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I. ABSTRACT

Code injection is a technique utilized by malware that
injects a section of its code into other processes and tricks
them into executing it. Many state-of-the-art detection systems
only determine malicious behavior by looking at the malware
sample. Not looking at the target process of code injection
means they miss part of the malicious behavior. No research
studies the effects of code injection on benign injected pro-
cesses, so it is unclear how much malicious process behavior
(e.g., system calls) modern solutions miss.

We propose a framework that automatically identifies be-
havior exhibited by injecting malware samples and their victim
processes after being targeted by code injection. The frame-
work utilizes dynamic analysis to find the system calls of the
malware sample and its victim and matches the found system
calls to SIGMA rules that define behavior. We then use this
framework to gather the behaviors of 436 real-life samples and
their victims to approximate the behavior missed in modern
detection systems.
Our experiments suggest that solutions miss, on average,
56.3% of behavior when looking strictly at the amount of
tracked system calls and 64% of behavior when looking at
the amount of SIGMA rules found.
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II. INTRODUCTION

Nowadays, it is almost impossible to imagine a world that
does not rely on the Internet for many daily tasks. People
use the Internet daily for banking, gaming, social interactions,
streaming, and shopping. In addition, during the past few years
during the COVID-19 pandemic, many people had to work
from home, which increased the use of the Internet [8].

With this increased internet use, the risk people face online
also increases. One of these risks is malware. Malware, named
from MALicious softWARE, is software designed to operate
maliciously. Malware has the goal of, for example, disrupting
or denying access to systems, gathering data, or gaining access
to systems [10]. The high use of the Internet has resulted in
a high amount of potential targets for malware. Due to the
abundance of targets, malware authors develop malware at
an enormous rate, about 450.000 new malware samples per
day [1].

One technique that malware utilizes is code injection [20].
This technique allows malware to take a section of code and
insert it into another victim process. The other process will
then execute the code as if it were its own. The injecting
of code into victims and the victim executing it makes
malware much more difficult to detect by anti-viruses and
other detection systems, as the malware sample does not show
any malicious behavior. Instead, the victim process exhibits
malicious behavior.

Many state-of-the-art detection systems attempt to detect
malicious behavior and, in turn, code injection in different
ways. Some examples include behavior nets [27], others use
taint analysis [13], or the honeypot paradigm [4]. One thing
these systems share is that they only focus on detecting that
a sample uses code injection, not what behavior the victim
process of the code injection shows afterward. Ignoring
what behavior the victim shows means we miss part of the
malicious behavior of the sample. Thus, we underestimate
what these malware samples do and do not know how much
we underestimate it. The victim’s behavior could be a small
part of the malicious behavior, but it could also be a majority.
However, in the literature, no research studies the effects of
code injection on benign injected processes.

We propose a framework that automatically identifies be-
havior exhibited by injecting malware samples and their victim
processes after being targeted by code injection. Subsequently,
we compare the behaviors of the victim and the injector to
estimate the percentage of malicious behavior (e.g., system
calls) missed if we observe only the malware sample, as many
state-of-the-art detection systems do [15], [25].

We run the samples in a sandbox environment, employing
system-wide monitoring to record the behavior of all processes
on the system. Then, we utilize an analyzer to transform
the output from the sandbox into an Injection Timestamp
containing the moment of code injection and a handle to the
victim process. Afterward, we utilize the Injection Timestamp
to filter the sandbox logs for system calls of the malware
sample pre-injection and the victim post-injection. These
system calls are matched against SIGMA rules to determine
their behavior.



Our experiments show that modern solutions miss, on
average, 56.3% of behavior when they strictly look at the
amount of tracked system calls. When we compare SIGMA
rules, our experiments show that we miss 64% of SIGMA
rules when we only look at the malware sample.

In short, the contributions of this paper are the following:
• Framework to classify behavior:

We propose a framework that automatically identifies be-
havior exhibited by injecting malware samples and their
victim processes after being targeted by code injection.
The behavior is then classified utilizing SIGMA rules.

• Approximation of missed behavior:
We then use this framework to gather the behaviors of
500 real-life samples and their victims to approximate
the behavior missed in modern detection systems.

The rest of this paper is structured as follows. First, we
cover the background knowledge required for this research in
Section III. This section includes code injection techniques, an
explanation of different analysis techniques, and a summary of
system calls. We continue in Section IV with an explanation of
the methodology used for our research. After that, in Section
V, we outline the system used for our testing. In Section VI,
we present our findings and discuss them in Section VII, after
which limitations are covered in Section VIII. After that, we
relate our results to previous research in Section IX. Finally,
we conclude with a summary in Section X.

III. BACKGROUND

A. Code Injection

Code injection is a technique that allows programs to insert
a part of their code into other, often called victim, processes.
The victim process will then be forced or tricked in some way
to execute the inserted code instead of its own. There are three
main reasons for malware to utilize code injections [20]:

• Hiding
• Process piggybacking
• Altering other processes
Hiding, also known as stealth, refers to the malware not

wanting to be found by a human interacting with the task
manager or anti-virus software checking running processes on
the computer. Code injection is a good way for the malware
to hide its presence. By injecting the functional part of the
malware, also known as the payload, into a victim process,
the malware ensures that the payload will get executed. After
the injection, the main malware program can exit to ensure it
does not get detected. Any anti-virus or human inspecting the
running processes would, therefore, not detect that the malware
is running, as another process is executing the malicious
payload. The difficulty in detecting has multiple reasons. One
reason is that some processes are trusted, and the anti-virus
does not monitor them, as needing to constantly check if a
process is still running as it should would have a massive
processing overhead.

Process piggybacking refers to the malware potentially
using other program permissions and privileges to bypass
restrictions, including firewall rules and OS policies. For ex-
ample, firewall rules might indicate that only specific processes
can connect to the Internet. In that case, at first, the malware
will try to connect to the Internet via its process, but it gets
blocked by the firewall. The malware can then still try to
connect to the Internet by injecting its network-specific code
into one of the processes that are allowed access. This code
will then be able to connect to the Internet and function as
intended, as the firewall typically only checks the originating
process, which is no longer the malware sample.

The last reason is altering other processes. Malware can
have different reasons for wanting to change the behavior of
another process. It could be for specific code hooking attacks
or API interceptions. One example is that the malware has
a file that it needs to protect, a config file. So, the malware
will do anything to prevent the system from deleting that file.
The malware might, for example, inject code into the API or
process responsible for deleting files such that it will only work
if the deletion target is not named config.txt. This way, even
if an anti-virus or human finds the config file and wants to
delete it, they will be unable to, given they utilize the specific
API that the malware altered [20].

