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1 Introduction

Gait analysis is a valuable tool for researchers. It has been applied in different fields, such as robotics
and healthcare [1], [2], [3]. To conduct gait analysis effectively, the kinematics during walking should be
captured, especially the lower-body kinematics. The industry standard for human motion capture in the
laboratory is optical motion capture (OMC) systems [4]. Another viable option is using inertial motion cap-
ture (IMC) systems, which are based on Inertial Measurement Units (IMUs) [5]. Using OMC or IMC systems
enables researchers to derive lower-body kinematics, such as orientation, acceleration, angular velocity and
position of each segment [6].

Most OMC systems use markers applied to the subject to capture the pose of the subject and derive the
kinematic data. Although accurate, OMC systems have some limitations. A limitation is the need for trained
personnel to apply the markers in the correct placement. This marker placement should be perfect for
obtaining accurate results during pose reconstruction [7]. This results in an expensive and time-consuming
system. In addition, the OMC system has a limited range and needs a clear line of sight to work correctly.

Alternatively, the IMC systems offer advantages compared to the OMC systems, such as being easier to
configure, cheaper [8], and not having a range limit in which the movement of the person can be assessed.
IMUs can measure linear acceleration, angular velocity, and heading based on the magnetic field [9], which
are measured using an accelerometer, gyroscope, and magnetometer, respectively. This is potentially ad-
vantageous as they are directly related to segmental kinematics when estimating the segmental velocities,
positions and angular velocities. However, a drawback of using IMUs is that strapdown inertial navigation
will result in drift in the parameters obtained from the IMUs. This is caused by the integration of the accel-
eration. Because the acceleration signal also contains sensor noise and bias, direct integration of this signal
will result in drift in the estimated velocity or position [10].

Over time, smaller IMUs became available due to technological advancements [11]. This miniaturization of
IMUs looks promising for the use of IMUs for the continuous tracking of daily living tasks [12]. Commercial
IMC systems generally use one sensor on each body segment [13]. For instance, for measuring lower-body
kinematics, 7 IMUs in total are needed. These are placed at the pelvis, thighs, shanks and feet. Yet, for
monitoring daily living tasks, this is too extensive and expensive due to the number of sensors used [11].
The use of fewer IMUs than one sensor per segment could result in a cheaper and more appropriate solution.

There is existing literature using fewer IMUs to estimate lower-body kinematics. For example, using three
IMUs, Refai et al. [14] were able to measure relative feet and Centre of Mass (CoM) positions by using
the Centroidal Moment Pivot (CMP) point, which relates the movement of the CoM to the stance foot.
Combining this information with an Extended Kalman Filter (EKF) enables estimating the positions of the
CoM and the feet [15]. But this method does not estimate other lower-body kinematics, such as joint angles
or positions of the joints. This is because using only three IMUs results in an underdetermined system when
estimating lower-body kinematics because not all lower-body segments are tracked directly.

A method to address the underdetermined system is to make use of distance inequality constraints. Using
two foot-mounted IMU-based navigation systems, the system was constrained by using an upper bound
for the maximum foot-to-foot distance [16]. Another method is to derive step length based on the inverted
pendulum model of human motion [17]. This was made possible by modelling human gait motion as an
inverted pendulum and estimating the step length. Based on this estimated step length, a relative position
vector between the two feet is used as a constraint. However, these methods are not suitable for continuous
tracking and may not accurately reflect actual foot positions [15]. In other research [11], three IMUs were
used to track seven segments of the lower extremity. The IMUs were placed on each foot and the pelvis. For
sufficient information, constant leg lengths and hinged knee and ankle joints were used, as well as common
updates such as zero-velocity and zero-height updates. The positions of the segments were then calculated
using the estimated foot and pelvis positions through an inverse kinematics method. However, the Xsens
Awinda system with seven IMUs was used for data collection. This means that the efficiency and accuracy
of estimating pelvis and foot positions using only three IMUs may not be adequately evaluated and could be
redundant, as the Xsens sensor fusion algorithm also uses gait characteristics-based and constraint updates.

