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Abstract

Spaghetti defects are a common failure in Fused Deposition Modeling (FDM) printing,
often caused by object detachment from the print bed, missing support structures, or
objects falling over. This often results in extruded filament failing to attach to a previous
layer and instead freely curl up, forming balls that look like spaghetti. These defects are
mostly unrecoverable, resulting in wasted time and materials. While computer vision-
based anomaly detection exists, such as the one built into the Bambu Lab X1 Carbon and
Obico, they lack detection performance when the contrast between the filament and the
background is minimal, e.g. when using black filament against a dark background.

To combat this problem, this work explores the influence of including a Low-Light Image
Enhancement (LLIE) algorithm in the preprocessing steps before applying the anomaly
detection algorithm. To do so, this work makes use of a novel approach called CoLIE and
combines it with the latest YOLO11 (by Ultralytics) model for spaghetti object detection.
This proposed method is evaluated on a Colour dataset, Black dataset, and a third publicly
available dataset to show how well it generalizes to unseen circumstances. To establish a
baseline, these tests are also performed using an open-source approach, Obico.

Results show that CoLIE does not significantly improve detection performance and, in
some case, even reduces it. This is likely due to overenhancement causing the image to
lose important features, resulting in reduced precision. However, YOLO11 does show a
significant increase in performance over the YOLOv2-based Obico implementation, even
on a publicly available dataset, achieving a 17.5% (non-Context-based Low-light Image
Enhancement (CoLIE)) and 2.4% (CoLIE) higher F1-score. This work also introduces a
Print Failure Stopping Metric (PFSM), to evaluate the theoretical performance of a real-
world system. The results show that modern Deep Learning models, specifically YOLO11,
are highly effective in the detection of spaghetti defects in FDM printing, without the need
for additional preprocessing.

Further research should explore hardware-based solutions, such as depth-sensing cam-
eras or Lidar, to improve detection performance by including contrast-independent depth
information. Additionally, alternative Machine Learning approaches, such as autoencoders
or differential imaging, could be further investigated to see the impact on low-contrast
detection performance.

Keywords: 3D Printing, Fused Deposition Modeling (FDM), Spaghetti Defect Detec-
tion, YOLO11, Low-Light Image Enhancement (LLIE), CoLIE, Computer Vision, Machine
Learning, Deep Learning, Anomaly Detection
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Chapter 1

Introduction

Additive Manufacturing (AM), commonly known as 3D printing, has increased in popu-
larity for both rapid prototyping and final product manufacturing [1]. Fused Deposition
Modeling (FDM) is one of the most common types of AM, widely used due to its cost-
effectiveness, ease of use, and variety of supported material types. In FDM, the material
is heated and extruded through a nozzle, depositing filament layer-by-layer. Here, each
consequent layer adheres to the previous one when the material cools down and solidifies.
However, despite the increase in popularity and improvements in FDM technology, print
errors still occur, affecting the quality of the finished print, resulting in wasted material or
time [2, 3].

One of the most common anomalies is the spaghetti defect [4], named after the ball
of curled up filament, resembling a plate of spaghetti. This defect is caused by filament
failing to adhere to the previous layer, resulting in filament being printed in the air, causing
it to curl up and form spaghetti. This can occur due to a variety of problems, such as
detachment from the print bed, missing supporting structures, or parts falling over. In
most cases, when spaghetti defects occur, the print is unrecoverable. This means that the
print requires a complete restart, resulting in wasted time and materials. In severe cases,
the curled up filament attaches to the print head and starts to build up, causing a so-called
“blob of death”. This can result in a damaged print head, requiring costly repairs.

Multiple detection models exist that are able to detect spaghetti [4, 5, 6]. For example,
the printer used in this study – the Bambu Lab X1 Carbon – uses a built-in camera for
vision-based spaghetti defect detection [7]. However, this detection system still struggles
with dark-coloured filament due to the low contrast between the filament and background.
This was confirmed by printing multiple geometries using black filament and observing –
for all three detection sensitivities – whether the printer stopped when a spaghetti defect
occurred.

Low-Light Image Enhancement (LLIE) is one way to improve contrast in images by
enhancing the brightness in darker areas of an image while preserving important details
[8]. While research exists in both anomaly detection for FDM printing and LLIE, no
research was found that investigates the integration of LLIE into anomaly detection for
FDM printing. Besides this, no existing research has covered the challenge of detecting
anomalies when using black filament, presenting a research gap that forms the primary
motivator for this work.

To address the problem of low-light, or low-contrast, anomaly detection in FDM print-
ing, this work proposes a novel anomaly detection method, incorporating LLIE within a
YOLO11 detection pipeline. A recently developed LLIE approach, Context-based Low-
light Image Enhancement (CoLIE), was chosen to fulfill this task, as it showed promis-
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ing results in domain-independent image enhancement. For the defect detection aspect,
YOLO11 is used, as existing literature showed the effectiveness of previous versions in
anomaly detection for FDM printers. By combining these two techniques, this work aims
to combat the challenge of defect detection when using darker filament.

The effectiveness of the proposed approach is evaluated on three test sets: one with
colour Bambu Lab prints, to test the overall effectiveness, one with black Bambu Lab
prints, to test the low contrast effectiveness, and a publicly available dataset, which uses
a different printer, to test the generalizability. These results are compared to an open-
source approach, Obico1, to form a baseline and show the effectiveness of the proposed
method in this work in relation to what is already available. This evaluation is done using
a number of metrics based on whether detection is performed accurately, as well as a newly
introduced metric, Print Failure Stopping Metric (PFSM), that evaluates how the system
would perform in a theoretical real-world implementation where the printer would stop
after a set number of consecutive frames containing a predicted anomaly. More details can
be found in Section 3.3.1.

This work contains a glossary and an acronym list to provide a short explanation for
given terms and to provide an overview of the used acronyms. These can be found on page
69.

1.1 Research Questions

The main question that this work tries to answer is:

RQ1 How can computer vision techniques be effectively applied to detect spaghetti anoma-
lies in FDM printing, particularly in low-contrast conditions between the filament and
background?

To support this question, the following sub-questions have been devised:

RQ1.1 How can YOLO be optimized for detecting spaghetti anomalies in FDM printing?

RQ1.2 What effect does low-light image enhancement have on spaghetti anomaly detection?

RQ1.3 How does the proposed model compare to Obico in terms of performance on self-
collected and publicly available datasets?

RQ1.4 How do different stopping thresholds impact the trade-off between true positives,
false positives, and detection delay?

1Available: https://github.com/TheSpaghettiDetective/obico-server
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Chapter 2

Background

This chapter contains background information that is relevant to understand the work
that has been done. It contains an explanation of the used 3D printing technique, Machine
Learning and several Machine Learning techniques. Next, the object detection model and
LLIE algorithm are described, including a description of how they work and why they
were chosen for this work. This section will end with an overview of related work in FDM
anomaly detection and LLIE.

2.1 Additive Manufacturing

Additive Manufacturing (AM) is an all-encompassing term to describe 3D printing tech-
niques, where computer-aided models are turned into actual objects layer-by-layer, with-
out the need for traditional fabrication techniques such as molding, machining, or tooling.
Initially, this production method was primarily used for rapid prototyping, due to its man-
ufacturing flexibility and ability to quickly transform a design into a physical product.
However, it is now increasingly used for the production of final products [1].

The term AM encompasses a variety of methods that differ based on materials or
assembly techniques. For example: robocasting for ceramic materials [9, 10], Powder
Bed Fusion (PBF) for metals such as steel [11], or FDM, also known as Fused Filament
Fabrication (FFF), which is commonly used for a wide range of polymers [12].

Robocasting is an AM technique where material is extruded in a layer-by-layer fashion
onto a build plate. Although it uses a similar approach to FDM – as explained in Section
2.1.1) – the two processes differ in the used material types and the solidification of these
materials. In FDM the extruded material solidifies as it is cooling down, whereas in
Robocasting the material retains its shape immediately after extrusion due to the structure
of the material. As a result, robocasting is generally used for ceramics or other high-density
parts [9].

PBF works by spreading a layer of powder on the build plate which is then heated in
specific areas by a laser or similar precise heat source. This heat solidifies the powder in
the specified areas, which results in a solid object remaining when the rest of the powder is
removed. This process is repeated for each layer and, as the layers are thin, the heated parts
stick to the underlying layer [13]. This approach can be used to fabricate high-precision
metallic parts that can be used in all sorts of applications requiring high durability [6].

6



Figure 2.1: Schematic of an FDM printer. (Actual configurations may vary)

2.1.1 Fused Deposition Modeling

Fused Deposition Modeling (FDM) is an AM approach where filament is melted and ex-
truded to assemble objects layer-by-layer [14]. The material is usually housed on a filament
spool, which is fed into a heating chamber, where the filament is melted. The liquid ma-
terial is then deposited and adheres to the previous layers, after which it quickly solidifies
to form a desired shape.

To perform this process, an FDM printer consists of a movable print head containing
a driver motor for the filament, a heating chamber, and a nozzle to extrude the material
[14]. Figure 2.1 depicts a schematic structure a typical FDM printer. Together with the
print bed, the print head is able to move in the x, y, and z axis in a way that the nozzle
is able to print in three dimensions. The movement of the components differs between
various printers. For example, in the Bambu Lab X1 Carbon printer (see Section 2.1.3),
the print head moves in the x and y axis, while the bed moves in the z axis.

As mentioned before, FDM allows for printing a variety of polymers. Commonly used
materials are Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA) as they
both have a good balance between strength and ease of printing [15]. For this project PLA
is used, as it is simple to use and cost-effective.

2.1.2 FDM Defects

Despite improvements in modern FDM printers, a number of defects can occur, impacting
the resulting 3D print quality. Table 2.1 provides an overview of common defect categories,
identified by Günaydın and Türkmen [2], and their corresponding visible defects, most of
which are listed on the website of simplify3d1. The most common defects are spaghetti
and stringing [4]. Stringing defects show up as small strings attached to the printed
object, as depicted in Figure 2.2, and they occur because the printer does not completely
stop extruding while moving from one area to another, which can be caused by incorrect
printer settings, insufficient cooling, or an excessively high temperature [16]. Fortunately,
stringing defects often do not cause a print to fail, but can be fixed using post-processing.
Unfortunately, when a print experiences spaghetti defects, it is most likely unusable and
therefore requires a restart, resulting in wasted time and materials, increasing costs.

1Available: https://www.simplify3d.com/resources/print-quality-troubleshooting/
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Category Visible defects
Misalignment of the print platform.

• Print not sticking to platform

• Warping

• Lack of fine details

• Spaghetti due to lack of adhesion

Misalignment of the nozzle.
• Misaligned layers

• Missing layers

• Skewed print

• Shifted layers

Clogging of the nozzle, depletion of printing
material, or disrupted material flow. • Incomplete layers

• Incomplete print

Lack or loss of adhesion to the print platform.
• Spaghetti caused by detachment

• Warping

Vibration or shock (from the printer or an-
other source). • Uneven surface or edges

• Blobs

Inaccurate adjustments of printer settings.
• Stringing

• Spaghetti

Table 2.1: Defect categories and their visible flaws in FDM printing.

Spaghetti

This work focuses on the spaghetti defects category, due to their frequency and significant
impact on the printing process. These defects can occur due to a number of different erro-
neous settings or failures mid-print, for example: missing support structures, detachment
from print bed, and parts falling over, as depicted in Figure 2.3. Consequently, there is no
material present at the location of the print head, resulting in the printed filament lack-
ing a surface to adhere to and forming the so-called spaghetti. This can even result in the
printed filament spiraling back up to attach to the print head itself, and – as the print head
keeps printing – forming a growing “blob of death” on the print head, as depicted in Figure
2.4. In the best case, it is just a time-consuming process to remove this blob. However, in
the worst case, the blob cannot be fully removed, requiring costly printer repairs.
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Figure 2.2: Example of a stringing defect. Adapted from [17].

Figure 2.3: Example of a spaghetti defect, caused by the object falling over.

Figure 2.4: Example of a “blob of death”, caused by filament attaching to the
print head, forming a growing blob. Adapted from [18].
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Figure 2.5: Example of a black filament print with spaghetti defect. Here the
printer finished the print while the built-in detection was set to high sensitivity.

2.1.3 Bambu Lab X1 Carbon

This research makes use of the Bambu Lab X1 Carbon2, which is an industry standard,
easy-to-use FDM printer with a considerable number of features. These features include
simple calibration through auto bed leveling, multi-colour printing, vibration compensation
and extrusion compensation for increased smoothness, and a camera with built-in spaghetti
defect detection [7] and timelapse function. For this research, the built-in camera is used
for data collection, which will further be described in Section 3.2.1.

Built-in Spaghetti Defect Detection

The Bambu Lab X1 Carbon has a built-in spaghetti defect detection feature that can be
activated directly on the printer. It has three different sensitivity options that correspond
to the confidence threshold [7]: low, medium, and high. This built-in spaghetti defect de-
tection feature is a primary motivator for this research, as it works well on colour filaments,
but unfortunately lacks robustness for darker filament colours. Some preliminary testing
has shown that the built-in spaghetti detection fails to detect issues with black filament,
even when set to the highest sensitivity. This was tested observing multiple prints with
black filament, including those using artificially induced spaghetti defects, as described
in Section 3.2.1. During these prints, the detection sensitivity was varied between low,
medium, and high, and the printer’s behaviour was observed. In only a few cases, the
built-in detection was able to recognize the spaghetti defect, but only after a significant
delay, still resulting in a lot of material waste. However, in most cases, the printer failed to
stop entirely when spaghetti occurred, requiring manual intervention. A concrete example
is depicted in Figure 2.5, where the printer continued to print until it finished the machine
code instructions of the last layer, even when set to the highest detection sensitivity. The
issue is likely related to the low contrast between the black filament and the background
or print bed.

2.2 Machine Learning

Machine Learning (ML) describes implementing “learning” in computers, where learning
encompasses: the acquisition of new knowledge, the development of skills through instruc-
tion or practice, the organization of acquired knowledge into generalizable representations,
and the discovery of new facts and theories through observation and experimentation [19].

