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Abstract

In this thesis, the problem of fast failover in a distributed mission-critical system using Ku-
bernetes is explored. The thesis aims to provide a comprehensive background on the prob-
lem, as well as to compare potential solutions that could address the challenges at hand.
The technologies considered are Serf, Consul and ZooKeeper, with Serf being selected as
a suitable candidate for comparison in an experimental environment that simulates the
conditions of a distributed mission-critical system. The findings of this thesis indicate that
Serf offers an improved failure detection time compared to the use of Kubernetes alone.
Furthermore, a range for the expected failure detection time is established, although its
results may not be sufficiently predictable for the stringent requirements of mission-critical
systems.

Keywords: Kubernetes, health monitoring, failover, failure detection, mission-critical sys-
tems, distributed systems, Serf, DDS



Chapter 1

Introduction

In this chapter, the motivation for this project and its corresponding research questions
are established, as well as the approach taken to answer them and the overall structure of
the thesis.

1.1 Motivation

The rapid growth of modern IT systems has given rise to a wide variety of challenges that
require suitable architectural solutions to tackle them. The more a system increases in size,
the more complex it is to manage it, since maintenance, debugging and deployment of the
system becomes more difficult and potentially less efficient. In addition, any changes made
require longer downtimes, flexibility is highly limited, and scaling the system to support
the growing demand is inefficient. These are only some of the problems organizations can
encounter when dealing with growing, complex systems [24]. Furthermore, due to the fast
pace at which system architectures need to change in order to meet critical safety and
security requirements, adaptability is a necessary non-functional requirement that needs
to be met [15]. As such, a robust and efficient solution that can adapt to conditions specific
to the mission-critical domain is needed.

Cloud architectures are a modern solution that addresses the need for scalability, resilience
and adaptability in software, by enabling the on-demand distributed use of resources over
a network [2]. As a result, cloud architectures have become widely adopted across different
industries. For organizations dealing with mission-critical systems, the preferred type of
setup is often on-premises due to the need to prioritize security [2], as outsourcing the in-
frastructure inherently brings security risks. Additionally, the architecture of such systems
can differ from the typical cloud architecture, such as having fewer nodes and a smaller
scale, for example in systems within the naval, aerospace and defense industries. Further-
more, for mission-critical systems where data exchange should be reliable and efficient,
middleware for secure, high-performance communication between the various components
in the system, such as the Data Distribution Service (DDS), is required [39].

In cloud architectures, containerization is a commonly used technology [14]. Container-
ization is a type of virtualization that involves packaging an application with all of the
libraries, configuration files, dependencies, etc. that are required for a successful deploy-
ment. This packaging allows containers to run on any platform for enhanced portability
[10] with minimal overhead, which has resulted in the rapid adoption of containerization



in various industries [54].

The de facto standard for managing containers is Kubernetes [20], which is an open-
source orchestration platform for cluster management. Kubernetes allows users to request
resources in an abstract manner, while the platform handles the resource allocation and
scheduling, leading to more convenient development and management of applications [14].
Furthermore, Kubernetes provides a multitude of capabilities that contribute to improved
scaling, portability, automated deployment, resource management, health monitoring and
recovery, and more [8]. The flexibility and extensive solutions that Kubernetes offers have
led to its rapid industry-wide adoption, with approximately 70% of IT leaders worldwide
working for organizations that utilize Kubernetes in their processes, as surveyed by RedHat
[22].

Although mission-critical systems can benefit from using Kubernetes to address the afore-
mentioned challenges, a specific requirement that they must also fulfill is that they should
guarantee high availability and reliability of the systems. In some domains such as de-
fense, healthcare, etc., significant downtime can cause hazards such as property damage,
environmental damage, and even harm to human life. As such, any solution used in a
mission-critical environment must also be able to support near-uninterrupted availability.

Despite its many benefits, Kubernetes alone is not always enough to meet the requirements
of systems with stringent availability targets |5|, including mission-critical ones, where it
is crucial to be able to detect and recover from failure in as short a time as possible
under conditions specific to the domain. While Kubernetes offers support for failure de-
tection and recovery, on its own it cannot always do so efficiently enough to be suitable
for mission-critical systems, where recovery needs to occur near-instantaneously, since the
failure detection phase alone can take up to 40 seconds when using Kubernetes [3]. As
such, it is necessary to explore an approach that combines the features of Kubernetes which
are suitable for mission-critical systems, such as scheduling, automatic scaling, network-
ing, etc., with a more efficient way of keeping track of and communicating the state of the
system, as well as triggering the recovery process in the event of failure.

1.2 Research Questions

This thesis aims to investigate how to improve the failure detection time of a mission-
critical distributed system managed by Kubernetes that communicates via DDS. The main
problem can be addressed by defining the following research questions:

RQ1. Which technology could be a suitable solution for the problem?

a. What technologies can improve the failure detection time of a distributed system
managed by Kubernetes?

b. What are the advantages and disadvantages of each of these technologies?
c. How can each of these technologies be used in combination with Kubernetes?

RQ2. What are the practical implications of using the selected technology to address the
established problem?

a. What are the key features of the selected technology that contribute to failure
detection and communication in distributed systems?



b. How does the selected technology perform in an experimental setting compared
to the capabilities of Kubernetes alone?

c. What impact does increasing the number of physical nodes have on the system?

1.3 Approach

In this section, the steps taken in order to answer the research questions posed in Section
1.2 are described in detail.

Given that this research aims to present an improvement to the existing solution of an
organization via the delivery of a software artifact, Design Science [36] is a suitable research
methodology to follow. In particular, Design Science describes the iterative creation of an
information system via the switching perspectives of processes and evolving artifacts, i.e.
products. The use of Design Science allows for a better understanding of the established
problem, and further provides a way to assess the feasibility of the selected approach
implemented by the artifact. Afterwards, the artifact is improved accordingly throughout
the next iteration until a satisfactory result has been reached.

Implementation evaluation /
Problem investigation
« Organizations operating mission-critical systems; improve availability of K8s-managed distributed systems.

Treatment implementation

« Containers, cloud architectures, HA, health monitoring, failover, redundancy, gossip protocols, communication middleware.
« K8s-only failover time is insufficient for mission-critical systems; K8s is designed for general-purpose systems.

« Unacceptable delays in critical functions of the organization; negative impact on reputation and services.
Treatment validation Treatment design
« Analyze resulting failure detection time. N . N . N . .

« Resulting failure detection time < 1s in a multi-node system that communicates over DDS.
« Check for any tradeoffs, for example any data inconsistencies.

P . « Explore the outcome with the selected solution.
« Analyze applicability in other environments, for example

with more nodes. « Possible treatments include Serf, Consul and ZooKeeper.
« Determine whether the failure detection time is <1s. « Adjust parameters until requirements are satisfied.

FIGURE 1.1: Wieringa, R. (2014) [59]. The engineering cycle. Adapted to suit the
process of this project.

The overall cycle is depicted in Figure 1.1 following the template in [59], with the steps
taken to answer the research questions. The problem investigation phase of the cycle was
used to answer RQ1, the approach for which is described in more detail in Section 3.1,
while the subsequent stages and their iterations focused on answering RQ2.

In particular, the following five stages of the process can be identified:

1. Literature review - primarily used to discover potential solutions to the problem, as
well as to provide background knowledge to understand the problem context (Section
2). Furthermore, important steps such as identifying stakeholders and requirements
were also taken during this stage, as described later in this section.

2. Comparison of potential solutions - after the potential solutions have been identified,
a comparison is made between them in order to decide which is most suitable to
proceed with (Chapter 3).

3. Implementation - once a solution has been selected, a mock-up of the system that
meets the identified prerequisites was implemented as preparation for the experimen-
tal phase (described in Section 4.3).

4. Optimization - the implementation derived from the previous stage was optimized



until the desired results were met, following an examination of the relevant mecha-
nisms (described in Section 4.2).

5. Experiments - the final stage involved collecting data from the experiments and
discussing the findings (Section 4.4).

More specifically, the following stakeholders were identified:
e Organizations that deal with distributed mission-critical systems.
e Organizations that incorporated Kubernetes in their systems.
e System architects and engineers.

e Cloud infrastructure providers.

Regulatory agencies.
The following requirements were taken into consideration during the implementation:
e A Kubernetes-only mock-up must be implemented.

e A mock-up that integrates the selected solution within Kubernetes must be imple-
mented.

e The two implementations must be optimized.

e The failure detection time of the two implementations must be compared, both with
default and optimized settings.

e Failure detection time must be less than 1 second for the selected solution after
optimization.

e The system must use at least 2 physical nodes.

e Communication between the nodes must be done via data-centric middleware relevant
to mission-critical systems, such as DDS.

e The Kubernetes-only implementation must incorporate failover via cold standby.

e The implementation that integrates the selected solution must incorporate failover
via warm standby.

In order to meet these requirements and successfully answer the established research ques-
tions, a mock-up was implemented that simulates multiple physical nodes communicating
with each other over DDS. A node failure was then introduced and the failure detection
time was recorded across multiple experiments, in particular one with Kubernetes only
and one with the integrated selected technology. Furthermore, a comparison is also made
between the default and optimized settings of each implementation.

1.4 Project Collaboration

This research is done in collaboration with Thales, an organization involved in the defense
and aerospace sector. More specifically, the implementation of this project follows the
guidelines and expertise derived from Thales’s experience with building a failure detection
mechanism for their naval systems in the event that a node located on a ship malfunctions.
As such, the requirements and technologies utilized in the implementation follow Thales’s
expectations and guidelines.



At the moment, Thales’s current solution involves each node sending a heartbeat, and if
two consecutive heartbeats are missed, the node is considered dead. Their system achieves
a failure detection time of approximately 600 milliseconds to 1 second. Their system is
also legacy software with unknown functionalities and uncertain behaviour, all of which
are aspects that this research aims to improve upon.

1.5 Thesis Structure

The remainder of the thesis is organized as follows. Chapter 2 provides the background
knowledge necessary to understand the work done throughout this thesis, Chapter 3 pro-
vides a comparison between the candidates for improved failover, Chapter 4 outlines the
architecture of the experiments, an in-depth analysis on the selected technology, and a
discussion of the obtained results, and Chapter 5 concludes the thesis.



Chapter 2

Background

In this chapter, concepts that are relevant to this thesis are outlined and explained in order
to help the reader understand the problem at hand.

2.1 Distributed Systems

A distributed system is a system that consists of multiple networked machines, often re-
ferred to as nodes, working together to resolve a particular problem [7]. This allows for
a large number of resources to be used for performing more computationally demanding
tasks, including solving complex equations, processing big data and training large scale ma-
chine learning models. Examples of distributed systems include cloud computing platforms
(Amazon Web Services, Microsoft Azure), e-commerce systems (Amazon, eBay), search en-
gines (Google, Bing) and social media platforms (Facebook, LinkedIn). Furthermore, a wide
variety of architectural styles for distributed systems can be identified based on various
perspectives, including but not limited to peer-to-peer, client-server, publish-subscribe and
service-oriented.