Some benign cases also utilize code injection, for example,
debuggers and shim infrastructures. Debuggers inject pieces
of code into victim processes to get internal states and pause
execution at certain moments. Additionally, some operating
systems use shim infrastructures to help programs that use
outdated APIs. These infrastructures simulate removed func-
tionality or functionality altered so drastically that it does not
retain the original function [27].

These cases show that fully disabling code injection
is not an option. One feature operating systems such as
Windows have implemented is Access rights [6]. These
rights help restrict what a process can do. A low-privileged
process cannot gain access to protected or high-privileged
processes. However, this method reduces code injection
incidents only to a certain degree. Many processes are
not protected or high-privilege. Additionally, running a
process as an administrator gives the malware elevated
privileges. So, Access Rights fails to do anything when a
user gets tricked into running a malware sample administrator.

Starink et al. [27] recognize a taxonomy that divides existing
techniques into classes based on common characteristics.
These classes help determine the traits of a code injection
approach and how to detect these different approaches.

The first difference is whether the malware is active or pas-
sive. A technique is active when it directly alters the memory
of the victim process or directly interacts with the process or
one of its threads. Conversely, when it, for example, lets the
underlying operating system interact with the victim instead.
The technique is considered passive. Active techniques are
more traditional and most commonly used for code injection.
Being used often causes most sandboxes to know about active



techniques, while passive techniques are more troublesome to
detect.

A commonly known active technique is Shellcode Injec-
tion [9]. It opens a handle to the victim and writes executable
memory directly into the process, directly interacting with the
victim. A well-known passive technique is Windows Hook In-
jection [12]. This technique uses a Windows API to subscribe
a thread currently running to a specified event (such as a key
press or mouse click). When the event triggers, the thread will
load a specified function, often residing in a malicious DLL
file.

The second divide is whether the passive techniques are
configuration-based or not. Techniques are configuration-
based if they require a specific change in the registry to
function and need some persistent configuration stored on the
system. Most passive techniques covered in this paper have
this trait.

An example of a configuration-based technique is Shim
Injection [12]. Shim infrastructures are small bits of software
intended to help outdated software keep functioning after an
update alters an API to such an extent that these outdated
programs would no longer function. The shims help these
programs by applying fixes so that the original program does
not need to change its code to handle the changed APIs.
Malware can use this by masquerading as a shim infrastruc-
ture and thus forcing processes to execute the payload [12].
Shim injection needs to register itself as shim infrastructure,
requiring configuration files.

The third divide is if the active techniques are intrusive.
Techniques are intrusive when they interact with a process’
thread or memory and directly alter part of the thread or
memory. APC Shell [23] is a commonly known intrusive
technique. It uses the Asynchronous Procedure Call(APC)
queue by first looking for a thread that is in an alterable
state, then injecting a function containing its payload to the
queue and running the QueueUserAPC() function to force the
thread to execute the just injected payload, actively altering
the thread.

The last divide made is whether the intrusive techniques
are destructive. If the alterations made by intrusive techniques
cause the application or part of the application to stop
working, they are considered destructive. A clear example
of this technique is Thread Hijacking [9]. Thread Hijacking
takes a running thread, which it suspends. It unmaps the
thread’s code and injects its code before resuming the thread.
Due to the unmapping and replacing of the code, Thread
Hijacking causes the whole thread to stop working as intended.

B. System calls

Most programs, including malware, need access to hardware
or memory for parts of their code. An operating system has
two modes: user mode and kernel mode. Programs typically
run in user mode. Programs do not have access to any system
hardware in user mode. Kernel mode, in contrast, has access
to all hardware on the system, can use any instruction, and can

access any memory address. System calls are the only way for
programs running in user mode to ask for specific tasks from
the kernel, such as process creation and file management. A
system call triggers a switch from user mode to kernel mode.
After this trigger, the program can request the task it needs
from the operating system, after which it returns the value
and switches back to user mode [16]. As mentioned before,
system calls are the only means of interacting with hardware
or memory, making system call traces an excellent method to
analyze the behavior of a program.

C. Analysis

Two main ways of analyzing malware exist, static and
dynamic [2]. Static analysis tries to analyze code or binaries
without needing to execute it. Dynamic analysis is the polar
opposite. Dynamic analysis does not evaluate any of the
code or binary. Instead, dynamic analysis executes it in
a controlled environment and tries to study the behavior
observed at runtime. There also exists a third way of analyzing
that combines both of the previously stated analysis methods,
a hybrid analysis. This method scans the binary and observes
the behavior at runtime [10]. In the following, we will cover
all three options and the strengths and weaknesses of each.

1) Static Analysis: As mentioned in the introduction of
this chapter, static analysis tries to infer the functionality of
a program from the binary or source code without actually
running the program itself [2]. When applying static analysis
to a program, it usually yields a model. These models can be
in the form of, for example, byte sequence n-grams, control
flow graphs, or operation code frequency [26].

Not having to run the malware is considered an advantage
in the case of malware analysis, as the analyst does not need to
execute the malware to uncover its functionality and thus does
not risk infecting the machine with said malware. There also
exist disadvantages belonging to static analysis. The main one
is retrieving the source code from binaries. To do this, analysts
need to reverse-engineer the binaries that need to be analyzed.
Reverse engineering can be challenging. For example, malware
authors can implement obfuscation tactics to make examining
the code statically much harder. Some examples of obfuscation
tactics are:

• Metamorphism is a tactic in which instructions are
re-ordered or dead code is inserted into some samples
to make different samples of the same program appear
different in the analysis [17], [29]. An example of meta-
morphism is adding one to a variable thrice instead of
adding three to the variable.

• Opaque constant is a tactic in which the malware author
replaces, for example, a simple assignment with a series
of instructions. These instructions can be in many forms,
such as loops and if-statements. These instructions will
be semantically equivalent to the assignment but are more
complicated to analyze statically [21].

