicle routing and consolidation strate-
gies.

1.4 Research Design

This section outlines the research design by detailing the scope, limitations, and method-
ologies to address the research objectives. It establishes the study’s boundaries and ensures
the research remains focused and applicable to the operational context of Wolter Koops.
Additionally, the section discusses the research methods used in this study.

1.4.1 Research Scope

While the solution method is designed to be generalisable, its implementation is tested
for applicability at the CD in Venlo. Accordingly, parameter tuning is performed using
Venlo data to ensure the model’s relevance and practical validity. Furthermore, the model is
designed for cross-docking supply chains characterised by a structured flow, where suppliers
are positioned upstream, retailers downstream, and the CD functions as a central hub.
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This setup reflects a logistics network in which goods move from suppliers to the CD for
consolidation and redistribution before reaching retailers.

The scope of this research encompasses key aspects of the routing process such as vehicle
routing from suppliers to the CD, consolidation decisions, and the subsequent routing to
retailers. Additionally, the study examines the possibility of direct routes from suppliers
to retailers, although direct routes may only consist of one supplier and one retailer. This
choice is to limit the model for the sake of computational tractability. The solution also
accounts for complexities related to multi-compartment vehicles and product incompati-
bilities.

Furthermore, the number of vehicles employed is variable, with the optimal number deter-
mined based on the fixed costs incurred through vehicle use. Routing is conducted under
static conditions, meaning that all relevant information is considered known a priori; dy-
namic routing scenarios are not addressed within this scope.

1.4.2 Limitations

This study is subject to certain limitations in its research design, which are discussed in this
section. These limitations define the scope of the research, outlining constraints related to
time, data availability, modelling assumptions, and practical applicability:

• As this research is conducted within the scope of a Master’s thesis, time constraints
limited the ability to explore all possible scenarios and fine-tune parameters individu-
ally. Parameter tuning is time-intensive, so not all configurations could be optimised
separately. This impact is expected to be minimal as the solution space of all scenar-
ios are similar. Additionally, scalability was not extensively tested across multiple
datasets.

• The findings and parameter tuning are based on the case study from Venlo. While
the model is designed to be generalisable to other locations, certain limitations may
arise due to dataset-specific characteristics and operational differences. Furthermore,
the model is intended for structured cross-docking supply chains where suppliers and
retailers are geographically dispersed, with a CD serving as an intermediary.

• The model assumes that all routing decisions are made before execution without real-
time adjustments. In practice, unexpected disruptions—delays, vehicle breakdowns,
or last-minute order changes—can significantly impact routing decisions. This study
does not account for dynamic re-optimisation during operations.

• The model operates assuming that all necessary data is available, accurate, and
complete at the time of planning. However, real-world logistics often involve missing,
uncertain, or evolving information.

• This research primarily addresses short-term operational routing decisions. Higher-
level strategic decisions, such as fleet size determination, long-term investment plan-
ning, or network design, are beyond the scope of this study.

1.4.3 Research Methods

Different research methods will be used to answer the research questions above. For more
elaborate descriptions of the research methods identified, refer to Turnhout et al. [11]. This
has been consulted to find the combination of research methods needed to address the core
problem defined in Section 1.2.2.
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• A literature study: The literature study establishes a foundation of knowledge on
vehicle routing problems and related topics. The search for relevant literature was
conducted primarily using Google Scholar, Scopus, and FindUT, focusing on high-
impact journals and conference proceedings. An exploratory method was adopted
instead of following a predefined systematic review approach.

The process begins by reviewing existing literature reviews and taxonomies on vehicle
routing problems, which provide an overview of key research directions and commonly
cited works. From there, a snowballing approach was applied:

– Backward snowballing was used to examine references from key papers to iden-
tify foundational studies.

– Forward snowballing was employed by tracking later works that cited these key
papers, ensuring the inclusion of recent advancements in the field.

This iterative process identified studies on related topics such as cross-docking, multi-
compartment vehicle routing, and mathematical formulations. The most relevant
studies were then analysed to extract insights applicable to this research.

• A case study: The case study validates the developed model by utilising real-world
data from Wolter Koops. The study assesses the efficiency of existing routing deci-
sions by analysing historical transportation data. It evaluates the model’s ability to
efficiently route a fleet of vehicles in a supply chain with cross-docking. This compar-
ison provides insights into the model’s effectiveness in improving routing efficiency
and its potential for practical application.

• Expert interviews: Regular meetings were held with the IT manager [5] and the
head of planning [4] at Wolter Koops to gain insights into the routing process and
validate the research approach. These discussions were conducted in an informal set-
ting, allowing for open dialogue on key operational and strategic considerations. Two
business IT consultants from CAPE Groep also participated, bringing valuable input
as they were familiar with the research and Wolter Koops’ operations. Their involve-
ment helped bridge the gap between theoretical insights and practical constraints.
In addition to these meetings, regular discussions were held with the CAPE Groep
consultants to refine the research direction further and address emerging questions.

1.5 Deliverables

This study results in the following deliverables:

• Thesis: A comprehensive report documenting the research process, including the
methodology, assumptions, limitations, and recommendations for future research or
practical implementation.

• Solution Model: The developed model for optimising fleet routing, as described in
the thesis and implemented in the software tool.

• Software Tool: A Mendix-based application that implements the solution model,
facilitating its practical use. This tool is developed under the supervision of a business
IT consultant at CAPE Groep to ensure alignment with industry practices.

10



CHAPTER 1. PROBLEM CONTEXT AND SCOPE DEFINITION

1.6 Research Framework

The research framework is the foundation for structuring and guiding this study, provid-
ing a clear and logical progression from problem identification to solution evaluation. It
outlines the sequence of steps taken throughout the research process and helps to align the
methodology with the research objectives. This section presents the research framework,
which is structured according to the phases outlined in Section 1.3. Table 1.1 provides
an overview of these phases, their corresponding chapters, and the research questions ad-
dressed in each. This table defines the layout of the thesis and serves as the basis for its
organization.

Table 1.1: Research Framework

Phase Chapter Research questions

1. Problem iden-
tification

1. Problem Context and
Scope Definition

1. What are the current routing and consolida-
tion decision-making processes at Wolter Koops?

2. Current Vehicle Routing
Practices at Wolter Koops

2. What is the planning horizon and how many
trips are routed in this time frame?

2. Theoretical
foundations

3. Vehicle Routing Problem:
Models and Applications

3. What are the key factors influencing routing
and consolidation decisions in cross-docking lo-
gistics?

4. How can the vehicle routing problem in a
cross-docking supply chain be modelled and op-
timised?

3. Solution design 4. Problem Formulation and
Mathematical Framework

5. What are the key assumptions made in the
solution design?

5. Adaptive TS-SA Hybrid
Solution Approach

6. What solution methods exist for enhancing
vehicle routing decisions at Wolter Koops, and
which is most suitable for implementation?

4. Modelling and
implementation

6. Model Validation and Ex-
perimental Design

7. How can the input data be processed and
validated to ensure the model operates reliably?

7. Experimental Execution
and Computational Results

8. What key parameters influence the model’s
performance, and how can they be effectively
tuned?

9. How can the model be evaluated in a case
study to assess its applicability to real-world
routing scenarios?

10. What experimental setup is required to sys-
tematically test the model’s performance and ro-
bustness?

5. Evaluation 8. Conclusions and Recom-
mendations

11. What are the key findings, implications, and
recommendations for practical implementation
and further research?
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2 Current Vehicle Routing Practices at Wolter Koops

This chapter entails a description of the current situation at Wolter Koops and addresses
the following knowledge questions imposed by Phase 1: Problem identification:

1. What are the current routing and consolidation decision-making processes at Wolter
Koops?

1.1 How is the planning department organised?

1.2 What data and supporting tools are available at Wolter Koops to assist in routing
decisions?

2. What is the planning horizon and how many trips are routed in this time frame?

To answer these research questions, Section 2.1 describes the current planning procedure by
going into detail on the roles and responsibilities, timing and stages, tools and technology,
factors of influence, and the stakeholders involved in the planning process in Sections 2.1.1
- 2.1.4, respectively. Section 2.2 provides more context of the problem by delving into the
objectives imposed on the routing of vehicles and the planning performance based on these
indicators. Section 2.3 concludes this chapter by summarising the impact of the current
situation on problem identification and the solution requirements.

2.1 Planning Procedure

This section describes the current planning procedure for routing vehicles at Wolter Koops
by describing how planning groups are organised, which data and tools are used to support
decision-making, what factors influence the decision-making process, and which stakehold-
ers can be identified.

2.1.1 Operational Roles and Decision-Making

The planning department aims to devise cost-effective routing plans for all transportation
operations. Thus, the planning department at Wolter Koops is organised into specialised
planning groups, each responsible for the efficient management of transporting (a set of)
specific goods. Planning groups are categorised by geographical location and the type of
commodity involved in the planned trips. Because of the incompatibilities of commodities
and the geographical locations of goods, eight planning groups exist to plan all operations
at Wolter Koops. A planner is responsible for multiple planning groups; trips are specified
into one of eight. These eight planning groups are defined in Table 2.1. According to
an expert, which commodity type is picked is irrelevant for returning trip planning as
incompatibilities rarely occur.

According to insights from an expert, Dutch and German drivers mainly operate within
their respective countries. In contrast, Polish drivers are tasked with transporting goods
to the United Kingdom (UK), France, Italy, and other destinations on an occasional ba-
sis.

Planners responsible for return trips make ad-hoc decisions when vehicles end up empty
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Table 2.1: Planning groups at Wolter Koops

Planning Group Description of Routes

ALZ Round trips from Alzenau (GER)
EG Fruits, vegetables, plants, and flowers, primarily to GER

ENG Meat, dairy, and frozen goods across Europe
GP Retail routes within GER, loaded and delivered domestically
I Routes from GER to NL or border regions

OW Various routes from Osterweddingen (GER)
REC Packaging routes, loaded and delivered at various locations
TRB Routes for meat, dairy, and frozen goods within NL

at a retailer’s location and could potentially pick up goods on the return journey. The
decision to pick up an order at a specific location is influenced by factors such as the
vehicle’s location and availability (considering compulsory breaks), the supplier and retailer
locations, and the availability of vehicles at the CD. While these decisions rely on the
planners’ expertise, no formalised rule or system is in place to guide the process. The
primary goal of the return trip planners is to identify opportunities to maximise vehicle
utilisation. It is important to note that these return trips are outside the scope of this
research, as explained in Section 1.2.2.

Planners are primarily concerned with devising static routing plans. This means that
routes are based on known, fixed information about orders and conditions, with no adjust-
ments made during execution. In addition to these planners, dispatchers handle real-time
adjustments such as traffic jams, vehicle failure, or other disruptions. Thus, dispatchers
dynamically adjust the static routing plans to maximise efficiency.

2.1.2 Operational Data and Supporting Tools

On average, planners handle approximately 1,025 demand requests on Mondays, Tuesdays,
and Wednesdays. Demand decreases later in the week, with 850 requests on Thursdays,
775 on Fridays, 650 on Saturdays, and 240 on Sundays. This planning results in a total of
around 5,500 trips per week. Although trips are generally planned for the following day,
late orders can necessitate adjustments to the existing schedule.

Customer portal
The customer portal functions as an Electronic Data Interchange (EDI) system, facilitating
the automated exchange of order information between the customer and Wolter Koops. It
allows customers to communicate their order to Wolter Koops and was custom-built by
CAPE Groep. These requests include customer specifications such as pick up locations,
delivery destinations, time windows, commodity descriptions, order quantities, and tem-
perature requirements. Furthermore, customers can check their order status and review
their order history in individualised environments. From this point onwards, we consider
suppliers and retailers to be the customers of Wolter Koops.

Transportation Management System (TMS)
The TMS primarily displays the details of freight orders requested by customers via the
customer portal. It integrates with the customer portal to automate and streamline the
entry of freight orders into the system. Additionally, the TMS streamlines planning by
enabling planners to share information regarding the process. For instance, if a vehicle’s
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trip has been planned but is not fully loaded, it is marked with a corresponding code to
facilitate further planning and communication among the team.

Transics on-board computer
The Transics onboard computer offers real-time insight into the operational status of ve-
hicles. It monitors and records driving times, rest periods, and speed and can read and
store data from the digital tachograph. It provides real-time tracking to allow planners
to monitor the status of vehicles continuously. Drivers receive their routes through the
system, while planners receive real-time updates on the progress of the trips. The Transics
tool is connected with the TMS through the planned destinations transferred from the
TMS. Furthermore, some real-time insights are shared to the TMS.

ETA Service
The ETA service provides insights into the real-time feasibility of ongoing trips, although
it is not a standalone tool—hence its name. Vehicle ETAs are calculated at specific trigger
points based on the vehicle’s status and location. These triggers are set at predetermined
intervals or events, such as exact time intervals and departure times. The service is inte-
grated into the TMS, where the calculated ETAs are displayed. CAPE Groep developed
this custom-built service.

In summary, planners utilise the TMS and Transics tools to communicate with one another
and to access insights into freight orders and real-time vehicle information. Although ETAs
calculated by the ETA service are displayed within the TMS, the Transics tool provides
a more comprehensive overview of vehicle status. Therefore, planners rely on both tools
to obtain a complete view of the operational situation. These tools are further supported
by the customer portal and the ETA service, which provides demand requests and up-to-
date information on ETAs. The interactions between these tools and the ETA service are
depicted in Figure 2.1. Furthermore, it shows how a routing algorithm is placed relative
to the existing tools. The routing algorithm takes order information from the TMS and
returns a set of routes. It is important to note that the dotted lines represent tools
and integrations developed by CAPE to enhance the core functionalities of the TMS and
Transics.

TMS

Transics ETA-service

Customer portalRouting algorithm

Figure 2.1: Tools used in the planning process and the role of the routing algo-
rithm.

2.1.3 Decision Factors in Vehicle Routing

The vehicle routing process at Wolter Koops is shaped by multiple operational, logistical,
and regulatory factors, each of which plays a critical role in ensuring efficiency and compli-
ance in transportation planning. These factors were identified through consultations with
the head of the planning department at Wolter Koops [4] and are categorised into three
primary groups: timing and scheduling constraints, resource constraints, and operational
and legal constraints.
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Timing Constraints

Suppliers and retailers impose time windows for the pick up and delivery of goods. Ad-
herence to these constraints is essential for maintaining service reliability and operational
efficiency. Four key factors influence scheduling decisions: time windows, travel times,
loading and unloading times, and rest periods.

Time windows define the permissible periods during which pick ups and deliveries must
occur. Travel times are influenced by real-time traffic conditions and estimated using ded-
icated software tools such as AWS and Google Maps. Loading and unloading times are
calculated based on historical data, commodity type, and handling procedures, but actual
durations may vary due to operational conditions. In temperature-controlled transport,
additional time may be required for pre-cooling before loading or stabilisation upon un-
loading. Furthermore, rest periods must be incorporated into routing decisions to comply
with legally mandated driver breaks and working hour regulations.

Resource Constraints

Resource constraints affect the feasibility of vehicle routing and include vehicle availability,
commodity availability, commodity compatibility, and temperature compatibility.

Vehicle availability determines the number of vehicles that may be allocated to a given
set of routes at any time. Commodity availability ensures that all required goods are
present at the CD when needed to prevent disruptions in distribution. Additionally, some
products are subject to compatibility regulations, prohibiting certain commodities from
being transported together due to food safety concerns. For instance, dairy products and
raw poultry must be kept separate to prevent cross-contamination.

Temperature compatibility further restricts route feasibility, as each vehicle has two con-
figurable compartments, allowing for, at most, two distinct temperature zones per trip.
If a route requires goods with conflicting temperature requirements, the trip may not be
feasible. Since compartment configurations must be determined before departure, goods
requiring three or more distinct temperature conditions cannot be transported simultane-
ously.

Operational and Legal Constraints

Operational and regulatory factors influence routing feasibility by imposing driver work
regulations and temperature-controlled transport laws.

Driver work regulations govern the maximum allowable working hours, required rest peri-
ods, and shift allocations, ensuring compliance with labor laws. Additionally, temperature-
controlled transport must comply with temperature-controlled transport regulations, such
as HACCP, FDA, or EU Food Hygiene Regulations, which specify requirements for storage,
handling, and temperature monitoring perishable goods.

Beyond these constraints, routing decisions may also incorporate consolidation strategies
at the CD. Depending on factors such as supplier location, CD position, retailer proximity,
demand volume, and supplier shipment schedules [1], goods may either be consolidated at
the CD or directly shipped from suppliers to retailers.

Balancing all these constraints makes routing decisions a complex challenge, requiring care-
ful trade-offs between efficiency, feasibility, and compliance. To make informed decisions
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and determine the best possible routes, planners must carefully evaluate these factors and
find an approach that optimises logistics.

Vehicle Routing OptimisationTime Windows

Travel Times

(Un)loading Times

Rest Periods

Timing Constraints

Vehicle Availability Commodity AvailabilityCommodity Compatibility Temperature Compatibility

Resource Constraints

Driver Work Regulations

Temperature-Controlled Transport Laws

Operational and Legal Constraints

Figure 2.2: Factors Influencing Routing Decisions

2.1.4 Stakeholder Analysis

This section examines the stakeholders who are directly involved and affected by the plan-
ning decisions made by the planners. The stakeholders are identified through expert inter-
views, and the role of each stakeholder is explained briefly.

Planners

Planners are responsible for planning vehicle movements, routes, and schedules to ensure
efficient operations. They form a small portion of Wolter Koops’ personnel, with 26 plan-
ners currently active at the company. Currently, routing planning is done manually by
planners. As discussed in Section 2.1.1, planners work across multiple planning groups
and must continuously communicate with one another, which complicates the planning
process.

Dispatchers

Dispatchers play a pivotal role in real-time adjustments to the planning process, as they are
responsible for issuing instructions to drivers through the Transics system. Unlike planners,
who typically operate in an offline manner by creating routes and schedules in advance,
dispatchers continuously monitor ongoing operations and communicate any changes in
routing to drivers in real-time. These adjustments are often necessitated by unforeseen
events such as traffic congestion, road closures, or vehicle breakdowns. Dispatchers act as
problem solvers in this capacity, adapting the routing plan to accommodate unexpected
disruptions. Additionally, they are responsible for notifying retailers of any delays that
may affect their shipments.

Wolter Koops Management

The management of Wolter Koops plays a crucial role in overseeing logistics operations,
ensuring strategic alignment with company goals, and maintaining efficiency in supply
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chain processes. Their focus lies on optimising transportation, warehousing, and distribu-
tion.

Drivers

Drivers are vital to Wolter Koops’s daily operations, as they drive planned trips. Dutch
and German drivers typically drive set trips and return home after their shifts, whereas
Polish drivers often drive greater distances with shifts lasting multiple days or weeks. To
this end, it is common for them to drive in pairs so that breaks do not affect whether a
vehicle is driven or not.

Retailers

Retailers request one or multiple commodities through Wolter Koops’ customer portal. In
each order, various trips with different characteristics, such as time windows, temperature,
and quantities, may be requested. Retailers are primarily wholesalers and distributors of
perishable goods, including seafood, meats, dairy products, and flowers [3]. The retailer
is responsible for immediately handling the goods upon delivery, allowing the vehicle to
continue its trips as soon as possible. Additionally, they are expected to make reasonable
requests to ensure it is feasible to meet their time windows. Wolter Koops strives to meet
their demands on time and does not refuse customers.

Suppliers

Suppliers provide the goods that Wolter Koops transports to retailers, primarily perishable
products like produce, meat, and dairy. They are responsible for ensuring that products
are available for pick up within agreed-upon time windows, as delays can disrupt planning
and affect vehicle utilisation. Suppliers must also ensure that goods are packaged and
prepared for transport on time, especially for temperature-sensitive items, to maintain
product quality during delivery.

Digital Freight Exchange Platforms

Digital freight exchange platforms are online marketplaces that connect third-party trans-
portation service providers with shippers seeking freight transport services. These plat-
forms enable transporters to access and bid on available freight orders posted by various
shippers, thereby optimising logistics operations. At Wolter Koops, returning trip plan-
ners utilise these platforms to identify opportunities outside of their customers to fill return
trips with freight, thereby increasing vehicle utilisation.

Third-party Logistics Service Providers

Third-party logistics service providers enhance Wolter Koops’ operational capacity, en-
suring flexibility during periods of high demand. Effective collaboration between Wolter
Koops and these providers is crucial for maintaining service quality and operational effi-
ciency when internal capacity is constrained.

2.2 Business Objectives and Current Performance

Currently, Wolter Koops evaluates its performance based on KPIs such as the on-time
delivery rate, load efficiency, and the idle times for customers. These include:
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• Costs encompass both fixed and variable transportation expenses, including vehicle
usage, fuel consumption, and other operational costs such as driver wages and vehicle
maintenance.

• On-time service rates refer to the ratio of shipments that are picked up or delivered
within the specified time interval.

• Load efficiencies refers to the extent to which the load capacity of vehicles is utilised.

• Carbon emissions refer to the amount of carbon dioxide emitted in total or per
travelled kilometre. Reporting on this KPI has become mandatory following the
introduction of the ISO-14083 standard

The overall performance of the current manual planning procedure is not fully known, but
a sample of historical routes provides a reference for evaluating the model’s performance.
KPIs include costs, loading efficiency, and on-time service rates. The sample indicates
an average loading efficiency of 70.7%, with estimated fixed and variable costs totalling
e 32,199. The on-time service rate cannot be precisely determined, as actual arrival times
were not recorded. However, using the same travel times as the model, 236 out of 284
supplier/retailer location visits would have been considered on time (83.0%). Addition-
ally, carbon emissions are implicitly accounted for through travelled minutes and loading
efficiency but are not explicitly analysed further in this study.

2.3 Findings and Implications

1. What are the current routing and consolidation decision-making processes at Wolter
Koops?

This chapter describes the existing planning procedures at Wolter Koops from a high
perspective, identifying key operational characteristics that influence routing decisions.
Key insights from this analysis are:

• The routing process is managed by eight specialised planning groups, each overseeing
specific goods and regions. Planners create static routes based on historical demand
patterns, with real-time adjustments handled separately by dispatchers.