2Available: https://eu.store.bambulab.com/products/x1-carbon
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ML consists of a wide range of different methods, each focusing on different problems and
using different techniques to solve them. These methods can roughly be grouped into
categories such as supervised, unsupervised, semi-supervised, and reinforcement learning,
referring to the way that these networks obtain their knowledge [20].

2.2.1 Supervised Learning

Supervised ML methods learn to map specific inputs to corresponding outputs, where the
desired output can belong to a class (classification), or a continuous value (regression)
[21]. To learn this mapping function from the input to the output, labeled training data
is required; pairs of inputs and their respective outputs. Ideally, this mapping contains
knowledge about the underlying patterns in the data and is able to accurately infer the
desired output from unseen data. This category is called “supervised”, as it requires external
assistance to learn the correct mapping. Examples of supervised algorithms are Decision
Trees, Naive Bayes and Support Vector Machine (SVM). An example application is medical
diagnoses based on patient records.

2.2.2 Unsupervised Learning

Unsupervised ML methods learn relationships within data without access to labeled data
[22]. For example, by learning the differentiating features within a dataset, they can divide
data into a number of clusters. When providing unseen data points to these algorithms,
they should be able to assign them to one of the clusters, based on similarities in their
features. This type of ML is primarily used for clustering or dimensionality reduction.
Examples of unsupervised algorithms are K-Means Clustering and Principal Component
Analysis (PCA). An example application is feature extraction for object detection.

2.2.3 Semi-Supervised Learning

Semi-supervised learning falls somewhere in between supervised and unsupervised learn-
ing. It benefits from labeled data, but also uses unlabeled data during the training process
[23]. The unsupervised part is used to understand underlying patterns in the unlabeled
data, whereas the labeled data is used to make predictions. This category of ML methods
is mostly used when the access to labeled data is limited or expensive, but the model
can benefit from the larger amount of unlabeled data that is readily available. Exam-
ples of semi-supervised algorithms are Generative Adversarial Networks and Variational
Autoencoders. An example application is image generation.

2.2.4 Reinforcement Learning

Reinforcement learning methods are used to determine how (virtual) agents should take
actions in a virtual or physical environment based on their observations [24]. In this
approach, an agent takes actions, receiving positive rewards for desired states, and negative
rewards for undesired ones. The total reward of the simulation is calculated to evaluate
the actions of the agent, and the decision making model is updated accordingly. This type
of learning is useful for decision-making problems where outcomes depend on sequences
of actions, rather than isolated inputs. Examples of reinforcement learning algorithms are
Q-Learning and SARSA. An example application is a complex game, such as chess.
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Figure 2.6: Illustration of overfitting. The red line represents an overfit model
failing to generalize, while the blue line depicts a well-generalized model.

Figure 2.7: Examples of data augmentation techniques for image data.

2.2.5 Overfitting

Overfitting occurs when a model learns to represent the training data too closely, failing
to generalize the underlying patterns [25]. Figure 2.6 illustrates this principle. The red
line shows an overfit model that perfectly encapsulates the training dataset, but fails to
generalize and therefore performs significantly worse on the test dataset. The blue line
depicts a well-generalized model that captured the underlying patters of the training data.
It obtains a similar accuracy on both the training and test datasets, showing its ability to
perform well on unseen data.

2.2.6 Data Augmentation

A common way to combat overfitting is by increasing variation in the dataset [25]. While
this can be done by collecting more data in various settings, this process is often time-
consuming and costly. A different approach is data augmentation, which involves applying
transformations to existing data to generate more variations. This process increases the
model’s robustness to handle small variations that can occur in unseen data.

In image processing, data augmentation methods include flipping, applying colour fil-
ters, cropping, introducing noise, rotating, and combining images [26], as depicted in Figure
2.7.
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2.2.7 Evaluation Metrics

To quantify the performance of ML algorithms, certain evaluation metrics can be applied.
These metrics provide a way to show the effectiveness of the evaluated model and can be
easily compared to the metrics of other algorithms. Different metrics touch on different
strengths or weaknesses of the algorithm, allowing for a proper evaluation of possible
downsides of the model. Besides that, metrics can be tailored to the ML task at hand.

Classification

The basis of classification metrics is divided into four groups: True Positives (TPs), True
Negatives (TNs), False Positives (FPs), and False Negatives (FNs) [27], where:

• TP: Number of instances where the model predicts the positive class correctly, i.e.,
ygt = 1 ∧ ypred = 1.

• TN: Number of instances where the model predicts the negative class correctly, i.e.,
ygt = 0 ∧ ypred = 0.

• FP: Number of instances where the model predicts the positive class incorrectly, i.e.,
ygt = 0 ∧ ypred = 1.

• FN: Number of instances where the model predicts the negative class incorrectly, i.e.,
ygt = 1 ∧ ypred = 0.

These values are often represented in a confusion matrix, which is a square matrix where
rows represent true classes and columns represent predicted classes. This allows for a clear
overview depicting the TPs (top left), TNs (bottom right), FPs (bottom left), and FNs
(top right). An example confusion matrix with 100 positive and 100 negative samples is
depicted in Figure 2.8. For classifiers that have more classes, a confusion matrix can depict
whether there is a tendency for a specific class to be classified as another specific class, e.g.
dogs being classified as cats. This might be caused by overlapping features, indicating the
need for more delicate feature extraction to learn the differences between those classes.

These values in a confusion matrix can be used to formulate more general metrics that
highlight different aspects and allow for easier human understandability and comparison
to other models. Such metrics are accuracy, precision, recall, False Positive Rate (FPR),
and F1-score [27], defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

FPR =
FP

FP + TN
(2.4)

F1-score = 2 · Precision · Recall
Precision + Recall

(2.5)

Here, accuracy is used to describe what percentage of classifications is correct. Similarly,
precision describes what percentage of positive predictions is correct, while recall describes
what percentage of actual positive instances are correctly classified. The FPR describes
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Figure 2.8: Example of a confusion matrix with 100 positive and 100 negative
samples.

what percentage of actual negative instances is incorrectly classified. Finally, the F1-score
provides a single score indicating the balance between precision and recall.

Besides this, certain plots – and the derived measurements from these plots – can be
used to show the trade-off between metrics or limitations of the system, e.g. the Receiver
Operating Characteristic (ROC) curve – allowing for the measurement of the Area Under
Curve (AUC) [27] – and the Precision-Recall (PR) curve [28].

The ROC-curve plot compares the recall against the FPR at different thresholds, several
examples of ROC-curves are depicted in Figure 2.9, showing the performance of a bad
classifier, random classifier, okay classifier, and better classifier. A higher recall often goes
paired with a higher FPR, as a higher recall is achieved by having fewer FNs, which can be
achieved by lowering the threshold for positive classification, which in turn increases the
rate of FPs. This effect can also be seen in the ROC plot, where higher FPRs show a higher
recall. This indicates that an optimal balance between the two should be chosen based
on the requirements for the classification application. For example, for medical diagnoses,
a high recall is of critical importance, whereas false positives can be mitigated by further
medical tests. Better classifiers show a steeper curve towards the top-left corner of the
ROC-curve, which means that the recall is higher at lower FPR values. As the area under
the ROC-curve is higher when the curve is steeper, the performance of a classifier can
be measured by quantifying the AUC, as depicted in Figure 2.10, where a higher AUC
indicates a more robust classifier.

The PR curve shows another trade-off in classifiers, this time between the precision
and recall metric. As mentioned before, recall can be increased by lowering the threshold
for positive classification, however, that also increases FPs, decreasing the precision. This
effect can be seen in Figure 2.11, where a drop in precision can be observed for higher
values for recall. For this metric, the optimal classifier achieves a curve that is as close to
the top-right corner as possible, showing it can achieve both a high precision as well as a
high recall. This curve can be used to calculate the Average Precision and Mean Average
Precision, which are important metrics for tasks such as object detection.
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Figure 2.9: Example of several ROC-curves showing the trade-off between recall
and FPR. The dotted line represents the ROC-curve when a truly random classifier
is applied.
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Figure 2.10: Example of the AUC, which represents the performance of a classifier
across multiple thresholds. A larger area indicates a more robust classifier.
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Figure 2.11: Example of a PR curve showing the trade-off between precision and
recall.

Object Detection

For object detection problems, the performance of the system is often evaluated using
the Average Precision (AP), Mean Average Precision (mAP), and Intersection over Union
(IoU) metrics [28]. The Average Precision (AP) for a single class is taken by obtaining a
PR curve and calculating the area under the curve. The Mean Average Precision (mAP)
is calculated by first obtaining the AP for each class and then taking the average. The
IoU is a metric showing the overlap between the predicted bounding box and the ground
truth bounding box and the mean IoU can be used as an indication of overall bounding
box performance. The IoU is also used in the mAP@50 and mAP@50-95 metrics, where
bounding boxes with an IoU lower than the threshold are filtered out and the mAP is
computed over the remaining boxes. Figure 2.12 illustrates an example of the intersection
and union between two bounding boxes. These metrics are calculated as follows:

AP =

∫ 1

0
Precision(r)dRecall (2.6)

mAP =
1

C

C∑
c=1

APc (2.7)

IoU =
Intersection

Union
(2.8)

Where:

• Precision(r): The precision value corresponding to a given recall value.

• C: Total number of classes.

2.2.8 Neural Networks

A Neural Network (NN) is an ML model inspired by the way that a human brain operates
[21, 29]. It consists of a system of neurons (or nodes) that – like the previously described
methods – aim to learn underlying patterns in data and produce a corresponding output.
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Figure 2.12: Depiction of the intersection and the union between a ground truth
bounding box and its corresponding predicted (pred) bounding box.

Neural Networks (NNs) are highly flexible and can be designed to combat various prob-
lems, including anomaly detection, image recognition, object detection, natural language
processing, and speech recognition [29]. Therefore, they can be found in many different
areas, such as manufacturing, transportation, computer security, banking, insurance, prop-
erties management, marketing, energy, and other areas where conventional mathematical
methods fall short. NNs can be implemented in supervised, unsupervised, semi-supervised
and reinforcement learning approaches.

A Multi-Layer Perceptron (MLP) is a typical NN. It is a type of NN, where each layer
contains a number of neurons that are connected to all the neurons in the next layer, as
depicted in Figure 2.13. Each of these connections has its own weight, which determines
how much the value of the neuron from the previous layer influences the value of the neuron
in the next layer. The workings of a single neuron are depicted in Figure 2.14, and the
value of a neuron is then calculated as follows:

y = f(b+
n∑

i=1

xi · wi) (2.9)

Where:

• y: Output of the neuron.

• f : Activation function.

• b: Bias.

• n: Number of neurons in the previous layer.

• xi: Value of the i-th neuron in the previous layer.

• wi: Weight of the connection from the i-th neuron in the previous layer.

Deep Learning (DL) refers to a type of NN with more neurons and complex layer
connections, typically requiring more resources to train than smaller NNs [29]. However,
they are able to learn intricate connections within data and often extract features with-
out requiring (a lot of) preprocessing. Examples of Deep Learning (DL) architectures
include Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Autoencoders.

Training a supervised NN requires an input-output pair to be provided. The input is
passed through the NN to produce a prediction, which is then compared to the expected
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Figure 2.13: Example architecture of an MLP.

Figure 2.14: Depiction of a single neuron.
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output using a loss function. The loss function provides a way to evaluate the error, and
this value is used during optimization to update the weights.

In the optimization step, backpropagation is used to calculate the gradient of the loss
function with respect to the weights, indicating the direction for the weight updates to
minimize the loss. This gradient is then used in combination with the learning rate and
chosen optimization algorithm to update the weights. The equation used to update the
weights is typically expressed as:

w(t+1) = w(t) − η · ∂L
∂w

(2.10)

Where:

• w(t): Weights before the update.

• w(t+1): Weights after the update.

• η: Learning rate.

• ∂L
∂w : Gradient of the loss function L with respect to the weights w, calculated via
backpropagation.

However, different optimization algorithms - such as Adam, or AdaGrad - modify the
weight update expression to enhance performance and convergence speed.

Loss function

The loss function provides a way to evaluate the difference between the expected output
and the actual output of an ML algorithm [30], similar to evaluation metrics (see Section
2.2.7). The key difference between evaluation metrics and loss functions is their purpose;
evaluation metrics provide a way to evaluate the total performance of a model and allow
it to be compared to other models, whereas loss functions represent the error in the pre-
dictions of a model and the value is used to optimize the model. Not each loss function
is equally applicable for each ML task, applying the right loss function results in better
quantification of the error, improving training speed and efficiency. Some evaluation met-
rics can also directly be utilized as loss functions, such as the Mean Average Error (MAE),
Mean Square Error (MSE), and Root Mean Square Error (RMSE) metrics.

Activation function

Activation functions are almost always applied to the output of all neurons in NNs, except
for the input layer [21]. The activation functions are nonlinear so that the network can
learn more complex non-linear relationships within the data. Some activation functions
contain a form of thresholding, such that the output of the neuron is set to 0 when a
threshold has not been met. Common activation functions are the Sigmoid, Tanh, and
Rectified Linear Unit (ReLU) function, they are calculated as follows:

Sigmoid function: f(x) =
1

1 + e−x
(2.11)

Tanh function: f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.12)

ReLU function: f(x) = max(0, x) (2.13)

Where x is the output of a node, i.e. x = b+
∑n

i=1 xi · wi.
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2.2.9 Convolutional Neural Networks

CNNs are a type of DL architecture designed for handling grid-structured data, such as
images, making them suitable for tasks such as image recognition and object detection
[31, 32]. CNNs typically consist of convolutional layers, pooling layers, and fully connected
layers. This architecture significantly reduces the complexity of NNs when working with
images. For example, in a fully connected NN, an RGB image of 64 × 64 pixels would
require 64 × 64 × 3 = 12288 input neurons, resulting in 12288 trainable weights and a
trainable bias for each neuron in the next layer. In contrast, a 5 × 5 convolutional kernel
operating on each colour channel would reduce this to 5 × 5 × 3 = 75, creating just 75
trainable weights and a trainable bias for each neuron in the next layer. This noteworthy
reduction in trainable parameters not only improves computational efficiency, but also
reduces the risk of overfitting, impacting its generalizability.