• Polymorphism (also known as packing or Crypting) is,
in comparison to the other mentioned tactics, the most



difficult to deal with in static analysis. A malware author
can implement this tactic by wrapping their compiled
binary in an encryption mechanism. When the malware
sample gets executed, it calls a decryption function to
decrypt the code. The key used for decryption is not
always included but sometimes gets sent via a command
and control center, or the malware generates it via
some complicated function [22]. Afterward, it loads the
malware into memory and executes it. This tactic makes
static analysis challenging as different samples of the
program are likely encrypted with a different key or
algorithm and thus do not share or share difficult-to-spot
similarities [17].

2) Dynamic Analysis: As previously mentioned, dynamic
analysis relies on running the program sample to analyze it
instead of looking at the code. Dynamic analysis looks at
the environment while running a sample instead of the code
sample. Possible factors in analysis can be the program output,
the system calls made at runtime, or the memory consumption.
To be able to run the program samples without putting the
machines at risk of infection or other undesirable outcomes,
most dynamic analyzes are executed on, for example, virtual
machines or simulators to be able to limit these risks [2], [26].

The main advantage of dynamic analysis over static analysis
is that the previously mentioned obfuscation tactics for static
analysis evasion or slowdown do not impact dynamic analysis
[26]. Even if the file is polymorphic or metamorphic to ensure
that every version of the program looks different, they all have
the same underlying functionality and thus behave equally
when dynamically analyzed. The same functionality would
result in the same effects on the system. Another reason
dynamic analysis could be more suited than static is it is
usually less computationally demanding since it does not need
to check the whole program and every possible state or input.
The computational advantage makes dynamic analysis more
scalable. Being more scalable is a significant advantage when
analysis tools need to handle numerous samples, as is the case
with anti-viruses [10].

Even though dynamic analysis has advantages over static
analysis, it also has drawbacks analysts need to consider.
The first one is that malware authors can, akin to anti-static
analysis tactics, implement tactics to detect dynamic analysis
in their program and ensure the malware does not exhibit
malicious behavior. For debuggers, the program can try to
see if a debugger is present on the system, and if so, choose
not to exhibit malicious behavior or throw exceptions and
interrupts to try and stay undetected. The program could
also call API functions to check whether a debugger is
in use. Examples are “CheckRemoteDebuggerPresent” and
“OutputDebugString” [2]. For simulators and VMs, multiple
tactics exist to see whether the program is running on a
real computer or an analysis tool. For example, instructions
executed in an analysis environment take longer than regular
executions [2], [26]. Slower times can be measured and
compared to non-virtualized execution times and thus can

be used to determine whether the code is running in a VM.
Another tactic is looking for artifacts introduced by the VM.
Running a simulator or virtual machine will leave certain
artifacts in file systems, registries, and network behavior or
look for particular hardware characteristics that some VMs
might not have implemented [19]. A program can attempt to
look for these artifacts to reveal whether it is running on a
legitimate computer or is being analyzed [26].

The final tactic to determine whether the program is under
analysis is a reverse Turing test. A reverse Turing test uses
different methods to see whether a human has interacted with
the system. If this is the case, then the chance the program
is running on a genuine system is high, while if the test
finds out that a human has not interacted with the system,
the chances of being analyzed are higher. There are different
ways the program can achieve this goal. It can actively look
for human inputs, such as mouse or keyboard inputs, by
displaying a window on the screen. The screen would need to
be interacted with to disappear. It can also check for human
interaction passively, for example, by checking the system for
past mouse movements, keyboard inputs, process creation, or
clipboards [2], [7].

3) Hybrid Analysis: The last type of analysis covered in
this paper is hybrid analysis. As mentioned in the introduction,
hybrid analysis combines aspects of static and dynamic anal-
ysis and thus combines their respective types’ strengths [10].
With hybrid analysis, there is less worry about obfuscation
tactics to circumvent static analysis. The dynamic part of the
hybrid type will cover that weakness. Similarly, the static part
of the analysis will help cover the potential non-malicious
behavior the program might exhibit due to it detecting the
dynamic analysis environment. There are some drawbacks to
hybrid analysis. If a program implements tactics to circumvent
both types of analysis, hybrid analysis will still struggle with
the program as static or dynamic analysis would. The other
drawback is that, since a hybrid analysis uses both other types,
it is very resource intensive [26].

IV. METHODOLOGY

In this section, we outline our methodology for this research.
The goal of this research is to automatically identify what

is executed by the injecting malware sample and the victim
process after being targeted by code injection. We do this to
estimate the percentage of malicious behavior missed if we
observe only the malware sample.

We base our approach on dynamic analysis because, as
mentioned in section III-C, malware authors often obfuscate
or pack their samples before they release them onto the
Internet. These tactics make it challenging to use static
analysis because, as also mentioned in section III-C, static
analysis focuses on analyzing binaries and has difficulties with
these obfuscation tactics. In addition, even if static analysis
successfully identifies the payload injected into another
process, analysis of the payload would be troublesome.
The payload may have a different format depending on the
technique used. For example, Shellcode Injection has shell



code as a payload [9], Thread Hijacking can have an entire
PE file [9], and DLL Injection has a DLL file [12]. We
would then need to translate the payload into system calls, as
our research focuses on process behavior. This translation is
difficult as each type of payload requires a different method of
converting. To circumvent these difficulties, we use dynamic
analysis. Dynamic analysis means we run the sample in an
environment and look at the system calls the sample and the
victim to determine the behavior.

We divide our methodology into three phases:
In the first phase, we dynamically run samples in a sandbox

enabled with system-wide monitoring. We have to monitor the
sample and its victim in the sandbox without knowing which
process is the victim because only after running the sample is
the victim known. The best solution is to monitor the entire
system and filter the information afterward. This research
focuses on what the victim does independently of the malware
sample. We mainly monitor system calls that allow processes
to interact with files, other processes, networking, and the
registry, as these system calls describe process behavior best.

In the second phase, we leverage existing behavioral
models to parse the collected traces and identify instances of
code injections. After the model has detected code injection,
we further analyze the produced traces to identify the victim
process and an Injection Timestamp. We propose a definition
of the Injection Timestamp:

Definition 1 (Injection Timestamp): The moment-in-time
code injection has happened, combined with a process handle
pointing to the victim process of this code injection.

The Injection Timestamp is the point in execution where it
is clear that code injection has happened in the victim process.
Any behavior from the victim after this moment is potentially
influenced by the malware sample and could be malicious.
We find the injection time by looking at the system call chain
utilized by code injection techniques. These chains indicate
when a sample completed code injection, namely after it calls
the last system call in the chain. If we match the system calls of
the malware sample to the chain, we can determine which call
matches the final call. With this method, the process handle of
the victim process is also trivial to find. This handle allows us
to determine the victim process as the handle will point to it.
As mentioned in section III-A, active code injection techniques
interact directly with other processes, which the malware can
only do using system calls. The malware needing to use
system calls means that for active code injection, the handle
is identifiable from the same system calls used previously for
the injection time.