• While digital systems are available, routing decisions remain manual and experience-
driven rather than automated. No structured rule-based system is currently in place
to route vehicles.

These findings indicate that routing decisions lack automation and rely heavily on hu-
man expertise, which may limit scalability and consistency. The absence of a formalised
decision-support system suggests that optimisation techniques could improve planning ef-
ficiency.

2. What is the planning horizon and how many trips are routed in this time frame?

This chapter provides insights into the time horizon and volume of routing decisions at
Wolter Koops:

• Routing is performed daily for the following day, with around 5,500 trips scheduled
per week.

• The number of trips varies significantly throughout the week, with higher demand
early in the week and a decline toward the weekend.
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These findings show that multiple planning groups exist to divide the planning operations.
Given that Wolter Koops schedules 5,500 trips weekly, this research is scoped to focus
on one planning department. As a result, we concentrate on data from the Europese
Gemeenschap uitgezonderd vlees en zuivel (EG) department. Additionally, the factors
influencing routing decisions highlight the complexity of vehicle routing in a cross-docking
environment, and emphasizes the need for standardising the routing process.
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3 Vehicle Routing Problem: Models and Applica-
tions

This chapter explores relevant research and existing knowledge on routing decisions, fo-
cusing on algorithmic methods that could address the problem outlined in the previous
chapters. It begins with a general overview of routing decisions based on the literature,
followed by a discussion of problem variations that share characteristics similar to those
of the case presented. Finally, several recent studies are reviewed to provide insights into
comparable applications and a deeper understanding of the problem’s complexities. There-
fore, the goal of this chapter is to answer the following research questions of the second
phase of the research framework (see Section 1.3):

3. What are the key factors influencing routing and consolidation decisions in cross-
docking logistics?

4. How can the vehicle routing problem in a cross-docking supply chain be modelled and
optimised?

Section 3.1 introduces the problem and explores its variations as defined by existing litera-
ture. Sections 3.2 - 3.5 present definitions and models from the literature that explore the
characteristics and variations of the problem, developed over decades of extensive research
on vehicle routing optimisation. Section 3.6 compiles relevant implementations of the prob-
lem that closely align with the presented case and discusses how the study addresses the
research gaps identified in this chapter. Section 3.7 concludes this chapter by revisiting
the research questions.

3.1 Introduction to the Vehicle Routing Problem

The Vehicle Routing Problem (VRP) was first introduced by Dantzig and Ramser [12] as
the "vehicle Dispatching Problem", a generalisation of the Traveling Salesman Problem
(TSP) presented by Flood [13] aiming to find the “optimum routing of a fleet of gasoline
delivery vehicles between a bulk terminal and a large number of service stations supplied
by the terminal.” Due to their practical relevance and computational complexity, this
instigated decades of research on the VRP with numerous collaborations between businesses
and academia [14, 15]. This is illustrated by the numerous taxonomies and surveys that
have appeared in the last decades devoted to the VRP [16–25].

The VRP aims to find a set of delivery routes where (1) each customer is known in advance
and visited exactly once, (2) all vehicle routes start and end at the depot, and (3) some side
constraints are satisfied [26]. It represents an essential class of combinatorial optimisation
problems, where customers are served by several vehicles while satisfying some constraints
[2, 27]. In most cases, the objective remains the same and minimises total distribution
costs, while distribution services remain at a high level [28].

A generic definition of the VRP is given in Toth and Vigo [29]:

Given: A set of transportation requests and a fleet of vehicles.
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The problem is then to find a plan for the following:

Task: Determine a set of vehicle routes to perform all (or some) transportation
requests with the given vehicle fleet at minimum cost; in particular, decide
which vehicle handles which requests in which sequence so that all vehicle
routes can be feasibly executed.

As an extension of the travelling salesman problem, the VRP is considered both combi-
natorial and NP-hard, indicating its significant computational complexity [30–32]. This
complexity arises from (1) the exponential growth in the number of possible solutions as
the size of the instances increases, and (2) the exponential increase in the number of con-
ceivable problem variants due to the variety of problem attributes (i.e. constraints, decision
sets, and objectives) arising from real applications [33]. Exact optimisation methods can
only solve small instances of the problem VRP in reasonable computation times, but to
describe specific logistical settings, the number of variants of the problem has exploded.
Fortunately, advances in computer technologies have increased academic attention and the
possibilities for solving and implementing new variants and solution methods. This is il-
lustrated in Figure 3.1, which depicts the VRP family defined by its various introduced
and adapted variants.

Figure 3.1: The VRP family hierarchy [2]

Figure 3.1 provides a structured overview of key VRP extensions, serving as a valuable
reference for categorising problem adaptations. However, it represents only a subset of
the vast landscape of its variants, as many additional modifications exist beyond this
hierarchy. This is also evident by the numerous taxonomies proposed to classify VRP
instances according to their characteristics [21, 22, 34, 35].

3.2 VRP with Capacity Constraints

The most elementary form of the VRP considered in the literature is the Capacitated
VRP (CVRP). The CVRP consists of finding routes for vehicles of known capacity. These
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vehicles originate from a single depot and are tasked with servicing a predefined set of
customers at known positions, each with specified demands. As the name suggests, in this
class of the VRP, the total demand on each route must not exceed the vehicle capacity
[36]. The CVRP can be formulated as either a symmetrical (undirected) variant, where
travel costs between locations are the same in both directions, or an asymmetrical (di-
rected) variant, where travel costs differ depending on direction. This chapter bases its
formulations on the asymmetrical variant, but it can be easily adapted to consider the
symmetrical case.

The capacity constraint generally exists as a fundamental constraint in VRPs, meaning
that various solution methods are available for solving the CVRP. According to Zhang
et al. [26], precise and heuristic algorithms are available for solving the CVRP. Efforts to
address real-world applications of the CVRP often rely on heuristic methods, as highlighted
by Dorigo et al. [37]. These methods, sometimes combined, have effectively addressed the
CVRP. Further details on these solution methods are discussed in Section 5.1.

In the CVRP, the transportation of goods involves a single depot, denoted by 0. A set of
other points, typically referred to as customers, is denoted by Nc = {1, 2, . . . , n}. Let the
set of all nodes (or nodes), including the depot, be N = {0}∪Nc, and the set of arcs be A.
Set δ+(i) represents the set of arcs leaving node i in a graph, while δ−(i) represents the set
of arcs entering node i. That is, the set of successors and predecessors, respectively.

If at least one pair of nodes i, j ∈ N has asymmetric costs cij ̸= cji, then the underlying
graph is a complete digraph G = (N ,A) with set of arcs A = {(i, j) ∈ N ×N : i ̸= j} and
arc costs cij for (i, j) ∈ A [29]. Thus, the digraph G(N ,A) depicts all nodes (locations)
and all connecting arcs (routes) of the directed VRP.

Moreover, each node has a demand qi, such that qi > 0 for each i ∈ Nc and q0 = 0 (since
the node 0 represents the depot location). Additionally, Q represents the capacity of the
vehicles (assuming a homogeneous fleet 3). For an arbitrary customer subset S ⊆ N , it
is convenient to let r(S) depict the minimum number of vehicle routes needed to serve S.
In the CVRP, the number r(S) can be computed by solving a bin packing problem with
items N of weight qi, i ∈ N , and bins of size Q (see Martello and Toth [39]). A lower
bound, often used instead of r(S), is given by ⌈q(S)/Q⌉. Note that the short notation q(S)
is used for

∑
i∈S qi.

Using graph G(N ,A) with N the set of nodes (i.e. the depot and the customers) and
A the set of arcs that connect the nodes, a variety of integer programming models were
proposed to depict the CVRP and all of its variants. In particular, the models differ in the
chosen set of decision variables [31, 40]. Given the definitions of Rieck and Zimmermann
[14], the four integer-programming modelling techniques that can be distinguished are the
following:

• Two-index vehicle flow formulations containing binary variables indicating whether
an arc in the underlying graph G is selected or not.

• Three-index vehicle flow formulations explicitly indicate the vehicle that traverses an
arc. Therefore, they consider a binary variable for every arc-vehicle combination.

• Commodity-flow formulations require a new set of (continuous) variables representing
3A uniform fleet composition with identical characteristics, such as capacity, speed, and operational

cost [38], with |V| vehicles where V represents the set of all vehicles in the fleet. The opposite is referred
to as a heterogeneous fleet.

22



CHAPTER 3. VEHICLE ROUTING PROBLEM: MODELS AND APPLICATIONS

the amount of demand that flows along the associated arcs. This is in addition to
the variables used by a two- or three-index vehicle flow formulation.

• Set-partitioning formulations containing a binary variable for every potential vehicle
route.

All formulations have advantages and disadvantages regarding practical relevance, flexibil-
ity, and computation times. Still, the three-index model is adopted in the following since
many modifications and extensions can be described conveniently in that case. For more
information on the distinct formulations, the reader is referred to Appendix A and the
book of Toth and Vigo [29].

Three-index vehicle flow formulation

Next, a three-index formulation is given, which is based on a directed graph G = (N ,A) in
which the depot is depicted by two nodes o and d representing the origin and destination
of a route. By explicitly modelling o as the starting point and d as the ending point of
routes, the formulation supports the inclusion of additional constraints or features that
may require separate definitions for starting and ending locations.

This is because, unlike the two-index formulation, the three-index formulation explicitly
models routes, making it convenient to add the definition of distinct start and end points
[29]. The new definition of the node and arc sets is:

N = Nc ∪ {o, d} and A = (N \ {d} × N \ {o})

Let xvij be defined as a binary variable that assumes value 1 if and only if there is a
route that is traversed by some vehicle v ∈ V, going from customer i to j directly, for
(i, j) ∈ A. In addition, binary variables yvi indicate whether or not the vehicle v visits
the node i ∈ N . Finally, ui is an integer variable associated with customer i and the
corresponding inequalities serve to eliminate tours that do not begin and end at a depot
[41]. The variables ui (∀i ∈ Nc) represent the total demand of nodes on the route until
node i (including node i) [41, 42]. The three-index vehicle flow formulation is then defined
by the integer linear programming formulation:

min
∑
v∈V

∑
(i,j)∈A

cijx
v
ij (1a)

subject to
∑
v∈V

yvi = 1 ∀ i ∈ Nc (1b)

xv
(
δ+ (i)

)
− xv

(
δ− (i)

)
=

{
1, i = o

0, i ∈ Nc

∀ i ∈ N \ {d}, v ∈ V (1c)

yvi = xv
(
δ+ (i)

)
∀ i ∈ N \ {d}, v ∈ V (1d)

yvd = xv
(
δ− (d)

)
∀ v ∈ V (1e)

uvi − uvj +Qxvij ≤ Q− qj ∀ (i, j) ∈ A, v ∈ V (1f)

qi ≤ uvi ≤ Q ∀ i ∈ N , v ∈ V (1g)

x = (xv) ∈ {0, 1}V×A (1h)

y = (yv) ∈ {0, 1}V×N (1i)
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In the three-index vehicle flow formulation, the xvij variables are differentiated (i.e. they
are not aggregated into a single variable xij) [43]. Furthermore, this section uses a slightly
modified notation, as presented in Toth and Vigo [29], compared to the original formulation
proposed by Golden et al. [44]. The formulation given above again starts with equation
(1a), which represents the adapted objective function that aims to minimise the total
travel costs of the routes, considering the decisions made per vehicle v ∈ V. Equations
(1b) ensure that each customer is served exactly once. Equations (1c) ensure that the
starting point o is only left and not entered, the customers are both entered and left, and
the endpoint d is only entered and not left. The latter holds because these equations imply
that all vehicles return to the end point (i.e. xv(δ+(d))− xv(δ

−(d)) = −1), which ensures
that each route forms a valid o− d path. Equations (1d) and (1e) ensure that the binary
variable yvi assumes 1 if and only if a customer i is served by a vehicle v, by coupling it
with the binary variable xvij . Moreover, equations (1f) and (1g) respectively represent an
extended vehicle-specific Miller-Tucker-Zemlin (MTZ) and capacity constraints [45, 46].
Equations (1h) and (1i) are the integrality conditions on the decision variables.

Since the three-index vehicle flow formulation of the CVRP forms a basis for the notation in
other variants presented in this chapter, its basic notation is summarised in Table 3.1.

Table 3.1: Three-index vehicle flow notations (CVRP).

Category Symbol Description

Sets

N Set of nodes, where o (origin) and d (destination) represent the depot, and
Nc is the set of customers.

A Set of arcs, where A = (N \ {d} × N \ {o}).
V Set of vehicles {1, . . . , V }.

δ+(i) Set of successors of i in graph G = (N ,A).
δ−(i) Set of predecessors of i in graph G = (N ,A).

Parameters
cij Cost of traversing arc (i, j) ∈ A.
qi Demand at node i ∈ N , with q0 = 0.
Q Capacity of vehicles.

Variables
xv
ij Binary variable: 1 if vehicle v ∈ V traverses arc (i, j) ∈ A, 0 otherwise.
yvi Binary variable: 1 if vehicle v ∈ V visits customer i ∈ N , 0 otherwise.

3.3 VRP with Time Windows

The VRP with Time Windows (VRPTW) extends the CVRP by introducing time windows
associated with each customer, specifying that service must be completed within these
designated time intervals. As an extension of the CVRP, the VRPTW is NP-hard. In
addition to addressing the issues discussed in Section 3.2, there is added complexity in
adhering to allowable delivery times. Routes must be designed to ensure that each customer
is visited by exactly one vehicle within a given time interval, that all routes start and end
at the depot, and that the total demands of all points on a particular route must not
exceed the capacity of the vehicle [47]. Hence, both the spatial and temporal aspects
of the routing problem must be carefully considered [48]. With a realistic number of
customers, the interaction between these aspects often leads to optimal routes that deviate
significantly from traditional patterns, making manual planning exceptionally challenging.
In this case, computerised methods have demonstrated superiority over manual planning
[29].
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The time windows in the VRPTW can be classified as hard or soft. Hard time windows
in vehicle routing specify strict arrival times where a vehicle can only service a customer
within the associated time window; for instance, arriving early requires waiting until the
window starts. In contrast, soft time windows allow flexibility, permitting arrivals out-
side the window with a penalty cost. This chapter presents the mathematical formulation
of the VRPTW, detailing the mixed integer linear programming formulation for the ver-
sion with hard time windows and the necessary adaptations for implementing soft time
windows. From this point onward, the difference between the VRP with Hard Time Win-
dows (VRPHTW) and the VRP with Soft Time Windows (VRPSTW) will be clarified
whenever necessary.

Refer to Section 3.2 for the definitions, and let the graph G (N ,A) be defined accordingly.
The time windows associated with a customer i are defined by interval [ei, li], where the
service time is equal to si. Note that [ao, bo] = [ad, bd], where ao and do represent the
earliest possible departure time from the depot and the latest possible arrival time at the
depot, respectively. The travel time along arc (i, j) is equal to tij . Moreover, if vehicles
are allowed to remain at the depot (i.e. when minimising the number of vehicles), it is
necessary to add the arc (o, d) with cod = tod = 0 to the arc set A. The fleet size V is
typically a decision variable in this case [49].

For the VRPTW, it is necessary to define two types of variables: For each arc (i, j) ∈ A
and each vehicle v ∈ V, there is a binary arc-flow variable xvij that is equal to 1 if arc
(i, j) is used by vehicle v, and 0 otherwise. Furthermore, for each node i ∈ N and vehicle
v ∈ V, there is a time variable T v

i that specifies the start of service time at node i when
serviced by vehicle v. The VRPHTW can be described as in the following mixed integer
linear programming formulation [29]:

min
∑
v∈V

∑
(i,j)∈A

cijx
v
ij (2a)

subject to
∑
v∈V

∑
j∈δ+(i)

xvij = 1 ∀ i ∈ Nc (2b)

∑
j∈δ+(o)

xvoj = 1 ∀ v ∈ V (2c)

∑
i∈δ−(j)

xvij −
∑

i∈δ+(j)

xvji = 0 ∀ v ∈ V, j ∈ Nc (2d)

∑
i∈δ−(d)

xvid = 1 ∀ v ∈ V (2e)

xvij(T
v
i + si + tij − T v

j ) ≤ 0 ∀ v ∈ V, (i, j) ∈ A (2f)

ei ≤ T v
i ≤ li ∀ v ∈ V, i ∈ N (2g)∑

i∈Nc

qi
∑

j∈δ+(i)

xvij ≤ Q ∀ v ∈ V (2h)

xvij ∈ {0, 1} ∀ v ∈ V, (i, j) ∈ A (2i)

The objective function (2a) aims to minimise the total cost of serving all customers. Equa-
tions (2b) ensure that every customer is served exactly once. The restrictions (2c) - (2e)
ensure that each vehicle v is assigned to an o − d path. Constraints (2f) ensure that if a
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vehicle v travels from customer i to customer j, the start of service (defined by the decision
variable T v

j ) at customer j may only occur after vehicle v has completed its service at cus-
tomer i and travelled from customer i to customer j. Equations (2g) and (2h) guarantee
schedule feasibility concerning time windows and vehicle capacity, respectively. Finally,
equations (2i) are the integrality conditions on the decision variable xvij .

The model defined by (2a)-(2i) is nonlinear due to constraints (2f) that can, however, be
linearised as shown by (2f’) below [29, 48, 50]:

T v
i + si + tij − T v

j ≤
(
1− xvij

)
Mij (2f’)

Here, Mij with (i, j) ∈ A represent large constants that effectively deactivate the constraint
when the corresponding arc (i, j) ∈ A is not used by the vehicle (thus not affecting the
feasibility of the model). As suggested by Toth and Vigo [29], these can be set to max{li+
si + tij − ej , 0}.

As a generalisation of the VRPHTW, the VRPSTW can easily be derived from the mixed
integer linear programming formulation described earlier in this section. To this end, the
following four steps are needed [49, 51]:

1. First, introduce the decision variables and quantify how much a vehicle arrives outside
the time window interval [ei, li]. In this case, Ei represents units of time for arriving
early, and Li denotes units of time for arriving late.

2. Second, define two parameters representing the unit penalty costs of vehicles arriving
earlier or later than the earliest or latest specified time. In this case, γ and θ represent
these penalty costs, respectively.

3. Third, alter the objective function to include the penalty costs for arriving early or
late: ∑

v∈V

∑
(i,j)∈A

cijx
v
ij +

∑
i∈Nc

(γEi + θLi) (3a)

4. Last, modify the time window constraints (2g) to account for penalties when arriving
outside of the time window, making the constraint non-binding:

ei ≤ T v
i + Ei ≤ li + Li (3b)

Note that the unit penalty costs for vehicles arriving earlier or later than the earliest or
latest specified time may be specific to customers. This can be modelled by simply adding
the index i to these costs, such that γi and θi represent these customer-specific costs and
substituting them into the objective function (3a) after.

3.4 VRP with Multiple Commodities

In practical applications, various scenarios require explicit modeling of multiple commodi-
ties due to their distinct characteristics and delivery requirements. These routing problems
belong to the family of the Multi-Commodity VRP (MCVRP). In the case where different
commodities can be aggregated or separated and normalized into vehicle capacity units,
explicit modeling of the distinct commodities is unnecessary; they are then implicitly mod-
eled by solving the classical CVRP (multiple times). Aggregation and separation is possible
in the following situations:
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1. Aggregation of the different customer demands is possible when all commodities must
be delivered to each customer at once with a single vehicle. In this case, the demands
for various commodities can be combined into a single demand for each customer.
When this aggregation occurs, the problem simplifies, and the model becomes the
classical CVRP [52].

2. Separation is possible by if a dedicated fleet must deliver commodities and each
commodity is associated with a set of vehicles. The model can then be decomposed
by vehicle, i.e. by commodity. For each vehicle (commodity), the corresponding
problem is the classical CVRP [52].

From this point onward, it assumed that the different commodities must be modelled
explicitly because otherwise, the solution would prove infeasible or suboptimal. In this case,
commodities are compatible or incompatible. Commodities are considered incompatible if
they cannot be transported simultaneously in the same vehicle or the same compartment
when a vehicle has multiple compartments. Otherwise, they are said to be compatible [52].
When the goods are incompatible, the same vehicle can transport different goods only if
multiple compartments or other trips separate them. These situations correspond to the
class of Multi-Compartment VRP (MCmpt-VRP) [53] and Multi-Trip VRP (MTVRP)
[54], respectively. Compatible goods may need to be explicitly modelled when they have
different origins or destinations or because of other characteristics [52].

Below are the mathematical definitions and notations used in the subsequent integer linear
programming formulation on the CVRP with multiple commodities. This formulation
represents the case where different vehicles can deliver commodities to a customer, provided
a single commodity is delivered at once by a single vehicle. Furthermore, the commodities
are compatible and can thus be transported in the same vehicle. To present the multi-
commodity VRP and its variants conveniently and efficiently, the changes required to
reformulate to the MCmpt-VRP and the MTVRP are specified after. These formulations
are based on the ones in the review on the MCVRP by Gu et al. [52].

Let the complete directed graph G (N ,A) define the set of nodes N = {0, 1, . . . , N},
representing all locations in the network, with 0 being the depot andNc = N\{0} the set of
customers, and the set of arcs that connect these locations A = {(i, j) , i, j ∈ N , i ̸= j}. As
new definitions to accommodate the multiple commodities in the formulation, let m ∈M
denote a specific commodity whereM represents the set of all commodities. Consequently,
the demand for each customer must be expanded to include the commodity index m, so
that qmi specifies the demand for commodity m by customer i. Finally, the decision variable
yvmi is generalised to indicate whether vehicle v visits node i ∈ N while transporting the
commodity m.

