&
) ¥ ¢ UNIVERSITY OF TWENTE.

!u:

Faculty of Electrical Engineering,
Mathematics & Computer Science

Accelerating AVF analysis
using statistical fault injection

K.M. Schrama

MSc. Thesis
April 2025

Committee:

dr. ir. M. Ottavi

dr. ir. A. Chiumento
T.T. Smit Msc

CAES

EEMCS

University of Twente
The Netherlands

Contents

Summary]|
Acronyms v
Glossary Vi

1 Introduction
1.1 Radiationonhardware
1.2 Metric for vulnerability oo
1.3 Measuring the vulnerability
1.4 Faultinjection
1.5 Accelerating fault injection campaigns
1.6 Thesisoutline

WWNDN_2A -

2 Background
21 Softerrors
2.1.1 Softerrors due toradiation
21.2 Softerror mitigation oL
2.1.3 Reliability metrics oo
2.2 Architectural Vulnerability Factor
23 ACEanalysis e
24 Faultinjection
241 Hardware-based faultinjection
2.4.2 Simulation-based faultinjection
2.4.3 Emulation-based fault injection
2.5 Faultinjectioncampaign Lo
2.6 Faultinjectiontool
2.7 Statistical faultinjection Lo oL
2.8 Neorv32

O~N~NNOOOOOO OGO OO pMhS

3 Related work 1"
3.1 AVFanalysis e 11
3.2 Accelerating AVF analysis oo 11

4 Statistical fault injection campaign generator 13
41 Thecampaigngenerator. 13
42 LLfileparser 13

(<2}

o O w >

4.3 FilterforDUT
4.4 Benchmarkparser
4.5 Statistical pseudo-random selection
4.6 Exportingcampaign
4.7 Faultinjectiontool

Experiments and results

51 Experimentalsetup

5.2 Experiment: Full campaign compared to statistical campaign
521 DUT . . . e
522 Benchmark
523 Parameters
524 Results
5.2.5 Increase number of campaignstorun
526 Analysis

5.3 Experiment: Statistical campaignonalarge DUT
531 DUT e
532 Benchmark
533 Parameters
534 Results
535 Analysis

Conclusion and discussion

SFI campaign generator code listing

Fault injection user application code listing
Multicycle multiplier DUT code listing

Benchmark quick sort code listing

32

39

52

54

Summary

This thesis introduces a statistically based fault injection campaign generator to speed
up fault injection-based architectural vulnerability factor (AVF) analysis.
Microelectronics are increasingly more used in radiation-harsh environments. This,
in combination with microelectronics becoming smaller and denser, the risk of a SEU
becomes significantly higher. That is why it is important to test the vulnerability of
microelectronics against radiation and soft errors. However, testing microelectronics
against radiation can be costly and destructive to the device. An alternative to this
can be emulation-based fault injections. This is where the hardware is emulated on
an FPGA and injected with the errors to simulate the soft errors caused by radiation.
Through a fault injection campaign, the vulnerability of hardware to soft errors can
be measured. However, a fault injection campaign can become time-consuming when
the hardware to be tested gets bigger and the program on the hardware gets longer.
A solution to the long measurement time is Statistical fault injection (SFI). Statis-
tical fault injection can be used in fault injection campaigns to reduce the number of
fault injections needed to determine the system’s vulnerability. SFI implies that only
a part of the injection space has to be tested to get an accurate measurement of the
AVF. The resulting AVF should be within a certain margin of error of the actual AVF.
Statistical fault injection is implemented in a fault injection campaign generator.
The campaign is generated based on the device under test (DUT) and the benchmark.
The part of the total campaign is selected, the size of which is based on a SFI formula.
The campaign generator is tested with two experiments. A smaller DUT is used
in the first experiment, to see how a SFI campaign compares to a full campaign. This
resulted in AVF measurements that were scattered around the AVF of a full campaign,
but with a larger margin than what was given as a parameter. However, the mean of
the 10 SFI campaign does result in an accurate measurement within 1%.
The second experiment is performed with a large DUT, the NEORV32 processor.
A full campaign on this processor could not be performed in a feasible amount of
time. This experiment is to show the behaviour of a fault injection campaign on a large
DUT using differently sized campaigns. This experiment showed that the smaller the
campaigns are, the more scattered the measurements are. With increasing sizes of
the campaigns, the scatter converges to a point which can be assumed to be the AVF
of the system. When looking at the mean of 10 measurements of the same campaign
size, the AVF becomes stable after 20 times, and higher, the calculated SFI campaign
size. This shows that it is possible to get an AVF measurement of a large DUT.
This research shows that employing Statistical fault injection campaigns substan-
tially accelerates the measurement process of a system’s AVF, while maintaining ac-

curacy. This method enables the assessment of AVF in systems that were formerly
too large to be measured.

Acronyms

ACE architecturally correct execution.

AVF architectural vulnerability factor.
CPU central processing unit.

DUE detected unrecoverable errors.

DUT device under test.

FIT failures in time.

FPGA field-programmable gate array.

IC integrated circuit.

ISA instruction set architecture.
RTL register-transfer level.

SCFIT Shadow Components-based Fault Injection Technique.
SDC silent data corruption.

SEE single event effect.

SEFI single event functional interrupts.

SET single event transient.

SEU single event upset.

SFI Statistical fault injection.

SOC system on chip.

Glossary

Neorv32 a customizable microcontroller-like system on chip (SoC) built around the
NEORV32 RISC-V CPU, see section 2.8.

RISC-V an open standard Instruction Set Architecture.

VI

Chapter 1
Introduction

This thesis covers a method of accelerating fault injection campaigns for radiation
hardness assurance. Radiation has become a big problem for microelectronics, and
it has become essential to measure the vulnerability of hardware to soft errors due
to radiation. In this chapter, the effects of radiation on hardware and the necessity to
measure the vulnerability of hardware are introduced. After that, an introduction to
the metric to measure the vulnerability is given, and how to measure it. Further, the
goal of this thesis is explained. Finally, the structure of this thesis is explained.

1.1 Radiation on hardware

The use of electronics in radiation-harsh environments is increasing, for example, in
space [1], [2]. The chance of a single event upset (SEU) is higher, because of the
increased radiation in space [3]. This, in combination with microelectronics becoming
smaller and denser, the risk of an SEU becomes significantly higher. SEU on a sys-
tem can cause data corruption or crashes. That is why it is essential to determine the
vulnerability of these electronics before they are released into these environments.
The vulnerability shows the effect of errors on the system. A metric for the vulnera-
bility will give insight into the structure of the processor and give developers a way to
improve the design and counteract the errors. The vulnerability of circuits to SEUs
can be measured with the architectural vulnerability factor (AVF) [4].

1.2 Metric for vulnerability

The AVF is the chance in percentage that an error in the processor will result in a
visible change in the output of a program. This means an AVF of 0% will never result
in a change on the output when an error is introduced. An AVF of 100% will always
result in a change on the output. A visible change on the output can be a corruption of
the data on the output, or the system crashes and hangs. An error in the system is not
guaranteed to propagate to the output or crash the system. This can happen when
the corruption is overwritten on the following clock cycles, or a part of the system that
is not used at that moment gets an error.

1.3 Measuring the vulnerability

The AVF can be found using architecturally correct execution (ACE) analysis or with
fault injection campaigns. ACE analysis is a theoretical analysis where each bit is
analysed by its effect on the output when a fault occurs on that bit [4]. A fault injection
campaign is a practical analysis where bits in a system are injected with faults and the
effect on the output is measured [5]. The AVF is then based on the number of times
that the output is different from normal behaviour after a fault injection, divided by the
total number of injected faults.

1.4 Fault injection

The principle of fault injections is that a fault is injected into a system during opera-
tion to simulate the hitting of a particle and change the state of the bit that was hit.
There are multiple ways to inject faults. One method is a hardware-based approach.
This is where an IC runs its program as usual, and a fault injection environment ei-
ther interfaces with the IC through connected pins or energy particles are sent into
the IC. This is a fast approach, but at the cost of accuracy and an expensive external
hardware environment. Another method is through simulation of the IC on a simula-
tor, and the fault is injected during compile time or during run time. This method is,
however, the slowest of the methods, because the hardware is simulated as software
and can not run at its intended speed. This does come with the advantage of a great
amount of insight into the way the error propagates through a system, and the error
can be injected at a specific point and time in the program. Lastly, fault injection can
be done with an emulation-based method. This method uses FPGAs to run the hard-
ware on. By using an FPGA, there is no need for expensive external hardware, and
the hardware can run at almost the intended speed. With emulation of the hardware,
an external environment can pause the hardware at a specific moment to provide an
accurate fault injection. This does, however, come with the overhead of the time it
takes to inject while the hardware is paused.

A fault injection campaign is a sequence of single fault injections. A fault injection
campaign usually injects into every possible point at every possible moment of the
system. This is done to measure the AVF of a system by dividing the number of fault
injections that resulted in a visible error on the output by the total number of fault
injections performed. So by running a campaign, the AVF can be measured.

However, the time to run a campaign can increase significantly the larger the sys-
tem becomes. The number of fault injections needed in a campaign is based on the
device under test (DUT) and the program running on it. The DUT can have a large
amount of memory in which a fault can occur, and this then has to be tested for ev-
ery moment program. So when the vulnerability of, for example, a central processing
unit (CPU), like the Neorv32, needs to be tested, the number of points in the system
is already in the thousands. The program running on the CPU can also go into the
thousands of moments that can be injected. This will result in an injection space in
the millions. Every injection, the campaign needs to let the program fully run to see
the output. So based on the length of the program, the campaign can take weeks if
not months. To be able to measure the AVF of a large system, the campaign needs

to be accelerated.

1.5 Accelerating fault injection campaigns

This thesis will research a way to accelerate fault injection campaigns. With faster
fault injection campaigns, bigger DUTs with longer benchmarks can be analysed for
architectural vulnerability. To achieve this, the major reason for a too long campaign
can be improved. That is the large injection space. The injection space is the total
number of fault injection points in space and time, and the type of fault. The size of
the DUT and the length of the benchmark determine the injection space. For bigger
DUTs and longer benchmark programs, it is almost impossible to do a complete AVF
analysis, because not all possible faults can be injected in a reasonable amount of
time. Statistical fault injection (SFI) can be used to solve this problem [6]. SFI implies
that not every point in the injection space needs to be injected with a fault to deter-
mine a representative AVF. By needing fewer injections randomly distributed over the
injection space for a representative AVF analysis, the number of injection points can
be decreased.

1.6 Thesis outline

In Chapter 2 an overview is given of the background of fault injections, AVF analysis
and tools used in this thesis. Chapter 3 gives an overview of existing methods and
alternatives to accelerate fault injection campaigns. Chapter 4 gives an overview of
the developed campaign generator. An overview of the experiments performed, and
the results is given in Chapter 5. Finally, a conclusion and discussion are formulated
in Chapter 6.

Chapter 2
Background

This chapter gives background on the concepts used in this thesis. The first section,
the cause and effects of soft errors. Followed by the metric to measure the vulnerabil-
ity to soft errors and methods to measure the vulnerability. Then, some more detail is
given about fault injection and how to use that to determine the vulnerability. Finally,
some background is provided about the system that is used as the DUT in one of the
experiments.

2.1 Soft errors

Soft errors are data corruption events that can be induced by radiation. The errors
are not harmful to a device, but can corrupt data or crash a system. Soft errors due
to radiation have become a major problem for the reliability of systems [7], [8]. Soft
errors are also called single event upsets (SEU), but SEU’s can also apply to hard
errors where a device is permanently damaged.

2.1.1 Soft errors due to radiation

Radiation occurs naturally in space. When a system is deployed into space, it will be
hit by this radiation. The radiation particles can hit the microelectronics in that system
and cause a single event effect (SEE). An SEE can affect a system in multiple ways
as a soft error [3]:

* single event transients (SET): causes a change in the output voltage of a gate
* single event upsets (SEU): causes an invert in memory value
* single event functional interrupts (SEFI): causes a system to crash until reset

These events are caused when a transistor collects a charge from energetic particles,
like alpha particles or neutron particles. When enough charge is collected, the state
of the transistor can change and cause a bit in the logic to be inverted. This change
can corrupt the memory or make the system crash.

2.1.2 Soft error mitigation

With microelectronics becoming smaller and denser, soft errors become a larger prob-
lem even at sea level [8]. To combat these types of errors, mitigations are set in place
to detect or prevent these errors.

A method to detect these errors is parity. With parity, a data block has a bit added
to it that provides information on whether the total bits are odd or even. A change in
the data block means a change from odd to even or even to odd. This can be checked
with the parity bit, and a bit flip can be detected. When an error gets detected, it can
be prevented from propagating through the system or changed back.

Another method to prevent soft errors is to reduce charge collection by the tran-
sistor. This can be done by device-level hardening. This is where the design of the
semiconductors in silicon are changed by adding capacitance to sensitive areas.

2.1.3 Reliability metrics

An SEU can cause an error, when this error remains undetected, it is called a silent
data corruption (SDC) [7]. When the error does get detected, but cannot be rectified,
it is called detected unrecoverable errors (DUE). Generally, SDC and DUE are ex-
pressed in FIT (failures in time). One FIT means that there is one error in one billion
hours of operation. These metrics imply the chance of an error occurring, but do not
give insight into the effects of an error on the system.