Definition 2 (Pre-Injection Behavior): The behavior of the
malware sample before code injection has occurred.

Definition 3 (Post-Injection Bahavior): The behavior of the
victim process after code injection has occurred.

When looking at the malicious behavior exhibited by the
sample and the victim, we look at these two periods. As
shown in figure 1, most of the malicious behavior is in the
malware sample before it injects code into another process
(Pre-injection behavior) and in the victim after the malware has
injected code (Post-injection behavior) as it behaves according
to the code injected. Before the malware injects its code,
the victim process behaves as it should, so any behavior in
this time frame is nonmalicious, and should thus be ignored.
Similarly, the malware sample after code injection also does
not exhibit much malicious behavior, as one of the reasons for
code injection mentioned in section III-A is hiding.

Pre-Injection 
behavior

Clean-up
Until process

exit

Post-Injection
behavior

beneign
behavior

Time

Malware.exe

Victim.exe

Injection
Timestamp

Code 
Injection

Fig. 1. Model of victim and malware behavior

In the last phase, we extract the meaningful system calls
from the sandbox traces for both the victim and the malware
sample. As mentioned in phase one, these traces mainly
contain system calls for interacting with files, other processes,
networking, and the registry. For the victim, we look at post-
injection behavior and for the sample pre-injection behavior.
We then use these system calls to match them to a rule-based
system based on system calls for quantifying process behavior.
These would ensure that most information would easily be
accessible from the sandbox environment. These rules are
general enough to detect pre- and post-injection behavior.

V. SYSTEM ARCHITECTURE

This section covers the system we developed to implement
our methodology. Figure 2 shows the parts that form the
system divided over the three phases explained in section IV.

Phase one contains a sample queue and the Drakvuf
sandbox, a black-box malware analysis system, for running
the malware samples. Drakvuf supplies the logs formed by
running the sample to phase two. Phase one also consists of
an agent and a server to extract additional information not
covered by the sandbox and supply it to the system of phase
three.

Phase two is a slightly altered version of the system built
by Starink et al. [27] handling the detection of code injection
in a given sample. The system utilizes the logs from phase
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one and provides those logs, event streams, and the Injection
Timestamp to phase three.

Phase three is a system that utilizes information provided
by the server from phase one and the analyzer from phase
two to match the behaviors of the victim and the sample
to SIGMA rules to associate the observed system calls with
known malicious behavior patterns.

In the following, we explain SIGMA rules to ensure the rest
of the sections are easier to understand. Afterward, we discuss
how each component works in more detail.

Title : CACTUSTORCH Remote Thread
Creation

id: 2 e4e488a -6164 -4811 -9 ea1 -
f960c7359c40

description : Detects remote thread
creation from CACTUSTORCH

logsource :
product : windows
category : create_remote_thread

detection :
selection :

SourceImage | endwith :
- ’\ System32 \ cscript .exe ’
- ...

TargetImage | contains : ’\ SysWOW64 ’
StartModule : null

condition : selection
Listing 1. Example SIGMA Rule for detecting remote thread creation by a
CACTUSTORCH like program.

A. SIGMA Rules

Our system uses SIGMA rules to quantify behavior. SIGMA
rules are a generic signature format flexible enough for most
log sources [11].

Listing 1 shows a stripped-down example of a SIGMA
rule. This rule detects when a program whose source image
matches known instances of CACTUSTORCH, a particular
strain of malware, creates a remote thread into a process whose
path contains SysWOW64, the Windows folder containing
resources that support 32-bit programs on 64-bit systems.

The most important parts of the rule for phase three are
the Logsource and Detection fields. The Logsource only

contains the category of a rule, which dictates which API
calls link to it. For the example in Listing 1, the category
is create_remote_thread, which links to, among others, the
CreateRemoteThread API. The detection field contains
one or more selection fields and the condition field. The
condition field lets the matcher know what other fields should
hold for the rule. In the example, it is the selection field. For
the selection to apply, all fields should be valid, or in the case
of a list, at least one field should be valid. The fields all apply
to a specific characteristic. In the example, the characteristics
are the target image name, the source image name, and the
start module of the target, where the source image name is a
list of possibilities, and the others have one option.

One of the reasons we use SIGMA rules is that Avllazagaj
et al. [3] showed that SIGMA has a sufficiently large set of
signatures for dynamic analysis. In addition, the cybersecurity
landscape recognizes SIGMA as a reliable rule-set. SIGMA
continuously updates its rule set to update older rules and add
rules for new threads, making it a great option to future-proof
this system.

B. Agent and server

The second part of phase one is an agent and a related
receiving server. Some data required for the SIGMA rules is
not included in the Drakvuf logs and thus requires supplemen-
tary monitoring. Some examples include file hashes and file
signature data. In addition, some data is incomplete or difficult
to find for all files or programs, including command lines and
DNS queries.

The agent has two main functions. The first is to obtain
the command lines of all programs running on the test en-
vironment and send them to the server. Some fields in the
SIGMA rules need the command line of the source or target,
making them required. Darkvuf logs contain command lines
of processes started with CreateUserProcess but not the
already active processes. Those command lines are what the
agent provides. The second function is to launch the program
specified in its command line and inject an agent DLL that
implements additional logic to monitor the process in more
detail. This injection shows up in the logs as an instance of
code injection for the analyzer. To combat this, we placed a
filter on the logs to remove any occurrence of our agent by
checking the source program of the API calls.

Inside the sandbox, the agent and associated DLL have two
versions, 32-bit and 64-bit. To inject a DLL into a sample, the
agent and DLL require a matching bit version of the malware
sample, requiring both a 32-bit and 64-bit since malware
authors can compile their sample as either.

The server is listening to a predetermined address and port.
When the agent or hooks submits the supplementary logs,
the server handles the request, sometimes performs processing
steps such as calculating hashes of received files or decoding
base64, and saves the results to the disk for use during SIGMA
matching.



The goal of the agent is to assist in processing the SIGMA
rules by sending additional data from the virtual machine
running the sample to the server.

In the following sections, we discuss the DLL functions in
more detail.