In the first case presented in this section, commodities are assumed to be compatible and
can thus be transported together in the same vehicle. Accordingly, the integer linear pro-
gramming formulation of the multi-commodity variant with exclusively compatible goods
becomes [52]:

min
∑
v∈V

∑
(i,j)∈A

cijx
v
ij (4a)

subject to
∑

j∈δ−(i)

xvij =
∑

j∈δ+(i)

xvij ∀ i ∈ Nc, v ∈ V (4b)

∑
j∈δ+(0)

xv0j = 1 ∀ v ∈ V (4c)
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∑
i,j∈S

xvij ≤ |S| − 1 ∀ v ∈ V, S ⊂ Nc, |S| ≥ 2 (4d)

∑
v∈V

yvmi = 1 ∀ i ∈ Nc, m ∈M (4e)∑
m∈M

yvmi ≤ |M|
∑

j∈δ+(i)

xvij ∀ i ∈ Nc, v ∈ V (4f)

∑
i∈Nc

∑
m∈M

dmi yvmi ≤ Q ∀ v ∈ V (4g)

xvij ∈ {0, 1} ∀ i, j ∈ N , v ∈ V (4h)

yvmi ∈ {0, 1} ∀ i ∈ Nc, v ∈ V, m ∈M (4i)

In this formulation, the objective function in (4a) aims to minimise the total travel costs
while serving the demands of all customers Nc. Constraints (4b) guarantee that all cus-
tomers are served exactly once by ensuring that all vehicles that enter a location must
also leave that location. Constraints (4c) ensure that all vehicles are used exactly once by
stating that the number of outgoing vehicles is equal to the number of vehicles V . In the
case where more vehicles are available than needed (i.e. K > r (N )), the equalities can
be replaced with inequalities of type “≤” (although it is important to note that fleet size
minimisation and routing costs are conflicting objective [29]). Constraints (4d) are sub-
tour elimination constraints [55]. Constraints (4e) guarantee that each customer’s required
commodity is delivered exactly once by a single vehicle. Constraints (4f) ensure that if
vehicle v visits customer i, the total number of commodities m that vehicle v delivers to
customer i is at most M . This ensures that a vehicle can potentially deliver M different
commodities to a single customer, but not more. The restrictions (4g) are imposed to
satisfy the capacity of the vehicle, and (4h) and (4i) define the domain of the decision
variables [52].

Multi-Compartment VRP (MCmpt-VRP)

The MCmpt-VRP describes the case where multiple incompatible commodities can be
transported by separating them by compartments in a vehicle. Many contributions were
made to the case where vehicles have multiple compartments were made in recent years.
For brevity, however, only the case where commodities have dedicated compartments [56]
and the case where commodities may be loaded in several compartments are reviewed in
this section [53].

In case vehicles have dedicated compartments with a given capacity, the formulation can be
altered to associate specific compartments with commodities, as proposed in Fallahi et al.
[56]. In other words, for each vehicle v ∈ V, the compartment for commodity m ∈ M has
the commodity-specific capacity of Qm associated with it. The following constraints are
imposed to consider the case in which commodities have dedicated compartments:∑

i∈Nc

dmi yvmi ≤ Qm ∀m ∈M, v ∈ V (5)

Thus, when dedicated compartments are available, equations (4g) need to be replaced with
equations (5). This imposes that the capacity restrictions are satisfied per compartment
associated with commodity m.
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Alternatively, the more generic case of the MCmpt-VRP is where the incompatibilities
of the commodities are modelled. This case, proposed by Derigs et al. [53], entails vehi-
cles having a set of L compartments and each compartment l ∈ L is associated with a
capacity Ql. Contrary to Fallahi et al. [56], commodities do not have dedicated compart-
ments but can be loaded into several compartments. The model incorporates two types of
incompatibilities:

1. between commodities m and compartments l, indicated by the set:

Icomp = {(m, l) | m ∈M, l ∈ L, commodity m is incompatible with compartment l}

and;

2. among different commodities m and m′, indicated by the set:

Icomm = {
(
m,m′) | m,m′ ∈M,m ̸= m′, commodities m and m′ are incompatible}

Here, binary variables zvml
i are introduced that take a value of one if the commodity m

of customer i is loaded in compartment l of vehicle v, zero otherwise. These replace the
variables yvmi as they are equal when taking the sum over the compartments l ∈ L of the
zvml
i variables. Compared to the formulation of the MCVRP presented at the beginning

of this section, and in addition to replacing variables yvmi with
∑

l∈L zvml
i , the following

constraints are imposed which are related to compartment capacities and incompatibilities
[52]: ∑

i∈Nc

∑
m∈M

dmi zvml
i ≤ Ql ∀ v ∈ V, l ∈ L (6a)

zvml
i + zvm

′l
i ≤ 1 ∀ i, j ∈ Nc, v ∈ V, l ∈ L, (m,m′) ∈ Icomm (6b)

zvml
i = 0 ∀ i ∈ Nc, v ∈ V, (m, l) ∈ Icomp (6c)

In the context of the formulation (4a) - (4i), equations (6a) replace equations (4g), and
equations (6b) and (6c) are added to include the multiple compartments without dedicated
compartments. Equations (6a) are similar to equations (5), ensuring that the capacity per
compartment l ∈ L is satisfied. Equation (6b) ensures that incompatible commodities m
and m′ are not loaded into the same compartment l of vehicle v. Equations (6c) ensure that
commodities m are not loaded into incompatible compartments l within vehicles V .

3.5 VRP with Cross-Docking

Cross-docking is a logistics strategy that reduces storage time by transferring goods directly
from inbound shipments to outbound transportation at an intermediate facility. Unlike
traditional distribution centres, cross-docking terminals prioritize immediate consolida-
tion and dispatch of goods, lowering storage costs and improving supply chain efficiency
[1].

As cross-docking has seen widespread adoption in logistics over the past decades, vehicle
routing in such supply chains has received increasing attention [1]. This is particularly
relevant for Wolter Koops, which employs cross-docking to consolidate shipments and op-
timise routing decisions. This section examines the VRP with Cross-Docking (VRPCD),
presenting a mathematical formulation that accounts for its operational constraints. A
review of relevant literature and problem variations follows in Section 3.6.
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In the first definition of the VRPCD, presented by Lee et al. [57], simultaneous arrival
and departure times of vehicles at the CD were required to reduce the waiting time of
each vehicle. Furthermore, for the consolidation process, products that arrive at the CD
are classified and loaded according to destination. The objective is to determine a set of
vehicle routes starting and terminating at the depot that minimises total transportation
cost [58].

One may think that the complexity of the VRPCD is similar to solving to separate instances
of the VRP (i.e. one for the delivery routes and one for the pick up routes), but the in-
troduction of cross-docking increases computational complexity by adding synchronization
constraints, precedence relationships, and staged routing decisions. As a generalisation of
well-known NP-hard combinatorial problems such as the CVRP, the VRPTW, and, in
this case, the MCVRP, exact methods become computationally infeasible for large-scale
instances due to the exponential growth of the solution space [58–64]. Consequently, heuris-
tic and metaheuristic approaches are commonly employed to derive near-optimal solutions
within reasonable computational times.

This section presents this classical version of the VRPCD to introduce the problem that
is the topic of this research. The mathematical formulation below tackles the VRPCD
without time windows, and is modified from the classical version of Lee et al. [57]. Let the
graph G (N ,A) define nodes N = S ∪O∪R, where S represents the supplier nodes, O the
set of CD facilities (in this case a singleton set), and R the retailer nodes. Furthermore, let
the arc setA define the arc set {(i, j) : i, j ∈ S∪O, i ̸= j}∪{(i, j) : i, j ∈ R∪O, i ̸= j}. Note
that δ+ and δ− denote the set of successors and predecessors, respectively, as previously
defined.

Furthermore, let the loading quantity at pick up node i ∈ S be denoted by pi, and the
unloading quantity at delivery node i ∈ R be denoted by di. In addition, yij and zij
represent the quantity of products transported from node i to node j in the pick up and
delivery process, respectively. The travel time along arc (i, j) is represented by tij , and the
length of a visit of a vehicle in node i is equal to si. AT v is the arrival time of vehicle v at
the CD, and DT v

i is the departure time of vehicle v from node i. Lastly, T represents the
planning horizon in which all customers must be served.

For each arc (i, j) ∈ A and each vehicle v ∈ V, there is a binary arc-flow variable xvij that
is equal to 1 if arc (i, j) is used by vehicle v, and 0 otherwise.

min
∑
v∈V

∑
(i,j)∈A

cijx
v
ij (7a)

subject to
∑
v∈V

∑
i∈δ−(j)

xvij = 1 ∀ j ∈ N (7b)

∑
v∈V

∑
j∈δ+(i)

xvij = 1 ∀ i ∈ N (7c)

∑
i∈δ−(j)

xvij −
∑

i∈δ+(j)

xvji = 0 ∀ v ∈ V, j ∈ N (7d)

∑
j∈δ+(0)

xv0j ≤ 1 ∀ v ∈ V (7e)

∑
i∈δ−(0)

xvi0 ≤ 1 ∀ v ∈ V (7f)
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∑
v∈V

∑
j∈δ+(0)

xv0j ≤ K ∀ v ∈ V (7g)

yij + zij ≤ Qxvij ∀ v ∈ V, (i, j) ∈ A (7h)∑
i∈N

pi =
∑
i∈N

di (7i)

yjl − yij =


pj , if j ∈ S
0, if j ∈ R
−
∑

i∈N pi, if j ∈ 0

∀ i, l ∈ N (7j)

zij − zjl =


0, if j ∈ S
dj , if j ∈ S∑

i∈N di, if j ∈ 0

∀ i, l ∈ N (7k)

∑
i,j∈N

svi x
v
ij +

∑
i,j∈N

tvijx
v
ij ≤ T ∀v ∈ V (7l)

DT v
j = (tij +DT v

i + sj)x
v
ij ∀ v ∈ V (7m)

AT v = (DT v
i + ti0)x

v
i0 ∀ v ∈ V, i ∈ N (7n)

AT v = AT v′ ∀ k ̸= k′ (7o)

The objective function (7a) aims to minimise the total costs of serving all customers within
the planning horizon T , by determining the number of vehicles and the best route, schedule,
and arrival time of each vehicle at the CD. Constraints (7b) - (7f) are constraints ensuring
that all vehicles arrive and leave all nodes, and whether or not a vehicle arrives and leaves
the CD. Constraints (7g) guarantee that the number of vehicles used to satisfy all demand
is less than the number of available vehicles V . Constraints (7h) is a capacity constraint
imposed on all vehicles, and constraint (7i) ensures flow conservation between the pick up
and delivery. The quantity of transported goods is depicted by constraints (7j) and (7k).
Constraints (7l) impose a time horizon on the complete operation, equal to T , such that
the sum of the total length of the visit to each node and total transportation time must
be less than this planning horizon. Constraints (7m) ensure that the departure time of a
vehicle is determined by the sum of the arrival time at a node, the length of a visit, and
time to move. In addition, constraints (7n) express that the arrival time at the CD is equal
to the sum of the departure time of the previous node and the travel time between these.
Constraints (7o) sets the simultaneous arrival of vehicles at the CD.

It should be noted that Lee et al. [57] consider an objective function that incorporates a
fixed costs for every vehicle used. These fixed costs are left out for simplicity, but play a
cruexpresscial role when optimising fleet utilisation. For further details on the objective
function of this study, refer to Section 4.3. Furthermore, the model presented in this
section does not include time windows for each pick up and delivery and contains the
strong assumptions that the consolidated goods must arrive simultaneously. Later models
included different approaches where the dependency among the vehicles is determined by
consolidation decisions, such as in Wen et al. [63].

3.6 Related Work

This subsection provides an overview of some similar applications in the extensive litera-
ture on the VRP. In particular, it examines the literature that concerns the VRPCD as
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presented in Subsection 3.5 to gain a deeper understanding of the intricacies associated
with the problem.

Lee et al. [57] first introduced the VRPCD, where the objective of the problem is to
determine the number of vehicles and a set of vehicle schedules with a minimum sum of
operational cost and transportation cost. A Tabu Search (TS) algorithm was proposed
which obtained solutions with an average gap of under 5% compared to the optimal results
within a reasonable computing time. Building on this work, Liao et al. [65] proposed a
new TS algorithm where the solution quality showed a 10-36% improvement, depending on
the problem instance, in considerably less computing time than the original TS algorithm.
Both approaches, however, limit the transportation time for the pick up and delivery
process while disregarding time windows imposed by customers.

In a different approach, Yu et al. [66] presented an algorithm based on Simulated Anneal-
ing (SA) to solve another variant that considers the open variant of the VRPCD, where
vehicles are allowed to end at a customer, not considering their returning trip. The SA
approach further improved the solutions of many benchmark instances compared to exist-
ing optimisers. Furthermore, Santos et al. [67] studied a variant where costs are associated
with transferring load between vehicles using a branch-and-price algorithm. Unlike our
problem formulation, the study does not incorporate time windows, break constraints, or
multi-product transportation, limiting its direct application. Furthermore, the branch-
and-price approach focuses on exact optimisation, which is computationally impractical
for large-scale instances where heuristic approaches are preferred.

Wen et al. [63] extended the traditional VRPCD to include time windows. Whereas the
typical VRPCD aims to minimise the sum of the total travel and operational costs, the
objective became the minimisation of the total travel time while adhering to the time win-
dows. The resulting VRPCD with Time Windows (VRPCDTW) has received considerable
attention. Multiple solving algorithms were proposed such as TS [63, 68, 69], Variable
Neighborhood Search (VNS) [69], Genetic Algorithm (GA) [70], matheuristic [71], and
Iterated Local Search (ILS) [72]. Grangier et al. [73] studied the case where the number
of docks that can be used simultaneously is limited by altering the matheuristic presented
earlier. The key characteristics of these implementations are summarised in Table 3.2,
highlighting their incompatibility with our problem formulation.

In addition to routing decisions, Ting and Chen [62] studied the scheduling of vehicle
arrivals at the CD. This extension, which determines the sequence of arrivals, is crucial
when the number of docking doors at the facility is insufficient or fewer than the number of
vehicles used [59]. Given that both routing and scheduling problems are NP-hard, two Ant
Colony Optimisation (ACO) algorithms were employed: one to determine vehicle routing
and the other to schedule vehicle arrivals. In this approach, routing decisions provide
input for the scheduling problem. This approach is, however, not directly applicable, as
it assumes a fixed fleet size, whereas our model allows for variable vehicle availability.
Additionally, time windows and break times are not considered, which are key constraints
in our formulation.

Table 3.2 summarises the key features of related VRPCD studies, such as time windows,
break times, multiple products, variable vehicles, and direct shipments. These features
were selected based on expert interviews [4, 5], ensuring relevance to the operations. Note
that this table is not exhaustive but focuses on models that might be relevant to this
research.
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Table 3.2: Overview of VRPCD Literature

Literature Time windows Break times Multi product Variable vehicles R-S Approach

Lee et al. [57] – – – ✓ – TS
Liao et al. [65] – – – ✓ – TS
Gunawan et al. [59] – – – – – Matheuristic (ALNSa + SA)
Dondo and Cerdá [74] – – – – – Sweep based approach
Wen et al. [63] ✓ – – – – TS
Tarantilis [68] ✓ – – – – Adaptive multi-restart TS
Esfahani and Fakhrzad [69] ✓ – ✓ – – TS + VNS
Touihri et al. [70] ✓ – – – – GA
Grangier et al. [71] ✓ – – – – Matheuristic based LNSb

Urtasun and Montero [75] ✓ – – – – GRASPc

Morais et al. [72] ✓ – – – – ILS
Grangier et al. [73] ✓ – ✓ – – Matheuristic based LNS
Dondo and Cerdá [76] ✓ – – – – Sweep based approach
Baniamerian et al. [64] ✓ – – ✓ – Matheuristic (ALNS + SA)

This research ✓ ✓ ✓ ✓ ✓ Hybrid TS-SA
a Adaptive Large Neighbourhood Search (ALNS), b Large Neighbourhood Search (LNS), c Greedy Adaptive Search Procedure (GRASP)

The review of related work indicates that most research has concentrated on developing
heuristics and metaheuristics, which perform effectively even on large VRPCD instances.
This research aims to develop an implementation that performs well even on larger in-
stances, motivating a similar approach.

Despite extensive research on the VRPCD, existing models often fail to incorporate mul-
tiple real-world constraints simultaneously. While prior studies have considered varia-
tions such as capacity constraints, time windows, multi-product transportation, and cross-
docking, few approaches unify these aspects into a comprehensive implementation. Many
models assume a fixed fleet size or time windows, whereas this study adopts a variable fleet
approach with time windows at supplier and retailer locations.

This study addresses these limitations by contributing to the literature in the following
ways:

• Developing an adaptive TS-SA hybrid algorithm that dynamically balances intensi-
fication and diversification.

• Integrating cross-docking dynamics with time windows, break times and multi-product
constraints to reflect real-world logistics challenges.

3.7 Findings and Implications

3. What are the key factors influencing routing and consolidation decisions in cross-
docking logistics?

Chapter 3 identifies key factors influencing routing decisions as described in the existing
literature. These include:

• Time windows: Constraints ensuring deliveries and pick ups occur within predefined
slots.

• Fleet constraints: Limitations on vehicle capacities and scheduling to maintain op-
erational efficiency.
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• Multi-compartment Vehicles: The need to transport different products separately
within the same vehicle adds complexity.

• Cross-docking Operations: Efficient unloading, sorting, and reloading of goods at a
central facility to optimise deliveries.

• Cost considerations: The goal is to minimise both fixed and variable transportation
costs while balancing service-level agreements.

4. How can the vehicle routing problem in a cross-docking supply chain be modelled and
optimised?

Chapter 3 provides a broad overview of various modelling approaches for VRPs, particu-
larly those that incorporate constraints such as time windows, multi-compartment vehi-
cles, and cross-docking operations. It highlights that existing models typically focus on
determining the number of vehicles required or optimising the transportation of multiple
products through a CD supply chain, but rarely both simultaneously. The literature review
indicates that metaheuristic approaches (e.g., TS, ALNS) have shown promise in solving
large-scale VRP instances. However, the specific constraints and operational challenges
faced by Wolter Koops require a tailored approach, as standard VRP models do not fully
capture the complexities of temperature-controlled logistics with multi-compartment vehi-
cle constraints, cross-docking synchronization, strict time windows, and rest periods.

These findings form a theoretical foundation for understanding routing constraints, and
complement the case-specific factors influencing routing decisions identified in Section 2.2.
Whereas that section examined operational and contextual aspects of Wolter Koops’ rout-
ing decisions, Chapter 3 presents generalised insights identified in VRP literature. Chapter
4 extensively addresses these factors by integrating them into a structured problem defini-
tion and a mathematical model.
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4 Problem Formulation and Mathematical Frame-
work

With the theoretical foundations established in the previous chapter, this chapter formu-
lates a precise problem definition and develops a mathematical framework to guide the
selection and implementation of a suitable solution method. By formulating the problem
precisely, this chapter provides a basis for addressing the complexities of vehicle routing in
a cross-docking supply chain. Therefore, it contributes to Phase 3: Solution Design of the
research framework.

The following research questions are addressed in this chapter:

5. What are the key assumptions made in the solution design?

Section 4.1 presents a detailed formalisation of the routing problem to ensure the solution
method’s alignment with the operational context of Wolter Koops. Section 4.2 provides
a network-based representation of the routing problem. Section 4.3 introduces the math-
ematical formulation, detailing the decision variables, constraints, and objective function.
Section 4.4 discusses the necessary assumptions and simplifications required for computa-
tional feasibility. Section 4.5 presents a simplified problem instance to demonstrate the
model’s complexity and guide future solution development.

4.1 Formal Problem Statement

The transportation and logistics sector plays a vital role in global supply chains, with
companies like Wolter Koops specialising in temperature-controlled goods and offering
complex services to deliver goods from suppliers to retailers. Wolter Koops operates a
fleet of approximately 1,000 vehicles and 1,200 trailers. However, the current routing
process heavily relies on manual planning despite the complex nature of routing multi-
compartment vehicles in a cross-docking supply chain. With over 5,500 trips, which are
defined as any travel between two locations, such as a delivery to a retailer, planned weekly
company-wide, this practice likely leads to inefficiencies in route optimisation. It introduces
challenges related to time window compliance and fleet size optimisation.

While numerous VRP studies exist, the complexity of integrating cross-docking operations
and addressing fleet-specific constraints, such as time windows and loading/unloading op-
erations, has not been sufficiently explored within the context of temperature-sensitive
logistics (see Section 3.6). Therefore, this research addresses the problem to improve op-
erational costs and service quality.

The problem involves a cross-docking distribution network with multiple suppliers, denoted
by the set S, and various retailers, denoted by the set R, serviced by a single CD. Each
arc (i, j) ∈ A has an associated travel time tij , representing the time required for a vehicle
to traverse from node i to node j. In addition, retailers and suppliers have limited time
availability, represented by time windows [ei, li] ∀ i ∈ N \ {CD}. Loading and unloading
operations take A minutes and may only begin within these designated time windows. The
CD is assumed to be available at all times.
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The CD is located at a fixed, pre-determined site and consists of multiple terminals for
inbound vehicles (receiving pallets from suppliers) and outbound vehicles (delivering goods
to retailers). Commodity classes are denoted by the setM, and each vehicle can transport
up to two distinct classes of products due to its dual-compartment design, ensuring the
separation of incompatible goods. The inter-commodity incompatibilities are modelled
similarly to the formulation in Derigs et al. [53], where:

Icomm = {
(
m,m′) | m,m′ ∈M,m ̸= m′, commodities m and m′ are incompatible}

The compartments can be configured to any capacity as long as the sum of both compart-
ments equals the vehicle’s total capacity.

Each order o ∈ O represents a specific request for the transportation of goods, characterised
by the following parameters:

• so ∈ S: The supplier from which order o originates.

• ro ∈ R: The retailer to which order o must be delivered.

• mo ∈M: The commodity class associated with order o.

• do: The demand quantity of order o in units.

• [eo, lo]: The allowable time window for order o at its destination.

Each retailer r ∈ R receives goods of commodity type m from suppliers in S, represented
by a set of individual orders Or. Similarly, each supplier s ∈ S ships goods to retailers
in R, represented by a set of orders Os. Each order o ∈ O is associated with exactly one
commodity mo ∈M.