2.2 Architectural Vulnerability Factor

Not every error in a system would cause a visible error on the output. For this, the
architectural vulnerability factor (AVF) is used. It assesses the system’s vulnerability
by determining the extent to which an error impacts the system. The AVF of a sys-
tem is the probability that a single-bit fault will be visible in the output of the system
[9] [4]. This means that an AVF of 0% indicates that a fault will not be seen in the
output, and an AVF of 100% indicates that a fault will be seen in the output. AVF can
be determined with different methods. AVF can be determined using Architecturally
Correct Execution (ACE) analysis [9]. This is a theoretical analysis. AVF can also be
determined using fault injections [6] [5]. This is a more practical analysis.

2.3 ACE analysis

One method of estimating the AVF of a system is by using ACE bits [9]. A bitin a
system can be labelled as an ACE bit or an un-ACE bit. When a bit is labelled as an
ACE bit, then a fault in that bit will result in a visible change in the output, for example,
a change in the output data or the system crashing. When a bit is an un-ACE bit, then
the fault in the bit will have no effect on the output. Un-ACE bits are not required for
architecturally correct execution.

Whether a bit is an ACE bit can change depending on the state of the system and
the time in the program. For example, a fault in a register only affects the output if the

data in the register is used after the fault. If the data is overwritten, then the fault also
disappears and will not be seen in the output. If the register is to be read, the bit is an
ACE bit; if the register is written to, the bit is an un-ACE bit. The AVF of a system can
be calculated using Formula (2.1) [9]:

_ > _residency of all ACE bits in a structure
~ total number of bits - total execution cycles

AVF (2.1)

2.4 Faultinjection

To estimate the AVF of a system, fault injections can be used. AVF describes the
vulnerability of a system to single-bit faults. By using fault injections, among oth-
ers, single-bit faults can be simulated. There are multiple fault injection techniques,
hardware-based, simulation-based and emulation-based fault injections [5].

241 Hardware-based fault injection

Hardware-based fault injection is performed by either contact-based approaches or
without contact approaches [5]. Contact-based approaches are where the integrated
circuit is connected via pins onto an external interface [10]. Without contact ap-
proaches are performed by, for example, sending energy particles onto the IC with a
laser beam to simulate a faulty environment [11] or by exposing the IC with ionizing ra-
diation [12]. These approaches require an expensive external hardware environment
to inject the faults, with a risk of damaging the IC during testing. The hardware-based
fault injection campaigns are, however, the fastest of all the approaches, because
each test is run at the standard operating speed of the IC without high overhead.

2.4.2 Simulation-based fault injection

Simulation-based fault injection makes use of a simulation of a system to perform the
fault injections on. A simulator like Verilator [13] can be used to inject the faults into.
The machine code is changed during compile time or during run time to simulate the
errors that would have happened on the hardware. The downside of a simulation-
based approach is that the fault injections are significantly slower compared to the
emulation or the hardware-based approach.

2.4.3 Emulation-based fault injection

Emulation-based fault injections make use of FPGAs to run the system on. The faults
can be injected during runtime by setting the bits in the FPGA [5]. The advantage of
using FPGAs to emulate the system is that there is no additional expensive external
hardware needed to inject the faults into the system. Also, because the circuit is
emulated on hardware, it will run as fast as the hardware-based approach. The only
downside is that for a fault to be injected at a specific point during run time, the program
needs to be stopped for the tool to be able to inject the fault [14], [15]. The added time
will make it slower than a hardware-based approach.

2.5 Fault injection campaign

A fault injection campaign is how the AVF of a system can be measured when us-
ing fault injections. A campaign is a sequence of fault injections, where after each
injection, the output is checked, and the system is reset for the next injection. Every
injection is at a different point in the system at a different time in the program. By
doing this, every possible point and moment at which an error can occur is tested.
The total of injection points that result in a failure are counted and divided by the total
number of injection points to calculate the AVF of the system. With Formula 2.2, the
AVF can be calculated. f is the output of a single fault injection at point X;. Thisis 1 if
the output is incorrect and 0 if the output is correct. The sum of the outputs is divided
by n the total number of fault injections, and results in the AVF.

AVF = %i £(X) (2.2)

2.6 Fault injection tool

A fault injection tool used for injecting faults into an FPGA is the injection tool from
[15]. This fault injection tool uses the Fretz fault injector from [14] to inject the faults
into the Device Under Test (DUT). The fault injection tool has the components, as can
be seen in Figure 2.1. The campaign generator creates a list of injection points with
the corresponding time of injection. The stimuli generator sends a stop point to the
extra hardware on the target board that controls the clock of the DUT to stop the DUT
at the moment of injection. The grey parts are existing components from the Fretz
framework that inject the fault into the DUT. The fault injector sends the location for
injection to the external board, and the external board injects the fault. The golden
standard is the correct output of the DUT without any faults and is based on the DUT.
The result analyser compares the output of the DUT with the golden standard. The
result then gets stored in a database.

2.7 Statistical fault injection

To decrease the length of a fault injection campaign, statistical fault injection (SFI) can
be used. SFl is based on Formula 2.3 from [6].

N

n= ———
2 N-—1
1+e t2p(1-p)

(2.3)

n is the number of fault injections needed for a representative analysis. N is the
initial injection space, so the total number of points that can be injected into. p is
the estimated probability of faults resulting in a failure. This is a priori unknown; a
conservative approach is to set this value to maximize n, which is at 0.5. e is the
margin of error. t is the cut-off point corresponding to the confidence level, this is the
probability that the value is within the error margin. In Figure 2.2 can the influence

7

Host PC

| Campaign Generator |

l |

uart

Target Board

| Stimuli Generator ¢

Fault Injector

| Golden Standard |

!

tcp

External Board

uart

| Extra Hardware

[clk, rst, counters]

jtag
Device Under Test

| Results Analyser i‘r

!

| Results Database |

Figure 2.1: Components of the fault injection tool from [15]

of the estimated probability can be seen on n. At 0.5 n is maximized and falls as p
gets bigger or smaller. Figure 2.3 shows the influence of the margin of error on n. n
grows exponentially, the smaller e is chosen. It has the biggest influence on n of the
parameters. Figure 2.4 shows the influence of the cut-off point on n. The cut-off point
is computed with respect to the normal distribution, below 50%, ¢ becomes negative.
This will be squared the same as when it is set as positive, so only 0.5 to 1.0 is shown.

N =100 N = 1000
600 600
450 A 450 ~
c 300 - < 300 A
150 150 ~
0 f _ 0
0.0 0.2 04 06 08 1.0 00 02 04 06 0.8 1.0
estimated proportion estimated proportion
N = 10000 N = 100000
600 600
450 A 450 A
= 300 - = 300 -
150 A 150 A
O T T T T 0 T T T T
0.0 0.2 04 06 038 1.0 0.0 02 04 06 0.8 1.0

Figure 2.2: The effect of the estimated proportion on the number of injection points

needed for SFI.

estimated proportion

estimated proportion

N =100

100 A
80 A
60 A
40 A
20 A

0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25

margin of error
N = 10000

6000

4500 -

= 3000 A
1500 A
0-

0.00 0.05 0.10 0.15 0.20 0.25
margin of error

N = 1000
1000

800 ~

600 -

400 A

200 A

0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25
margin of error

N = 100000
12500

10000 -
7500 A
5000 ~
2500 1

0_
0.00 0.05 0.10 0.15 0.20 0.25
margin of error

Figure 2.3: The effect of the margin of error on the number of injection points needed

for SFI.
N =100
400 A
300 A
< 200 -
100 A
O T T T T
0.5 0.6 0.7 0.8 0.9 1.0
cut-off point
N = 10000
400
300 A
< 200 -
100 A
0 T T T T
05 06 07 08 09 1.0
cut-off point

N = 1000
400 A
300
< 200 -
100 -
0 T T T T
05 06 07 08 09 1.0
cut-off point
N = 100000
400 4
300
€ 200 -
100 -
0 T T T T
05 06 07 08 09 1.0

cut-off point

Figure 2.4: The effect of the cut-off point on the number of injection points needed for

SFI.

2.8 Neorv32

The Neorv32 is an open source processor that is a system on chip (SOC) [16]. Itis
built around a RISC-V CPU that is written in VHDL. This makes it platform independent

and able to be run on almost all FPGA'’s.

The RISC-V CPU architecture can be seen in Figure 2.5. It is a 32-bit little-endian
pipelined architecture. It is a modified Harvard architecture. The CPU can be config-
ured to run as a single or dual-core. The CPU is highly configurable with instruction
sets and extensions.

The extensions also include a custom functions unit (CFU). This unit can be used
to implement custom RISC-V instructions. The CFU is intended to run functions that
are not efficient when implemented in software.

©

N E 0 c P U alu_flags alu flags
rsi
{ alu_add CONTROL SIGNALS ﬂompairator
— curr_pc curr_pc A
oo T alu add

T ErTE e —» immediate I_; rd 5] — alu_res
Fetch |—» Pprefetch |2 —» Execute y Register umediate 5
Engine Buffer H Engine ALl Fas File

Link ps
csr_read [l trs21 r
i CPU Co-Procefor Interface
TRAP
IRQs —»| ETRL cPO cP1
Sign extend Base ISA J :
CSRs csr_read and align Shifter Mul/Div
cPz cP3
Load/Store B.itf::nip Z:;B*
Wrale le— alu_add
CP4. 3
* zxefu Zicond
| Physical Memory Protection and Alignment Check | Al A Cond.0Ps
‘ l :l Combinatorial element
Instruction Load/Store
Fetch Interface Interface :l Synchronous element

Figure 2.5: Neorv32 CPU architecture [16]

10

Chapter 3
Related work

Several methods for determining the AVF of a system were already mentioned in
Chapter 2. This chapter will extend on that and also explore other methods of deter-
mining the AVF, including methods to speed up the AVF analysis.

3.1 AVF analysis

ACE analysis is a fast method of analysing the AVF of a system. While it is fast, it
does come at the cost of accuracy, because of it being a conservative method where
every bit is labelled as an ACE bit unless proven otherwise [9]. This means an ACE
analysis can only give an upper bound of the AVF. The AVF estimated using ACE is an
overestimation of about 3.5x [17] compared to an AVF analysis using fault injection.
While a refinement of the ACE analysis does bring the overestimation to 2.6x [17], it
is still only an upper bound and does not provide an accurate analysis.

Another very accurate method is register-transfer level (RTL) injection [18]. RTL
injection is a simulation-based fault injection method. The downside of this method
is the long simulation time. This creates a problem for architectures with a significant
number of points to inject and a large workload. A couple of simulators exist that allow
for fault injection, for example, vVRTLmod [19] or another fault injector [20] based on
the Gemb5 simulator [21].

A method that combines speed and accuracy is an emulation based fault injection,
as in [15], where Fretz [14] is utilized to run injection campaigns. Another emulation
based fault injection technique is proposed in [22], where the debugging facilities of
the Altera software are used for fault injections, called SCFIT. While emulation based
fault injection tools do increase the speed of fault injection campaigns compared to
simulation-based fault injections, very large DUTs still form a problem for analysing
the AVF in a feasible amount of time.

3.2 Accelerating AVF analysis

A way to accelerate fault injection campaigns is proposed in [6]. The method of using
statistical fault injection to decrease the amount of injections needed was already ex-
plored in [23] with emulation-based fault injections, but without a basis for a minimum
number of injections as described in [6].

1

A way to improve statistical fault injections has been proposed in [24] and [25].
They propose two similar fault injection models based on SFI with the addition of
ACE-analysis. Both have performed the analysis on a simulation-based fault injection
setup.

The proposed method works by doing an ACE analysis combined with statistical
fault injection. The ACE-analysis will classify intervals at points where an injection
could cause a failure (ACE) and intervals where an injection definitely doesn’t cause
a failure (un-ACE). The approach from [24] and [25] will only inject into the intervals
that are classified as ACE and skip the parts that will never cause a failure. By doing
the ACE-analysis before the injection campaign, the number of fault injections can be
reduced, thus reducing the amount of time needed to run the campaign. The average
speed up that was obtained using this approach was 13.5 times. Depending on the
DUT, the speed-up differs. A DUT with a high percentage of ACE intervals will have
a lower speed up than a DUT with fewer.

12

Chapter 4
Statistical fault injection campaign generator

This chapter will describe the statistical fault injection campaign generator. First, an
overview is given of the whole campaign generator. After that, each part is explained
in more detail.

4.1 The campaign generator

The goal of a fault injection campaign is to find the AVF of the device under test (DUT)
by injecting into the DUT. This is achieved by injecting at every memory point in the
DUT at every clock cycle of the program in the system. The campaign is based on
the DUT and the benchmark, which consists of the points in space combined with the
points in time. The points in space are the memory cells, and the points in time are
the clock cycles. Thus, every point in the system can be injected at every clock cycle.

Statistical campaign generator

DUT in I _ .
. > il » DUT it >
file format ” e parser ” Her 7| statistical
oo [campaian [1] <
benchmark in .
lect
.asm or clock »benchmark parser 5| selection
cycles

Figure 4.1: Statistical fault injection campaign generator

4.2 LL file parser

The .1l file is a descriptive file of every memory cell used in the DUT. The .ll file is a
file generated by Vivado when generating the bitstream of the DUT. This file contains
the information about every memory cell in the implemented design. The information
described is the location of the memory cell, the block, the latch and the user net
associated with the memory cell. These are the points of the device under test (DUT)
that a fault can be injected into. The file parser reads the file and stores the contents
in a pandas dataframe to later be able to extract the injection points from it.

