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ABSTRACT

Background: Accurate measurement of foot kinematics is essential for gait analysis, injury prevention, and performance
assessment. While optical motion capture (OMC) remains the gold standard for multi-segment foot modelling, inertial
measurement units (IMUs) offer a portable and inexpensive alternative. However, most IMU-based approaches rely on
a single foot-mounted sensor, treating the foot as one rigid segment and neglecting independent foot segment motion.
Objective: This study investigates the accuracy of a dual-sensor IMU setup compared to a single-sensor IMU setup for
estimating hindfoot–forefoot (HF/FF) joint angles using a multi-segment foot model during running. Accuracy is evaluated
relative to optical motion capture (OMC) as the reference standard and with additional focus on the influence of running
speed and foot strike pattern, forefoot striker (FFS) vs. rearfoot striker (RFS). Methods: Six healthy recreational runners
(3 rearfoot strikers, 3 forefoot strikers) ran on an instrumented treadmill at two speeds (9 and 11 kph), while foot segment
orientations were recorded using inertial measurement units (IMUs) and optical motion capture (OMC). A dual-IMU
setup captured hindfoot and forefoot orientation directly, while a single-IMU setup estimated forefoot orientation from the
hindfoot. HF/FF joint angles from both IMU setups were compared to OMC using root mean square error (RMSE) and
standard deviation (SD) across the gait cycle, both overall and separately by strike pattern. Additionally, per-subject
error mean and SD, as well as correlation values between the IMU setups and the OMC, were calculated. Results:
Both IMU setups show similar overall error patterns, with the largest differences around toe-off. The dual-IMU setup
showed improved accuracy during push-off, but slightly higher variability across the other phases. RMSE and SD
increased at the higher speed (11 kph). Correlation with OMC was generally higher for the dual-IMU setup, yet no
consistent differences in mean error were observed between the two IMU configurations. While running speed affected
both setups similarly, by increasing error and lowering correlation, the strike pattern had minimal effect on performance.
Conclusion: Given the added complexity of dual-sensor configurations, single-IMU setups may be sufficient for general
gait analysis, whereas the dual-IMU setup may be preferable for applications requiring detailed forefoot motion tracking
or improved accuracy during dynamic push-off phases.

INTRODUCTION
Running is a worldwide practised activity, both recreation-
ally and professionally, serving as the foundation for many
sports. Its accessibility and habitual incorporation into
daily life offer significant health benefits [1]. However, it
is associated with a high risk of running-related injuries,
particularly in the lower extremities [2]. To improve injury
prevention and performance analysis, accurate assessment
of biomechanical risk factors is crucial. Despite extensive
research, accurately analysing running biomechanics to
predict injury risks remains challenging due to method-
ological limitations, variability in research approaches,
and the complexity of human movement [3, 4]. This calls
for an objective tool to assess gait parameters and lower
extremity kinematics.

Instrumented gait analysis provides a systematic ap-
proach for studying human movement, with marker-based
motion capture widely considered the gold standard for
capturing high-accuracy kinematics [5, 6]. Optical motion
capture (OMC) systems allow for detailed multi-segmental
marker tracking and have been extensively used in quanti-
tative gait analysis, providing valuable insights into three-
dimensional foot segment kinematics for clinical in-vivo
applications [7, 8]. However, their applicability outside of
controlled laboratory settings is limited, as they rely on
fixed camera setups that confine the measurement space.
Additionally, OMC data processing is both computation-
ally demanding and labour-intensive, requiring extensive
post-processing of marker trajectories.

To overcome these constraints, inertial measurement

units (IMUs) have gained increasing attention as a small,
portable, and cost-efficient alternative to OMC [9], en-
abling motion analysis beyond laboratory settings. They
measure acceleration and angular velocity and often in-
clude a magnetometer for heading estimation. This data
can be used to estimate segment orientations and joint
angles [10]. IMUs have been used in gait assessments for
over a decade, initially focusing on basic kinematic param-
eters such as segment orientation, angular velocity, and
acceleration, particularly for the ankle and foot [11, 12].
More recent research has explored their potential to mea-
sure spatiotemporal parameters in running, like foot strike
and toe-off events with improved accuracy to estimate
stride time, ground contact time and flight phase [13].

IMUs are now widely applied in running gait analysis
to capture lower limb joint kinematics, detect gait events,
and assess movement patterns [14]. Studies suggest that
IMUs are a reliable tool for capturing lower-limb kinemat-
ics, demonstrating good validity in joint angle calculation
compared to OMC systems [15, 16]. Additionally, IMUs
have been applied for broader gait assessments, includ-
ing identifying foot strike patterns, ground contact time,
and pronation severity, aiding in biomechanical evalua-
tions for injury prevention and footwear selection [17].
Their ability to provide gait analysis in real-world and
low-resource settings makes them a practical alternative
to laboratory-based motion capture systems.

However, most IMU-based gait analyses rely on col-
lecting movement data with a single foot-mounted IMU
placed on the dorsum, treating the foot as one rigid seg-
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ment and neglecting its multi-segmental motion [17, 18,
19]. Studies using multi-segment foot models in OMC
have shown that this simplification limits the accuracy of
foot angle estimation and fails to capture the independent
motion of the hindfoot (HF) and forefoot (FF) [20, 21].
Accurately capturing the independent movement of these
segments is essential for calculating the joint angle be-
tween them, leading to a more precise representation of
dynamic foot mechanics during running. OMC-based
multi-segment models, e.g. the Leardini model [22] or the
Oxford model [23], have been well established for detailed
biomechanics analysis and are frequently used for precise
assessment of foot kinematics [7].

Despite their widespread use in OMC, multi-segment
IMU models remain limited. This is because a single IMU
can only capture the motion of the segment to which it is
attached, requiring multiple IMUs on the foot to achieve
multi-segment motion analysis. This approach is less prac-
tical than the flexible marker-based method, often leading
to the foot being treated as a rigid segment. The simplifi-
cation of the foot as a single rigid segment not only limits
joint angle estimation but also affects the accuracy of
IMU-based centre of pressure (CoP) estimation, reducing
the precision of inverse dynamics that rely on accurately
capturing force distribution and load shifts between foot
segments [24, 25].