1) Hooking: The agent DLL uses API hooking to gather
the additional information. The APIs that get hooked are
the following: NtCreateThreadEx, NtOpenThread,
and CreateRemoteThread are similar in functionality.
CreateRemoteThread opens a new thread in a specified
process. NtCreateThreadEx is the underlying syscall
for CreateRemoteThread, having the same function.
CreateRemoteThread is hooked in addition to its
underlying syscall because NtCreateThreadEx has
different handles, making linking more difficult unless both
are hooked. NtOpenThread opens a pre-existing thread
object. The Injection Timestamp contains either a thread or
process handle, which needs to be translated into a process
ID to get to the victim of the process injection. Drakvuf logs
have a partial list of handles and IDs, but not enough to
guarantee the victim process is present in that list. Therefore,
we are required to gather them ourselves. The hooks send
pSairs of thread handles and process IDs to the server for
future use.

Similarly, we hook NtOpenProcess and NtCrea-
teUserProcess. NtOpenprocess is an API that opens a
pre-existing process object, while NtCreateUserProcess
creates a new process and thread. These APIs also send process
IDs and handles to the server. Both also send the source image
of the process they are opening to the server. The image is
required because some fields in the SIGMA rules apply to the
hash values of the image. We send the files instead of the hash
values to keep the hook callback as computationally light as
possible. In addition, NtCreateUserProcess also sends
the current directory of the call and command line specified
in the API call to the server. The command line is because,
as mentioned previously, Drakvuf has command lines, but not
all of them. The current directory is because Drakvuf does not
have a log for this.

LdrLoadDll is the API that loads modules into the
calling process’s address space. The LdrLoadDll hook is
necessary because many SIGMA rules require knowledge
of loaded modules, which is missing in Drakvuf logs. The
LdrLoadDll hook sends any DLL file loaded by a process to
the server. The matcher later uses these files to verify signature
data. This hook required a separate thread to send the data. To
ensure LdrLoadDll always completes and retains its normal
behavior, we do not send the collected data immediately in our
hook callback but use a separate thread instead. The sending
thread is critical because sending a request to the agent server
may load other libraries, occasionally causing the callback to
take too much time and crash as the library used to send
the data loaded a DLL file, creating an infinite recursion of
LdrLoadDll calls.

To ensure the thread has finished sending all the files,
we hook ExitProcess. ExitProcess gets called after
a program terminates under normal conditions. As soon as the
malware sample exits, Windows starts terminating any running
threads, including the thread sending DLL files to the server.
Our hook ensures the sending thread finishes before allowing
ExitProcess to continue.

Lastly, the DNS APIs. These API help processes request
DNS records. The DNS API hooks send any query done by
a process in combination with that process’s ID to the server.
These hooks are necessary due to the difficulty in linking
DNS requests in the PCAP given by the Drakvuf sandbox to
individual processes. The difficulty lies in the fact that the
timestamps of the API calls do not perfectly match the PCAP
times. There may be a time difference between registering
the request and the API call.

2) Propagation: In addition to the functions mentioned pre-
viously, the DLL propagates itself into the other programs that
the current program interacts with and reports the timestamps
to the server when it does. It does this by injecting this DLL
into any process interacted with via the NtOpenProcess
or NtCreateUserProcess APIs. This propagation ensures
that all possible victims of active code injection are present in
the available data. Similar to the injection done by the agent,
this propagation also shows up in the logs as code injection
to the analyzer. Simply dropping all mentions of the process
is impossible since the injection shows up as behavior of the
hooked process, which the analyzer still needs to examine.
To combat this, We send a message with the current time
to the server for every instance of propagation. The analyzer
checks if the server saved any propagation messages and, if
any, removes the CreateRemoteThread with a timestamp
close to the saved time. This slight edit to the analyzer prevents
it from recognizing the propagation as code injection.

C. Analyzer

As previously stated, the part of the system that handles
the detecting code injection in these samples is the system
described in a paper written by Starink et al. [27]. Starink
et al.’s system utilizes the Drakvuf Sandbox [28] to collect
information about the run of a sample in the form of different
logs. The system then uses these logs and various behavior
nets, a graph-based model for detecting specific types of soft-
ware behavior, to determine whether a sample has performed
code injection. If it did, the system forwards the information
to the system described in Section V-D.

The reason for using this system is closely related to the
sandbox used. Drakvuf, as a sandbox, monitors the entire
system instead of only the malware sample. This feature is
essential for our project since it focuses on the victims of the
injection instead of the malware programs. Additionally, the
behavior net signatures used by this approach have been tested
extensively in their paper and are sound enough to produce the
Injection Timestamp.



D. SIGMA matching

Phase three is the core of the system, matching SIGMA
rules. Because Drakvuf does not include a native way to match
system calls to SIGMA rules, we made a custom matcher for
this purpose. It takes information from the analyzer and the
agent to determine if the behavior matches any SIGMA rules.

First, the matcher receives the Injection Timestamp from
the analyzer if it finds any code injection. This Injection
Timestamp contains the malware process ID and a handle
for the victim process. The handle can be translated into a
process ID utilizing the information saved by the server. When
the matcher has the process IDs of both programs, it starts
collecting all API calls made by the processes. Then, with
the help of Drakvuf logs, it begins to keep track of all files,
programs, and registry keys they have interacted with.

Afterward, the matcher evaluates the SIGMA rules, check-
ing if any rules hold for the given data. The matcher checks
the category of a rule and uses that to determine what objects
are relevant (for example, files for file_access or images for
image_loaded, etc.) and checks every possible target for that
rule. For every target, it checks if every selection property
is true or false. After which, it checks if the given condition
holds for the results of the selection properties and, if so,
saves them to report later. At the end, the matcher gives any
matched rules in addition to a list of all APIs with their
targets and the number of times they have occurred. Lastly, the
matcher repeats the matching process for the malware sample
to allow for a comparison of the malicious behavior in the
victim and the malicious behavior from the sample, showing
how significant the missed behavior is.

VI. EVALUATION

For the evaluation of our framework, we run two separate
experiments. The first one is a small-scale test to see if our
system can detect any behaviors. The second runs a large set of
real-world malware samples that implement code injection and
looks at the behaviors found in the malware sample compared
to the behaviors detected in victims.

In the following sections, we cover the datasets for both
experiments, the parameters used, and the results of these
experiments.