Goods must be transported through the CD using a fleet of homogeneous vehicles v ∈ V,
where all vehicles have a fixed capacity Q.

Each vehicle incurs a fixed cost cf when deployed in any route type (pick up, delivery,
transfer, or direct service). Additionally, a variable cost cvar is associated with each minute
of travel time, where the total travel cost depends on the duration tij required to traverse
each arc (i, j) ∈ A. The variable cost cvar is applied to all route types once, including
transferring routes, as each vehicle is deployed in the planning horizon, and its presence in
any route incurs operational costs regardless of specific movements.

Upon arrival at the CD, goods are sorted and consolidated onto multiple outbound vehicles
for delivery. Goods can be transferred directly to an outgoing vehicle or temporarily
stored for a short duration before being assigned to a route. However, this study does not
address the detailed scheduling of vehicles to specific terminals within the cross-docking
facility.

4.2 Graph-Based Representation of the Network

To formally describe the VRP under study, we represent the logistics network of Wolter
Koops as a directed graph G(N ,A), defined by:

• N is the set of nodes, where each element represents a distinct physical location
within the logistics network. The set consists of:

– S = {s1, s2, . . . , s|S|}, the set of suppliers, where goods originate. Each supplier
represents a location where goods are picked up. At least one vehicle must
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visit these, ensuring all required goods enter the system. A supplier location
can be visited multiple times when a single supplier location requests multiple
transport orders.

– {CD}, the CD, where goods are consolidated before final delivery. The CD is
the central consolidation point where shipments from different suppliers can be
combined and redirected for delivery.

– R = {r1, r2, . . . , r|R|}, the set of retailers, which receive goods. Each retailer
represents a customer delivery location and must be visited to ensure the fulfil-
ment of orders. A retailer location can be visited multiple times when a single
retailer location requests multiple transport orders.

The set of nodes is therefore defined as:

N = S ∪ {CD} ∪ R

• A is the set of arcs, which consists of all feasible travel connections between suppliers,
retailers, and the CD. The arc set is defined as:

A = {(i, j) : i, j ∈ S ∪ {CD} ∪ R, i ̸= j}

The network structure is depicted in Figure 4.1, where nodes and arcs illustrate the move-
ment of goods across the supply chain. In the exemplary graph structure, the node set N
contains seven elements: two suppliers, four retailers, and one CD node. Note that the arc
set A contains all possible combinations of nodes, as defined previously.

CD

s1

s2

r1

r2

r3

r4

Figure 4.1: Graph representation of the VRPCD

The graph allows direct transportation between two locations in the network, including
supplier-to-supplier, retailer-to-retailer, and CD-mediated routes. Each arc (i, j) ∈ A
has an associated travel time. While the graph captures all possible movements within
the network, the actual vehicle routes are determined by operational constraints. These
constraints include vehicle capacity limitations, restricting the amount of goods a vehicle
can carry per trip; time window constraints, where certain suppliers or retailers have fixed
time slots for pick ups or deliveries; and routing rules, which may require vehicles to pass
through the CD before reaching retailers, thereby restricting direct supplier-to-retailer
connections.

Vehicles can follow one of four active routing strategies, each defining a different approach
to moving goods within the supply chain. These are graphically represented in Figure 4.2,
and formally represented by the arc set A as follows:
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• pick ups only: The vehicle collects goods from one or more suppliers and returns
them to the cross-docking terminal. This corresponds to the arc set:

A = {(i, j) : i, j ∈ S ∪ {CD}, i ̸= j}

• Deliveries only: The vehicle departs from the CD and transports goods to one or
more retailers before returning. This corresponds to the arc set:

A = {(i, j) : i, j ∈ {CD} ∪ R, i ̸= j}

• pick ups, transfers, and deliveries (i.e. transferring route): The vehicle first picks
up goods, returns to the CD, and subsequently delivers them to retailers before
returning. This corresponds to the arc set:

A = {(i, j) : i, j ∈ S ∪ {CD}, i ̸= j} ∪ {(i, j) : i, j ∈ {CD} ∪ R, i ̸= j}

• Direct supplier-to-retailer service: In cases where a vehicle directly services an or-
der without returning to the CD, a one-to-one supplier-retailer (S : R) pairing is
established. This corresponds to the arc set:

A = {(i, j) : i, j ∈ S ∪ {CD} ∪ R, i ̸= j}

CD

s1

s2

r1

r2

r3

r4

(a) pick ups only

CD

s1

s2

r1

r2

r3

r4

(b) Deliveries only

CD

s1

s2

r1

r2

r3

r4

(c) pick ups, transfers, and deliver-
ies

CD

s1

s2

r1

r2

r3

r4

(d) Direct service route

Figure 4.2: Individual route possibilities (idle state omitted)

Additionally, vehicles may remain idle throughout the planning horizon:

• Idle state: The vehicle remains unused at the CD throughout the planning horizon.
Although this scenario is considered in the routing model, it is not explicitly visualised
in Figure 4.2.
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4.3 Mathematical Formulation

Using the network representation and route notation, we now define the mixed integer linear
programming formulation for the VRPCD specific to the logistical setting described.

4.3.1 Decision Variables

The following decision variables define the key routing and scheduling choices in the
VRPCD regarding vehicle movements, order assignment, and timing and sequences.

• Routing Variables:

– xvi,j : Binary variable indicating whether vehicle v travels arc (i, j).

– yv : Binary variable indicating whether vehicle v is used in any route.

– δvo,m : Binary variable indicating whether vehicle v directly transports order o
of commodity m from its supplier to its retailer, bypassing the CD.

• Order Assignment Variables:

– πv
o,m : Binary variable indicating whether vehicle v picks up order o of com-

modity m.

– λv
o,m : Binary variable indicating whether vehicle v delivers order o of commodity

m.

– τv,v
′

o,m : Binary variable indicating whether order o of commodity m is transferred
at the CD from vehicle v to vehicle v′.

– zv,v
′ : Binary variable that equals one if at least one order is transferred from

vehicle v to v′

• Time and Sequence Variables:

– T v
i : Continuous variable representing the start of service time at node i when

serviced by vehicle v.

– W v
i : Continuous variable representing the waiting time at node i when serviced

by vehicle v.

– uvi : Continuous variable representing the visit order of node i in vehicle v’s
route.

4.3.2 Objective Function and Constraints

The primary objective is to minimise the total cost associated with the selected vehicle
routes:

min cf
∑
v∈V

yv + cvar
∑

(i,j)∈A,v∈V

tijx
v
ij (8a)

Where:

• cvar represents a variable cost component incurred per minute travelled by any vehi-
cle.

• cf represents a fixed cost component incurred per vehicle in the planning horizon.
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The full mixed-integer linear program is given by the objective function as defined by
Equation (8a) and the constraints as follows:

min cf
∑
v∈V

yv + cvar
∑

(i,j)∈A,v∈V

tijx
v
ij (8a)

subject to
∑
j∈N

xvi,j =
∑
j∈N

xvj,i ∀ (i, v) (8b)

∑
j∈N

xvCD,j ≥ yv ∀ v (8c)

∑
i∈N

xvi,so ≤ πv
o,m ∀ (o,m, v) (8d)∑

i∈N
xvi,ro ≤ λv

o,m ∀ (o,m, v) (8e)

πv
o,m + λv

o,m ≤ 2yv ∀ (o,m, v) (8f)∑
v∈V

πv
o,m = 1 ∀ (o,m) (8g)∑

v∈V
λv
o,m = 1 ∀ (o,m) (8h)∑

o∈O

∑
m∈M

do · πv
o,m ≤ Q ∀ v (8i)∑

o∈O

∑
m∈M

do · λv
o,m ≤ Q ∀ v (8j)∑

(m,m′)∈Icomm

(
πv
o,m + πv

o,m′
)
≤ k ∀ (o, v) (8k)

∑
(m,m′)∈Icomm

(
λv′
o,m + λv′

o,m′

)
≤ k ∀

(
o, v′

)
(8l)

∑
v∈V
v ̸=v′

τv,v
′

o,m ≤ λv′
o,m ∀

(
o,m, v′

)
(8m)

∑
v′∈V
v′ ̸=v

τv,v
′

o,m + λv
o,m ≤ πv

o,m ∀ (o,m, v) (8n)

zv,v
′ ≥ τv,v

′
o,m ∀

(
o,m, v, v′

)
, v ̸= v′ (8o)

ei ≤ T v
i +W v

i ≤ li ∀ (i \ CD, v) (8p)
W v

i = max{0, ei − T v
i } ∀ (i \ CD, v) (8q)

W v
CD ≥ T v

j − tCD,jx
v
CD,j − 2A ∀ (j, v) (8r)

T v
j = T v

i +W v
i +A+ tijx

v
i,j ∀ (i \ CD, j, v) (8s)

T v
j = T v

CD +W v
CD + 2A+ tCD,jx

v
CD,j ∀ (j, v) (8t)

T v
j − tCD,jx

v
CD,j = max{T v

CD, T
v′
CD}

+W v
CD + 2A−M

(
1− zv,v

′
)

∀
(
j, v, v′

)
, v ̸= v′ (8u)

T v′
CD +W v′

CD ≥ T v
CD + 2Azv,v

′ ∀
(
v, v′

)
, v ̸= v′ (8v)

uvi − uvj + |N | · xvi,j ≤ |N | − 1 ∀ (i, j, v) , i ̸= j (8w)
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xvi,j , y
v, δvo,m binary ∀ (i, j,m, o, v) (8x)

zv,v
′
, πv

o,m, λv
o,m, τv,v

′
o,m binary ∀ (o,m, v, v′), v ̸= v′ (8y)

T v
i ,W

v
i , u

v
i ≥ 0 ∀ (i, v) (8z)

The objective function in Equation (8a) minimises total costs, combining fixed vehicle costs
and variable travel costs. Equation (8b) ensures flow conservation, such that entries and
exits at each node are balanced. Constraints (8c) regulate CD accessibility, requiring active
vehicles (yv = 1) to have valid inbound and outbound connections, while (8d)–(8e) ensure
order feasibility by restricting pick ups and deliveries to designated locations. Equations 8f-
(8h) enforce that vehicles may pick up and/or deliver all orders.

Capacity limits are imposed in (8i) and (8j), ensuring vehicle loads at pick up and delivery
do not exceed Q. Constraint (8k) and (8l) prevent vehicles from picking up or delivering
more incompatible commodity classes than the number of compartments, respectively (in
our problem setting, k = 2). Furthermore, Equations (8m) and (8n) ensure that a receiving
vehicle at the CD must also deliver the orders, and vehicles that pick up orders from
suppliers must either transfer or deliver these.

Constraints (8o) link decisions variables zv,v
′ and τv,v

′
o,m . Equations (8p)-(8v) are time

window constraints. Note that these are based on the mathematical formulation provided
in Section 3.3. However, the addition of the CD require the addition of Constraints (8t),
(8u), and (8v) to ensure that transferring vehicles require extra service time and vehicles
depart after receiving their goods (if applicable). Note that M represents a sufficiently large
number to render Constraints 8v non-binding when necessary. We recommend setting M
to the duration of the planning horizon.

Constraints (8w) are subtour elimination constraints, and Equations (8x)-(8z) are sign
restrictions on the decision variables.

4.4 Assumptions and Simplifications

This section presents the assumptions and simplifications made to make the complex in-
tricacies inherent to the transportation industry manageable. These serve to make the
problem computationally tractable while preserving its key characteristics. Their potential
impact on the validity and generalisability of the results is considered in Chapter 8.

4.4.1 Assumptions

Each vehicle is assigned to at most one route throughout the planning horizon. The
routing framework assumes that all vehicles must depart from and return to the CD at the
beginning and end of their respective routes. Furthermore, each vehicle incurs a fixed cost
cf irrespective of whether it performs pick ups or deliveries. This assumption is justified
by the operational requirement that charter vehicles must be pre-arranged, leading to an
all-or-nothing cost structure where a vehicle is either leased or not.

The fleet is considered homogeneous, as Wolter Koops operates approximately 1,000 ve-
hicles and 1,200 trailers, all identical in range, capacity, and loading capabilities. While
the company also owns 26 dolly units, their inclusion introduces additional complexity
concerning loading and unloading operations. To maintain tractability, these units are not
explicitly modelled.
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The CD is assumed to have an infinite storage capacity, meaning there is no upper limit
on the number of pallets that can be temporarily stored. Additionally, the number of
docks is considered infinite, ensuring that all vehicles arriving at the CD can be serviced
immediately without experiencing delays.

Unloading and loading operations require a fixed duration of A minutes per action. Conse-
quently, a complete transfer of goods involving both actions is approximated to require 2A
minutes. While these operations are realistically load-dependent, this assumption prevents
incentives that could otherwise lead to inefficient vehicle utilisation. Specifically, if service
times were modelled as load-dependent, prioritising shorter service times for smaller loads
might unintentionally discourage full vehicle utilisation.

Holding costs are not considered, and it is assumed that all goods need to be delivered
by the end of the planning horizon. Additionally, transportation orders may be rejected if
they cannot be fulfilled within the required time constraints—that is if the earliest feasible
delivery time exceeds the retailer’s available time window.

While the CD remains continuously available, suppliers and retailers operate within prede-
fined time windows, requiring that service at these locations begins within their respective
availability periods. Finally, all orders are assumed to be single-commodity, such that
dmo = do if m = mo and 0 otherwise. Thus, an order cannot consist of multiple commodity
types, thereby excluding mixed shipments from the scope of this study.

4.4.2 Simplifications

Breaks are scheduled regularly to comply with legal driving regulations. Specifically, a
45-minute break is required after every 4.5 hours of driving, and after every 9 hours of
driving (i.e. following two 4.5-hour intervals), an extended break of 11 hours is mandated.
Although some additional rules and exceptions allow for more flexibility in real-world sce-
narios [77], these have been excluded from the current implementation. This simplification
is intentional, as the exact regulations can vary between countries, and incorporating such
exceptions would significantly complicate the model at the cost of its generalisability.

4.5 Toy Problem Instance

This section presents an example of a toy problem corresponding to this chapter’s prob-
lem definition. The purpose is to illustrate the complexities common to more advanced
instances of the problem rather than to explain the solution method used in this study.
Additionally, a solution is presented here.

In this toy problem instance, the same network is considered as in Figure 4.2, consisting of
two suppliers (s1, s2 ∈ S, four retailers r1, r2, r3, r4 ∈ R, and one CD. Table 4.1 represents
transport orders of suppliers and retailers, including time windows for pick up and delivery,
the number of EUR pallets (EPP), and the commodity class per order.

In addition to understanding the characteristics of the nodes, it is crucial to analyse the
travel times between all nodes. To this end, we calculate the Euclidean distances between
all possible nodes in the network and construct a distance matrix, as shown in Table 4.2
(we do not include coordinates here for the sake of conciseness. These can be found under
Appendix B). For the sake of simplicity, we assume a uniform travel speed of one time
unit per distance unit, allowing us to equate the distances directly with the corresponding
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Table 4.1: Transport Orders

Order ID Supplier ID Retailer ID EPP TW Supplier TW Retailer Commodity Class

1 s1 r1 5 [0, 5] [10, 14] A

2 s2 r3 5 [0, 3.61] [20, 24] B

3 s1 r4 5 [5, 10] [25, 27] B

4 s2 r2 5 [3, 7] [35, 40] B

travel times. Furthermore, the cost of travelling from node i to node j leads to a variable
cost cij of one per distance/time unit.

Table 4.2: Euclidean distance/travel time/cost matrix

CD s1 s2 r1 r2 r3 r4

CD 0.00 4.47 3.61 2.24 4.12 5.10 3.61

s1 4.47 0.00 4.12 5.00 8.06 9.49 7.81

s2 3.61 4.12 0.00 5.66 7.61 8.06 5.10

r1 2.24 5.00 5.66 0.00 3.16 5.00 5.10

r2 4.12 8.06 7.61 3.16 0.00 2.24 4.47

r3 5.10 9.49 8.06 5.00 2.24 0.00 3.61

r4 3.61 7.81 5.10 5.10 4.47 3.61 0.00

We consider three vehicles v1, v2, v3 ∈ V to be homogeneous with identical vehicle capacities
Q = 10. Employing one vehicle results in a fixed cost of cf = 10, and each minute travelled
results in a variable cost of cvar = 1. Additionally, (un)loading time at a (retailer) supplier
location is equal to a fixed time component A. Furthermore, transfers at the CD require
a service time of 2 ∗A. We use A = 1 in this toy example.

CD

s1

s2

r1

r2

r3

r4

→ v1 → v2 → v3

Figure 4.3: Toy problem solution illustration

Figure 4.3 presents an illustration of the solution of the toy problem instance. The solution
can be represented by a vector for each vehicle v ∈ V. In this case, the solution is identical
to the vectors: v1 : [CD→ s2 → s1 → CD→ r3 → r4 → CD], v2 : [CD→ s1 → r1 → CD],
and v3 : [CD→ r2 → CD]. In this solution, vehicle v3 traverses a direct service route
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from supplier to retailer because consolidation is impossible due to the tight time windows
imposed in the corresponding transport order. Furthermore, vehicle v1 picks up orders 1,
2, and 3 even though it cannot deliver these. Therefore, order 3 is loaded onto vehicle v3
at the CD which delivers it separately. The objective function of the solution given in this
example can easily be calculated by summing the total cost of travel of all trips and the
fixed costs incurred per vehicle. This results in an objective value of 74.47.

While this representation suffices for a VRPCD without time window constraints, we in-
corporate time windows imposed by suppliers and retailers. Consequently, The solution’s
spatial and temporal dimensions are combined in a schedule, as shown in Table 4.3.

Table 4.3: Vehicle schedules with arrival- and departure times

Vehicle Node Arrival time Departure time

v1 CD – 0.00
s2 3.61 4.61
s1 8.73 9.73
CD 14.2 16.2
r3 19.81 20.81
r4 24.42 25.42
CD 30.52 –

v2 CD – 0.00
s1 4.47 5.47
r1 10.47 11.47
CD 13.71 –

v2 CD – 30.88
r2 35.00 36.00
CD 40.12 –

4.6 Findings and Implications

This chapter detailed the problem’s intricacies and provided a basis for selecting a suitable
solution method. It, therefore, contributed to Phase 3: Solution Design of the research
framework. The research question addressed in this chapter is 5.

5. What are the key assumptions made in the solution design?

The assumptions outlined in Section 4.4 establish the scope and computational tractability
of the solution but also introduce constraints on its validity and applicability in real-
world settings. Because of these assumptions, the model can facilitate efficient solution
generation, making it suitable for large-scale routing problems. However, it is essential to
note that several implications may arise as a consequence:

• The assumptions limit adaptability to real-time changes, meaning that the model
performs best in predictable environments where demand and constraints remain
stable. In dynamic logistics operations, additional re-optimisation mechanisms would
be needed to handle disruptions.

• The model is tailored to a structured cross-docking environment with predefined
planning horizons and fixed vehicle assignments. Its applicability to other logistics
structures, such as multi-trip scheduling or decentralised fleet operations, may require
modifications.
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5 Adaptive TS-SA Hybrid Solution Approach

In this chapter, Phase 3: Solution Design is completed by exploring potential solution
methods, selecting the most suitable, and designing the method to address the VRP in a
cross-docking supply chain: the VRPCD. The research question tackled in this chapter
is:

6. What solution methods exist for enhancing vehicle routing decisions at Wolter Koops,
and which is most suitable for implementation?

This chapter develops a detailed plan to reach the research objective: to create an al-
gorithm that minimises the costs of serving a set of geographically dispersed customers.
Section 5.1 provides a concise literature review to develop a fitting solution approach for
our problem. Section 5.2 presents the selected approach adopted in this study, after which
Section 5.3 extends the SA-based diversification approach that is proposed. Finally, Sec-
tion 5.4 concludes this chapter with the findings and implications of this chapter.

5.1 Exploration of Suitable Solution Methods

This section reviews the solution methods proposed in the literature over the past decades,
generally categorised into exact and heuristic-based methods. It presents the types of
solution methods to gain an understanding of them rather than to provide a comprehensive
overview of all solution methods. To this end, an interested reader is referred to [22, 26,
28, 29]. Sections 5.1.1 and 5.1.2 explore exact and (meta)heuristic solution methods,
respectively.

5.1.1 Exact Methods

Despite many efforts, solving instances of the CVRP to optimality in polynomial time is
feasible only for relatively small instances, involving up to approximately 100 customers.
Moreover, there is a significant variance in the computing times for these instances [78].
Variants incorporating additional complexities, such as time windows or multiple depots,
present even more significant computational challenges. Therefore, exact methods cannot
integrate the intricacies of larger, more complex instances [28]. As discussed in Section 3.5,
heuristics and metaheuristics are commonly employed due to their effectiveness in address-
ing complex optimisation problems. This justifies applying such methods in the intricate
VRPCD considered in this research.

5.1.2 (Meta)heuristic Methods

Real-life instances are often large and must be solved within a reasonable computing
time. Therefore, heuristic and metaheuristic approaches (as well as their combinations)
are widely used and have gained prominence in recent literature [22, 25].

Heuristic algorithms apply specially designed functions to intelligently explore the solution
space, aiming to construct feasible solutions efficiently. These methods typically focus on
problem-specific rules to generate good solutions quickly, though they do not guarantee
optimality [79]. Heuristics can be categorised into constructive heuristics, which iteratively
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build a solution from scratch, and improvement heuristics, which refine an existing solution
through local modifications [29, 31].

Metaheuristic algorithms, on the other hand, provide a higher-level framework that guides
subordinate heuristics in exploring and exploiting the search space. These approaches use
iterative generation processes and adaptive learning strategies to find high-quality, near-
optimal solutions [79]. By balancing diversification and intensification, metaheuristics en-
able the efficient solving of complex problems within an acceptable time [80]. Section 5.1.2
defines metaheuristics and provides examples to clarify the distinction between heuristics
and metaheuristics.

