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Abstract

In recent years, the adoption of RISC-V cores in advanced systems has grown sig-
nificantly. These cores are employed in several areas, including environments with
a higher risk of hardware errors, such as space. Critical systems must be able to
detect and resolve as many errors as possible to maintain reliable operation. Error
detection, logging, analysis and resolution keep systems operational while collecting
important diagnostic information. The RISC-V organisation proposed a specification
for formatting error information, known as RERI. However, extensive and large na-
ture of this format can be impractical where time and resources are scarce. Further-
more, no dedicated framework around this error logging format has been specified
or introduced yet. This work builds on the initial RISC-V RERI specification by im-
plementing an adapted version called ”RERI-Lite”. Developed primarily for research
use in radiation beam experiments, this system addresses the needs of smaller-
scale applications with high error rates. This thesis will focus on the implementation
of a RERI-Lite based system and it will compare RERI-Lite to the standard RERI
format. It demonstrates how the lighter, more flexible design of RERI-Lite can im-
prove performance in resource-constrained contexts. Finally, the philosophy behind
the error logging framework is examined, illustrating how it fits into broader system
reliability goals.
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Chapter 1

Introduction

The attention for the open-source RISC-V ISA is increasing in the industry [2]. RISC-
V is a very promising candidate for various application domains, such as industrial
automation and healthcare. Another interesting application domain is space. The
European Space Agency (ESA) has selected the RISC-V for use in space [3]. This
growing adoption highlights the critical need to address hardware errors that jeop-
ardize Reliability, Availability and Serviceability (RAS). Hardware errors can cause
serious problems in a RISC-V System-on-Chip (SoC). In radiation-intense environ-
ments, such as those found in space, systems become more susceptible to Single-
Event Upsets (SEUs) and other radiation-induced faults, which can disrupt normal
operations or even cause mission failure [4]. While various mitigation strategies
(e.g., error detection and redundancy) exist, it is impossible to fully prevent hard-
ware errors from occurring.

To enhance RAS a dedicated subsystem can monitor, store, analyse and re-
port hardware errors. Such an Error Logging System (ELS) enables targeted error
handling and corrective action. This capability is also beneficial in radiation testing
environments, where multiple errors may accumulate and affect a device’s function-
ality [5]. An Error Logging System (ELS) could also be used to improve standardized
error reporting in radiation testing by providing more information about errors, which
could be useful for a more extensive analysis.

To prevent the system behaviour from changing or breaking down, the errors
caused by the radiation should be handled. This is traditionally done by either over-
writing single frames of programming data at a time or by otherwise stopping all
processing and completely overwriting the programming data. Creating a new sub-
system to document the errors during the tests could prevent the need to stop all
processes. However, it is important that an error logging system is also able to pro-
tect itself against errors, since an unreliable error logging system could cause even

1



2 CHAPTER 1. INTRODUCTION

more damage to the data and behaviour of the main system. So, the new error log-
ging subsystem should not be more susceptible to hardware errors than the main
system itself. Finally, to be able to use it on different types of SoCs, a general tech-
nique should be created to execute the necessary actions to handle uncorrected
errors.

The RISC-V foundation worked on a specification for the logging format of hard-
ware error information, called RAS Error Record Register Interface (RERI) [1]. How-
ever, as will be argued in this thesis, this format is not ideal for every system. The
proposed format requires a lot of memory and creates overhead. That is why sys-
tems that have limited resources or require quick decisions based on the detected
errors, might need an alternative. Although the specification is comprehensive and
flexible enough to also be included in embedded systems, many fields of the stan-
dard format will have to be left partially unused or unimplemented. This could lead
to many different implementations of RERI records in embedded systems, making
their compatibility with other applications difficult.

For example, if a system wants to integrate components from different manufac-
turers that made changes to the RERI format, it will have to know what information is
(no longer) available. This requires custom compatibility patches to integrate com-
ponents. Using multiple RERI variants will make the integration more complex and
it is likely to lower the efficiency of the system. The lack of a general standard will
especially decrease the performance of systems such as the ELS, which require
compatibility with as many components as possible. That is why a single simplified
version, based on the standard RERI format, that is dedicated to embedded sys-
tems would be a good addition to the original specification.

So, the main contribution of this research will be to create a new version or up-
dated version of the RERI format that is dedicated to embedded systems and to
design a general subsystem for RISC-V SoCs to log and resolve hardware errors
that are detected. This new error record format will be referred to as the RERI-Lite
(format), while the original error record format specified by the RISC-V foundation
will referred to as the standard RERI (format).

1.1 Research goal

As mentioned in the introduction, there is a need for a subsystem in RISC-V SoCs
that is able to log and analyse hardware and/software errors in a system. The main
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goal of this thesis is as follows:

”Design and implement a system that can systematically detect, log, analyse and
resolve hardware errors in a RISC-V SoC.”

This main goal has been divided into multiple smaller research questions and
goals. To design a complete system, the following research questions and objec-
tives will need to be completed:

1. What types of hardware errors exist and how can they be detected?

2. What type of information about the errors is generally available and is it usable
for error analysis?

3. How can the error information be stored and made accessible for later use in
an efficient way?

4. How can the error information be analysed in a general way?

5. Can errors be handled in a general way?

By answering these research questions, a final design for an error logging sys-
tem can be created. The final goal of this thesis will be to implement and test that
error logging system design.

1.2 Report organization

In the following chapters, the research goals will be systematically tried to be an-
swered.

• Chapter 2 gives information about different types of errors and the RISC-V
computer architecture to provide some necessary base knowledge for the the-
sis.

• Chapter 3 presents some research works that are related to the subject of this
thesis.

• Chapter 4 explains all the theoretical considerations that were made and how
a final design for the error logging system was formed.
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• Chapter 5 explains how the design from Chapter 4 was implemented and
tested in simulations and experiments.

• Chapter 6 analyses the performance of the RERI-Lite-based system and com-
pares it to the standard RERI format.

• Chapter 7 discusses the validity and completeness of the work.

• Chapter 8 answers the main thesis goal and the research questions. It will also
recommend any necessary or optional future work on this subject.



Chapter 2

Background

This chapter will provide the necessary knowledge to understand all the topics that
will be covered in this thesis. The focus will be on answering the first two research
questions that were stated in Section 1.1. First, it will determine the hardware errors
that exist and how these errors can be detected and corrected. Next, it will discuss
the information or data that will usually be available about these errors as well. This
chapter will also give some important information about the RISC-V instruction set
architecture and how it handles error information.

2.1 Radiation induced hardware errors

Radiation is one of the biggest causes of failures in electronic systems. Energetic
charged particles, such as protons and heavy ions can bombard electronic systems
and cause errors. The particles can cause all sorts of harmful effects in an Integrated
Circuit (IC), which are called Sigle Event Effects (SEEs) [6]. These SEEs can lead
to the loss of information or failures in systems. The SEEs can change the state of
a latch or memory cell or cause temporary voltage spikes at internal circuit nodes
called Single Event Transients (SETs). There exist destructive and non-destructive
SEEs [4]. Destructive SEEs are also called hard errors and these errors change
component states that cannot be changed back or they damage the physical hard-
ware of the ICs. There are also non-destructive SEEs, which are called soft errors.
These changes caused by these errors can be reverted and systems are able to
recover from these errors.

5



6 CHAPTER 2. BACKGROUND

2.1.1 Error type overview

The standard taxonomy for error detection has three different categories [7]. The
first category is Silent Data Corruption (SDC), which contains the errors that are
not detected. The second category, called Detected Uncorrectable Error (DUE) has
errors that are detected, but these errors can not be corrected. The third category is
Corrected Error (CE), which are errors that are detected and they can be corrected
as well.

If a hardware error occurs in a system, it will depend on the available detection
and correction methods in the system that will determine in which category the error
will end up. Figure 2.1 shows a possible way to classify errors in a system [7].

Figure 2.1: A simplified taxonomy of error outcomes based on the error taxonomy
from [7].

Hardware errors can occur in many different locations, which will influence the
severity of the error. A simple bit flip in a data memory could overwrite a completely
unused or irrelevant data value, while that same bit flip in the instruction memory
could cause the system to overwrite important data, repeat or skip instructions or
even fully break down. An overview of important components and locations within
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the computer architecture of RISC-V based systems was made and it is shown in
Table 2.1. This overview identifies certain possible errors that could occur in these
components and how they will influence the behaviour of the system.

processor part component Detection methods Main result/problem Possible causes
- wires/flipflops/(DE)MUX/LUT redundancy Wrong logic output SEU/SET/timing errors

whole core Wrong calculations/data results -
Execution of incorrect instructions -
Core stalling/repeating -
Excess to/overwriting wrong memory parts/data -
Wrong/malicious communication to external connections -

control unit redundancy wrong output signals for CPU and BUS instruction decode
wrong flags
clock glitches

program counter redundancy skipping/repeating parts of the instruction memory wrong selector
incorrect counter increas
incorrect branch calculation

ALU Redundancy Wrong data/output wire changes
corrupted logic gates

FPU redundancy Wrong data/output wire changes
corrupted logic gates

CFU redundancy Wrong data/output wire changes
corrupted logic gates

Instruction cache/register redundancy & ECC Altered instructions Bit flips in the instructions
Failing instructions Bit flips in the instructions

Registers redundancy & ECC Wrong data used for instructions Read/write switched
Read/write old data
Bit flips
Incorrect register selection

Data cache redundancy & ECC wrong data output Incorrect address selection
Read/write switched
Read/write old data
Bit flips

sign exted redundancy wrong data output Bit/signal flip
CLINT/PLIC redundancy Core stalling wrong interrupt code/signal

unnecessary fixes false interrupt triggers
MMU redundancy using wrong data
Load/store unit redundancy Wrong data/output wrong register/data selection
PMP illegal access permission setting changed

CPU core

locked out of acessable regions permission setting changed
address bus redundancy data stored in wrong location wrong address read due to bit/signal change

wrong address write due to bit/signal change
data bus redundancy wrong data stored SET/SEU in data
control bus redundancy data not written switch in read/write mode

Bus

data written instead of read switch in read/write mode
JTAG/UART redundancy Unable to communicate or receive/transmit information Protocol errors

Signal interruptions/disconnectionsExternal connections
receive/transmit incorrect information SET/SEU in data

Table 2.1: A table with an overview of possible error locations in the system archi-
tecture and the possible problems and causes that these errors can have.

As can be seen in the table, the most important part of the system is the core.
There are a lot of components here that are very important. The core has a lot of
different components and it can often control the entire system and its processes. It
usually has the ability to influence system components outside the core as well. This
is why errors in the core can do significantly more damage to the data or the system
itself than in other system units. For example, an error that changes an (executed)
instruction can change the settings of the system, access illegal data or instructions
and change the entire system process by reading wrong instructions. Executing
such corrupted instructions can change the entire process in the system or even
break it. Depending on the application of the system, it could lead to catastrophic
results.
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Another problem with errors in the core is that it could cause irreparable errors.
If an error occurs, it can sometimes be repaired by the core while the system is still
running. For example, by reloading corrupted data. However, if the core itself has
completely broken down, it might prevent the core from executing the necessary in-
structions to fix itself. In such a case, the only option might be to completely reset
the system. That is why it is very important to prevent these errors from happening
and to correct any errors as quickly as possible if they occur.

2.2 Detecting and correcting errors in hardware

For systems to be able to recover from soft errors, Error Detection And Correction
(EDAC) is used. There are many different methods and techniques to detect and
correct errors. However, these techniques focus on certain types of errors and these
techniques all have their own advantages and disadvantages. There is not a single
best way to detect and correct every possible error type that exists. Systems require
a combination of methods to proof their system against all possible error types. So a
general system to log all errors would need to be compatible with as many of these
detection units as possible.

Some detection methods can immediately correct the detected errors. One im-
portant method is Error Correction Code (ECC). ECC can detect bit changes by
adding extra bits to the data. There are several ECC algorithms, such as parity
check and Hamming code [4], [8], [9]. Algorithms like the parity check can only de-
tect a change in the original data, while Hamming code can be used to detect and
correct multiple bit changes. However, the ability to detect and correct multiple bit
changes requires additional bits for the check, which results in larger memory usage.

Hamming codes can be extended with additional parity bits and that is often
known as Single Error Correction Double Error Detection (SECDED) [10]. SECDED
is an ECC that is frequently used for embedded memory applications, since it is
easy to implement and it has little influence on the latency and space of the memory
system.