One recent study measured foot movement using three
foot-mounted IMUs and one on the shank [26], while an-
other employed the same setup but with in-house built sen-
sors [27]. While these approaches concentrate exclusively
on foot kinematics, more recent research has implemented
a dual IMU sensor setup within a full lower body measure-
ment system (9 IMUs in total) to propose [28] and validate
[29] a multi-segment model for gait analysis. However, all
of these studies focus exclusively on walking, where move-
ment amplitudes and impact forces are lower than during
running, which, in contrast, introduces higher variability
in lower limb kinematics and a greater range of motion
of joint angles. Additionally, previous work has shown
that higher running speeds can affect IMU measurement
accuracy due to increased segment acceleration, leading
to greater signal drift and estimation bias, particularly in
joint angle or temporal parameter estimation [30, 19]. Dif-
ferent strike patterns alter segmental orientation, leading
to distinct foot joint rotations and segment interactions,
which cannot be captured by a single-segment foot model
[31, 32]. This requires greater adaptability to manage its
complex and dynamic conditions [33] which further un-
derscores the need to explore multi-segment IMU models.

Despite the increasing use of IMUs in gait analysis,
the comparison between single and dual-sensor setups for
accurate 3D foot modelling remains unexplored. Existing
studies primarily aim to identify running gait outcomes
or examine the effects of factors such as injury, fatigue,
individual characteristics, or footwear on gait, rather than

focusing on detailed foot segment interactions [9].
This study aims to compare two IMU-based approaches

for modelling foot segment motion: a dual-sensor setup,
where both hindfoot and forefoot orientations are directly
measured, and a single-sensor setup, where forefoot (FF)
orientation is estimated from the hindfoot (HF) orientation.
Rather than comparing single- vs. multi-segment models,
as done previously [28], this study evaluates whether a
dual-sensor setup improves joint angle estimation at the
ball of the foot joint, defined here as the hindfoot–forefoot
(HF/FF) joint. By assessing the accuracy, the study exam-
ines the trade-offs and practical usability of a dual-sensor
setup in applied settings. While a dual-sensor setup may
enhance foot motion representation, it also introduces in-
creased setup complexity, sensor attachment requirements,
and potential runner discomfort. The study aims to deter-
mine whether the accuracy benefits of an additional IMU
justify these practical challenges in real-world applica-
tions, and could potentially contribute to advancements in
IMU-based CoP estimation methods.

To achieve these aims, the study will analyse joint angle
errors across both setups to assess whether a two-sensor
approach enhances foot orientation representation, particu-
larly under varying conditions such as different foot strike
patterns and two running speeds. The accuracy of both
approaches will be quantified by comparing joint angles
derived from single- and dual-IMU sensor-based data to
those obtained from the OMC reference system.

METHODS AND MATERIALS
This study was part of a larger research project that in-
cluded an extended data collection protocol, but only parts
related to this research were included.

Participants
Six healthy recreational runners (male-to-female ratio: 3:3;
age: 26.5 ± 4.1 years; height: 184.5 ± 8.6 cm; weight: 76.0
± 10.6 kg) participated in this study. The group consisted
of 3 rearfoot strikers (RFS) and 3 forefoot strikers (FFS),
with an average of 12.0 ± 7.5 years of running experience.
Participants reported running 110.8 ± 84.2 km per month
over 12.2 ± 6.1 sessions.

Participants were recruited from local running associ-
ations and student groups. All had no major injuries in
the past six months and were experienced with treadmill
running. They were able to sustain a running speed of
13 kph (3.61 m/s) for at least 5 minutes and were selected
based on running at least 20 km per week. Strike pat-
terns were assessed prior to the trials with a slow-motion
video recording of the foot while running a short distance.
Participants were categorized as forefoot strikers or rear-
foot strikers based on whether the forefoot or heel made
initial contact with the ground. If either strike pattern
was clearly identifiable, the participant was invited to the
measurements.
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The experimental protocol was approved by the local
ethics committee (University of Twente, Computer & In-
formation Science; Reference no.: 240073). All partici-
pants provided informed verbal and written consent after
receiving detailed information about the study.

Seven participants initially volunteered for the study.
However, one participant was excluded due to a malfunc-
tion of the IMU setup during measurements.

Setup and Data Collection
The study was conducted in the Biomechanics research
lab at the University of Twente, where kinematic and ki-
netic data were collected using inertial measurement units
(IMUs), an optical motion capture (OMC) system, and an
instrumented treadmill.

Participants were equipped with the Xsens MVN Link
system (Movella Technologies BV, Enschede, the Nether-
lands), consisting of eight IMUs sampling at 240 Hz. The
IMUs were placed according to the manufacturer’s guide-
lines on the shank, thigh, pelvis, and sternum (Fig. 2).
Additionally, one forefoot IMU per foot was mounted on
a metal fixture attached to neutral running shoes shown
in Fig. 1, making it a total of 10 IMUs. All IMUs were
attached to the body using skin-friendly double-sided tape
and additional tape atop the sensor. To further minimize
motion artefacts, the lower leg IMUs were reinforced with
compression socks, as proposed by Scheltinga et al. [18].

Figure 1. Provided neutral running shoe with metal fixture for
the forefoot IMU and screws to fixate the lateral optical markers
on the foot.

Fifty reflective markers were attached to the participants.
These markers were tracked by an optical motion capture
system (Qualysis AB, Gothenburg, Sweden) using eight
optical cameras and two additional video cameras. The
system operates at a sampling frequency of 128 Hz. The
foot marker setup was based on the Leardini model [22]
but was modified to fit a two-segment foot model of fore-
and hindfoot, instead of three segments. Only two mark-
ers on the midfoot were excluded from the original setup,
leaving overall more markers per segment. This adjust-
ment was made to account for potential marker loss during
running, particularly on the medial side of the foot, which
can occur due to collisions or contact during movement.