This paper aims to estimate the positions of the CoM, hips, knees, ankles, and feet, as well as the joint
angles of the hips, knees, and ankles, using a reduced set of IMUs. Additionally, it seeks to determine the
orientations of the pelvis, thighs, shanks, and feet. These estimations are based on the accelerations and
orientations provided by three IMUs, which are positioned on each foot and one on the back near the pelvis.
Firstly, based on the method of Refai et al. [15], the positions of the feet were estimated. Additionally, the
method was extended with a pseudo-measurement to estimate the position of the CoM. Furthermore, to
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estimate the joint angles, a forward kinematics chain-based constrained Kalman filter (FKC-KF) was used.
The filter used the hinged knee and ankle constraints combined with a forward kinematics chain-based
approach. Finally, the joint positions and segment orientations were estimated using the positions and
orientations of both feet and the CoM, along with the estimated joint angles.

This paper uses the online dataset collected by Sy et al. [8]. This allows for a comparison between his
methods and our proposed approach, which builds upon the work of Refai et al. [15].
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2 Method

2.1 Setup

The data used in this paper were collected by Sy et al. [8]. This experiment consisted of nine healthy subjects
(seven male and two female), with an age of 24.6 ± 3.9 years old, height of 1.70 ± 0.06 m and weight of 63.0
± 6.8 kg. Data was collected by two systems:
1) The Vicon Vantage system, which used eight cameras to cover a 4 by 4 m2 area. This data was collected
at 100 Hz.
2) The Xsens Awinda system, which used seven MTx units (IMUs). This data was also collected at 100 Hz.
The accelerations and orientations of each foot and pelvis IMU were used. Also, the step detection for each
foot was used. This step detection was manually edited by Luke Sy [8] to remove errors. The Vicon data
was used as reference data.

The used movements are: walk straight and back (Walk), walk in figures of eight (Figure of Eight), walk
in a zig-zag pattern (Zigzag), and finally an undirected five-minute long walk (FiveMin) with side steps
and stand motion. Each trial was performed twice per subject. The seven IMUs were located at the pelvis,
thighs, shanks and feet, as can be seen in Figure 3 of [8]. The relevant IMU locations for this research can
be seen in Figure 1 and are located on each foot in between the toes and the ankle, and on the middle of the
lower back of the subject, which is assumed to be coincident with the mid-pelvis [8].

Figure 1: Overview of joints, angles and segments. The joints are represented by circles, and the CoM is also rep-
resented as a circle. The segments are represented by a black line between joints and can be recognised by the
underlining. The joint angles used in this paper are given in purple. Finally, the locations of the IMUs are given by an
orange rectangle.
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2.2 Reference frames

There are three reference frames which were used. In Figure 1 we have the world frame (ΨW), sensor
frames (ΨS,IMU) and the segment frames (ΨB,seg). For the sensor frames, IMU is replaced by Pel, L f or R f ,
representing the pelvis, left foot and right foot, respectively. For the segment frames, seg can be replaced by
Pel, Rt, Rs, R f , Lt, Ls or L f , representing the pelvis, right thigh, right shank, right foot, left thigh, left shank
and left foot, respectively.
The world frame (ΨW) was set equal to the Xsens frame [8], which is an East-North-Up (ENU) frame. This
means that +XW pointed to the east, +YW pointed to the north, and +ZW pointed upwards. The sensor
frames were aligned corresponding to the Movella Awinda manual [18]. The segment frames were aligned
with the anatomical axes of the subject, i.e. +XB,seg pointed forward (anteroposterior), +YB,seg pointed to
the left side of the body (mediolateral), and +ZB,seg pointed upwards (anteroposterior axis).

2.3 Simplified model parameters and notations

In Figure 1, an overview is given of the simplified model. The positions of the CoM, both hips, both knees
and both ankles are visualised. Their positions are represented as:
P = {W pCoM,W pRh,W pRk,W pRa,W pLh,W pLk,W pLa}
This means, for example, that W pLk represents the position of the left knee with respect to frame W.
The joints of the simplified model are connected by seven segments: the pelvis, both thighs, both shanks
and both feet. The relative distances between the positions P are represented as:
D = {d̄Rh/CoM, d̄Rk/Rh, d̄Ra/Rk, d̄Lh/CoM, d̄Lk/Lh, d̄La/Lk}
Furthermore, each segment orientation with respect to the world frame in quaternions is represented as:
SO = {WqPel ,W qRh,W qRk,W qRa,W qLh,W qLk,W qLa}
The relative distance between the foot IMU locations and the phalanges (toes) and ankles can be calculated,
which will be used to estimate their positions from the estimated foot positions. These are represented as:
I = {d̄IMU/Rp, d̄IMU/Ra, d̄IMU/Lp, d̄IMU/La}