The use of distributed systems in an organization’s architecture can contribute to increased
availability by preventing the existence of a single point of failure. Another advantage is
scalability, since generally the number of machines can be adjusted to support the necessary
workload. Other benefits to utilizing distributed systems can include efficiency, consistency
and transparency [7]. As such, distributed systems can be encountered frequently in the
architectures of mission-critical organizations.

2.2 Mission-Critical Systems

A mission-critical system is a system that is essential to the successful completion of an or-
ganization’s intended objective [37]. If such a system fails and is no longer functional, there
can be significant consequences to the organization, for example in the form of financial
losses, decreased productivity, compromised security, or even physical harm. Examples of
mission-critical systems can include traffic management systems in the transport domain,
radar systems in the defense domain, payment systems in the electronic commerce domain,
and many others. For systems that are also in the safety-critical domain, for example air
traffic control or missile control systems, the consequences of downtime can be especially
severe, including but not limited to property damage, environmental damage and harm to
human life [40].



As a result of their essential role in an organization’s operations, mission-critical systems
require an imperceptibly short downtime period in the event of maintainance, hardware
failure, network failure and other such causes of unavailability, in order to ensure that the
larger operations that they support do not come to a halt.

2.3 Non-Functional Requirements

Mission-critical systems have stringent non-functional requirements for optimal and reliable
operation. These requirements are outlined in this section in order to precisely define the
problem addressed in this thesis.

Awailability is a non-functional requirement that refers to the system’s overall capacity
to function, be accessible and have a quality performance with little to no disruptions or
downtime [4]. In theory, the system can still be considered available even if its response to
a request is slow, provided that a response is eventually ensured.

High availability (HA) is a stricter variant of availability where the system must be avail-
able 99.999% of the time, or five minutes and fifteen seconds of total downtime per year
[44]. Mission-critical systems demand an especially high level of availability, with strict
requirements on what is an acceptable duration of downtime in order to ensure the safe
and secure operation of the system. Mechanisms for ensuring that the necessary levels of
availability are reached for such systems are described in detail in Section 2.4.

In the context of distributed mission-critical systems, consistency refers to the ability of
every component in the system to have the same correct, most up to date information
on the state of the overall system, regardless of any failures that may occur. A simple
example to illustrate the need for this requirement is bank transactions - if a transfer is
made, all components in the system should reflect the changes, as opposed to responding
with contradictory information when queried for the balance. Furthermore, in the event
that there are inconsistencies, any subsequent transactions can also be affected.

Three types of consistency can then be identified [11]:

e Strong - near-immediate consistency is guaranteed with the aim of having the system
function as if it is a single node processing tasks sequentially, usually by designating
a particular node as the leader.

e Fuventual - allows for a delay before all nodes have the same information, provided
that no new updates are made to the state.

e Strong eventual - a stronger variant of eventual consistency, ensuring that each node
that started in the same state will eventually converge to the same value, regardless
of the order of updates.

Partition tolerance refers to a system’s ability to continue to operate despite the presence
of network partitions. Partitions can be considered scenarios of network failures and lost
messages, while partition tolerance can be viewed as resilience in the event of such failure
scenarios.

2.3.1 CAP Theorem

The CAP Theorem [29], first introduced by Eric Brewer in 2000, defines the relationship
between the properties of consistency, availability and partition tolerance in a distributed



system or data store. The theorem establishes that there is a tradeoff between these
properties, namely that at most two of them can be guaranteed in a distributed system.

For distributed systems, it is usually impossible to forfeit partition tolerance, as some form
of network failure will inevitably occur throughout the life cycle of the system, meaning
that the choice in practice is between consistency and availability. Furthermore, it is not
necessarily a single decision for the entire system - a different tradeoff can be selected
depending on the subsystem, the operation, the data involved, etc. [17]. For example,
in a banking system, consistency of the data would likely be prioritized for transaction
operations in order to avoid any mistakes in the user’s balance, while for checking the
account balance, availability might be preferred instead for a better user experience.

Given the crucial role of mission-critical systems within an organization, the decision to
sacrifice one property in favor of the other can have significant consequences and should
therefore be considered carefully.

2.3.2 Metrics

In [44], a comprehensive survey on the state of the art solutions for the challenge of ensuring
availability in the cloud is presented by collecting different definitions of availability and
downtime metrics, as well as defining a taxonomy with practices of different cloud providers.
The taxonomy includes types of failures, availability mechanisms and metrics. The work
of [44] is frequently used as reference for the contents of this chapter, including in this
section.

According to [44], metrics for measuring the availability of a distributed system can be
divided into three categories:

o Metrics related to failure:

— Mean Time to Failure (MTTF) - the mean time it takes for the system to
encounter failure.

— Mean Time to Repair (MTTR) - the mean time it takes to repair a failed
component.

— Mean Time between Failures (MTBF) - the mean time between two failures
occurring, equivalent to the sum of MTTF and MTTR.

e Metrics related to failure detection:

— Fault Detection Time - the maximum time it takes to detect failure in the
system.

e Metrics related to replication:
— Replica Number - the number of duplicate components.
— Replica Creation Time - the time it takes to duplicate the state of a component.

— Replication Frequency - the time needed for state synchronization between the
primary component and the duplicates.

As per the subject of the research questions, the metric most relevant to this project is
fault detection time, referred to throughout this thesis as failure detection time.



There are two core metrics related to consistency that other, more complex metrics gener-
ally build upon [13]:

e Staleness - the degree to which a duplicated component is outdated compared to the
most up to date component, measured in time or versions.

e Ordering - the order in which updates to the system are reflected on the duplicated
components, measured by estimating the extent to which the established ordering is
violated.

An example of a more complex consistency metric that utilizes staleness is the consistency-
cost efficiency metric [18], which focuses on minimizing monetary costs in systems that use
eventual consistency.

In the context of the CAP theorem, partition tolerance is generally considered in a bi-
nary perspective. The presence or absence of partitions determines which trade-offs are
necessary between the three properties.

2.4 Availability Mechanisms

In this section, common mechanisms used to meet the requirements defined in Section
2.3 are outlined. In particular, the taxonomy defined in [44] is used as a reference for
classification. An overview of the taxonomy can be seen in Figure 2.1.

| Availability for Cloud |

Failures protected against J { HA mechanisms J | Metrics for availability I
Power
Protective Overload Fault
Hardware Redundancy protection tolerance
— =
i ecovery
VMM Redundancy | [ R ¥ Autoscaling MTTR
Hypervisor Model Distribution Load .
: balancing Failover/ Recovery Time
Geographic Switchover
Stateless Roll-back Fault detection
VM time
N T Roll-
[ Mmiddieware | B = l”"_ _—Hnl Standby Forward Replication
Application N+M : -
Stateful Noway o5 Updated Replication
Application N-way-active |- [ Not Updated/Warm | Frequency
Stateless Nor T Spare/Cold Standby Replica
Application No redundancy Creation Time
Replica
Number

FIGURE 2.1: Nabi, M. et al. [44]. A tazonomy for availability in cloud computing.

2.4.1 Fault Tolerance

Fault tolerance is a type of availability mechanism that deals with the system’s capability
to continue functioning properly even when failure occurs [44]. By utilizing fault tolerance
mechanisms, the system can detect failure as it occurs and handle it accordingly in order
to ensure the continued operation and accessibility of the system with minimal downtime,
thus contributing to improved availability. Two distinct phases of fault tolerance can be
identified, namely failure detection and failure recovery. The respective processes associ-
ated with these phases are described in the following sections.



Health Monitoring

The failure detection phase of fault tolerance mainly consists of the health monitoring pro-
cess. It refers to the set of mechanisms that are put in place with the aim of maintaining
the system in a correctly functioning and well-performing state. This can include a moni-
toring process for detecting possible failures or anomalies, as well as a recovery mechanism
for returning the system to its desired state by activating the specified recovery process
[60].

During the monitoring process, a frequently used mechanism is that of heartbeats. Imple-
mentations can vary, but the general process involves sending heartbeat messages to the
nodes in the system and waiting for a response [43|. If no response is received within a
given timeframe, the node is assumed to have failed.

Failover

Failover is defined as a failure recovery process for providing uninterrupted availability
in the event of failure of a system component by automatically switching to a backup
component and redirecting traffic to it. After failure, the component is not used until it
has been repaired, at which point it can again be made active, a process known as failback
[56].

Fast failover is vital for the successful operation of mission-critical systems as it helps
prevent the scenario in which a critical component is inaccessible [19]. Furthermore, it is
the failure recovery strategy selected for the experimental stage of this thesis.

Recovery Strategies

Aside from failover, there are multiple options for recovery once a component fails, namely
restart, rollback and roll-forward [44, 56]:

e Restart - the component is stopped and started again, usually in its initial state, in
an attempt to eliminate the failure.

e Rollback - the system is reset back to a previous, functioning state, provided that
snapshots of such a state have been collected prior to the failure occurring. Rollback
has a generalized usage since it does not require any knowledge about the error, but
is more resource-intensive due to the snapshot process.

e Roll-forward - if possible, the system is set to a new, functioning state, possibly after
applying changes that could not be successfully executed beforehand. Roll-forward
is generally more efficient, but requires application-specific knowledge.

Recovery strategies should be used with caution, as they do not necessarily resolve the
original error, meaning that there is a risk of the same error causing a failure, even after
the recovery strategies have been successfully applied [56].

2.4.2 Protective Redundancy

Protective redundancy refers to the mechanisms employed in the system to eliminate the
possibility of a single point of failure occurring via the use of duplicated components.
This can include redundancy models that handle the organization and rules related to
the redundant elements, as well as redundancy distributions that define the geographical
layout of the redundant components, forming availability zones (AZs) [44].

10



Standby Redundancy

Standby redundancy is an implementation of failover which makes use of duplicate com-
ponents that are available to take over the tasks of the main component in the event of
failure.

When using standby redundancy, each component can be considered to be in one of the
following states:

e Active - the component is running, actively serving clients and handling traffic in the
system.

e Jdle - the component is running with some information about the current state of
the system and is ready to take over without needing to be started first, but is not
actively participating in the system.

e Stopped - the component is not running and would first need to be started if its usage
is needed.

Three primary types of standby redundancy can be identified, namely cold, warm and hot:

e (Cold standby refers to a standby redundancy setup in which the duplicated com-
ponents are stopped until a failure occurs in the main component [42]. In such a
standby, the duplicated component only begins operating after failure is detected
and it is notified about the current state of the system.

o Warm standby is a type of standby redundancy in which idle duplicates of the critical
process are running and ready to take over in case the active component experiences
a failure. Using warm standby, some short amount of downtime is expected, but can
be optimized. The switch from idle to active state can happen relatively quickly, as
the idle component is essentially already running and available and only needs to be
notified that it needs to take over as the active component [47]. This means that
optimization needs to be aimed at reducing the time it takes for the failure to be
detected and communicated to the relevant duplicate component.

e Hot standby also has duplicate components running, but these instances are not
as passive as those implemented in warm standby. Instead, the duplicates are in
constant communication with the primary component and are actively serving clients.
As a consequence, the duplicates are ready to take over immediately if failure occurs.
However, by being active they are more likely to encounter failure faster due to
already being in use [42].