A. Datasets

For the first experiment, we use a dataset of 30 samples
where we know what code injection techniques are used by
all samples. The sample set combines real-world and custom
samples crafted by Starink et al. [27] and sufficiently covers
the active code injection techniques. We included real-world
samples to ensure our system is not biased to our custom
samples.

For the second experiment, we use the VirusTotal academic
Data Set. In particular, a subset of 436 samples from 2017. We
specifically use the 2017 sample set as results from Starink et
al. [27] show that this contains the most active code injection
samples. The subset includes only the active code injection
samples from this set. This subset ensures we waste no time

on samples that do not implement code injection or implement
passive techniques that our system cannot handle, further
discussed in section VIII.

B. Experimental Setup

For the parameters of both experiments, we set the maxi-
mum execution time of samples to 10 minutes, which is four
minutes longer than Starink et al. [27] advised. The reason for
setting the execution time longer is that the agent needs time
to collect all command lines, and our research has a greater
emphasis on the behavior after code injection than the research
of Starink et al. We limit the execution time to 10 minutes as
Küchler et al. [14] showed that 81% of malware does not need
longer than 10 minutes to comeplete.

The SIGMA rules used for this experiment are a subsection
of version "Release r2024-07-17". To stick as closely to the
general behavior of the application, we picked the Windows
subsection of the rules. Due to time constraints, we did not
implement all Windows subcategories and of the implemented
categories, some have had skipped fields. Some were ignored
due to difficulty in implementation, while others only applied
to one or two rules and would take a disproportionate amount
of time to implement for their usefulness.

For this research, there are some ethical concerns that we
need to consider because we utilize dynamic analysis and run
malware samples in a sandbox. First, to ensure no physical
machines are compromised, we run the malware samples in
an isolated execution environment. Second, we provide the
sandbox, and subsequently the samples, with internet access to
ensure as many samples exhibit their behavior. We protect the
university network against malware spread or denial of service
attacks by dropping all internet traffic that has a destination
within the network. In addition, the testing environment has
a firewall with strict rules. These rules block frequently used
ports for TCP and UDP-based protocols. Last, we roll back
the VM that runs the samples to a fresh snapshot after every
cycle. This rollback ensures the elimination of any remnants
of the malware, further protecting against any denial of service
attempts. We verified these countermeasures in addition to the
Ethics Committee of the University of Twente approving the
countermeasures [24].

C. Results

In the following section, we present the results of our small-
scale test proving our system can detect process behaviors.
After which, we present our findings of the large-scale exper-
iment showing what part of malicious behavior is in victim
processes.

TABLE I
NUMBER OF OCCURRENCES OF EACH SIGMA RULE IN CAPABILITY TEST

Number of Occurrences
Creation of a system .dll file in unusual location 18
Unusual target for remote thread creation 16
Access request with "Process_all_access" mask 13
Creation of a system executable in other folder 1



Fig. 3. Average number of SIGMA rules found pre-injection and post-
injection in capability test

1) Capability Test: Figure 3 shows the average amount of
SIGMA rules found pre-injection(left) and the rules found
Post-injection(right). In total, we found 39 rules pre-injection
and nine rules post-injection, meaning, on average, 18.8% of
the malicious behavior is in the victim. Table I shows the
frequency of rules in either the victim or the injector. What is
notable about the results is that ’uncommon targets for remote
thread creation’ occurred 16 times, showing that the SIGMA
matcher correctly concluded that some custom samples target
the notepad application. Another rule that stands out is the
’Creation of a system .dll file in an unusual location.’. This
rule occurs 18 times. A possible explanation is that several
injectors utilize mimicking system DLL files in their code
injection.

Some samples from the dataset failed to run. This failure
was due to the payload injected into the victim process
having either no or non-malicious behavior, such as creating
a MessageBox. Neither of these would show up as activity
in the API logs for the victim, resulting in an error seeing no
behavior.

2) Large scale Test: Table II shows the distribution of the
sample set. Of the 436 samples we ran, 166 have stopped
showing code injection, and 57 showed code injection but
failed in the SIGMA matching. The other samples imple-
mented code injection and worked as expected in the SIGMA
matcher. An important note is that the techniques do not add
up to the expected 213 as some samples implement multiple

TABLE II
DISTRIBUTION OF TECHNIQUES IN THE EXPERIMENT DATASET

Pre-Injection
No Injection 166
Failed to match 57
Process Hollowing 138
Generic Shell Injection 44
Thread Hijacking 32
Classic DLL Injection 1

TABLE III
TOTAL SYSTEM CALLS PER INJECTION TECHNIQUE

Pre-Injection Post-Injection
Total Average 2.167.483 (43.7%) 2.785.266 (56.3% )
Process Hollowing 1.103.654 (41.3%) 1.570.341 (58.7%)
Generic Shell Injection 860.242 (47.0%) 971.522 (53.0%)
Thread Hijacking 190.674 (44.1%) 241.221 (55.9%)
Classic DLL Injection 12.913 (85.5%) 2.182 (14.5%)

injection techniques.
Table III shows the total amount of monitored syscalls and

the percentage of system calls that appear in the injector
(pre-injection) and the victim (post-injection) per injection
technique. When we look at only the number of tracked system
calls made by the injector and the victim processes, we see
that, on average, the injector makes 43% of system calls,
and the victim processes make 57% of calls. If we divide
the system call counts over the different techniques, we see
that the percentages have some slight differences, except for
Classic DLL Injection sample with 85.5%, the amount of
system calls made by the injector stays between 40 and 50
percent.

This percentage is an upper bound of missed behavior as
not all system calls are attributable to influenced behavior.
Some victim processes might continue their execution if the
technique is not destructive. The split per technique shows
Process Hollowing has 58.7 percent of system calls originating
from the victim. Because Process Hollowing is a destructive
technique and thus destroys most of the original functionality
of the victim process, its percentage will be relatively close to
reality.

We translate these system calls to SIGMA rules to give more
context to the missed behavior. Figure 4 shows the average
amount of SIGMA rules found in the injector(left) and the
victim(right). We found 40 rules in the injectors and 71 rules
in the victims, meaning we found 64% of SIGMA rules in the
victims, mimicking the results we found earlier.

Table IV shows the frequency of rules in the victim and the
injector combined. The two most found rules by a significant
margin are processes accessing desktop.ini and processes
requesting access to the LSASS process, which is responsible
for enforcing security policies. The first could hint at a popular
target for injecting other types of malware, as it is in all
folders. While the latter could hint at malware samples wanting
to alter security policies.