Thus, while heuristics are problem-specific techniques that construct or improve solutions
based on predefined rules, metaheuristics act as generalised frameworks that enhance search
effectiveness by dynamically guiding heuristics. The field of VRP (meta)heuristics is so
extensive that this subsection can focus on only a small selection of methods, guided by
the surveys conducted by Zhang et al. [26], Konstantakopoulos et al. [28], Toth and Vigo
[29], Cordeau et al. [80].

Constructive Heuristics

Constructive heuristics were among the earliest heuristic methods [29]. They generate an
initial route, which serves as input for subsequent improvement heuristics. Constructive
heuristics typically start with an empty solution and iteratively build upon it by inserting
customer(s) until all customers are routed. The insertion of customers can be performed
either sequentially or in parallel [29].

Although constructive heuristics have historically received significant attention, sophisti-
cated metaheuristics have become sufficiently robust so that the initial solution can be any
random solution without affecting the quality of the solution [29]. Because of this, most
constructive heuristics have now fallen into disuse. For further details, interested readers
are directed to the work of Toth and Vigo [31].

Improvement Heuristics

Improvement heuristics are used to improve initial solutions often generated by construc-
tive heuristics. Route improvement heuristics search for local improvements in the solu-
tion by applying perturbations, or modifications, to the solution. These result in either
intra-route neighbourhoods if they operate on a single route at a time or inter-route neigh-
bourhoods otherwise. Inter-route improvements are essential for achieving good results
and include classical operators such as swapping consecutive customers between different
routes (SWAP), removing customers from their route and inserting them elsewhere (RE-
LOCATE), or removing k edges from a route and reconnecting them differently (k -OPT)
[29].

The number of standard neighbourhoods of a routing problem is proportional to n2 and
k2, which leads to a rapid increase in the number of possible operations as the number
of customers (n) and the number of edges considered in the k -OPT (k) grow. Therefore,
reducing the number of possible operations is necessary to allow a complete exploration
of all neighbourhoods for larger instances. An example of such a pruning technique is
the granular search used in Toth and Vigo [31], which reduces the number of potential
operations by restricting moves between geographically distant customers. Inter-route
improvement schemes can also involve alternating between moves that destroy part of
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the solution and moves that reconstruct the solution, such as in the ALNS and LNS
metaheuristic (for more information on the ALNS procedure, the reader is referred to
Pisinger and Ropke [81]).

Metaheuristic Methods

Unlike classical improvement heuristics, metaheuristics usually incorporate mechanisms to
continue the exploration of the search space after a local minimum is encountered [80].
Metaheuristics can be described as higher-level frameworks that guide the application of
other heuristics designed to find global optima across the entire solution space. They often
combine improvement heuristics with stochastic elements to balance diversification and
intensification [33]. This results in a more thorough solution space search, which means
that metaheuristics are less likely to remain in a local optimum. Current metaheuristics can
be classified into local search and population-based methods. This distinction forms
the remaining outline of this section. Given the extensive attention that metaheuristics
have received, covering all of them is beyond our scope. This section defines widely adopted
approaches used in problem settings similar to the one in this research [29, 33, 80].

Local Search Methods explore the solution space starting with an initial solution x1,
moving iteratively from a solution xt at iteration t to a solution xt+1 in the neighbour-
hood N (xt) until a certain stopping criterion is satisfied [80]. Note that if f (x) denotes
the costs incurred in solution x, f (xt+1) is not necessarily less than f (xt). Thus, local
search algorithms should implement mechanisms to avoid cycling (i.e. revisiting the same
solutions repeatedly).

SA [82] prevents cycling by balancing diversification (i.e. exploration) and intensification
(i.e. exploitation) by selecting a random solution f (x) in N (xt). If f (x) ≤ f (xt), then
xt+1 = x. Otherwise:

xt+1 =

{
x with probability pt

xt, with probability 1− pt
(9)

where pt is a decreasing function of t and f (x)− f (xt), often defined as:

pt = exp

(
−f (x)− f (xt)

Tt

)
(10)

where Tt denotes the temperature at iteration t which is a decreasing function of t. Since
the acceptance probability of a new solution depends only on the current state and not
on past transitions, SA inherently follows a Markov Chain process at a fixed temperature.
This Markovian property allows SA to accept inferior solutions to explore the search space
probabilistically. Deterministic Annealing (DA) [83] is similar to SA, but the rule for
selecting x is deterministic. If the best known solution is x∗, the solution in iteration t+1
is selected according to the rule xt+1 = x if f (xt+1) ≤ σf (x∗), where σ is a user-controlled
parameter that is usually slightly greater than 1 (e.g. 1.05). If f (xt+1) > σf (x∗), then
xt+1 = xt.

TS was first proposed by Glover [84], which prevents cycling by declaring solutions tabu,
or forbidden, if they share certain attributes with the current solution xt. Specifically, a
tabu list records attributes associated with recently evaluated solutions to avoid selecting
the same or similar solutions in subsequent iterations. It operates on the premise that
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effective problem-solving must integrate adaptive memory and responsive exploration. The
adaptive memory in TS enables efficient and targeted exploration of the solution space,
as decisions are informed by knowledge accumulated throughout the search process. This
stands in contrast to memoryless approaches, which rely on semi-random sampling methods
to explore potential solutions. The focus on responsive exploration stems from the notion
that a strategically poor choice can often provide more valuable insights than a randomly
good one [85].

ILS, as used in Baxter [86], is a metaheuristic that iteratively applies a local search al-
gorithm until a predefined stopping criterion is met. Once this criterion is reached, a
perturbation is introduced to the best solution obtained, altering the initial solution for
the next iteration. This process allows for exploring different neighbourhoods, reducing
the likelihood of cycling.

VNS, proposed by Mladenović and Hansen [87], prevents cycling by systematically alter-
nating between different neighbourhood structures N1, . . . ,Np. These neighbourhoods are
often organised using increasingly complex perturbation rules, ensuring that the algorithm
employs more distant neighbourhoods to explore the solution space more comprehensively
as the search progresses. The process begins with an initial solution, and the algorithm iter-
atively explores these neighbourhoods through local searches. When an improved solution
is found, the current solution is updated to this new best solution, and the Neighbour-
hood structure is reset to the simplest form. The algorithm stops after a preset number of
iterations or when no further improvements are possible.

Population-Based Methods are inspired by natural concepts such as species’ evolution
and insects’ behaviour. Population-based algorithms manage a diverse set of solutions and
use population-wide interactions to explore and exploit the solution space more broadly, in
contrast with the local moves employed in local search methods. Most population-based
algorithms implement some local search heuristic, making them inherently hybrid because
they borrow concepts from other heuristics.

ACO, proposed by Dorigo et al. [37], is inspired by the real foraging behaviour of ants,
which communicate by laying pheromone trails on the paths they traverse to guide other
ants in finding shorter paths, as they tend to follow routes with higher pheromone concen-
trations. In ACO, a similar mechanism is implemented, which deploys virtual pheromones
to represent the solution quality. New solutions are generated using a savings-based proce-
dure and local search. In addition to the classic savings definition as described in subsection
5.1.2, where the savings for combining two routes are calculated using sij = ci0 + c0j − cij ,
an attractiveness value χij = ταij − sij is used, where τij represent the pheromone value to
describe how good combining vertices i and j was in previous iterations. Furthermore, α
and β are user-controlled parameters . The combination of vertices i and j take place with
a probability pij = χij/

(∑
(h,l)∈Ωk

χhl

)
, with Ωk the set of feasible (i, j) combinations

that yield the best k savings [29].

GAs, developed by Holland [88], are evolutionary algorithms based on the process of nat-
ural selection. They operate on a population of potential solutions called chromosomes,
which evolve over successive generations. The algorithm applies three key operators: selec-
tion, which chooses the fittest individuals from the current population to serve as parents;
crossover (recombination), which combines the genetic material of two parents to produce
offspring; and mutation, which introduces random changes to individual chromosomes to
maintain diversity within the population.

48



CHAPTER 5. ADAPTIVE TS-SA HYBRID SOLUTION APPROACH

Scatter Search (SS) and Path Relinking (PR) are metaheuristic techniques that combine so-
lution recombination and local improvement as complementary methods. SS was originally
proposed by Glover [89] and is an evolutionary metaheuristic that operates on a small set of
high-quality solutions and explores solution spaces while using only limited randomisation
in the diversification process. This is because of the notion that a structured and more pur-
poseful approach could provide significant benefits. PR, originally proposed by Glover [90],
is an intensification strategy considered an extension of the diversification method used in
SS. It begins with one or more starting solutions and systematically explores the path to an
end solution, generating paths between and beyond these solutions in the neighbourhood
space [91]. During this exploration, intermediate solutions are evaluated and incorporated
into the solution set if they perform better than the current solutions. PR is frequently
integrated with other metaheuristics to enhance the intensification process.

5.2 Proposed Tabu Search Implementation

As explained earlier in Section 3.5, the VRPCD is an extension of an already NP-hard
problem, justifying the use of heuristic methods to find near-optimal solutions in feasible
CPU times.

TS has become widely recognised in academic research for its effectiveness and flexibility
[85] in solving various VRPs, including the VRPCD, as detailed in the literature search
in Section 3.6 and further emphasized by Wang et al. [92]. This study adopts a TS-
based approach to tackle a specific version of the VRPCD that incorporates customer time
windows, multiple product types, and a variable number of vehicles, while also allowing
direct supplier-retailer trips (under the condition that only one supplier-retailer pair is
visited in the route). The complexities inherent in this problem necessitate a flexible
optimisation method, which is a key advantage of TS. As noted by Glover et al. [85], the
strategic use of memory within TS can significantly enhance problem-solving capabilities
in virtually any optimisation problem. This allows it to effectively model the specific
intricacies of the problem studied here.

TS is a metaheuristic that guides a local search heuristic that iteratively moves from a
current solution S to the best admissible solution S′ in a subset ΩN (s) of a neighbourhood
N , using some local search heuristic. Cycling back to previously visited, or tabu, solutions
is prevented (exceptions are provided by aspiration criteria) by the use of a memory, which
stores attributes of these solutions in short-term memory (i.e. the tabu list) for a predefined
number of iterations θ [68]. TS has shown promising results in VRPCD resolution and is
known for its flexibility in adjusting to any optimisation problem [85].

The procedure improves an existing solution, thus requiring an initial solution to be gen-
erated. In this study, a greedy insertion heuristic provides this initial solution, which is
outlined in Section 5.2.1.

The algorithm presented in Algorithm 1 provides a general outline of the TS method, high-
lighting the roles of its essential components. This section details these basic algorithmic
components of the TS method: initial solution, neighbourhood structure, tabu list and as-
piration criteria, and stopping criteria [69]. Sections 5.2.1 - 5.2.4 discuss these components
of the proposed implementation, respectively.
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Algorithm 1: Tabu search algorithm
Data: Initial solution and parameters ▷ See Section 5.2.1 and 6.2
Result: Current best solution found
Initialise: TabuList ← ∅, Solution ← ConstructInitialSolution, CurrentBest ← Solution,

AddElement(Solution, TabuList)
1 while NOT stopping_criteria do ▷ See Section 5.2.4
2 Neighbourhood ← GenerateNeighbourhood(Solution) ▷ See Section 5.2.2
3 BestNeighbour ← ChooseNeighbour(Neighbourhood, TabuList) ▷ See Section 5.2.3
4 Solution ← BestNeighbour
5 if Solution < CurrentBest then
6 CurrentBest ← Solution

7 if Length(TabuList) ≥ TabuListLength then
8 RemoveOldestElement(TabuList)

9 AddElement(Solution, TabuList)

10 return CurrentBest

5.2.1 Initial Solution Generation

The constructive heuristic enables initial solution generation with minimal computational
effort and utilises a two-stage greedy insertion method adapted from the VRPTW context
in Solomon [93]. For the interested reader, Appendix C defines the solution generation
process in detail.

5.2.2 Neighbourhood Structures

As indicated in Section 5.2, neighbouring solutions are iteratively generated to transition
from the current solution S to the best admissible solution S′ within a subset ΩN (S) of
the neighbourhood N(S). Neighbourhood generation is, therefore, a critical component of
the solution approach. This section details the neighbourhood generation process and the
structures employed in this study.

In the literature, pairwise exchange — referred to as the SWAP strategy in this study —
is one of the most commonly applied methods for transitioning between solutions [69, 94].
This local search technique generates a new solution by swapping the nodes at positions i
and j. For a J-city problem in a TSP, the total number of possible swaps, or neighbours, is
[N(s)] = J(J − 1)/2 1. Another widely used approach is extraction and reinsertion, called
the INSERTION strategy here. This method generates a neighbourhood by removing the
node at position i and inserting it immediately before or after the node at position j,
resulting in a neighbourhood size of [N(s)] = J(J − 1)2 2, which is significantly larger and
computationally more demanding than the SWAP strategy. For an illustration of the local
search strategies, see Figure 5.1.

Despite the larger neighbourhood size, the INSERTION strategy should, however, not be
overlooked. As noted by Adenso-Díaz [95], in the context of the TSP, neither SWAP nor
INSERTION consistently outperforms the other in terms of solution quality relative to
runtime. However, in the context of the problem studied in this research, INSERTION has
the distinct advantage of being able to reduce the number of vehicles required, as opposed

1The total number of possible swaps in a J-city problem is given by
(
J
2

)
= J(J−1)

2
.

2The total number of possible insertions in a J-city problem is given by J(J − 1)2 because each node
can be extracted and inserted in J − 1 possible positions for every other node.
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Figure 5.1: Example of the neighbourhood operators SWAP (a) and INSERTION
(b) for generating a neighbour solution

to the SWAP strategy. Therefore, to improve solution quality in our case, both the SWAP
and INSERTION strategies are employed interchangeably. Additionally, it is important to
note that the local search strategies are applied both inter-route and intra-route depending
on the most gain achieved by performing the operation.

In the implementation proposed in this research, each iteration of the neighbourhood search
begins by classifying vehicles based on their role in the current solution, distinguishing
between those that only pick up, only deliver, perform both operations, or remain idle. This
classification ensures that appropriate operations can be applied based on vehicle function.
Instead of generating the complete neighbourhood, a subset of vehicle routes is sampled,
and only for these selected routes is a neighbourhood constructed. This approach balances
exploration and computational efficiency. Valid operations (either swap or insertion) are
precomputed to ensure that modifications maintain feasibility based on the vehicle’s route
type and whether it interacts with suppliers, retailers, or a CD. For instance, a supplier
cannot be inserted into a delivery route.

After neighbourhood generation, the best admissible solution is selected as the next current
solution, and the process repeats itself. Note that the best admissible solution is chosen
from the generated neighbourhood of the sampled routes rather than from the complete
neighbourhood of the solution N(s), as generating all possible neighbours would be compu-
tationally infeasible. Additionally, some solutions may be marked tabu, further restricting
the search space. This selective neighbourhood exploration aligns with strategies such as
those used by Esfahani and Fakhrzad [69], where instead of examining all neighbourhoods,
a candidate list is formed based on vehicles with the highest number of nodes.

5.2.3 Tabu List and Aspiration Conditions

In a VRP, storing entire solutions in the tabu list would be computationally intensive.
Instead, specific attributes or characteristics of the solutions are stored to mark certain
moves or changes as tabu. These attributes reflect key modifications to the current solution
that the search should avoid for a defined number of iterations, θ, thereby helping to prevent
cycling or revisiting similar solutions. Specifically, when a node is removed from a vehicle,
reinserting it into that vehicle is prohibited for θ iterations, similar to the approach adopted
by other TS implementations [63, 96]. Such moves are referred to as reverse moves because
a customer moved from route r to route r′ at iteration t may be prohibited from being
reinserted in route r (until iteration t + θ). This forms the recency-based, or short-term,
memory of the implementation proposed in this study.
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In our implementation, we adopt two separate tabu lists to facilitate a recency-based mem-
ory for reverse moves of SWAP and INSERT operations. To this end, every iteration’s best
candidate move is saved to its corresponding tabu list for θ iterations, which is independent
of SWAP/INSERT selection probabilities.

Some algorithms use a fixed value of θ [97], whereas [98] suggests randomly selecting θ in
an interval

[
θ, θ

]
, according to a discrete uniform distribution. The latter is the strategy

adopted in this implementation.

An aspiration criterion exists to revoke a move’s tabu status if this causes no risk of cycling.
In our case, this yields a better overall incumbent feasible solution.

5.2.4 Stopping Criteria

In theory, the search could go on forever unless the optimal value of the problem is known
beforehand. In practice, however, the search has to be stopped at some point, as defined
by some stopping criteria. Common stopping criteria in tabu search that are also used in
our implementation include [85, 99]:

• After a fixed amount of CPU time

• After some preset consecutive iterations without improving the objective function
value (the criterion used in most implementations).

In this study, we employ two stopping criteria: limiting the CPU time and terminating
the algorithm after a predefined number of consecutive iterations without improvement
in the objective function. The CPU time limit criterion ensures that the algorithm is
predictable in its running time. However, it should be noted that strictly limiting this
criterion increases the chance of ending with a solution far from optimal. The stopping
criterion related to the number of consecutive iterations without an improvement is adopted
to prevent excessive, unnecessary CPU time when convergence has already been achieved.
This stopping criterion is referred to as the patience of the algorithm and should be chosen
tactfully to prevent unintended termination before reaching convergence.

While the proposed TS implementation explores the solution space using memory-based
strategies, it remains susceptible to premature convergence when the best-found objective
value stabilises. In other words, the risk of getting stuck in a local optimum remains signif-
icant. An adaptive SA mechanism is embedded to address this, activating when the search
stagnates. This hybrid approach combines SA’s probabilistic acceptance as a diversifica-
tion mechanism while maintaining the advantages of TS’ memory-based exploration of the
solution space. The hybridisation of these methods is detailed in Section 5.3.

5.3 Adaptive Simulated Annealing Integration in Tabu Search

The main problem of TS, despite the beneficial impact of tabus, is that they tend to spend
most or all time in a restricted portion of the search space [100]. Therefore, many adap-
tations of TS may fail to explore all interesting parts of the search space and end up with
a solution far from the global optimum [100]. In addition to the aspects of the solution
method outlined in Section 5.2, this section introduces an embedded diversification mech-
anism designed to alleviate this issue by guiding the search toward previously unexplored
areas of the solution space. This integration dynamically employs SA, activating it only
when the reduction in the best-found objective function stagnates beyond a predefined
threshold.
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5.3.1 Activation and Stagnation Detection

Diversification is a mechanism designed to explore restricted portions of the search and
must be carefully balanced with intensification to ensure an effective trade-off between
exploration and exploitation. In the adaptive TS-SA approach, rather than being applied
continuously, diversification is selectively triggered when progress slows down for a sus-
tained period. The activation condition is designed to detect stagnation in the search
to ensure that alternative regions of the search space are only explored when necessary.
Specifically, diversification is only activated if the stagnation condition is met for at least
M consecutive iterations. With f the objective value, the stagnation detection criterion is
defined as:

|fbest,t − fbest,t−1|
|fbest,t−1|

< τ (11)

for M consecutive iterations, where:

• fbest,t is the best objective value at iteration t,

• fbest,t−1 is the best-found objective value at iteration t− 1,

• τ is a predefined stagnation threshold,

• M is the minimum number of consecutive iterations for which the stagnation condi-
tion must hold before SA is triggered.

This approach prevents premature activation of an SA phase due to small fluctuations in
objective value improvements. Additionally, by requiring the stagnation condition to hold
for at least M consecutive iterations, it introduces a control mechanism to ensure that the
SA phase is only invoked when the search is truly stagnating.

5.3.2 Temperature Cooling Schema

While SA inherently follows a Markov Chain process due to its probabilistic acceptance
mechanism, this property is violated when SA is embedded within TS since the memory
structure in TS retains historical information through tabu restrictions (i.e. move accep-
tance is influenced not only by the current state but also by past decisions). As a result,
the hybrid approach no longer satisfies the Markov property since future transitions are
constrained by the memory structure rather than being conditionally independent of past
states. Consequently, the length of the SA phase represents an adaptive diversification
period rather than an independent Markov process.

Unlike traditional SA, where temperature follows a uniformly decreasing schedule, the
embedded diversification phases employ a two-fold cooling mechanism:

1. Internal cooling factor (αint): Guides the temperature decay within each activation
of SA.

2. External cooling factor (αext): Gradually reduces the initial temperature T0 across
multiple activations.

The initial temperature at the start of an SA phase is determined by an external cooling
schedule to let successive SA activations begin with progressively lower initial tempera-
tures:
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T
(k)
0 = T0 · (αext)

k (12)

where:

• T0 is the original starting temperature,

• αext is the external cooling factor,

• k represents the number of times SA has been activated.

Within an active SA phase, the actual temperature at iteration t is derived from the
externally determined initial temperature and follows an internal cooling schedule:

T (t) = T
(k)
0 · (αint)

t (13)

where:

• αint is the internal cooling factor,

• t represents the iteration count within the current SA activation.

In conclusion, each SA activation starts with an externally controlled temperature T
(k)
0 ,

which then gradually decreases within the SA phase according to the internal cooling
schedule. Figure 5.2 depicts an example of the evolution of the temperature over the
iterations of a trial of the algorithm.
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Figure 5.2: Temperature cooling schema with T0 = 1000, αint = 0.9, and αext =
0.9.

5.3.3 Probabilistic Move Acceptance and Tabu Constraints

During an active SA phase, candidate solutions are accepted probabilistically based on
Equations 9 and 10. However, since SA is nested within TS, reverse moves from the SA
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phase are declared tabu, ensuring that the search does not immediately return to previously
visited solutions.

5.3.4 Balancing Intensification and Diversification

The integration of TS and SA balances intensification and diversification, leveraging the
strengths of both methods:

• TS ensures structured exploration by guiding the search through adaptive memory.

• SA introduces controlled diversification to prevent stagnation and escape local op-
tima.