Convolutional layers work by sliding a kernel (or filter) over the input data to extract
features. These kernels can vary in size and shape, but are commonly a square with odd
dimensions, such as 3× 3 or 5× 5. Figure 2.15 illustrates an example of a convolution. At
each step, the kernel performs a calculation over a small patch of the input, and by going
over the image step by step, the output feature map is generated.

Convolutional layers have a number of hyperparameters that can be changed to alter
their behaviour, including the kernel size, stride, depth, and padding:

• Kernel size: Dimensions of the sliding window.

• Stride: Step size of the sliding window. Lager strides provide less window overlap
and reduce output size.

• Depth (or output channels): Amount of kernels convolving over the input.

• Padding: Determines if and how extra values should be added to the edges of the
input, increasing the size of the output. A common padding option is zero-padding,
which adds zeroes to the edges of the input.

These parameters allow CNNs to be tuned to extract features efficiently and effectively.
Convolutional layers are often paired with pooling layers to further process the ex-

tracted features [33]. Pooling layers reduce the dimensions of the feature maps, making
the model more computationally efficient and robust against overfitting, while losing some
lower-level information. Pooling can be performed in various ways, such as max pooling
or average pooling. Like convolutional layers, pooling layers slide over the input with a
defined window size and stride. However, instead of applying a kernel calculation, they
reduce the information in a patch using a specific function. In max pooling, the maximum
value in each patch is taken as the output, whereas in average pooling, the average of the
values in each patch is used as the output.

2.3 You Only Look Once (YOLO)

You Only Look Once (YOLO) was initially presented by Redmon et al. (2016) as an
approach to object detection that treats object detection as a regression problem [34].
The method consists of a single end-to-end NN that predicts bounding boxes and class
probabilities in one evaluation, using full images as inputs. This structure eliminates the
need for more complex pipelines and therefore enables high-speed processing up to 155
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Figure 2.15: Example of a convolution using a 3 × 3 kernel, stride of 1, and no
padding.

Figure 2.16: The YOLO model workings. Adapted from [34].

frames per second. Furthermore, in comparison to sliding window and region proposal-
based algorithms, this method looks at the entire input while making the predictions,
allowing it to take in the full context of the image.

The rectangles that surround the detected objects are called bounding boxes. The
classes are determined per bounding box, so the output of YOLO inference is the image
with bounding boxes and their corresponding predicted classes. Figure 2.16 shows an
example of these bounding boxes being determined.

YOLO works by dividing the input into a grid, where each grid cell predicts class
probabilities and bounding boxes. For the boxes, five properties are predicted: the x and
y coordinates of the center, the width and height, and the confidence scores that the box
contains an object. The grid size is defined by S, the amount of bounding boxes possible per
cell B, and the amount of classes by C, resulting in an output size of S × S × (B · 5 + C).
Figure 2.16 illustrates this process.

2.3.1 Training

To train the bounding box prediction, the model uses a weighted sum-squared error loss.
Here, the bounding box coordinates that contain an object outweigh the loss of boxes
without objects. Besides this, the model predicts the square root of the height and width
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instead of the actual height and width to minimize differences between small and big
bounding boxes, thus somewhat equaling out the significance of small deviations in the
predictions. Furthermore, YOLO predicts multiple bounding boxes per grid cell, so to
determine which box is responsible for which object, the box with the highest IoU with the
ground truth is selected and used for loss calculation. During inference, duplicate bounding
boxes are removed using Non-Maximum Suppression (NMS), where overlapping predicted
bounding boxes with a lower confidence score are removed. Here, the amount of overlap is
determined by the IoU between predicted boxes.

During training, the following loss function is optimized [34]:

λcoord

S2∑
i=0

B∑
j=0

1obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord

S2∑
i=0

B∑
j=0

1obj
ij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

+

S2∑
i=0

B∑
j=0

1obj
ij

(
Ci − Ĉi

)2

+λnoobj

S2∑
i=0

B∑
j=0

1noobj
ij

(
Ci − Ĉi

)2

+
S2∑
i=0

1obj
i

∑
c∈classes

(pi(c)− p̂i(c))
2 (2.14)

Where:

• 1obj
i : 1 if object is present in grid cell i in the ground truth, else 0.

• 1noobj
i : 1 if object is not present in cell i in the ground truth, else 0.

• 1obj
i,j : 1 if the j-th bounding box in cell i is “responsible” for that prediction (else 0).

• λcoord: Constant scalar for the coordinate loss, set to 5.

• λnoobj: Constant scalar for the loss due to cells without objects, set to 0.5.

• S: Grid size.

• B: Number of predicted bounding boxes per cell.

• xi, yi, wi, hi: Ground truth x and y coordinates of the center, and the width and
height of the bounding box.

• x̂i, ŷi, ŵi, ĥi: Predicted x and y coordinates of the center, and the width and height
of the bounding box.

• Ci: Ground truth confidence score for a bounding box and whether it contains an
object.

• Ĉi: Predicted confidence score for a bounding box and whether it contains an object.

• pi(c): Ground truth conditional class probability for class c.
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Scale Depth Width Max channels
n (nano) 0.50 0.25 1024
s (small) 0.50 0.50 1024
m (medium) 0.50 1.00 512
l (large) 1.00 1.00 512
x (extra-large) 1.00 1.50 512

Table 2.2: An overview of the different YOLO scales and their modifiers.

• p̂i(c): Predicted conditional class probability for class c.

The purpose of each line in the loss function is as follows:

1. Calculates the error in the predicted x and y coordinates of the bounding box center
compared to the ground truth.

2. Calculates the error in the width and height. The square root is used to equalize the
impact of deviations in both small and larger bounding boxes.

3. Calculates the error in the confidence score for each bounding box, where the con-
fidence score is comprised of whether the grid cell contains an object and how well
the bounding box matches the ground truth by calculating the IoU.

4. Calculates the error in the confidence score for grid cells that do not contain an
object. A lower weight is then applied to this loss to reduce the impact of incorrectly
predicted background cells.

5. Calculates the error in predicted class probabilities, which is only counted for cells
that actually contain an object.

2.3.2 Ultralytics YOLO11

YOLO11 is the newest YOLO version from Ultralytics [35] and is chosen to be used in
this work. In the ten versions since YOLOv1, the algorithms has seen some improvements,
which will be summarized in this section.

Architecture

YOLO comes in 5 different scales, these determine the amount of parameters in the model
by modifying the depth, width and maximum channels of certain layers, but the architec-
ture stays the same. The scales and their corresponding alterations are described in Table
2.2. A schematic of the architecture is depicted in Figure 2.17.

Backbone The YOLO backbone can be seen as the core of YOLO. Here, the image
is progressively transformed into more refined feature maps that allow the head of the
algorithm to perform proper object detection. Where the first YOLO version used a
feature extraction backbone inspired by GoogLeNet, utilizing a simple CNN architecture
[34], YOLO113 upgraded to using a mix of convolutional layers, and C3k2, SPPF and
C2PSA blocks [36, 37].

3As defined in the official Ultralytics repository: https://github.com/ultralytics/ultralytics/
blob/main/ultralytics/cfg/models/11/yolo11.yaml
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Figure 2.17: A schematic overview of the YOLO11 architecture.
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Figure 2.18: A schematic overview of the C3k2, C3k, and bottleneck blocks in
YOLO.

The backbone starts with convolutional layers that downsample the input image, while
increasing the channels, allowing the network to extract more in-depth features. These are
followed by C3k2 blocks – an efficient implementation of the Cross Stage Partial (CSP)
Bottleneck – which contain one or multiple C3k blocks, depending on the depth param-
eter of the chosen YOLO scale. As depicted in Figure 2.18, these C3k blocks consist of
bottleneck layers, which are layers with fewer neurons, forcing the network to learn a more
general representation of the input, reducing dimensionality and increasing generalizabil-
ity. These C3k2 blocks retain knowledge about higher-level features through the residual
(skip) connections, but learn a lower-dimensional feature set in the bottleneck layers.

Near the end of the backbone, the model includes a Spatial Pyramid Pooling - Fast
(SPPF) layer, which is a faster version of SPP, reducing computational complexity. This
layer uses max pooling at multiple scales to extract more general and more specific fea-
tures in a single representation, allowing the rest of the network to use a diverse set of
information. This layer enhances the network’s ability to detect objects of different sizes
and positions, making it more robust.

The backbone is closed with a C2PSA block, with one or multiple Position-Sensitive
Attention (PSA) blocks, depending on the depth parameter of the chosen YOLO scale.
As depicted in Figure 2.19, the input is divided into two parts: one passes through PSA
layers, which prioritizes focus on important regions of the feature map, while the other
bypasses them.

The backbone passes outputs at different resolutions via the neck to the head, this
happens at P3/8, P4/16 and P5/32. Here the P stands for the processing stage in the
backbone, and the number after the slash stands for the downsampling rate. Meaning that
P3/8 passes the highest resolution feature map for finer details (smaller objects), whereas
P5/32 passes the lowest resolution feature map for more contextual details (bigger objects).

Neck The YOLO neck uses a combination of upsampling, concatenation and C3k2 layers
to bring the different scaled features together and send them to the YOLO head. Combining
the features at different scales improves robustness in multi-scale object detection through
the combination of finer details and broader contextual information. Here, the following
happens:

1. The features from P5/32 are upsampled and concatenated with P4/16, after which
a C3k2 layer is applied.

2. This is then upsampled and concatenated with P3/8, after which a C3k2 layer is
applied.
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Figure 2.19: A schematic overview of the C2PSA block.
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3. This is then downsampled and concatenated with the output of 1., after which a
C3k2 layer is applied.

4. This is then downsampled and concatenated with the output of the backbone, P5/32,
after which a C3k2 layer is applied.

5. The output of 2., 3. and 4. are passed to the Detect layer, which makes up the head
of the network.

Head The YOLO head consists of the detection module and is responsible for predicting
the bounding box coordinates and class probabilities. Unlike earlier versions, YOLO11
uses an anchor-free design, eliminating the use of pre-defined anchor-boxes. The anchor-
free design is a simpler approach, reducing the computational complexity. For each of
the different feature maps passed by the neck (P3, P4 and P5), each grid cell predicts a
bounding box (x-offset, y-offset, w, h) and class probability for each class resulting in a
tensor shape of (B,N, no), where:

• B : Batch size.

• N : Number of anchors (equal to the number of grid cells).

• no = number of classes + reg_max · 4 : Outputs per anchor.

Bounding box regression makes use of discretization, representing each coordinate as
a probability distribution. Here reg_max references the fixed number of bins representing
the bounding box coordinates, by default set to 16. A weighted sum of the bins is used
to obtain the final coordinate value. This distribution is trained using Distribution Focal
Loss (DFL), which learns to focus on the two bins closest to a ground-truth target value.
E.g. if the target value for x is 0.6, then the distribution is altered so that bins 0.5625
and 0.625 (when reg_max = 16) will obtain a higher probability. By using this discretized
approach, the model allows for uncertainty to be represented in the coordinates, improving
the overall accuracy.

Besides DFL loss, YOLO makes use of a bounding box loss based on IoU, called Com-
plete Intersection over Union (CIoU). This incorporates the distance between box centers
and the similarity in aspect ratio to improve over standard IoU. The third loss function
that is used for object detection is a Binary Cross-Entropy (BCE) loss to determine the
classification loss. This loss function evaluates how accurate the class predictions are in
comparison to the labeled classes. In YOLO11, it is possible to assign a weight to these
three different losses when the model fails to properly optimize using the standard loss
weights.

2.4 Context-based Low-light Image Enhancement (CoLIE)

Context-based Low-light Image Enhancement (CoLIE)4 is a novel method for LLIE, pro-
posed by Chobola et al. [38]. Their approach is based on the Retinex theory (see Section
2.5.2) and therefore incorporates splitting the image into an illuminance component and
a reflectance component. It does this by converting the image from RGB into the Hue,
Saturation, and Value (HSV) colour space, where the Value (V) component is taken as
the illuminance component. Using this colour space reduces the problem into enhancing a
single component: the Value.

4Available: https://github.com/ctom2/colie
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Figure 2.20: A visualization of NIRs using different activation functions, including
their first and second order derivatives. Adapted from [39].

For this research, the CoLIE method was chosen because of the domain-independence,
the high-scoring metrics in LLIE, and the proven effectiveness in optimizing object detec-
tion efficacy in low-light images [38].

2.4.1 Neural Implicit Representations

CoLIE uses a concept called Neural Implicit Representations (NIRs), particularly Sinu-
soidal Representation Networks (SIRENs) [39]. This can be used to represent data as a
mapping function from input coordinates to a corresponding value by encoding data in the
parameters of a fully-connected NN. For example, for an image, a NIR learns to adjust its
weights to obtain a mapping from every (x, y) coordinate to the corresponding pixel inten-
sity, effectively storing the contents of the image implicitly in the weights of the NN. This
way, the represented data is continuous, allowing for smooth interpolation or obtaining an
output image of any resolution.

SIRENs specifically make use of a sinusoidal activation function, which allow the net-
work to capture significantly finer details than NIRs using ReLU activation functions. This
can be attributed to the partially linear nature of the ReLU activation functions, giving it
a second order derivative of zero. This prevents ReLU-based NIRs from representing finer
details that are contained in higher-order derivatives of the signals, as shown in Figure
2.20.

For CoLIE, a NIR is used to map 2D coordinates to the value component of the HSV
colour space. Here the NIR is trained to predict the original value component, based on the
pixel coordinates and the original value components, a W×W window centered around the
pixel. This addition of providing a context window deviates from conventional NIRs, but it
allows the network to understand more intricate connections within the image, preserving
finer details. The network starts with two branches, the first processing the context window
and the second processing the coordinates, each containing a hidden layer of 256 neurons.
Each branch is then passed to a hidden layer containing 128 neurons, after which the two
branches are concatenated and passed to a final hidden layer containing 256 neurons. This
final layer is connected to a single output value activated using a sigmoid function which
represents the intensity of the value component for the provided input. An overview of the
NIR used by CoLIE is depicted in Figure 2.21.
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Figure 2.21: An overview of the CoLIE NIR algorithm. Adapted from [38].