Using cold standby, the duplicate components are less likely to suffer from failure before
becoming active due to prior usage, but the result can be a slower restoration of the
system to a properly functioning state. Hot standby, on the other hand, offers a much
faster recovery time at the expense of reliability [42]. Furthermore, the recovery process
occurs much faster when using hot standby compared to warm standby.

2.4.3 Overload Protection

Overload protection is a system’s ability to handle incoming traffic and distribute resources
in such a way that performance is not severely degraded or disrupted [44]. Common
mechanisms for achieving overload protection are load balancing and autoscaling.

11



Load Balancing

Load balancing refers to the process of distributing incoming traffic and workload to the
suitable system component that should handle it [6]. This process is used to improve
scalability and resource utilization by ensuring that no component is overloaded or idle.
Load balancing enables HA by allowing the system to function correctly and efficiently
without being overwhelmed by traffic.

Autoscaling

Autoscaling is a mechanism often used in the cloud to automatically adjust the available
computational resources, depending on the load that the resource needs to handle at any
given time [50]. Autoscaling builds on the idea of load balancing and ensures that the
system can optimally handle varying amounts of incoming traffic without the need for
manual intervention.

2.5 Kubernetes

In this section, background information on Kubernetes relevant to this thesis is provided,
in particular its components, architecture and availability mechanisms.

2.5.1 Architecture

Kubernetes [8], often abbreviated as K8s, is an open-source platform, originally developed
by Google, that is used for container management. In other to support this task, Ku-
bernetes’ features include service discovery, storage orchestration, self-healing, automatic
scaling based on demand, configuration management, load balancing, and many others.

A diagram of a typical K8s-based architecture can be seen in Figure 2.2. The result of a
setting up Kubernetes is a cluster, which consists of at least one node. Each node is a set
of worker machines (physical or virtual) responsible for running containers, while a control
plane is used to manage the cluster, including responding to events within it, facilitating
internal communication, workload allocation, etc.

Containers are wrapped around elements called Pods that are hosted by the nodes. Each
worker node is managed by an element called a kubelet. In order to manage the networked
communication with a node, a kube-api component that keeps track of networking rules is
running on each node. Worker nodes also manage additional Kubernetes resources such as
Deployments, DaemonSets, etc.

The frontend of the control plane is the kube-apiserver component, which exposes the
Kubernetes API and manages the interactions between other components in the cluster.
The kube-apiserver processes and validates any requests made through the Kubernetes

API.

Data about the cluster, including its state and configuration, is stored via the open-source
eted [26] key-value store, which provides a consistent and highly available way to store data
for distributed systems. Furthermore, etcd can be used for service discovery, container and
cluster coordination, workload distribution, etc.

The scheduling, i.e. allocation of resources to Pods, in Kubernetes is performed by the
kube-scheduler component. Various controllers, such as node controllers, job controllers,
etc., are ran within the kube-controller-manager component.

12



Another important aspect of Kubernetes’s functionality is that of services. Services are
used in order to map network traffic to Pods, from both within and outside the cluster.
This is due to the fact that in a Kubernetes cluster, an application is not expected to be
available at the same IP address constantly - Pods frequently get replaced or rescheduled,
and furthermore different replicas of the same application are usually available, making a
static IP address difficult to work with. Services are designed to address this problem by
routing incoming traffic to a suitable Pod, without requiring any extra knowledge other
than the service’s name.
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FIGURE 2.2: Patel, A. [48]. Kubernetes Architecture and Components.

2.5.2 Availability Mechanisms in Kubernetes

Kubernetes provides self-healing and redundancy as built-in features for ensuring recovery
in failure scenarios, as detailed in the Kubernetes documentation [8].

Self-Healing

Self-healing refers to the ability of a system to recover on its own whenever failure is
detected. In Kubernetes, this is done by continuously monitoring the state of the cluster
components, killing unresponsive containers and restarting any that have failed.

The monitoring aspect is achieved by periodically performing two types of probes, namely
liveness and readiness. Liveness probes are used to check for container responsiveness
in order to detect issues such as deadlocks, crashed containers, zombie processes, etc.
Readiness probes are used to determine whether a container is ready to accept traffic. If it
is not, traffic is temporarily not sent its way for as long as the container does not respond
to the probe.

Redundancy

Redundancy is a crucial aspect for achieving HA [4], enabling protection against a single
point of failure in the system by duplicating critical elements, as discussed in Section 2.3.
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Several mechanisms can be employed in Kubernetes, often in combination, in order to
achieve redundancy. This includes ReplicaSets (generally managed by Deployments), load
balancing, horizontal pod autoscaling, redundancies at the master node level, topology
spread constraints, etc.

A ReplicaSet is a type of Kubernetes resource that is used to ensure that there is a specified
number of instances of a particular Pod running at all times. In the event that any one of
these replicas fails, it is the ReplicaSet’s responsibility to ensure that another Pod of the
same type takes its place, thus ensuring that the required number of instances is running. A
Deployment is a type of resource that can be used to manage a ReplicaSet, along with other
higher-level features, and, as such, it is recommended to use Deployments over ReplicaSets
8]

Deployments and DaemondSets are two important redundancy resources for the architecture
of this project - the former is used to flexibly manage the number of replicas of a given
application, while the latter can be used to ensure that a component is available on every
node in the cluster.

A HorizontalPodAutoscaler is a type of resource that automatically adjusts a scalable
resource based on the demand by deploying more Pods. Vertical scaling, on the other
hand, involves allocating more resources, such as CPU and memory, to the already running
Pods [8]. Horizontal pod autoscaling ensures that the workload resource is always flexible
enough to meet the demand required by the system.

Topology spread constraints allow for the custom definition of the way Pods are spread
across the cluster. These constraints can be regarding nodes, AZs, and other topologies.
This can contribute towards achieving redundancy and HA by ensuring that different
Pods are spread across different physical locations, which can protect against single point
failure. Additionally, the use of topology spread constraints can allow for more efficient
use of resources |[8].

Failure Detection Performance

As mentioned in Section 1, the failure detection capabilities of Kubernetes are not always
sufficiently fast and thus cannot meet the HA requirements of mission-critical systems.

The research done by [3| explores the capabilities of Kubernetes with its built-in mech-
anisms for managing the availability of cloud applications. The paper measures metrics
such as reaction, repair, recovery and outage times for different failure types, as well as
the effect that using redundancy mechanisms has on availability. The paper finds that
Kubernetes with its default settings can have significantly high outage times, particularly
in the event of node failure. Furthermore, the paper includes a comparison between the
availability capabilities of Kubernetes with those of other component managers, such as
OpenSAF, and found the results to be comparable. Part of the experimental phase of this
thesis involves measuring the failure detection time of Kubernetes, further confirming the
findings of [3]. The results of these experiments can be seen in Section 4.4.

The work of [61] builds onto the research of [3], establishing a method called Fast Fault
Detection Manager (FFDM) for improved fault detection and recovery of mission-critical
systems on the cloud. It does so by taking into consideration both the application and
node level, as well as by using parameters in Kubernetes other than only the default ones.
The results that the FFDM method is an improvement over the previously defined method,
performing more than three times better at fault detection. However, this method is not
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fully applicable to the case described in this thesis, as its main strategy involves failure
detection at the VM-level.

Another work that addresses the availability capabilities of Kubernetes is that of [12].
The work presents a comprehensive analysis and classification of failures in Kubernetes,
as well as a framework dedicated to recreating real-world failure scenarios with the aim
of detecting potential failures in the system before they occur. The paper’s findings also
indicate that individual errors in the system can propagate throughout the cluster, causing
it to fail, even if resiliency mechanisms are implemented. Furthermore, misconfigurations
and label errors when tracking dependencies between objects in the system cause a large
percentage of the observed failures by overloading the system.

2.6 Data Distribution Service (DDS)

The Data Distribution Service (DDS), standardized by the Object Management Group
(OMG), is a data-centric middleware protocol and API standard that is especially well-
suited for real-time systems [45]. The protocol is designed to address issues such as scala-
bility, efficient resource utilization, flexibility and security. In particular, it is widely used
by mission-critical systems due to its ability to provide efficient low-latency communication
in a stateless manner [46].

DDS accomplishes this by utilizing a publish-subscribe model of communication, allowing
applications in the system to produce and update data, and publish it to a shared space,
while entities that are interested in a particular topic can subscribe to it in order to receive
the relevant data, as opposed to requiring a direct communication between the different
participants in the system. The model used by DDS ensures an efficient use of bandwidth
and processing power [45]. Furthermore, DDS enables a decoupled form of communication
between different components, thus lowering the complexity of the overall system, while
its use of topics for the publish-subscribe model eliminates the dependency on Kubernetes
Services for IP-based communication [39].

These characteristics make DDS a suitable protocol for communication within a mission-
critical distributed system, as it is designed to meet the necessary requirements for perfor-
mance and reliability [39]. As such, its usage must be considered when selecting a fitting
solution.

2.6.1 Cyclone DDS

Multiple implementations of DDS exist [53], including Eclipse Cyclone DDS, eProsima
Fast DDS, OpenSplice DDS, etc. For this research, Cyclone DDS [55] was selected as the
preferred option, in particular its Python binding. The factors considered when making
this design choice mainly included ease of use and relevance to mission-critical systems.
For the latter factor, OpenSplice DDS can be a suitable choice, as it is also preferred by
Thales, however, it was deemed too complex for a system that is as small in scale as this
project. Cyclone DDS, on the other hand, offers a fairly simple to use Python binding
without sacrificing any necessary complex features, and was thus considered a suitable fit
for this project.
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2.7 Gossip Protocol

A gossip protocol is a type of communication protocol that propagates data throughout a
cluster of networked nodes, by way of each node periodically exchanging information with
some of its peers [41].

The fanout of a gossip protocol indicates the number of rounds for which each node spreads
a piece of information, after which the node becomes dormant with respect to that partic-
ular data [16]. Typically, the fanout is set to log(NN), where N represents the number of
nodes in the system. The mizing time of a gossip protocol refers to the time it takes for
each node to receive the propagated information, typically within O(log(V)).

More specifically, the following characteristics must be present in a protocol for it to be
considered a gossip protocol [16]:

1. The protocol fundamentally consists of periodic interactions between pairs of pro-
cesses.

2. Interactions are of limited, small size.

3. Interactions involve a change of state in one or both nodes, influenced by the state
of the other.

4. Reliability is not a guarantee.
5. Interactions are infrequent and therefore inexpensive.
6. Peer selection is random.
Furthermore, three types of gossip protocols can be identified [16]:
e Dissemination - used for spreading information in a cluster.
— FEvent dissemination - perform multicasts and report on events periodically.

— Background data dissemination - data about the nodes is continuously propa-
gated throughout the cluster.

e Anti-entropy - used for repairing duplicated data by comparing the duplicated com-
ponents.

e Aggregate computation - protocols that examine the nodes and derive from the col-
lected data a conclusion about the system as a whole.