The lateral markers were held in place by screws in the
provided shoe to minimize the risk of loss in that area. The
toe markers, LFM, LFL (left) and RFM and RFL (right)
(Fig. 2, C, D), were repositioned onto the screws on top
to accommodate the metal fixture holding the additional
forefoot IMU, which occupied space in the same region.
The fixture provided two stable points for secure marker
placement. Participants also wore pressure insoles (Moti-
con OpenGo 3.12.1, Moticon GmbH, Munich, Germany)
inside their shoes during all trials. The data recorded by
the insoles was not included in this analysis, as they were
part of a separate study.

Figure 2. Optical marker (blue) and IMU (orange) placement
on (A) the front of the body and (B) the back of the body. (C)
The optical marker placement on the inside and (D) the outside
of the right foot. (E) The top view of the foot shows the IMU
placement.

Protocol
Running trials were conducted on one belt of a split-belt
instrumented treadmill (Bertec Fit 5, Bertec Corporation,
Columbus, OH, USA) with integrated force plates sam-
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pling at 1000 Hz. Participants completed 300-meter trials
at two speeds, 9 kph and 11 kph (2.5m/s and 3.1m/s). Be-
tween trials, participants rested for 2 minutes to mitigate
fatigue. Three vertical jumps were performed by partici-
pants on the treadmill before and after each running trial.
They were executed after all measurement systems were
turned on and served as reference points for time synchro-
nization later. Calibration of all devices was performed
according to the manufacturer’s guidelines before each
session.

Data processing
MT Manager (Xsens MT Manager; version 2022.0.0) was
used to acquire the raw quaternion data representing the
IMU orientations. OMC trajectory data was labelled and
extracted using Qualysis Track Manager (QTM, Qualysis
AB, Gothenburg, Sweden; version 2023.3). Force plate
data were also exported through the motion capture soft-
ware QTM. MATLAB (MathWorks Inc.; version 2021b)
was used for all subsequent data processing.

An overview of the full data processing pipeline is pro-
vided in Fig. 4, including preprocessing, sensor orientation
calculation, and the sensor-to-segment alignment steps.
The following sections describe each of these steps in
detail.

Sampling and Time Synchronization
Marker trajectories from the OMC system, vertical ground
reaction forces (vGRF) from the force plates and sensor
orientation for the IMUs were all resampled to a common
sampling frequency of 200 Hz to ensure consistency across
systems. Resampling was performed using MATLAB,
applying a low-pass filter and interpolation to change the
sampling rate while minimizing the risk of introducing
artefacts.

The OMC system and treadmill force plates were inher-
ently synchronized during recording, while they needed
to be time-aligned with the IMU data. This was achieved
using cross-correlation and a lag correction procedure
based on the vertical jumps measured at the start of each
trial, as described in the section Protocol. The timing of
the measurement start of the systems was not consistent
throughout the trials. The lag was therefore applied to the
system data that started earlier, shifting it to align with the
data that started later. After alignment, the longer dataset
was trimmed to match the length of the shorter dataset.
Once aligned, all data had consistent length, sampling rate,
and timing.

Reference Coordinate System Alignment
To accurately compare sensor orientations and joint angles
between the IMU and OMC systems, it is necessary to
express these parameters in a common reference frame.
Both systems define segment orientations relative to their
respective local coordinate systems (CS), which differ in
their axis definitions, as shown in Fig. 3.

The IMU system followed a right-handed coordinate
system (x-axis pointing forward, y-axis to the left, and
z-axis upward). In contrast, the OMC system’s local coor-
dinate system had the z-axis pointing to the right and the
y-axis pointing upward.

Figure 3. Visualization of local OMC and IMU reference
system, as well as sensor-fixed coordinate systems (CS) for fore-
and hindfoot of the IMUs (orange) and forefoot of the optical
markers (light blue).

The rotation matrices representing the local IMU coor-
dinate systems were as follows:

Rlocal,OMC =

1 0 0
0 0 1
0 −1 0

 , Rlocal,IMU =

1 0 0
0 1 0
0 0 1

 .

Due to these differences, segment orientations calcu-
lated for both systems cannot be directly compared. To
unify the reference frame, the OMC coordinate system
was transformed by rotating all marker trajectories −90◦

around the x-axis. The transformation rotation matrix for
this alignment was computed as:

RtransCS =

1 0 0
0 cos(−90◦) −sin(−90◦)
0 sin(−90◦) cos(−90◦)

=

1 0 0
0 0 −1
0 1 0


The locally aligned marker trajectories were computed

by applying the transformation shown in Eq. 2. The
trajectory data expressed in the local reference frame of
the OMC (Rsource) is multiplied with the transformation
matrix RtransCS expressed as Rtrans to obtain Raligned, the
trajectory data expressed in the local reference frame of
the IMU system. By applying this, all orientations and
joint angles that will be derived from both systems can
now be expressed within the same local coordinate system.

Sensor Orientation
Forefoot and hindfoot segments for both feet, as well as
the pelvis segment, were defined using marker trajectories
from the OMC system (Fig. 5). The orientations rotation
matrices were computed using the Triad method, from
three non-collinear markers and cross-product calcula-
tions, as described in literature [34].
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Figure 4. Overview of the full data processing pipeline from measured IMU and OMC input to segment orientation. The coordinate
systems shown represent the local reference frames (system-fixed) to visualise rotations into a common reference frame. The steps
shown here are described in detail in the corresponding sections of this study.

The x-axis was defined from the back to the front, the
y-axis from the right to the left, and the z-axis as the cross-
product between the x-axis and y-axis, to express them
similar to the direction of the local right-handed reference
system. To ensure perpendicularity, the x-axis was recal-
culated afterwards by taking the cross-product between y-
and z-axis. The rotation matrix for each segment in the
local CS of the OMC was then constructed.

Figure 5. Marker trajectories used for segment orientation
creation using the Triad method. The initial X-axis is
represented by the light-blue vector, the y-axis by the red vector,
and the z-axis by the green vector (pointing upwards). The
recalculated x-axis is shown in dark blue. The vector describing
the forward direction of the foot is shown in yellow.