The joint angles for the hip are based on a hip joint with three degrees of freedom (DoF), so around the
X-axis (abduction/adduction), Y-axis (flexion/extension) and Z-axis (internal/external rotation). The knee
and ankle are represented as hinge joints, so only 1 DoF around the Y-axis. The joint angles for each foot are
represented as:
ΘL = {θLh,X , θLh,Y, θLh,Z, θLk,Y, θLa,Y}, ΘR = {θRh,X , θRh,Y, θRh,Z, θRk,Y, θRa,Y}

2.4 Calibration and synchronisation

To synchronise both Xsens and Vicon recordings, a trigger pulse was sent by the Xsens Awinda station to
the Vicon system [8]. The Vicon data was used as reference data. The following calibration procedures
were performed by Sy et al. [8]. To enable pose comparison between the IMU and Vicon data, a fixed
rotational offset was used to convert the Vicon data from the Vicon frame to the world frame. This was
based on a calibration procedure using the direction of gravity and the Earth’s magnetic field, measured
using a compass and a pendulum with optical markers attached [19]. A yaw offset [8], i.e., an offset in
rotation around the Z-axis, was used to correct the potential misalignment between body orientation and
sensor orientation. A grid search was used to identify the yaw offset that minimized the x and y root mean
square error (RMSE) (1) between the Vicon-based acceleration and IMU acceleration. Then, the initial IMU
orientation was adjusted using this yaw offset for both feet and pelvis orientations and to minimise pose
differences due to calibration.

RMSEx,y(aL f ,Vicon − (qyaw ⊗ ãL f ,IMU ⊗ q−1
yaw) (1)

2.5 Pre-processing

2.5.1 Segment orientation

The frames of the body segment and the attached IMU were misaligned. To solve this misalignment, a
sensor-to-segment realignment was used, based on [13]. This was realised for the initial orientation using
the Vicon system for a known body segment orientation with respect to the world frame (WqB) and the mea-
sured sensor orientation with respect to the world frame (WqS). Then, the rotation from sensor to segment
(BqS) can be determined using (2).

WqB = WqS ⊗ Bq−1
S (2)
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2.5.2 Step Detection (SD)

The step detection information provided by Sy et al. [8] is used. A step is detected when the variance of the
free body acceleration of a foot is below 1 m/s2 during a 0.25-second window. The false positives/negatives
were manually corrected by Luke Sy. These occurred mainly during the five-minute walk.

2.5.3 Gravity-free acceleration

The IMU acceleration signal still contained gravitational acceleration. Therefore, to obtain the body accel-
eration (W a), the gravitational acceleration was subtracted and afterwards expressed in the world frame,
based on [13]. This is shown in (3).

W a − W g = WqS ⊗ (Sa − Sg) ⊗ Wq−1
S (3)

2.6 Kalman filter

In Figure 2, an overview is given of the algorithm.

Figure 2: Overview of the algorithm. It starts with the acceleration and orientation information obtained from the IMUs.
In pre-processing, the gravity part of the acceleration is removed, and orientation realignment solves the misalignment
between the sensor and body segment. Furthermore, the manually adjusted step detection was based on the IMU input
and used in the KF for estimating the foot and CoM positions part. Here, based on the use of segment orientations
and accelerations, the positions of both feet and CoM were derived. These positions, along with the relative distances
and orientations, are used in the KF for estimating joint angles part to estimate and derive the joint angles. Finally,
Post-processing calculates the joint positions and the segment orientations based on the positions and orientations of
the feet and CoM, the joint angles and the relative distances.

2.6.1 KF for estimating foot and CoM positions

The orientations obtained from the IMUs were aligned with the segments, which provided the estimated
orientations of the segments with respect to the world frame (W q̃B,L f , W q̃B,R f , W q̃B,Pel). Based on the method
proposed by Refai et al. [15], using the gravity-free IMU accelerations (W ãB,L f , W ãB,R f , W ãB,Pel) and the IMU
orientations, the positions of the left foot, right foot, and the CoM (W p̃B,L f , W p̃B,R f , W p̃B,CoM) were estimated.
In [15], it is assumed that the accelerations at the CoM are similar to the accelerations measured by the IMU
located at the pelvis (W ãB,Pel). This method [15] assumes that the moment about the CoM is zero and that
the CMP overlaps with the Zero Moment Point (ZMP), which can also be defined as the Centre of Pressure
for flat ground surfaces [20]. This allows the movement of the CoM to be linked to the stance foot, thus
restricting drift between the feet and the CoM.