Dissemination gossip protocols are the most relevant, due to the fact that the outlined
problem relates to the spread of information regarding the state of the nodes in the cluster.

16



Chapter 3

Potential Solutions

As established in Chapter 1, the use of Kubernetes alone for failure detection and commu-
nication between nodes is not always sufficient to fulfill the strict availability requirements
of mission-critical systems.

In this section, RQ1 and its subquestions are answered by providing a background on
potential solutions to the problem that were considered for a more efficient failover in the
event of failure in a distributed system. Furthermore, these technologies are compared and
one is selected to proceed with the experimental phase of this thesis.

3.1 Approach

The approach to answer the first research question mainly involved a literature review with
three phases:

1. An exploration of literature on failure detection and recovery, in order to accurately
define the challenges in the domain, as well as their relevant concepts.

2. A literature search to identify technologies that could act as suitable solutions to the
problem, supported by stakeholder interviews at a company in the relevant domain.

3. A study of these technologies in more detail with the aim of establishing their ad-
vantages and disadvantages, as well as their compatibility with Kubernetes.

The first phase required a more systematic approach, while the second phase was based
mainly on stakeholder interviews and information from the papers found during the first
phase. The third phase focused on finding specific information about the technologies
identified in the second step, where the queries used were quite straightforward and self-
explanatory.

In the first phase, the repository that was mainly used to query for relevant research is
Google Scholar [30], as it is a source that provides extensive and reliable peer-reviewed
results. In order to find relevant papers, associated concepts were searched for via the
following keywords that encompass them:

e Health monitoring, failure detection, fault detection, failover.
e Distributed, cloud.

o Availability.
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o Mission-critical.
o Kubernetes.

The primary string used was:

("health monitoring" OR "failure detection" OR "fault detection" OR "failover")
AND ("distributed" OR "cloud") AND "availability" AND ("mission-critical" OR
"mission critical") AND "kubernetes".

Since the set of retrieved literature was quite large (387 results), not everything could be
closely examined for this research. Therefore, the results were narrowed down to the most
relevant. In particular, papers taken into account included research with a higher number
of citations, indicating importance in the field, as well as recent works that are likely to be
more up to date, while having less time to be cited.

Furthermore, the titles and abstracts of the publications were examined to eliminate irrel-
evant results. The following inclusion and exclusion criteria were considered:

e Inclusion criteria:
— Focuses on distributed systems.

— Primarily discusses fault tolerance or a fault tolerance phase (failure detection
or failure recovery).

— Addresses the non-functional requirement of availability.

Relates to Kubernetes in some way.

Applies to mission-critical systems.
e Exclusion criteria:
— If fault tolerance is only a secondary aspect, the publication is discarded.

— Publications with emphasis on other technologies irrelevant to the problem, such
as Al, 5@, etc., were discarded.

— Publications in languages other than English were discarded.

The remaining papers were read in detail and their findings were used in this thesis. Via
this approach, potential solutions were identified, answering RQla. The candidates are
namely Serf, Consul and ZooKeeper, discussed in more detail in the following sections.

3.2 Serf

Serf [35], developed by HashiCorp, is a decentralized, lightweight protocol designed for
communication between nodes in a distributed system, in particular for the purposes of
cluster management, failure detection and orchestration. Nodes communicate via an effi-
cient gossip protocol, meaning that updates to the node membership are relayed to any
node in the system, after which the information is propagated through the cluster until
each node has the latest membership information.

For membership management and failure detection, Serf makes use of the memberlist
library [33], which itself is based on the SWIM protocol [23]. Serf allows for fast, scalable
failure detection via a random probing technique, as each node can check on the status of
its neighbours periodically and notify them if failure is detected. Once a node has been
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detected as having failed, Serf will continue to periodically attempt to reconnect to it in
case the node in question has recovered.

Serf offers a set of powerful features, including custom event and query propagation, al-
lowing configuration updates, deployment triggers, health checks, etc. to spread within
seconds throughout the cluster. Queries expect a response, while events are fire-and-forget.
In the event of network issues or partitions, a best-effort attempt is made to deliver these
messages.

Additionally, custom event handlers are a feature that can be triggered by events within the
cluster such as whenever failure occurs, allowing for a wide range of customizable actions.
The use cases of event handlers and queries are plentiful - load balancer management,
triggering deployments, observing the health of the cluster, building a service discovery
mechanism, etc. The option to write event handlers in Python is also available. Each of
the aforementioned features can be enhanced with Serf’s ability to mark its agents with
custom tags, further adding flexibility to the cluster management.

On its own, Serf manages only membership, failure detection and custom events, making it
an especially lightweight option for the outlined problem. Furthermore, Serf only takes up
5-10MB of resident memory and mainly communicates over UDP with a limited message
size. Another relevant aspect of Serf is that it ensures strong eventual consistency within
the cluster.

3.3 Consul

Consul [32], also developed by HashiCorp, is an open source tool used for secure, auto-
mated networking and service discovery in a distributed architecture. In particular for
Kubernetes, Consul can act as a service mesh for monitoring and managing the networked
communication between different services. It enables service discovery, health monitoring
and distributed configuration management in a scalable, secure and resilient way. Consul
further offers features such as support for multiple clusters (also referred to as datacenters)
and an API gateway for defining traffic and authorization policies.

Consul has a wide variety of use cases, quite a few of which overlap with Serf. Its uses
include service discovery, load balancing, automation of networking tasks, authentication
and encryption, health monitoring, metrics collection, and many others. Companies that
make use of Consul in their operations include eBay, Capital One and SAP [49].

Consul uses a centralized architecture with a central control plane component that main-
tains a registry keeping track of services and their IP addresses, while different agents act
as either client or server, with a recommended 3-5 servers per cluster to ensure higher
availability, though this comes at the expense of a slower performance due to the use of a
consensus algorithm. Via the consensus algorithm, the cluster elects a single server agent
to be the leader, responsible for processing any transactions and queries. Clients, on the
other hand, are responsible for the health monitoring process by reporting status updates
to the cluster.

Consul is built on top of the Serf library and uses the same gossip protocol for failure
detection. However, unlike Serf, it provides strong consistency, uses a consensus protocol
has a centralized architecture.
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FIGURE 3.1: Architecture and components of Consul [32].

3.4 ZooKeeper

ZooKeeper |27] is a centralized service maintained by the Apache Project Foundation,
dedicated to coordinating processes in a distributed system via a shared namespace of data
registers. Its features include keeping track of status, group membership and configuration
data, naming, as well as synchronization among processes. ZooKeeper or forked variations
thereof is used by companies such as Facebook, Yahoo! and X (formerly known as Twitter).

ZooKeeper aims to assist in the building of distributed applications by eliminating the
need for each such system to create a coordination service from scratch, and thus avoiding
otherwise prominent issues such as deadlock and race conditions. It further offers support
for features such as failure detection, leader election and distributed locks.

ZooKeeper’s architecture is based on a shared hierarchical namespace consisting of data
registers, referred to as znodes. These registers contain information regarding status,
configuration, location, etc. The structure of ZooKeeper resembles that of file systems,
but with data kept in-memory, ensuring a high throughput and low latency. Furthermore,
ZooKeeper provides its users with a set of primitives, such as locks, queues, etc., that can
be used to implement more complex services.

ZooKeeper is a reliable, high performance service for large distributed systems, offering
robust management, synchronization, and configuration capabilities. However, despite
these features, it is better suited for coordination rather than service discovery, given its
prioritization of consistency over availability. Furthermore, it can be complex and difficult
to maintain compared to other solutions |54]. ZooKeeper provides strong consistency and
uses a heartbeat mechanism, as described in Section 2.4.1, for checking liveness [35].
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FIGURE 3.2: Architecture and components of ZooKeeper [28].

3.5 Comparison

In this section, the proposed technologies are compared through the advantages and disad-
vantages that they can offer for monitoring the health of a highly available mission-critical
system, thus providing an answer to RQ1b.

The findings of [27] and [51] are adjacent to the work done in this section, as they deal
with comparisons between the technologies discussed in this thesis.

In [31], a comparison is made between multiple methods for the purpose of failover in
a mission-critical system on the cloud, specifically for the purpose of migrating a system
running in a private data center to the public cloud, where different failover mechanisms are
required. In particular, two technologies, namely ZooKeeper and etcd locks, are compared
experimentally with two scenarios. In the first scenario, the primary component is able to
notify the duplicated component about the failure before termination, while in the second
the failure occurs without prior notification. The work finds that the ZooKeeper solution
results in a faster failover time compared to the etcd solution. For this reason, etcd was
not considered in the comparison done for this thesis.

The work of [51] presents an overview of the state of the art of the software stack of
distributed computing. The paper includes a comparison between the three technologies
compared in this thesis as well, alongside other software for distributed computing. This
work provides a thorough classification based on abstraction layers of the latest software
available at the time of its writing, resulting in the comparison and taxonomy of more
than 150 technologies. The comparison done in [51] differs from that of this thesis, as
it deals with a broader context compared to that of the problem specified here and thus
does not make a complete comparison of all aspects that are relevant in the context of
mission-critical distributed systems orchestrated via Kubernetes.

For the comparison of this thesis, an overview of the features of each approach can be seen
in Table 3.1. Each aspect in the table is discussed in the following sections. Scalability
and ease of use are not included in the table and are only discussed within the text due to
a lack of a brief way to summarize them.

3.5.1 Quorum

A quorum [58] is a mechanism used to ensure consistency within a distributed system
with potential network partitions, in particular when redundancy is in use. It does so by
requiring that a specific number of nodes reach a consensus on a decision that affects the
state of the system before any action can be taken. The resilience of a quorum system
refers to the maximum number of nodes that can fail, while still being able to achieve a
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Serf Consul ZooKeeper

No quorum required v X X
Decentralized architecture v X X
Type of consistency Strong eventual Strong  Strong
Failure detection protocol  Gossip Gossip  Zab
Kubernetes compatibility =~ Unknown v v

TABLE 3.1: Comparison of Serf, Consul and ZooKeeper.

quorum. A distributed system cannot have a resilience greater than L”T_lj, i.e. no more
than the specified number of nodes can fail.

Although quorums are frequently employed in the coordination of distributed systems, their
use can present a problem for some mission-critical systems. In particular, the deployment
of some such systems can be restricted to a relatively small number of availability zones,
potentially as few as two, due to topological constraints. Examples of such systems include
those in the naval defense domain, the aerospace industry, the railway industry, etc.

Systems with these geographical limitations introduce some complications. In any setup,
a quorum cannot be reached with an even number of nodes, as it is impossible to reach
a majority vote in this way. The alternative then is to utilize an odd number of nodes.
However, in the scenario that nodes are divided between two availability zones, as can be
the case for the mission-critical systems described previously, one zone would have an even
number of nodes and the other - odd. If the entire availability zone with an odd number
of nodes suffers a failure, then the remaining functional nodes are even, still making it
impossible to reach a quorum.