It is also possible to try and prevent double errors in memory elements by adding
scrubbing to the system. Scrubbing works by periodically reading the memory and
repairing any single bit errors that are present. While this is a good way to prevent
unusable data, it will cause a lot of overhead and in cases where the data is relatively
quickly used, it will be less useful to add scrubbing, since its effectiveness will be
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lower. A method has been proposed to determine what the mean time until a double
error is, depending on the system variables and environment [11]. That calculation
can be used to determine if it is necessary to add scrubbing to the system.

ECC and SECDED add redundancy to the data, but another important method
to detect errors is to add redundant hardware to a system [12], [13]. By using multi-
ple instances of the same hardware, functional units can be duplicated and system
operations can be done multiple times. If the results deviate, it means that an error
occurred, so this is how the hardware of functional units can be checked for errors.

There are several approaches to adding hardware redundancy as well. Redun-
dancy can be added from transistor level to system level and all these different ap-
proaches have their own trade-offs. The most popular method is Triple Modular
Redundancy (TMR), which uses three instances of a functional unit. It allows the
hardware to compare the 3 results and immediately choose the most frequent result
as the correct outcome. This method does not require a new operation to find the
correct result and that will speed up the process.

Unfortunately, some hardware errors are undetectable. Most errors can be pre-
vented by adding more redundancy and checks, but even these backup systems can
theoretically fail. A balance needs to be found where the measures against hard-
ware errors do not cause more problems than the original errors can cause.

2.3 Detecting and correcting errors in software

The error logging system is mainly focussed on hardware errors, however, software
errors can also occur in its systems. Software errors are often handled by the oper-
ating system, however they can be useful for the error logging system as well. While
it is not necessarily the focus of the error logging system to deal with these type
of errors, some applications might want to use the error logging system to log and
export these types of errors as well.

Another advantage of monitoring software errors inside the error logging system
is that the occurrence of large amounts of software errors or very specific errors can
indicate an hardware error as well. If specific tasks like an address read or write
keep failing, it might indicate that there is an hardware error that is causing it. For
example, a hardware error in the bus or address calculation might cause the soft-
ware to access illegal addresses or invalid data. If these errors were not found by
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hardware detection methods, the software errors will still give the error logging sys-
tem an indication that an error is present. By analysing the software error data, the
error logging system could try to narrow down the location of hardware errors, but
this analysis would likely be very complex.

This complexity might actually make the performance of the error logging system
worse. There are many types of software errors, with different information. Also ac-
cess to the error data will depend on the specific system application or manufacturer.
Using the available data in a meaningful way will be very difficult. That is why moni-
toring and usage software errors will be ignored for now. It will broaden the scope of
this thesis too much, but this feature could be added in future versions of the system.

So, the error logging system will not focus on software errors. However, it would
be possible to add specific hardware units that can only monitor for software errors
and log the error data in the error logging system. The RERI and RERI-Lite error
records that will be explained in Section 4.4 could be used for that.

2.4 Error information

Various systems and error detection methods were looked at to answer research
question two, ”What type of information about the errors is generally available and
is it usable for error analysis?”. Examples are the architecture of RISC-V systems
such as the NEORV32 [14] and OpenTitan [15] or the available manuals with the
architecture of various Field-Programmable Gate Arrays (FPGAs) from companies
like AMD [16] and Intel [17]. The focus lies on their implementation of build-in error
detection mechanisms, such as their available ECC signals.

It is hard to find very specific data that is always available. It depends largely
on the type of error and on the specific implementation of a company. For exam-
ple, the provided build-in ECC signals of AMD [16] and Intel [17] FPGAs would be
different, but the information would be very similar. The AMD implementation had
two signals: one for a single bit corrected error and one for a double bit detected
error. However, the Intel implementation would give a double bit flag, that signals
four different states, of which one state was for a single bit corrected error and one
for a double bit detected error. The information is mostly the same, but the way that
the information is presented differs. This problem makes it very difficult to make an
error logging system compatible with all types of error detection systems.
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However, the information that usually seems to be signalled by most error detec-
tion implementations was that an error had occurred and if that error had already
been corrected or not.

Besides, not all information necessarily needs to be provided by the error unit
itself. Information and data are also provided that are not always directly provided
by the error detection units, but can relatively easily be gathered from the system
itself. Examples for this are the error address, which would be available on the bus
or some sort of timestamp that the system (or the ELS itself) is using.

Also, some additional information can be hardcoded when the error detection
units are connected to the error logging system. When the detection units are added
to the system, it is possible to provide some extra information for the error logging
system. Examples are a unique ID for the error detection unit or specific error codes
for the types of errors that this unit can detect.

In addition to this data, there was not much overlap in the data that could be pro-
vided by standard error detection techniques. Additional information would usually
depend on the specific implementations of error detection methods, so basing the
error logging format on it will likely result in the data fields remaining unused in most
applications. For other error information, the use of customizable information fields
would likely be more efficient.

2.5 RISC-V RERI

As mentioned in Section 1, the RISC-V foundation created its own specification for
the storage of information about errors in a systematic way [1].

The RISC-V RERI Architecture Specification describes a RERI bank that can log
information about errors. One RERI bank can store up to 63 different error records.
The first 64 bytes are used to store general information about the error bank, such
as the bank ID, the amount of records in the bank and an overview of the valid
records inside the bank. After that, every 64 bytes will form an error record. Each
error record is made up of 8 registers of 64 bits. Table 2.2 shows an overview of the
RERI bank layout.

The first register of an error record is the ”control” register, which is used to
control the reporting of that specific error record. The ”status” register will provide



12 CHAPTER 2. BACKGROUND

general information about the error, such as the error code, error type, its priority
and if the record is valid. The ”addr info” register will give information about the lo-
cation of the error. The ”info” and ”suppl info” registers are customizable and can
be used to store all sorts of available information about the error. The ”timestamp”
register can be used to store any sort of time reference used in the system from
the moment the error was written to the bank. The last two registers are reserved
for future standard use by the specification. Figures 2.2 and 2.3 show the format of
the control and status registers from the RERI specification [1] as an example of the
individual fields in these register formats.

Figure 2.2: The format of the RERI control register from [1].

Figure 2.3: The format of the RERI status register from [1].

The records are connected to a dedicated system component that can log errors
to it. If a component detects a new error and wants to write it to the RERI bank,
it should use a procedure to determine if a previous error in that record should be
overwritten or not. If a component is expected to detect a lot of (different) errors, it
is likely that error information will be overwritten and lost.
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Offset Name Size Description
0 vendor n imp id 8 Vendor and implementation ID.
8 bank info 8 Error bank information.
16 valid summary 8 Summary of valid error records.
24 Reserved 32 Reserved for future standard use.
56 Custom 8 Designated for custom use.
64 + 64 * i control i 8 Control register of error record i.
72 + 64 * i status i 8 Status register of error record i.
80 + 64 * i addr info i 8 Address-or-info. register of error record i.
88 + 64 * i info i 8 Information register of error record i.
96 + 64 * i suppl info i 8 Supplemental information register of error record i.
104 + 64 * i timestamp i 8 Timestamp register of error record i.
112 + 64 * i Reserved 16 Reserved for future standard use.

Table 2.2: An overview of the RERI error bank format from table 2 of the RISC-V
specification [1]. The size of the registers is given in bytes.
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Chapter 3

Related Work

This chapter will give several research works and projects that are related to the
work of this thesis. These works give new and unique methods and techniques to
detect hardware errors in systems and monitor the state of a system. First some
research will be given that is specifically for RISC-V systems and after that, some
other unrelated works will be provided that give some other interesting angles and
aspects on the error logging topic.

3.1 Error reporting in RISC-V specific systems

Error logging in RISC-V systems has not been explored much yet. RISC-V recently
formed a task group to create the RISC-V RERI Architecture Specification [1]. This
describes a register bank format to store information about hardware errors. How-
ever, this specification does not describe the framework around the register bank.
The specification leaves a lot up to the implementation and its design is rather large
for most applications, but it is an important format to consider while designing a new
error logging system, since future RISC-V works are likely to follow this RERI stan-
dard.

The paper [18] proposes a more complete error logging system for RISC-V. It
describes the architecture of a hardware and software interface called ”ENGAGE” to
collect and store the information of errors. However, this system was not designed
with the RERI specification in mind, since no specification proposal was published
by the RISC-V RERI taskgroup at the time.

FIRECAP is also interesting, because it is an IP embedded in a SoC that allows
the probing and recording of processor resources [19]. The approach in this work

15
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uses watchpoints, triggers and circular buffer recording to identify the failure reason
of processor-based SoCs.

Another technique to addresses microprocessor errors due to radiation induced
Single Event Upset (SEU) faults in SoCs is also proposed [20]. This work uses a
machine-learning algorithm to analyse the traces of the errors. All these works are
focused on RISC-V based SoCs, which makes these works extra useful.

3.2 Other error detection and reporting mechanisms

However, there is also a lot of relevant work that is not specific to the RISC-V ar-
chitecture. Examples are the design and implementation of error correcting and
reporting mechanisms in systems with different architectures, such as the products
from Intel [17], AMD [16] and ARM [21]. These systems already exist and form a
proven method to detect and log radiation-induced hardware errors in systems.

Another completely different methodology to diagnose radiation-induced faults in
microprocessors is proposed in the paper [22]. It uses the hardware trace infrastruc-
ture to reconstruct the error that occurred. The follow-up paper [23] describes how
this method was tested under a laser and what the experimental results were.

There are also methods to adapt the system to its environment [24]. This paper
shows that by using a model, the system can adapt to the environment by changing
its configuration to the one with the highest availability in that situation.

Finally, there is a paper that describes several design concepts that are important
for making FPGAs fault tolerant [25]. These concepts can be applied to new systems
as well.



Chapter 4

System design

This chapter will describe the design of the ELS and its main components. It will
also explain the reasoning and considerations that were made led to the important
design decisions that were made.

4.1 Error Logging System

The ELS will need several components and functions to form a fully functional sys-
tem. It is important to consider how the different parts of the system depend on each
other and how they can interact with each other. Various phases can be considered
in the process of handling a single error. Figure 4.1 gives an overview of the main
stages that will be considered for the ELS. This flow also considers important stages
outside the ELS itself, such as the detection of errors. Although not every stage in
this process chain will be implemented or created for the ELS, it is still important to
consider these phases, so it allows for a smooth integration and future additions to
the system.

Figure 4.1: An overview of the main stages in the error logging system.

As can be seen in Figure 4.1, the process starts on the left with the introduction

17



18 CHAPTER 4. SYSTEM DESIGN

of an actual error within the system. Chapters 1 and 2 introduced various causes
that can introduce errors in a system. These errors do not necessarily occur inside
the ELS, but they are the main trigger for the system and the error handling process
to start.

The second phase in the process is ”detection”. This stage contains all the im-
plemented error detection methods that are present within the system. Section 2.3
mentioned multiple older and newer methods that can be used to detect the differ-
ent types of hardware errors. These detection methods will not be implemented by
the error logging system itself, but it is assumed that systems that add error log-
ging already have detection methods implemented. The focus of the ELS lies on
the compatibility with as many different detection methods as possible, so the ELS
can use all the detection methods that are already present. Only the signals from
these detection methods with the relevant information about the detected errors and
system state will be necessary as an input to the error logging system.

Although it was mentioned that the ELS uses the already existing detection meth-
ods inside the main system, the ELS should also add detection methods to its own
units. In order to ensure its own reliability and integrity, it is important to know if
errors occurred inside the logging system and if they influenced the behaviour of the
ELS. More about the detection of errors inside the ELS itself will be discussed in
Section 4.3.

The detection of errors inside or outside the ELS will trigger the third phase called
”error storage”. This is where the main implementation of the ELS itself starts. This
stage contains the interpretation of signals from the error detection methods, the
formatting of the error data, storing the data in storage elements and providing a
way to make the data accessible. This stage has a lot of different considerations.
The RERI format from Section 2.5 was modified and used as the basis for the error
storage. This concept is an integral part of the ELS and was very important for other
design decisions, so the modifications made for the ELS will be discussed in Section
4.4.2. Once error data is stored, it can be used in the next phase.

The next phase in the error handling process is the analysis. This stage is very
flexible and its implementation could be made as simple or complex as desired by
the main system. The most basic function of this stage is to retrieve information
about errors from the error storage, interpret it and then format the data for export
to an external unit and possibly send a command or task to the main system if an
error needs to be solved. A lot of considerations and trade-offs can be made in this
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stage and it will be highly depended on the implementation and application of the
main system. This will be further discussed in Section 4.5.

The last stage in the error logging process is ”Export error information”. This
refers to a data connection with an external unit to which the data of errors or infor-
mation about the systems can be exported. This could be in the form of an external
storage unit or a console that will simply output the data. More details about this will
be given in Section 4.7.