2.6.2 KF for estimating joint angles

In this section, the joint angles of the lower body (Θ̃L and Θ̃R) are estimated using the estimated foot
and CoM positions (W p̃B,L f , W p̃B,R f , W p̃B,Pel) and biomechanical constraints within a forward kinematic
chain-based constrained Kalman filter (FKC-CMP). This was achieved using a smooth prediction model,
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illustrated here with the left leg as an example:

Θ̃L,k = Θ̃L,k−1 + wk (4)

where wk represents the process noise vector. This process noise is controlled by the covariance matrix Q.
The biomechanical constraints consist of three parts:
1) The joint range of motions (ROM), stated in (5), which are based on the model of Arnold et al. [21], which
is used by OpenSim software.

Θmin ≤ ΘL ≤ Θmax

Θmin ≤ ΘR ≤ Θmax
(5)

The other two biomechanical constraints are established in the following text. The estimated left foot po-
sition and orientation of the IMU with respect to the CoM, expressed in the pelvis frame were calculated
as:

B,Pel p̃B,L f =
W q̃B,Pel

−1 × (W p̃B,L f −W p̃CoM) (6)

B,Pel q̃B,L f =
W q̃B,Pel

−1 ⊗W q̃B,L f (7)

According to the forward kinematics of the lower body model as shown in Figure 1, the IMU left foot
position was defined as:[B,Pel p̂IMU,L f

0

]
= B,Pel T̂B,Lt(θLh,Y, θLh,X , θLh,Y)

B,LtT̂B,Ls(θLk,Y)
B,LsT̂B,L f (θLa,Y)

[
B,L f d̄IMU/La

0

]
(8)

where B,Pel T̂IMU,Lt, B,LtT̂IMU,Ls, and B,LsT̂IMU,L f were the transformation matrices between two joints. These
transformation matrices were defined as:

B,Pel T̂IMU,Lt =

[
B,Pel R̂B,Lt

B,Pel d̄Lh/CoM
0 0

]
(9)

B,LtT̂IMU,Ls =

[B,LtR̂B,Ls
B,Ltd̄Ls/Lt

0 0

]
(10)

B,LsT̂IMU,L f =

[B,LsR̂B,L f
B,Lsd̄L f /Ls

0 0

]
(11)

where B,Pel R̂B,Lt , B,LtR̂B,Ls , and B,LsR̂B,L f were derived from B,Pel q̂B,Lt , B,Ltq̂B,Ls , and B,Lsq̂B,L f by using the
quaternion to rotation matrix algorithm. The forward left foot orientation was defined as:

B,Pel q̂B,L f =
B,Pel q̂B,Lt(θLh,Y, θLh,X , θLh,Z)⊗B,Lt q̂B,Ls(θLk,Y)⊗B,Ls q̂B,L f (θLa,Y) (12)

where B,Pel q̂B,Lt, B,Ltq̂B,Ls, and B,Lsq̂B,L f were the rotations between two connected segment frames, which
follow the Y-X-Z sequence.

Based on (6)-(12), the other two constraints are:
2) The equality between the estimated foot position based on the IMU data and the forward kinematic
estimated position of the foot, both with respect to the CoM in the pelvis frame. This can be written as:

B,Pel p̂IMU,L f (Θ̃L) =
B,Pel p̃IMU,L f (13)

3) The equality between the estimated and forward foot orientations, both with respect to the pelvis frame.
This can be written as:

B,Pel q̂B,L f (Θ̃L) =
B,Pel q̃B,L f (14)

Linearisation was done to both equality constraints using Taylor series approximation [22], enabling the use
of these constraints in our linear KF estimator. This gives:

(Dpos)3×5(Θ̃L)5×1 = (dpos)3×1 + vpos (15)

(Dori)4×5(Θ̃L)5×1 = (dori)4×1 + vori (16)

where the variables Dpos Dori, dpos, and dori can be found in Appendix A.
Obtaining the estimated foot positions and orientations from the IMUs introduced estimation errors. These

7



estimation errors are represented by vpos and vori. By adjusting the covariance matrices Rpos and Rori, the
dependency of the joint angle estimates on the constraints can be changed. Based on [23], the constrained
joint angles Θ̃+

L,k were estimated using a KF with state equality constraints.

To satisfy the inequality constraint (5), the following method was used:

Θ̃+
L,k = min(Θmax, max(Θmin, Θ̃+

L,k)) (17)

where, Θmax and Θmin are the maximum and minimum value respectively for the joint angle.