13

4.3 Filter for DUT

As can be seen in Section 2.1 and described in Section 2.6, the target board contains
the DUT and extra hardware. Both of these parts are part of the bitstream that the
FPGA is programmed with. The data from the .l file needs to be filtered so that only
the memory cells of the DUT remain to be injected. What needs to be filtered depends
on the DUT, but the extra hardware of the controller that is used by the fault injection
tool always needs to be excluded for injection. Injecting into a part of the controller
can break the fault injection tool. The data will also be filtered from BRAM points.
Due to limitations of the fault injection tool, it is unable to inject into BRAM. During the
experiments, the BRAM has been left out of scope, because the goal of this thesis is
to accelerate the measurement of AVF in general and not to determine the AVF of a
specific DUT, which would require injection into the BRAM.

4.4 Benchmark parser

When injecting into a soft-core CPU like the , the assembly file of the program can
be used to select when a fault injection needs to take place based on the program
counter. This can be used to inject into a specific part of the benchmark program.
The benchmark parser will parse the assembly file for the program counters to later
use them when selecting fault injection points.

Program counters can span over multiple clock cycles. To get a more specific
moment for the injection, a clock counter can also be used to indicate when in the
program to inject a fault. This can be set via arguments, the start, the end and the
clock counts in between that need to be skipped. This can later also be used when
selecting fault injection points. Only one of the two methods will be able to be used at
a time.

4.5 Statistical pseudo-random selection

For statistical fault injection, Formula 2.3, as shown in Section 2.7, is used to calculate
how many injection points are needed for a within the parameters accurate AVF mea-
surement. This is calculated using the function, as can be seen in Listing 4.1. Based
on the value from the equation, the injection points are chosen from the total list of
memory points, combined with each clock cycle count or program count at random.

The selection is performed using a pseudo-random function. The random function
is the random library in Python. The use of the function can be seen in Listing 4.2.
The function is not truly random because it is an algorithm based on a seed, which
determines the output. The algorithm used is the Mersenne Twister [26]. which is
also the recommended algorithm by [6]. The algorithm is deterministic, which means
a seed can be set to receive a known output. If the seed is not set, the system time
will be used as the seed.

It does not matter if the random selection is not truly random, because the goal of
the selection is to have an equal spread of injection points. This can also be achieved
by using a pseudo-random selection.

14

1

2
3
4
5

a A~ W N =

FUNCTION number_of FI (population_size , estimated_proportion = 0.5,
— margin_of_error = 0.05, cut_off_point = 0.99, cop_percentage = True)
IF cut_off_point is a percentage:
cut_off point = get normal quantile equivalent of cut_ off point

RETURN population_size /(((margin_of_errorx%2) = ((population_size - 1)
— /((cut_off_pointx%x2) = estimated_proportion = (1 -
— estimated_proportion)))) + 1)

Listing 4.1: Algorithm to calculate number of injection points for SFI.

FUNCTION random_sampled_combine (DUT_DATA, BENCHMARK DATA) :
TOTAL_FI_SPACE = length of DUT_DATA x length of BENCHMARK DATA
SAMPLED_SPACE = number_of_FI(TOTAL_FI_SPACE)

FRAMEADDRESS _LIST = get column ”frameaddress” from DUT _DATA and create
— a list from it

FRAMEOFFSET LIST = get column “frameoffset” from DUT DATA and create a
— list from it

INJECTIONPOINTS = empty list
FOR each 0 to SAMPLED SPACE:
DUT_SAMPLE = get index of random selection from DUT _DATA
BENCHMARK SAMPLE = get index of random selection from
— BENCHMARK DATA
INJECTIONPOINTS append a list of FRAMEADDRESS LIST(DUT SAMPLE) ,
— FRAMEOFFSET _LIST(DUT_SAMPLE) and BENCHMARK DATA(BENCHMARK SAMPLE)

RETURN INJECTIONPOINTS

Listing 4.2: Algorithm for the selection of injection points based on the calculation of
the number of injection points needed for SFI.

4.6 Exporting campaign

The selected injection points are exported as a CSV file. The CSV file contains the
frame address, the frame offset and the moment to inject, which can be the clock
counter or the program counter.

4.7 Fault injection tool

The fault injection tool described in Section 2.6 is changed to work together with the
statistical fault injection campaign generator. The campaign generator exports the
campaign as a CSV file. The fault injection tool was changed to run a campaign
based on the CSV file.

A feature to run multiple campaigns one after the other was also added. This
feature makes it easy to run multiple AVF measurements.

15

Chapter 5
Experiments and results

In this chapter, the experiments that were performed to evaluate the statistical fault
injection campaign generator are described, and the results are analysed. There were
two experiments done, one where a small DUT was used to run a full fault injection
campaign on and a statistical campaign, and an experiment where a large DUT was
used, where a full campaign would not be feasible.

5.1 Experimental setup

The experimental setup is mostly the same as the fault injection tool described in Sec-
tion 2.6. The difference is that the campaign generator was changed to the statistical
campaign generator.

5.2 Experiment: Full campaign compared to statisti-
cal campaign

This experiment is to show the use of SFI campaign on a DUT compared to a full
campaign. This was done on a smaller DUT where the full campaign can be done in
a feasible amount of time.

5.21 DUT

The DUT used in this experiment is a shift and add multiplier. The multiplier algorithm
can be seen in Figure 5.1. The DUT is implemented with A and B as 16-bit unsigned
values.

An example of the workings of the multiplier can be seen in Figure 5.2. The multi-
plier works by adding A to the result if the LSB of B is 1; if it is O, it does nothing. After
that, A is shifted left and B is shifted right, and the addition is done again if the LSB
is 1 again. This repeats for the number of bits of A and B. For an n-bit A and B, the
multiplier takes n clock cycles to compute the product.

The multiplier was chosen as DUT, because it provides injection points that will
definitely make it to the output, for example, the product register, which maps directly
to the output and is not overwritten, because it writes to itself with A added to it. The
DUT also has injection points that will definitely not be shown on the output, for exam-
ple, the bits of B that are shifted in each cycle that are not read anymore. This should

16

A<=A B<=B
Y<=0,N<=n

No Yes

Y=Y+A

v

Shift A left

!

Shift B right

N=N-1

No

Yes

Figure 5.1: Implementation of a shift and add multiplier. A and B are the inputs of the
multiplier, and Y is the output. n is the number of bits of A and B.

A DS 0101
B 13 1101x
0101 1
000O |
0101
0101 +
Y65 1000001

Figure 5.2: Example of the multiplier

provide an AVF value between 0 and 1 and not 0 or 1. With this, the difference can
be shown between the full campaign and the SFI campaign.

5.2.2 Benchmark

The DUT does not run a benchmark. That is why the injections are based on the clock
cycle count. The multiplier will need 16 clock cycles to do the multiplication; that is
why the injections are chosen to be able to happen at the clock cycles between 0 and
16.

5.2.3 Parameters

For this experiment, the following parameters were used in the SFI campaign gener-
ator:

* p=20.5
c¢e=5%
* t =99%

p was chosen as 0.5. p is a priori unknown and is chosen as 0.5 to maximize n. e is
set to 5% and ¢ is set to 99%. These are chosen relatively strictly, due to this n will
result in a higher number, which is chosen to see if the results are able to fall within
these margins. If that is the case, the margins can be loosened to see if the accuracy
is still acceptable.

Several measurements were performed to see the variance of the measured AVF
and to see if the mean of the measurements is around the AVF of the full campaign.
Each campaign was generated with a different seed.

The full injection campaign was also performed multiple times to verify that the full
campaign AVF is constant as it is expected due to the deterministic behaviour of the
DUT.

5.2.4 Results

The experiment was performed 10 times for the SFI and the full campaigns. The
results of the experiment of SFI campaigns compared to a full campaign can be seen
in Figure 5.3. The full campaign had 2057 injection points. In the SFI campaign, there

18

were 428 injection points. The AVF of the SFI are spread. This should follow a normal
distribution around the AVF of the full campaign.

It can be seen that the actual AVF falls outside the error margin of some of the mea-
surements, this can be seen with measurements S3, S4, S8 and S10. The confidence
level was chosen as 99%, which would mean that for only 1% of the measurements
the AVF should fall outside the error margin.

AVF of SFI compared to full campaign

0.5
0.48
0.46

s:i:;‘%pl%T Lt

T%_}l

AVF

0.4
0.38
0.36
0.34
0.32

0.3 r

S1 S2 S3 sS4 S5 S6 S7 S8 S9 S10
SFl campaigns

= AVF ——AVF of full
Figure 5.3: SFI campaigns compared to a full campaign

When looking at Figure 5.4, it can be seen how the spread of the measured AVF
of the SFI campaigns compare to the full campaign. The full campaigns provided the
same AVF every measurement. This means that the experimental setup does not
influence the measured AVF.

0.45

0.4 °
0.43 $
0.42 -
0.41 L
S 04 x L
0.39
0.38
0.37 ®
0.36
0.35
0 500 1000 1500 2000 2500
Number of fault injections in a campaign
@ AVF Mean of SFI — Upper margin of error Lower margin of error

Figure 5.4: SFI campaigns spread compared to full campaigns, upper and lower mar-
gin based on the AVF of the full campaign

19

When looking at the mean of all the measurements, we get the results in Table 5.1.
The mean of the SFI campaigns is 0.409 compared to the 0.402 of the full campaigns.
This is a difference of 1.7%. This is a better result than a single SFI AVF measurement,
which could result in a higher difference, for example, measurement S4 from Figure
5.3. S4 has measured an AVF of 0.439. This is a difference of 6.8%. This could be
due to the normal distribution that the result should follow around the actual AVF.

SFI full
Campaign length | 428 | 2057
Mean AVF 0.409 | 0.402

Table 5.1: Mean AVF of SFI campaigns compared to AVF of a full campaign

5.2.5 Increase number of campaigns to run

To see if a multiple number of campaigns influences the average AVF, the experiment
was also done with 20 to 100 campaigns with increments of 10.

Figure 5.5a shows the spread of each experiment, with the respective number of
campaigns. The mean of each experiment can also be seen. Figure 5.5b shows the
difference of each mean AVF compared to the AVF of the full campaign found in Table
5.1.

5.2.6 Analysis

Looking at these results, it provides evidence that a single SFI injection campaign does
not provide an accurate AVF. However, with multiple campaigns, a more accurate AVF
can be derived from the mean of the campaigns to an accuracy of within 1%. However,
this would not be beneficial for smaller DUT, because a normal full campaign takes
fewer fault injections than 10 SFI campaigns.

5.3 Experiment: Statistical campaign on a large DUT

5.3.1 DUT

In this experiment, the Neorv32 with the RISC-V ISA was used as the DUT. The goal
of this experiment is to show the use of SFI on a DUT of which a full campaign would
be too large to run in a feasible amount of time. The architecture of the Neorv32 is
shown in Section 2.8.

5.3.2 Benchmark

The benchmark running on the DUT is a quick sort algorithm, Listing 5.1. The al-
gorithm is from [27], where it was used to test microcontrollers and FPGA’s against
radiation. The quick sort algorithm is a simple version of the algorithm where the pivot
is chosen to be in the middle of the array. This is not an optimal implementation of the

20

0.5
0.48
0.46
0.44
0.42

0.38
0.36
0.34
0.32

0.3

1.00%
0.80%
0.60%
0.40%
0.20%
0.00%
-0.20%
-0.40%
-0.60%
-0.80%
-1.00%

15

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Number of campaigns per experiment

® AVF Mean AVF

(a) Multiple number of campaigns per experiment

0.08%
- —
-0.03%
20 30

0.73%
0.19%
. -
-0.08%
-0.27% 0-21% -0.26%
-0.67%
40 50 60 70 80 90 100

Number of campaigns per experiment

m Difference of mean to full campaign

(b) Difference between the average of the mean AVF compared to the
full campaign AVF

Figure 5.5: The spread of the campaign outputs can be seen in 5.5a. Each row is
a different experiment with the number of campaigns as in the graph. The mean
is based on the campaigns from each respective experiment. The difference of the
mean of each experiment and the actual AVF of the full campaign from Table 5.1 can

be seen in 5.5b.

21

1
2
3
4
5
6
7
8
9

algorithm, but the algorithm is purely to run as a benchmark for fault injections and
doesn’t have to be as quick as possible. An example of how the quick sort works can
be seen in Figure 5.6.

The algorithm is provided with an array of 180 numbers between -100 and 100.
After the benchmark has run, the sorted array will be checked with a checker function
against a golden standard. After which, an output will be given based on whether the
sorted array was correct or not.
void quick_sort(int *a, int n){

if (n<2)
return;

int p=aln/ 2];
int =

| = a;
int xr = a

+n - 1;
while (I <= r) {
if («1 <p) {

| ++;
} else if (xr > p) {

}
quick_sort(a, r — a + 1);
quick_sort(l, a + n - |);

Listing 5.1: A quick sort algorithm implemented in C to run on the Neorv32.

5.3.3 Parameters

For the SFI Formula 2.3, the same parameters were used as in Section 5.2.3. The
same parameters were used to be able to compare the results of this experiment with
the smaller DUT. With these parameters and an injection space of 341107970, the
SFI formula results in an injection campaign of 541 injection points.

The campaign will only be run as an SFI campaign based on Formula 2.3. A
full campaign has an injection space of 341107970. If a single injection takes, for
example, 50ms, the total time of one campaign would take 197 days. Previous findings
from [15] yielded a time of 720ms per injection, which would mean a significantly
longer duration of a full campaign.

By not being able to run a full campaign, the AVF of a full campaign will be un-
known. To be able to know the accuracy of the system, the experiment is performed
with an increasing number of injection points per campaign, starting from the SFI cam-
paign and multiplying by 5 to 50, with increments of 5.