2.4.2 Zero-shot

CoLIE uses a zero-shot approach, allowing the enhancement of any image with any degree
of under-exposure, regardless of image domain. Zero-shot refers to a concept within ML
where a model is able to handle unseen data without explicitly being trained on similar
data. This approach significantly increases the generalizability of an ML model, and it
mitigates the need for labeled data to train for the specific task it is being applied to. In
the case of CoLIE, the NIR is adapted for each individual image, while optimizing a set
of loss functions (see Section 2.4.3), without requiring any prior training. The domain-
independence allows CoLIE to achieve great performance in many different image domains,
from low-light street photography to fluorescence microscopy. This domain-independence
does come with a performance trade-off; each image requires re-fitting the NIR, which
takes a couple of seconds.

2.4.3 Loss function

The loss functions used in CoLIE are defined as

Ltotal = αLf + βLs + γLexp + δLspa (2.15)
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Where:

• Lf : Fidelity loss, relating to the pixel-level similarity between the original and the
enhanced illumination values, measured using MSE. This is used to obtain a repre-
sentation similar to the original Value space.

• Ls: Smoothness loss minimizes sudden transitions in the illumination field, improving
the consistency of illumination in the enhanced image. It is based on the Total
Variation (TV) loss.
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• Lexp: Exposure loss ensures that the average intensity of local regions in the illumi-
nation field matches the desired intensity, which is set using parameter L. The usage
of local regions ensures that all parts of an image achieve a similar intensity in the
illumination field.

• Lspa: Sparsity loss penalizes excessively high value components (of the HSV space)
in the enhanced image, preventing overenhancement.

• M : Total number of pixels in the image.

• (x̂V )i: Enhanced illumination value at index i.

• (yV )i: Ground truth value component at index i.

• ∇ix̂V : Vertical gradient of the enhanced illumination component.

• ∇jx̂V : Horizontal gradient of the enhanced illumination component.

• N : number of non-overlapping local regions. Set to 16 in the CoLIE algorithm.

• Tk: Average intensity value of the illumination field at index k.

• ẑV : Enhanced value component (of the HSV space) produced by the enhancement
algorithm.

And α, β, γ, and δ define the weight of each loss.

2.4.4 Guided filtering

To speed up performance, CoLIE optimizes a downscaled version of the input image, mit-
igating any performance impact caused by the size of high-resolution images. To obtain
the finalized enhanced image, the low-resolution enhanced value component is scaled up
using a guided filtering approach and used to replace the original image’s value component.
Guided filtering uses a combination of the downscaled original value component, the low-
resolution enhanced value component, and the original (high-resolution) value component.
Here, it uses the original component as a guide when upscaling the enhanced value compo-
nent, to ensure the preservation of smaller details and edges present in the high-resolution
image.

2.5 Related Work

The following section discusses the related work that was used for this thesis. The summary
of the methods used for error detection in 3D-printing setups can be found in Table 2.3
and the summary of the Low-light computer vision methods can be found in Table 2.4.
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Method Description Performance Ref.
Acoustic Emission +
Clustering

Acoustic emissions
classified into machine
states.

90.2% accuracy [40]

Acoustic Emission +
SVM

Acoustic emissions
classified into machine
states.

92% accuracy [41]

Accelerometer Vibra-
tion Monitoring

Nozzle clogging detec-
tion by monitoring vi-
brations.

- [42]

Motor Current Moni-
toring

Nozzle clogging detec-
tion by monitoring mo-
tor currents.

- [43]

Edge Detection for
ROI-extraction +
Differential Image
Analysis

Analyzing the print
to detect various print
failures.

60–80% detection rate,
but 60–80% FPR

[3]

Edge Detection +
Multi-printer Monitor-
ing

Edge detection for de-
tecting layer shifts and
nozzle clogging.

Detected at 60–79% of
the print progress

[44]

3D Model Projection
Comparison

Comparing 3D model
projections with cam-
era input.

100% accuracy (catas-
trophic errors)

[45]

Stereo Camera + 3D
Model Point Cloud
Comparison

Comparing real-world
point cloud to 3D
model point cloud.

- [46]

Structured Light +
3D Model Point Cloud
Comparison

Comparing real-world
point cloud to 3D
model point cloud.

High accuracy for sim-
ple shapes

[47]

Simple CNN Classifier Classify images as “suc-
cess” or “failure”.

70% accuracy [48]

AlexNet + SVM “Spaghetti” and
“stringing” detection.

87.10% accuracy [4]

Traditional CV
methods + CNN
(MobileNet-v2)

Traditional methods
for missing and shifted
layers, CNN for over
and underfill.

87.2% & 75.0% F1-
score missing/shifted
layers, 86.41% accu-
racy over/underfill

[49]

ResNet-18 CNN “Stringing” and “under-
extrusion” detection.

83–84% accuracy [50]

YOLOv8 “Stringing”, “obstacle”,
and “unstick” detec-
tion.

90.0% mAP@50 [51]

YOLOv5 “Curling”, “break”, “for-
eign”, “gap”, “uneven”,
and “good” detection.

92.8% mAP@50 [52]

YOLOv2 (Obico) Open-source spaghetti
detection software.

60% mAP [5]

Table 2.3: Overview of related work on error detection in 3D-printing setups.
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2.5.1 Error Detection in 3D-Printing Setups

The topic of “error detection algorithms” in 3D printing scenarios is not new. Existing
work often focuses on one or more specific print defects (see Section 2.1.2), where their
proposed methods allow for the detection of one or multiple anomalies. None of the en-
countered works focus specifically on anomaly detection in low-light scenarios, showing a
clear research gap. In the following section, an overview is provided of what is out there.

Non-Computer Vision-based Methods

This research makes use of the YOLO algorithm (see Section 2.3), which is a CV based
approach. However, some literature proposed different solutions. For example, Liu et al.
[40] and Wu et al. [41] made use of acoustic emission sensors to determine the status of
the machine. Liu et al. employed a clustering approach to classify data into five machine
states; normal, semi-blocked, blocked, material loading, and run-out-of-material. Their
approach obtained an average classification accuracy of 90.2%. Instead of a clustering
approach, Wu et al. used an SVM to differentiate between these machine states, obtaining
a classification accuracy of 92%. Using acoustic emissions shows potential, as it enables
accurate machine state monitoring, without much overhead. However, it is not applicable
to this work since spaghetti defects occur while the machine is in a normal state, making
them undetectable using this approach.

A similar approach by Tlegenov et al. [42] uses an accelerometer to monitor vibration
signals to detect nozzle clogging. They modeled the theoretical forces in the machine when
nozzle clogging occurs and then compared those to real-world measurements, showing that
their approach is a feasible way of monitoring nozzle clogging. In another work by Tlegenov
et al. [43], they monitored the changes in motor currents when nozzle clogging occurred
and compared this to a similar theoretical model. Their findings show that the measured
currents were similar to the theoretical model, making this approach another feasible way
to monitor nozzle clogging in 3D printers. As they focused on nozzle clogging, this method
is also not applicable to this research, as spaghetti is not always paired with nozzle clogging.

Computer Vision-based Methods

Besides non-CV-based approaches, numerous works make use of CV-based approaches, by
observing the 3D printer with a camera and registering when an anomaly occurs.

More trivial approaches use simpler CV principles, such as the approach proposed by
Baumann and Roller [3]. They used a combination of Houghcircle detection and Can-
nyEdge line detection to calibrate the camera and obtain the Region Of Interest (ROI).
Next, the frame is analyzed using a manually selected colour with thresholding, after which
the largest connected region matching this colour is extracted and identified as the printed
object. Finally, this object is analyzed to observe possible missing material flow anoma-
lies. Another part of their setup uses differential images to determine changes between
consecutive frames, which allowed them to monitor if the object detached from the print
bed. Their work demonstrated a 60% to 80% detection rate, but also a 60% to 80% False
Positive Rate, showing that their solution is not very robust.

Similarly, Becker et al. [44] looked into the monitoring of 3D printers using CV. For
the preprocessing step, they made use of Gaussian filtering, grayscale conversion and so-
bel filtering to find the edges. Their focus was on layer-shift errors and nozzle clogging,
and preventing material waste by stopping the print when the errors are detected. The
distinctive aspect of this work was the option to monitor multiple 3D printers at once, as
the camera is mounted on a movable robot. Their tests introduced errors at around 39%
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into the printing process and the average print stopped at 60% for nozzle clogging errors
and 79% for layer shift errors, showing a relatively slow detection speed, but still reducing
material waste.

Nuchitprasitchai et al. [45] used the STL file of a print and compared the observed
image from the camera to the simulated projection of the STL file, raising an error if there is
more than a 5% difference. Their approach compared the use of a single and dual-camera
setup, concluding that the dual-camera setup is more accurate but takes over 4 times
as long; 45-75 seconds compared to 10 seconds for the single-camera setup. Combining
the single and dual-camera setup achieved a 100% detection accuracy in their test for
catastrophic errors.

Another method comparing the model with the observation was proposed by Holzmond
and Li [46]. They used a stereoscopic camera to reconstruct a point cloud of the printed
object after each layer. This point cloud was then compared to the point cloud generated by
the original Computer Aided Design (CAD) model to observe any deviations, indicating
possible defects. Their model showed promising results when observing the generated
deviation maps, however they did not provide any concrete metrics to quantify the model’s
robustness. Their approach also requires optimal lighting conditions and a high-contrast
textured filament for the stereoscopic camera to function.

A similar method was proposed by Charalampous et al. [47]. They employed a 3D
structural light scanner setup consisting of a stereoscopic camera paired with a projector
that emits a light pattern on the surface, mitigating the need for high-contrast textured
filaments. They provided MAE and RMSE metrics in their work to quantify the spatial
deviations of their measured point cloud data versus the theoretical point cloud data,
based on the CAD file. For simple geometries, the system obtained a high accuracy,
indicating that this method is suitable for analyzing the observed structure, whereas the
error increased for more complex geometries. Charalampous et al. speculated that the
increased deviations are caused by lack of precision of the FDM printer for more complex
geometries. Nevertheless, their setup proved to be an effective way for analyzing 3D prints
for deviations from the original CAD model, while also being adaptable to other forms of
AM, such as PBF, due to the reliance on point cloud comparisons instead of specific FDM
processes.

While the aforementioned methods contribute to interesting aspects of anomaly de-
tection in 3D printers, they are not directly applicable to this research. The works by
Baumann and Roller [3] and Becker et al. [44] are unable to detect spaghetti defects, and
the works by Holzmond and Li [46] and Charalampous et al. [47] require extra external
hardware and have also not been tested on spaghetti defects.

Computer Vision and Machine Learning Other work focused on the combination of
computer vision techniques with ML, to extract abstract features from images and detect
anomalies. For example, a simple approach was presented by Zhang et al. [48], where
a simple CNN setup was used to classify images as “successful” or “failed”. Although no
special steps were taken, this method already achieved an accuracy of 70%, showing that
an ML approach is promising.

Yean and Chew [4] introduced a CNN-based approach for the detection of “spaghetti”
and “stringing” defects. Their method employed an AlexNet DL network used for feature
extraction and an SVM for classification and obtained an overall accuracy of 87.10%.
Their approach did show slightly worse performance in real-world testing, achieving an
86% accuracy. They also mentioned that early-stage defects were harder to detect, as the
defect severity was minor when it started to occur.
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An approach combining traditional CV methods and ML was proposed by Ern and Jyn
[49]. Their method starts with ROI extraction and then applies three defect detection algo-
rithms for “missed layer”, “shifted layer”, and “overfill and underfill” detection respectively.
The missed and shifted layer detection use a combination of histogram backprojection with
Otsu’s thresholding – an automatic threshold selection approach – for ROI extraction, after
which the contours are compared to the expected values to determine deviations. For the
shifted layer detection, the contour search space is slightly altered to better handle contour
size variations. Finally a CNN-based approach is employed for the overfill and underfill
detection, where they compared the performance of three lightweight CNN-based models:
Xception, MobileNet-v2, and ShuffleNet-v2. The missed layer detection achieved an aver-
age F1-score of 87.2%, the shifted layer detection an average F1-score of 75.0%, and the
overfill and underfill detection using the CNN-based model with the best accuracy/speed
balance, MobileNet-v2, achieved a test accuracy of 86.41%.

Rettenberger et al. [50] employed a ResNet-18 CNN approach for classification of
anomalies. They created a dataset containing four classes: “good”, “under-extrusion”,
“stringing”, and “spaghetti”, where their approach focuses on the first three classes. They
achieved an accuracy of 84% for the “good” and “stringing” class with an 83% accuracy
for the “under-extrusion” class. To validate the generalizability of their approach, they
tested it on a different silver print bed (instead of black) and from a different angle. When
tested under these different conditions, their approach showed a significant reduction in
accuracy. For the silver bed test set, the accuracy score reduced to 51%, 87%, and 51%,
for “good”, “under-extrusion”, and “stringing”, respectively. For the different angle test set,
the accuracy was reduced to 67%, 81%, and 68%. Their work showed that a CNN-based
approach for anomaly detection has potential, as the setup is relatively simple hardware-
wise and offers real-time detection capabilities. However, the presented method is limited
to detection of two anomaly classes and the achieved accuracy in varied environments is
lacking, indicating the need for more robust training. Rettenberger et al. published their
dataset, which is used in this work to verify the generalizability of the proposed approach,
as described in Section 3.2.

These ML methods have shown to be more versatile in their detection capabilities,
allowing them to detect more complex anomalies, such as spaghetti. However, ROI extrac-
tion can still be tedious and alterations in the setup have a tremendous negative impact
on accuracy.

YOLO-based methods Another ML algorithm used for anomaly detection is YOLO,
as extensively described in Section 2.3. An example of this was presented by Karna et
al. [51], where a modified YOLOv8 algorithm was used to detect the following anoma-
lies: “stringing”, “obstacle”, and “unstick”. Additionally, they labeled three different benign
shapes: “rectangle”, “cube”, and “cylinder”. Their approach achieved a mAP@50 of 90.0%
and a mAP@50-95 of 89.7%, demonstrating accurate localization and class predictions. A
major limitation of their approach is the focus on not only a fixed number of anomaly
classes, but also benign classes. This makes their approach unusable for other geome-
tries. However, their evaluation metrics demonstrated the effectiveness of using YOLO for
anomaly detection in 3D printing.