2.6.3 Post-processing

In the post-processing part, the the joint positions (RP) and the segment orientations (SO) are calculated
based on the feet and CoM positions, the orientations of the feet and the pelvis, the joint angles, the rel-
ative distances (D), and relative distances between the foot IMU and locations around the foot (I). In
section 2.6.1 were the estimated foot and CoM positions (W p̃B,L f , W p̃B,R f , W p̃B,CoM) and the associated ori-
entations (W q̃B,L f , W q̃B,R f , W q̃B,Pel) already obtained. Based on these positions and orientations, the joint
positions of the hip and the knee for both legs (W p̃Lh, W p̃Lk, W p̃Rh, W p̃Rk) were calculated similarly us-
ing forward kinematics to (8). In a same fashion, the orientations of the thighs and the shanks of both legs
(W q̃Lt, W q̃Ls, W q̃Rt, W q̃Rs) were calculated using forward kinematics in a similar way to 12. Finally, based on
assuming that the foot is a rigid body, the phalanges (toe) and ankle positions (W p̃Lp, W p̃La, W p̃Rp, W p̃Ra)
were calculated using a translation of the foot position. The method used to calculate these positions for the
left leg is defined as:

W p̃Lp =W p̃B,L f −W q̃B,L f ×B,L f d̄IMU/Lp (18)

W p̃La =
W p̃B,L f −W q̃B,R f ×B,L f d̄IMU/La (19)

2.7 Estimator parameters

The initial positions and velocities of the feet and the CoM are derived from Vicon data. Additionally,
the initial joint angles are also obtained from Vicon data. Also, the step detection manually corrected by
Luke Sy was used as input. The Joint angles part used covariance matrix P0, which was set to 0.0001I5×5.
Furthermore, the covariance parameters were set to Q = 0.032 I5×5, Rpos = 0.0012 I3×3, and Rori = 0.052 I9×9.

2.8 Evaluation metrics

2.8.1 Relative position RMSEs

To assess the accuracy of the estimated relative positions, we compared the relative foot position RMSEs
obtained from two different methods with those reported by Sy et al. [11].
Firstly, based on the positions output from the KF for estimating foot and CoM positions, the CoM position
was subtracted from each foot position to obtain the relative position between CoM and foot. Then, by com-
paring the relative positions obtained from our method with the VICON relative positions, we calculated
the RMSEs of the relative foot positions. Finally, we calculated the relative position RMSEs using the relative
foot positions reported by Sy et al., and compared them to our results.

2.8.2 Joint angle RMSEs for different inputs

In order to validate the effectiveness of the estimated joint angles of the proposed method, we compared the
RMSEs between the estimated joint angles with different inputs and the Vicon reference.
Firstly, we used the Vicon reference position and orientation of the feet and the pelvis as the input of the
KF for estimating joint angles, which was aimed to verify whether the method can accurately estimate joint
angles if accurate feet and pelvis positions and orientations are provided. Secondly, we replaced either the
reference position or orientations with estimated ones to verify how position and orientation estimations
influence the joint angles estimation results. We also compared our results with Sy et al. [11].

2.8.3 Joint position and segment orientation RMSEs

To evaluate the estimated joint positions and segment orientations, we compared the joint position RMSEs
and segment orientation RMSEs with those reported in other literature.
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Mean position epos and orientation eori RMSEs are metrics commonly used in other IMCs [24], [11]. To pre-
vent drift due to the lack of an external global position reference, the CoM position was set as the origin. This
was used for both measured and reference data (i.e., the reference origin is set to the reference CoM position).
These positions were for each hip, knee, phalanges and ankle, given by: RP = {Rh, Rk, Rp, Ra, Lh, Lk, Lp, La}
and epos was calculated as:

epos =
1

Nk Npos

Nk

∑
k=1

∑
i∈RP

||W pre f
i,k −W p̃i,k||

2 (20)

where the number of joints Npos = 8, W pre f
i,k are the joint positions based on the Vicon data, and Nk is the

number of total samples of each trial.
The RMSE orientation error was calculated using the sum of squared L2-norm [24], [11]. With all segment
orientations given by SO = {Pel, Rt, Rs, R f , Lt, Ls, L f }, eori was calculated as:

eori =
1

Nk Nori

Nk

∑
k=1

∑
i∈SO

||log(Wqre f
B,i,k ⊗

W q̃B,i,k
−1)v||2 (21)

where the number of orientations Nori = 7, Wqre f
B,i,k is the segment orientation based on Vicon data, and the

v-operator is used to extract the coordinates of the skew-symmetric matrix. Both epos and eori results will be
compared to the findings of Sy et al. [11] [8].