By activating SA only when necessary, the hybrid approach maintains the efficiency of
memory-based approaches while allowing for flexibility in the exploration of probabilistic
acceptance methods. The combination of TS and SA improves the search process by
balancing the exploitation of high-quality solutions and exploring new areas when progress
stagnates.

5.4 Findings and Implications

6. What solution methods exist for enhancing vehicle routing decisions at Wolter Koops,
and which is most suitable for implementation?

This chapter explores various solution methods for the VRP in the context of Wolter
Koops’s cross-docking operations. Solution approaches are explored using exact, heuris-
tic, and metaheuristic methods. While exact methods offer optimal solutions, their com-
putational infeasibility for large-scale instances renders them impractical for real-world
routing problems. Consequently, heuristic and metaheuristic methods are more widely
adopted because they generate near-optimal solutions within reasonable computational
time frames.

The hybrid TS-SA solution approach integrates TS and SA to balance intensification and
diversification in the search process. This hybrid approach leverages the memory-based
nature of TS while incorporating SA-based diversification to escape local optima, improving
solution robustness. The method effectively addresses the complexities of the VRPCD and
incorporates time windows, multi-compartment vehicle constraints, and consolidation at
the CD.

The findings suggest that metaheuristic approaches are best suited for implementation
at Wolter Koops due to their computational efficiency and ability to handle large-scale
problem instances. Moreover, TS is highly generalisable, as it can be applied to virtually
any optimisation problem. The selected approach significantly improves cost efficiency and
routing feasibility compared to manual planning. However, fine-tuning key parameters,
such as the tabu tenure, cooling schedule, and diversification mechanisms, remains crucial
for optimal performance.

Thus, while other metaheuristic approaches could also be viable alternatives, the TS-SA
hybrid is identified as the most suitable approach for implementation, given its adaptability.
Furthermore, the TS metaheuristic has shown promising results in similar applications (see
Section 3.6). Future work could explore hybridisation with other heuristics and real-time
dynamic re-optimisation techniques to enhance scalability and responsiveness in practical
applications.
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6 Model Validation and Experimental Design

This chapter aims to contribute to Phase 4: Modelling and Implementation by detailing
the input data and filtering process, the model optimisation process, implementation of the
case study, and the experimental setup. The research questions of this phase are:

7. How can the input data be processed and validated to ensure the model operates reli-
ably?

8. What key parameters influence the model’s performance, and how can they be effec-
tively tuned?

9. How can the model be evaluated in a case study to assess its applicability to real-world
routing scenarios?

10. What experimental setup is required to systematically test the model’s performance
and robustness?

These research questions provide the basis for executing the experiments to test the
model’s performance and robustness. Chapter 7 then presents the experimental design
results.

Section 6.1 presents the input data and filtering process used to validate the model in a
case study. Section 6.2 presents the parameter tuning process for optimising the model.
Section 6.3 details the case study validation, where the algorithm is tested by comparing its
best-found solution with historical routes. Section 6.4 defines the experimental framework
used to test the algorithm’s performance and robustness. These results are presented in
Chapter 7.

All runs were conducted on a high-performance computing server with an AMD EPYC
9534 64-Core Processor (128 threads) and 1024GB RAM.

6.1 Input Data and Filtering

The input dataset comprises historical shipment records from Wolter Koops, explicitly
focusing on shipments within the EG group. These shipments involve the transportation
of plants and flowers from the Westland region in the Netherlands to various destinations
in Germany, utilising CD facilities in Venlo and Osterweddingen. However, to simplify
the analysis and improve tractability, shipments passing through Osterweddingen were
excluded. This decision was based on the clear geographical distinction between shipments
routed via Venlo and those passing through Osterweddingen.

Additionally, shipments passing through alternative locations such as Alzenau and Zee-
wolde were excluded to maintain consistency in the dataset. The data spans two consecu-
tive days, January 20, 2025 and January 21, 2025, and includes the attributes outlined in
Table 6.1. The attributes were chosen carefully to ensure that historical routes can be re-
produced to compare the algorithm’s performance with the historical planning. Historical
trips are defined by the Type action, Shipment number, Trip number and Sequence number
attributes. Algorithm performance is assessed by comparing the cost and load efficiency
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of the algorithm’s planning with the historical route planning KPIs, with the gap between
the two serving as a performance measure.

Table 6.1: Description of Input Data Attributes

Attribute Description

Type action Specifies the type of action (i.e. load or unload).
Shipment number Unique identifier for each shipment.
PTA start Planned Time of Arrival start/start time window.
PTA end Planned Time of Arrival end / end time window.
Latitude Latitude coordinates of the location.
Longitude Longitude coordinates of the location.
Total pallet places Total number of pallet spaces required for the shipment.
Total weight Total weight of the shipment in kilograms.
Temperature Temperature requirements for the shipment (if applicable).
Trip number Unique identifier for the trip associated with a shipment.
Location number Identifies the specific location within the route.
Sequence number Determines the order of visits within a trip.
Cross dock Indicates if the location specified is a CD.

The initial dataset consisted of 1,575 records, although inconsistencies and irregularities re-
quired a filtering process to ensure data compatibility for analysis. The raw data contained
discrepancies in pallet counts, where the number of unloaded pallets at retail locations ex-
ceeded that of loaded pallets at supplier sites, and shipments with more than four distinct
actions.

The data filtering process involved several sequential steps to refine the dataset and make
it consistent with operational constraints. The filtering process is outlined below in prepa-
ration for running the model described in Chapter 5. All specific numbers can be found in
Appendix D for reproducibility.

1. Removal of records with missing values: Entries lacking essential attributes, including
Type action, Shipment number, PTA start, PTA end, Latitude, Longitude, Total pallet
places, Total weight, Temperature, Trip Number, Location number, Sequence number,
or Cross dock, were eliminated.

2. Exclusion of trips passing through specific locations: Trips travelling through pre-
specified locations were removed based on operational considerations. Due to con-
fidentiality, exact location names are not documented, but the filtering was applied
to:

• A location with no known operational relevance.

• A site identified as a third-party logistics facility near Bremen.

• A location along a route no longer used in the study, ensuring shipments were
routed exclusively through Venlo.

• An alternative location near Venlo, which was either converted into a CD site
or removed to maintain pallet balance (

∑
loaded =

∑
unloaded).

3. Retention of only relevant trips: The dataset was filtered only to include historical
trips containing an action at the CD, either at the start of the trip or at the end.
This step is required to ensure all trips in the input data pass through the CD.

4. Exclusion of trips with specific vehicle IDs: Vehicles that arrived too late in the
validation process were removed from the dataset. These vehicle IDs included:
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• 22525414

• 22524722

• 22524777

• 22500900

5. Exclusion of records with identical PTA start and PTA end: Shipments with identical
PTA start and end were removed, as they often represented actual arrival times rather
than valid scheduling data, leading to potential inaccuracies.

Following these filtering steps, the dataset is reduced to 307 records, which forms the
final input dataset for calculating benchmark values and solutions in subsequent analyses.
The significant reduction in the dataset is due to removing 835 records, as all orders were
required to visit the CD in Venlo, the Netherlands. Additionally, historical trips that
arrived outside the designated time windows were excluded to ensure a fair comparison of
the model. Furthermore, 433 records were deleted because of data issues.

6.2 Parameter Tuning

This section presents the parameter tuning process for the heuristic algorithm introduced
in Chapter 5. Parameter tuning aims to determine the optimal configuration of algorithmic
parameters to enhance performance on a given problem set. The effectiveness of heuristic
algorithms is highly sensitive to parameter selection, making tuning essential for achieving
improved solution quality and computational efficiency [101].

Hoos [102] defines parameter tuning as the process of identifying an optimal configuration
c∗ within a parameter space C, given:

• An algorithm A with parameters p1, . . . , pk that influence its behaviour,

• A configuration space C specifying possible values for these parameters,

• A problem instance set I,

• A performance metric m measuring the algorithm’s effectiveness on I under a given
configuration c.

The goal is to determine c∗ that maximises algorithmic performance on I according to m.
Furthermore, we define the tunable parameters p1, . . . , pk that influence the algorithm’s
behaviour. The network setting parameters, including the number of vehicles, their ca-
pacity, loading and unloading times, and costs, are non-tunable as operational constraints
at Wolter Koops determine them and cannot be altered without deviating from real-world
conditions. Furthermore, we differentiate between TS and SA parameters. A summary
of all non-tunable and tunable parameters are summarised in Table 6.2. The values for
the fixed network settings are based on estimations resulting from meetings with Wolter
Koops and CAPE Groep. It is important to note that, unless explicitly stated otherwise,
these values remain the same throughout all optimisation trials and scenarios defined by
the experimental design (Section 6.4).

TS parameter settings guide the meta-heuristic on a higher level, and include the stop-
ping criteria (maximum execution time of the algorithm tmax and patience P ; see Sec-
tion 5.2.4 for more information), and minimum and maximum tabu tenure settings (see
Section 5.2.3).
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SA parameter settings denote the diversification settings, which include the SA activation
criterion M , SA iterations per activation N , and the reduction threshold τ . For more details
on stagnation and SA activation, refer to Section 5.3.1. Furthermore, initial temperature
T0 and the internal and external cooling factors αint and αext are required (see Section 5.3.2
for the temperature cooling schema parameters).

Table 6.2: Parameter Notation and Configuration Space

Parameter Notation and Configuration Space

Network Settings (Fixed) Tabu Search (TS) Settings (Tunable) Range

Number of Vehicles V =∞ Max Execution Time (s) tmax -
Vehicle Capacity Q = 33 Patience P -
(Un)loading Time S = 5 Min Tabu Tenure (Swap) θswap [5, 40], step 1

Variable Cost per min cv = 1 Max Tabu Tenure (Swap) θ
swap

[θswap + 1, 50], step 1

Fixed Vehicle Cost cf = 1000 Min Tabu Tenure (Insertion) θins [5, 40], step 1

Max Tabu Tenure (Insertion) θ
ins

[θins + 1, 50], step 1

Simulated Annealing (SA) Settings (Tunable) Range

SA Activation Iterations N [1, 20], step 1

Reduction Threshold τ [0, 0.07], step 0.005

SA Phase Duration M [1, 30], step 1

Initial Temperature T0 [500, 3500], step 100

Cooling Factor (External) αext [0.7, 0.95], step 0.01

Cooling Factor (Internal) αint [0.7, 0.95], step 0.01

While traditionally, parameter values have been set manually using expertise and experi-
mentation, recently, several automated tuning methods have been proposed [101]. In this
implementation, we adopt the Optuna parameter-tuning software [103]. Optuna is an
open-source parameter optimisation framework that automates the tuning process using
efficient search algorithms like Bayesian optimisation, Tree-structured Parzen Estimator,
and Hyperband. Optuna is embedded in the algorithm A with a configuration space C,
where each configuration c ∈ C is defined by the values of the parameters. The possible
values of each parameter are based on experience developing the algorithm and are shown
in Table 6.2.

The Optuna parameter-tuning software can easily integrate the adaptive TS-SA hybrid
solution approach, although the running time per trial needs to be determined. Because
there is no strict maximum running time, we estimate the time until convergence is expected
to be achieved. For this, we perform a trial of sufficient length to estimate the needed time
(we ignore the patience parameter to not risk early termination). Because a trial t ∈ T
is a run of algorithm A with a given configuration, we estimate reasonable values of the
parameters within their respective ranges. This eight-hour trial is displayed in Figure 6.1,
and demonstrates that convergence is achieved in approximately 3.5 hours. Therefore,
the maximum running time per trial is set accordingly in the Optuna parameter-tuning
process.

The parameter tuning process consists of 101 trials, where the best-found objective value
is 21,964, found in trial 68. An initial objective value of 23,745 was achieved in the case
with estimated parameter values. Thus, parameter tuning decreased these costs by another
7.5%. The parameter tuning process was carried out until convergence of the best-found
objective value was observed, which occurred after 68 trials. The parameter tuning history
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Figure 6.1: Objective Value Evolution over the Running Time of Experiment 1

is summarised in Figure 6.2, which highlights the effect of parameter tuning on the objective
value. In the worst-case scenario, overly restrictive diversification activation rules cause
the algorithm to become trapped in a local optimum early in the search, preventing the
TS algorithm from effectively diversifying (see trials 16 and 41 in Figure 6.2).
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Figure 6.2: Optimisation History of the Optuna Parameter Tuning Process.

Figure 6.3 denotes the importance of tuning individual parameters. The external cooling
factor (αext) is identified as the most influential parameter, with an importance score of
approximately 0.45. This parameter guides the cooling schedule outside the SA phase,
affecting the algorithm’s ability to balance exploration and exploitation. A higher αext

results in a slower decrease in initial temperatures, allowing for more extensive exploration
but potentially delaying convergence. Conversely, a lower αext accelerates cooling, which
may lead to premature convergence to a local optimum. The SA Activation Length (M) is
the second most critical parameter, with an importance of 0.32. This parameter dictates
when the SA phase is triggered, making it a key mechanism for introducing diversification
at the appropriate moments. If M is too low, SA is invoked too frequently, disrupting
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intensification and potentially leading to inefficient searches. Conversely, if M is too high,
the algorithm may risk stagnation in a local optimum before SA can provide effective
diversification.
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Figure 6.3: Parameter Importance according to Optuna

Although Optuna has accounted for parameter importance in the tuning process, future
applications of the algorithm that require re-tuning should pay particular attention to αext

and M . Given their substantial impact on algorithm performance, computational resources
should be incentivised to tune these parameters over other parameters. Therefore, careful
manual or automated fine-tuning of these two parameters is recommended in any future
adaptation of the method to different problem instances.

The best trial achieved an objective value of 21, 964 with the configuration in Table 6.3.
Because this configuration effectively balances diversification and intensification within the
3.5 hour execution time per trial, these values remain throughout all scenarios and analyses
defined by the experimental design (Section 6.4).

Table 6.3: Optimised Parameter Configuration

Tabu Search (TS) Settings

Minimum Tabu Tenure (Swap) 16

Maximum Tabu Tenure (Swap) 35

Minimum Tabu Tenure (Insertion) 5

Maximum Tabu Tenure (Insertion) 12

Simulated Annealing (SA) Settings

SA Activation Iterations (N) 1

Reduction Threshold (τ) 0.04

SA Activation Duration (M) 14

Initial Temperature (T0) 2600

Cooling Factor (External) (αext) 0.91

Cooling Factor (Internal) (αint) 0.88
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6.3 Case Study Validation

The input data used to validate the algorithm contains historical routes for a given set
of orders through the CD in Venlo. This allows for the direct comparison of historical
routes and the optimality of generated routes. The goal of this section is, therefore, to
set a benchmark in algorithm performance. Consequently, we present the procedure for
evaluating the historical routes, present the algorithm’s solution, and briefly discuss the
comparison. The evaluation criteria used to measure both solution qualities are the cost,
loading efficiency, and service level (see Section 6.4.2)./hl Note that service levels are only
reported in this thesis if they fall below 100%.

The historical planning forms the starting point for comparing the historical route planning
versus the solution of the hybrid TS-SA algorithm. Historical routes can be reconstructed
from the input data by grouping the records by trip number and considering the sequence
of performed actions per location. More analysis on the historical routes reveals that the
cost of the historical route planning (according to the objective function (8a) and the
parameters defined in Table 6.2) are e 32,199 and 70.7%, respectively. After analysing the
historical routes, the algorithm is executed for 3.5 hours using the optimised configuration
(Table 6.3). Figure 6.4 summarises the objective value evolution over the running time.
The solution converges rapidly within the first hour, achieving over 75% of the total cost
reduction within this period. At this point, the objective value is already approximately
equal to that of the historical planning benchmark, suggesting that a shorter runtime could
still yield substantial improvements while maintaining competitive solution quality.
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Figure 6.4: Objective Value Evolution

After executing the algorithm for 3.5 hours using the optimised parameters (see Table 6.3),
the model achieves an objective value of 21,964. Compared to the historical planning, the
number of vehicles required decreases from 22 to 12, contributing to a 31% reduction in the
objective value. Meanwhile, the total travel time remains nearly unchanged, decreasing
marginally from 10,199 to 9,964 minutes, resulting in only a 0.7% impact on the objective
function. A 6.1% increase in loading efficiency suggests that fewer vehicles are required to
transport the same orders, reducing fleet utilisation pressure.

These findings demonstrate the model’s potential to enhance cost efficiency and fleet util-
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Table 6.4: Comparison of Historical Planning and Hybrid TS-SA Model Perfor-
mance

Scenario Total Cost
(e )

Cost Gap
(%)

Loading
Efficiency (%)

Efficiency
Gap (%)

Historical Planning 32,199 – 70.7 –
Hybrid TS-SA Model (Baseline) 21,964 -31.8 76.8 +8.1

isation. However, since input parameters such as fixed and variable costs influence the
algorithm’s performance, future research could investigate robustness across varying oper-
ational settings.

6.4 Experimental Design

The following describes the experimental design to evaluate the effectiveness of the pro-
posed algorithm. Using the configuration that follows from parameter tuning (see Ta-
ble 6.3), the experimental design consists of test scenarios, sensitivity analyses on input
parameters, and a description of the evaluation criteria that determine the quality of a
solution. Altogether, these experiments determine the effectiveness and robustness of the
proposed algorithm and provide insights into realistic problems.

6.4.1 Scenarios and Sensitivity Analysis

In addition to the base scenario, different scenarios are analysed to verify the algorithm’s
performance under different problem variations. Furthermore, they provide insights into
routing intricacies and result from meetings with Wolter Koops [4, 5]. The following
introduces these scenarios, which are conducted in Sections 7.1.1 and 7.1.2.

Scenario 1: Algorithmic Variation

This analysis evaluates the impact of an alternative fixed cost definition, where fixed costs
are incurred each time a vehicle departs from the CD, rather than applying a single fixed
cost per vehicle usage. The base scenario assumes that each vehicle incurs fixed costs only
once per planning horizon, based on the premise that chartered vehicles must be available
in advance. However, when vehicles are not leased in advance, a cost model that charges
fixed costs each time a vehicle departs from the CD might better reflect the operational
reality. To the best of our knowledge, this definition of the fixed cost is aligned with other
implementations of fixed costs in the VRPCD context found in the literature [104].

Scenario 2: Impact of Compartmentalisation

This analysis evaluates whether the added complexity of incorporating multiple compart-
ments in vehicle routing is justified in terms of operational efficiency and cost-effectiveness.
While multi-compartment vehicles offer flexibility by allowing mixed-temperature ship-
ments, they introduce additional constraints that increase computational complexity, rout-
ing challenges, and fleet management challenges [29]. By comparing the single-compartment
and multi-compartment scenarios, this study assesses whether the benefits of compart-
mentalisation outweigh the potentially higher routing complexity and computational bur-
den.
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Sensitivity Analysis

To evaluate the robustness of the proposed optimisation model, a series of sensitivity
experiments are conducted. Table 6.5 summarises the experimental scenarios, categorised
by cost variations in euros (cvar and cf ), travel speed adjustments in km/h (v), and time
window modifications in minutes (∆TW ). Each experiment is indicated using its parameter
configuration using E (cvar, cf ,∆TW, v)

Table 6.5: Sensitivity experiments overview.

Experiment cvar cf ∆TW v

Baseline 1.0 1000 0 72

E(0.5, 800,−,−) 0.5 800 - -
E(0.5, 1000,−,−) 0.5 1000 - -
E(0.5, 1200,−,−) 0.5 1200 - -
E(1.0, 800,−,−) 1.0 800 - -
E(1.0, 1200,−,−) 1.0 1200 - -
E(1.5, 800,−,−) 2.0 800 - -
E(1.5, 1000,−,−) 2.0 1000 - -
E(1.5, 1200,−,−) 2.0 1200 - -

E(−,−,−,−30) - - -30 min -
E(−,−,−,+30) - - +30 min -

E(−,−, 67,−) - - - 67 km/h
E(−,−, 77,−) - - - 77 km/h

Note: A dash (’-’) symbol indicates that the parameter remains unchanged from
the baseline scenario.

First, the impact of cost fluctuations on the objective function is examined. This analysis
evaluates the influence of cost variations on the evaluation criteria and deviations from
historical planning, offering insights into the algorithm’s performance across different cost
scenarios. This is important because the trade-off between the number of vehicles and
total travel time depends on the ratio between fixed and variable costs.

Second, the effect of time window tightness is analysed to evaluate its impact on the trade-
off between service level and cost improvements. Explicit time windows, which define
the allowable delivery or pick up periods, directly influence operational feasibility and
cost. Modifying these time windows can impact the ability to meet customer demands
while also affecting overall cost efficiency. While relaxing time constraints may reduce
costs, it could also decrease service reliability. Additionally, beyond direct adjustments
to time windows, incorporating a flexibility margin could be explored to assess whether
minor modifications create additional opportunities for cost reduction while maintaining
service feasibility. This trade-off analysis provides insights into balancing cost efficiency
and service quality within the proposed solution.

Finally, a sensitivity analysis is performed on travel speed. While the model assumes a
default speed of 72 km/h, its impact on the solution is evaluated. Travel speed is a critical
factor influencing the service level, as lower speeds may prevent the timely fulfilment of
all orders within the given constraints. A reduced travel speed restricts the feasibility of
integrating multiple orders into a single route, potentially increasing the number of required
vehicles or resulting in unfulfilled deliveries. In contrast, a higher travel speed is expected
to enhance route consolidation and overall efficiency by allowing for more opportunities
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to combine goods, expanding the search space. By analysing variations in travel speed,
this sensitivity analysis provides insights into its effect on route feasibility and service
performance. The assumed travel speed of 72 km/h is an estimation and may not fully
reflect real-world conditions, making it essential to analyse its impact on routing feasibility
and service performance.

6.4.2 Evaluation Criteria

The algorithm’s performance is measured using KPIs, which capture operational efficiency
and service effectiveness. Following Section 2.2, the selected KPIs include:

• Objective value: The total cost of servicing all transportation orders over the plan-
ning horizon (see Equation 8a). This includes:

– Total travel time: The cumulative duration of vehicles in transit.

– Fleet utilisation: The number of vehicles deployed in the optimised solution.