Now that an overview of the system data flow has been given, the design of the
ELS will be described. After that, the individual stages and their design consider-
ations will be explained in more detail in the following sections. The more detailed
explanation will follow the same order as the data flow.

4.2 Design overview

Now that the process flow of the ELS has been discussed, the system units that
will be needed for these process phases will be combined into a general design of
the entire ELS. This design can be seen in Figure 4.2. The colours in the figure
represent the different phases in the error handling process as shown in Figure 4.1.

Figure 4.3 shows how the ELS should be placed in relation to the external main
system and other external devices or systems that can be used to store the data of
the systems, observe these systems or even control them. The red feedback arrow
indicates that this is a planned addition in the future, but it will not be added to the
current implementation. The orange parts are not necessarily always available, but
to make the UART connection of the error logging system useful or to be able to de-
termine whether the error logging system is operating properly, an external system
with at least one of these options would be necessary.

Of course, the external system could theoretically be the main application in
cases where the main system is able to display or store the data output from the
ELS. The downside of using this configuration is that it is not necessarily reliable,
since reported errors indicate that the system has problems, so any data stored or
displayed might be unreliable as well.

The next sections will go into more detail about all the components in the design
and the choices that were considered.
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Figure 4.2: A general overview of the ELS and the integration of RERI-Lite in the
standard RERI format.

Figure 4.3: An overview of how the ELS should be integrated in other external sys-
tems and applications.
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4.3 Error detection

There are several different types of possible error signals. The ELS was made in a
way to make it as easy as possible to remove, modify or add different error signals
and error information to the system. It should be possible to easily make the system
compatible with whatever type of error or information the main system to which the
ELS capability is added wants to log.

While there is no systematic or standard way to provide information about de-
tected errors in SoCs, there are several errors that usually have the same informa-
tion available about them. The most frequent and important error types and the
information that is usually available will be discussed.

To be able to analyse and log the information of errors, the first step is to detect
that errors have actually occurred in the main system. As discussed in Section 2,
there are various types of hardware errors and multiple ways to detect them. The
important errors that are usually present in most systems will be discussed next.

4.3.1 External errors

Most of the errors that will be logged in the ELS will likely have their origin outside
the ELS. Since the (external) main systems to which error logging will be attached
are likely to be different, the connection between the ELS and the external system
will have to be flexible.

The information that is known in most cases, is based on the detection method.
The information that is almost always known is the error type and if the error was
corrected or not. Examples of error types are single ECC error, double/mulitple
ECC errors, bus protocol errors, modular redundancy and Watch Dog Timer (WDT).
There is also information that is not necessary provided by detection methods, but
that could be accessed in most main/external systems and cases. For example, in
the case of an ECC error, the read/write address can sometimes be accessed (with
some changes) and a timestamp could be added to the error depending on what-
ever type of timestamp the external main system uses.

The Section 4.4.3 will go into further detail about how all this information will be
formatted and stored and the format will be optimised by taking into account how
likely it is that certain information will be present.
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4.3.2 Errors within the Error Logging System

The main system that error logging will be attached to can always change and its
components are not always the same. This will likely result in different error types
and detection methods for every single application. When it comes to errors within
the ELS, the different error types and detection methods can be completely fixed.
No major changes will be made to the components that make up the system.

The part of the ELS that is most likely to cause errors is the error storage part. It
will contain a lot of data storage elements where bit flips can occur and those could
cause problems in the error analysis and could even result in the ELS unintention-
ally breaking the external main system. Fortunately, this can be relatively easily
prevented with the use of SECDED.

With SECDED, as the name suggests, it is only possible to detect double errors,
but not correct them. This means that the corrupted data can no longer be used and
this could cause problems in the system. That is why it is an option to add scrubbing
to memory, so the chance that a single error will turn into a double error can be re-
duced. The ELS can listen to the error flags of SECDED units in the same way that
it would listen to error detection units in the external systems. The main difference
will be that these units will always be present and can get a special custom error
record.

Scrubbing was not added to the ELS implementation design. The reason for this
was the fact that the overhead for the system and the implementation time would
likely be large. Also, the error records in the RERI-Lite banks are supposed to be
processed and removed as soon as possible and the records will not stay untouched
for very long. That is why the choice was made to not add it to this first implementa-
tion of the ELS and make it an optional improvement for future development of the
system.

However, the memory part is not the only part of the ELS where errors can occur.
The ELS also contains a BUS and errors can occur during BUS transactions. If an
error occurs, the BUS might be able to throw an error by setting one of the flags. The
ELS can always check its own BUS, so just like the error logging SECDED units, the
BUS could get its own error record for the possible errors of the BUS type used by
the ELS.
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Finally, every part with signals and logic in the ELS can generate errors, but it
is not equally important for every part of the ELS to be protected. For example,
the analysis will (in the future) become the most complicated part with a lot of logic,
which makes it more susceptible to errors. The analysis is also very important, since
it planned for the system to provide feedback to the external main system in the fu-
ture. Errors here can (incorrectly) influence the behaviour and results of the external
system. Preventing errors here will be the most important.

One way to do this could be to use modular redundancy. By duplicating the hard-
ware of the (analysis) process, the process can be carried out two or more times.
By comparing the results, it can be determined if an error occurred in one of the
processes. If an error is detected, the process can be repeated to find the correct
solution. Alternative, TMR can be added. In this case the process is carried out three
times and in case of an error, the processes will vote on the results and the most
frequent result will be chosen as the correct one. This will speed up the process, but
the downside of this solution is that it will require additional hardware and resources.

The error types that were mentioned included ones for future development ver-
sions of this system with its proposed expansions and improvements. However,
once the ELS and its future expansions are implemented, the main structure of the
ELS and the necessary detection methods are not likely to change unless the whole
concept is changed. This means that the future development changes are not likely
to result in major problems with these error types. The concept of using the ELS for
other logging tasks will be further explained in Section 4.4.3.

4.3.3 Information unrelated to errors

An advantage to using the error records and analysis in a general and customizable
way is that the records can be used for other functions than reporting errors as well.
For example, if a system wants to log generic information that is unrelated to errors,
it is possible to do this by creating a new ’error’ format that just uses the register
fields for other data. The error analysis can then just ignore any possible actions for
this error type and just export the data in the record. While this is not necessarily the
most efficient data logging option, it can still be useful in systems that do not need to
log a lot of generic data and where the ELS is alreayd implemented. In these cases,
the ELS can be used instead of an additional external connection.
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4.4 Error storage

This section will answer the third research question: ”How can the error information
be stored and made accessible for later use in an efficient way?” It will propose an
adjusted version of the RERI format that is smaller and more flexible and explain
how it is supposed to work.

4.4.1 RERI downsides

There are aspects of the RERI specification format that make it less ideal for certain
types of systems or applications. It is not specified in the RERI specification how
the information should be written to or read from these records. Currently, it is up
to the specific implementations to determine that mechanism. Also, if a new error
occurs, it will overwrite the previous error. In some cases, a system would not want
any error information to be overwritten and lost. So, a more flexible version of the
RERI specification could be better in some cases.

Furthermore, the largest problem with the RERI specification is that it is relatively
large. It uses 8 64-bit registers to log a single error. A lot of the registers are (par-
tially) used for future or custom use. This means that large parts of the registers
are usually not used by the error records or will always contain the same redundant
data. This makes the efficiency of the records very low. In systems with a lot of
errors or systems that do not have much memory, it will require a lot resources if the
error bank is implemented according to the specification. Specially in combination
with the fact that every record is assigned to a specific error detection unit, which
means that even units that do not generate many errors, will constantly use up that
entire error record.

Another negative effect that this large error record size has is the amount of bus
transactions that will be necessary to write or read the entire record. If standard
RERI is fully implemented, not only would it waste memory, it could also slow down
any processes that use or interact with these records. For example, reading a RERI
record will require multiple bus operations to retrieve the error information. Specially
in the process of analysing and reporting error information on a system with high
error rates, speed will be important. The longer it takes to handle critical errors, the
more time these errors have to propagate. This can cause additional damage to the
system or its data. It could also increase the chance that errors are occurring faster
than the system is able to handle them. This could lead to full error records and that
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can result in the loss of valuable error data.

A final problem with the RERI specification is that it was made for 64-bit sys-
tems. This will immediately make the implementation of such a system harder on
32-bit system types. While it is possible to just use two 32-bit registers for a single
RERI register, the format will be even less efficient in its implementation. Specially
for record entries such as the address, since a 32-bit system usually does not use
more than 32 bits for the address, which means that half of the address record will
not contain useful information.

Although the standard RERI specification provides full flexibility in which fields
are implemented, if each design selects a custom implementation with different fea-
tures, designing for RERI-based systems would be difficult as each ELS would be
fully custom, and each monitored element could present a different interface. Es-
pecially for systems such as an ELS, creating new variants that are deviating from
the original standard are problematic. Not only does this require additional imple-
mentation work, these modifications and specializations will most likely decrease
the performance of the systems as well. Therefore, a smaller standard dedicated to
embedded systems is required.

4.4.2 RERI-Lite

To address the problems of RERI mentioned in Section 4.4.1, this thesis proposes
modifications to the original RERI specification. A new standard format will be cre-
ated that is more optimized and flexible for embedded systems. This format will be
referred to as RERI-Lite.

When it comes to the bank information for this RERI-Lite part, the necessary
information can be stored inside the original 64 bytes of standard RERI bank in-
formation. In this section, there are registers available for future standard use and
custom use. The concept is to use the last 24 bytes of the RERI bank information
part to give any information that will be necessary in the future for the RERI-Lite part
of the error bank. The information part might become useful in the future if more
complex features of the RERI-Lite records and analysis will be added. Examples
could be the addition of an used error records counter or the highest priority error in
the bank.

The addresses after the standard RERI error records could then be used for the
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RERI-Lite records. The specific format of these records will be explained in Section
4.4.3, but their main design philosophy is to decrease the size of these records and
have less unused data storage elements. It will also reduce the amount of neces-
sary overhead. For example, to read an error record, less bus operations will be
necessary. This is expected to speed up the processes of the ELS and reduce the
amount of necessary resources.

The idea behind the addition of RERI-Lite is to make it compatible with the stan-
dard RERI format as well. This will make it easier for systems (or components) that
follow the standard RERI format to be used in the ELS as well. By combining the
formats, applications can use either or both ways to log errors. An overview of how
the RERI-Lite parts will be able to fit in the format of the standard RERI bank and
the new address offsets can be seen in Table 4.1.

Error bank layout
Offset (bytes) Registers Size (bytes)

0 Bank info 40
40 RERI-Lite info 24

64 + 64 * 0 RERI error record 1 64
. . . . . . 61 * 64

64 + 64 * 62 RERI error record 63 64
4096 + 16 * 0 RERI-Lite error record 1 16

. . . . . . (n-2) * 16
4096 + 16 * (n-1) RERI-Lite error record n 16

Table 4.1: An overview for the concept of combining an RERI-Lite format inside a
standard RERI error bank.

4.4.3 Error records

This section first describes the format of the generic RERI-Lite error record and will
then go into some of the error formats that were specifically made for certain errors.
It will describe the individual fields within the format and what it will represent. It will
also describe how the records work and how new ones should be added.

The generic record format shown in Figure 4.4. The four 32-bit registers that
make up the error records are: ”information register ”, ”additional error info”, ”ad-
dress” and ”timestamp”. Its size is 4 times 32 bits, resulting in a maximum of 128
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bits of data per error record. This is only a fourth of the 512 bits used in the full
standard RERI error records. Also, a 32-bit compatible format was chosen for the
error records. This decision was not only made because the NEORV32 used in the
beam experiment is a 32-bit system architecture, but also because it is easier to
implement a 32-bit format in a 64-bit system than vice versa, so it will be easier to
implement this system in other 32- and 64-bit systems. The colours indicate the
usage of the register (fields). Green means that every record uses that register or
field. Orange means that it is optional. If a register or field is red or gray, it means
that it is not used or unspecified.

012345678910111213141516171819202122232425262728293031

cid ec tst ait rif pri eat v

Additional error info

Address

Timestamp


RERI-Lite
register

Figure 4.4: The generic error record format.

The first register of 32 bits is used to provide the most important and general data
that is usually available for every error type. It will also provide information about the
use of the other three optional and customizable registers. Some of the fields use
the same names, encodings and functions as the standard RERI specification. A
function description of every register and its fields will now be given.

The first bit is used as the Valid or ”v ” field. It follows the standard RERI speci-
fication [1] and indicates if this specific record in the error bank is valid or not. A ’1’
indicates that the record is valid and a ’0’ means that the record is not valid.

The fields ”eat”, ”rif ”, ”ait” and ”tst” all indicate how the other three registers are
used and what format they use in this record.