For systems that are set up in such a way, the use of a technology requiring a quorum
can be undesirable, since it introduces problems regarding availability. This needs to be
taken into consideration when selecting a suitable technology to resolve the presented
problem. Out of the coordination technologies that are examined in this thesis, only Serf
does not require a quorum in order to act. ZooKeeper uses the Zab consensus algorithm
to implement quorums, while Consul uses the Raft consensus algorithm.

3.5.2 Centralization & Consistency

Other relevant aspects when considering which technology is best suited to address the
problem defined in this paper are those of centralization and consistency type.

Centralized technologies, such as Consul and ZooKeeper, rely on a particular node that
is elected as a leader to coordinate the remaining nodes, referred to as followers, in the
cluster. This can introduce several availability-related issues. In particular, the leader node
represents a single point of failure - if it fails, the coordination of the rest of the nodes will
experience an interruption as well. Assigning multiple nodes as leaders can mitigate this
problem, but introduces a potential scalability issue [25].

Furthermore, the type of consistency that the technology prioritizes also has a significant
impact on its suitability as a solution to the problem. According to the CAP theorem, as
defined in Chapter 2, in partitioned systems there is an inherent tradeoff between avail-
ability and consistency.

Technologies such as Consul and ZooKeeper offer strong consistency by requiring a quorum
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prior to committing an action. This means that in the event of failure where a quorum
cannot be reached, they would prioritize consistency across all nodes in the system over
availability. This makes Consul and ZooKeeper less suitable for systems that have HA
requirements, as they sacrifice availability. Serf, on the other hand only guarantees strong
eventual consistency, thus ensuring that availability is prioritized instead of consistency.

3.5.3 Scalability & Ease of Use

An aspect that should be considered when selecting a tool for monitoring distributed
systems is the degree to which its performance is negatively affected when the system
increases in size.

For Consul, increasing the number of deployed services can cause a slowdown in perfor-
mance. As such, HashiCorp’s recommendation [34] is to limit the number of clients per
datacenter to a maximum of 5000, both to optimize performance and to limit the impact
of server failure by reducing the number of affected clients. However, the advice is not
one-size-fits-all and depending on how dynamic the node activity is, the recommended
number of nodes per datacenter can increase or decrease.

When using ZooKeeper, increasing the number of servers proportionally increases the sys-
tem’s capacity to handle read requests, since these requests are processed locally at each
server [38]. Write requests, on the other hand, inherently do not scale as well due to the
centralized nature of ZooKeeper [21].

On the other hand, Serf’s decentralized architecture and reliance on the gossip protocol
makes it an efficient solution even when scaling up to a higher number of nodes is required.
The usage of the gossip protocol ensures a low message load per each node that is not
affected by an increase in the group size [54].

In terms of ease of use, ZooKeeper clusters are considered quite difficult to deploy and man-
age, often resulting in issues with misconfigurations [54]. The process of making changes
to the deployment can also be error-prone, inefficient and requires manual effort to achieve
[21]. Consul, on the other hand, can be viewed as an extension of Serf, in particular with
regard to the gossip protocol, offering additional features that Serf does not, such as ser-
vice discovery, key/value store, health checking, etc. [35]. However, for the purposes of
the problem defined in this paper, these additional high-level features are not needed and
Serf’s features can be sufficient as a solution. As such, Serf can be considered an alternative
to Consul that is simpler to use.

3.5.4 Kubernetes Compatibility

In this section, the compatibility of each of the three technologies with Kubernetes is
discussed, in order to answer RQlc.

Consul can be run directly on Kubernetes, as well as any other tool built for Kubernetes,
and it supports any Kubernetes runtime. Furthermore, Consul’s built-in integrations with
Kubernetes include the Helm chart, the Consul K8s CLI, the Consul Service Mesh and
service syncing [32].

ZooKeeper can be run on Kubernetes via the use of the StatefulSets, PodDisruptionBud-
gets, and PodAntiAffinity resources, with a detailed tutorial on how to accomplish this
being available on in the Kubernetes documentation [8].
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There is limited information in literature regarding Serf’s compatibility with Kubernetes.
A further exploration of the problem is needed outside of this thesis.

3.5.5 Selected Solution

Taking each of the above-discussed aspects into consideration, the technology selected to
proceed with an experimental comparison is Serf, as its decentralized nature, prioritization
of availability and lack of quorum requirements make it a suitable fit for mission-critical
systems with strict HA expectations, thus answering RQ1.
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Chapter 4

Experiments

In this section, the approach taken to answer RQ2 is outlined. In particular, the in-depth
workings of Serf’s failure detection algorithm are described, as well as the architecture of the
solution. Furthermore, the results of the experiments are presented and their implications
are discussed in order to make a comparison between the use of Kubernetes alone and
Kubernetes in combination with Serf for the purposes of failure detection. In general, the
emphasis of this research is on especially small systems with 2 nodes, hence the focus on
the algorithm’s workings in such a scenario. That being said, the use of a larger number
of nodes is also explored, albeit less extensively.

4.1 Related Work

To start with, two works are worth pointing out for their adjacency to the experiments
performed for this thesis.

The work of [54] explores the service discovery problem for distributed systems and pro-
poses the use of a decentralized custom solution called Serfnode, based on the Serf technol-
ogy. Serfnode works by wrapping Docker containers and then performing service discovery,
monitoring and self-healing by communicating with other Serfnode containers via a gossip
protocol. The paper presents a solution to the file synchronization problem using Serfn-
ode, demonstrating the extensibility of the approach. According to the authors, Serfnode
is expected to scale well, but is nevertheless best suited for smaller networks. Unlike this
thesis, the work does not focus on failure detection and fast failover, but rather on the
service discovery problem.

Additionally, of note is the work of [52], which, similarly to this thesis, explores the problem
of high availability orchestration with Kubernetes in mission-critical systems, specifically
for on-premise systems in the defense domain. The paper’s contribution includes five ar-
chitectural designs dedicated to resolving the problem, using either Kubernetes Federation
or single cluster designs. Each design is evaluated by domain experts via a questionnaire,
with its findings indicating that federated architectures are too complex for the problem
and thus single cluster options are preferred. Two single cluster designs are prototyped
and tested, showing promising results. The work differs from this thesis in its focus on
designing a suitable cluster architecture to resolve the problem of high availability, rather
than on optimizing the technologies used to communicate failure.
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4.2 Serf

To start with, a more detailed exploration of the relevant parts of Serf’s algorithm is
presented in order to answer RQ2a.

4.2.1 Memberlist Library

In order to be able to understand how the results of the experiment were obtained, the
workings of Serf’s failure detection mechanism are explored. More specifically, Serf utilizes
the memberlist library 33| for failure detection. Its primary function is to manage cluster
membership, including failure detection, by using a gossip protocol.

An important work that closely accompanies this research is that of [23], in which the
SWIM protocol is presented for cluster membership management. This protocol is the basis
for failure detection in the memberlist library. The SWIM protocol notably separates the
membership updates and the failure detection components, unlike traditional algorithms
that use heartbeats. Another important achievement of the protocol is that its use of
the gossip protocol ensures that scaling cluster size does not affect the expected failure
detection time, nor the message load of any member. The key workings of SWIM are de
facto detailed in this section via the explanations for memberlist.

The memberlist library keeps a record of all members in its cluster and performs its failure
detection functionalities on an individual member basis. The library allows for the tuning of
its parameters, including those that affect the performance of the failure detection process.
Furthermore, three key sequential stages of the failure detection process can be identified
- selection, probing and suspicion. The functions within the memberlist code responsible
for these stages are probe, probeNode and suspectNode, respectively.

4.2.2 Parameters

After examining the algorithm, the following parameters of memberlist were found to have
an impact on failure detection:

o Suspicion multiplier (SuspicionMult) - indirectly determines the duration of the sus-
picion stage, i.e. the time for which a potentially failed node is marked as suspect
before being considered dead. In practice, this duration is determined by the sus-
picion timeout variable, which is calculated by the following formula, where N is
defined as the number of nodes in the cluster:

SuspicionTimeout = SuspicionMult x log(N + 1) x Probelnterval

The purpose of thesuspicion multiplier variable is to allow the suspicion timeout to
scale properly by anticipating a longer propagation delay with a larger cluster size.
By default, this value is set to 4. However, for this research, the aim is to minimize
the failure detection time, and so it was set to 0 for the optimized version of Serf,
thus essentially eliminating the suspicion stage.

e Probe interval - the duration in between random probes. Not as immediately obvious,
however, is the fact that this parameter also controls the duration of a probe once
it has started, especially in the scenario in which there are only 2 nodes. This
is discussed in more detail in Section 4.2.4. Reducing this parameter can reduce
the failure detection time at the expense of bandwidth, but since the focus of this
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project is on smaller systems, this is not much of a concern. The default value of
this parameter is 1 second, reduced to 100 milliseconds for the optimized version.

e Probe timeout - determines the amount of time to wait for a response from a probed
node before moving on to the next steps of the probing stage, again described in
Section 4.2.4. By default, this parameter is set to 500 milliseconds, and was reduced
to 50 milliseconds in the optimization. Additionally, it is a requirement by memberlist
is to set this parameter to a value in the 99th percentile of the round-trip time of the
network.

o Indirect checks - defines the number of nodes that will be asked to perform an indirect
probe of the targeted node, after the direct probe by the self has not received an
acknowledgment. This aspect is only relevant for scenarios in which more than 2
nodes are in use, as it does not include the self, nor the node being probed. For the
main experiments with 2 nodes, it was left as its default value, which is 3, while for
experiments with multiple nodes, it has been adjusted without a fixed value. The
role of this parameter is discussed in more detail in Section 4.4.

e Gossip interval - the time between gossip messages being propagated throughout the
cluster. This only occurs for messages that have not been piggybacked via probes.
Considering that this implementation prioritizes fast failure detection time, and thus
probes occur as frequently as possible, the need for gossip is minimal and thus its
impact on the system is also negligible. However, it is still worth noting that this
parameter would normally be relevant when adjusting the parameters that affect
failure detection time in Serf. Its default value is 200 milliseconds.

The optimized values were chosen with the intent of making the process as fast as pos-
sible, considering the research questions that this project aims to address. This implies
that such a configuration could potentially present problems with regard to consistency,
including scenarios in which a false positive occurs. That being said, no such incident was
encountered during the experiments. Furthermore, setting the parameters at lower values
than those listed above was not permitted during the build process, as it resulted in failed
tests. This could imply that false positives are unlikely to occur given these values, while
lowering them past what is permissible by memberlist could be problematic.

4.2.3 Selection Stage

The first stage of memberlist’s failure detection component is the selection process, which
determines what node in the cluster other than the self is to be probed in the next stage.
The selection stage is entered approximately every probe interval units of time and in each
run of the respective function, at most one node is probed. An activity diagram to support
the reader’s understanding of the code can be seen in Figure 4.1.