Lastly, Table V shows the three most frequent rules per
malware technique and how often they were found for that



technique. As is shown in the table, we found no rules in
the Classic DLL Injection sample. Thread Hijacking samples
only had two different rules found where mimicking a system
process occurred once. Generic Shell Injection and Process
Hollowing samples had the most rules found, which may be
due to being the most prevalent in the sample set.

Fig. 4. Average number of SIGMA rules found pre-injection and post-
injection in the large scale test

TABLE IV
NUMBER OF OCCURRENCES OF EACH SIGMA RULE IN LARGE SCALE

TEST

Number of
Occurrences

unusual processes accessing desktop.ini 66
suspicious access requests to LSASS process 29
uncommon processes creating remote threads 7
executable with system process name in other folders 6
creation of PowerShell module by non-PowerShell
process

4

files being created in the Windows startup directory 3
file with a suspicious extension created in the startup
folder

2

suspicious processes accessing windows credential
manager

2

possible malicious content triggered by application
shims

1

API Master keys access by an uncommon application 1

Although translating the system calls to SIGMA rules
allowed more understanding of the behaviors of the injectors
and the code injection victims, they cannot fully capture all
behaviors exhibited by the processes. One example of this is
DNS spraying. Looking into the DNS requests of the victims

TABLE V
MOST FREQUENT SIGMA RULES FOUND PER CATEGORY AND HOW OFTEN

THEY OCCURRED

Top 3 most common rules found

Process Hollowing
1. Access desktop.ini (44)
2. Uncommon remote thread (4)
3. System Executable other folder (4)

Generic Shell Injection
1. Acess LSASS (29)
2. Acess desktop.ini (14)
3.Uncommon remote thread (3)

Thread Hijacking
1. Access desktop.ini (10)
2. System Executable other folder (1)
3. N/A

Classic DLL Injection
1. N/A
2. N/A
3. N/A

of some samples, we saw many requests to seemingly random
URLs. When viewed as separate requests, these requests do
not trigger any rules, but when seen as a whole, it becomes
clear that it is unnatural behavior. This example confirms
the SIGMA rules found are only a lower bound of the total
behavior while still being behavior from a victim, and many
detection solutions would thus miss it.

VII. DISCUSSION

In this section, we will discuss our results and provide
additional perspectives.

Table III shows the system calls recorded pre and post-
injection. Most of these entries have similar ratios for the
percentage of system calls counted for the injector and the
victim, except for Classic DLL Injection. Combining this with
Table V showing Classic DLL Injection had no rules found
and the knowledge that the analyzer only detected Classis
DLL Injection once in the entire sample set gives ground
to consider this one sample is an outlier and ignore it when
pulling conclusion from the results.

When we ignore the outlier, the results show that 53 to 58.7
percent of observed system calls are post-injection. As men-
tioned in section VI-C2, this percentage is an upper bound of
what could be considered malicious behavior. Non-destructive
techniques such as Generic Shell Injection do not remove the
regular functionality, and because of that, proceed to make
system calls that belong to benign behavior post-injection. In
addition, even when considering destructive techniques such
as Process Hollowing and Thread Hijacking, not all system
calls recorded post-injection are malicious. We grouped the
Drakvuf logs per process ID, so it is possible that while one
thread is targeted by code injection, another continues to run
as normal before finishing or crashing later. Finally, regarding
system call counts, a raw count of system calls can indicate
potential malicious behavior, but on its own, it is inconclusive.
There is no set amount of system calls per malicious behavior.
A process can require a single system call to create a remote
thread if all the parameters are ready. The process may take
two system calls if a process handle is needed, and in some
cases, it could require even more.



As mentioned in section VI-C2, to give context to these
system calls, we mapped them to SIGMA rules. We found
111 SIGMA rules in 213 samples, split 40 in injectors and 71
in victims, keeping the pattern of observing more behavior in
post-injection(64%) than pre-injection(36%). The found rules
are broken down per rule in table IV, and table V shows the
most repeated rules and how often they occurred for each
technique. The numbers in table V do not necessarily add to
the numbers in table IV as some samples implement multiple
code injection techniques and rules are counted for both.

A couple of notable features stand out from both tables.
The first one is that the second most occurring rule, an
access request to the LSASS, is found 29 times in total, and
that same rule has been found 29 times for Generic Shell
Injection samples, meaning that this is the only technique
in the sample set that accesses the LSASS. Further research
would be necessary to confirm whether this is a coincidence
of the sample set or if this rule is exclusive to this technique.
The second notable feature is that the most commonly found
rule, accessing desktop.ini, is spread proportionally across
all the techniques. It follows that accessing desktop.ini is
not only prevalent in malware using code injection but also
widespread across many techniques. The last notable feature
is we discovered only two different rules in Thread Hijacking
samples. One is desktop.ini, which appeared 10 times, and the
other is creating a file with a system executable name outside
of usual system folders, which only occurred once. Similar to
Generic Shell Injection samples, further research is needed to
check if this is specific Thread Hijack only utilized these rules,
if it was a coincidence for the sample set, or if our SIGMA
rules do not cover the behavior these samples inject.

Our system has not found any rules in a sizable portion of
the samples, which can have multiple reasons. The first reason
is, as mentioned in section VI-B, our system only utilizes a
subset of the SIGMA rules. The behaviors of these samples
could still be malicious and detectable, simply not with the
current set of rules. The second reason is similar to the first
one. It is possible that the behaviors of these samples have
not yet been recorded into SIGMA rules. SIGMA rules are
updated often, and every update adds more rules. The system
may find more behaviors in the sample set with a later version
of the SIGMA rules. The last reason is, as mentioned in section
VI-C2, the system matches SIGMA rules per system call,
so behaviors like DNS spraying are not detectable with this
system. Future work would need to add a different detection
mechanism to identify such behavior.

A possible note to the agent and the hooked API calls is
only hooking the ExitProcess API is insufficient. It might be
lacking because when a process does not terminate normally,
the program does not call ExitProcess. But, if a program
does not exit normally, it has likely crashed. If the malware
crashes, we do not know whether the sample has successfully
performed code injection or stopped before. Thus, crashing
is an undefined behavior, making the matching process faulty
regardless.