First, the Extra Adress Timestamp or ”eat” field indicates if and which of the other
three registers are used by the error record. For example, ”100” indicates that only
the Extra error info register is used. The use of the Address register would be in-
dicated by ”010” and the use of the Timestamp register is indicated by ”001”. Of
course combinations can be made as well, so ”111” would mean that all the regis-
ters are used and the error record has its maximum size of 128 bits.
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The ”rif ” (Register Information Format) field indicates the register format that is
used by the error and it uses 2 bits. ”00” indicates that the additional error info reg-
ister is not used at all. The code ”11” indicates that the full register is used as one
single field. In case it is not using the full 32 bits for one data element, the code ”01”
is used. A field in the ”additional error info” register itself will indicate the format of
the additional info register. This format is used by record types like the type 4 ECC
format. This format uses the first 4 bits of the ”additional error info” register as an
indicator of the amount of used bytes and custom format in that register. The next 4
bits are used for the (custom) data itself. This format will later be explained in more
detail.

The Address-or-Info-Type ”ait” and the TimeStamp-Type ”tst” contain encodings
that indicate the type of addresses and timestamps that are stored in their respective
registers. The ”ait” field already existed in the standard RERI specification and its
encodings are reused and shown in Table 4.2. The ”tst” field is based on the same
concept and its timestamp encodings are shown in Table 4.3. Encoding 3 for the
”tst” field is used as a custom format and will be discussed later on. While these
tables show the encodings for this specific implementation, they can always be used
for other purposes and custom uses, but it should always be checked if the over-
written format does not cause problems in the analysis. For example, in the future
with error feedback, if an address is wrongly interpreted, it might cause an incorrect
repair of the system. However, for data export and post analysis, it should never be
a problem.

Encodings Binary Description
0 0000 None. The contents of the address register are unused.
1 0001 Supervisor Physical Address (SPA).
2 0010 Guest Physical Address (GPA).
3 0011 Virtual Address (VA).
4-15 XXXX Component-specific address or information

Table 4.2: Address-or-information type encodings from the RISC-V RERI Architec-
ture Specification [1].

The ”ec” field is for the Error-Code of the error record. It follows the same stan-
dard as the ”ec” field in the RERI specification and uses the error code encodings
as described in that specification. It can be customized, since the original encodings
already had encodings above 26 reserved for future standard use and custom use.
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Encodings Binary Description
0 000 None. The contents of the timestamp register are unused.
1 001 Local cycles counter
2 010 Global counter
3 011 ECC cycle counter
4-7 1XX Encodings reserved for future custom timestamp types

Table 4.3: Timestamp type encodings for the ”tst” field, using the same concept as
the ”ait” field encodings.

The ”cid” field stands for Component ID field. It should contain an 8-bit unique ID
for the component that reported the error. The component that this refers to can be
as large with as many types of errors as the specific application wants, but it should
be either provided by the component that provides the error signals or one should
be assigned when the component is connected to the write unit of the error logging
system.

In a system with 64-bit registers, the 32 unused bits in the ”information register ”
and ”additional error info” can either be used for additional custom information or left
unused. The other two registers ”address” and ”timestamp” can just be upgraded to
64 bits, since a 64-bit system will likely have 64-bit addresses and timestamps and
other data as well. An overview of the error encodings can be found in the Appendix
in Figure A.2.

Next some custom error formats that were implemented in the experimental ver-
sion of the ELS will be explained. This will also show how the customization of these
records can be used to create new records for other error types and very specific
functions. These custom records were specifically created to be used in a radiation
beam experiment.

The first custom error record is for error type 1. This record is meant for most
SECDED ECC errors. The format for this error record is shown in Figure 4.5. This
format can be used for two different errors. Single bit errors and double/multiple bit
errors. There is usually no difference in the available error information, so the only
difference will be in the error code, one for each type.

An option for this error record would be to use the additional error info register as
a counter. In cases where many of these ECC errors are expected from the same
component, it would be possible to count the amount of (duplicate) ECC errors and
only send the data to a record in specific cases. This could reduce the possibility of
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the ELS getting overwhelmed with error records because of a single error. Specially
if these single errors can automatically be fixed or if an unfixable error keeps reap-
pearing.

012345678910111213141516171819202122232425262728293031
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address

timestamp
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register

Figure 4.5: The error record format of a type 1 SECDED error.

The second custom error record is for error type 2. This record is meant for bus
errors. The format for this error record is shown in Figure 4.6. The additional error
info register is used to store the data that was on the response bus. The requested
address and a timestamp of the error can be stored in the address and timestamp
registers. Based on the type of address and timestamp used by the systems, the
”tst” and ”ait” fields should be set with the correct type.

012345678910111213141516171819202122232425262728293031
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address

timestamp
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RERI-Lite
register

Figure 4.6: The error record format of a type 2 bus error.

The third custom error record is for sparrow data. This record was supposed
to be used for a component in the beam experiment setup. This component would
provide 32 bits of data to the ELS. The record would store this in the Additional error
info register. Note that ”rif ” field would be ”11” in this case, since the entire register
is used for one data value of 32 bits. Similarly the ”eat” field would be ”100”.

The format of error type 4 is shown in Figure 4.8. It was supposed to be used for
logging the ECC data of a specific beam experiment setup. It is similar to the first
error type, which is also used for ECC errors, but it has been slightly customized,
so it can log more data for a specific test setup during the beam experiments. The
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Figure 4.7: The error record format of a type 3 Sparrow error, which is only used to
log data and not an actual error.

records were eventually not used and tested in the beam experiment, but it still gives
an important example of the customization of these RERI-Lite error records.

In this case, the additional error info register uses a custom format, so the ”rif ”
field uses ”01”. This means that the first four bits in that register (the ”byte” field) will
indicate the custom format for the entire register. So since this is the first custom
format, it got code ”0001”, but it is possible to add 16 new formats. If it is neces-
sary to create extra custom formats in the future, more bits can be added to this
field. Also, in combination with the specific error codes and component ID’s, it would
be possible to reuse the same codes, while an analysis in real-time or afterwards
can still distinguish the different formats and decode the information within the error
record. However, this would require extra logic and might slow down the analysis,
so just using a unique byte code is for now preferred.

Other three fields in the format are specific data that were supposed to be logged
during the experiment. The ”ecc” field would indicate if there was a single or double
bit error, the ”bf ” field would give a single bit of data from the bloom-filter. Finally, the
”xor ” field would indicate if there were differences in the ECC flags. To make sure
that it was not needed to log this record every cycle, even if no errors were detected,
a counter would be added to the ECC component that would count the amount of
cycles until a difference was found by the ”xor ” data. This way it would be possible
to determine how many cycles were correct before a difference was detected. This
kept the necessary data, while lowering the amount of necessary error messages.

This RERI-Lite format is more compressed and flexible than the standard RERI
format. This new RERI format is only a fourth of the standard format size and has a
lot of room for customization. It allows error records to only use parts of the register
that will actually contain useful information. Much of the (often) unused fields have
been removed and the fact that the records are not dedicated to a specific error
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Figure 4.8: The error record format of a type 4 ECC error.

detection unit will allow more freedom in the choice of the error bank size. It was
also made with 32-bit systems as the focus, but as discussed, it should be easy to
implement it for 64-bit systems as well. This makes the system more easily com-
patible with both system types. Analysis or reporting units can use this flexibility
to ignore unused parts of the record and to speed up their processes, resulting in
better performance. In addition, systems with limited available resources can opt
for RERI-Lite to save memory space. This makes RERI-Lite better for embedded
systems, compared to the standard RERI format.

4.5 Error analysis

If a system wants to keep its availability and reliability as high as possible, it is nec-
essary to resolve any detected errors that are problematic in real-time. The data of
the errors can of course be analysed after it is exported to an externally connected
device, either in real-time or at a later point in time, but it would require another con-
nection to the main system and add a significant delay to the handling of errors.

The longer it takes for errors to be resolved, the more likely it becomes that the
error will cause the following operations to fail or be incorrect as well. Or in critical
systems, it can stall the operations and cause important deadlines to be missed or
important data to be lost. To prevent this, the ELS should (in the future) be able to
perform its own error analysis and be able to repair the system and prevent further
damage to the system.

One option would be to have the analysis be done by a processor. This is the
most flexible option and allows for a more extensive analysis of error information.
However, it will introduce some new problems and trade-offs.

This option will either require the use of one or more of the processors on the
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main system, or a dedicated processor. Using processors from the main system has
the advantage that the analysis of resources and forcing repairs and changes to the
system to resolve the potential errors will be easier. However, not every system to
which error logging might be added will have a processor available. Even in systems
where one is present, it might not be usable by an external application like the ELS
or it could slow down the main systems operations significantly.

The logging system would also require a much more extensive integration with
the main system and would make it harder to add or remove it from any system.
This would reduce the modularity of the ELS. Finally, in case of critical errors in
that processor, the analysis could come to a wrong conclusion about an error and
provide a wrong solution. This will cause the system to fail the repair or even cause
itself more harm.

The next option would be to create a new dedicated processor to the ELS and
have it execute the analysis. However, adding such a processor for just the error
analysis will require a lot of hardware, which might not always be available. Another
important aspect to consider for the use of a processor in the analysis, is the tim-
ing. A processor will likely take multiple cycles to be able to analyse any error. As
mentioned before, it is important to reduce the time it takes to fix errors as much as
possible.

The last option is to use a state machine. It is easy to implement and control
and will not require as much overhead and resources as the other solutions. It will
reduce the chance of new critical errors happening in the analysis and it will be easy
to add, modify or remove more steps to the analysis process in the future.

Other advantages of the state machine are that it will be easier to skip different
parts of the error analysis based on settings, this can be used in the future to change
the complexity of the analysis while the ELS is in use. Since the analysis speed is
an important factor for the effectiveness of any type of error recovery, it would be
best for the analysis to have a quick way of accessing the required data. A potential
way of speeding this process up in the future will be presented in Section 4.8.

In the end the choice was made to use a state machine for the analysis of the
ELS.
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4.6 Error recovery

Eventually the goal of the ELS will be to automatically recover any system from er-
rors that would normally break the system. It should be able to to this on its own
and in real-time without the need of an external process or analysis. Due to time
constraints, the focus of this thesis switched to a design and implementation that
just handled the logging of errors. A design without error feedback was created and
implemented. However, since error recovery was meant as a major function of the
ELS, the design did already account for it and considered some important aspects
that will be important when adding it in the future.

Error recovery will depend highly on the external main system and the type of
errors that can be detected there. There are various options that could be used to
influence the external system. The first one is to create and implement a completely
new unit inside the external system. However, since these systems can vary a lot, it
will be difficult to create a general system. It would require a lot of customization for
every new system that it gets added to. This will come at the cost of the modularity
of the ELS and that is not ideal.

Another option is to signal the external system with flags or error codes and then
create interrupts for the process that is running. It can also be done by using another
connection to a processor like accessing available ports like a UART connection on
the external system and write new data or instructions directly to the system mem-
ory or processor. This will require any processor to be able to identify this feedback
and switch to the execution those new instructions. Another problem is that the nec-
essary instructions to fix it will depend on the system architecture.

However, the main problem with these options is that they can only be done in
systems where some sort of processor core is available that can handle these in-
puts. For example, simple input and output systems without any sort of instructions
or adjustable process will be much harder to repair. Without a single processor or
other control unit to steer all the other parts of the system, it will be hard to make
any changes or repairs in the erroneous components. Also, in systems with only one
core, the repair will have to entirely suspend the process that is running in the main
system. Depending on the application, this might be problematic. Specially since
the ELS will not be able to determine if the running process is more important than
the potential repair. In cases where a lot of minor errors are detected, the repair
feedback could actually stall important processes. This is why it might be necessary
to address the components with errors directly in the systems with one or less cen-
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tral control units.

Error recovery for the main external system was of course the main goal of the
ELS. However, error recovery should also be implemented for the ELS itself. This
error recovery will be much easier, since everything will be internally. Any recom-
mended changes decided in the analysis unit can directly be communicated to the
designated component. Also, the available error detection units and information will
always be the same, so there is no need to generalize this process. That is why it
is possible to tightly integrate it with the individual components inside the ELS. The
recovery system needs to be made and implemented once and there will be no need
for customization afterward.

The repairs that will be necessary inside the error logging system will be very
straightforward. As discussed in Section 4.3.2, the main error detection will be
SECDED, bus errors and modular redundancy of the analysis. bus errors and mod-
ular redundancy errors can be handled easily. These processes can be repeated
until they succeed. In the case of SECDED, the single bit errors can also be easily
repaired. However, if the bus transaction and the analysis results keep failing, or
if double bit errors are detected, there are not much other options than to log this
problem and the error data and then skip this particular error record or error analy-
sis. If the same type of problems keep occurring, the only real solution would be to
reset the error logging system.