• Load efficiency: The degree to which vehicle capacity is utilised, measured as the
ratio of total used capacity to total available capacity across all deployed vehicles.

• Service level: The percentage of customer orders fulfilled, considering constraints and
vehicle availability.

6.5 Findings and Implications

This chapter contributes to Phase 4: Modelling and Implementation of the research frame-
work by detailing the validation process and experimental design necessary to assess the
model’s reliability and performance. The corresponding research questions addressed in
this chapter are 7, 8, 9, and 10.

7. How can the input data be processed and validated to ensure the model operates reli-
ably?

The data validation process, outlined in Section 6.1, ensures that the input data used for
model execution is consistent, complete, and representative of real-world operations. This
step is essential for maintaining solution accuracy and preventing errors caused by missing
or inconsistent data. The key findings from this validation process are:

• Filtering and preprocessing historical data removed incomplete or inconsistent records,
ensuring all input values aligned with operational conditions.

• Checks were included in the input data validation process to ensure that all data
corresponded to complete vehicle routes, preventing partial or fragmented trips from
being used in the model.

• Extensive filtering of raw data was required before it could be used as input in the
model, as the original dataset contained numerous inconsistencies, missing values,
and irrelevant records that needed to be addressed.

The filtering process highlights the importance of improving raw data quality before ap-
plying the algorithm, as inaccuracies or incomplete records can significantly impact the
validity and reliability of the model’s output.

8. What key parameters influence the model’s performance, and how can they be effec-
tively tuned?
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The Optuna parameter-tuning software was used to optimise the tunable input parameters,
improving the objective value of the model by a further 7.5% decrease in the objective.
The key parameters and their optimal configuration are presented in Table 6.3.

9. How can the model be evaluated in a case study to assess its applicability to real-world
routing scenarios?

The case study validation process compared model-generated routes with historical trips
planned by Wolter Koops. The key takeaways from this evaluation are:

• The model reduces total costs by 31.8% compared to manual planning while increas-
ing the loading efficiency by 8.1%. The algorithm decreases the number of vehicles
from 22 to 12 while maintaining similar cumulative minutes travelled.

• The case study results suggest that the model applies to real-world operations, pro-
vided that assumptions regarding speed, vehicle availability, and time constraints are
adequately managed.

These findings emphasise the model’s practical applicability, demonstrating its capability
to optimise vehicle routing in a cross-docking supply chain.

10. What experimental setup is required to systematically test the model’s performance
and robustness?

The experimental design, described in Section 6.4, systematically evaluates the model under
different parameter configurations. The experimental design details the following:

• Scenarios: Multiple test scenarios are defined to evaluate different routing conditions
and validate model performance under various operational constraints. These include
variations in fixed cost definitions, compartmentalisation, and other logistical factors.

• Sensitivity analysis: The model’s robustness is assessed by systematically adjusting
key parameters such as variable and fixed costs, travel speed, and time windows. This
analysis provides insights into the impact of parameter variations on cost efficiency,
routing feasibility, and service performance.

• Evaluation criteria: The model’s effectiveness is measured using KPIs, including
total cost, loading efficiency, and service level. These metrics ensure that the model is
assessed based on operational efficiency and its ability to meet customer requirements.

This chapter ensures that the model’s performance can be systematically assessed for
grounded conclusions on its effectiveness and limitations.
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7 Experimental Execution and Computational Re-
sults

This chapter evaluates the computational performance of the proposed hybrid TS-SA
heuristic by exposing the model to test scenarios and sensitivity analyses. This chap-
ter contributes to Phase 4: Modelling and Implementation of the research framework by
executing the resulting experimental setup described in Section 6.4. All experiments were
conducted on a high-performance computing server equipped with an AMD EPYC 9534
64-Core Processor (128 threads) and 1024GB RAM.

Section 7.1 executes the scenarios outlined in the experimental design. Section 7.2 presents
the results of the sensitivity analysis performed on the cost, time, and time window pa-
rameters.

7.1 Test Scenario Execution

The test scenarios outlined in Section 6.4 are executed and analysed in this section. Each
scenario is examined in detail, highlighting its modifications to the model and their impact
on the solution. The results of the scenarios are then compared to assess their implications
on model performance.

7.1.1 Scenario 1: Algorithmic Variation on the Fixed Cost

Scenario 1 represents the case where fixed costs are incurred each time a vehicle leaves
from the CD, regardless of the type of route it makes. This variation of the base scenario
requires a change in the definition of decision variable yv, a binary decision variable that
denotes whether a vehicle is used. In the current scenario, we generalise this definition to
include the type of route a vehicle is used for, such that one vehicle may be used in two
separate routes:

• yvπ: Represents the case where vehicle v is used in a pick up route

• yvλ: Represents the case where vehicle v is used in a delivery route

After generalising the decision variable, the objective function becomes:

min cf
∑
v∈V

(yvπ + yvλ) + cvar
∑

(i,j)∈A,v∈V

tijx
v
ij (14)

To clarify these changes, we present a situation where the cost structure becomes evident.
Consequently, Figure 7.1 compares both situations. Note that a fixed cost is incurred once
in 7.1a because the vehicle depicted is used in the planning horizon. In 7.1b, however, the
fixed cost is incurred twice: once when the vehicle departs the CD to pick up orders at
supplier s1, and a second time when the vehicle leaves the CD to deliver orders to retailers
r3 and r4.
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Figure 7.1: Comparison of vehicle routes and costs between the base scenario (a)
and the current scenario (b). The timelines at the top indicate the difference in
total fixed costs.

After running the algorithm for 3.5 hours with an identical configuration to the base sce-
nario, an objective value of 30,407 is achieved, marking a 5.6% decrease in the objective
function compared to the baseline. Additionally, the algorithm’s proposed solution in-
creases the loading efficiency by 6.9% .

7.1.2 Scenario 2: Impact of Compartmentalisation

In the base scenario, all vehicles have compartments to transport two different commodity
types. Due to the complexity of modelling these constraints, the current scenario examines
the impact of compartmentalisation on the model and its results.

Changes that need to be made can be summarised by looking at Constraints (8k) and
(8l), where the right-hand side of the equation represents the number of compartments.
The number of compartments may be set to any number, but it should be noted that the
complexity increases due to an increase in the solution space. In the current scenario, we
assess the impact of incorporating these compartments into the model. Therefore, we ran
the model with only one compartment and evaluated the differences.

After running the algorithm for 3.5 hours, again with an identical configuration to the
base scenario, an objective value of 26,104 is achieved. This marks an 18.9% decrease in
the objective value. Furthermore, the load efficiency is 67.4%, which is a 12.2% decrease
compared to the baseline.

Running the algorithm for 3.5 hours with three compartments per vehicle produced results
similar to the base scenario, where vehicles have two compartments. This is because the
input data contains only two product categories. The value of compartmentalization is
expected to increase when more product categories are present.

7.1.3 Results and Comparison Between Scenarios

This section presents the results of the test scenarios, analysing their impact on the model’s
performance and solution quality. Each scenario is evaluated in terms of cost efficiency,
convergence behaviour, and loading efficiency. The findings provide insights into the trade-
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offs introduced by different scenarios and offer recommendations for optimising vehicle
routing and compartmentalisation strategies.

As depicted in Table 7.1, the baseline scenario shows superior results to scenarios 1 and
2. This is expected because both scenarios represent more constrained versions of the
baseline. Regarding load efficiency, the scenario without compartments results in a decline
of 12.2% compared to the baseline. Furthermore, a decline of 4.7% is observed compared to
the historical planning. This result is anticipated, as the restriction to a single commodity
type per vehicle, rather than two, necessitates the deployment of additional vehicles to
accommodate the same demand.

Table 7.1: Historical Planning and TS-SA Model Performance (all scenarios)

Scenario Total Cost
(e )

Cost Gap
(%)

Load
Efficiency (%)

Efficiency
Gap (%)

Historical Planning 32,199 – 70.7 –
Hybrid TS-SA Model (Base) 21,964 -31.8 76.8 +8.1
Hybrid TS-SA Model (S1) 30,407 -5.6 75.6 +6.9
Hybrid TS-SA Model (S2) 26,104 -18.9 67.4 -12.2

As Figure 7.2 shows, all scenarios exhibit a similar convergence pattern, characterised by
rapid initial improvements that progressively diminish over time. The base scenario sta-
bilises at a lower objective value than scenarios 1 and 2. This outcome is expected, as
both scenarios introduce stricter constraints on the model. Scenario 2 achieves conver-
gence in under two hours, significantly faster than the other scenarios. This aligns with
expectations, as increasing the number of compartments expands the solution space con-
siderably. Therefore, when planning orders with a single commodity type—or even two in
some instances—it is advisable to limit the number of compartments to one to enhance
computational efficiency.
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Figure 7.2: Objective Value Evolution over the Running Time for Scenarios 1
and 2
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7.2 Sensitivity Analysis

A sensitivity analysis is conducted on key input parameters to assess the robustness of
the proposed optimisation model under varying conditions. These parameters include
the variable and fixed costs, the time windows, and the travel speed of a vehicle. This
section presents the results of the experiments conducted, which are based on the sensitivity
analysis detailed in Section 6.4. To this end, this section is structured by the different
parameters on which the sensitivity analysis is performed: cost, time window tightness,
and travel speed. Furthermore, it presents the performance of the best-found solution on
the evaluation criteria of a given experiment E (cvar, cf , v,∆TW ).

7.2.1 Cost Sensitivity

The sensitivity analysis results on the costs are detailed in Table 7.2. Following these
results, a discussion is provided.

Table 7.2: Cost Sensitivity Analysis Results

Experiment Total Cost
(e )

Cost Gap
(%)

Load
Efficiency (%)

Efficiency
Gap (%)

Baseline 21,964 76.8 - -

E(0.5, 800,−,−) 17,434 -20.6 74.7 -2.7
E(0.5, 1000,−,−) 20,901 -4.8 70.6 -8.1
E(0.5, 1200,−,−) 23,996 +9.3 73.4 -4.4
E(1.0, 800,−,−) 21,652 -1.4 77.6 +1.0
E(1.0, 1200,−,−) 31,189 +42.0 71.3 -7.1
E(1.5, 800,−,−) 26,483 +20.6 75.9 -1.2
E(1.5, 1000,−,−) 33,404 +52.1 72.2 -6.0
E(1.5, 1200,−,−) 35,016 +59.4 74.7 -2.7

The results indicate a strong correlation between variable cost adjustments and the objec-
tive function value. A 50% decrease in the variable cost per minute travelled leads to an
approximate 4.8% reduction in total cost, while a 50% increase results in a 52.1% increase
in costs. This suggests that the objective function is more sensitive to increases in variable
costs than to decreases, indicating a disproportionate impact of cost changes. Specifically,
the relationship between cost changes and the objective function is asymmetric, with cost
increases having a more significant effect than equivalent cost decreases.

Fixed costs also significantly and disproportionately influence total costs. A 20% decrease
in fixed costs results in only a 1.4% decrease in the objective function, whereas a 20%
increase in fixed costs leads to a 42% increase in the objective function. This highlights that
the objective function is more sensitive to increases in fixed costs than to decreases.

The disproportionate sensitivity of the objective function to both fixed and variable cost
changes underscores the significant impact of cost increases on total cost, while equivalent
decreases have less effect. This asymmetry is important because it can influence strategic
decisions, particularly in minimising fleet size and optimising vehicle utilisation. The
findings suggest that managing cost increases should be prioritised as they significantly
affect overall system performance.

In terms of decision-making, when fixed costs are high, there is a stronger incentive to
minimise fleet size by maximising vehicle utilisation. In contrast, variable costs—such as
fuel and distance-based expenses—directly impact route structuring. Lower variable costs
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encourage longer routes with more consolidated deliveries, as the cost per travelled minute
becomes less significant. Conversely, higher variable costs lead to shorter, more direct
routes to minimise total travel distance. Therefore, fixed costs shape vehicle allocation
decisions, while variable costs drive route consolidation behaviour.

7.2.2 Travel Speed Sensitivity

The cost sensitivity analysis results are detailed in Table 7.2. Following these results, a
discussion is provided. Note that the default travel speed in the baseline scenario is 72
km/h.

Table 7.3: Travel Speed Sensitivity Analysis Results

Experiment Total Cost
(e )

Cost Gap
(%)

Load
Efficiency (%)

Efficiency
Gap (%)

Baseline 21,964 76.8 - -

E(−,−, 62,−) 26,775 +22.0 74.3 -3.3
E(−,−, 67,−) 26,038 +18.4 72.0 -6.3
E(−,−, 77,−) 21,633 -1.5 73.7 -4.0
E(−,−, 82,−) 22,792 +3.8 70.9 -7.7

Not surprisingly, the experiments where the travel speed decreases show inferior results
compared to the baseline scenario. For the E(−,−, 62,−) and (E −,−, 67,−) experiments,
the cost increases by 22.0% and 18.4%, respectively, while the load efficiency decreases by
3.3% and 6.3%, respectively. A lower travel speed results in less feasible routes, allowing
vehicles to visit fewer customers in one trip.

E(−,−, 77,−) shows a marginal decrease in the objective function, as expected, due to the
increased travel speed. More interestingly, however, E(−,−, 82,−), where the travel speed
is the highest, shows inferior results. Compared to the baseline scenario, the experiment
shows an increase in costs of 3.8% and a load efficiency decrease of 7.7%. Therefore, we
analyse these runs more closely to investigate the reason for this increase.

Upon closer examination of the runs, Figure 7.3 suggests that convergence occurs at later
times as the travel speed increases. For example, in the case of E(−,−, 62,−), convergence
appears to occur at approximately 1.6 hours of running time, whereas E(−,−, 82,−) only
converges after 2.6 hours. This delay can be attributed to the increase in the number
of feasible operations, which leads to a larger neighbourhood and, consequently, a longer
convergence time. As the convergence time shifts, the diversification mechanism may fail
to explore sufficiently when the algorithm becomes trapped in a local optimum, or it may
not exploit solutions effectively to refine them.

The external cooling factor determines the rate at which the temperature decreases, which
governs the balance between exploration (accepting worse solutions) and exploitation (fo-
cusing on improving solutions). Recall that the temperature regulates the acceptance of
worse solutions, as defined by Equations 9 and 10, where the acceptance probability de-
termines the likelihood of accepting a worse solution. Although the temperature scheme
remained identical across the different experiments, the time to convergence varied signifi-
cantly. This variation illustrates how different problem dynamics or configurations interact
with the cooling schedule, resulting in earlier or later convergence.

To illustrate this further, we examine the acceptance probabilities under different cooling
factors. The acceptance probability directly reflects the algorithm’s willingness to explore
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Figure 7.3: Objective Value over the Running Time for Different Travel Speeds

new areas of the solution space rather than exploiting known good solutions. A cooling
factor that decreases the temperature too quickly may limit exploration, causing the algo-
rithm to converge prematurely. On the other hand, a cooling factor that cools too slowly
can result in prolonged exploration and unnecessary computational effort.
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Figure 7.4: Average Acceptance Probability per Iteration over the Running Time

Setting the external cooling factor appropriately is crucial for regulating the exploration-
exploitation trade-off, ensuring that the algorithm explores sufficiently to find high-quality
solutions while converging within a reasonable time frame. To illustrate the exploration
and exploitation behaviour under different external factors, Figure 7.4 depicts the average
acceptance probability per iteration over the runtime of the algorithm when run with
external cooling factors αext = 0.86 and αext = 0.96. This demonstrates how the external
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cooling factor affects the exploration-exploitation trade-off by accepting worse solutions,
thereby reinforcing the importance of carefully tuning this parameter.

These findings emphasize the importance of tuning the parameters, particularly the cooling
factor, as the algorithm converges at higher travel speeds during later stages. Recall that
the external cooling factor has a considerable impact on the objective value, as shown in
Section 6.2. Further analysis is required to establish the optimal parameter settings for
different travel speeds.

7.2.3 Time Window Tightness Sensitivity

The sensitivity analysis results on time window tightness are detailed in Table 7.4. Follow-
ing these results, a discussion is provided. Note that the baseline scenario uses the original
time windows without any modifications.

Table 7.4: Time Window Tightness Sensitivity Analysis Results

Experiment Total Cost
(e )

Cost Gap
(%)

Load
Efficiency (%)

Efficiency
Gap (%)

Baseline 21,964 76.8 - -

E(−,−,−,−60) 27,433 +24.9 70.4 -8.3
E(−,−,−,−30) 25,266 +15.0 70.5 -8.2
E(−,−,−,+30) 25,130 +14.4 79.1 +3.0
E(−,−,−,+60) 24,282 +10.6 79.0 +3.0

As expected, experiments where the time windows are tightened (−60 and −30 minutes)
show an increase in costs compared to the baseline scenario. In these cases, the cost
increases by 24.9% and 15.0%, respectively, while the load efficiency decreases by 8.3%
and 8.2%. This is primarily due to the reduced flexibility in scheduling, which forces
vehicles to operate in a more constrained environment, leading to suboptimal routes and
increased travel distances.

Conversely, when time windows are relaxed (+30 and +60 minutes), the results show slight
improvements in cost and efficiency, but they do not outperform the baseline scenario.
Compared to the stricter time window analyses, the cost reductions are only marginal,
but load efficiency increases significantly. These results indicate that the solution remains
trapped in a local optimum, as broader time windows should result in lower costs than
the baseline. This suggests that the algorithm requires further tuning to fully exploit the
benefits of broader time windows.

These findings underscore the need for further refinement in the solution approach. Sim-
ply relaxing constraints does not inherently lead to superior outcomes unless they are
appropriately tuned. Figure 7.5 illustrates the trend presented in Section 7.2.2, where less
constrained situations converge at later stages, resulting in the diversification mechanism
being disabled early. The exploration-exploitation trade-off should, therefore, be tested
more in search of the global optimum.
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8 Conclusions and Recommendations

This research develops a metaheuristic to optimise vehicle routing in temperature-controlled
cross-docking environments, aiming to minimise the total cost of servicing orders with a
fleet of homogeneous vehicles. The orders, originating from geographically dispersed sup-
pliers and retailers, rely on a cross-docking strategy where goods are picked up from sup-
pliers, consolidated, and then delivered to retailers. This approach is particularly suited to
the operational structure, where suppliers and retailers are geographically dispersed, with
a CD serving as an intermediary. The central research question addressed in this study
is:

How can an optimisation algorithm be developed to minimise the total cost of servicing all
suppliers and retailers in Wolter Koops’ fleet routing operations?

Section 8.1 presents the findings in response to this central research question. Section 8.2
summarises the contributions of this study to science and practice. Section 8.3 provides
suggestions for Wolter Koops to improve routing and consolidation decisions through the
proposed algorithm. Finally, Section 8.4 presents the limitations of this study and the
future research opportunities that result from these limitations. Note that these provide
answers to the final research question 11 of the research framework.

8.1 Conclusions

This research aimed to optimise routing and consolidation decisions in a structured cross-
docking environment by developing a tailored optimisation algorithm. The analysis of
current vehicle routing practices at Wolter Koops revealed a highly constrained planning
environment, with over 5,500 trips scheduled weekly. The study focused on data of histor-
ical routes of the EG planning department to validate the model. Several critical factors
were identified that influence routing decisions, such as strict time windows, travel times,
driver work regulations, commodity availability, and product compatibility. These factors
highlight the inherent complexity of vehicle routing in cross-docking networks, particularly
when temperature-controlled, multi-compartment vehicles are involved.

The literature review provided insights into existing VRP solutions and modelling ap-
proaches. While the VRPCD has been studied extensively, current approaches fail to
reflect the operational realities faced by Wolter Koops. Existing algorithms do not in-
tegrate key constraints such as mandatory driver rest periods, direct supplier-to-retailer
shipments, and multi-compartment vehicle compatibility considerations. This gap in the
literature, combined with the identified operational challenges, defined this study’s scope
and novelty.

Given the combinatorial complexity of the VRPCD variant addressed, finding optimal
solutions using exact methods is computationally infeasible for real-world instances. Even
medium-sized problem instances lead to exponential growth in solution space, making
exact approaches impractical for operational use. Consequently, metaheuristic algorithms
were explored as a feasible alternative for solving the problem effectively within reasonable
computation times.
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After evaluating various metaheuristic approaches, TS was selected due to its promising
results in solving other complex VRPs. However, further analysis showed that TS alone
can struggle to avoid local optima in highly constrained search spaces. To overcome this
limitation, a probabilistic exploration mechanism inspired by SA was integrated into the
TS framework. The hybrid TS-SA algorithm combines the guidance of TS’s memory-
based search with SA’s probabilistic exploration capabilities, allowing the search process
to escape local optima and explore diverse regions of the solution space more effectively.
The resulting hybrid TS-SA algorithm was developed and tested on historical data from
Wolter Koops’ EG department. Using a two-day dataset of 133 transport orders, the
algorithm reduced the number of vehicles from 22 to 12, decreased total travel time from
10,199 minutes to 9,964 minutes, and reduced total transportation costs by 31.8% (from
e 32,199 to e 21,964). Additionally, the average load efficiency increased by 8.1% compared
to historical planning. These results demonstrate a substantial improvement over manual
planning, achieved within approximately 3.5 hours of computing time.

Further validation was performed through multiple scenarios and sensitivity analyses.
These included variations in fixed cost structures, removing multi-compartment capabili-
ties, and adjusting travel speeds and time window tightness. In all cases, the hybrid TS-SA
algorithm outperformed historical manual planning, confirming the robustness and adapt-
ability of the proposed approach. Nevertheless, further experimentation is recommended
to fine-tune parameter configurations and assess their performance under a broader range
of operational conditions.

The study’s objective—minimising routing and consolidation decisions through an algo-
rithm—has been achieved, though the solution’s optimality remains unverified due to the
absence of an optimal benchmark. Importantly, this research represents a novel contri-
bution to theory and practice by integrating multi-compartment vehicle constraints, tem-
perature compatibility, strict time windows, cross-docking synchronisation, and driver rest
regulations into a single VRPCD framework. To our knowledge, no prior work has ad-
dressed this combination of constraints, making this approach an innovative solution to a
complex and underexplored problem in cross-docking logistics.