Lastly, as mentioned in section VI-A, our results are gath-

ered from the VirusTotal 2017 dataset. The system has been
tested on all active techniques in the capability test and works
with each. Even though the sample set only had four types
of techniques, they are the most prevalent techniques of this
time and, thus, the most important. A more in-depth sample set
could provide more insights into all code injection techniques,
but due to time constraints, it is not feasible for this thesis.
Our framework is also general enough to be utilized on
newer and older samples. Provided they implement active code
injection, our system can analyze it. Additionally, the system
can effortlessly process multiple samples simultaneously. The
amount of simultaneous samples depends on the hardware
available.

VIII. LIMITATIONS

The current implementation has some limitations future ref-
erences should consider. The first limitation is that the matcher
only recognizes active code injection techniques. Covering
active techniques means that six out of the seventeen injection
techniques are not covered. As mentioned in section III-A,
active techniques interact with the victim process directly,
making figuring out the victim process trivial by looking
at API calls. Passive techniques would need more analysis
to determine the injection method and, more importantly,
which processes or processes have been affected. In addition,
future work should expand the agent to collect this additional
information for those processes.

The second limitation is that the analyzer uses a user-
mode agent. Having the agent present could imply that some
malware samples might detect that they are being observed
and will not show any or reduced malicious behavior. The
original idea was to have one or more Drakvuf modules have
the same functionality as the agent, but that proved too difficult
for quick prototyping. Future researchers could improve the
system by making the agent a legitimate Drakvuf module.
Should the agent be a Drakvuf module, it would ensure that
malware samples would not detect the agent and, thereby, not
exhibit malicious behavior as modules use hypervisor-level
monitoring.

The last limitation that the analyzer faces is that we manu-
ally hook the syscalls, and it is feasible that we missed some.
All categories have syscalls associated with them, but it could
be that some more obscure system calls that have similar
outcomes are used in some malware samples. Another possible
problem with hooking syscalls is that some samples might
implement indirect system calls. When a sample circumvents
the standard API call, it will not trigger our hooks. Not trig-
gering our hooks means the agent cannot collect the required
information to complete the matching process. Making the
agent a Drakvuf module would remedy this limitation, as
hypervisor monitoring would contain these indirect system
calls.

IX. RELATED WORK

Starink et al. [27] have made a taxonomy defining 17 code
injection techniques. This taxonomy divides these techniques



in the following way. First, they determined whether the
technique is active or passive, meaning it directly interacts
with the victim process if it is active or passive if it does not.
After this split, they split passive techniques once more based
on the technique needing to store a specific and persistent
configuration on the disk, Configuration-based, or not. The
classification of active techniques splits into two more criteria,
the first being Intrusive, meaning that the technique alters
part of the victims’ memory or active threads. The second
criterion is if the technique is Destructive, meaning that the
technique causes part of or the entire victim application to
stop working. In addition to the taxonomy, Starink et al. have
made a classifier based on the taxonomy and behavior graphs
to attempt to detect all 17 techniques.

Korczynski et al. [13] implement a code injection detection
mechanism based on taint analysis named Tartaturs. They
propose to flag the sample’s memory as tainted. After
every instruction, Tartarus checks whether the memory for
that instruction is tainted, if it initiates code reuse, or if it
belongs to a code reuse buffer. If any condition holds, the
instruction gets added to the malware execution trace. To
detect code injection, Tartaturs checks the trace for places
where the control flow graph of the trace switches from one
process to another. Afterward, Tartarus analyses the trace to
create a code-injection flow graph. Tartaturus could, when
tested, detect all code injections in the samples. A significant
drawback of taint analysis when considering malware analysis
is the speed. The amount of checks and steps required for
every instruction slows down analysis drastically, making it
often unfit. The slow speed is the reason our system does not
utilize taint analysis.

Sandboxes are dynamic analysis systems. Some examples
of sandboxes are Cuckoo [25] and Joe sandbox [15]. These
systems often employ VMs to analyze samples without
putting genuine systems at risk [18]. These systems are
practical when many samples need to be tested, as sandbox
testing is usually automatable. In addition, sandboxes
typically offer a variety of reports after testing a sample.
Network activity, behavior analysis, and static analysis are
some examples. These factors make it so that sandboxes are
used widely in malware detection and studies rated. The
problem with using sandboxes for code injection is that they
do not always detect them. As Korczynski et al. compared
their system to two common sandboxes, Codisasm [5] and
Cuckoo, they concluded that they missed 40 and 60 percent
of code injection, respectively. In addition, Mills et al. [18]
mention that sandboxes often have trouble detecting malware
when these techniques check for monitoring, as is covered in
section III-C. Combining the low chance of detecting code
injection with not following the victim when code injection
is detected kindled the idea of this thesis.

Barabosch et al. [4] implement a detection system for
host-based code injection. This system, named the bee master,

utilizes the honeypot paradigm. The bee master has one main
process, the queen, that creates multiple sub-processes known
as workers. Because the queen starts the other processes,
it knows what their code and memory pages should be.
When the queen detects changes in a worker, they shut them
down and analyze the memory dump. This approach has
some flaws. For one, the author based the bee master on the
assumption that the malware samples target processes via the
process name or inject its code into every available process,
which not all malware samples do. Additionally, techniques
such as process hollowing, which start new threads and alters
those, are impossible to detect for this implementation.

Avllazagaj et al. [3] has researched malware execution
across multiple operating system versions. The goal was to
find an invariant that appeared for a given malware sample
in most OS versions instead of one specific scenario. Their
dataset contained 7.6 million execution traces of benign,
malicious, and potentially unwanted programs (PUP) across
mostly five operating system versions. They used SIGMA
rules to model the behaviour per trace and later compared
how different each trace of a sample was. This research
concluded that malicious samples have a higher variability
than benign samples. Where Avllazagaj et al. utilized SIGMA
rules to model the behavior of the samples and determine
when a sample is or is not malicious, we utilize SIGMA
rules to model the behavior of the sample and their victim to
estimate the amount of missed behavior.

X. CONCLUSION

We proposed a framework that automatically identifies
behavior exhibited by injecting malware samples and their
victim processes after being targeted by code injection. We
used this framework to collect empirical evidence on the
behavior of malware samples implementing code injection
from 2017 and their victims. Our empirical results show that
an average of 56.3% of observed system calls originated from
the victim process of code injection, and 64% of detected
SIGMA rules were detected in the victims. Finally, our study
provided important insights and takeaways for future research
on malware behavior analysis.
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