4.7 Error export

While error recovery is meant as an important feature of the ELS in the future, in
this thesis the focus was put on logging the error data. The main reasons for this
were the fact that the ability to log the errors would allow the system to be used in
the UT radiation beam experiment. The other reason is that it will be necessary to
log the error data anyway if any type error recovery system wants to be tested in the
future. Without the ability to check what errors the logging system is detecting and
how it is handling those in the physical system, it will be hard to test whether or not
the recovery system is actually working properly.
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4.7.1 UART protocol

The connection that was chosen for the communication between the ELS and an
external device was a Universal Asynchronous Receiver/Transmitter (UART) proto-
col. UART can be used as a serial communication protocol for the transfer of data
between devices [26]. As the name suggests, the communication is asynchronous,
so the sender and receiver do not need a shared clock. Instead, the protocol relies
on a predetermined baud rate to synchronise the data speed. Baud is the number
of symbols transferred per second, so 1 baud is equivalent to one bit per second.
Equation 4.1 can be used to calculate how many bits per second are transferred. In
this equation, the output rate of the message is in Hz.

Baud = number of bytes ∗ output rate of the message (4.1)

In the UART protocol, the data (bits) are transmitted in frames. These UART
frames consist of a start bit, one or two stop bits, the data bits and an optional parity
bit. An example of the signal for such a frame is shown in Figure 4.9. Equation 4.2
shows the calculation for the total amount of bits in a frame. One of the most used
frame configurations is 8N1. This uses 1 start bit, 1 stop bit, no parity bit and 8 data
bits. This results in a total frame size of 10 bits. So, for each byte of data, 10 frame
bits are transmitted. This makes the relation between baud rate, frames and data
bits very easy.

Figure 4.9: An example of the signal for a single UART frame from [27].

Bitsframe = bitsstart + bitsdata + bitsparity + bitsstop (4.2)

The baud rate in bits per second (bps) is the rate of symbols transferred over the
connection per second. This baud rate is not fixed, but both the sender and receiver
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Figure 4.10: The formation of an UART message in the beam experiment protocol.

should have the same configuration of baud rate and message frame structure. The
standard baud rates that are often used are: 4800, 9600, 19200, 38400, 57600,
115200, 230400, 460800 and 921600. The best choice for this baud rate will de-
pend on the amount of data that needs to be transmitted and the accuracy of the
used systems. These transmission rates will be discussed further in Section 4.7.3.

4.7.2 Experiment protocol

The UT radiation beam experiment uses a specific UART protocol to communicate
with the setups. This UART implementation has a specific format and those imple-
mentation details will be explained here. The UART implementation can be found
here [28].

The beam experiment uses the 8N1 frame configuration without an additional
parity bit. The setup is configured to receive messages consisting of multiple UART
frames. One such message contains a header (1 frame), the message length (1
frame), a component/setup ID (1 frame), CRC data of the message (2 frames), a
stop frame (1 frame) and a variable amount of frames for the data (depends on the
message length). Figure 4.10 shows how the formation of the UART signal for such
a message.

Every message will require a fixed amount of 6 frames and a variable number
of frames for the actual data that needs to be transmitted. This requires additional
overhead and time in the ELS to be able to transmit data. By adding extra data in
a single message, for example by combining multiple error records in a single mes-
sage, the amount of relative overhead can be reduced. The next Section 4.7.3 will
determine if such measures are necessary to reach a high enough UART through-
put for the expected amount of error data.
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4.7.3 Bandwidth limitations

It is important to determine that the UART connection is able to handle the amount
of data that needs to be transmitted. Using the equations in Section 4.7.1, a tool was
made in Microsoft Excel, to calculate the transmission data limits for different con-
figurations of the UART frames, experiment protocol messages and baud rates. It
can also calculate how much data needs to be transmitted for the range of expected
error rates in the ELS. By changing the parameters of the UART configuration and
the error rates, the tool will determine if the bandwidth of the various configurations
will be sufficient.

Figure A.1 in the Appendix shows the calculation results of the Excel tool with the
default experiment message and the 8N1 UART frame configuration. The table on
the top right shows this configuration. All the fields that have an orange background
are meant to be variables that can be changed by the user of the tool. For example,
the parity bit can be set to two and that will result in a total frame size of 11. Since
all the fields are connected, it will then do all the calculations with this new frame
size and determine the new data requirements and limits. Other fields that can be
changed are the amount of data frames that are necessary for the different error
record messages and the expected range of error rates. The tool will also make
sure that the data size is not greater than the length field can indicate, which is 256
(2 to the power 8 options). So, if a data size of more than 256 bytes is chosen,
length should use at least 2 frames to give the size of the message.

As can be seen in the table at the bottom, the baud rates of 38400 and higher
will be able to handle the entire range of expected error rates. The baud rates of
9600 and 19200 would still be able to handle the lower error rates, which will most
likely be enough, but it is better to keep a safe margin. The higher baud rates of
230400 and 460800 will need much more precision from the systems, so a baud
rate of 38400 or 115200 will be the best and safest option. Eventually the 115200
baud rate was chosen for the beam experiment setup. This means that every error
record can be transmitted in a separate message.

Figure 4.11, shows the bit rate limits for various UART baud rate configurations.
The line in red shows the expected required bit rate that is necessary to send all the
UART messages with the error data. As can be seen, only the two lowest baud rates
will be insufficient to transmit all the error messages in case of a high error rate of
more than 350 errors per minute. It will require a much higher error rate to reach
the limit of the 115200 Baud rate, so this seems to be a safe option for the UART
settings. Table 4.4 shows whether the various baud rates will have a high enough
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bit rate to handle the error messages of different error rates.

Figure 4.11: A graph created by the Excel tool to show the bit limits for various
UART baud rate configurations versus the required bit rates based on
various error rates.

Output (bits/s) Check for the different error rates (errors/min)
baudrate Data bits 50 100 150 200 250 300 350 400
9600 768 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
19200 1536 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
38400 3072 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
115200 9216 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
230400 18432 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
460800 36864 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Table 4.4: This table shows if the UART bit rate will be high enough to handle the
expected bit rate of the error messages for different error rates.

4.8 Optional extensions

There are still various features that could be added to the system to improve its ca-
pabilities and compatibility with other systems. It was not possible to integrate all
these concepts and improvements in the final design, due to the time limit of this
thesis and the beam experiment. The choice was made to create a design that was



40 CHAPTER 4. SYSTEM DESIGN

manageable within the time limit and that was usable for the radiation beam experi-
ment. However, some of the possible development areas and concepts that the ELS
already considered or accounted for in the current design will be discussed here.

Some simple and useful improvements to the error logging system would be to
add more error types to the system. These new error types are easy to add and
there are more specific error types that can still be added, such as an error type for
a WDT.

When it comes to completely new features, the first option would be to use an
error priority system. As mentioned in Section 4.4.3, a 3 bit register field is already
present in the generic error record format, but it currently does not have a function.
The improvement would be to actually use this priority in the ELS. For example, by
giving every single error type its own optional priority, the error bank and analysis
could decide to handle these errors first and overwrite lower or unimportant priority
errors in the bank. For example, this could prevent the analysis from wasting time
on handling already corrected errors instead of using that time for a newer critical
error that could cause additional problems in the future.

Such a priority system could use both a predetermined priority based on the er-
ror type and a dynamic priority based on the system settings, system state or the
timing and amount of various error types. Another possible extension to this priority
system could be to provide an easy way to make the most useful information about
the highest priority error quickly accessible to the error analysis.

A possible implementation of this could be the addition of the proposed ”output
selection” unit in Figure 4.12. By immediately putting the relevant error information
on dedicated signals accessible to the analysis unit, the analysis unit will not have
to wait for all the bus reads and this could speed up the error processing and could
decrease the amount of necessary clock cycles to process and fix problematic er-
rors. This will especially make a difference if feedback to the external main system
is implemented, since it reduces the chance of the system breaking down due to an
uncorrected error.

As explained in Section 4.3.2, scrubbing was not added to the design and imple-
mentation of the ELS, due to the low chance of double bit errors. However, since
the chance is not zero, it would be useful to add scrubbing as an optional feature to
the ELS as an improvement. In some system applications the priority might be to
never lose error logging data due to a double error, even if the chance is very low. If
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Figure 4.12: A possible future extension where data can be automatically presented
and bus cycles can be prevented.

a system has a lot of hardware resources left for an ELS, it might be worthwhile to
add it to the system.

It would also be worthwhile to add some sort of timer or counter to the ELS. Not
all systems to which error logging will be added might have a timestamp available
for error records, but in those cases the one from the ELS itself could be used. The
advantage of using such a timestamp would be that the order of the recorded errors
can always be reconstructed. Since the errors are not always written to the records
in order, due to cleared or overwritten error records, the order might be hard to de-
termine without some sort of timestamp. Especially if a priority system is added in
a future version, the order of error handling will change and it will be even harder to
determine the original detection order of the error records.

The next major improvement for the ELS would be to add the possibility of a more
complex error analysis. While some aspects would depend on the type and amount
of expected errors in the system, a more general analysis can still be done. With the
addition of a priority, the order of analysis would already become more dynamic and
based on the priority, the analysis might skip less important steps of the analysis.
A corrected single bit ECC error should not cause any problems in the system and
does not need a fix. However, it could be useful to use it for the calculation of system
statistics to determine the general health of the system. For example, if an abnormal
number of single bit ECC errors are detected, it might indicate that something else
is causing problems in the system.

Also, in case the error bank is almost full with records, it might be useful to skip
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(parts of) the analysis of less important or corrected errors and just export them, to
make sure that the error record bank will not completely fill up.

Related to the addition of all these analysis options, another possible improve-
ment for the future would be to add the option to control the ELS over the UART.
As the analysis options might become more complex and situational in the future,
it might be desirable for a way to change the system from the outside, even after
the initial setup and during runtime. This could be realised by setting up a UART
connection in the other direction as well and using simple commands to change the
system settings.



Chapter 5

System implementation

This chapter will explain how the final ELS design that was described in Section
4.2 was implemented and how the implementation was tested and validated in both
simulations and physical setups.

5.1 Implementation details

While the architecture of the system is according to the design in Section 4.2, some
implementation details and choices had important consequences for the behaviour
of the system and future development. The implementation of the system will be
explained in the order of the data flow and will start with the top-level integration
between the error logging system and the external main system to which it will be
added.

5.1.1 System overview and VHDL hierarchy

A Gitlab repository was made [29], so the necessary code can be easily cloned and
integrated into other projects. All the necessary code for the ELS can be found in the
”IPs” directory. This directory contains multiple subdirectories. The main one is the
”rtl” directory, which contains all the major entities that make up the entire ELS. The
other subdirectories are meant for files that are necessary for specific implementa-
tions. In this case, there are directories for the ”ARTY” and the ”SF2” setups. These
directories contain files like the integrated ELS in other top-levels or constraint files.
More about these specific setups will be discussed in Section 5.3.

The code implementation of the ELS was mainly done in the VHDL language.
A VHDL top-level was created in a way to make it as easy as possible to add it to

43
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any other system top-level and to need as little integration specific changes. The
top-level design can be seen in Figure 5.1.

Figure 5.1: An overview of the VHDL top-level hierarchy and how the entities relate
to each other.

The setup specific top-level block represents the top-level of whatever project the
ELS gets added to. This has most likely some sort of system or application that will
act as the external system to provide error signals. This external system can also
be replaced by a synthesizable test unit to test the error logging system. This option
will be used in Section 5.3 as well. Finally, the ”uart message” unit is not included
in the ”reri litetop” entity, since it was provided and is technically a part of the beam
experiment setup. However, this UART protocol could of course be used by other
projects, so it was added to the top-level in such a way that it is easy to add this
specific UART module to other projects as well.

5.1.2 Write unit

The first important entity to discuss is the ”reri lite write unit”. It will generate a vari-
able amount of units for each error type, depending on the amount of available error
signals for that specific error type. These units can be custom made for every avail-
able error type and will convert the error signals and information to one of the error
record formats discussed in Section 4.4.3. These units will constantly monitor the
error signals and if errors are detected, they will form an error record and send it
to the error bank. The number of each specific error unit can be changed in the
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top-level parameters or in the ”reri lite package” file with necessary constants and
types. These error units and the signals coming from the external system will have
to be manually connected in the top-level unfortunately, since this will be different for
any setup.