Yeh et al. [52] showed a similar approach using a YOLOv5 model, where they focused
on the following anomalies: “curling”, “break”, “foreign”, “gap”, “uneven”. They also added
a class “good”, indicating no defects, but unlike in the work from Karna et al. [51], this
class is not limited to a single geometry. Their approach achieved a mAP@50 of 92.8%,
demonstrating better results than achieved in the work by Karna et al., while having two
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more anomaly classes. This work showed that YOLO can be employed for the detection
of many different anomalies.

Obico5 (formerly known as The Spaghetti Detective) provides an open-source imple-
mentation for spaghetti detection in 3D printers, using YOLOv2 as their detection algo-
rithm [5]. They only have one class: “failure”, and only achieved a mAP of 60%. However,
its open source nature allows it to be used as a baseline model for comparison (see Section
3.3.2).

2.5.2 Low-light Computer Vision

In this work, a LLIE algorithm is used to enhance the detection robustness of a YOLO-
based anomaly detection framework. This section contains related work in low-light CV,
focusing on enhancement algorithms and direct low-light object detection methods.

5Available: https://github.com/TheSpaghettiDetective/obico-server
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Method Description Performance Ref.
YOLOv3 Direct low-light ob-

ject detection.
92.5% mAP (train) [53]

NLE-YOLOv5 YOLOv5 + addi-
tional modules for
low-light object de-
tection.

71.3% mAP@50,
43.4% mAP@50-95

[54]

U-Net + YOLOv5 U-Net feature
enhancement
combined with
YOLOv5.

62.3% mAP [55]

DiffLight Denoising and de-
tail enhancement
branches combined.

25.85 dB PSNR,
87.6% SSIM, 0.082
LPIPS

[56]

Gamma correction
+ U-Net

The combination
of multiple gamma
corrections and a
U-Net.

18.90 dB PSNR,
80.8% SSIM, 0.159
LPIPS

[57]

CICGNet (Retinex-
based)

Multi-stage network
using the Retinex
theory.

22.42 dB PSNR,
89.4% SSIM, 0.073
LPIPS

[58]

Retinex with
weighting map

Single split Retinex,
optimizing weight-
ing map against
nonuniform lighting
for detail preserva-
tion.

- [59]

Retinex + Dark
Channel Prior

Robust Retinex
combined with haze
removal.

6.94 avg. entropy [60]

CoLIE NIR-based Retinex
with guided filter-
ing.

17.89 dB PSNR,
62.5% SSIM

[38]

Table 2.4: Overview of related work on low-light computer vision techniques.

Direct Low-light Object Detection

In contrast to enhancing images before performing object detection, some works have opted
to directly use an object detection framework. To achieve low-light object detection, the
works by Susa et al. [53], Peng et al. [54], and Ye and Ma [55] all utilized a YOLO
algorithm. Susa et al. used a YOLOv3 algorithm trained on the ExDark dataset without
making specific changes to the algorithm, achieving a training mAP of 92.5%. However,
they did not provide any concrete metrics on a test set. On the other hand, Peng et
al. proposed an altered YOLOv5 algorithm, called NLE-YOLO, which uses additional
modules aimed at improving low-light image object detection and was also trained on
the ExDark dataset. Their approach achieved a mAP@50 of 71.3% and a mAP@50-95 of
43.4%. Ye and Ma made use of a U-Net-based feature enhancement network before the
YOLOv5 network in order to improve feature extraction of low-light images. They altered
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the YOLOv5 network to incorporate the U-net features and added extra attention layers
for improved detection accuracy. They tested their approach on a manually labeled dataset
and achieved a mAP of 62.3%.

All three works concluded that their methods demonstrated promising results in low-
light object detection. Peng et al. mentioned that their method outperformed baseline
YOLO and other modified YOLO versions, while Ye and Ma showed that their method
had better performance than baseline YOLO and several other state-of-the-art models.

Low-light Image Enhancement

LLIE is a topic that is not only relevant for improving visibility for human observation
but also significantly impacts CV systems [8]. The latter is relevant for this work, as
it investigates the combination of an LLIE algorithm with object detection to improve
anomaly detection in low-light conditions. The following section summarizes findings from
related work.

LLIE can be done in different ways. Conventional methods, such as grayscale trans-
formation, histogram equalization, adaptive gamma correction, and pixel intensity fuzzifi-
cation [8, 61], remain present in literature. However, DL methods have shown significant
advancements in LLIE.

For example, DiffLight [56] employs two different DL branches to enhance images: the
Denoising Enhancement branch, which uses a diffusion model to correct noise and another
model to enhance colour and contrast, and the Detail Preservation branch, which employs
a U-Net structure containing attention blocks to focus on the recovering smaller details
in low-light images. The outputs of these two branches are fused using a weighted fusion
method to produce the enhanced image. Their approach was tested on the LOLv1 dataset
and achieved a Peak Signal-to-Noise Ratio (PSNR) of 25.85 dB, Structural Similarity
Index Measure (SSIM) of 87.6%, and Learned Perceptual Image Patch Similarity (LPIPS)
of 0.082.

In addition to DiffLight, Peng et al. proposed another DL-based LLIE method [57].
Their approach first converts the image to the YCbCr colour space and enhances the
luminance (Y) channel using multiple gamma corrections. The multiple gamma-corrected
luminance channels are then merged using a DL network. The output luminance and
chrominance are then passed through a U-Net-shaped deep feature extraction network
that includes dense blocks and an attention mechanism. Finally, the image is converted
back to the RGB colour space. Their approach was tested on the LOL dataset and achieved
a PSNR of 18.90 dB, SSIM of 80.8%, and LPIPS of 0.159.

Retinex Theory A common concept referenced in the literature is the Retinex the-
ory [62]. This theory explains the way that humans perceive colour and lightness, even
when illumination is not constant, by separating perception into reflectance and illumi-
nance components. The reflectance component contains colour and lightness information,
whereas the illuminance component refers to the lighting conditions of the scene. Several
LLIE approaches use the Retinex theory as a basis by enhancing the illuminance of an
image without affecting the reflection component, thus retaining the colour and lightness
information.

Zhao et al. [58] applied this theory in their Content-Illumination Coupling Guided Low-
Light Image Enhancement Network (CICGNet), which splits and combines the images in
multiple stages using a truss architecture. This iterative process allows the illuminance
component to be enhanced while preserving the details in the reflectance component, pre-
venting overenhancements. Their approach was tested on multiple datasets. When tested
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on the LOL dataset, their approached achieved a PSNR of 22.42 dB, SSIM of 89.4%, and
LPIPS of 0.073.

Alternatively, the method described by Jia et al. [59] uses a single split into reflectance
and illuminance components and then iteratively optimizes a weighting map used to en-
hance detail preservation in the reflectance channel while enhancing the illuminance. This
weighting map is used to combat the issue of nonuniform lighting conditions, by altering
the enhancement intensity for each region overenhancement is minimized. Jia et al. did
not provide any quantifiable metrics in their work.

Thepade and Shirbhate [60] showed a combined approach using a Robust Retinex Model
and a Dark Channel Prior-based enhancement – originally designed for haze removal –
which enhances low-light images by estimating and removing darker areas. To obtain the
final enhanced image, the results of both approaches are merged together using a weighted
fusion method, similar to the Difflight approach. They used the ExDark dataset in their
work and achieved a 6.9377 average entropy.

The Retinex theory is also employed in the LLIE method adopted in this work: CoLIE
[38] (see Section 2.4).
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Chapter 3

Methodology

To answer the research questions of this work, a system setup was created which has been
used to perform several experiments. To assess the performance in these experiments,
a number of metrics was selected and implemented. This chapter describes the devised
system setup, the established dataset, and the experiments which contributed to answering
the research questions.

3.1 System Setup

YOLO11 The system makes use of the YOLO11 object detection algorithm, as de-
scribed in Section 2.3, to find and classify spaghetti anomalies. The choice for YOLO was
inspired by well-performing existing YOLO-based anomaly detection methods proposed in
literature, as well as the publicly-available YOLO-based approach, Obico, as described in
Section 2.5.1. Besides that, the combination of bounding box detection and classification
into a single regression problem provides YOLO with fast detection by elminating the need
for preprocessing steps such as ROI-determination.

CoLIE To tackle the problem of low-contrast anomaly detection, this work employed the
use of CoLIE for Low-Light Image Enhancement. The primary advantage of using CoLIE
is its high generalizability, enabled by a zero-shot learning approach. This allows it to be
applied to images from any domain without requiring extensive training on similar data.
The downside of CoLIE is the added time of fitting the NN for each individual image. This
increases the processing time to multiple seconds depending on the hardware. However,
as the proposed system does not require continuous monitoring – but can be limited (e.g.
one observation per layer) – this added overhead when including CoLIE does not harm the
feasibility of the system.

3.1.1 Proposed System

While a full implementation is out of the scope of this work, this section describes a
conceptual implementation for a system that would make use of the proposed model.

As depicted in Figure 3.1, the system starts with an input image, observed by a camera
attached to the printer. Next, the brightness of the image is used to see if it can be classified
as low-light based on an average luminance threshold. If it is below this threshold, the
image is first enhanced by CoLIE, otherwise the LLIE step is skipped. After this (possible)
LLIE step, anomaly detection using YOLO is performed. If an anomaly is detected with
confidence score higher than a set threshold, a counter is incremented. If this counter
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exceeds another specified threshold, the print is stopped. If not, the system captures a
new image and starts the detection cycle immediately, without waiting for the next layer.
This is done to reduce detection delay, while still mitigating FPs by requiring multiple
consecutive anomaly predictions. If no anomaly is detected, the counter is reset, and the
program first waits until the next layer is finished before capturing the next input image.

The usage of a confidence threshold and counter with a threshold in this case combat
the FPs that occasionally occur. Here, lower thresholds result in the printer detecting more
minimal anomalies, but also possibly stopping prints too early, increasing production time
through unnecessary restarts. On the other hand, higher thresholds mitigate the problem
of the printer stopping too early, but can result in a delay in anomaly detection, resulting
in more material waste. In the worst case, this delay allows the spaghetti to form a “blob
of death”, possibly resulting in increased costs. By properly tuning these thresholds, the
system can be configured to minimize unnecessary interruptions, while still preventing
spaghetti defects.

A possible limitation of this approach would be the delay in detection by waiting for
new input images being captured until the layer is finished. While this approach saves
computational resources, it introduces a detection delay that might be undesirable. To
mitigate this problem, continuous monitoring could be used.

3.2 Dataset Description

To perform analysis of the models, this work required a dataset containing images from
different stages of FDM prints using multiple filament colours. No dataset was found con-
taining prints with dark-coloured filament, likely caused by the lack of research concerning
anomaly detection in low-light environments. Therefore, this work included the gathering
of sufficient data, labeling said data, and assembling this data into a YOLO-understandable
format. This section describes the details of the assembly of the dataset, as well as the
contents of the publicly-available dataset containing (high-contrast) spaghetti defects that
was used to quantify the generalizability of the models.

3.2.1 Data gathering

For this work, a Bambu Lab X1 Carbon printer was used, as described in Section 2.1.3,
which includes a built-in camera with timelapse feature. This feature allowed for the
collection of images from a good variety of prints, including those containing spaghetti
errors. As this printer is used by multiple people at Fraunhofer Innovation Platform for
Advanced Manufacturing at the University of Twente (FIP-AM@UT), several natural-
occurring anomalies have been captured in real-world prints. Additionally, to increase
the amount of spaghetti defect data, two 3D-models were designed to artificially induce
spaghetti errors, significantly reducing the overhead of spaghetti defect data collection.

The first model, depicted in Figure 3.2a, was designed to fall over mid-print, removing
the surface required for filament adhesion, causing spaghetti. The second model, depicted
in Figure 3.2b, has missing support structures, resulting in filament being extruded in the
air, causing spaghetti.

The obtained training data was split into two categories, Colour and Black, to investi-
gate the respective performances. Here, Black contains all the images that were captured
with black filament, and Colour contains the rest. These categories were individually la-
beled and exported, forming a Colour, Black, and Colour & Black (CoBl) dataset, where
the last contains all data of both categories. Another variation of these datasets was added
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Figure 3.1: An overview of a possible system using the low-light anomaly detection
algorithm.
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(a) (b)

Figure 3.2: The two models used for artificially induced spaghetti errors. The
object in 3.2a is a rectangle, angled in a way that causes the object to fall over, re-
sulting in spaghetti. The object in 3.2b contains a floating part without supporting
structure, when the printer tries to print there, the filament has nothing to adhere
to, causing spaghetti.

Figure 3.3: An example defect that was left out in the “more tolerant” dataset
variation.

where smaller defects were ignored, therefore referred to as the “more tolerant” dataset.
This was done to prevent training the model on less important details of spaghetti defects.
Figure 3.3 shows an example defect that was left out of the “more tolerant” variation. A
final variation of these datasets used a higher sampling rate for background images and
is therefore referred to as “more background”. The total number of background images
and images containing spaghetti, including the “more background” and “more tolerant”
variations can be found in Appendix A in Table A.1 for the training datasets.

For the test data, datasets were constructed separate from the training data, also split
into two categories: Colour, and Black. Similar to the “more tolerant” dataset, the minor
defects were ignored. The total numbers for the test datasets can be found in Appendix
A in Table A.2.

3.2.2 Data Labeling & Preparation

To label the data, the open source software Label Studio [63] was used. This tool allows for
the labeling of video files where bounding boxes can be drawn that span multiple frames,
adjusting in size through interpolation. This interpolation speeds up labeling video files,
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especially when the objects move linearly or are static, as not every frame requires manual
labeling. These labels were then exported in a JSON format, where for each frame the
corresponding bounding boxes were described.

Unfortunately, at the time of writing, Label Studio’s export function did not include the
actual frame images in the export, but only the frame number. Therefore, the video needed
to be split into frames afterwards, which had to then be matched to the labels contained
in the JSON file. However, it was found that the frame numbers in the JSON file did
not match the frame numbers of the split video, likely through misaligned sampling-rates.
To circumvent this issue and properly obtain the corresponding frame images, a script
was created that takes the still frames from the Label Studio interface and downloads
them. This made sure that the frames in the exported dataset were the exact same as the
ones that were labeled, making it significantly easier to match the exported labels to the
corresponding frames.