2.8.4 Joint angle RMSEs and correlation coefficients (CCs)

In order to evaluate the joint angles estimated by the proposed method, we compared the joint angle RMSEs
and CCs across all trials to those reported in other literature.
Both RMSE and CC of each angle of ΘR and ΘL were calculated for each trial and also given by mean and
SD for every task. These joint angle RMSEs and CCs are commonly used in gait analysis papers, and we
will compare our results with the work of Sy et al. [11] [8].

2.8.5 Straight Walk RMSEs

To evaluate the joint angles during straight-line walking, we compared the RMSEs of the hips, knees, and
ankles for both legs.
During the walking trial, subjects turned 180 degrees and walked back. To eliminate any negative effects
from this turn, the moment of turning was omitted from the dataset, resulting in an RMSE for straight-line
walking. Then, the average angle of all hip angles (both legs) was calculated. Similarly, the average of knee
and ankle angles of both legs was determined.
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3 Results

3.1 Relative position RMSEs

Using the CMP update results in a relative position estimate that aligns with the reference, as shown in
Figure 3.

Figure 3: The relative distance RMSE of the walk trial between the right foot and the pelvis was estimated using the
FKC-CMP algorithm (blue) and compared to L7S-3I (yellow) [11] and the VICON reference (red). This is an example of
a walk trial.

The FKC-CMP is relatively successful in following the reference for the X-axis. For the Y-axis, our method
can follow the reference, even during the turnaround t = 4 s, while the L7S-3I method has a large offset
compared to the reference. The results for the Z-axis show a more similar outcome. In Figure 4, you can see
that the relative RMSE for the Y-axis of FKC-CMP is smaller for both feet compared to L7S-3I. However, for
the X-axis, the RMSE for the right foot is equal between the two, while for the left foot, the RMSE of L7S-3I
is smaller. Additionally, the RMSEs for the Z-axis are nearly identical.
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Figure 4: The relative distance RMSE of the walk trial is presented using two different algorithms. The estimates are
provided for the left foot (top) and right foot (bottom). These RMSEs were calculated based on the positions by Sy et
al. [11] (L7S-3I) and by the FKC-CMP algorithm.

3.2 Joint angle RMSEs for different inputs

3.2.1 Vicon reference input

Using the FKC-CMP algorithm with Vicon reference input results in accurate joint angle estimates with low
RMSE values.
In Figure 5, the joint angle estimates are displayed for the FKC-CMP algorithm using three different sets of
inputs, combined with the Vicon reference. Using Vicon input (yellow) results in the best estimates for the
joint angles.
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Figure 5: The joint angle estimates of a walk trial for the hip (X, Y, and Z), knee (Y), and ankle (Y) were evaluated using
three different inputs. For FKC-CMP (blue), estimated positions and orientations were used. For FKC-CMP VICON input
(yellow), Vicon positions and orientations were used. For FKC-CMP VICON pos (purple), Vicon positions combined with
estimated orientations were used. These three sets of estimates are plotted against the VICON reference (red).

Furthermore, in Figure 6, the RMSE values for each angle are given for the FKC-CMP algorithm using
different inputs. The RMSE values for each angle, when using Vicon position and orientation input (FKC-
CMP VICON input), indicate that using the reference as input results in accurate joint angles with low RMSE
values. An exception is the hip Z angle, which shows RMSE values of 10.9° and 15.3° for the right and left
leg, respectively.

3.2.2 Impact of different input

Using the estimated orientation provided by the IMUs results in larger RMSE values.
In Figure 6, when using the estimated orientation provided by the IMUs along with the Vicon position
(FKC-CMP VICON pos), the RMSE values for each angle are larger compared to the RMSEs obtained with
the fully Vicon reference input (FKC-CMP VICON input). Comparing the RMSEs provided by the algorithm
using both estimated position and orientation (FKC-CMP) to the RMSEs obtained using Vicon position and
estimated orientation (FKC-CMP VICON pos) reveals only minor differences in RMSE for most angles.
However, an exception is the ankle angle, where the RMSE increases from around 5° up to 15°.
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Figure 6: The joint angles of the hip (X, Y and Z), knee (Y) and ankle (Y) were estimated for different inputs of the
algorithm. The first column displays the RMSEs of the algorithm using Vicon reference position and orientation input
(FKC-CMP VICON input). The next column shows the RMSEs of the algorithm with Vicon position and estimated
orientation (FKC-CMP no PM). Finally, the RMSEs of the algorithm using estimated position and estimated orientation
(FKC-CMP) as input are presented.