Another important aspect of this entity is the logic. It will constantly check all
the error units for new error records. If a new record is available in a unit, it will set
this on the output to the error bank. A small buffer of size 1 is added in case two
error detection units want to write an error record at the same time. If that happens,
the buffer will make sure that the record gets written to the error bank in the next
clock cycle. The buffer was only made size 1 to make sure that the system does not
become needlessly large. The choice was made to leave the buffer at size one and
increase the size if experiments indicated the need for a larger buffer.

5.1.3 Error storage

The next part of the system that was implemented was the error storage. This is
basically the RERI-Lite bank and it currently contains an entity for bank info about
the RERI-Lite part and a variable amount of RERI-Lite error records. Originally the
standard RERI bank implementation was also created, however, this was later re-
moved due to complications and time constraints.

Register generation

The first implementation of the error bank (which had the RERI-Lite format added to
a standard RERI error bank instance) used the ”Register Tool” from opentitan [30].
This was a very easy tool that just required a Hjson file to describe the amount, type
and default values of registers. The tool would then be able to generate a Verilog
top-level and all the other required files for these registers. At the time it was seen as
a good way to quickly create the large RERI bank implementation and it also meant
that the registers and bus were already used and tested before. The downside was
that the generated top-level was in Verilog instead of VHDL. However, a design can
be made with mixed Verilog and VHDL languages. A quick test was done with a sim-
plified version of the register bank and no problems were encountered at this time.
So, the choice was made to try the implementation with the register generation tool.

Unfortunately, the integration of these generated files would at later stages in the
implementation process cause problems. This was due to the registers becoming
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more complicated as other parts of the RERI bank were added. This required more
complicated register types and variables and the top-level would require more Ver-
ilog dependencies. At some point, the design and testing tools like Questasim and
Vivado would encounter various errors, that could not be resolved. The most likely
reason was that one or more of the new dependencies were causing errors in mixed
language designs. Several work-around solutions were tried to get the generated
design to work, however, they would usually cause new problems further in the de-
sign, so a working version could not be achieved with this method.

New register implementation

Since it was not possible to get the generated implementation to work in a reason-
able time, it was decided to drop the generation tool and switch to a different register
implementation, based on the one used in the NEORV32 [14]. This one was used
in earlier UT projects and already included SECDED. That was very useful, but
the downside was that this custom implementation cost a lot more time than the
generated implementation. It took a lot of time to manually create and adjust the
implementation for every single register defined in the RERI bank. That is why the
choice was made to not implement an instance of the standard RERI bank and only
create the RERI-Lite part. It would have been nice to show how the RERI-Lite format
can be integrated inside the standard RERI format, but this did not have the priority,
since the standard RERI registers were not supposed to be used for the beam ex-
periments and they were not necessary to test the concept of the RERI-Lite part.

Another consequence of the switch from the register generation was that the TL-
UL bus generated by the tool was no longer usable either. This meant that a switch
to the NEORV32 bus was needed as well. This required additional changes in the
analysis, since that entity accounted for the TL-UL bus protocol, which was slightly
different.

5.1.4 Analysis unit

The next part of the implementation is the ”analysis unit”. This will load, interpret
and transmit the data inside the error records. This unit is also where the feedback
to the core will be determined. As mentioned in Section 4.5, the analysis unit was
implemented as a state machine. All the parts of the analysis process can have
multiple different states, but they can mostly be divided in four main parts or process
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stages.

The first main part are all the states that are related to the communication with
the error bank. This part will check if any error records are valid and in case a valid
one is detected, it will initiate bus transactions to retrieve the data from the error
record. These states will set the bus signals, wait for a response and make the re-
ceived bus data available for the analysis.

The second part is the actual analysis part. Currently, this analysis is not very
complex, since there is not much to analyse yet. However, for now it will mainly get
the necessary information like the component ID and data length to be able to form
the UART message for the export of the error record data.

The third part does not currently have an implementation, however, this is where
the ELS would communicate with the external main system to add error recovery. As
discussed in Section 4.6, this part could be implemented in several different ways.
No final choice has been made for this, but new states can easily be added here
to add the functionality. It will also be possible to add different states for different
methods and enable and disable certain states based on the settings of the ELS,
depending on whatever the external system requires.

The last part of the analysis process contains the states to write the error data for
export to the ”uart message” unit, so it can be transmitted. This part will also finish
up the analysis by resetting all the analysis states, signals and variables. It will also
send a reset signal to the error bank to make sure that the record will be removed
from the error bank or at least made invalid, to prevent the analysis from reading the
same error record again. Once this is done, the analysis unit will repeat the entire
process and search for a new valid error record.

While system feedback is not yet implemented, some options have already been
discussed in Section 4.6. The feedback part of the analysis can be easily added
as a new state in this analysis unit. All the different types of feedback processes
for various external system types could also get their own state to make the system
more general and modular again.

5.1.5 External connection

An early version of the error logging system used an online example UART for the
export of error record data. This was just to test how the ELS would work with the
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UART and how it would influence the behaviour. It also helped to form the neces-
sary framework for any UART connection inside the ELS. It was useful to determine
how the signals should travel through the hierarchy and what would be necessary
to implement any type of UART to the system. In a later stage of the development,
this UART was replaced by a different UART that would be used by the UT radiation
beam experiment. Since the framework for an UART implementation was already
in place, it was easy to switch them. However, there were some slight modifica-
tions necessary in the analysis, due to differences in the used UART protocol, as
discussed in Section 4.7.2.

Another important implementation detail that needs to be mentioned is that the
provided experiment UART was using bits instead of bytes for the length at the time
of the implementation. The result is that the implementation currently deviates from
the theoretical description, but this first needs to be changed in the experiment UART
before it can be changed in the ELS. This error in the UART was discovered dur-
ing the implementation and was resolved by providing the message length in bits.
With this change, the implementation does work as expected, but it cannot reach its
theoretical maximum amount of bytes and data size for one message. Since it does
not seem to be necessary to reach the maximum at the moment, it is not important
to focus on this problem and once the UART is updated, it should be fairly easy to
update the analysis to give the message length in bytes instead of bits.

5.1.6 General remarks

Due to the many changes caused by implementation problems, some of the names
and hierarchy choices are no longer as logical as they were during the initial imple-
mentation. One example is that the ”reri lite write unit” is part of ”reri lite bank top”,
but it is not really part of the error bank. This was caused by a work-around regard-
ing the TL-UL bus, that was used to generate the registers. Although this does not
necessarily cause problems for the functionality or efficiency of the system, it can
make it more complicated when trying to understand the ELS. Issues like this do
currently not have priority, but it would be good to try and fix some of the name and
hierarchy issues in future versions.
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5.1.7 Implementation cost

The design was synthesized and implemented in Vivado. An implementation run
was executed for an Arty A7-35T board. The results of this implementation run are
shown in Tables 5.1, 5.2 and 5.3. It shows the usage of slice logic, memory DSP
blocks and Input/Output (IO) blocks. As can be seen, the system does not use DSP
blocks and two IO connections are used. This is as expected, since the ELS is
not processing any signals and the two IO pads are used to transmit and receive
UART messages. The component and memory usage of the ELS will be evaluated
in Chapter 6.

Amount of RERI-Lite records
Logic type

1 4 8 16 32
Total 216 451 1929 3468 7226
As logic 215 447 1921 3452 7194Slice LUTS
As memory 1 4 8 16 32
Total 254 534 2041 2638 6769
As flip flop 248 528 2035 2632 6763Slice registers
As latch 6 6 6 6 6
F7 0 0 50 20 122

Muxes
F8 0 0 8 10 8

Table 5.1: A table with an overview of the slice logic usage for the implementation
of the error logging system with various amounts of RERI-Lite records.
The LUTs implemented as memory are all shift registers.

Records RERI RERI-Lite
Amount Bytes RAMB36 Utilised Bytes RAMB36 Utilised
1 64 4 8% 16 1 2%
4 256 16 32% 64 4 8%
8 512 32 64% 128 8 16%
16 1024 - - 256 16 32%
32 2048 - - 512 32 64%
64 4096 - - 1024 - -

Table 5.2: A table with the (expected) amount of used RAMB36 blocks for the stan-
dard RERI and RERI-Lite implementations on an ARTY A7. The required
RAMB36 resources of the standard RERI implementation are estimated.
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Site type Used
DSP 0

Bonded IOB
total 2
Master pads 1
Slave pads 1

Table 5.3: A table with an overview of the DSP and IO usage for the implementation
of the ELS.

5.2 Simulation and validation

This section will explain how the implementation was checked and validated. The
simulations were mostly executed in the Vivado simulator, but some additional man-
ual checks were performed in Questasim and Libero.

The simulation and validation were done in multiple ways. The newly written
code was almost always simulated and checked manually at first and systematically
checked later. This was mostly due to the fact that the system functionalities, com-
ponents and even more importantly the error formats were regularly changed and
this often required several major changes to the test-bench. For example, switching
from the generated registers to a custom-made register-bank changed a lot of the
names and hierarchies of the register-bank files and the new bank used a completely
different bus with a different protocol. Adjusting the original test file needed a lot of
time and it was important to quickly determine if the switch would solve the critical
Vivado errors, so a quick manual check on the simulation was performed instead.
At a later point, when the ELS was less likely to need major changes, the tests were
updated to work with the new code to make sure that all aspects of the system were
working properly.

The testing unit for Vivado and the tests that it contains will first be explained.
The testing unit is a VHDL file that contains multiple processes. These processes
will drive all the signals that are expected to be generated by any external system.
The test creates a clock signal and a clock cycle counter. Depending on the error
types that are enabled, it will at certain preset clock cycles simulate the error signals
of different error types. This triggers the creation of error records and the analysis
process. Error types are generated in different processes, so any error type can be
easily disabled or new ones can be added. There is also a process that will moni-
tor the UART port to reconstruct the UART messages and see if the ELS was able
to generate the messages as expected and the amount of correctly received mes-
sages.
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Figure 5.2: A screenshot showing the simulation of important signals from the test
unit in Vivado.

Figure 5.2 shows a screenshot from the Vivado signal simulation of this test. The
monitor signal that is selected shows the hexadecimal data that was detected in the
UART transmission signal. The yellow marker shows the start of one of the error
transmissions over the UART. The byte before this point was ”55”, which is the stop
byte of an error message. The first received byte of data after the yellow marker
is the header byte of ”aa”, followed by all the data inside the error record, including
four transmissions of the ”cc” byte, which is data of one of the fixed simulated error
signals. At the end of the message, the stop byte of ”55” is visible again.

Multiple error signals were generated to check whether the system was able to
handle the following situations and corner cases:

• Trigger the reset signal and check if the error records and states are correctly
returned to the default settings.

• Use multiple detection units of the same error type.

• Generate two error signals at the same detection unit at different points in time.

• Generate two error signals at the same detection unit in two consecutive clock
cycles.

• Generate a new error signal after the record reset of a processed error to check
if a reset record will be reused correctly.
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• Generate two or more error signals at different detection units in the same
clock cycle to test the write unit buffer.

• Generate more error signals than available error records before the records
can be handled to check the overwrite mechanic of the error records.

• Generate more error signals at the same clock cycle to test a write unit buffer
overflow.

Another version of the test unit was made that was synthesizable. This was done
by replacing the clock signal and removing the UART port monitor, since the UART
would be monitored by an external device. Also, only one process with some basic
error signals was used to make sure that the system worked. So, no complicated
error generation was done in the synthesized version of the test. The UART data
would be received and stored in ASCII characters. This data had to be converted
from ASCII characters to hexadecimal format first in order to check it. This check
was done manually, so the simpler test made it easier to keep track of the UART
output and to see if the received UART data were as expected.

The simple synthesizable test would just reset the ELS and trigger a total of four
errors from type 3 and 4 at three different clock cycles. It also gave every single error
a specific cycle counter or data value, so the specific error would be easy to identify
in the resulting log file. The expected error messages should contain ”BBBBBBBB”,
”CCCCCCCC”, ”DDDDDDDD” and ”EEEEEEEE”.

5.3 Case study implementation

This section will describe the various test setups. Two main test setups were created
on two different FPGA boards.

5.3.1 Arty A7

The first setup was a configuration on the Digilent Arty A7-35T variant [31]. Since
Digilent retired this product, the board files were no longer available in Vivado. This
meant that these files had to be manually added to the Vivado setup for the genera-
tion of the bitstreams. The system configuration used the synthesized version of the
test script to generate errors. The bitstreams were uploaded to the board using the
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Vivado Lab 2024.1 edition.

The setup used a Pmod USB UART [32] to be able to connect an external device
to the board. On the external device, the SSH and telnet client PuTTY [33] was used
to setup a connection and log the received UART data to a log file. This file could
afterwards be read in Visual Studio Code (VSC) and converted to a hexadecimal
format by using the extension ”Hex Editor” from Microsoft [34].