Despite the promising results, several limitations remain. Travel times were estimated
using average speeds, which may not accurately reflect real-world variations such as traffic
or unforeseen delays. Additionally, the algorithm was tested on a limited dataset from a
single department over two days, which restricts the generalisability of the findings. Future
research should expand testing across larger datasets and different logistics networks to
validate the solution’s scalability and adaptability.

In conclusion, this research demonstrates the effectiveness of hybrid metaheuristic opti-
misation techniques in addressing complex vehicle routing challenges in structured cross-
docking environments. The developed hybrid TS-SA algorithm offers practical improve-
ments for Wolter Koops and lays a foundation for future advancements in automated rout-
ing and consolidation strategies for multi-compartment routing in cross-docking logistics
networks.

8.2 Contributions to Science and Practice

This section outlines the scientific and practical contributions of the study, concluding with
a discussion on the generalisability of the findings.
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8.2.1 Scientific Contributions

This research advances the scientific understanding of VRPs in cross-docking networks,
particularly those involving multi-compartment vehicles and temperature-sensitive goods.
While the literature offers numerous approaches to the VRPCDs, few models explicitly
address the complexities of multi-compartment constraints in combination with strict time
windows, rest periods, and cross-docking synchronisation.

Key scientific contributions include:

• The development of a hybrid TS-SA metaheuristic tailored to multi-compartment
vehicle routing with cross-docking operations, integrating diversification and inten-
sification strategies to enhance solution quality and robustness.

• A mathematical framework that models vehicle routing under compartment com-
patibility and temperature constraints, offering an extension to existing VRPCD
formulations.

• Empirical evidence demonstrating the effectiveness and efficiency of hybrid meta-
heuristics in solving a complex VRPCD instance, validated through real-world data
from logistics service provider Wolter Koops.

This research fills a gap in the VRP literature by addressing the underexplored intersection
of cross-docking and multi-compartment routing, providing a foundation for future studies
to expand upon. To our knowledge, we are the first to implement time windows, driver
break times, a variable number of vehicles, and direct route possibilities in an instance of
the VRPCD.

8.2.2 Practical Contributions

From a practical perspective, this research provides an implementable optimisation ap-
proach that has demonstrated substantial improvements in vehicle routing and consolida-
tion planning within Wolter Koops’ cross-docking operations. The hybrid TS-SA algorithm
developed in this study has shown the potential to reduce transportation costs and improve
operational efficiency significantly.

Key practical contributions include:

• A demonstrated cost reduction of 31.8% and an 8.1% increase in load efficiency
compared to historical manual planning, based on a representative two-day dataset.
These results illustrate the potential value of algorithmic decision support in complex
routing environments.

• An application which integrates into Wolter Koops’ current application environment,
as illustrated by Figure 2.1. The integration readiness of the algorithm with exist-
ing TMSs enables planners to automate routing decisions and standardise planning
processes currently reliant on manual expertise.

• A proof of concept for applying hybrid metaheuristic approaches to logistics networks
involving multi-compartment vehicles, cross-docking synchronisation, and strict time
windows. This underscores the potential of advanced optimisation techniques to
enhance day-to-day logistics operations.

• Actionable recommendations for logistics service providers to enhance routing and
consolidation processes. These are discussed in Section 8.3.
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This research bridges the gap between theoretical optimisation methods and applied logis-
tics management by providing an implementable solution validated with actual operational
data.

8.2.3 Generalisability and Discussion

The hybrid TS-SA metaheuristic developed in this study addresses a complex variant of the
VRP that can be generalised to other logistics networks featuring cross-docking and multi-
compartment vehicle routing. While the case study focuses on Wolter Koops’ operations
in temperature-sensitive transport, the underlying optimisation approach and algorithmic
structure can be adapted to:

• Other industries that involve commodity incompatibilities, such as pharmaceuticals,
chemicals, or food and beverage logistics.

• Cross-docking facilities with similar consolidation and synchronisation requirements.

• Multi-compartment fleets, where compartmentalisation is necessary due to tempera-
ture or contamination concerns.

While the algorithm is generalisable across these supply chain characteristics, it is essential
to note that it was validated using data from two days at Wolter Koops. Therefore,
further testing is needed to assess the generalisability of the model in different settings
and larger problem instances. As demonstrated in this study, parameter tuning is crucial
for ensuring optimal performance in various operational settings and must be considered
when implementing the algorithm.

The cross-docking structure used in this study involves a single centralised CD. The model
is designed for structured cross-docking supply chains, characterised by a clear, hierarchical
flow from suppliers (upstream) through the CD to retailers (downstream). This structure
simplifies routing and consolidation decisions by maintaining distinct phases: vehicles pick
up goods from suppliers or deliver goods to retailers. More details on routing possibilities
can be found in Section 4.2.

While the model allows for direct routes involving a single pick up and a single delivery—as
an exception to the general routing structure—it does not consider more complex combined
pick up and delivery tours within the same route. Extending the model to support multiple
pick ups and deliveries on a single trip or to operate in decentralised or multi-CD networks
would introduce additional synchronisation and coordination complexities. Such scenar-
ios would require adaptations to the current approach, particularly to handle dynamic
consolidation, vehicle availability, and order allocations to a CD.

Reliability refers to the consistency of a measure [105]. While the two-day data sample
provided consistent results, a more extended validation, incorporating data from differ-
ent days, seasons, or scenarios, would provide more substantial evidence of the heuristic’s
overall reliability. Nonetheless, the consistency observed across the baseline, other sce-
narios, and sensitivity analyses within the two-day sample indicate that the algorithm is
sufficiently robust to manage real-world logistics scenarios under stable conditions. How-
ever, parameter tuning requires careful attention to optimise performance across other
scenarios.
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8.3 Recommendations

The insights from this study lead us to recommend the following actions for Wolter Koops
when implementing the algorithm, as well as for broader considerations:

• As the input data used in this study were obtained directly from master data, it is
recommended to investigate the issues identified in the data preparation and filtering
process (see Section 6.1). Specifically, missing elements and exceptions must be
identified and addressed before providing the algorithm with invalid input data.

• Integrate the algorithm into the existing TMS to facilitate automated testing of
routing decisions. Initially, we recommend running the model overnight to plan
orders for the following day. After thorough testing and validation in a practical
setting, it is suggested to reassess the planning horizon and consider more frequent
updates to accommodate new orders as they arrive throughout the day. Implement
the model in phases, starting with small-scale testing and gradually expanding the
scope to larger instances. This phased approach will enable smoother integration
and facilitate easier troubleshooting.

• It is recommended to conduct real-life tests to compare the algorithm with man-
ual planning and determine optimal configurations under varying operational con-
straints, as the robustness of the algorithm depends on its ability to adapt to different
operational conditions. By conducting real-life tests, Wolter Koops can assess the
algorithm’s performance in real-world scenarios and identify potential adjustments
needed to optimise its effectiveness across various use cases, such as varying problem
sizes, traffic conditions, and changing time windows. According to the Optuna pa-
rameter tuning results, the external cooling factor αext has a significant impact on
the objective value (see Section 6.2). It is therefore recommended to start by tuning
this parameter. This will help ensure the algorithm’s robustness and practicality in
day-to-day operations.

8.4 Limitations and Future Research

This section discusses the limitations of this study, categorising them into methodological
and practical limitations. Furthermore, it outlines future research directions to address
these limitations and improve the model’s applicability and generalisability.

8.4.1 Methodological Limitations

This section presents the methodological limitations of this study, referring to constraints
inherent to the research design, assumptions, or chosen modelling approach. These include
the following:

• Travel times are estimated by retrieving the total distance between two locations
from the Google Maps API and then converting it using an average travel speed.

• Due to time limitations, not all scenarios were tuned in terms of their parameter
configuration. Since their solution space does not change in size, it is expected that
the effect of further parameter tuning would be minimal. However, it is recom-
mended to perform more testing on parameter configurations before implementing
the algorithm.
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• The validation was based on a specific Wolter Koops’ EG department dataset span-
ning two days in January. Therefore, the model’s performance and applicability may
differ in other logistical contexts with varying operational constraints, demand pat-
terns, or cost structures. Future research could assess the model’s effectiveness across
different datasets or companies to evaluate its broader applicability.

• Fixed costs cf and variable cost cv are based on an estimation and influence the
results, as indicated by the sensitivity analysis in Section 7.2.1.

8.4.2 Practical Limitations

This section presents practical limitations that arise from real-world constraints, such as
data availability, computational resources, and operational feasibility. These limitations
are the following:

• The algorithm is tested on a dataset with 133 orders from the original dataset. The
model was not analysed further for scalability. Testing the algorithm’s scalability
can future-proof it if this demand increases.

• The real-world applicability of the model depends on the ability to structure input
data according to the conventions established in this thesis (see Section 6.1). Data
challenges encountered during the preparation phase highlight the importance of
data availability, consistency, and preprocessing. In practice, discrepancies in data
formats or missing information may hinder implementation.

• The model is developed to solve the VRPCD in cross-docking supply chains and does
not apply to mixed pick up and delivery routing. pick up and delivery trips with
multiple pick up and delivery actions are not included, and direct shipments may
only include one supplier-retailer combination.

• The model is designed specifically for route optimisation from a given CD and does
not support multi-CD optimisation. It assumes that all orders are pre-assigned to a
designated CD, meaning the allocation of orders across multiple CDs is not consid-
ered in the optimisation process. This assumption simplifies the problem but limits
applicability in cases where order allocation between multiple CDs is a decision vari-
able.

• The model does not account for vehicle cooling times, and loading and unloading
times are generalised into a single average value. This reduces computational com-
plexity but may affect accuracy in scenarios where loading and unloading times differ
significantly or precise timing constraints are critical.

8.4.3 Future Research Directions

This subsection highlights key areas for future research that could build upon the current
study. These directions aim to improve the model’s effectiveness further and extend its
applicability to real-world scenarios by addressing aspects not fully explored within the
scope of this research.

• The current approach assumes that transport orders are pre-assigned to a specific
CD without considering alternative allocations. Future research could explore meth-
ods for optimising CD assignments to improve efficiency and reduce transportation
costs. This way, multi-CD routing problems can be solved by including the allocation
decision.
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• The current model assumes a static planning horizon, but real-world logistics require
dynamic adaptation as new information becomes available. Implementing a real-
time algorithm for the dynamic VRP could improve decision-making by continuously
updating routes in response to demand fluctuations, delays, or unforeseen disruptions.

• The model assumes generalised travel and service times. A more detailed analysis
of travel time variability and loading/unloading duration could improve accuracy
by incorporating congestion, handling efficiency, and operational delays. The model
could include stochastic times to reflect operational reality better.

• While tested for the current case study, the model’s computational performance on
even larger-scale datasets and different operational settings remains untested. Future
work could assess its efficiency on larger problem instances and explore metaheuristic
enhancements to improve scalability further. Furthermore, robustness across varying
operational settings could be investigated.

• Scheduling methods could be applied to optimise dock usage, treating docks as servers
and (un)loading and consolidation as jobs to be scheduled. Further research could
explore the interaction between routing and scheduling by dynamically re-optimising
the routing plan based on updated service time estimates at the CD [22, 23, 106, 107].

• Parameter tuning is required to guide the optimisation process effectively. Future
research could explore self-tuning parameters to improve model robustness across
varying scenarios and runtimes.
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A Mathematical Modelling Techniques

A.1 Two-index vehicle flow formulation

Let xij be defined as a binary variable that assumes value 9 if and only if there is a route
that goes from customer i to j directly, for i, j ∈ V. For any S ⊂ V, let δ+(S) (respectively,
δ−(S)) denote the set of arcs (i, j) with i ∈ S, j ∈ V\S (respectively, with i ∈ V\S, j ∈ S).
With the decision variable and the parameters as defined at the start of this section, the
two-index vehicle flow formulation of the CVRP is given by the following integer linear
programming formulation model:

min
∑
i,j∈V

cijxij (A.1)

subject to
∑

j∈δ+(i)

xij = 1 ∀ i ∈ V (A.2)

∑
i∈δ−(j)

xij = 1 ∀ j ∈ V

∑
j∈δ+(0)

x0j = |K| (A.3)

∑
(i,j)∈δ+(S)

xij ≥ r (S) ∀ S ⊆ V, S ≠ ∅ (A.4)

xij ∈ {0, 1} ∀ (i, j) ∈ A (A.5)

In this formulation, equation (A.1) depicts the objective function of the CVRP, aiming to
minimise the travel costs while serving the demand of all customers Vc. Constraints (A.2)
ensure that all customers are served exactly once and safeguard the vehicle flow, ensuring
that every vehicle arriving at a customer also departs from that customer. Furthermore,
Constraint (A.3) ensures that exactly |K| routes are constructed. If more vehicles than
needed are available (i.e., |K| > r (V)), the equalities can be replaced with inequalities of
type “≤”. Note that fleet size minimisation and routing costs are conflicting objectives,
implying that a solution with |K| = r (V) may have higher routing costs than one where
more routes are allowed. These objectives can be integrated by adding fixed costs for the
routes, altering the cost coefficients coi [29]. Constraints (A.4) simultaneously serve as
capacity constraints and subtour elimination constraints, ensuring that enough vehicles
are used to satisfy the demand of the customers S ⊆ V. For more detailed explanations,
one may refer to [10, 29, 41]. Lastly, Equations (A.5) are the integrality conditions on the
x-variables.

A.2 Commodity-flow formulations

The first commodity-flow formulation was proposed by [108] in an oil delivery problem and
later extended by [109]. It is an alternative to the vehicle flow formulations, which require
an exponential number of constraints to enforce correct routing restrictions [40]. Unlike
vehicle flow formulations, commodity flow formulations keep track of the load delivered.
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Hence, they contain a set of continuous variables representing the flow of one or more
commodities between the depot and the customers. This is in addition to the variables
used in the vehicle flow formulations. The following explains the two-index one-commodity
flow formulation. Note that in this formulation, vehicles are not differentiated; only one
type of commodity is delivered from the depot to the customers.

According to [40, 109, 110], the two-index one-commodity flow is obtained by defining
decision variables fij for all i, j ∈ V, with the following interpretation: if xij = 0, then fij
= 0, but if xij = 1, then fij represents the amount of load delivered by the vehicle when it
leaves vertex i. Now, the one-commodity flow, mixed integer linear programming formu-
lation is obtained by replacing Equations (1d) in the two-index vehicle flow formulation
with:

f(δ+({i})) = f(δ−{i}) + qi ∀ i ∈ Vc (A.6)
0 ≤ fij ≤ Qxij ∀ i, j ∈ A (A.7)

Constraints (A.6) ensure that qi units of flow are delivered at vertex i. Assuming that
q0 = −

∑
i∈Vc

qi, then −q0 units of flow are collected at the depot (in other words, the
demand at node i is negative for the supply node). Constraints (A.7) are bounds on the
f -variables.

A.3 Set-partitioning formulation

This formulation of the CVRP Balinski and Quandt [111], Baldacci et al. [112] associates
a binary variable with each feasible route. In the set partitioning formulation, a variable
is defined for each feasible route that a vehicle can take. Based on the formulation used
by [40], consider Ω as the set of feasible routes. Each route r in Ω is associated with
a binary variable zr, which takes the value 1 if that route is selected and 0 otherwise.
Additionally, constants air are defined, with air = 1 if customer i is served by route
r, and air = 0 otherwise. Let cr represent the optimal cost associated with route r.
Based on these definitions, the formulation can be expressed as integer linear programming
formulation:

min
∑
r∈Ω

crzr (A.8)

subject to
∑
r∈Ω

zr = K (A.9)∑
r∈Ω

airzr = 1 ∀ i ∈ Vc (A.10)

zr ∈ {0, 1} ∀ r ∈ Ω (A.11)

Equation (A.8) depicts the objective function of the formulation. Similar to the other
formulations, it aims to minimise the total cost incurred by visiting all customers exactly
once. Constraint (A.9) guarantees that the number of feasible routes selected equal the
number of vehicles available K. Also, if fewer than (|K| suffice to serve all customers,
the equalities in (A.10) can be replaced with inequalities of type “≤”, and ensure that
all customers are supplied by only one selected route. Finally, Equations (A.11) are the
integrality conditions imposed on the binary z-variables. Note that air represents constants
and therefore does not require such an integrality definition.
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B Toy Problem Coordinates

For conciseness, the coordinates of the graph used in the toy problem instance in Section 4.5
were omitted. Therefore, we include them here for reproducibility:

Table B.1: Toy problem node characteristics

Node x-coor y-coor

CD 10 10
s1 6 8
s2 7 12
r1 11 8
r2 14 9
r3 15 11
r4 12 13
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C Initial Solution Generation

Given the interdependence between delivering goods to retailers and picking up goods from
suppliers at the CD, the initial solution construction follows a two-stage approach. The
first stage serves as input for the second stage. Figure C.1 summarises the two stages
and their relationship. Note that the greedy insertion heuristic is similar in both stages,
although the retailer routing plan serves as input for the supplier routing plan. The greedy
heuristic is detailed in Algorithm 2.

Determine retailer
routing plan

stage 1

Determine supplier
routing plan

stage 2

Network and ve-
hicle information

Retailer routing
plan∗

Supplier routing
plan

∗ The departure times from the retailer routing plan are essential for calculating
the latest allowable arrival times of goods at the CD, factoring in handling time at the CD.

Figure C.1: Outline of the two-stage approach employed in the constructive
heuristic

C.1 Stage 1: Retailer/Delivery Routes

The input for the first stage includes network and vehicle data, such as node locations,
demands, travel times, and vehicle capacities. The greedy insertion heuristic generates a
feasible routing plan from the CD to all retailers and back, iterating to find the insertion
with the least incremental cost. Consequently, the insertion that minimises the increase in
travel time is selected as the optimal choice in each iteration.

C.2 Stage 2: Supplier/Pick Up Routes

The output of the first stage serves as the input for the second stage, where the routing for
servicing suppliers is determined. In this stage, restrictions on arrival times at the CD are
considered, as certain goods must be loaded onto vehicles that depart at predetermined
times. Consequently, it is necessary to ensure that goods arrive at the CD before their re-
spective outbound vehicles finish loading. In addition to this temporal constraint, network
information (i.e., node locations, demands, travel times) and vehicle characteristics (i.e.,
capacity, vehicle availability) also serve as inputs for the second stage.

Changes in the procedure for composing the routes in the second stage, compared to the
first stage are:

• UnvisitedLocations is set to S to route the vehicles to the suppliers. Thus, Unvisit-
edLocations ← S.
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Algorithm 2: Two-stage greedy insertion heuristic
Data: R, S, V, Q, Drs for all r ∈ R, s ∈ S, tij for all i, j ∈ N
Result: Constructed routes from suppliers to CD to retailers

1 Initialise: Routes ← {∅}, UnvisitedLocations
← Locations of unmet demands (stage 1) or suppliers (stage 2), UnvisitedOrders
← Corresponding unmet demands, AvailableVehicles ← V

2 while UnvisitedOrders do
3 v ← Rnd(AvailableV ehicles) ▷ Random vehicle selection
4 while True do ▷ Infinite loop for insertion
5 Initialise: BestCost ←∞, BestPosition ← null, Location ← null
6 for index,m ∈ enumerate(UnvisitedLocations) do ▷ Loop over unvisited locations
7 for p ∈ CurrentRoute do ▷ Loop over potential insertion positions
8 InsertionCost(m, p) ← tip−1m + tmip − tip−1ip

9 if InsertionCost < BestCost and TimeWindowsSatisfied and
Q̂v − UnvisitedOrders[index] ≥ 0 then

10 BestCost ← InsertionCost, BestPosition ← p, Bestocation ← m,
BestDemandIndex ← index

11 if BestPosition NOT null then ▷ Check for feasible insertion
12 InsertLocation(CurrentRoute, Bestlocation, BestPosition)
13 UpdateRemainingCapacity:

Q̂v ← Q̂v − UnvisitedOrders[BestDemandIndex]
14 Remove(UnvisitedLocations, BestDemandIndex),

Remove(UnvisitedOrders, BestDemandIndex) ▷ Remove met demand
and location

15 else
16 AvailableV ehicles.remove(v)
17 Routes[v]← CurrentRoute ▷ Store current route
18 Determine times for this route
19 break ▷ No possible insertions, exit loop

20 if NOT Bestlocation or UnvisitedOrders == ∅ then
21 break

22 return Routes ▷ Return constructed routes

• Ensure that all goods picked up at suppliers arrive in time at the CD. The steps
taken to evaluate the latest allowable time at which a vehicle can return to the CD
are outlined by Algorithm 3, which computes these times for any given route that
services a set of suppliers. Note that this procedure should be called when checking
the time window of any potential route if an insertion is evaluated.
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APPENDIX C. INITIAL SOLUTION GENERATION

Algorithm 3: Procedure for computing latest allowable time of arrival
Data: Route, R, Drs for all r ∈ R, s ∈ S
Result: Latest allowable time for a vehicle to arrive at the CD

1 Initialise: LatestAllowableTimes ← [∅]
2 for supplier ∈ Route do
3 for retailer ∈ R where Dretailer,supplier > 0 do
4 for vehicle ∈ RetailerRoutes where retailer ∈ RetailerRoutes[vehicle] do
5 DepartureTime ← DepartureTimes[vehicle] [0]
6 LatestAllowableTime ← DepartureTime - HandlingTime
7 LatestAllowableTimes.append(LatestAllowableTime)

8 return min{LatestAllowableTimes} ▷ Return minimum latest allowable time
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D Data Filtering Process

Original DataFrame (df)
len(df) = 1575

Drop rows with miss-
ing values in key columns

len(df) = 1201

Remove trips passing
through specific locations

len(df) = 964

Keep only trips that
start or end at the CD

len(df) = 410

Remove trips with specific vehicle IDs
len(df) = 366

Drop records where
PTA start = PTA end

len(df) = 307

Final Filtered DataFrame

Figure D.1: Data Filtering Process
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