These orientations effectively represent the sensor ori-
entations within the local reference system, as they de-
pend on marker placement, similar to how IMU sensor
orientations depend on sensor placement. For the OMC-
based method segment orientations are computed using
marker trajectories, while the IMU system records quater-
nions describing the orientation of the sensor-fixed coordi-
nate system. However, in both cases, the resulting sensor
orientation rotation matrices are not inherently aligned
with the anatomical foot segments (see Fig. 6, requiring
an additional sensor-to-segment alignment step (see Sec-
tion Sensor-to-Segment Alignment). The difference in their
respective sensor-fixed coordinate systems is illustrated in
Fig. 3.

Figure 6. Difference in sensor orientation (blue) and segment
orientation (red) before alignment. On the example of the IMU
on the hindfoot.

Sensor-to-Segment Alignment
To align the sensor orientation with the anatomical seg-
ment orientation, a transformation rotation matrix Rtrans
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is computed at a frame where the subject is standing still.
This static posture-based alignment is also used in the
Xsens MVN model for sensor-to-segment calibration [35].
The transformation is done from both sensor orientations,
based on the marker and IMU data, to the orientation of
the same segment.

In general, the transformation rotation matrix is com-
puted as:

Rtrans = Rtarget(tstill)R⊤
source(tstill) (1)

where:

• Rsource(tstill)∈R3×3 is the orientation rotation matrix
to be transformed at the still-standing frame,

• Rtarget(tstill) ∈ R3×3 is the target orientation rotation
matrix at the still-standing frame,

• R⊤
source(tstill) is the transpose of Rsource(tstill).

Once Rtrans is computed, it is applied to all frames of
the orientation data to transform. The aligned rotation
matrices for each time step are computed as:

Raligned(t) = RtransRsource(t) (2)

where:

• Rsource(t)∈RN×3×3 is the orientation rotation matrix
to be transformed at each time step t,

• Raligned(t) ∈RN×3×3 is the target orientation rotation
matrix at each time step t.

Raligned(t) expresses the anatomical segment orienta-
tion in the local coordinate system. Since the transfor-
mation matrix Rtrans is constant and computed only once
per measurement system, from the still-standing frame, it
is applied uniformly across all frames to ensure the sen-
sor orientations are consistently aligned with the segment
orientations.

During the still standing, it is assumed that the foot is
flat on the ground, meaning that its segment orientation
should align with the global reference frame. This allows
the segment orientation at this frame to be approximated
as the identity matrix, which represents perfect alignment
with the right-handed coordinate system. However, there
is a heading offset, as the foot is not necessarily pointing
in a perfect forward direction. This offset is accounted
for by determining the foot’s forward-facing direction
using the foot forward vector. It is calculated using the
trajectories of the heel and medial toe marker, visualized
in Fig. 5. By incorporating this heading adjustment, the
transformation ensures that the segment orientations are
properly expressed and are the same for the IMU- and
OMC-based approach.

Gait Event Detection
Gait events were identified using vertical ground reaction
force (vGRF) data recorded from the treadmill force plates.
The vGRF signal was filtered, using a 4th-order Butter-
worth low-pass filter, with a cut-off frequency of 20 Hz to
remove high-frequency noise. A threshold of 35 N was
applied to the data to detect initial contact (force crossing
the threshold from below) and toe-off (force crossing the
threshold from above). This threshold was chosen based
on literature values, which typically range from 20 N [36]
to 50 N [37], as well as the specific characteristics of the
treadmill and the data collected in this study. The events
detected were primarily used for forefoot orientation esti-
mation by determining phases of ground contact and air
time.

Additionally, the detected initial contact events were
later used in stride segmentation of the joint angle for error
calculation, where the data was divided into individual
strides and interpolated to a standardized length of 200
frames.

Forefoot Orientation Estimation
Since this study compares a single-sensor vs. dual-sensor
setup using a multi-segment foot model, estimating fore-
foot orientation is necessary to enable joint angle cal-
culations when only one IMU is available, i.e. in the
single-IMU sensor setup. In a dual-sensor setup, both the
hindfoot and forefoot orientations are directly measured,
allowing for direct computation of the joint angle between
the two segments. However, in a single-sensor setup, only
the hindfoot orientation is recorded, requiring the forefoot
orientation to be estimated. This estimation was based on
the orientation data of the hindfoot sensor. To segment the
gait cycle, the identified initial contact and toe-off events
(see section Gait Event Detection) are used to identify the
contact and flight phase.

Figure 7. Estimated forefoot orientation during contact and
flight phases. In flight, the forefoot follows the hindfoot
orientation (black). In contact, the forefoot is assumed flat in
x-y-plane (red), except for the heading direction, which follows
the hindfoot (black). Figure adapted from [31].

During the flight phase (between toe-off and initial con-
tact), the forefoot orientation was assumed to be identical
to the measured hindfoot orientation. In the stance phase,
when ground contact was detected, the forefoot was set

6/17



to a flat orientation, aligning with the identity matrix but
with the heading offset taken from the hindfoot orientation
rotation matrix at still standing (Fig. 7). The orientation of
the measured hindfoot and estimated forefoot orientation
over one stride is shown in Fig. 8.

Figure 8. Visualization of the forefoot orientation estimation
method over one stride, aligned with the gait cycle and its key
gait events, for a rearfoot striker. The upper part of the figure
illustrates the running gait phases, adapted from [13], with
modifications to scaling, titles, and the addition of orientation
graphs below.

Joint Angle Calculation
To quantify the error between the OMC and the IMU
setups, the joint angles were computed by deriving the
relative transformation rotation matrix between the hind-
foot and forefoot orientations within the same foot and
measurement system (IMU and OMC), as shown in Eq. 1.

Additionally, this calculation was performed between
the IMU-based measured hindfoot orientation and the esti-
mated forefoot orientation to assess the feasibility of using
a single IMU on the foot for HF/FF joint angle estimation.
By comparing these joint angles, the error introduced by
estimating the forefoot orientation instead of directly mea-
suring it can be determined. The resulting joint angle data
was cut in strides based on the foot-strike events detected
earlier.