After the export, the downloaded frame images – including Colour and Black – were
pre-enhanced by CoLIE and saved in a separate folder. This was done to reduce the
computational overhead of CoLIE in the training and testing environment.

Finally, these labeled files were combined and converted into a format that can be
processed by YOLO. In this process, the train datasets were split into a “train” and “val-
idation” part, making sure that the split occurs at timelapse-level rather than per frame,
which was done to ensure that frames belonging to a single timelapse were not divided over
both the train and validation set. The test datasets contain entirely different timelapses
than those in the train datasets, and all data in those sets falls under the “test” part, hence
no further split was required.

3.2.3 External Evaluation Dataset

An external dataset was used to examine the generalizability of the proposed approach.
For this aspect, the dataset included in the work by Rettenberger et al. [50] was chosen,
as their dataset has been published and contains images of spaghetti defects. However, as
their approach did not use YOLO, the bounding boxes had to be added manually using
Label Studio.

3.3 Experiments

To formulate conclusions for the devised research questions of this work, a set of experi-
ments were conducted. The setup of these experiments is described in the following section.

3.3.1 Metrics

To quantify the results of the experiments, a selection of metrics has been used in this
work, as described in Section 2.2.7. The base of these metrics is formed by the TPs, TNs,
FPs, and FNs. These values were determined by evaluating the predictions made for each
frame of the test timelapses as follows:

• TP: The ground truth and prediction both contain at least one spaghetti bounding
box.

• TN: The ground truth and prediction both contain no bounding boxes.

• FP: The ground truth contains no bounding boxes, but the prediction contains at
least one spaghetti bounding box.
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Figure 3.4: An example of the bounding boxes generated by Obico, showing
multiple overlapping boxes for the same anomaly. This also shows the slight mis-
alignment of some bounding boxes.

• FN: The ground truth contains at least one spaghetti bounding box, but the predic-
tion contains no bounding boxes.

In the testing phase of the models, the number of bounding boxes and the placement of
bounding boxes were disregarded. This was done because the goal was to stop the printer
in case anomalies were detected, not to accurately indicate where the anomaly occurred
or how many individual instances of spaghetti were detected. However, these models did
still make use of bounding box position and number of bounding boxes to optimize their
predictions in the training phase. This decision was partly made when observing the Obico
output while using the test data, as it often showed multiple overlapping bounding boxes
for the same piece of spaghetti, as well as slightly misaligned boxes, as shown in Figure
3.4.

The confusion matrix shows the obtained TPs, TNs, FPs, and FNs, and the per-
formance can be expressed in the derived metrics: precision, recall, F1-score, and False
Positive Rate. For preliminary testing, primarily the F1-score is used, as it shows the
balance between precision and recall, creating an overall image of the performance of the
model. To assess the performance of the final model, the F1 and PR curves were calculated
to give a better indication of the overall performance of the classifier, as well as to indicate
a good value for the confidence threshold.

Print Failure Stopping Metric

The Print Failure Stopping Metric (PFSM) describes a custom metric devised for this work
based on the proposed system in Section 3.1.1. The goal of this metric was to provide
insight into how the model would perform when implemented in a real system. It works
by virtually “stopping” the print after enough consecutive contain a predicted anomaly,
and verifying if the system was supposed to stop. If the system stopped correctly, the
delay, expressed in the amount of frames after the anomaly first appeared, is recorded as
an additional performance indication. Figure 3.5 shows an example of how this metric
works with a threshold of three frames. By obtaining this metric at different thresholds,
the trade-off in accuracy versus delay can be shown, which can be important in optimizing
the system for each individual use-case.
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Figure 3.5: A depiction of PFSM with a threshold of three frames. This metric
shows the theoretical effects of deploying the model in a real system, as well as the
delay that is observed within the TPs.
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3.3.2 Baseline Establishment

The open-source spaghetti detection implementation in Obico (See Section 2.5.1) was used
to establish a baseline for spaghetti detection performance. This detection method was
applied to the same test sets used for the model described in this work, providing a clear
comparison between the two.

3.3.3 First Experiment

The first experiment was conducted using either the Colour, Black, or the combined CoBl
dataset for training. To influence model performance, the following variations were intro-
duced for each of these datasets:

1. Albumentations (data augmentations). This was done to see what effect these data
augmentations have on the performance of the model on the test set.

2. “Background” images. Here, the background images were selected from a number of
frames in the timelapses where no anomaly occurs. These were then fed to the YOLO
model to learn what should be considered as “background”, theoretically reducing the
number of FPs. Here, the “more background” variant was also tested to see what
effect a higher selection of background images has on the model’s performance.

3. CoLIE-enhanced images (20% of images). This was done to see the effects on the
model’s performance when it has seen enhanced images in the training phase, before
applying it to enhanced (and non-enhanced) images in the testing phase.

4. Freezing the YOLO backbone. This was done to see if it would improve the model’s
performance by reducing the risk of overfitting, as the initial feature extraction layers
were kept unmodified during training.

The performance of the models from the first experiment round were then compared by
looking at the F1-score, described in Section 3.3.1. Using this comparison, the performance
of the models over the Colour, Black, and Rettenberger [50] datasets was shown and the
impact of the aforementioned variations can be observed.

3.3.4 Second Experiment

After the first round of experimentation, possible preliminary conclusions about the varia-
tions could be formed. However, certain variations were not explored. Therefore, a second
experimentation round, containing different variations was conducted, with the following
setup:

1. Using YOLO11s, YOLO11m, or YOLO11l. For the initial round of experimentation,
only YOLO11s was used. In the second round, this was expanded to the medium
and large variants, possibly allowing the model to learn more intricate details about
spaghetti, allowing for better detection performance.

2. Using 20% or 100% CoLIE-enhanced images. In the first experimentation round,
only a variation with 20% CoLIE-enhanced images was investigated, however, the
inclusion of 100% CoLIE-enhanced images in the training datasets provides a more
complete insight into the possible effects on performance.
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3. The “more tolerant” version of the datasets with fewer labels was compared to the
original datasets in this round. Section 3.2.1 describes the differences between these
datasets.

Similar to the first experimentation round, the models were evaluated by obtaining the
metrics as described in Section 3.3.1. After this, their performance was primarily compared
by observing the average F1-score over the three test datasets.

3.3.5 Additional Experiments

To conclude the experiments, an additional round was performed using the highest-scoring
models from the second experimentation round as a baseline. This round included the
variations from the first experiment that did not show a clear impact individually. The
results of the second round provide good insights into the influence of different YOLO scales
and the impact of different amounts of CoLIE-enhanced images in the training dataset.
However, the influence of background images, and the influence of using the Colour and
Black datasets separately, were left out. The outcome of this additional round provides a
full overview of how these training settings can be combined to obtain the optimal model
configuration, based on the best overall performance across the three test datasets, focusing
on both detection accuracy and generalizability.
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Chapter 4

Results

This chapter contains the results of the experiments described in Section 3.3, including
relevant metrics and figures. Further interpretation of the results are described in Chapter
5.

4.1 Baseline Establishment

The first step involved establishing a baseline by running the test sets through an existing
open-source spaghetti detection algorithm called Obico, as described in Section 2.5.1. The
resulting metrics can be found in Table 4.1 and the F1-curve is shown in Figure 4.1, which
shows that the Obico model achieves the highest F1-score of 43% when the confidence
threshold is set to 16%, which gives the model the optimal balance between precision and
recall. Additional Figures can be found in Appendix B.1.

Test dataset Precision Recall F1 Score
Black 100.0% 39.7% 56.8%
Black (CoLIE) 94.9% 41.5% 57.8%
Colour 63.2% 17.9% 27.8%
Colour (CoLIE) 37.8% 18.5% 24.8%
Rettenberger [50] 20.5% 69.7% 31.7%
Rettenberger [50] (CoLIE) 27.7% 70.2% 39.8%
Average 51.9% 38.3% 35.4%
Average (non-CoLIE) 57.7% 37.9% 34.8%
Average (CoLIE) 46.2% 38.7% 35.9%

Table 4.1: Precision, Recall, and F1 Score for the Obico baseline, tested on the
different test datasets. The averages are weighted according to the number of frames
in each dataset, as shown in Table A.2.

To highlight the effect of CoLIE on the baseline, the metrics achieved on the normal
test sets compared to those on the CoLIE-enhanced test sets are shown in Table 4.1 and
Appendix B.1, Figures B.4, B.5, B.6, and B.7. Here, Table 4.1 shows that Obico achieves
a small 1.0% increase in F1-score when CoLIE is used on the Black dataset, and an 8.1%
increase in F1-score when using CoLIE on the Rettenberger [50] dataset.
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Figure 4.1: The F1-curve for the Obico baseline, showing the performance for
specified confidence thresholds, indicating that Obico achieves the highest F1-score
of 43% at a 16% confidence threshold.

4.2 First Experiment

The first experiment was set up as described in Section 3.3.3 and the achieved F1-scores
per test dataset can be found in Table 4.2 for the three highest-performing variations and
the full overview can be found in Appendix B.2, Figure B.8. This experiment round was
primarily used as a preliminary testing round to see the effects of certain parameters or
train dataset variations. The results show that most experiments are unable to surpass the
Obico baseline; only three experiments achieved a slightly higher average F1-score, with
the highest-scoring model in the first round obtaining a 5.2% higher average F1-score. The
highest-scoring model in the first round uses the CoBl train dataset, with a low-sample rate
inclusion of background images, 20% CoLIE, no albumentations, and a frozen backbone.
It shows a decrease in F1-score when applying CoLIE to the test set for Black, Colour, and
Rettenberger [50]. However, the second-best model does show a slight increase in F1-score
when looking at the Black dataset with CoLIE of 1.1%.

In general, the following trends in training settings can be observed:

• Backbone freezing results in higher F1-scores.

• Using the “more background” dataset overall results in significantly worse F1-scores.
However, including background images at a lower sample rate had a mixed impact
on performance, achieving F1-scores in both the higher-end, as well as the lower-end
of the overall results.

• The albumentations augmentations do not show a clear effect on performance.

• Including CoLIE-enhanced images shows an inconsistent effect on performance.

As the general results did not show significant improvements over the Obico model, a
second experimentation round was introduced to explore other variations.
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CoBl Low-sample ✓ - ✓ 57.8% 56.0% 70.4% 45.3% 22.6% 18.1% 45.0%
Colour Low-sample ✓ ✓ ✓ 58.7% 59.8% 43.1% 44.5% 22.2% 18.5% 41.1%
Colour - ✓ - ✓ 67.3% 67.2% 35.4% 31.9% 23.2% 18.5% 40.6%
Obico - - - - 56.8% 57.8% 27.8% 24.8% 31.7% 39.8% 39.8%

Table 4.2: F1-scores achieved by the three highest-performing train setups tested
in the first experiment, including Obico for comparison. The highest F1-scores
across all results of the first round are highlighted with bold text. The Obico
baseline is marked with red text.

4.3 Second Experiment

The second experiment was set up as described in Section 3.3.4, including different YOLO
scales and using the “more tolerant” dataset. Additionally, by looking at the findings from
the first experiment, the decision was made for the second experiment to continue exploring
the inclusion of CoLIE, by testing the influence of a 100% versus 20% CoLIE-enhanced
training dataset. Furthermore, the backbone was frozen and the background images were
not included for all experiments in the second round. Besides this, to ease interpretation of
the results and reduce the number of experiments, only the CoBl dataset has been used for
training. The F1-scores for the three highest-performing variations are depicted in Table
4.3 and the full overview can be found in Appendix B.3, Figure B.9.

These results show more setups achieving a higher score than Obico when compared to
the first experiment, with the best-performing model scoring a 22.9% higher average F1-
score. The best-performing model also showed increased performance in the Rettenberger
[50] dataset over the Obico model. Here, the increase is 17.5% and 24% for non-CoLIE
and CoLIE respectively.

In general, the following trends in training setups can be observed:

• The “more tolerant” dataset generally achieves higher performance than the normal
dataset.

• Using albumentations negatively impacts the performance.

• Using CoLIE-enhanced images in the train dataset does not show a clear impact on
performance, for both 20% and 100%.

• The medium and large YOLO model generally show better performance than the
smaller scale.
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CoBl ✓ l - - 76.8% 72.1% 69.5% 66.4% 49.2% 42.2% 62.7%
CoBl ✓ m 100 - 67.1% 75.2% 63.8% 70.0% 43.1% 39.8% 59.8%
CoBl ✓ m 20 - 69.8% 72.6% 71.9% 63.0% 39.2% 33.1% 58.3%
Obico - - - - 56.8% 57.8% 27.8% 24.8% 31.7% 39.8% 39.8%

Table 4.3: F1-scores achieved by the three highest-performing train setups tested
in the second experiment, including Obico for comparison (marked in red). The
highest F1-scores across all results of the second round are highlighted with bold
text. As the additional experiments round resulted in the same top three, this
Figure also depicts the top three achieved in the additional experiments round.

4.4 Additional Experiments

While the second experiment showed promising results, an additional experimentation
round was set up, as described in Section 3.3.5, to include variations that were inconclusive
in the first round but were left out to limit the number of experiments. This additional
round aimed to provide a more complete overview of the different settings and their impact
on performance. Appendix B.4, Figure B.10 contains the full overview of results of this
round, which shows that the setups trained using the individual Colour and Black datasets
did not yield better results, and the inclusion of background images further negatively
impacted performance, resulting in the same top three as in Section 4.3.

From this final round of experiments, an overall best-performing model was selected,
henceforth referred to as overall best setup, showing the highest average F1-score over
all test datasets – with and without CoLIE. The overall best setup is obtained by taking a
“more tolerant” CoBl train dataset, using the large scale YOLO11 model, with backbone
freezing, no CoLIE enhancement, no albumentations, and no background images, achieving
a 62.7% F1-score, in comparison to Obico achieving a 39.8% F1-score. Table 4.3 further
shows the difference in F1-score across the individual test datasets. Here, a performance
increase between Obico and the overall best setup can be observed per dataset as follows:

• Black: from 56.8% to 76.8% (20.0% increase)

• Black with CoLIE: from 57.8% to 72.1% (14.3% increase)

• Colour: from 27.8% to 69.5% (41.7% increase)

• Colour with CoLIE: from 24.8% to 66.4% (41.6% increase)

• Rettenberger [50]: from 31.7% to 49.2% (17.5% increase)

• Rettenberger [50] with CoLIE: from 39.8% to 42.2% (2.4% increase)
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Table 4.4 presents the additional performance metrics of the overall best setup, includ-
ing results for the three test datasets with and without CoLIE enhancement. This table
shows that when applying CoLIE a slight reduction in each metric can be observed. Fur-
thermore, the optimal confidence threshold can be derived from the F1-curve, depicted in
Figure 4.2, achieving the highest F1-score of 66% at a confidence threshold of 27%, which
provides the model with the optimal balance between precision and recall.