Two variables are of importance in this function - numCheck, which keeps track of how
many nodes have been considered as candidates for probing, and probelndex, which keeps
track of the current candidate within the membership list. Provided that neither of these
variables is larger than the number of nodes, as denoted by N, the function proceeds to
check whether the candidate node should be skipped, in the case where it is the same as
the node performing the probe, or in the case where the candidate is already dead. If the
node is not to be skipped, it is passed on to the probing stage.

The exact reasoning behind the way in which the numCheck and probelndex variables are
modified inside the function is unclear, and could not be intuitively guessed. An important
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probelndex < N

numcheck < N Continue to

probing stage

Node is alive and not self
probelndex >= N

Reap dead nodes,
shuffle node list

Reset
probelndex

Node is self or dead

numcCheck >=N

FIGURE 4.1: Activity diagram depicting the process of the selection stage in mem-
berlist.

observation, however, is that it can create a delay of at most around one probe interval unit
of time, since the modification of the variables occasionally ensures that one probing round
is wasted without actually probing a node. This is important to consider when estimating
the maximum amount of time in which failure can be expected to be detected, as discussed
in Section 4.4.

4.2.4 Probing Stage

The probing mechanism for failure detection of Serf can be seen on the sequence diagram
in Figure 4.2. The left-hand side shows the behaviour when the system is operating as
expected, while the right-hand side demonstrates the scenario in which a failure occurs at
Node B, which is subsequently detected by Node A. This depiction is intended for scenarios
with exactly 2 nodes, as the process has an extra step of indirect probing when more nodes
are involved. This process is also described in extensive detail in [23], on the basis of which
both Serf and memberlist are implemented.

The probing process involves the following steps (some details have been omitted, as they
have no relevance to the failure detection time):

1. In the event that the health of the cluster is known to have deteriorated, the probe
interval is scaled. Based on observation, no change to the probe interval is applied
before any failure has occurred, so for the experiments performed in this research,
this aspect is generally irrelevant.

2. A timer with the duration of probe interval is started. Another time with the duration
of probe timeout is also started.

3. Node A attempts to ping Node B directly.

4. If an acknowledgment is received, the probing stage ends and after probe interval
units of time, the selection stage starts anew.

5. Once the probe timeout timer runs out without a response from Node B, the process
of indirect pings is started. At this point, there are two possibilities:
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ProbeTimeout
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Node B marked
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Ack

FIGURE 4.2: Sequence diagram depicting the probing mechanism for failure detec-
tion of Serf.

(a) In the case of 2 nodes only, this step is essentially skipped, as there is no other
node to request an indirect probe from.

(b) In the case of more than 2 nodes, an indirect checks number of nodes are ran-
domly selected from the membership list and each of them sends a ping to Node
B. If a response is received at that point, the probing process ends.

6. An additional check is made by sending a ping over TCP instead of UDP, in order
to ensure that any node that can communicate over TCP but has been isolated from
UDP traffic has a chance to respond. This mechanism can be disabled, but that was
not found to reduce the failure detection time.

7. Once the probe interval timer runs out and no acknowledgment has been received,
the node is marked as suspect and the process moves on to the suspicion stage.

In the case of 2 nodes only, this means that the time in which failure can be detected with
regard to this stage is fairly predictable, at probe interval units of time. This is due to the
fact that if the node is dead, the algorithm waits until the probe interval timer has run
out before moving on, with no possibility of the process being ended earlier. On the other
hand, with more than 2 nodes, the maximum time remains the same, but the minimum
can be lower, as the indirect probes can end the process earlier by confirming that the
node is indeed unresponsive.

4.2.5 Suspicion Stage

The suspicion stage is fairly straightforward - it is essentially extra time being given to the
probed node to refute the suspicion that it has failed. It is possible to eliminate this stage
altogether by setting the suspicion multiplier to 0, which was the suitable choice for this
project, considering that its focus is on minimizing the failure detection time. With this
in mind, the suspicion stage has no impact on the failure detection times recorded in this
project, but can be configured to be included in the process, if deemed necessary.
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Eliminating the suspicion stage altogether could potentially introduce false positives with
regard to failure detection, but due to the focus on maximizing the speed at which failure
is detected, this was considered an acceptable tradeoff.

4.2.6 Expected Failure Detection Time

Due to the crucial and sensitive nature of mission-critical systems, it is important to know
the expected values of any failure detection mechanism, as well as to be able to explain
how these expected times are reached. In this section, only scenarios with exactly 2 nodes
are considered.

As explained in the previous sections, the probing and suspicion stages are in practice
constant - the former always takes probe interval units of time to complete, while the
latter is essentially nonexistent, provided that the suspicion multiplier parameter is set to
0, as is the case for the optimized variant of the K8s-and-Serf implementation.

The selection stage, on the other hand, can fluctuate. A best- and worst-case scenario can
be identified, both of which are represented in the timeline seen in Figure 4.3. The two
key factors that determine the failure detection time are timing with respect to the time
in-between probes, as well as whether a probing round will be wasted due to the variable
incrementing issue described in Section 4.2.5.

Probe start <1ms I Probe start
<1ms I Probe end f— Prc.>be end
P Failure occurs

Probe interval
Probe interval

Failure occurs ® Round wasted without probing

- Probe start

Probe interval
Probe interval

T Failure detected J— @ Probe start
Probe end

Probe interval

Failure detected
Probe end

FIGURE 4.3: The approximate timeline for the best- and worst-case scenario for
the selection stage. The former is depicted on the left side of the diagram, the latter
on the right.

In the best-case scenario, the wasted probing round does not occur right after a node fails,
and so no extra probe interval units of time are added to the time. Furthermore, the timing
of the failure coincides with the end of the interval that occurs between probes, ensuring
that the failure is detected nearly immediately. As such, in the best case scenario failure
is detected within approximately probe interval units of time, caused by the probing stage
of the process.

In the worst-case scenario, the opposite conditions can be observed. The failure occurs
near the start of the interval between probes, causing an extra probe interval unit of time
to elapse without the failure being detected. Additionally, after the interval passes, the
next probing round is wasted due to the variable incrementing issue, adding another probe
interval unit of time due to the interval that must occur between probes. Adding this extra
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time to that of the fixed time of the probing stage, the worst-case scenario is approximately
3 * probe interval.

4.3 Architecture

Two types of experimental environments were set up - one that simulates the system of
Thales as managed by Kubernetes only (from now on referred to as K8s-only), and one
that incorporates Serf within Kubernetes (K8s-and-Serf). A diagram depicting the two
configurations can be seen in Figures 4.4 and 4.5, respectively.

First, the aspects common to both experimental implementations will be discussed.

In order to simulate a distributed system with multiple nodes, without having the access
to physical machines to do so, Kubernetes in Docker [9], also known as kind, is used. The
number of exact number of nodes varies depending on the type of experiment and can
be easily configured to modify the scenario. However, limitations were encountered with
regard to the number of nodes, explained in more detail in Section 4.5.

Furthermore, the Cyclone DDS implementation of the DDS protocol, in particular its
Python API, is utilized for establishing the communication between the different compo-
nents of the system. More details on this aspect can be found in Section 2.6. Unless
configured otherwise, DDS operates via multicast, which is not supported by Kubernetes’s
default CNI. As such, the Weave Net CNI was used instead, allowing multicast traffic on
the host network using Kubernetes.

In the implemented architecture, two distinct types of applications can be defined - pub-
lishers, which can continuously publish mock sensor data to DDS, as well as subscribers,
which continuously receive any data that has been published to DDS. The number of pub-
lishers varies depending on the type of implementation, and is controlled by a Deployment
resource to ensure flexibility. Subscribers, on the other hand, are placed on every node
using a DaemonSet resource for monitoring purposes. Furthermore, publishers send out
data every 10 milliseconds to ensure accuracy, but this can be adjusted when necessary,
for example to improve readability of the logs.

Each DDS participant is assigned an ID via UUIDA4, as no unique identifier is provided
by Cyclone DDS. Sensor data is of the following format:|[timestamp received] - Participant
[participant ID] has received message: [sensor data| at [timestamp sent|. Timestamps are
of the format [YYYY-MM-DD HH:MM:SS.MS|. The aim is to be able to keep precise track

of the duration of the failure, down to the milliseconds.

The two experimental implementations differ in multiple key ways. Aspects unique to the
K8s-only implementation include:

e There is only one replica of the publisher application running at a time. Upon
failure, Kubernetes restarts the container in order to return to normal operation.
This means that warm standby is not used as the failover approach in this scenario,
but rather cold standby. This design choice is an approximation of a system that
uses Kubernetes only for managing failure detection, as there is no existing approach
for implementing warm standby in Kubernetes.

e By default, it takes 5 minutes (300s) for Kubernetes to remove a Pod from a Node
once the node fails. This was changed to 5s, even when measuring the performance
with the default settings.
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Kubernetes

cluster

Node 1

Pod 1

The optimized version of the K8s-only system is inspired by [57] and cross-referenced
with the Kubernetes documentation [8]. The modified elements are:

— node-status-update-frequency - indicates how often the status of the node is
posted to the API. The default value is 10s, reduced to 4s.

— node-monitor-period - how often the API server is queried regarding the status
of each node. The default value is 5s, reduced to 2s.

— node-monitor-grace-period - the duration for which a suspected node is allowed
to be unresponsive before being marked as failed. The default value is 50s,
reduced to 16s for the optimized version.

Kubernetes
cluster

Node 2 Node 1 Node 2

Pod 1 Pod 4
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FIGURE 4.4: Diagram of the system using Kubernetes only, showing the state in
normal operation and after failure.

Aspects unique to the K8s-and-Serf implementation, on the other hand, include:

Warm standby is incorporated instead of cold standby, compared to the K8s-only
solution. There are multiple replicas of the publisher application, only one of which
is active. The rest are in an idle state, ready to take over when the primary replica
fails. Until it does, they are only subscribed to the topic in order to be as up to date
as possible in preparation for failover. It is worth noting that at the moment, this
aspect is not being utilized due to Cyclone DDS’s lack of support for transient and
persistent storage (see Section 2.6.1 for more information on this issue).

Each publisher, regardless of its status as active or idle, is monitored by a Serf agent.
This is the key distinction between the two implementations and it is the primary
failure detection mechanism employed in this implementation. Serf is responsible for
the health monitoring and handling of failure across the replicas.

Only the publishers are monitored by Serf agents, as it is unnecessary for these
experiments for the subscribers to be monitored for failure. Another reason for this
decision is that it allows for more clarity and reduced noise when analyzing the Serf
algorithm.

Serf is running at the container level for each instance of the application.

Serf is exposed on the network by a Service resource.
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e The distinction between active and idle is implemented via the use of Serf’s tagging
and event handler capabilities. Initially, all instances behave as if they are idle. Each
publisher, irregardless of its intended role, periodically checks for whether its role has
been set to active. Once all Pods are ready, the first publisher as listed by Kubernetes
is marked as active, the second as idle. As soon as failure occurs, a specific failover
script is triggered in all publishers (barring the failed one) that allows for the replica
marked as idle to change its role to active, thus becoming an active publisher.

e The optimized version of the K8s-and-Serf implementation involves modifying select
parameters, in particular in its library memberlist, details for which are laid out in
Section 4.2.1. Discussion on the values of the parameters that were explored during
the research can be found in Section 4.4. More specifically, the relevant parameters
and their final chosen values are:

— Suspicion multiplier - 0, changed from 2.
— Probe interval - 100 milliseconds, changed from 1 second.