Outlier rejection
For the joint angle stride data obtained from the OMC
system, outliers were identified using the interquartile

range (IQR) method with upper and lower boundaries set
at 10. This was used to detect and reject strides affected
by marker switching in the Qualysis software. Given
the natural variability in running and individual stride
differences, the rejection boundaries were not chosen to
be overly strict.

For the joint angle stride data obtained from the OMC
system, outliers were identified using the interquartile
range (IQR) method with upper and lower boundaries set
at 10. This approach was used to detect and reject strides
affected by marker switching in the Qualysis software
while maintaining natural stride variability during running.

Additionally, to ensure comparability between feet, the
heading direction (Z-direction) of joint angles in the left
foot was inverted to match the right foot. Due to differ-
ences in the local coordinate system definition of each
foot, the Z-axis in the left foot is opposite to the right foot,
resulting in mirrored joint angle calculations between the
forefoot and hindfoot. Without this adjustment, joint an-
gles on the left foot would be inverted relative to the right,
making direct comparison inconsistent [34].

Error Calculation and Analysis
To assess the accuracy of the IMU-based joint angles, the
root mean square error (RMSE) was calculated for all valid
strides by comparing them to the OMC reference. RMSE
was computed separately for joint angles derived from the
single-IMU setup and from the dual-IMU setup, each com-
pared against the corresponding OMC joint angles. RMSE
calculations were performed independently for joint angle
movements around the three anatomical axes: Y (dorsi-
flexion/plantarflexion), X (inversion/eversion) and Z (in-
ternal/external rotation). From this point onwards, these
axis-based movements will be referred to either by their
anatomical movements or by the corresponding anatomi-
cal planes (Fig. 9).

A stride was considered valid if it was not rejected as an
outlier in any of the stride datasets (OMC, dual IMU, or
single IMU). Valid strides were aggregated across multiple
participants, and both feet were included in the same error
calculation. The two running speeds were processed sepa-
rately due to timing differences in gait events. At higher
speeds, the flight phase is longer, leading to earlier initial
contact and toe-off events. For analyses focusing only on
forefoot or rearfoot strikers, strides were further grouped
based on participants exhibiting these strike patterns.

Given the small sample size (n=6), standard statistical
analyses were constrained by low statistical power, limit-
ing the robustness and generalizability of potential find-
ings. Initially, tests for normality (Shapiro-Wilk) were con-
ducted on the calculated mean errors for both IMU setups,
confirming that the data were not normally distributed.
Consequently, non-parametric tests such as the Wilcoxon
signed-rank test and the Mann-Whitney U test were per-
formed to assess differences between setups (single- vs.
dual-IMU), speeds (9 kph vs. 11 kph), and strike pat-
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Figure 9. Overview of the axes, anatomical planes, and
corresponding foot movements. Positive rotation directions
follow the right-hand rule. Yaw, Roll, and Pitch denote rotations
around the Z-, X-, and Y-axes respectively. The Z-direction is
also referred to as heading direction.

terns (RFS vs. FFS). These tests yielded no statistically
significant differences, likely due to the limited sample
size and substantial variability within subjects. Statistical
power was thus insufficient to reliably detect subtle yet
practically meaningful differences under these conditions,
especially with only six participants and two speeds. Con-
sidering these factors, the results presented here are better
understood as descriptive rather than definitive.

Therefore, rather than relying solely on statistical sig-
nificance testing, this study adopted a more descriptive
approach. For a detailed comparison between the two IMU
setups, summary tables were created that report mean er-
rors and standard deviations (SD) per participant, speed,
and direction, averaged over all frames and strides. Ad-
ditionally, correlation analyses between each IMU setup
and the optical motion capture reference were performed
for each participant and speed to assess the strength and
consistency of the linear relationship. Higher correla-
tion values indicate stronger agreement between IMU-
derived joint angles and the OMC reference, whereas
lower correlations reflect greater discrepancies in error
patterns. Therefore, correlation strength was categorized
as weak (q ≤ 0.35), moderate (0.35 < q < 0.67), strong
(0.67≤ q< 0.90), and excellent (q≥ 0.90) [38]. These de-
scriptive analyses, complemented by detailed time-series
graphs illustrating error trends throughout the gait cycle,
provide context and practical insights into when and why
differences in IMU accuracy occur.

RESULTS
Fig. 10 and Fig. 11 illustrate the absolute RMSE between
IMU-based hindfoot-forefoot (HF/FF) joint angles and
those obtained from the OMC system, which is consid-
ered the gold standard. The comparison includes both
single-sensor and dual-sensor IMU setups. Across all con-
ditions, both IMU setups exhibit similar overall trends in
HF/FF joint angle errors, with magnitudes varying across
planes and gait phases. The most prominent differences
appear in the sagittal plane, particularly around toe-off
(∼30% gait cycle), where the single-IMU setup shows
the highest error values and elevated variability. During
mid-stance and swing phases, the single-IMU setup occa-
sionally outperformed the dual-IMU in absolute error. In
the transverse plane (heading), error levels remain more
consistent throughout the gait cycle but exhibit a larger
standard deviation, indicating higher variability across par-
ticipants. In contrast, the frontal plane generally shows
smaller errors across the gait cycle, with no distinct peaks
as seen in the other axes. Comparing speeds, the 11 kph
condition shows overall higher RMSE values than 9 kph,
particularly in the sagittal plane.

When separating foot strike patterns (Fig. 11), error
trends remain largely consistent between RFS and FFS.
While FFS exhibit slightly higher peak errors around toe-
off, the differences are subtle. RFS show a brief drop
in error around 10% of the gait cycle compared to FFS.
Across both groups, the highest errors occur in the late
stance phase, followed by more stable error levels during
midstance. As for Fig. 10, the RMSE and SD at 11 kph
are higher than for 9 kph, for both strike patterns.