3.3 Joint position and segment orientation RMSEs

The mean joint position RMSE and segment orientation RMSE of the FKC-CMP across all tasks and subjects
were 6.2 ± 3.6 cm was 11.5 ± 5.9 °, respectively.
In Table 1, the joint position RMSE for FKC-CMP, averaged across all tasks and subjects, is slightly higher
but comparable to CKF-3IMU and L7S-3I. However, the standard deviation of 3.6, compared to the other
standard deviations of 1.3, suggests a higher variance in our estimated joint positions. The segment ori-
entation RMSE, averaged across all tasks and subjects, is lower than those reported in related literature.
However, the standard deviation of the segment orientation RMSE for L7S-3I is significantly lower than the
other two RMSEs.

Table 1: Mean joint position and segment orientation RMSEs of the proposed FKC-CMP, across all tasks and all subjects
and related literature.

FKC-CMP CKF-3IMU [8] L7S-3I [11]
epos (cm) 6.2 (3.6) 5.2 (1.3) 5.9 (1.3)

eori (°) 11.5 (5.9) 18.9 (5.3) 13.4 (1.9)

3.4 Joint angle RMSEs and correlation coefficients (CCs)

The hip Z angle and the ankle Y angle both have high joint angle RMSE values and low CC values, indicat-
ing poor joint angle estimation. In contrast, the hip X, Y, and knee Y angles show more promising RMSE
and CC values, indicating more acceptable joint angle estimations.
In Figure 7, the RMSE values for the left leg are slightly higher compared to those for the right leg. Specifi-
cally, the hip Z-angle of the left leg is significantly higher than the same angle of the right leg. Additionally,
looking at the CC values, the hip Z angles for the left leg are around zero, while the hip Z-axis angles for
the right leg perform better with values around 0.4. Finally, both ankle angles have higher RMSE values
compared to other angles, and their CC values are close to zero.
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Figure 7: The joint angle RMSE and CC are shown for each angle across all tasks. The different colours indicate
different angles. The full coloured columns belong to the left leg and the gradient columns to the right leg.

3.5 Straight Walk RMSEs

Comparing our FKC-CMP algorithm to other literature shows comparable values for the knee, while the
hip RMSE is larger than both other works. However, in Table 2, the ankle shows a significantly larger RMSE
value compared to L7S-3I.

Table 2: Mean joint angle RMSEs of the proposed FKC-CMP, during straight walking across all subjects and related
literature.

Algorithm FKC-CMP CKF-3IMU [8] L7S-3I [11]
Hip RMSE (°) 6.7 (3.8) 4.4 (1.9) 5.0 (1.0)

Knee RMSE (°) 7.7 (1.7) 5.7 (2.2) 8.2 (2.2)
Ankle RMSE (°) 15.0 (2.0) - 5.9 (1.6)
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4 Discussion

4.1 Relative position RMSEs

Compared to Sy et al. [11], our CMP update seems to perform better than the pseudo-measurement (PM)
method in reducing drift of the relative position between pelvis and foot. While the relative RMSEs are
similar for the Z-axis and similar or worse for the X-axis, the relative RMSEs are better for the Y-axis. This
suggests that the CMP update outperforms the pelvis PM used by Sy et al. [11].
Furthermore, the positions in our work are estimated after the KF for estimating the feet and CoM positions
part and do not incorporate constraints. In contrast, Sy et al. use constraints such as fixed leg lengths and
a hinged knee joint to determine the feet and CoM positions. Despite using fewer constraints and thus
less information, this emphasizes that the CMP update seems to perform better than the PM used by Sy et
al. [11].

4.2 Joint angle RMSEs for different inputs

In Figure 5, the Vicon reference for the left hip rotation angle indicates rotations occurring during the walk,
ranging from 0 degrees to -40 degrees. However, when inspecting the data, this rotation is observed only
for the left leg and not for the right leg. Additionally, in Figure 7, the CC values for the left leg hip rotation
are almost zero, while the CC values for the right leg hip rotation are around 0.4, indicating a weak but
present correlation between the Vicon reference and the estimated hip rotation. Moreover, when inspecting
the walk trial data, there is no movement which requires such a hip rotation. This suggests that the Vicon
reference hip rotation data may be inaccurate. This could potentially be due to poor calibration, marker
placement, or because the Vicon system has difficulty with detecting hip rotations due to the subtle nature
of these movements.
Furthermore, the ankle flexion estimates for FKC-CMP are highly volatile, often reaching the maximum
and minimum angles of 20 and -25 degrees. However, when comparing the FKC-CMP estimates to the
FKC-CMP VICON input estimates, it is clear that the algorithm can provide accurate ankle estimates when
given correct positions and orientations. This indicates that inaccuracies in positions, orientations, or other
joint angle estimates significantly impair the algorithm’s ability to measure accurate ankle flexion.
Finally, the algorithm appears to handle singularities effectively. For instance, when the knee is extended,
the relative distance between the hip and the ankle for each foot increases as expected, but does not take
disproportionally large values.