— Probe timeout - 50 milliseconds, changed from 500 milliseconds.

Kubernetes Kubernetes
cluster cluster

Node 1 Node 2 Node 1 Node 2
Pod 1 Pod 3 Pod 3
Serf Agent 1 Serf Agent 2 Serf Agent 1 Serf Agent 2
+ Monitors i Monitors i Monitors
A4
Publishes data about
Publisher 2

Publisher 1 +===--1---F-----~ . Uty 2
H A

Node 1 fails,

Publishes and Publisher 2 takes over ! Publishes and
! receives data

receives data : Receives data
about : about v @bt

' y N
Sensor database : ---» Sensor Sensor database

A
! Receives data
' about

Receives data Receives data
about about

Pod 2 Pod 4 Pod 2 Pod 4

Subscriber 1 Subscriber 2 Subscriber 1 Subscriber 2

F1GURE 4.5: Diagram of the system using Kubernetes in combination with Serf,
showing the state in normal operation and after failure.

Once the experiments are ran and metrics are collected for both implementations, a com-
parison is made based on the failure detection time. The results of these experiments can
be seen in Section 4.4.

4.4 Results

In this section, the results obtained from running the experiments for both the K8s-only
and K8s-and-Serf implementations are displayed and the findings derived from them are
discussed, providing an answer to RQ2b.

In order to be able to accurately measure the failover time, the following metrics were
collected, in the form of timestamps:

e Start of failure - the timestamp of the last message received by subscribers before the
node fails. More specifically, the publisher sends as part of their message the times-
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tamp at which they sent the specific message. Said timestamp is the one considered,
in order to ensure maximum accuracy in the milliseconds.

o Fuailure detected - the timestamp at which the failure was detected:

— For the K8s-only solution, this is the timestamp at which the node is marked
as NotReady.

— For the K8s-and-Serf solution, this is the timestamp of the EventMemberFailed
event, as announced by Serf.

e FEnd of failure - the timestamp at which the first message after the failure is received
by subscribers.

o [ailure detection time - failure detected — start of failure. The most significant met-
ric for this research, since it is strictly consistent for both types of implementations,
as well as being completely independent from any design choices of the application
implementations. Instead, it is dependent solely on the two failure detection mecha-
nisms that are being compared - Kubernetes and Serf.

e Total restart time - end of failure — failure detected.
e Total failover time - end of failure — start of failure.

Aside from the author’s personal device, the experiments were also attempted using Thales’s
more powerful machines, but no particular difference in results could be observed. The
experiments were also ran on a virtual machine on both hosts, again with no particular
difference in the outcome. Based on this information, it can be concluded that the failure
detection performance is not notably affected by hardware capabilities, but rather by the
configuration and the design of the system.

For each type of experiment, 20 samples were collected for a total of 80 samples, and their
averages are depicted in seconds in Table 4.1. 20 samples per experiment was deemed
enough as the standard deviation between samples is quite small, while the effect size be-
tween the different implementation is fairly large. The full results can be seen in Appendix

A.

Implementation Configuration Failure Detection Time Restart Time Total Time

K8s-only Default 31.484 07.512 38.997
Optimized 10.621 04.443 15.064
K&8s-and-Serf Default 06.194 01.044 07.238
Optimized 00.218 01.044 01.261

TABLE 4.1: Average results in seconds of the experiments for K8s-only and K8s-
and-Serf, with both the default and optimized settings of each.

To start with, given that the K8s-only implementation uses cold standby, while the K8s-
and-Serf implementation uses warm standby, the two cannot reasonably be compared with
regard to restart time. It is inevitable that the K8s-and-Serf experiments will have a faster
outcome on those metrics, as the component that will take over after failure is already
running and ready to begin publishing data before failure even occurs, while in the K8s-
only experiments, the failed component needs to be restarted.
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The results indicate this as well - as expected, the restart time is considerably faster for the
K8s-and-Serf implementation (1.044s) compared to the K8s-only implementation (7.512s
for the default version, 4.443s for the optimized). Because of the difference in architecture
design, this metric is not indicative of whether Serf is an improvement over Kubernetes
alone, but it further supports the idea that the use of warm standby is preferable to the
use of cold standby.

The key metric on which it can be determined whether the addition of Serf is an improve-
ment is the failure detection time. The first and most crucial observation is in the difference
between the K8s-only and the K8s-and-Serf implementation. It is immediately clear that
the use of Serf, even in with its default configuration, significantly improves the failure
detection time compared to either of the K8s-only configurations. The K8s-only version at
worst averages a failure detection time of 31.484s, and at its most improved, it can achieve
a time of 10.621s on average. K8s-and-Serf, on the other hand, has a failure detection time
of 6.194s at worst, and 0.218s at its most optimized, achieving a failure detection time in
the milliseconds. Furthermore, these results show an improvement over the capabilities of
Thales’s current system.

4.4.1 Multiple Nodes

Despite not being the main focus of this research, the experiments were also attempted on
a smaller scale with more than 2 nodes for the K8s-and-Serf implementation in order to
observe any changes in the behaviour of the system, with the aim of answering RQ2c.

The only difference between implementations with 2 nodes and those with more than 2
nodes appears to be the use of indirect checks in the probing stage, immediately after the
direct probe fails by way of the probe timeout timer running out. As a small case example,
experiments of 5 samples each were run on an environment with 5 nodes, with the indirect
checks parameter set to 2, 3 and 4 in order to observe the behaviour. The outcome of these
test runs can be seen in Table 4.2.

Indirect Checks Failure Detection Time Restart Time Total Time

2 0:00:00.188 0:00:01.060  0:00:01.247
3 0:00:00.177 0:00:01.049  0:00:01.226
4 0:00:00.202 0:00:01.049  0:00:01.252
Averages 0:00:00.189 0:00:01.053  0:00:01.242

TABLE 4.2: Average results of running the experiments for an environment with 5
nodes and different values for indirect check.

In theory, the minimum and maximum expected time remains the same as for implemen-
tations with only 2 nodes. However, it can be observed that the failure detection time is
slightly faster than the average observed for 2 nodes only. This is due to the presence of
indirect checks, which can confirm that the node has failed faster and interrupt the waiting
time for the probe interval timer within the probing stage.

As such, it can be concluded that although the minimum and maximum expected failure
detection time is still the same, the use of more than 2 nodes, and therefore indirect
checks, can speed up the process by some milliseconds, in this case by approximately 30
milliseconds.
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4.5 Limitations

In this section, factors that likely had a limiting impact on this research are discussed.

An important limitation that had impact on the scope of this research was the lack of
access to physical nodes or hardware that could support the simulation of multiple nodes.
Attempting to use more than 6 nodes with Kubernetes in Docker on the available machines
proved to be impossible, thus limiting the original intent of exploring the effect of using
Kubernetes and Serf on a larger number of nodes. As a result, these scenarios were explored
on a smaller scale and only to observe any difference in behaviour compared to the use of
only 2 nodes.

The scope of this research was further reduced by CycloneDDS’s lack of support for per-
sistent and transient storage at the time of writing [1], as the original intent was also to
have continuity between the content of the messages before and after the point of failure.
Although this aspect was always secondary, it is nevertheless a limitation on the original
intent.

Another limiting aspect was the memberlist library’s built-in constraints on the relevant
parameters during the build process. Due to these constraints, this research utilized the
lowest possible values to which they could be set, but it is likely that with more freedom
for the use case of this project, the failure detection time could have been lowered further.

With regard to the accuracy of simulating a mission-critical system, the system imple-
mented for the purposes of this project likely does not fully reflect a mission-critical prod-
uct used in practice. Due to confidentiality reasons, access to Thales’s systems was not
granted for this project.

4.6 Recommendations

In this section, a discussion on starting off points for future research are presented, based
on the scope limitations and results of this project.

To start with, more extensive experiments could be performed on environments with more
than 2 nodes, given sufficiently powerful hardware or access to physical nodes. This could
extend the work done in this research by examining whether there is a point at which the
K8s-and-Serf solution becomes less efficient at failure detection, for example.

Another possibility could be the exploration of a custom solution designed specifically for
optimized failure detection in a distributed mission-critical system. Considering that the
memberlist library imposes limitations on how much the parameters can be tuned, likely
due to other scenarios in which failure detection should not be prioritized, it is highly likely
that a more optimal solution can be found by implementing an algorithm designed purely
for optimized failure detection. This is especially worthwhile for mission-critical systems
that expect a failure detection time in the microseconds. Furthermore, Serf’s expected
failure detection time is a range, rather than a fixed value, and it may not be predictable
enough to suit the needs of mission-critical systems, which is another problem for which a
custom solution could be beneficial.

Additionally, the restart times of this implementation could most likely be improved. The
restart time is influenced by the means by which the experiments were implemented, and
considering that that aspect was not the focus of this research, it is highly likely that the
restart times are not optimal.
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Chapter 5

Conclusion

In this thesis, the problems associated with achieving HA in the context of distributed
mission-critical systems using Kubernetes are established. To start with, three possible
solutions to the problem of fast failover are compared, namely Consul, ZooKeeper and
Serf. The aspects that are considered are those most relevant to the specific challenges in
the established context, in particular the use of quorums, centralization, consistency type,
Kubernetes compatibility, scalability and ease of use.

Through that comparison, it is clear that the most promising alternative to use for ad-
dressing the established problem would be Serf. This is due to the fact that Serf does not
present the same existing drawbacks that Consul and ZooKeeper have, such a quorum that
is incompatible with the topologies of many mission-critical systems, or centralization and
strong consistency that limit the system’s availability.

Based on these findings, an experimental implementation was created which approximates
that of a distributed mission-critical system such as Thales’s with its use of DDS for
communication between publishers and subscribers and a simulation of multiple physical
nodes. In this environment, failure is introduced to the node of the active publisher and the
failure detection time is recorded. This process is done for a variant of the implementation
that works with Kubernetes only, as well as one that works with Kubernetes and Serf in
combination. Both of these variants are further optimized and compared.

The findings of this research strongly indicate that the use of Serf, even without optimiza-
tion, greatly improves the failure detection time in a distributed system, as it is capable of
reaching a time as low as 0.22 seconds, compared to the failure detection time of Kubernetes
even at its best, at approximately 10.62 seconds.

Additionally, the failure detection time can be further reduced to approximately 0.19 sec-
onds with Serf, provided that more than 2 nodes are used in the environment. This is due
to the fact that indirect checks generally speed up the failure detection process, but they
require nodes other than the failed node and the node performing the probe.