22

o [ofefr]efefs]s] [s[2fefe]7] o]
] by 1
Pt
o o] 7]s]efs]s] BB o]0
Menonoooliicocnlnlion
L R L R
ponoonnofEgoRnn
L R>/\ L R
slzlrfefe] [o]e]]2]s 6]
P7I l P=gIl p=4
v N N
ez]e]] o] 2] [sfe] [rlele]
p=7 WT T p=2 TT
L2« fele]r]e]e]

Figure 5.6: Example of the quick sort algorithm.

5.3.4 Results

The SFI campaigns were run as described in Section 5.3.3. Each campaign was run
10 times. The results of the experiment can be seen in Figure 5.7. The AVF of each
campaign can be seen. The mean is based on the campaigns with the same number
of injection points.

0.09
0.08

0.07

[Ty
<>(0.06 ' o
[‘ ®
[} ‘ PY
0.05] —! + ' '
: ° s L '
[
° []
[
0.04 °
0.03
0 5000 10000 15000 20000 25000 30000

Fault injections per campaign

® AVF

Mean

Figure 5.7: AVF of the campaigns with differing number of fault injections per cam-
paign. The mean is the average of the campaigns with the same number of fault
injections.

The AVF of the campaigns are more spread the lower the number of injections per

23

Campaign length | 541 2705 5410 8115 | 10820 | 13525
Mean AVF 0.0504 | 0.0519 | 0.0522 | 0.0512 | 0.0503 | 0.0498
Campaign length | 16230 | 18935 | 21640 | 24345 | 27050
Mean AVF 0.0497 | 0.0498 | 0.0497 | 0.0498 | 0.0498

Table 5.2: Mean AVF of 10 campaigns with the respective campaign lengths.

campaign. This is to be expected, because a smaller area of the DUT is injected, so
a smaller chance to have an accurate measurement compared to the real AVF. The
more injection points, the more the AVF converges. This can be seen in the AVF, but
also in the mean of the AVF. The mean AVF varies with the number of injection points,
but the mean AVF converges to a constant. It can be assumed that the point the data
converges to is the actual AVF of the system, because the way the SFI Formula 2.3
behaves, the error margin gets closer to 0, the larger the number of injection points.
This means the AVF of the system should be 0.05. In Table 5.2, the mean AVF of
each campaign length can be seen.

The mean time of an injection in this experiment was 77ms. This is dependent on
the DUT and the benchmark, because the time to run the benchmark is also in the
77ms. During the running of the benchmark, the benchmark is paused at the moment
of injecting and continues after injecting. The time that the benchmark is paused for
is 2ms. This is included in the 77ms of the total time per injection.

When you look at the results in Figure 5.7, it can be seen that there are gaps at
the lowest 2 amount of injection points. To be able to analyse the error from the ex-
pected AVF of 0.05 at every number of injection points, it is necessary to fill the gaps.
The campaigns of 541 and 2705 injection campaigns were run again 60 times each.
While these measurements were done at another time than the previous measure-
ments, the environment, parameters and injection tool were the same. The additional
measurements can be seen in Figure 5.8. Here can be seen that the spread of the
points follows a curve. This curve is the error margin of the data compared to the
actual AVF of the system. An approximation of the error margin can be seen in Figure
5.9. This is based on the measured data points. The actual error margin based on
the parameters can be seen in Figure 5.10. The approximated margin of error is an
error margin 10 times larger than the expected margin of error used as a parameter
in Formula 2.3.

5.3.5 Analysis

When looking at these results, the behaviour that is shown is expected, where the
mean of multiple campaigns is close to the probable AVF. Especially when the number
of fault injections in the campaign is increased.

What is unexpected is the resulting error margin. The approximate error margin is
significantly larger than the error margin that was used as a parameter. This behaviour
could be caused by the use of the SFI Formula 2.3 in this experimental setup. To prove
this, the experiment should be repeated with another experimental setup to see if this
behaviour changes.

However, the results do show an accurate AVF measurement when taking the
mean of 10 campaigns with more than 10820 injection points. This would mean a

24

0.09

0.08

0.07

0.06

AVF

0.05

0.04
0.03

0.02
0 5000 10000 15000 20000 25000 30000

Fault injections per campaign

@ AVF - First @ AVF - Second

Figure 5.8: Additional AVF measurements of 541 and 2705 injection point campaigns
in orange.

total of 108200 injections. Compared to the 341107970 injection points of the full
injection space, this is an improvement of 3100 times. With an average injection time
of 77ms, an accurate AVF measurement would only take 2.3 hours instead of 304
days for a campaign of the full injection space.

Another noticeable result is the distribution of the points of the lowest number of
injections per campaign in Figure 5.7. The points are equally spaced and not more
dense around the middle than would be expected. This can be explained by the way
the AVF is calculated for SFI campaigns. The number of faults detected, divided by
the total number of injections in the campaign. The AVF can only be as accurate as
% where n is the result of Formula 2.3. In this experiment n = 541, so the precision
of the measurement is 5}1—1 = 0.0018. This means a difference of 1 fault to an AVF of
0.05 is already a difference of 3.7%.

25

AVF

AVF

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

Figure 5.9: The approximate margin of error based on the data points.

5000 10000 15000 20000 25000
Fault injections per campaign

—Top Bottom @® AVF-First ® AVF -Second

5000 10000 15000 20000 25000
Fault injections per campaign

Bottom ® AVF- First ® AVF -Second

Top

Figure 5.10: The margin of error based on the parameters set.

26

30000

30000

Chapter 6
Conclusion and discussion

Microelectronics are increasingly more used in radiation-harsh environments. This, in
combination with microelectronics becoming smaller and denser, the risk of an SEU
becomes significantly higher. That is why it is crucial to test the vulnerability of mi-
croelectronics against radiation and soft errors. However, testing microelectronics
against radiation can be costly and destructive to the device. An alternative to this
can be emulation-based fault injections. This is where the hardware is emulated on
an FPGA and injected with the errors to simulate the soft errors caused by radiation.
Through a fault injection campaign, the vulnerability of hardware to soft errors can be
measured. However, a fault injection campaign can become time-consuming when
the hardware to be tested gets bigger and the program on the hardware gets longer.

This thesis has presented a way to accelerate fault injection campaigns. This
was done by utilising statistical fault injections in a campaign generator, where only a
limited number of points are injected with an error. By using this, a campaign can be
significantly shortened, to be able to test hardware that was before too large to test in
a feasible amount of time. The speed-up that was achieved was that an SFI campaign
is 3100x less than a full campaign. This brings an injection space that would take 304
days to only 2.3 hours, while still keeping an accurate measurement within 1%.

Further, this thesis has made the contribution of creating a practical implementa-
tion of SFI and has provided research into the use of SFl in an emulation-based fault
injection tool. This thesis has also shown the use of SFI in combination with the Fretz
framework to create a fast fault injection setup.

With this setup, an AVF analysis was performed on a large processor, the Ne-
orv32 with a RISC-V architecture. By using the SFI campaign generator, vulnerable
elements in a system can be found, and mitigation techniques in processors can be
evaluated faster.

The experiments presented in this paper have shown the acceleration of using
SFI campaigns compared to a full campaign, with a speed-up of 3100x. Significantly
decreasing the number of injections from 341107970 to 108200 for a Neorv32 with
a quick sort as a benchmark. The experiments have also shown that the mean of
multiple AVF measurements using SFl campaigns are accurate to within 1%.

However, the accuracy of a single SFI campaign was not as expected and showed
an increase of error margin up to 10 times. Future research should investigate the
cause of this inaccuracy and possibly reduce the amount of fault injections needed
for an accurate AVF measurement. Further research should also look into the use
of the campaign generator with other fault injection tools to see if these results are
reproduced or possibly improved.

27

Another limitation of SFI is that the AVF can only be as precise as % where n is
the result of Formula 2.3. The precision is especially impactful on DUTs with a small
AVF like the Neorv32. This could also be the reason for the high error margin on the
experiment of the Neorv32. This was not further explored in this thesis and should
be investigated in further research. Systems keep increasing in size, and thus, an in-
creased analysis duration. A lower error margin would decrease the analysis duration
and increase the number of systems that can be analysed.

In conclusion, this thesis has shown that employing Statistical fault injection cam-
paigns substantially accelerates the measurement process of a system’s AVF, while
maintaining accuracy. This method enables the assessment of AVF in systems that
were formerly too large to be measured.

28

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

G. Trinh, O. Formoso, C. Gregg, E. Taylor, K. Cheung, D. Catanoso, and
T. Olatunde, “Hardware Autonomy for Space Infrastructure,” in 2023 IEEE
Aerospace Conference, Mar. 2023, pp. 1-6, iSSN: 1095-323X. [Online].
Available: https://ieeexplore.ieee.org/document/10115601

Q. Huang and J. Jiang, “An overview of radiation effects on electronic devices
under severe accident conditions in NPPs, rad-hardened design techniques
and simulation tools,” Progress in Nuclear Energy, vol. 114, pp. 105-120,
Jul. 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0149197019300563

H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault Simulation
and Emulation Tools to Augment Radiation-Hardness Assurance Testing,” IEEE
Transactions on Nuclear Science, vol. 60, no. 3, pp. 2119-2142, Jun. 2013,
conference Name: IEEE Transactions on Nuclear Science. [Online]. Available:
https://ieeexplore.ieee.org/document/6519339

G. Papadimitriou and D. Gizopoulos, “Demystifying the System Vulnerability
Stack: Transient Fault Effects Across the Layers,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
Jun. 2021, pp. 902-915, iSSN: 2575-713X. [Online]. Available: https:
/lieeexplore.ieee.org/document/9499847

M. Eslami, B. Ghavami, M. Raji, and A. Mahani, “A survey on fault injection
methods of digital integrated circuits,” Integration, vol. 71, pp. 154-163,
Mar. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S016792601930402X

R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection:
Quantified error and confidence,” in Automation & Test in Europe Conference
& Exhibition 2009 Design, Apr. 2009, pp. 502-506, iSSN: 1558-1101. [Online].
Available: https://ieeexplore.ieee.org/document/5090716/?arnumber=5090716

S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an
architectural perspective,” in 11th International Symposium on High-Performance
Computer Architecture, Feb. 2005, pp. 243-247, iSSN: 2378-203X. [Online].
Available: https://ieeexplore.ieee.org/document/1385945

29

https://ieeexplore.ieee.org/document/10115601
https://www.sciencedirect.com/science/article/pii/S0149197019300563
https://www.sciencedirect.com/science/article/pii/S0149197019300563
https://ieeexplore.ieee.org/document/6519339
https://ieeexplore.ieee.org/document/9499847
https://ieeexplore.ieee.org/document/9499847
https://www.sciencedirect.com/science/article/pii/S016792601930402X
https://www.sciencedirect.com/science/article/pii/S016792601930402X
https://ieeexplore.ieee.org/document/5090716/?arnumber=5090716
https://ieeexplore.ieee.org/document/1385945

[8] T. Heijmen, “Soft Errors from Space to Ground: Historical Overview, Empirical
Evidence, and Future Trends,” in Soft Errors in Modern Electronic Systems,
M. Nicolaidis, Ed. Boston, MA: Springer US, 2011, pp. 1-25. [Online]. Available:
https://doi.org/10.1007/978-1-4419-6993-4 1

[9] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability factors for
a high-performance microprocessor,” in Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36., Dec. 2003,
pp. 29-40. [Online]. Available: https://ieeexplore.ieee.org/document/1253181/
?arnumber=1253181

[10] H. Madeira, M. Rela, F. Moreira, and J. G. Silva, “RIFLE: A general purpose pin-
level fault injector,” in Dependable Computing— EDCC-1, K. Echtle, D. Hammer,
and D. Powell, Eds. Berlin, Heidelberg: Springer, 1994, pp. 197-216.

[11] S. P. Buchner, F. Miller, V. Pouget, and D. P. McMorrow, “Pulsed-
Laser Testing for Single-Event Effects Investigations,” IEEE Transactions on
Nuclear Science, vol. 60, no. 3, pp. 1852-1875, Jun. 2013, conference
Name: |EEE Transactions on Nuclear Science. [Online]. Available: https:
/lieeexplore.ieee.org/document/6510515/?arnumber=6510515

[12] T. Vanat, J. Pospiil, F. Kriek, J. Ferencei, and H. Kubatova, “A System
for Radiation Testing and Physical Fault Injection into the FPGAs and Other
Electronics,” in 2015 Euromicro Conference on Digital System Design, Aug.
2015, pp. 205-210. [Online]. Available: https://ieeexplore.ieee.org/document/
7302271/?arnumber=7302271

[13] “Veripool.” [Online]. Available: https://www.veripool.org/verilator/

[14] A. Sari, V. Vlagkoulis, and M. Psarakis, “An open-source framework for Xil-
inx FPGA reliability evaluation,” in Proc. Workshop Open Source Design Au-
tom.(OSDA), 2019, pp. 1-6.

[15] T. T. Smit, “Investigating RISC-V hardware for autonomy in Space,” Apr. 2024.

[16] S. Nolting and A. T. A. Contributors, “The NEORV32 RISC-V Processor,” Feb.
2025. [Online]. Available: https://github.com/stnolting/neorv32

[17] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE Analysis Reliability
Estimates Using Fault-Injection.”

[18] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris, “Instruction-Level
Impact Analysis of Low-Level Faults in a Modern Microprocessor Controller,”
IEEE Transactions on Computers, vol. 60, no. 9, pp. 1260-1273, Sep. 2011,
conference Name: IEEE Transactions on Computers. [Online]. Available:
https://ieeexplore.ieee.org/document/5432157

[19] J. Geier and D. Mueller-Gritschneder, “vRTLmod: An LLVM based Open-source
Tool to Enable Fault Injection in Verilator RTL Simulations,” in Proceedings of
the 20th ACM International Conference on Computing Frontiers, ser. CF ’23.