Test dataset Precision Recall F1 Score
Black 95.9% 64.0% 76.8%
Black (CoLIE) 93.0% 58.9% 72.1%
Colour 53.5% 99.0% 69.5%
Colour (CoLIE) 51.1% 94.5% 66.4%
Rettenberger [50] 43.8% 56.1% 49.2%
Rettenberger [50] (CoLIE) 39.6% 45.2% 42.2%
Average 57.5% 75.7% 62.5%
Average (non-CoLIE) 59.1% 79.0% 64.8%
Average (CoLIE) 56.0% 72.5% 60.2%

Table 4.4: Precision, Recall, and F1 Score for the overall best setup, tested on
the different test datasets. The averages are weighted according to the number of
frames in each dataset, as shown in Table A.2.

Figure 4.2: The F1-curve for the overall best setup, showing the performance for
specified confidence thresholds, indicating that the overall best setup achieves the
highest F1-score of 66% at a 27% confidence threshold.

The effects of CoLIE on the overall best setup are shown in Table 4.4 and in Appendix
B.4, Figures B.12, B.15, B.16, and B.17. Here it is shown that on average CoLIE reduces
the F1-score by 4.6%, which results from a 3.1% and 6.5% decrease in precision and recall
respectively. Other metrics also show slight decreases when CoLIE is used: AP drops from
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0.70 to 0.65, AUC from 0.87 to 0.82, TPs decrease by 67, and TNs decrease by 15.

4.5 PFSM

To evaluate the theoretical real-world performance, the PFSM was applied to both the
baseline Obico model, as well as the best-performing model proposed by this work. The
optimal confidence thresholds, as determined in Section 4.1 and 4.4, were used for both
models in order to assure that both models performed with an optimal balance between
precision and recall. The obtained metrics are depicted in Figures 4.3, 4.4, and 4.5.

(a) Obico (b) Best

Figure 4.3: The PFSM for the Obico model versus the overall best setup in this
work. Results are taken over all recordings in the test set, with and without CoLIE.
The left vertical axis represents the amounts for the bar graph, and the right vertical
axis represents the delay in frames for the “Average delay” line graph.

(a) Best Non-CoLIE (b) Best CoLIE

Figure 4.4: The PFSM for the overall best setup, split into non-CoLIE and CoLIE.
The left vertical axis represents the amounts for the bar graph, and the right vertical
axis represents the delay in frames for the “Average delay” line graph.

Figures 4.3a and 4.5 show that Obico obtains an overall high number of FPs, while
the TPs remain low and even decreases for increasing thresholds. Furthermore, the TNs
start relatively low, but increase with the threshold, a similar trend is observed for the
FNs which appear at threshold 3. The delay generally increases with the threshold for
the non-CoLIE variant, however, the CoLIE variant scores a lower delay for threshold 5
compared to 4. This effect can also be seen in the overall PFSM depicted in Figure 4.3a,
where a slight decrease in delay can be observed between threshold 5 and 4.

The PFSM for the overall best setup is depicted in Figures 4.3b and 4.4. Similar to
Obico, a decrease in FPs can be observed while the number of TNs and FNs increases.
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(a) Obico Non-CoLIE (b) Obico CoLIE

Figure 4.5: The PFSM for the Obico baseline, split into non-CoLIE and CoLIE.
The left vertical axis represents the amounts for the bar graph, and the right vertical
axis represents the delay in frames for the “Average delay” line graph.

Unlike Obico, the delay increases with the thresholds for all variations, and the TPs slightly
increase until threshold 3, after which a decrease can be observed.

Overall, the non-CoLIE PFSM for the overall best setup shows a higher number of TPs,
aside from the threshold of 1 frame. It does show a slight increase in FPs for intervals 3,
4, and 5. The average delay remains similar for both CoLIE and non-CoLIE.
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Chapter 5

Discussion

This chapter serves as an interpretation of the results shown in Chapter 4, which is split
into several core findings. Besides this, encountered limitations are described.

5.1 Non-effectiveness of CoLIE

Section 4.1 shows that the Obico baseline with CoLIE achieves a slight increase in per-
formance for the Black dataset. This could contribute to this work’s hypothesis of LLIE
being able to enhance low-contrast anomaly detection. However, as this difference is very
minimal, no clear performance impact can be concluded. Furthermore, the results of the
Colour dataset, when using CoLIE, even show a decrease in performance. This is not
unexpected, as the images already show enough contrast, mitigating the need for CoLIE.
The lower performance might suggest that CoLIE enhances certain background features
or introduces image artifacts that YOLO incorrectly classifies as anomalies, causing an
increase in FPR. Interestingly, however, there is a more substantial performance increase
when using CoLIE on the Rettenberger [50] dataset, even though those images were
not taken in low-contrast conditions. This increase in performance suggests that CoLIE
may enhance object detection, not only for low-light environments, but also properly lit
ones.

In contrast to the performance influence observed using the Obico baseline, the influ-
ence of CoLIE on the overall best setup, as defined in Section 4.4, differs. Here, CoLIE
negatively impacts the performance on all three test sets (Black, Colour, Rettenberger).
These findings contradict the expected outcome of this research, by showing that CoLIE
does not improve spaghetti detection in low-contrast conditions. A possible explanation is
the already advanced feature extraction capabilities of YOLO11, which are likely able to
distinguish the essential features, mitigating the need for CoLIE enhancement. Addition-
ally, adding CoLIE in the preprocessing pipeline might cause over-enhancements, losing
certain subtle features that are important for YOLO’s object detection. However, further
testing would be needed to conclude whether CoLIE is simply redundant when used with
YOLO or if it actually removes certain important features.

5.2 YOLO11 Performance Depends on Training Setup

Besides the influence of CoLIE on the spaghetti defect detection performance, this work
also shows the general performance of YOLO11. By directly comparing YOLO11 to the
YOLOv2-based Obico baseline model, the performance influence of the newer YOLO ver-
sion can be evaluated.
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The results of the first experimentation round – as described in Section 4.2 – show
that three YOLO configurations are able to surpass Obico when looking at the average
F1-score. However, most experiments score worse, which is unexpected when using the
newer YOLO11-based approach. As the underlying object detection model is significantly
newer, the weaker performance can likely be attributed to the training stage, possibly due
to a worse training dataset, or sub-optimal hyperparameters. This is further confirmed by
the observed influence of certain training variations, such as the significant negative impact
of the high-sample background images, and the positive impact of the frozen backbone.
Additionally, Obico performs better on the unseen Rettenberger [50] dataset than any
other model in this round, achieving a 31.7% and 39.8% F1-score on non-CoLIE and
CoLIE variants respectively. This can likely be attributed to the large variety in the train
dataset of the Obico model, compared to the limited variety of data in this work.

To combat this underwhelming performance, the next experimentation rounds focused
on optimizing the training setup. This was done using the “more tolerant” dataset, as de-
scribed in Section 3.2.1, and introducing the medium and large scale YOLO models. These
variations showed that YOLO11 is able to outperform the YOLOv2-based Obico baseline
model significantly. Specifically, the overall best setup uses the “more tolerant” dataset,
the large scale YOLO11 model, backbone freezing, no CoLIE enhancement, no albumen-
tations, and no background images in its training setup. This suggests that YOLO11 is
a strong model, being able to achieve high performance in the task of spaghetti defect
detection. However, it also shows the high dependence on a proper training setup, other-
wise achieving similar or lower scores than the Obico baseline. Furthermore, the overall
best setup achieves high performance on the Black test dataset, suggesting that it is also a
suitable approach for low-contrast scenarios, without the need for LLIE. Lastly, the intro-
duced alterations also significantly improved the performance on the unseen Rettenberger
[50] dataset, even surpassing Obico. This indicates that the overall best setup is able to
generalize well on unseen data.

5.3 Dataset Variations

As described in Section 3.3, the different experiments made use of a variety of train dataset
variations, showing differing effects on detection performance. The second experiment
round, as described in Section 4.3, shows that the “more tolerant” dataset generally achieves
higher F1-scores than the normal dataset. This is likely caused by the normal dataset
causing the model to overfit on unimportant features.

The results of the second experiment round further show that – in contrast to the overall
best-scoring model – the second and third-best model show an increase in performance on
the Black test dataset when CoLIE is applied, possibly caused by the inclusion of CoLIE-
enhanced images in the training step. This inclusion might allow the model to better adapt
to CoLIE-enhanced images.

Furthermore, the results of the additional experiments round, as depicted in Figure
B.10, show that the variations trained on the Black dataset show a significant increase
in performance on the Black test dataset compared to those trained only on the Colour
dataset. This highlights the importance of including dark-coloured training data to improve
low-contrast detection performance.

Concerning test datasets, interestingly, Table 4.1 and 4.4 show that the performance
of Obico and the overall best setup are better on the Black test dataset than the Colour
test dataset. The Black test dataset contains more timelapses with artificially induced
anomalies – as described in Section 3.2.1 – than the Colour test dataset, which contains

56



more naturally occurring instances of spaghetti. Artificially creating anomalies might cause
clearer spaghetti formation, which would explain the higher performance on the Black test
dataset. Additionally, for Obico, the performance on the Rettenberger [50] test dataset
is similar as on the Colour test dataset, this is likely because the Rettenberger dataset
contains a great variety of objects, similar to the Colour dataset.

5.4 Practical Feasibility: PFSM

The introduced PFSM helped to give a clearer view of the performance of Obico and the
overall best setup in a real-world system.

Section 4.5 describes the observed PFSM metrics for the Obico baseline. Interestingly,
Obico obtains mostly FPs in both the non-CoLIE and CoLIE variations. As the TPs and
TNs are significantly outnumbered by the FPs, this approach is not feasible for a real
system, as the printer would stop too often without an anomaly occurring. This indicates
that the Obico model requires further tweaking or a different system in order to determine
whether a print should be stopped. A possible addition could be to look at the number of
bounding boxes and their respective confidence scores, as Obico generally predicts multiple
bounding boxes with different scores for a blob of spaghetti, as shown in Figure 3.4. A
way to further tweak the performance is to change the confidence threshold, as the current
threshold was selected using the F1-curve, as depicted in Figure 4.1. This means that the
performance of the model was chosen based on a balanced trade-off between precision and
recall, however, further tuning of this threshold could further reduce the number of FPs.

For the overall best setup, the PFSM metrics have also been recorded and a comparison
between the overall PFSM for the overall best setup versus Obico is depicted in Figure 4.3.
This shows that, besides the better performance observed in the other metrics, the overall
best setup also shows better performance in a theoretical implementation of the model in
a real system. The overall best setup does show slightly higher delays, but those are likely
connected to the lower number of FPs, which is probably caused by reduced sensitivity,
increasing the detection delay. For the best model, the PFSM metric for thresholds of 3,
4, and 5 frames shows a lower number of FPs than TPs. As this results in a better balance
between the two, it indicates a higher feasibility for this theoretical system when using the
overall best setup rather than the Obico model, where the FPs are higher than the TPs for
each PFSM threshold. However, the number of FPs is still relatively high, which indicates
that this approach should still be revised. Similar to the idea for Obico, a possible addition
could look into the confidence scores and number of bounding boxes to adjust the total
prediction confidence.

5.5 Limitations

5.5.1 Bambu Lab

Unfortunately, the detection software used on the Bambu Lab FDM printer is closed-
source, meaning that it could not be used to obtain objective performance metrics, such
as those obtained for Obico and the proposed model. This means that the statement of
Bambu Lab’s integrated spaghetti detection performing worse on black filament is based
on personal experience and subjective observations, rather than concrete numbers.
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5.5.2 Datasets

The datasets form the basis of multiple limitations in this work. As they were created by
using only a single type of printer, the training data does not include data captured in
different environments, causing a reduction in generalizability for this model. However, it
did show promising performance on the unseen Rettenberger [50] dataset.

Besides this, the dataset was manually labeled, which introduces a subjective aspect
to not only the training dataset, but also the test datasets. This limitation is further
highlighted by the changed performance of the “more tolerant” dataset versus the normal
dataset, which showed that by ignoring very minor defects the performance of the model
increased.

5.5.3 Low-light Image Enhancement

For this work, only one LLIE algorithm was used in the preprocessing pipeline. It could
be possible that other LLIE algorithms might have a different effect on the performance
of the object detection model. Besides this, the parameters of CoLIE were fixed and not
optimized.
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Chapter 6

Conclusion

This work investigated the performance of computer vision-based spaghetti defect detection
in FDM printing, specifically in low-contrast environments. Furthermore, the effects of
including a Low-Light Image Enhancement (LLIE) algorithmm, CoLIE, together with
YOLO11 on the anomaly detection performance were shown. Based on the results and
discussion, this chapter formulates the answers to the research questions, and later presents
the key findings.

6.1 Answering Research Questions

RQ1.1 How can YOLO be optimized for detecting spaghetti anomalies in FDM
printing? To optimize YOLO for detecting spaghetti anomalies in FDM printing, an
adequate dataset containing instances of said defect should be provided as training data
in several different settings. To reduce overfitting, freezing the backbone layers increases
performance on unseen test data. To further increase YOLO’s ability to interpret intricate
features, the “large” scale model should be used. By analyzing the performance across dif-
ferent test sets while recording the confidence scores, the F1-curve can be used to determine
the optimal confidence threshold, in this case 0.27.