It is also possible that a custom solution could achieve even better results, which is a topic
worth exploring in further research, especially if an organization requires a failure detection
time in the microseconds, or for the solution to be less complex in order to ensure a fixed
estimated failure detection time. Regardless, it can be concluded from the results of this
research that mission-critical organizations are highly likely to benefit from incorporating
Serf into their Kubernetes-managed distributed systems.
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Appendix A

Experiment Data

Sample # Failure Start Failure Detected Failure End Total Detection Time Total Restart Time  Total Time
1 14:57:31.617 14:57:58.000 14:58:05.130 0:00:26.383 0:00:07.130 0:00:33.513
2 15:03:46.635 15:04:19.000 15:04:26.753 0:00:32.365 0:00:07.753 0:00:40.118
3 15:07:18.657 15:07:53.000 15:08:00.526 0:00:34.343 0:00:07.526 0:00:41.869
4 15:11:50.972 15:12:26.000 15:12:33.908 0:00:35.028 0:00:07.908 0:00:42.936
5 15:15:49.225 15:16:20.000 15:16:27.675 0:00:30.775 0:00:07.675 0:00:38.450
6 15:18:58.912 15:19:29.000 15:19:36.720 0:00:30.088 0:00:07.720 0:00:37.808
7 15:25:18.853 15:25:50.000 15:25:57.757 0:00:31.147 0:00:07.757 0:00:38.904
8 15:28:35.483 15:29:09.000 15:29:16.008 0:00:33.517 0:00:07.008 0:00:40.525
9 15:31:39.851 15:32:07.000 15:32:14.320 0:00:27.149 0:00:07.320 0:00:34.469
10 15:35:12.156 15:35:48.000 15:35:55.383 0:00:35.844 0:00:07.383 0:00:43.227
11 15:39:05.728 15:39:39.000 15:39:46.267 0:00:33.272 0:00:07.267 0:00:40.539
12 11:45:01.347 11:45:34.000 11:45:41.540 0:00:32.653 0:00:07.540 0:00:40.193
13 11:48:40.718 11:49:14.000 11:49:21.390 0:00:33.282 0:00:07.390 0:00:40.672
14 11:52:00.265 11:52:27.000 11:52:34.029 0:00:26.735 0:00:07.029 0:00:33.764
15 11:55:12.976 11:55:47.000 11:55:54.597 0:00:34.024 0:00:07.597 0:00:41.621
16 11:58:30.524 11:59:00.000 11:59:07.348 0:00:29.476 0:00:07.348 0:00:36.824
17 12:09:50.028 12:10:18.000 12:10:25.718 0:00:27.972 0:00:07.718 0:00:35.690
18 12:13:08.261 12:13:39.000 12:13:46.766 0:00:30.739 0:00:07.766 0:00:38.505
19 12:16:21.941 12:16:55.000 12:17:02.602 0:00:33.059 0:00:07.602 0:00:40.661
20 12:19:37.162 12:20:09.000 12:20:16.808 0:00:31.838 0:00:07.808 0:00:39.646
Averages 0:00:31.484 0:00:07.512 0:00:38.997

TABLE A.1: Average results in seconds of the experiments for K8s-only with default

settings.
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Sample # Failure Start Failure Detected Failure End Total Detection Time Total Restart Time  Total Time
1 12:31:23.156 12:31:34.000 12:31:38.375 0:00:10.844 0:00:04.375 0:00:15.219
2 12:34:32.376 12:34:41.000 12:34:45.456 0:00:08.624 0:00:04.456 0:00:13.080
3 12:37:08.754 12:37:20.000 12:37:24.814 0:00:11.246 0:00:04.814 0:00:16.060
4 12:40:03.570 12:40:15.000 12:40:19.474 0:00:11.430 0:00:04.474 0:00:15.904
5 12:50:30.598 12:50:38.000 12:50:42.730 0:00:07.402 0:00:04.730 0:00:12.132
6 12:59:28.537 12:59:40.000 12:59:44.731 0:00:11.463 0:00:04.731 0:00:16.194
7 13:02:14.474 13:02:28.000 13:02:32.170 0:00:13.526 0:00:04.170 0:00:17.696
8 13:05:14.138 13:05:24.000 13:05:28.171 0:00:09.862 0:00:04.171 0:00:14.033
9 13:08:05.534 13:08:16.000 13:08:20.278 0:00:10.466 0:00:04.278 0:00:14.744
10 13:10:47.318 13:10:56.000 13:11:00.532 0:00:08.682 0:00:04.532 0:00:13.214
11 13:13:25.745 13:13:34.000 13:13:38.598 0:00:08.255 0:00:04.598 0:00:12.853
12 13:16:01.346 13:16:12.000 13:16:16.521 0:00:10.654 0:00:04.521 0:00:15.175
13 13:18:57.687 13:19:10.000 13:19:14.332 0:00:12.313 0:00:04.332 0:00:16.645
14 13:21:41.403 13:21:52.000 13:21:56.237 0:00:10.597 0:00:04.237 0:00:14.834
15 13:24:23.976 13:24:35.000 13:24:39.771 0:00:11.024 0:00:04.771 0:00:15.795
16 13:27:34.764 13:27:46.000 13:27:50.057 0:00:11.236 0:00:04.057 0:00:15.293
17 13:30:09.595 13:30:22.000 13:30:26.291 0:00:12.405 0:00:04.291 0:00:16.696
18 13:32:49.298 13:33:00.000 13:33:04.067 0:00:10.702 0:00:04.067 0:00:14.769
19 13:35:21.637 13:35:31.000 13:35:35.832 0:00:09.363 0:00:04.832 0:00:14.195
20 13:37:59.674 13:38:12.000 13:38:16.426 0:00:12.326 0:00:04.426 0:00:16.752
Averages 0:00:10.621 0:00:04.443 0:00:15.064

TABLE A.2: Average results in seconds of the experiments for K8s-only with opti-
mized settings.
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Sample # Failure Start Failure Detected Failure End Total Detection Time Total Restart Time  Total Time
1 15:00:10.718 15:00:17.167 15:00:18.201 0:00:06.449 0:00:01.034 0:00:07.483
2 15:06:14.498 15:06:20.891 15:06:21.939 0:00:06.393 0:00:01.048 0:00:07.441
3 15:09:44.557 15:09:50.536 15:09:51.579 0:00:05.979 0:00:01.043 0:00:07.022
4 15:13:22.181 15:13:27.797 15:13:28.833 0:00:05.616 0:00:01.036 0:00:06.652
5 15:16:54.815 15:17:01.758 15:17:02.794 0:00:06.943 0:00:01.036 0:00:07.979
6 15:20:14.471 15:20:20.809 15:20:21.864 0:00:06.338 0:00:01.055 0:00:07.393
7 15:27:15.017 15:27:21.564 15:27:22.609 0:00:06.547 0:00:01.045 0:00:07.592
8 15:30:48.743 15:30:55.140 15:30:56.189 0:00:06.397 0:00:01.049 0:00:07.446
9 15:34:41.488 15:34:47.943 15:34:48.980 0:00:06.455 0:00:01.037 0:00:07.492
10 15:38:09.062 15:38:15.860 15:38:16.895 0:00:06.798 0:00:01.035 0:00:07.833
11 15:41:49.983 15:41:56.182 15:41:57.228 0:00:06.199 0:00:01.046 0:00:07.245
12 15:45:15.212 15:45:20.446 15:45:21.485 0:00:05.234 0:00:01.039 0:00:06.273
13 15:48:46.330 15:48:52.135 15:48:53.181 0:00:05.805 0:00:01.046 0:00:06.851
14 15:51:59.458 15:52:05.733 15:52:06.777 0:00:06.275 0:00:01.044 0:00:07.319
15 15:55:15.284 15:55:21.859 15:55:22.898 0:00:06.575 0:00:01.039 0:00:07.614
16 15:58:31.202 15:58:36.657 15:58:37.695 0:00:05.455 0:00:01.038 0:00:06.493
17 16:01:57.621 16:02:03.339 16:02:04.384 0:00:05.718 0:00:01.045 0:00:06.763
18 16:05:11.058 16:05:17.686 16:05:18.752 0:00:06.628 0:00:01.066 0:00:07.694
19 16:08:30.367 16:08:35.694 16:08:36.740 0:00:05.327 0:00:01.046 0:00:06.373
20 16:12:04.901 16:12:11.650 16:12:12.697 0:00:06.749 0:00:01.047 0:00:07.796
Averages 0:00:06.194 0:00:01.044 0:00:07.238

TABLE A.3: Average results in seconds of the experiments for K8s-and-Serf with

default settings.
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Sample # Failure Start Failure Detected Failure End Total Detection Time Total Restart Time  Total Time
1 13:58:09.299 13:58:09.604 13:58:10.650 0:00:00.305 0:00:01.046 0:00:01.351
2 14:02:00.066 14:02:00.303 14:02:01.357 0:00:00.237 0:00:01.054 0:00:01.291
3 14:05:34.197 14:05:34.382 14:05:35.417 0:00:00.185 0:00:01.035 0:00:01.220
4 14:09:09.122 14:09:09.250 14:09:10.293 0:00:00.128 0:00:01.043 0:00:01.171
5 14:12:28.172 14:12:28.449 14:12:29.498 0:00:00.277 0:00:01.049 0:00:01.326
6 14:15:43.280 14:15:43.554 14:15:44.594 0:00:00.274 0:00:01.040 0:00:01.314
7 14:19:03.418 14:19:03.529 14:19:04.571 0:00:00.111 0:00:01.042 0:00:01.153
8 14:22:21.322 14:22:21.573 14:22:22.615 0:00:00.251 0:00:01.042 0:00:01.293
9 14:25:39.582 14:25:39.865 14:25:40.906 0:00:00.283 0:00:01.041 0:00:01.324
10 14:28:56.470 14:28:56.728 14:28:57.775 0:00:00.258 0:00:01.047 0:00:01.305
11 14:32:14.001 14:32:14.130 14:32:15.169 0:00:00.129 0:00:01.039 0:00:01.168
12 14:35:32.411 14:35:32.564 14:35:33.611 0:00:00.153 0:00:01.047 0:00:01.200
13 14:38:50.965 14:38:51.221 14:38:52.268 0:00:00.256 0:00:01.047 0:00:01.303
14 14:42:10.385 14:42:10.523 14:42:11.562 0:00:00.138 0:00:01.039 0:00:01.177
15 14:45:29.906 14:45:30.169 14:45:31.215 0:00:00.263 0:00:01.046 0:00:01.309
16 14:48:49.757 14:48:50.002 14:48:51.059 0:00:00.245 0:00:01.057 0:00:01.302
17 14:52:07.707 14:52:07.974 14:52:09.011 0:00:00.267 0:00:01.037 0:00:01.304
18 14:55:27.391 14:55:27.570 14:55:28.607 0:00:00.179 0:00:01.037 0:00:01.216
19 14:58:44.375 14:58:44.590 14:58:45.627 0:00:00.215 0:00:01.037 0:00:01.252
20 15:02:04.493 15:02:04.690 15:02:05.735 0:00:00.197 0:00:01.045 0:00:01.242
Averages 0:00:00.218 0:00:01.044 0:00:01.261

TABLE A.4: Average results in seconds of the experiments for K8s-and-Serf with

optimized settings.
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