30

https://doi.org/10.1007/978-1-4419-6993-4_1
https://ieeexplore.ieee.org/document/1253181/?arnumber=1253181
https://ieeexplore.ieee.org/document/1253181/?arnumber=1253181
https://ieeexplore.ieee.org/document/6510515/?arnumber=6510515
https://ieeexplore.ieee.org/document/6510515/?arnumber=6510515
https://ieeexplore.ieee.org/document/7302271/?arnumber=7302271
https://ieeexplore.ieee.org/document/7302271/?arnumber=7302271
https://www.veripool.org/verilator/
https://github.com/stnolting/neorv32
https://ieeexplore.ieee.org/document/5432157

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

New York, NY, USA: Association for Computing Machinery, Aug. 2023, pp.
387-388. [Online]. Available: https://doi.org/10.1145/3587135.3591435

A. Chatzidimitriou and D. Gizopoulos, “Anatomy of microarchitecture-level
reliability assessment: Throughput and accuracy,” in 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
Apr. 2016, pp. 69—-78. [Online]. Available: https://ieeexplore.ieee.org/document/
7482075

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011. [Online].
Available: https://doi.org/10.1145/2024716.2024718

M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi, “A fast, flexible,
and easy-to-develop FPGA-based fault injection technique,” Microelectronics
Reliability, vol. 54, no. 5, pp. 1000-1008, May 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026271414000067

P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda, “Statis-
tical Fault Injection,” in 2008 IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC (DSN), Jun. 2008, pp. 122-127, iSSN:
2158-3927. [Online]. Available: https://ieeexplore.ieee.org/document/4630080

M. Ebrahimi, N. Sayed, M. Rashvand, and M. B. Tahoori, “Fault injection acceler-
ation by architectural importance sampling,” in 2015 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Oct. 2015,
pp. 212—-219. [Online]. Available: https://ieeexplore.ieee.org/document/7331384

M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN:
Exploiting dynamic instruction behavior for fast and accurate microarchitecture
level reliability assessment,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), Jun. 2017, pp. 241-254. [Online].
Available: https://ieeexplore.ieee.org/document/8192475/?arnumber=8192475

M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans. Model.
Comput. Simul., vol. 8, no. 1, pp. 3-30, Jan. 1998. [Online]. Available:
https://dl.acm.org/doi/10.1145/272991.272995

‘lanl/lbenchmark_codes,” Sep. 2024, original-date: 2015-12-21T22:30:04Z.
[Online]. Available: https://github.com/lanl/benchmark_codes

31

https://doi.org/10.1145/3587135.3591435
https://ieeexplore.ieee.org/document/7482075
https://ieeexplore.ieee.org/document/7482075
https://doi.org/10.1145/2024716.2024718
https://www.sciencedirect.com/science/article/pii/S0026271414000067
https://ieeexplore.ieee.org/document/4630080
https://ieeexplore.ieee.org/document/7331384
https://ieeexplore.ieee.org/document/8192475/?arnumber=8192475
https://dl.acm.org/doi/10.1145/272991.272995
https://github.com/lanl/benchmark_codes

© © N o o »~ w N -

28
29
30

31
32
33
34
35
36

37
38

Appendix A

SFI campaign generator code listing

import pandas as pd
import argparse
import random

from scipy. stats
import re
import time
import os

import norm

class Statisticallnjection:
def __init__ (self, seed
if seed 0:
self. set seed(s
self. verbose

def _set_seed(self, seed
random . seed (seed)

def _random_seed(self):

random.seed ()

def _normal_quantile(sel

if not (0 <= perce

#

def _number_of_Fl(self,
< margin_of_error
s

if cop_percentage:
cut_off_point

0.05,

0):

eed)

False

0):

f, percentage, mean=0, std dev=1):
ntage <= 1):

raise ValueError(”Percentage must be between 0 and 1.”)
return norm.ppf(percentage,

loc=mean, scale=std_dev)
population_size , estimated_proportion = 0.5,
cut_off point = 0.99, cop_percentage = True)

self. _normal_quantile (cut_off_point)

return population_size/(((margin_of_errorxx2) % ((population_size
— — 1)/((cut_off point*+2) = estimated proportion » (1 -

< estimated proportion))
def _Il _parser(self,
if file == "7

return None
pd.read csv(f

data

— frameoffset”, "block”,

)) + 1)

file=""):

ile , sep="\s+”, comment=";",
names=["type”, "offset”, "frameaddress”,
“info1”, ”info2”],
skiprows=[0, 32], low_memory=False)

”

data[”location”] = data[”block”]. str.extract(r X(?P<location_x >\d
— +)Y(?P<location_y >\d+)’).astype(int).apply(

32

39
40

41

42

43
44
45

46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73

74
75
76
77
78
79
80
81
82

83
84
85
86
87
88

tuple , axis=1)

data[”block _type”] = data[”block”]. str.extract(r’(?<==)(?P<type >\w

= +)(?=_)")

data[”ram_id”] = data[”info1”]. str.extract(r’(?<=Ram=)(?P<ram_id >\

= w+) (?=3) ")

bit_info = data[”info1”].str.extract(r’(?<=:)(?P<bit_info >\w+)’,

— expand=False)

data[”bit_type”] = bit_info.str.extract(r’(?P<bit_type >\D+)")
data[”bit_number”] = bit_info.str.extract(r’ (?P<bit _type >\d+)’)
data[”latch_info”] = data[”info1”]. str.extract(r’(?<=Latch=)(?P<

< latch_info >\S+) ")

data[”net_info”] = data[”info2”].str.extract(r’(?<=Net=)(?P<

— net_info >\S+) ")
return data

def _filter_bram (self, data:pd.DataFrame):
droplndex = []
for index, row in data.iterrows():
if "/RAMB” in row[”block type”]:
droplndex.append(index)
if self. _verbose: print(”Dropping”, len(droplndex),
data.drop (droplndex, axis=0, inplace=True)
return data

def _filter_muldiv (self, data:pd.DataFrame):
droplndex = []
for index, row in data.iterrows():
if "muldiv’ in row[”net_info”]:
droplndex.append(index)
if self. verbose: print(”Dropping”, len(droplndex),
data.drop (droplndex, axis=0, inplace=True)
return data

def _filter_controller(self, data:pd.DataFrame):

droplndex = []

for index, row in data.iterrows():

if "controller” in row[”net_info”]:
droplndex.append(index)

if self. verbose: print(”Dropping”, len(droplndex),
= ")

data.drop(droplndex, axis=0, inplace=True)

return data

def _filter_cycle_counter(self, data:pd.DataFrame):

droplndex = []

for index, row in data.iterrows():

if "cycle_counter” in row[”net_info”]:
droplndex.append(index)

if self. verbose: print(”Dropping”, len(droplndex),
— cycle_counter”)

data.drop (droplndex, axis=0, inplace=True)

return data

def _read_asm(self, file =""):
if not file:
file = "neorv32/sw/benchmark/qgsort/main.asm”

33

”of BRAM")

*of muldiv”)

"of controller

of

89
90
91
92
93
94
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

10

11

12

13

14

115
116
"7
118
119
120
121
122
123
124

125
126
127
128
129

130
131
132
133

134
135
136
137
138
139
140
141

programCounters = []

with open(file , "r”) as f:
for x in f:
if 7:7 in x[:5]:
print(x)
m = re.search(’(.+7?):’, X)
if m:

programCounters .append(m.group (1) . strip ())
print (programCounters)
programCounters = [int(num, 16) for num in programCounters]
return [hex(num) for num in programCounters]

def _clock_count_fip(self, end:int, skip:[[int, int]] = None):
clock_counters = []
for i in range(end+1):
clock_counters.append (i)

for j in skip:
begin, end = 0, 0

for index, i in enumerate(clock_counters):
if i == j[0]:
begin = index
if i == j[1]:
end = index
if begin != end and begin < end:

clock_counters = clock_counters[:begin] + clock_counters|
— end:]

print(clock_counters)
return list (map(str, clock_counters))

def _list_to_csv(self, outlist, file="out.csv”):
with open(file , "w”) as f:
f.write (”frameaddress , frameoffset ,program_counter\n”)
for point in outlist:
f.write(point[”frameaddress”] + 7,
< + ”,” + point[”program_counter”] + "\n”)

+ point[”frameoffset”]

def _filter_important_data(self, data:pd.DataFrame):

data.drop (["type”, "offset”, "block”, ”info1”, "info2”,
"location”, "block_type”, "ram_id”, "bit_type”,
"bit_number”, "latch_info”, "net_info”], axis=1,

— inplace=True)
data.reset_index(drop=True, inplace=True)
return data

def _random_sampled_combine(self, lldata:pd.DataFrame, bmdata:[str],
— mult = 1):

if mult == 0: mult = 1

total _fi_space = Ildata.shape[0] * len(bmdata)

sampled_space = int(self. number_of Fl(total fi_space)) * mult

if self. verbose: print(”Sampled space is”, sampled_space)

frameaddress list = Ildata[”frameaddress”]. values. tolist ()

34

142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168

169
170

171

172

173

174

175

176

177

178

179

180

181

—
—

frameoffset_list = lldata[”frameoffset”].values. tolist ()

injectionPoints = []
for i in range(sampled_space):
llsample = random.choice(range(len(frameaddress_list)))
bmsample = random.choice(range(len(bmdata)))
injectionPoints .append ({"frameaddress”: frameaddress_list[
Ilsample], "frameoffset”: str(frameoffset_ list[llsample]), ~
program_counter”: bmdata[bmsample]})

return injectionPoints

def _full _injection_combine (self, lldata:pd.DataFrame, bmdata:[str]):
total_fi_space = lldata.shape[0] * len(bmdata)
if self. verbose: print(”Full space is”, total fi_space)
frameaddress _list = Ildata[”frameaddress”]. values. tolist ()
frameoffset list = lldata[”frameoffset”].values. tolist ()
injectionPoints = []

(ﬁ
(_>

for fa in range(len(frameaddress list)):
for bm in range(len(bmdata)):
injectionPoints .append ({ "frameaddress”: frameaddress_list]|
fa], "frameoffset”: str(frameoffset list[fa]), "program_counter”:
bmdata[bm]})

return injectionPoints

def run(self, args=None):

UK

U

C_>

parser = argparse.ArgumentParser(
prog="Statistical Injection”,
description="Hardware and benchmark parser for statistical
fault injection”)
benchmark = parser.add_mutually_exclusive_group(required=True)

benchmark.add_argument(”-a”, "——asm-file”, help="path to .asm file
7, type=str)
benchmark.add _argument(”-c”, "—-—-clock-cycle-count”, action="

store _true”, help="fault injection based on clock cycle count”)

group = parser.add_argument_group(”Campaign generation settings”)

group .add_argument(”-1", "--logic —location—-file”, help="path to
[l file”, type=str)

group.add_argument(”-s”, "--cc—-start”, help="Specify the start of
the clock cycle count”, type=int)

group .add_argument(”-e”, "--cc—end”, help="Specify the start of
the clock cycle count”, type=int)

group.add_argument(”-0”, "—-output—-file”, help="path to output
file”, type=str)

group.add_argument(”-m”, "-—multiple”, help="Generate multiple

campaign files , specify the number of campaigns to generate”, type=
int)

group .add_argument(”-b”, "-—filter —bram”, action="store_false”,
help="Specify to filter bram from injection points, default is true”
)

group.add_argument(”-—filter —muldiv”, action="store true”, help="
Specify to filter muldiv from injection points, default is false”)
group .add_argument(”--skip”, nargs="+", help="Skip these values of
clock counters, specify even amount of numbers, last odd will be

35

182

183

184

185
186

187

188
189

190
191
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212

213
214
215
216
217
218
219
220
221
222
223
224

U

U

USRI

(_>

(%

ignored. Only works with -c flag”, type=int)

group.add_argument(”--seed”, help="Specify the seed value for the
random selection of the injetion points”, type=int)

group.add_argument(”-d”, "--output—dir”, help="output directory
relative to the base of the project, default is campaigns”, type=str
)

group .add_argument(”-f”, "-—full —campaign”, help="Generate a full
campaign, default is false, ignores increasing and multiplied”,
action="store_true”)

multiply _group = parser.add_mutually_exclusive_group(required=

False)

multiply_group .add_argument(”——increasing”, help="When generating
multiple campaigns, increase the size of each campaign multiplied by
the index of the campaign multiplied by the number given, eg —-—
increasing 5 —> multiplier of 1 times 5, 2 times 5 etc., ”

, type=int)
multiply_group .add_argument(”——multiplied”, help="When generating
campaigns multiply the sample space by this amount”, type=int)

settings _group = parser.add_argument_group(” Settings”)
settings_group .add_argument(”’-v”, "--verbose”, action="store true”
, help="Turn on verbose mode, default is false”)

args = parser.parse_args()

IlIFile = "zedboard-vivado/bitstream. I1”
asmFile = "neorv32/sw/benchmark/qgsort/main.asm”

self._verbose = args.verbose

if args.logic_location_file:
I[IFile = args.logic_location_file

if args.asm_file:
asmFile = args.asm_file
elif None in [args.cc_start, args.cc_end]:
raise parser.error(”Specify the start and end of the clock
cycle count”)

skip = []
if args.skip:
for i, value in enumerate(args.skip):
if i%2 == 0 and not i == len(args.skip)—-1: skip.append ([
args.skip[i], args.skip[i+1]])

outfile = "campaign.csv”
if args.output file:
outfile = args.output_file

outDir = ”campaigns/”
if args.output_dir:
outDir = args.output_dir
if outDir[—-1] != "/”:
outDir += 7/”

if self. verbose: print(”Reading logic location file: ” + IIFile)