5.3.2 SmartFusion 2

The second test setup used the SmartFusion 2 (SF2) board. This is the same board
that is used in the UT radiation beam experiment. The setup is very similar to the
Arty setup from Section 5.3.1. Besides some minor settings differences, like the dif-
ferent clock speed on the SF2 board, the main difference was that the synthesis of
this setup had to be done in Libero from Microchip [35]. The method of programming
the board was also different. Libero would not create the bitstream for the board, but
create a job file that could be uploaded to the SF2 by using the FlashPro Express
program [36].

Figure 5.3: A screenshot of the FlashPro Express program [36].

This SF2 setup is targeted to be used for the UT radiation beam experiment,
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but in that setup, the synthesised test unit was replaced by more complex external
systems. In the experiment setup, the ELS was supposed to be connected to a NE-
ORV32 SoC [14], the ”Sparrow” setup and the ”PDS” setup.

5.4 Experimental results

The PuTTY connection was setup and as soon as the bitstream was uploaded, the
UART connection started to receive data. The converted PuTTY log file is shown in
Figure 5.4.

Figure 5.4: A screenshot of the PuTTY log file of the Arty setup test converted to a
hexadecimal format.

As can be seen in the log file, the expected results with ”BBBBBBBB”, ”CCC-
CCCCC”, ”DDDDDDDD” and ”EEEEEEEE” (see Section 5.2) can be clearly found
in the results. The messages contain all the expected frames. They start with the
”AA” data, which is the header frame, followed by either ”04” or ”08”, which is the
assigned Component ID for error types 3 and 4. The next length frame is either ”38”
or ”40”, because the two error types have a different amount of data that needs to be
transmitted (see Section 4.4.3). The frames after that represent the data in the infor-
mation field, followed by the specified ”BBBBBBBB”, ”CCCCCCCC”, ”DDDDDDDD”
and ”EEEEEEEE” values in the additional error info register or timestamp register.
The messages are concluded by two frames with the CRC data of the message and
a stop frame that is always ”55”. Finally, a new message starts with ”AA”. As can
be seen, the messages will repeat after a while. This is also as expected, since the



5.4. EXPERIMENTAL RESULTS 55

clock cycle counter in the synthesizable test (which triggers the error signals) will
overflow after a while and that causes the test process to start over.
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Chapter 6

System evaluation

This chapter will evaluate how the final ELS design that was implemented in Section
5 performs. The main aspects that will be looked at are the system timing, memory
usage and power usage. It will also compare the implementation to a standard RERI
based system.

6.1 Timing

It is important to quickly handle any errors in the system. The longer an error re-
mains unresolved, the more damage it could cause to the system since the error can
propagate. The ELS should be able to resolve detected errors as soon as possible.
That is why it is important to analyse the amount of necessary clock cycles for the
critical processes in the ELS.

The entire process of the ELS can currently be split in four main categories:
”monitoring”, ”controlling”, ”analysing” and ”UART communication”. These impor-
tant categories can have several sub-processes and the required time for these
processes can depend on the error type and other system variables. An overview
of required clock cycles for the various processes is shown in Table 6.1. The clock
cycle data was gathered in a Vivado simulation. Some simulation screenshots of the
processes can be found in Figures A.3, A.4, A.5, A.6, A.7 and A.8 in the Appendix.
To be able to evaluate the RERI-Lite format, this overview also shows the expected
amount of clock cycles that a standard RERI system would require.

”Monitoring” is the time it takes from the detection of an error signal until the error
information is collected and sent to the error bank. If multiple errors are detected
within the same clock cycle, the time it takes the system to send the information to
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Process Subfunction
Clock cycles
RERI RERI-Lite

Monitoring errors Detect error signals 3 + N 3 + N

Control error record
Write valid record 33.5 9.5
Reset record 33.5 9.5

Analyse errors
Read error record 149 - 150 14 - 42
Check error records 3.5 3.5
One bus transaction 9 9

UART communication
Create UART transmission 1 1
Transmit UART frame 8681 8681
Transmit full error record 607639 86806 - 190972

Table 6.1: A table with the (expected) amount of clock cycles used to execute parts
of the error logging operations. N represents the number of additional er-
rors that were detected in the same clock cyle, since every additional er-
ror delays the timing by one clock cycle. The UART communication clock
cycles assumes a 115200 baudrate and a 100 MHz clock frequency.

the error bank will increase. This is caused by the fact that it is not possible to write
to multiple error records of one error bank in the same clock cycle. So, for every
additional error the required time will be increased by one clock cycle.

”Controlling” consists of the processes that change the information within the
error records. Currently, there are two possible processes that can change the in-
formation. One is to write the information of a new error in an error record and the
other is to reset the information within a record to the default values.

”Analysing” contains the processes that the analysis unit needs to obtain and
interpret the information within the error records. The analysis unit needs to check
for valid error records and it needs to read the entire record. Bus transactions are
an important part of the error record reading process.

”UART transmission” entails the creation of a UART message and the time it
takes to fully transmit the entire message with the information about a single error.
The required amount of time and clock cycles will depend on the baud rate that the
UART uses, but this is not important if RERI and RERI-Lite are expected to use the
same UART settings.

As can be seen in the overview of Table 6.1, the RERI-Lite format is expected
to perform much better than the standard RERI format in processes that require in-



6.2. MEMORY USAGE 59

teraction with the error records. Since the error record format is only a fourth of the
standard RERI format, it requires less write and read bus operations to complete
the important processes. Additionally, the RERI-Lite format is more flexible, so the
system can ignore the unused parts of the error records. This can save a lot of
unnecessary read operations and bus transactions. Reading an entire RERI record
(assuming the use of a 32-bit width bus) will require 149 - 150 clock cycles to com-
plete. In contrast, the RERI-Lite version will use a maximum of 42 clock cycles and
the amount can even be lowered to 14 clock cycles if the error type uses only one of
the registers.

The same concept applies to the UART communication process. The standard
RERI format will always have to transmit the information of the entire record, while
the RERI-Lite format can ignore the unused parts and lower the required amount of
UART frames. The reduced error record size is not only useful for faster error trans-
missions, but its reduced size can also prevent the loss of error data. As discussed
in Section 4.7.3, the UART bandwidth is limited. In systems where a low baud rate is
used, where the ELS does not have access to the entire UART bandwidth or where
an extremely high number of errors per minute is expected, the large standard RERI
records can quickly overwhelm the UART connection and cause important error in-
formation to be lost. The RERI-Lite format will require a lot less UART frames on
average, so the number of RERI-Lite errors that can be handled by the UART con-
nection will always be much higher.

6.2 Memory usage

Another aspect of the RERI-Lite format to evaluate is the memory usage. Table
5.2 shows a comparison between the required memory usage of the implemented
RERI-Lite format and the expected memory usage of the standard RERI format for
various amounts of error records.

As can be seen in Table 5.2, the RERI-Lite format scales linearly and the for-
mat is expected to use only a fourth of the memory required by the standard RERI
format. The result is that the RERI-Lite format can have four times the amount of
standard RERI records with the same available memory. As can be seen, the ARTY
A7 was able to implement 32 RERI-Lite error records, while the standard RERI for-
mat would only be able to implement 8 records. So systems that implement the
RERI-Lite format can have a larger error buffer.
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An increase in the number of error records allows the system to better handle
peaks in the number of detected errors. It allows the system to save error records
longer and decreases the chance of needing to overwrite unhandled errors or ig-
noring new errors. This gives the system more time to handle an error. Especially
in systems where a large fluctuation in the amount of errors is expected, it will be
useful to create a large error buffer. So in systems with limited available memory for
an ELS, the RERI-Lite format can be used to increase the buffer size of the error
logging system, without the need for more memory.

Other advantages of reducing memory usage are the decrease in area and over-
head. The error data needs to be protected, so the memory uses ECC to detect
and correct errors, which increases the area and overhead of the system. Also, the
larger the area used, the higher the chance that errors will occur, which will add
more overhead to deal with the errors and it could lower the reliability of the sys-
tem. Finally, as the system gets larger and the area increases, the time it takes
signals to reach their destination will increase too. This can slow the system down
and reduces the performance of the ELS. It is important for any application to find a
good balance between the amount of error records and the area that is used by the
system. The lower memory usage of the RERI-Lite format makes it ideal for a better
trade-off between the used area and performance of the system.

To conclude, the RERI-Lite format will be much faster in handling errors and
the format will reduce the chances of error propagation or information loss. These
aspects are critical for an ELS, which will likely make systems with the RERI-Lite
format perform better, compared to systems with the standard RERI format.

6.3 Power

A power estimation was performed for the RERI-Lite implementation on an ARTY
A7. Since no specific environment is known for the applications with error logging,
the default Vivado settings were used to get an indication of the power usage of the
ELS. The settings used for the estimation are shown in Table 6.2.

The result of the Vivado power estimation tool is shown in Table 6.3. The table
shows the power estimations of various amounts of RERI-Lite error records. It was
not possible to do an accurate power estimation of a comparable standard RERI
based system, without having to fully implement it, so it is not possible to evaluate
how the RERI-Lite records would perform compared to the standard RERI records.
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Ambient Temp (C) 25
ThetaJA (C/W) 4.8
Airflow (LFM) 250
Heat Sink Medium
ThetaSA (C/W) 4.6
Board Selection Medium
Number of Board Layers 12 to 15
Board Temperature (C) 25

Table 6.2: A table with the settings for the Vivado power estimation.

Number of error records 1 4 8 16 32
Total On-Chip Power (W) 0.591 1.158 2.68 4.611 9.312
Dynamic (W) 0.532 1.098 2.617 4.542 9.217
Device Static (W) 0.059 0.06 0.063 0.069 0.095
Effective TJA (W) 4.8 4.8 4.8 4.8 4.8
Max Ambient (C) 97.2 94.5 87.2 78 55.5
Junction Temperature (C) 27.8 30.5 37.8 47 69.5
Confidence Level Low Low Low Low Low

Table 6.3: A table with the Vivado power estimation summary for various amounts
of RERI-Lite error records.

The estimated power and temperature data of Table 6.3 have been plotted in Fig-
ures 6.1 and 6.2. As can be seen, most of the power and temperature estimations
for the system seem to be scaling linearly with the increase in error records. The
data could only be gathered up to 32 error records, since the ARTY A7 was unable
to fit more records. So, more data points might be necessary to determine if the
power actually scales linearly at high amounts of error records.

Furthermore, no matter how the component and power usage scales, the RERI-
Lite format will always scale better than the standard RERI-format. The results of
the RERI-Lite component and power usage also give an indication of how well the
standard RERI format would perform. Table 6.4 shows the number of on-chip com-
ponents that are used by the ELS. The standard RERI format will require 4 times
the memory of the RERI-Lite format. It is expected that the component and power
usage of an ELS with standard RERI records will be comparable to 4 times as many
RERI-Lite records. For example, when implementing a system with 4 or 8 standard
RERI records, the system component and power usage would be comparable to
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Figure 6.1: A plot of the estimated power data from Table 6.3.

Figure 6.2: A plot of the estimated temperature data from Table 6.3.
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implementing 16 or 32 RERI-Lite records. This means that the RERI-Lite format is
likely to scale 4 times better than the standard RERI format if the power usage does
scale linearly.

Amount of RERI-Lite records
On-chip components

1 4 8 16 32
Total 592 1175 4130 6866 15936
LUT as logic 215 447 1919 3452 7194
CARRY4 20 20 44 68 372
Register 254 534 1627 2638 6769
BUFG 1 1 1 1 1
Others 27 48 70 117 246
F7/F8 muxes 0 0 58 30 130

Slice logic

LUT as shift register 1 4 8 16 32
Signals 420 812 3232 5554 13200
Block 1 4 8 16 32
I/O 2 2 2 2 2

Table 6.4: An overview of the used on-chip components in the error logging system
that are relevant for the power usage of the system.
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Chapter 7

Discussion

This chapter will go over the most important achievements and problems that were
encountered. It will also discuss how the encountered problems influenced the de-
cisions and results in this thesis.

The experiment on the ARTY was able to give a proof of concept for the design
of the ELS and it showed that all the components can work together properly. This
ELS does not only specify a format for error data in RISC-V systems, but also cre-
ates a framework around it. It is able to handle the data from the error detection
units by storing the data, by analysing it and by exporting it. The system can also be
expanded in the future to allow for error correction feedback to the external system
where the error occurred.