To further quantify these observations, Tab. 1 and Tab. 2
summarize the mean and standard deviation of the RMSE
per participant, speed, and IMU setup. Additionally, the
correlation between each IMU setup and the OMC system
is provided, offering insight into the consistency of the
measurements.

9 kph
Subject Error [◦] Correlation

Dual IMU
(Mean ± SD)

Single IMU
(Mean ± SD)

Dual IMU
vs. OMC

Single IMU
vs. OMC

S1 (FFS) 6.88±4.36 5.25±6.58 0.8 0.7
S3 (RFS) 2.00±1.55 4.63±5.09 0.84 0.57
S4 (RFS) 17.23±4.22 8.21±9.16 0.62 0.54
S5 (RFS) 3.38±2.68 5.03±6.48 0.7 0.56
S6 (FFS) 6.92±5.59 6.15±6.53 0.83 0.75
S7 (FFS) 10.53±3.12 9.39±8.21 0.85 0.71

Table 1. Comparison of error in HF/FF joint angles between
dual-IMU and single-IMU setups (compared to OMC as
reference) for 9 kph on subject-level with strike pattern
indicated as FFS (Forefoot Striker) and RFS (Rearfoot Striker)).
Lower error and higher correlation are marked.
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Figure 10. Error in HF/FF joint angles in the sagittal plane (dorsiflexion/plantarflexion), transverse plane (internal/external rotation),
and frontal plane (inversion/eversion), between IMU and OMC systems for single and dual IMU-sensor setup, over all strike patterns.

Both IMU setups exhibit participant-dependent vari-
ations in error, with no consistent accuracy advantage
observed for either setup across all subjects. The single-
IMU setup generally shows higher variability, as indicated
by larger standard deviations, compared to the dual-IMU

setup, for both speeds.
At 11 kph, errors are generally higher than at 9 kph

across both IMU setups, with the single-IMU setup dis-
playing greater variability across speeds. Standard de-
viations tend to be larger at 11 kph, particularly for the
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Figure 11. Error in HF/FF joint angles in the sagittal plane (dorsiflexion/plantarflexion) between IMU and OMC systems for single
(red) and dual (blue) IMU-sensor setup, comparing heel-striker and forefoot-striker at two different speeds. The horizontal dotted line
marks the average toe-off event per speed.

11 kph
Subject Error [◦] Correlation

Dual IMU
(Mean ± SD)

Single IMU
(Mean ± SD)

Dual IMU
vs. OMC

Single IMU
vs. OMC

S1 (FFS) 9.50±5.04 5.94±6.68 0.81 0.68
S3 (RFS) 5.20±3.31 5.00±4.85 0.75 0.57
S4 (RFS) 10.98±7.82 7.70±9.59 0.48 0.38
S5 (RFS) 3.10±2.60 4.86±5.50 0.77 0.56
S6 (FFS) 6.86±9.82 7.23±7.22 0.67 0.7
S7 (FFS) 5.82±3.81 7.14±8.99 0.83 0.68

Table 2. Comparison of error in HF/FF joint angles between
dual-IMU and single-IMU setups (compared to OMC as
reference) for 11 kph, with strike pattern indicated as FFS
(Forefoot Striker) and RFS (Rearfoot Striker). Lower error and
higher correlation are marked.

single-IMU setup, indicating greater fluctuations in error.
Correlation values with the OMC system were typically

higher for the dual-IMU setup. At 9 kph, five out of six
participants showed strong to excellent correlations (r >
0.67) with the dual-IMU, while the single-IMU mostly
remained in the moderate to strong range (0.35 < r <
0.90). At 11 kph, correlation strength decreased slightly
for both setups, with a clearer drop for the single-IMU
setup. In the dual-IMU setup, three participants dropped
to moderate or weak correlation (r ≤ 0.67), and the single-
IMU showed only one strong correlation (S5), with most
remaining moderate or lower.

When comparing values for foot strike patterns, both
rearfoot strikers and forefoot strikers show similar error
trends. There is no consistent advantage for either group
in mean error, SD or correlation for either of the sensor
configurations. Higher speed also affects both strike types
similarly by lowering correlation and increasing mean
error and SD.

DISCUSSION

This study compared single- and dual-IMU setups across
multiple gait cycles to evaluate whether adding a second,
forefoot-mounted sensor improves kinematic accuracy and
whether such gains justify the added complexity in setup
and handling.

Optical Motion Capture as the Reference System
To assess the plausibility of the OMC as a reference sys-
tem, the forefoot–hindfoot joint angle in the sagittal plane
(dorsiflexion/plantarflexion) was computed across 1688
strides at 9 kph and 1479 strides at 11 kph. The joint
angle trajectories were illustrated across a normalized gait
cycle, with standard deviations. The corresponding range
of motion (ROM) was defined as the difference between
the maximum and minimum HF/FF joint angle within the
gait cycle.
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Figure 12. OMC-based HF/FF joint angle in sagittal plane
across normalized gait cycles at 9 kph and 11 kph, including
mean ± SD.

The resulting ROM values were 16.05◦±3.39◦ at 9 kph
and 20.46◦ ± 5.77◦ at 11 kph. These values align with
previously published ROM of plantarflexion/dorsiflexion
motion for the hindfoot–forefoot joint from multi-segment
foot models using OMC. Schallig et al. [39] reported a
ROM of 12.5◦±3.5◦, Wang et al. [40] reported 15.4◦±
3.6◦, and Levinger et al. [41] reported 14.4◦, all for walk-
ing. The slightly higher ROM observed in this study is
expected, as running typically involves greater joint excur-
sions than walking. Nevertheless, the similarity in ROM
magnitude compared to walking studies still strongly sup-
ports the reliability of the current OMC reference data.
The joint angle curves presented in Fig. 12 exhibit a dorsi-
flexion/plantarflexion motion pattern consistent with the
general shape of forefoot–hindfoot interactions in the sagit-
tal plane, reported in these prior studies. This further re-
inforces the plausibility and reliability of the reference
system employed here.