36

225
226
227
228
229
230
231
232
233
234

235
236
237

238
239
240
241
242
243
244

245
246
247
248

249
250
251
252

253
254
255

257
258
259

261
262
263
264

266
267
268
269
270
271
272
273

[IData = self. Il _parser(IlIFile)

filter for all RAMB, because injection there is not possible yet
if args.filter_bram:
[IData = self. filter_bram(lIData)

if args.filter_muldiv:
[IData = self. filter_muldiv(lIData)

filter for all registers belonging to cycle counter, because FI
— here will kill the program
I[IData = self. filter_cycle_counter(lIData)

filter for all registers belonging to controller, is the uart
— communication, FIl here will kill communication
I[IData = self. filter_controller(lIData)

delete unnecessary info for csv file
IIData = self._filter_important_data(lIData)

if args.asm_file:
if self. verbose: print(”Reading benchmark program: ” +
— asmFile)
bmData = self. _read_asm(asmFile)
else:
skip = [[0, args.cc_start]] + skip
if self. verbose: print(”Skipping the following clock cycle
— intervals:”, skip)
bmData = self._clock_count_fip(args.cc_end, skip)
bmData = self. clock_count fip(153571, [[90587, 96180]])

if self. verbose: print(”Total injection space = ”, str(llData.
< shape[0]), "+”, str(len(bmData)), ” = ” + str(lIData.shape[0] = len(
— bmbData)))

time_per_injection = 0.060 #s

| am truly sorry for this next part, but | was not going to
— refactor the whole thing
(if it works don’t touch it)
if not args.multiple:
index = outfile.find(”.csv”

if index != -1 and index != O0:
file_extension = outfile[index:]
outfile = outfile [:index]

else:
file_extension = ”.csv”

if args.full_campaign:
selection = self. full _injection_combine (lIData, bmData)
outfile = outfile + "-full” + str(len(selection))
else:
if args.seed:
self. set seed(args.seed)
outfile = outfile + "-seed” + str(args.seed)
if args.multiplied:
selection = self._random_sampled_combine(lIData ,
— bmData, args.increasing)

37

274

275
276

277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

293

294

295

296

297

298

299

300

302

303

305

306

308

309

311

312

314

outfile = outfile +

— multiplied)
else:

”

-multiplied” + str(args.

selection = self. random_sampled combine(IlIData ,

— bmData)

file = outDir + outfile + time.strftime ("-%Vim %Ss”, time.
— gmtime(int(len(selection)xtime_per_injection))) + file_extension

os.makedirs (os.path.dirname(file), exist_ok=True)

self. list to_csv(selection, file)

print (”Campaign generated and stored at:”, file)

else:
self._random_seed ()

index = outfile.find(”.csv”)

if index != -1 and index != O0:
outfile [index :]
outfile = outfile [:index]

file_extension =

else:
file_extension =

.CSVv

for i in range(args.multiple):
if args.seed and not args.full campaign:
self. set seed(args.seed + i)

file = outDir + outfile + "=” + str(i+1) + "—-seed” +
— str(args.seed + i)
else:
file = outDir + outfile + "=”" + str(i+1)

if args.full _campaign:
selection = self. full injection_combine (lIData ,

— bmData)

file = file + "—=full” + str(len(selection))

else:

if args.increasing:
if args.increasing ==
selection = self._random_sampled _combine(

— |IData, bmData, i+1)
file

file +

— selection)) #str(ixargs.increasing)

else:

—injectionpoints” + str(len(

selection = self._random_sampled_combine (
— |IData, bmData, ixargs.increasing)

file

file +

— selection)) #str(ixargs.increasing)
elif args.multiplied:
= self. _random_sampled_combine(lIData ,

—injectionpoints” + str(len(

selection
— bmbData, args.multiplied)
file = file +
— selection)) #str(args. multiplied)
else:
selection

— bmData)

—injectionpoints” + str(len(

= self. _random_sampled_combine(lIData ,

file = file + time.strftime ("-%Vm %Ss”, time.gmtime(int (

— len(selection)xtime_per_injection))) + file_extension
os.makedirs (os. path.dirname(file), exist ok=True)
self. list to_csv(selection, file)

print (”Campaign”,

i+1, "generated and stored at:”,

38

file)

© 00 N O g~ W N =

28

29
30
31
32

33
34
35
36
37
38
39
40
41

Appendix B

Fault injection user application code listing

from Communication.CommandManager import CommandManager
import Controller

import serial

import threading

import time

import pandas as pd

import os

import re

from tgdm import tgdm

class UserApplication:
def __init__(self, project):
self. _command_manager = CommandManager(project.FpgaDevice,
project.IpAddress,
project.TcpPort)

if os.name == ’'nt’:
ser = serial.Serial ("COM9”, 115200) # windows
self._dut_uart = serial.Serial ("COM8”, 19200)
elif os.name == ’posix’:
ser = serial.Serial(”/dev/ttyUSB1”, 115200) # linux
self. dut _uart = serial.Serial(”/dev/ttyUSB0”, 19200)
else:
ser = serial.Serial ("COM9”, 115200) # windows
self. _dut_uart = serial.Serial ("COM8”, 19200)
ser = serial.serial_for_url (”socket://192.168.2.17:4196",
— baudrate=115200)
self. dut uart = serial.serial_for_url (”socket
— ://192.168.2.16:4196”, baudrate=19200)
self._clock_controller = Controller.UartController(ser)

self. dut output = b’
self. deamon = threading.Thread(target=self. recorder, daemon=True
=)

def _recorder(self):
while self._ dut uart:
size = self. _dut_uart.in_waiting
if size > 0:
print(size)
data = self._dut_uart.read(size)
self. dut _output += data

39

42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60

61

62
63
64
65
66
67
68
69
70
7

72
73
74
75
76
7
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92

def _clear_dut_output(self):
self. dut output = b’

def _import_injection_file(self, file = 7"):

data = pd.read _csv(file)

injectionCampaign = {”frameaddress”: data[”frameaddress”]. values.
— tolist (), "frameoffset”: data[”frameoffset”].values.tolist(),
— program_counter”: data[”program_counter”]. values. tolist ()}

print(injectionCampaign)

return injectionCampaign

def neo_injection(self):

print(”Injecting into neo design”)

self._deamon. start ()

cc = self. _clock_controller

with self. command_manager as cm:
board_info = cm.Readld ()
print(f”Board Info: {vars(board _info)}”)
cc.reset ()

cc.set_prgm_stop(0x308) # clock cycle 90587(0x161db), start
— checker

cc.set_prgm_stop(0x1dc) # clock cycle 5256(0x1488), nop before
— quicksort

cc.enable(glbl=True, prgm=True)

cc.set _cycle _stop(90587)

cc.enable(glbl=True, cycle=True)

while not cc.ready():

pass

print(”Cycle count: ” + hex(cc.cycle counter()))
cm.InjectFault(0x0042141f, 1794, True)

cc.set_prgm_stop(0x338) # clock cycle 96180(0x177b4), end of
— checker
cc.enable(glbl=True, prgm=True)
cc.set cycle stop(96180)
cc.enable(glbl=True, cycle=True)
while not cc.ready():
pass

print(”Cycle count: ” + hex(cc.cycle counter()))

cc.set_prgm_stop(0x220) # clock cycle 153571(0x257e3), end
— of benchmark
cc.enable(glbl=True, prgm=True)
cc.set _cycle_stop(0x257e3)
cc.enable(glbl=True, cycle=True)
while not cc.ready():
pass

print(”Cycle count: ” + hex(cc.prgm_counter()))

print(self._dut_output.hex(), self._dut_output)
print(self._dut_output.decode(’utf-8’, "ignore”))

def mcm_injection(self):

40

93

94

95

96

97

98

99
100
101
102
103
104
1056
106
107
108
109
110
M
112
113
114
115
116
"7
118
119
120
121
122
123
124
125
126

127

128
129
130

131
132

133
134
135
136
137
138
139
140
141
142
143
144
145

self._deamon. start ()

cc = self. clock_controller

with self._command_manager as cm:
board _info = cm.Readld ()
print(f”Board Info: {vars(board info)}”)
cc.reset ()

cc.set_cycle_stop (5)
cc.enable(glbl=True, cycle=True)
while not cc.ready():

pass

cm. InjectFault(0x00420d9f, 3172, True)

cc.set_cycle_stop(17)
cc.enable(glbl=True, cycle=True)
while not cc.ready():

pass
print(”Result:”, hex(cc.prgm_counter()))
def mcm_injection_campaign(self, campaign_dir = "src/Campaign/”):

campaign_files = os.listdir (campaign_dir)
campaign_files.sort ()
self. deamon. start ()
cc = self. _clock_controller
with self._command_manager as cm:
for file in campaign_files:
if os.path.isdir(campaign_dir + file):
sub_campaign_files = os.listdir (campaign_dir + file)
sub_campaign_files.sort ()
for sub_file in sub_campaign_files:
if “campaign” in sub_file[:8]:
self. _mcm_injection(cc, cm, campaign_dir +

— file + ”/” + sub_file,

f”{campaign_dir}

— results —{file }. txt”)

else:
if “campaign” in file [:8]:
self. _mcm_injection(cc, cm, campaign_dir + file , f

— ”"{campaign_dir}results.txt”)

” "

def _mcm_injection(self, cc, cm, file="", result_file="results -mem. txt

injectionCampaign = self. _import_injection_file (file)
print(”Start injecting campaign with:”, file)

board _info = cm.Readld ()

print(f”Board Info: {vars(board _info)}”)

total _correct =
total _timeout =
total __incorrect
campaign_length
duration = []

injection_time = []
timeout_point = []

incorrect_point = []

0
len(injectionCampaign[”frameaddress”])

In 1 oo

41

146
147

148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179

180
181
182
183
184
185

186
187

188
189
190
191
192

193

194

for index in tgdm(range(campaign_length), desc="Running campaign

< 16)

B

begin_time = time.time_ns ()

frameaddress = int(injectionCampaign[”frameaddress”][index],
frameoffset = injectionCampaign[”frameoffset”][index]
cycle_counter = injectionCampaign[”program_counter”][index]

correct_output = 0x4444
cc.reset ()

cc.set_cycle_stop(cycle_counter)
cc.enable(glbl=True, cycle=True)
while not cc.ready():

pass

pause_time = time.time_ns|()
cm. InjectFault (frameaddress, frameoffset, True)
pause_time = time.time_ns() - pause_time

cc.set_cycle_stop(17)
cc.enable(glbl=True, cycle=True)
while not cc.ready():
if (time.time_ns() - begin_time) >= 5 000_000_000:
total _timeout += 1
timeout_point.append ([str (frameaddress), str(

— frameoffset), str(cycle_counter)])

=),

break
pass

if cc.prgm_counter() == correct_output:
total _correct += 1

else:
total _incorrect += 1
incorrect_point.append ([str(frameaddress), str(frameoffset

str(cycle_counter)])

end_time = time.time_ns ()
duration .append(end_time - begin_time)
injection_time .append(pause_time)

with open(result _file , "a”) as f:

f.write (time. strftime ("%a %d %b %Y - YH:%M:%S UTC +0000”, time

— .gmtime()) + "\n”)

f.write (”Campaign: 7 + file + ”"\n”)
f.write ("AVF: ” + str((campaign_length - total correct) /

— campaign_length) + ”"\n”)

f.write (”Campaign length: + str(campaign_length) + ”\n”)
f.write(” Total correct: ” + str(total_correct) + "\n”)
f.write(” Total timeout: + str(total_timeout) + "\n”)
mean_duration = int(sum(duration) / len(duration))

f.write ("Mean duration per injection: ” + str(mean_duration /

— 1_000_000) + "ms” + "\n”)

f.write(” Total duration of campaign: + str(sum(duration) / 1

— _000_000) + "ms” + "\n”)

total _injectionTime = sum(injection_time) / 1_000_000

42

195

196
197
198
199

200
201
202
203
204
205

206
207
208
209
210

211
212
213
214
215
216

217
218
219
220

221

222
223
224
225
226
227
228
229

231
232
233
234

236
237
238
239
240
241
242
243
244

(ﬁ

(_>

(_>

(_>

(_>

(_>

”

f.write (”Mean time of injecting: + str(total_injectionTime /

len(injection_time)) + "ms” + "\n”)
f.write(”\n”)
with open(”src/Campaign/timeout points-mcm. txt”, "a”) as f:
f.write (time. strftime ("%a %d %b %Y - YH:%M:%S UTC +0000”, time
.gmtime ()) + "\n”)
f.write(”Result file: ” + result_file + "\n”)
f.write (”Campaign: ” + file + ”"\n”)
f.write (”Timeout points:\n”)
f.write (”Frameaddress - Frameoffset — Cycle counter\n”)
for point in timeout_ point:
f.write(”{: <12}”.format(point[0]) + * = 7 + *{: <11}”.
format(point[1]) + » - 7 + 7 {: <13}".format(
point[2]) + "\n”)
f.write(”\n”)
with open(”src/Campaign/incorrect_points -mem. txt”, ”"a”) as f:
f.write(time.strftime ("%a %d %b %Y - YH:%M:%S UTC +0000”, time
.gmtime()) + "\n”)
f.write(”Result file: ” + result_file + "\n”)
f.write (”Campaign: 7 + file + ”"\n”)
f.write(”Incorrect points:\n”)
f.write (”Frameaddress - Frameoffset - Cycle counter\n”)
for point in incorrect point:
f.write(”{: <12}”.format(point[0]) + ” = 7 + " {: <11}".
format(point[1]) + > - 7 + 7 {: <13}”.format(
point[2]) + "\n”)
f.write(”\n”)
print ("AVF =", (campaign_length — total _correct) / campaign_length
)
print(”Mean duration per injection:”, mean_duration / 1_000_000, ”
ms”)

def fir_single_injection(self):

self. deamon. start ()

cc = self._clock_controller

with self._command_manager as cm:
board_info = cm.Readld ()
print(f”Board Info: {vars(board info)}”)
cc.reset ()

correct_output = [0, O, 3, 7, 12, 18, 25, 33, 42, 52, 52]
correct = True

print(”Inject led”)
cm.InjectFault(0x0042221f, 2915, True)

for i in range(11):
cc.set_cycle_stop (i)
cc.enable(glbl=True, cycle=True)
while not cc.ready():
pass

if i == 1: cm.InjectFault(0x0040111f, 132, True)
if not cc.prgm_counter() == correct_output[i]:

43

245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272

273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290
291

292
293
294

correct = False

print(i, ”:”, cc.cycle_counter(), cc.prgm_counter(),
— prgm_counter () == correct_output[i])

cc.set _cycle _stop(i+1)

cc.enable(glbl=True, cycle=True)

while not cc.ready():

pass

print(cc.cycle_counter(), cc.prgm_counter())

print(”Successful run:”, correct)

def fir_injection (self, campaign_dir = "src/Campaign/”):

campaign_files = os.listdir (campaign_dir)
campaign_files.sort ()
self._deamon. start ()
cc = self. _clock_controller
with self._command_manager as cm:
for file in campaign_files:
if os.path.isdir(campaign_dir + file):

CC.

sub_campaign_files = os.listdir (campaign_dir + file)

sub_campaign_files.sort ()
for sub_file in sub_campaign_files:
if “campaign” in sub_file[:8]:
self. fir_injection_campaign(cc, cm,

— campaign_dir + file + ”/” + sub_file, f”{campaign_dir}results —{file

— }.txt”)
else:
if “campaign” in file[:8]:

self. fir_injection_campaign(cc, cm, campaign_dir

— + file , f”{campaign_dir}results.txt”)
def _fir_injection_campaign(self, cc, cm, file = "”, result_file
— results—fir.txt”):
injectionCampaign = self. _import_injection_file (file)
print(”Start injecting campaign with:”, file)
board_info = cm.Readld ()
print(f”Board Info: {vars(board_info)}”)

In 1 oo

total _correct
total _timeout =
total__incorrect
campaign_length
duration = []

injection_time = []
timeout_point = []

incorrect_point = []

0
len(injectionCampaign[”frameaddress”])

for index in tgdm(range(campaign_length), desc="Running campaign

— ...7):
begin_time = time.time_ns ()
frameaddress = int(injectionCampaign[”frameaddress”][index],
— 16)
frameoffset = injectionCampaign[”frameoffset”][index]
cycle_counter = injectionCampaign[”program_counter”][index]

44

295
296
297
298

300
301
302
303
304
305
306
307
308
309

310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332

333

335
336
337
338

339
340

341
342
343
344
345

correct_output = [0, O, 3, 7, 12, 18, 25, 33, 42, 52, 52]
correct = True
end = False

cc.reset ()
pause_time = 0

for i in range(11):

cc.set_cycle_stop (i)

cc.enable(glbl=True, cycle=True)

while not cc.ready():

if (time.time_ns() - begin_time) >= 5 _000_000_000:
total _timeout += 1
timeout_point.append ([str (frameaddress), str(
— frameoffset), str(cycle counter)])

end = True

break
pass
if end:
break
if i == 1:

pause_time = time.time_ns()
cm. InjectFault(0x0040111f, 132, True)
pause_time = time.time_ns() - pause_time

if not cc.prgm_counter() == correct_output[i]:
correct = False
break
print(i, ”:”, cc.cycle counter(), cc.prgm_counter(), cc.
< prgm_counter() == correct_output[i])
if correct:
total _correct += 1

else:
total _incorrect += 1
incorrect_point.append ([str(frameaddress), str(frameoffset
<), str(cycle_counter)])
end_time = time.time_ns()
duration .append(end_time - begin_time)
injection_time .append(pause_time)

with open(result_file , "a”) as f:
f.write (time.strftime ("%a %d %b %Y - YH:%M:%S UTC +0000”, time
— .gmtime()) + "\n”)
f.write (”Campaign: 7 + file + ”\n”)
f.write ("AVF: ” + str((campaign_length—-total correct)/
— campaign_length) + "\n”)
f.write (”Campaign length:

”

+ str(campaign_length) + "\n”)
f.write(”Total correct: ” + str(total_correct) + "\n”)
f.write(” Total timeout: + str(total_timeout) + "\n”)
mean_duration = int(sum(duration) / len(duration))
f.write (”Mean duration per injection: ” + str(mean_duration/1

— _000_000) + "ms” + "\n")

”

45

346

347
348

349
350
351
352

353
354
355
356
357
358

359
360
361
362

363
364
365
366
367
368

369
370
371
372

373
374
375

377
378
379
380

382
383
384
385
386
387
388
389
390

392
393
394
395

f.write(” Total duration of campaign: ” + str(sum(duration)/1

— _000_000) + "ms” + "\n”)

total_injectionTime = sum(injection_time)/1_000_000
f.write (”Mean time of injecting: ” + str(total _injectionTime/

— len(injection_time)) + "ms” + "\n”)

f.write (”\n”)

with open(”src/Campaign/timeout_points-fir.txt”, "a”) as f:
f.write (time.strftime ("%a %d %b %Y - YH:%M%S UTC +0000”, time

<~ .gmtime()) + "\n”)

”

f.write (”Result file: + result_file + "\n”)
f.write (”Campaign: 7 + file + ”"\n”)
f.write(”Timeout points:\n”)
f.write (”Frameaddress - Frameoffset - Cycle counter\n”)
for point in timeout point:
f.write(”{: <12}”.format(point[0]) + 7 = 7 + "{: <11}”.

— format(point[1]) + ” = 7 + ”{: <13}”.format(point[2]) + "\n”")

f.write(”\n”)

with open(”src/Campaign/incorrect points—fir.txt”, ”"a”) as f:
f.write (time. strftime ("%a %d %b %Y - YH:%M:%S UTC +0000”, time

<~ .gmtime()) + "\n”)

f.write(”Result file: ” + result_file + "\n”)

f.write (”Campaign: ” + file + "\n”)

f.write(”Incorrect points:\n”)

f.write (”Frameaddress - Frameoffset — Cycle counter\n”)
for point in incorrect_point:

f.write(”{: <12}”.format(point[0]) + 7" - 7 + "{: <11}".
— format(point[1]) + *> = 7 + ”{: <13}”.format(point[2]) + "\n”)
f.write(”\n")
print ("AVF =", (campaign_length—total correct)/campaign_length)
print (”Mean duration per injection:”, mean_duration/1_000_000, "ms
= ")
def example_injection(self):
print(”Injecting into example design”)
with self._command_manager as cm:
board_info = cm.Readld ()
print(f”Board Info: {vars(board_info)}”)
Inject into latch - LDO
cm. InjectFault(0x0042239f, 3044, True)
Inject into bram - LD3
cm. InjectFault(0x00c20280, 2912, False)
def neo_inject_pc(self):

print(”Injecting into neo design”)

self. deamon. start ()

cc = self. _clock_controller

with self._command_manager as cm:
board_info = cm.Readld ()
print(f”Board Info: {vars(board info)}”)
cc.reset ()

cc.set_prgm_stop(0x1dc)

cc.enable(glbl=True, prgm=True)
while not cc.ready():

46

396
397
398
399

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437

439
440
441
442
443
444
445
446
447
448
449

450
451

pass

print(”1: 7 + hex(cc.prgm_counter()))
cc.set_cycle_relative_stop (6)
cc.enable(glbl=True, cycle=True)
while not cc.ready():

pass

print(”Inject”)
print(”2: ” + hex(cc.prgm_counter()))

cm.InjectFault(0x0042151f, 541, True) #bit 3 next pc
cm. InjectFault(0x0042141f, 579, True) #bit 4 next pc
cm.InjectFault(0x0042149f, 643, True) #bit 5 next pc
cm.InjectFault (0x0042141f, 546, True) #bit 6 next pc
cm.InjectFault(0x0042139f, 669, True) #bit 7 next pc
cm.InjectFault(0x0042139f, 708, True) #bit 8 next pc

cc.set_cycle_relative_stop (8)
cc.enable(glbl=True, cycle=True)
cc.set_prgm_stop(0x220)
cc.enable(glbl=True, prgm=True)
cc.set _cycle_stop (0xf00000)
cc.enable(glbl=True, cycle=True)
while not cc.ready():
pass
print(”3: 7 + hex(cc.prgm_counter()))

cc.set_prgm_stop (0x220)
cc.enable(glbl=True, prgm=True)
while not cc.ready():

pass

print(self._dut_output.hex(), self._dut_output)
print(self._dut output.decode(’utf-8’, ”ignore”))

def injection_campaign(self, file = ""):
if not file:
print (”Campaign file required for injection campaign”)
return
injectionCampaign = self._import_injection_file (file)
print(”Start injecting campaign with:”, file)

self. deamon. start ()
cc = self._clock_controller
with self._command_manager as cm:
board_info = cm.Readld ()
print(f”Board Info: {vars(board _info)}”)

|
I oo

total _correct
total _timeout
campaign_length
duration = []

len(injectionCampaign[”frameaddress”])

for index in range(campaign_length):
for index in tgdm(range(campaign_length), desc="Running

< campaign...”):

begin_time = time.time_ns ()
frameaddress = int(injectionCampaign[”frameaddress”][index

47

452

453
454

455

456
457
458

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

487

489

490

491

492

493

494
495

496
497

—], 16)
frameoffset = int(injectionCampaign[” frameoffset”][index
—], 10)
frameoffset = injectionCampaign|[”frameoffset”][index]
program_counter = int(injectionCampaign[” program_counter
— ”"][index], 10)
program_counter = injectionCampaign[”program_counter”][
— index]
print(”Injection”, index, "at:”)
print (” Position:”, hex(frameaddress), str(frameoffset
—))
print (” Moment: 7, str(program_counter))
cc.reset ()
set stop at point in benchmark program
cc.set_cycle_stop(program_counter)
cc.enable(glbl=True, cycle=True)
while not cc.ready():
pass
inject at frameaddress and frameoffset
cm. InjectFault (frameaddress, frameoffset, True)
cc.set_prgm_stop(0x220)
cc.enable(glbl=True, prgm=True)
while not cc.ready():
if time.time_ns() - begin_time >= 500_000_000:
total _timeout += 1
break
pass
print(self. _dut output)
if self. _dut _output == b’\x00\ xff ’:
total _correct += 1
self. clear_dut_output()
end_time = time.time_ns ()
duration .append(end_time - begin_time)
print("Time of injection is:”, end_time - begin_time, ”
— ns”)
print(”Total correct:”, total _correct, ”"out of”,
— campaign_length)
print ("AVF =", (campaign_length—-total _correct)/campaign_length
=)
print(”Total timeout:”, total timeout)
mean_duration = int(sum(duration) / len(duration))
print (”Mean duration per injection:”, mean_duration/1_000_000,
— "ms”)
print(”Total duration of campaign:”, sum(duration)/1_000_000,
— "ms”)
def _injection_campaign(self, cc, cm, file = "7, result_file ="

< results.txt”):

injection

Campaign = self. _import_injection_file (file)

print(”Start injecting campaign with:”, file)

48

498 board_info = cm.Readld ()

499 # print(f”Board Info: {vars(board_info)}”)

500

501 total _correct = 0

502 total _timeout = 0

503 total _incorrect = 0

504 campaign_length = len(injectionCampaign[”frameaddress”])

505 duration = []

506 injection_time = []

507 timeout_point = []

508 incorrect_point = []

509

510 for index in tgdm(range(campaign_length), desc="Running campaign
— ...7):

511 begin_time = time.time_ns()

512 frameaddress = int(injectionCampaign[”frameaddress”][index],
— 16)

513 # frameoffset = int(injectionCampaign[”frameoffset”][index],
— 10)

514 frameoffset = injectionCampaign[”frameoffset”][index]

515 # program_counter = int(injectionCampaign[” program_counter”]]
— index], 10)

516 program_counter = injectionCampaign[”program_counter”][index]

517

518 # print(”Injection”, index, "at:”)

519 # print (7 Position:”, hex(frameaddress), str(frameoffset))

520 # print(” Moment: ”, str(program_counter))

521

522 cc.reset ()

523

524 # set stop at point in benchmark program

525 cc.set_cycle_stop(program_counter)

526 cc.enable(glbl=True, cycle=True)

527 while not cc.ready():

528 pass

529

530 pause_time = time.time_ns()

531

532 # inject at frameaddress and frameoffset

533 cm. InjectFault (frameaddress, frameoffset, True)

534

535 pause_time = time.time_ns() - pause_time

536

537 cc.set_prgm_stop(0x220)

538 cc.enable(glbl=True, prgm=True)

539 while not cc.ready():

540 if (time.time_ns() - begin_time) - pause_time >= 1
— _000_000_000:

541 total timeout += 1

542 timeout_point.append ([str (frameaddress), str(
— frameoffset), str(program_counter)])

543 break

544 pass

545

546 # print(self._dut output)

547 if self. dut output == b’\x00\ xff ’:

548 total _correct += 1

49

549
550
551

552
553
554
555
556
557
558

559
560

561
562
563
564
565

566

567
568

569
570
571
572

573
574
575
576
577
578

579
580
581
582

583
584
585
586
587
588

589
590
591
592

593
594

(_>

else:
total_incorrect += 1
incorrect_point.append ([str(frameaddress), str(frameoffset

), str(program_counter)])

self. clear_dut_output ()

end_time = time.time_ns ()

duration .append(end_time - begin_time)

injection_time .append(pause_time)

with open(result file , "a”) as f:
f.write (time.strftime ("%a %d %b %Y - YH:%M:%S UTC +0000”, time
.gmtime ()) + "\n”)
f.write (”Campaign: ” + file + "\n”)
f.write ("AVF: ” + str((campaign_length—-total_correct)/
campaign_length) + "\n”)
f.write (”Campaign length:

+ str(campaign_length) + "\n”)
f.write(” Total correct: ” + str(total_correct) + "\n”)
f.write(” Total timeout: + str(total_timeout) + "\n”)
mean_duration = int(sum(duration) / len(duration))

f.write ("Mean duration per injection: ” + str(mean_duration/1

— _000_000) + "ms” + ”"\n”)
f.write(” Total duration of campaign: ” + str(sum(duration)/1
— _000_000) + "ms” + "\n”)
total_injectionTime = sum(injection_time)/1_000_000
f.write (”Mean time of injecting: ” + str(total _injectionTime/
— len(injection_time)) + "ms” + "\n”)
f.write(”\n”)
with open(”src/Campaign/timeout_points.txt”, "a”) as f:
f.write (time.strftime ("%a %d %b %Y - YH:%M:%S UTC +0000”, time
— .gmtime()) + "\n”)
f.write(”Result file: ” + result_file + "\n”)
f.write (”Campaign: 7 + file + ”"\n”)
f.write (”Timeout points:\n”)
f.write (”Frameaddress - Frameoffset - Cycle counter\n”)
for point in timeout point:
f.write(”{: <12}”.format(point[0]) + 7 - 7 + "{: <11}”.
— format(point[1]) + * = 7 + ”{: <13}”.format(point[2]) + "\n”")
f.write(”\n”)
with open(”src/Campaign/incorrect points.txt”, "a”) as f:
f.write (time.strftime ("%a %d %b %Y - YH:%M%S UTC +0000”, time
— .gmtime()) + "\n”)
f.write(”Result file: ” + result_file + "\n”)
f.write (”Campaign: ” + file + "\n”)
f.write(”Incorrect points:\n”)
f.write (”Frameaddress - Frameoffset — Cycle counter\n”)
for point in incorrect_point:
f.write(”{: <12}”.format(point[0]) + 7 - 7 + "{: <11}".
— format(point[1]) + * - 7 + ”{: <13}".format(point[2]) + "\n”")
f.write(”\n”)
print ("AVF =", (campaign_length—total correct)/campaign_length)
print (”Mean duration per injection:”, mean_duration/1_000_000, "ms
= ")
def multiple_campaign(self, campaign_dir = "src/Campaign/”):

50

campaign_files = os.listdir (campaign_dir)
campaign_files.sort ()
self._deamon. start ()
cc = self. _clock_controller
with self._command_manager as cm:

for file in campaign_files:

601
602
603
604
605
606

607
608
609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

if os.path.isdir(campaign_dir + file):
sub_campaign_files = os.listdir (campaign_dir + file)
sub_campaign_files.sort ()
for sub_file in sub_campaign_files:
if “campaign” in sub_file[:8]:
self. _injection_campaign(cc, cm, campaign_dir

— + file + 7/” + sub_file, f”{campaign_dir}results —{file }. txt”)

else:
if “campaign” in file [:8]:
self. injection_campaign(cc, cm, campaign_dir +

f”{campaign_dir}results.txt”)

def run(self, campaign_file = ”7):
print (”Current working directory:”, os.getcwd())
self.example_injection ()
self.neo_injection ()
if campaign_file:
print(”Starting campaign from file:
self.injection_campaign(campaign_file)

+ campaign_file)

print (’No campaign file , running injection on pc”)
self.neo_inject_pc ()

self.neo_injection ()

self.multiple_campaign ()

self.fir_injection ()

self.fir_single_injection ()

elf.mcm_injection_campaign ()

51

© © N o o »~ w N -

Appendix C

Multicycle multiplier DUT code listing

library IEEE;

use IEEE.STD _LOGIC 1164 .ALL;

use IEEE.STD_LOGIC ARITH.ALL;
use |IEEE.STD _LOGIC_UNSIGNED.ALL;

library work;

entity multicycle_mult is

Port (
clk : in STD_LOGIC;
reset : in STD_LOGIC;
start . in STD_LOGIC;
a : in STD_ULOGIC_VECTOR(15 downto 0);
b : in STD_ULOGIC_VECTOR(15 downto 0);
result : out STD ULOGIC VECTOR(31 downto 0);
done : out STD_LOGIC;

cycle_counter_o : out STD_ULOGIC VECTOR(31 downto 0)
);
attribute dont_touch : boolean;
attribute dont_touch of multicycle_mult : entity is true;
end multicycle_mult;

architecture Behavioral of multicycle_mult is
signal a_reg, b_reg : STD ULOGIC VECTOR(31 downto 0);

signal product : unsigned (31 downto 0);

signal count : INTEGER range 0 to 16;

signal busy : STD_LOGIC;

signal cycle_counter : unsigned(31 downto 0) := (others => '0’);
begin

process(clk , reset)

begin

if reset = 0’ then

a_reg <= (others => '0");

b _reg <= (others => '0’);

product <= (others => ’0’);

count <= 0;

busy <= '0’;

done <= '0’;
result <= (others => '0’);
cycle_counter <= (others => '0’);

elsif rising_edge(clk) then
if start = "1’ and busy = ’0’ then
a_reg <= (31 downto 16 => '0’) & a;

52

45 b_reg <= (31 downto 16 => '0’) & b;

46 product <= (others => ’0’);

47 count <= 0;

48 busy <= ’1’;

49 done <= '0’;

50 elsif busy = ’1’ then

51 if count < 16 then

52 if b reg(0) = 1’ then

53 product(31 downto 0) <= product(31 downto 0) +
< unsigned(a_regqg);

54 end if;

55 a_reg <= a_reg(30 downto 0) & ’0’; —— shift left

56 b reg <= '0’ & b_reg(31 downto 1); -- shift right

57 count <= count + 1;

58 else

59 busy <= '0’;

60 done <= ’'1’;

61 result <= std_ulogic_vector(product);

62 end if;

63 end if;

64 cycle_counter <= cycle_counter + 1;

65 cycle_counter_o <= std_ulogic_vector(cycle counter);

66 end if;

67 end process;

68

69 -—result <= product;

70 end Behavioral;

53

© 0o N o g »~A W0 N

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Appendix D

Benchmark quick sort code listing

/**/
— [x*

* @file benchmark/qgsort/main.c

* @author Kevin Schrama

* @brief Qsort benchmark program.

***/

#include <neorv32.h>

/******************************-k***************************************/
— [xx

* @name User configuration

***/

[% +@{ */

/++ UART BAUD rate =/

#define BAUD_RATE 19200

% «@} =/
#define array_elements 180

void quick_sort(int =a, int n);
int checker(int golden_array[], int dut_array[]);

/**/
— [x%*

* Main function;

*

* @return 0 if execution was successful

***/

int main()

{

int pattern[array_elements] = {
23, -7, 42, 18, 0, -13, 56, 89, -22, 4,
67, -99, 12, 33, 45, 78, -11, -8, 60, 14,
-35, 50, 7, 24, -46, 92, -71, 8, 31, -6,
100, -44, 9, 29, -53, 81, -25, 17, -19, 36,
5, 72, -80, -1, 49, 3, 27, -64, 88, -90,
19, 34, -72, 11, 44, -18, 68, 73, -84, -33,
95, 26, 48, 13, -50, 6, 55, -15, 41, 70,
-2, 20, 59, -28, 12, 87, 21, -61, 76, 39,
28, -36, 74, 9, -47, 82, -4, 31, 62, -10,
-99, 25, 57, 40, -85, 63, 35, 53, -26, 96,
-54, 46, 77, -67, 15, 22, 38, -34, 64, -81,

54

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

89, 14, 58, -5, 30, -9, 66, 47, -63, 91,
-29, 42, 80, 3, -48, 18, 75, -27, 50, 98,
-74, 37, 4, -41, 65, 11, 16, -32, 84, 44,
-88, 12, 562, 79, -13, 26, 71, -19, 68, 6,
-56, 45, 99, -8, 31, -22, 92, 38, -70, 25,
-39, 85, 54, 7, -17, 40, 61, -77, 36, 43,

-20, 69, 2, -49, 81, 17, -66, 74, 28, 19};

int correct pattern[array_elements] = {

, —81, -80, -77,
, —63, -61, -56,
, —44, -41, -39,
, =27, -26, -25,
, —15, -13, -13,

-99, -99, -90, -88, -85, -84
-72, -71, -70, -67, -66, —-64
-53, -50, -49, -48, -47, -46
-35, -34, -33, -32, -29, -28
-22, -20, -19, -19, -18, -17
-10, -9, -8, -8, -7, -6, -5,
0, 2, 3, 3, 4, 4, 5, 6, 6, 7
7,8, 9,9, 11, 11, 12, 12,
14, 14, 15, 16, 17, 17, 18,
20, 21, 22, 23, 24, 25, 25,
28, 28, 29, 30, 31, 31, 31,

_4’
12,
18,

26,
33,

36, 36, 37, 38, 38, 39, 40, 40,
42, 43, 44, 44, 45, 45, 46, 47,

49, 50, 50, 52, 53, 54, 55,
59, 60, 61, 62, 63, 64, 65,
68, 69, 70, 71, 72, 73, 74,
77, 78, 79, 80, 81, 81, 82,
88, 89, 89, 91, 92, 92, 95,

int n = sizeof pattern / sizeof

56,
66,
74,
84,
96,

-2, -1,

13,

19, 19,
26, 27,
34, 35,
41, 42,
48,

57, 58,
67, 68,
75, 76,
85, 87,
98, 99, 100};

pattern[0];

/I capture all exceptions and give debug info via
[/l this is not required, but keeps us safe

/! neorv32_rte_setup();

/]l setup UART at default baud rate,

neorv32 uart0_setup (BAUD RATE, 0

/! check available hardware extensions and compare with compiler flags
/Ineorv32 rte_check_isa(0); // silent = 0 —> show message

— mismatch

asm(”’nop”);
quick_sort(pattern, n);
asm(”’nop”);

);

no interrupts

int errors = checker(correct_pattern, pattern);

neorv32 uart0_putc(errors);
neorv32 uart0_putc(0 xff)

/I for (int i = 0; i < array_elements; i++){
/1l neorv32_ uart0_putc(pattern[i]);
Il }

while (neorv32_ uart0_tx _busy()) {}
asm(”’nop”);

return O;

95

UART

98 }

99
10 void quick_sort(int %a, int n)
101 {
102 if (n < 2)
103 return;
104 int p=a[n / 2];
105 int x| = a;
106 int xr = a+n - 1;
107 while (I <= r)
108 {
109 if («x1 < p)
110 {
111 | ++;
12 }
13 else if (xr > p)
114 {
115 r—-—;
116 }
17 else
118 {
19 int t = *I;
120 *| = *r;
121 *r = t;
122 | ++;
123 r——,;
124 }
125 }
126 quick_sort(a, r — a + 1)
127 quick_sort(l, a + n - |);
128 }
129
130 int checker(int golden_array[], int dut_array[])
131
{
132 int num_of_errors = 0;
133
134 for (int i = 0; i < array_elements; i++)
135 {
136 if (golden_array[i] != dut_array[i])
137
{
138 /Il printf (”Element %d was wrong: %d —> %d\n”,
<~ golden_array[i]);
139 num_of_errors++;
140 }
141 }
142
143 return num_of_errors;
144 }

56

3

dut_array[i],

	Summary
	Acronyms
	Glossary
	Introduction
	Radiation on hardware
	Metric for vulnerability
	Measuring the vulnerability
	Fault injection
	Accelerating fault injection campaigns
	Thesis outline

	Background
	Soft errors
	Soft errors due to radiation
	Soft error mitigation
	Reliability metrics

	Architectural Vulnerability Factor
	ACE analysis
	Fault injection
	Hardware-based fault injection
	Simulation-based fault injection
	Emulation-based fault injection

	Fault injection campaign
	Fault injection tool
	Statistical fault injection
	Neorv32

	Related work
	avf analysis
	Accelerating avf analysis

	Statistical fault injection campaign generator
	The campaign generator
	LL file parser
	Filter for DUT
	Benchmark parser
	Statistical pseudo-random selection
	Exporting campaign
	Fault injection tool

	Experiments and results
	Experimental setup
	Experiment: Full campaign compared to statistical campaign
	dut
	Benchmark
	Parameters
	Results
	Increase number of campaigns to run
	Analysis

	Experiment: Statistical campaign on a large DUT
	DUT
	Benchmark
	Parameters
	Results
	Analysis

	Conclusion and discussion
	SFI campaign generator code listing
	Fault injection user application code listing
	Multicycle multiplier DUT code listing
	Benchmark quick sort code listing