RQ1.2 What effect does low-light image enhancement have on spaghetti anomaly
detection? When used with Obico, CoLIE showed a minimal increase in spaghetti de-
tection performance. However, for the proposed YOLO11-based model, CoLIE negatively
impacts the F1-score. This difference is likely caused by the newer YOLO11 in comparison
to the older YOLOv2 model used by Obico, where the newer model has strong enough
feature extraction capabilities to mitigate the need for additional preprocessing. In this
case, the CoLIE preprocessing step might over-enhance certain regions, removing impor-
tant features, thus decreasing performance.

RQ1.3 How does the proposed model compare to Obico in terms of perfor-
mance on self-collected and publicly available datasets? In the first experimenta-
tion round, Obico showed better results on all three datasets – with and without CoLIE
enhancement – than most of the variations of the proposed model in this work. This was
especially evident on the Rettenberger [50] dataset, likely due to the proposed model only
including frames from a single printer setup in its train dataset.

However, by optimizing this model through further experimentation and determining
the overall best setup, the proposed model showed improvements in performance, resulting
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in significantly better performance than the Obico model, even on the Rettenberger [50]
dataset.

This shows that the proposed model is able to outperform current state-of-the-art
and that it has a high generalizability to other setups, even without prior training in
those settings. This indicates that the proposed model is suitable for a spaghetti defect
detection setup, and it could be included in a system such as Obico for improved detection
capabilities.

RQ1.4 How do different stopping thresholds impact the trade-off between true
positives, false positives, and detection delay? When increasing the minimum num-
ber of detected frames containing a predicted anomaly before stopping the FDM print, the
amount of FPs decreases, and the amount of TNs and FNs increases. The amount of TPs
also decreases for the Obico model, however, it shows a peak at PFSM threshold 3 for the
overall best setup. Overall, the delay increases when opting for a higher threshold.

This trade-off should be chosen based on the requirements of the system. If the system
should not miss any anomalies, the threshold should be set relatively low. However, this
might cause an increasing number of FPs. An example case can be if the printer parts are
expensive and the costs associated with a “blob of death” would be too high.

If the system should not be unnecessarily interrupted, but it is okay if occasionally an
anomaly is missed, then a higher threshold should be chosen. An example case can be if
the “blob of death” is no real concern, but the early stopping of defect prints is desired due
to reduced material waste.

Main RQ: How can computer vision techniques be effectively applied to detect
spaghetti anomalies in FDM printing, particularly in low-contrast conditions
between the filament and background? Current state-of-the-art camera-based sys-
tems, such the one built into the Bambu Lab X1 Carbon, show suboptimal detection
performance for anomalies in low-contrast conditions when using black filament. However,
the newest version of YOLO shows a significant improvement in performance, even when
the contrast is minimal. Furthermore, for optimal performance, dark-coloured filament
prints should be included in the training data.

The tested Low-Light Image Enhancement (LLIE) algorithm in this work, CoLIE,
showed no significant impact on the observed performance of the models. On the Obico
model, there is a slight increase in F1-score for the Black dataset that is negligible, whereas
the proposed model obtains a worse F1-score when CoLIE is applied.

6.2 Key findings

This work has shown that Low-Light Image Enhancement (CoLIE) does not improve
YOLO11-based anomaly detection for spaghetti defects in FDM printing. In some cases,
it even slightly reduced the performance, likely due to the already advanced feature ex-
traction capabilities of the newest YOLO version. This means that modern Deep Learning
architectures may already be good enough for anomaly detection in low-light environments,
without the need for additional preprocessing.

Additionally, this work has shown that YOLO11 on its own proves to be a promising
method to capture such defects, showing a significant improvement in performance when
compared to the state-of-the-art. Even when only trained on the data captured for this
work, the proposed method is able to generalize relatively well to unseen data, outper-
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forming Obico by achieving a 17.5% (non-CoLIE) higher F1-score on the Rettenberger [50]
dataset.

These findings contribute to the research in FDM anomaly detection, by showing that
modern Deep Learning object detection approaches are able to achieve good performance
when used in low-contrast environments. As no prior literature was found specifically ad-
dressing FDM anomaly detection for dark filament in low-contrast conditions, this work
acts as a first step to explore this challenge. Furthermore, this work presented the Print
Failure Stopping Metric (PFSM) metric, providing an easy method to evaluate the theo-
retical performance of the model in a real system.
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Chapter 7

Future Work

7.1 Extension of this Work

A possible future work could extend on this work and look into the effects of different
LLIE algorithms on the anomaly detection performance of YOLO11, as well as the effects
of introducing more variety in the training data. Further tweaking of the CoLIE model
could also be tested in future work.

7.2 Different Anomaly Detection

For further improvements in spaghetti anomaly detection, different anomaly detection
algorithms could be applied. Several interesting approaches could be: using differential
images to reduce influence from the background, such as in the work of Baumann and
Roller [3]; comparison of the printed object to the original 3D model by projecting the
3D model onto the image and comparing it to the camera’s observations, such as in the
work by Nuchitprasitchai et al. [45]; using autoencoders [23] to learn the representation
of proper prints, allowing the model to be trained by only good data. This last one is
particularly interesting, as the collected dataset for this work contains a relatively high
number of frames without spaghetti, which are currently either partially used or not used
at all, depending on whether the variations include “background” images.

7.3 Different Hardware Setup

As this work aims to improve anomaly detection in low-contrast environments and software-
based enhancement has shown at most minimal improvement, it could be interesting to look
into hardware-focused solutions. One of these approaches could include the use of depth-
sensing cameras using a structural light scanner setup, as proposed by Charalampous et
al. [47], or using ultrasonic or Lidar sensors, optionally combined with the RGB image.

The advantage of this approach would be that depth information does not require a
strong contrast in colour between filament and background, while still allowing the printed
object to be captured. However, certain depth-sensing approaches still require proper
lighting and contrast, such as the stereoscopic camera approach presented by Holzmond
and Li [46], indicating that not all depth-sensing hardware is suitable.
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Glossary

albumentations A data augmentation package, created by Buslaev et al. [64], na-
tively supported by YOLO, including colour, brightness, and contrast alterations,
blurs, and compression, available: https://github.com/albumentations-team/
albumentations. 46, 49, 50, 51, 56

Learned Perceptual Image Patch Similarity (LPIPS) A metric commonly used for
DL image enhancement models. This metric indicates how well the individual feature
maps at each layer perceive an input image in comparison to a ground truth image.
36, 37, 38

mAP@50 The mAP score for bounding boxes with a minimum IoU score of 50%. 16, 31,
34, 36

mAP@50-95 The mAP calculated at multiple IoU thresholds, ranging from 50% to 95%.
This gives an indication of the model’s capabilities across increasing levels of detection
difficulty. 16, 34, 36

Mean Square Error (MSE) Mean of the squared difference between the predicted and
ground thruth value. Similar to MAE, commonly used as a metric or loss function..
19, 29, 69

Mean Average Error (MAE) Mean of the average difference between the predicted and
ground truth value. Commonly used as a metric or loss function. 19, 33, 69

Peak Signal-to-Noise Ratio (PSNR) A metric used for image enhancement tasks,
where the ratio between the maximum possible pixel intensity value and the noise is
described in decibel. Here, the noise is described by the MSE. 36, 37, 38

Root Mean Square Error (RMSE) The root of the MSE, commonly used as a metric
or loss function. 19, 33

Structural Similarity Index Measure (SSIM) A metric used for image enhancement
tasks, where the structural similarity is measured between a reference image and an
enhanced image. 36, 37, 38
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Acronyms

ABS Acrylonitrile Butadiene Styrene. 7

AM Additive Manufacturing. 4, 6, 7, 33

AP Average Precision. 14, 16, 52, 74, 75, 81, 82

AUC Area Under Curve. 14, 15, 53, 74, 76, 81, 82

BCE Binary Cross-Entropy. 27

CAD Computer Aided Design. 33

CIoU Complete Intersection over Union. 27

CNN Convolutional Neural Network. 17, 20, 31, 33, 34

CoBl Colour & Black. 40, 46, 49, 50, 51

CoLIE Context-based Low-light Image Enhancement. 1, 4, 27, 28, 29, 30, 36, 38, 39, 43,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 75, 76, 80, 82

CSP Cross Stage Partial. 25

CV Computer Vision. 1, 31, 32, 34, 35, 37

DFL Distribution Focal Loss. 27

DL Deep Learning. 1, 17, 20, 33, 37, 60, 61, 69

FDM Fused Deposition Modeling. 1, 4, 5, 6, 7, 8, 33, 40, 59, 60, 61

FFF Fused Filament Fabrication. 6

FIP-AM@UT Fraunhofer Innovation Platform for Advanced Manufacturing at the Uni-
versity of Twente. 1, 40

FN False Negative. 13, 14, 43, 44, 53, 60

FP False Positive. 13, 14, 40, 43, 44, 46, 53, 54, 57, 60

FPR False Positive Rate. 13, 14, 15, 32, 44, 55, 74, 81

HSV Hue, Saturation, and Value. 27, 28, 30

IoU Intersection over Union. 16, 22, 23, 27, 69
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LLIE Low-Light Image Enhancement. 1, 4, 6, 27, 28, 35, 37, 38, 39, 55, 56, 58, 59, 60, 62

mAP Mean Average Precision. 14, 16, 31, 35, 36, 37, 69

ML Machine Learning. 1, 6, 10, 11, 13, 16, 19, 29, 33, 34

MLP Multi-Layer Perceptron. 17, 18

NIR Neural Implicit Representation. 28, 29, 36

NMS Non-Maximum Suppression. 22

NN Neural Network. 16, 17, 19, 20, 28, 39

PBF Powder Bed Fusion. 6, 33

PCA Principal Component Analysis. 11

PFSM Print Failure Stopping Metric. 1, 5, 44, 45, 53, 54, 57, 60, 61

PLA Polylactic Acid. 7

PR Precision-Recall. 14, 16, 44, 74, 75, 81, 82

PSA Position-Sensitive Attention. 25

ReLU Rectified Linear Unit. 19, 28

RNN Recurrent Neural Network. 17

ROC Receiver Operating Characteristic. 14, 15, 74, 76, 81, 82

ROI Region Of Interest. 31, 32, 34, 39

SIREN Sinusoidal Representation Network. 28

SVM Support Vector Machine. 11, 31, 32, 33

TN True Negative. 13, 43, 44, 53, 57, 60

TP True Positive. 13, 43, 44, 45, 53, 54, 57, 60

TV Total Variation. 29

YOLO You Only Look Once. 1, 4, 5, 20, 21, 22, 23, 24, 25, 27, 31, 32, 34, 35, 36, 37, 39,
40, 43, 46, 47, 50, 51, 55, 56, 59, 60, 62, 69
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Appendix A

Datasets

Anomaly Background Total
Dataset Name # Train # Val # Train # Val # Train # Val
Colour more background 710 148 4718 667 5428 815
Colour 710 148 245 44 955 192
Colour more tolerant 482 139 255 38 737 177
Black more background 999 380 1613 25 2612 405
Black 999 380 806 15 1805 395
Black more tolerant 508 216 719 99 1227 315
COBL more background 1709 528 6331 692 8040 1220
COBL 1709 528 1051 59 2760 587
COBL more tolerant 990 355 974 137 1964 492

Table A.1: Train dataset composition.

Dataset Name # Anomaly # Background # Total
Colour 308 2504 2812
Black 542 589 1131
Rettenberger [50] 228 1481 1709

Table A.2: Test dataset composition.
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Appendix B

Experiment results

B.1 Baseline (Obico)

Figure B.1: Overall confusion matrix for the Obico baseline.
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Figure B.2: The PR-curve for the Obico baseline shows the trade-off between
precision and recall, achieving an AP of 0.41.

Figure B.3: The ROC-curve for the Obico baseline shows the trade-off between
false positives and true positives (by plotting the FPR against recall), achieving an
AUC of 0.76.
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(a) Non-CoLIE (b) CoLIE

Figure B.4: Confusion matrices for the Obico baseline, split into non-CoLIE and
CoLIE.

(a) Non-CoLIE (b) CoLIE

Figure B.5: The F1-curves for the Obico baseline, split into non-CoLIE and
CoLIE. This shows that Obico achieves the highest F1-score of 42% at a 14%
confidence threshold without CoLIE, whereas it achieves a 44% F1-score at a 21%
confidence threshold.

(a) Non-CoLIE, AP = 0.38. (b) CoLIE, AP = 0.46

Figure B.6: The PR-curves for the Obico baseline, split into non-CoLIE and
CoLIE.
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(a) Non-CoLIE, AUC = 0.74. (b) CoLIE, AUC = 0.79.

Figure B.7: The ROC-curves for the Obico baseline, split into non-CoLIE and
CoLIE.
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B.2 First experiment

Figure B.8: F1-scores achieved by the train setups tested in the first experiment.
The highest F1-scores are highlighted with bold text. The Obico baseline is marked
with red text.
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B.3 Second experiment

Figure B.9: F1-scores achieved by the train setups tested in the second experi-
ment. The highest F1-scores are highlighted with bold text.

78



B.4 Additional experiments

Figure B.10: F1-scores achieved by the additional variations applied to the
highest-scoring setups in the second experiment. The highest F1-scores are high-
lighted with bold text.
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Figure B.11: Overall confusion matrix for the best setup.

(a) Non-CoLIE (b) CoLIE

Figure B.12: Confusion matrices for the best setup, split into non-CoLIE and
CoLIE.

80



Figure B.13: The PR-curve for the best setup shows the trade-off between preci-
sion and recall, achieving an AP of 0.68.

Figure B.14: The ROC-curve for the best setup shows the trade-off between false-
positives and true-positives (by plotting the FPR against recall), achieving an AUC
of 0.84.
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(a) Non-CoLIE (b) CoLIE

Figure B.15: The F1-curves for the best setup, split into non-CoLIE and CoLIE.
This shows that the best setup achieves the highest F1-score of 68% at a 28%
confidence threshold without CoLIE, whereas it achieves a 64% F1-score at a 27%
confidence threshold with CoLIE.

(a) Non-CoLIE, AP = 0.70. (b) CoLIE, AP = 0.65

Figure B.16: The PR-curves for the best setup, split into non-CoLIE and CoLIE.

(a) Non-CoLIE, AUC = 0.87. (b) CoLIE, AUC = 0.82.

Figure B.17: The ROC-curves for the best setup, split into non-CoLIE and
CoLIE.
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