Accuracy of Dual- vs. Single-Sensor Setup
The higher peak around the toe-off is likely due to the esti-
mation approach for the single-IMU setup, which assumes
the forefoot remains flat during stance and abruptly aligns
it with the hindfoot in flight, creating a discontinuity in
HF/FF joint angle estimation. Around toe-off, small stride-
to-stride differences in push-off timing or foot posture may
amplify these discontinuities, leading to the observed spike
in standard deviation. This supports prior findings high-
lighting toe-off as a mechanically complex phase where
simplifications in foot modelling can lead to inaccura-
cies [20]. While no temporal smoothing was applied to
the estimated joint angles in this study, previous work
suggests that filtering around dynamic transitions could
help reduce such error spikes [42]. In contrast, the dual-

IMU setup measures forefoot motion directly, enabling
smoother transitions through toe-off and lower errors in
this phase. Bauer et al. [29] similarly showed that adding
a second IMU for a two-segment foot model in walk-
ing allowed for more detailed and phase-specific segment
analysis and reported better repeatability, indicating lower
variability, compared to a single-sensor setup. However, in
the current study, the dual-IMU setup showed higher vari-
ability across the gait cycle, especially in phases where
natural forefoot motion differs more strongly between
strides. This inconsistency may be due to the inherently
greater variability in foot segment motion during running
compared to walking, which increases the likelihood of
capturing stride-to-stride differences and movement arte-
facts with the additional forefoot sensor.

Angular differences in the frontal (inversion/eversion)
and transverse (internal/external rotation) planes were ei-
ther small or strongly affected by offset, making the sagit-
tal plane (dorsiflexion/plantarflexion) the main focus. Pre-
vious studies have shown that during running, low motion
amplitudes and high variability in these directions often re-
duce the accuracy of IMU-derived joint angles [32, 43, 44].
While those findings focus on the ankle or general foot
segments, similar limitations are visible at the HF/FF joint
in the current data. As shown in Fig. 10, errors in the
frontal and transverse planes, especially in the dual-IMU
setup, show large fluctuations over the gait cycle. Due to
this reduced reliability, results in these axes were excluded
from further analysis.

During mid-stance, the forefoot often aligns flat with the
ground, which closely matches the estimation assumption
and reduces HF/FF joint angle error, which could explain
why the error of the single-IMU setup occasionally out-
performs the dual-IMU. The same during swing, where
the foot acts largely like a rigid segment with limited ro-
tation around the metatarsal joint or other deformations,
making the orientation estimation (i.e. equal to hindfoot)
more valid [45]. Furthermore, IMU measurement qual-
ity is generally lower during swing compared to stance
[16], potentially explaining the occasional advantage of
the estimation-based method in this phase.

The RMSE and correlation values in Tabs. 1 and 2 offer
a broader view of performance across participants and con-
ditions. As expected, the dual-IMU setup achieves higher
correlations, likely because it directly measures both the
fore- and hindfoot segments, thereby closely aligning with
the reference system. By contrast, the single-IMU relies
on an estimation of the forefoot orientation, which can
lower the correlation when a participant’s actual motion
deviates from the expected movement pattern. However,
higher correlation in the dual-IMU setup did not consis-
tently correspond to lower RMSE values compared to
the single-IMU, indicating that individual gait characteris-
tics strongly influenced accuracy outcomes. Although the
mean standard deviation is typically higher in the single-
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sensor setup, this is largely driven by the error peak at
toe-off, as variability per frame across most of the stride
is lower compared to the dual-IMU (see Fig. 10). These
modest accuracy improvements have also been reported
in previous walking-based studies [29].

Impact of Running Speed on Accuracy
Increasing running speed from 9 kph to 11 kph consistently
resulted in larger RMSE and higher variability (SD) in
HF/FF joint angle errors for both the single- and dual-
IMU setups. As shown in Fig. 10 (all participants) and
Fig. 11 (RFS vs. FFS), the error curves become more
pronounced at 11 kph. This pattern is also evident in
Tabs. 1 and 2, where participants show higher mean
errors, standard deviation and reduced correlation values
at the faster speed.

At 11 kph, correlation values decreased for both IMU
setups compared to 9 kph, with a clearer drop in the single-
IMU setup. As shown previously, running introduces
multi-planar motion and irregular velocities that reduce
the validity of IMU-based measurements [30]. Similarly,
lower correlations and higher RMSEs during running
compared to walking have been reported in other stud-
ies [32, 46], and some have introduced speed-dependent
correction strategies to address these effects [19]. The
more pronounced drop in correlation for the single-IMU
setup may reflect its reliance on estimated forefoot orien-
tation rather than direct segment measurements. During
dynamic phases like push-off and foot-strike, faster run-
ning introduces greater noise in the measured forefoot data
due to impact artefacts or sensor movement [17]. While
the dual-IMU setup and OMC both capture this noise at
the forefoot, helping preserve waveform similarity, the
single-IMU setup estimates forefoot motion from the hind-
foot. As a result, the noise characteristics differ between
systems, and slight timing mismatches can occur. These
discrepancies can reduce alignment with the OMC refer-
ence and lower overall correlation.

While both IMU setups deteriorate in accuracy with
speed, there is no clear advantage of one system over the
other at 11 kph. The data indicate that single- and dual-
sensor configurations are similarly affected by the faster,
more variable running mechanics.

Impact of Strike Pattern on Accuracy
Strike patterns had limited influence on the differences
between single- and dual-IMU setups. While forefoot
strikers often showed slightly higher dorsi-/plantarflexion
errors near toe-off (see Fig. 11) the overall pattern of dif-
ferences between the two sensor configurations remained
consistent across strike patterns.

In early stance, the flat-foot assumption used in the
single-IMU estimation appeared to match actual foot pos-
ture more often for forefoot strikers, potentially reducing
early stance errors. Rearfoot strikers, on the other hand,
showed a brief drop in error around 10% of the gait cycle,

when the foot transitions from heel contact to full-foot
contact and temporarily aligns with the estimation model.