4.3 Comparing RMSE values to other literature

Comparing our joint position RMSE and segment orientation RMSE to other literature in Table 1, shows
overall comparable results. However, the notably higher standard deviation for joint position RMSE sug-
gests a high variance in estimating the joint positions. This could be attributed to the calculation of the ankle
and phalanges positions, which are derived from the foot position. Therefore, any inaccuracies in the foot
position estimate will proportionally affect the estimates for the ankle and phalanges positions.
The FKC-CMP algorithm in Figure 7 shows that both RMSE values and CC values are consistent among the
different walking tasks. Additionally, the RMSE and CC values are comparable between the left and right
leg, except for the hip Z angle.
Comparing the straight walk RMSEs to other literature in Table 2 shows that our algorithm performs sim-
ilarly for the hip and the knee angles, while performing significantly worse for the ankle angle. This large
ankle angle RMSE was already present in other tasks and still occurs during a straight walking task. There-
fore, comparing the performance of our algorithm to those in other literature suggests that our algorithm is
better suited for walking tasks involving varied movements, while other algorithms may be more appropri-
ate for straight-line walking tasks.

4.4 Limitations

One limitation of the FKC-CMP algorithm is the need for initial values. If there is no Vicon available pro-
viding these initial values, they can be obtained through other means. For example, segment lengths can
be measured using a tape measure. These measurements are crucial for forward kinematics and must be
accurate. Furthermore, initial angles can be estimated by assuming a pose that sets all joint angles to known
values for that specific position.
Another limitation is that the algorithm in this research uses step data, which was provided by Sy et al. [8]
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in their dataset. Therefore, when using other data, a step detection algorithm is necessary to accurately
identify when a step occurs.

4.5 Future work

Currently, our algorithm first uses a KF to estimate the positions of the feet and the CoM, and then uses
this information in another KF to estimate the joint angles using constraints. These two processes could
be combined, which could enhance the accuracy of position estimates by applying the constraints from the
second KF to the initial position estimation. More accurate position estimates could subsequently improve
the joint angle estimates and overall lower-body kinematics.
Furthermore, for future use, the accuracy of ankle joint estimates needs improvement. Currently, the re-
sults indicate that the algorithm cannot accurately estimate the ankle joint with the current position and
orientation estimates. While Figure 6 shows that accurate position and orientation data can lead to precise
ankle joint angle estimates, achieving such accuracy in real-world measurements is challenging. Therefore,
another method that provides accurate ankle angle measurements is necessary to enhance the FKC-CMP
algorithm.

5 Conclusion

This paper presents a forward kinematics chain-based constrained Kalman filter to estimate lower-body
kinematics during walking using a small set of IMUs. Using walking tasks data from an online dataset, the
mean joint position RMSE and segment orientation RMSE across all tasks and subjects were 6.2 ± 3.6 cm
and 11.5 ± 5.9°, respectively, indicating a reasonable level of accuracy.
Furthermore, the algorithm was able to estimate most joint angles well, but requires improvement for the
ankle joint estimation.
Future work should focus on refining the ankle joint estimates, as the current method lacks precision. Addi-
tionally, combining the two Kalman filters could enhance the accuracy of position estimates, subsequently
improving the joint angle estimates and overall lower-body kinematics.
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A Linearisation of nonlinear equality constraints

Equation (14) can be simplified, written as:

f (Θ̃L)4×1 = (B,Pel q̃B,L f )4×1 (22)

Firstly, the partial derivatives of f (Θ̃L) with respect to (Θ̃L) (also known as Jacobian matrix) is calculated
using the partial derivatives method of a vector function with respect to a variable vector in matrix calculus
[22], which gives:
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(23)

Then via Taylor series approximation this can be linearised as in (24) and this provides the linearised con-
straint (16).
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Similarly, the same linearisation can be done for (13) to obtain (15).
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