The new RERI-Lite format that was used in the ELS also reduced the required
resources and added more flexibility. The system does not use dedicated error
records for detection units, so the amount of records can be based on the available
space. Also, every error record is at maximum a fourth of the full standard RERI
error record size. This does not only allow for more error records in general, but it
also lowers the amount of required bus transactions to retrieve the error data. This
will speed up the error handling as well. The record format was also created with
both 32-bit and 64-bit systems in mind. The format focuses on 32-bit systems, but as
explained in Section 4.8, it can be quickly adjusted to a 64-bit format. The RERI-Lite
records were also made customizable, so that new or adjusted detection methods
with other error data can easily create their own record to store the necessary data
in a convenient way.

The ability to lower the amount of necessary resources, reduce overhead and
customize error record types for new hardware errors shows the potential for such a
new RERI-Lite based ELS. Since the system was made separately from the RISC-
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V-based systems that it was designed for, it will be easy to add, modify or remove
the ELS to or from other systems. All these advantages could make this system very
useful for very specific or small applications.

The ELS still has a lot of possible improvements left in general. However, most
of these were already expected to be left for future development, as discussed in
Section 4.8. Adding these features in the future can make the ELS even more cus-
tomizable and useful for specific applications.

Still, some other problems were encountered and added to the list of improve-
ments during the implementation of the system. The most important complication
during the thesis was the unexpected behaviour of the ELS on the SF2. It is at this
moment still unknown why the ELS does not work on the SF2 board. As explained
in Section 5.4, the messages received over the UART connection could not be ex-
plained. The problem probably lies in the integration with the SF2 specifically. It is
not likely that the problem is caused by a major oversight in the system design or
implementation itself, since the results on the ARTY setup were exactly as expected.

Due to the problems with integrating the ELS on the SF2, it was not possible to
finish the integration of the ELS into the beam experiment setup. So, for future work,
it would be good to solve the SF2 integration problems. The system can then be
tested under the radiation beam as well. This will be useful to test if the system is
also able to operate and execute its main task in practise in an environment similar
to one where it is supposed to operate. It will specifically be useful to see if the ELS
will be overwhelmed by the amount of radiation-induced errors and how reliable the
system itself will be under radiation conditions.

Another problem that occurred during the development of the ELS were the sim-
ulation issues that would be caused by the error bank register generation, as men-
tioned in Section 5.1.3. A lot of time and work was spent on figuring out the gener-
ation of the registers, the use of the bus and the creation of a combined VHDL and
Verilog system. Especially since the errors could not be resolved in a reasonable
time, it was necessary to switch to the custom creation of the error bank registers
and a new bus. It also required a lot of additional time to adjust all the other parts
of the ELS to the changes that this switch brought along as well. This valuable time
could have been spent fixing the SF2 integration problems instead.
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Conclusion and future work

This chapter will try and answer the research goals and questions that were given
in Section 1.1. This section will answer the main research question and the goal of
this thesis. It will also look at the individual sub-goals that were set for this thesis.
Finally, it will give some recommendations on possible areas to further improve or
research in the future to continue the development of the error logging system.

8.1 The main thesis goal

The main goal of this thesis was: ”Design and implement a system that can system-
atically detect, log, analyse and resolve hardware errors in a RISC-V SoC.”

By answering the smaller research questions in Chapter 4, a final design for such
an ELS was given in Section 4.2. This design was implemented to achieve the main
objective of this thesis. However, one part of this goal, the ”error resolving” part of
the system, has not been fully designed and implemented yet.

During the design and implementation phase of the ELS, the focus of this thesis
was to obtain a working prototype of the ELS that could be used and tested in a UT
radiation beam experiment. While some important aspects for resolving errors were
considered, providing feedback to the system was mostly ignored in the design and
implementation to save time and to try and get a basic working version. That is why
the important design decisions for the feedback part of the system have not yet been
made.

The new system was tested on an ARTY and is confirmed to work as expected
under normal conditions. This means that the detection, logging and analysis as-
pects of the research goal were reached. So, the most important part of the goal,
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the implementation and testing of a general ELS was reached. As explained in Sec-
tion 5.4, due to the limited time of this thesis, it was not yet possible to use the ELS
in a working setup under the radiation beam. Performing such an experiment will be
left to future work.

Furthermore, this thesis proposed a new version of the RISC-V RERI specifica-
tion that is smaller and more flexible. As shown in Chapter 6, this format is expected
to perform better in the important aspects of speed, memory and area usage. Al-
though reduced memory and area usage are mostly important for system applica-
tions that have little resources available, the increase in speed will be important for
all ELS. The system will require less clock cycles to gather and analyse informa-
tion about new errors with the RERI-Lite format. This will increase the response
time to errors and that can prevent errors from propagating further and causing new
problems in the system. This makes this RERI-Lite format specifically useful for em-
bedded systems.

In conclusion, many of the objectives for this thesis were achieved. This work
created a core design for an ELS that uses the newly proposed RERI-Lite error
record format. Although there are still some important aspects and improvements
left, it forms a good basis for future development of this system. Section 8.3 will go
into a little more detail on the most important recommendations for the future devel-
opment of this system.

8.2 The sub research questions

The next section will cover all the different aspects of this thesis in a little more detail.
This section will go over the answers and solutions that were found for the individual
research sub-questions and sub-goals of this thesis.

8.2.1 Error taxonomy and detection

Many different hardware error types exist, which can all cause a wide range of prob-
lems in any system. This is why the first sub-question that was looked into was:
”What types of hardware errors exist and how can they be detected?”

An overview of errors and possible causes was given in Section 2.1. Some errors
remain undetected and can cause an Silent Data Corruption (SDC). The errors that
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are detectable can be split into two groups. The Detected Uncorrectable Error (DUE)
and the Corrected Error (CE). The severity of any error will depend on the location
of the errors and whether the error can be detected and corrected. A simple bit
flip can simply change unused data and have no impact, but it could also change
important system settings or values and cause a complete breakdown of the system.

As mentioned in 2.3, there is also a wide range of methods and techniques to
detect these errors and to reduce the effects they have on systems. Most of these
techniques work by adding some sort of redundancy to the system. This can be
done in the form of redundant data, such as one or more parity bits to data values
or by adding redundancy to entire components of a system. This redundancy can
also be added in space (by duplicating the hardware of the system) or in time (by
executing the process multiple times). A simple check or comparison can then usu-
ally detect any errors and methods that use more resources for this redundancy can
sometimes use a voting system to immediately choose the correct result.

Unfortunately, all of these detection and correction methods have trade-offs. The
more reliable they make a system, the more redundancy they usually need, which
will require more resources and it can also slow systems down in some cases. So,
it is necessary to find a good balance between the reliability of the system and the
performance of the system.

8.2.2 Error information

For an ELS, it is important to gather as much relevant error data as possible. So,
the next sub-question that was answered was: ”What type of information about the
errors is generally available and is it usable for error analysis?”

As described in Section 2.4, it was difficult to determine what information would
generally be available about all detectable error types. However, there was some
information about errors that was often available or could be obtained in other ways.
The conclusion was that the most important data that were usually available con-
tained information about the type of error (such as an error code), some sort of
location (such as an address or system component), some sort of time reference
and if the error has already been corrected or not.

Although it is sometimes possible to retrieve more information about the errors,
additional information does not seem to be available in general cases. This meant
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that it was not very efficient to dedicate specific register fields to this type of informa-
tion inside the error records, but a more flexible option like the customizable register
in the new error record format was a better solution. This still allows for the use and
logging of additional data without sacrificing the efficiency of the error records too
much.

8.2.3 Error information storage

The storage of the error information was also a major part of this thesis. The sub-
research question ”What type of information about the errors is generally available
and is it usable for error analysis?” covered this aspect of the error logging system.

As discussed in Sections 2.4 and 4.3, the information that is available about er-
rors differs for every error type and detection method. However, as concluded in
8.2.2, it would usually be possible to determine the following information about any
error: what the error type or code is, a component ID, some sort of priority or impor-
tance, the address where the error is located and a timestamp. Most of the other
data on errors will be completely dependent on the error detection unit. So, the ELS
focused on an error record format that had entries for the most frequent data, with
room for customization for additional information about these specific errors.

Some of this information can only be determined during the integration of the
error detection units and the ELS, such as a unique component ID. This will require
some manual integration and settings for error detection units to be able to provide
the correct or full error information.

As described in Sections 4.4 and 5.1.3, an adjusted error bank format was pro-
posed, based on the RISC-V RERI Architecture Specification format, with multiple
customizable error records. Its format is highly customizable and focused on sys-
tems that have limited error information or resources available, to make this ELS
compatible and efficient for more and smaller scale applications, such as embedded
systems.

In Chapter 6, it was concluded that the newly proposed RERI-Lite format is ex-
pected to perform better than the standard RERI format when it comes to speed,
memory and area usage. Especially the timing aspect is of importance, since an
ELS should be able to quickly access and use the available error data. As the gath-
ered data indicated, the amount of necessary clock cycles for an error record read,
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write or transmission are expected to be at maximum a fourth for the new RERI-Lite
format. Due to the flexibility of the records, it can be even lower if an error record
does not use the entire record. This can significantly improve the performance of
ELSs.

8.2.4 Error analysis

The next sub-question was: ”How can the error information be analysed in a general
way?” The goal of this question was to give the ELS additional uses, besides just
logging errors. Analysing the error data allows for error logging features such as
providing error feedback to the core of a system.

As discussed in Sections 4.5 and 5.1.4, the analysis can be made as complex
as desired by the application in which the ELS is used. However, a general state
machine structure was created, such that it can be expanded with more complexity
in further developed versions. By using a state machine, it will be easy to add or
switch between various parts and options of the analysis process. Systems that do
not have compatibility with some of the more complex analysis features can skip
these states, based on the settings. This will provide a general way to analyse the
errors written in the error bank that allows for much customization in future versions,
especially when new features like error priorities are fully implemented.

8.2.5 Handling the errors

The final sub-question that was necessary to create a complete error logging sys-
tem was: ”Can errors be handled in a general way?”

Technically, the current design is able to analyse and export the data to an ex-
ternal system for later analysis. So, in that sense the error is handled in a general
way. However, this question can be considered as a two-part problem, since the
system has two different options to handle an error record. One option is to just
export the data to an external device, while the other option is to try and resolve any
problems caused by that error. The main objective of this sub-question was to find
a general method for both these options. Mainly in Section 4.6, some possibilities
were discussed, but no final decision or design was implemented or tested. Since
error recovery is very dependent on the external system implementation, it is very
hard and complicated to resolve errors in the external system. However, the problem
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could likely be solved, but it would require more time and effort to design a general
method.

So, it can be concluded that this sub-question has not been fully answered yet,
but this aspect of the question was mostly ignored due to a lack of available time. It
would be best to look further into this aspect and try to find a more satisfying solution
to it.

8.3 Future work

A lot was achieved with the implementation of the ELS, however, there is always
something that can be added or improved. Section 4.8 mentioned a number of pos-
sible expansions and current shortcomings of this system. Examples are adding
scrubbing or a faster way of presenting the most important error record information.

Another possible improvement would be the addition of a working feedback loop
to correct errors. Due to time issues and the focus on trying to get a working beam
experiment version, this feedback loop was not implemented in the test version.
However, adding this feedback loop would significantly improve the use of this ELS.
Right now, the main function of the ELS is to just log the error data, but adding the
feedback will allow the analysis unit to have more functionality and that could actu-
ally improve the RAS of systems to which the ELS is added.

Furthermore, an improvement that will also be easy and important to implement
is to add priorities to the errors. This will work well with the addition of the analysis
feedback, since a priority system would most likely allow for a much more efficient
analysis of any error records.

However, the final and most important recommendation would be to get the ELS
compatible with the SF2 setup or a different setup that could be used in future UT
radiation beam experiments. This will finally give a proof of concept with errors that
are actually randomly generated by radiation instead of predetermined errors. This
would make sure that the ELS can handle the randomness and amount of these
radiation induced errors as well. It will also test how susceptible the ELS itself is to
radiation-induced errors, which will be a very important aspect to investigate for the
reliability of the ELS.
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First appendix

Figure A.1: A screenshot of the tables in the Excel tools to calculate the data output
limits and required data output for various UART configurations and
error rates.
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Figure A.2: An overview of the error code encodings from the RISC-V RERI Archi-
tecture Specification.
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Figure A.3: A screenshot with the clock cycle timing of the write unit process.

Figure A.4: A screenshot with the clock cycle timing of the record write process.

Figure A.5: A screenshot with the clock cycle timing of the record read process.

Figure A.6: A screenshot with the clock cycle timing of a UART transmission.



80 APPENDIX A. FIRST APPENDIX

Figure A.7: A screenshot with the clock cycle timing of a UART transmission start.

Figure A.8: A screenshot with the clock cycle timing of a UART transmission end.
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