Despite these phase-specific effects, no consistent ad-
vantage emerged for either strike pattern. As shown in
Tabs. 1 and 2, average errors and correlations varied more
between participants than between strike types. While
prior work [47] has shown strike-pattern-related differ-
ences at the first metatarsophalangeal joint using bone-
level imaging, such details will not be fully captured by
surface-mounted IMUs. In addition, the forefoot–hindfoot
segmentation used here does not isolate the first metatar-
sophalangeal joint specifically, which may further explain
the minimal effect observed in our results.

The Anatomical Division Between Forefoot and Hind-
foot
Dividing the foot into forefoot and hindfoot segments is a
common simplification in multi-segment foot modelling
[22]. However, the foot’s true anatomy involves multiple
interacting joints that do not conform neatly to such seg-
mentation. Bruening et al. [48] highlight that joint motion
in the midfoot often spans multiple segments, meaning
the placement of the anatomical boundary can influence
calculated joint angles. In the present study, standard-
ized sensor and marker placements were used to reduce
variability across participants, ensuring that any anatom-
ical segmentation bias affected both IMU configurations
equally.

Practicality of Dual- vs. Single-Sensor Setup
Implementing a dual-IMU setup introduces several practi-
cal hurdles, particularly related to forefoot sensor place-
ment. In this study, shoe modifications were required to
mount the additional IMU, including cutting holes and
altering the shoe structure. This not only increases setup
time but can also compromise shoe integrity and introduce
variability across trials. Forefoot-mounted sensors are
more susceptible to motion artefacts due to twisting and
vertical displacement of the soft top part of the shoe dur-
ing running [49] and tend to show higher variability than
more proximal placements [45]. Their proximity to the
ground also increases exposure to magnetic disturbances
from ferromagnetic objects, such as treadmills, which can
raise joint angle RMSE during dynamic movements [50].

Standardizing forefoot IMU placement is another chal-
lenge. Existing studies disagree in their recommendations
on where and how to attach forefoot sensors [51, 52], com-
plicating reproducibility across labs or clinical settings.
By contrast, mounting a single IMU on the hindfoot is
more consistent and aligns with standard practices recom-
mended by commercial systems (e.g., Xsens).

Limitations
This study had several methodological limitations that
should be considered when interpreting the results. First,
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the small sample size of six participants restricts the gener-
alizability and statistical power of the outcomes. Although
non-parametric tests were used to address non-normal data
distributions, the combination of high variability and the
small number of conditions per subject likely reduced the
ability to detect subtle yet meaningful differences. This
concern has also been raised in a meta-analysis on IMU-
based gait analysis [42], which identified small sample
sizes as a common limitation affecting the strength and
reliability of such studies.

Treadmill running also differs from overground gait in
terms of mechanics and stride regulation [53], possibly
shifting running mechanics during trials. Participants were
classified as rearfoot and forefoot strikers during pre-trials
on solid ground and without insoles. The combination of
treadmill use and pressure insoles, known to introduce foot
stiffness and alter foot ankle joint mobility [54], may have
introduced unmonitored changes to strike patterns during
the actual data collection. This may partially explain why
the accuracy differences between strike patterns were not
clearly evident.

The study only examined moderate running speeds
(9 kph and 11 kph), which limits conclusions about
velocity-related effects. However, even within this narrow
range, results showed an increase in HF/FF joint angle er-
rors in all planes at the higher speed (Fig. 10), suggesting
that faster movement may amplify sensor-related artefacts
[14]. Additional testing at higher velocities is needed
to better understand how speed influences different IMU
sensor configurations.

Regarding the single-IMU setup, the forefoot orienta-
tion estimation was implemented as a practical alterna-
tive to the closed-source MVN algorithm, which might
yield better accuracy, potentially offering a more precise
approximation of forefoot orientation. However it was
inaccessible due to software restrictions caused by sensor
switching in the model. While this limits comparability,
previous research suggests that during thw swing, the foot
behaves like a rigid segment with minimal internal motion
[45], partially supporting the validity of the estimation
method used.

CONCLUSION
This study compared single- and dual-IMU foot setups
to assess whether adding an extra sensor significantly im-
proves the accuracy of kinematic foot modelling during
running. The dual-IMU configuration generally provided
smoother and more accurate HF/FF joint angle estimations
around critical dynamic phases, the toe-off, compared to
the single-sensor setup.

Foot strike pattern (RFS vs. FFS) did not strongly affect
the overall accuracy difference between setups, suggesting
that the influence of strike type on foot segment modelling
is limited in this context. This is consistent with prior
work reporting that strike pattern primarily affects ankle

joint angles, not other foot joints [31].
Both IMU setups exhibited reduced accuracy at higher

running speeds, showing increased variability and errors
at 11 kph compared to 9 kph, but without clear superiority
of either the single- or dual-sensor configuration. This
suggests that at higher velocities, the practical benefits
of using a dual-sensor setup to directly measure forefoot
motion are less evident, as the increased speed similarly
impacts both setups.

The decision to use a dual-IMU setup involves a trade-
off between accuracy and practicality. While the dual-
IMU setup improved accuracy at toe-off, overall accuracy
across the gait cycle was comparable to the single-sensor
setup. It also introduced logistical challenges, including
more complex sensor placement, shoe modifications, and
increased susceptibility to motion and magnetic artefacts.
Despite these challenges, the setup may still be justified if
the goal is to detect clinically relevant changes. Ultimately,
the decision should balance accuracy needs and practical
feasibility based on the specific goals of the analysis, as
already proposed in walking-based studies [27].

Further work should include larger and more diverse
samples, a broader range of running speeds, and over-
ground testing to improve generalizability. Standard-
ized sensor attachment, ideally without shoe modifica-
tion, would enhance consistency and feasibility in clinical
or field use. Future comparisons should also consider
commercially available estimation models, such as MVN
(Xsens), to evaluate sensor setups using standardized orien-
tation outputs. The single-IMU’s assumption of identical
forefoot and hindfoot internal/external rotation (heading)
could help mitigate the drift and may be useful for stride-
by-stride heading correction. Finally, while benefits of
multi-segment IMU models have been shown in walking
[27, 26], similar validation is still needed for running gait.
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