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Abstract

Endoscopy is a common medical procedure, performed millions of times per year worldwide, to di-
agnose and treat gastro-intestinal and respiratory diseases. These procedures are, however, not with-
out risk. There is a chance that improper control of the endoscope by the endoscopist, caused by a
lack of information about the robot’s surroundings, can cause the endoscope to perforate the walls
of an organ, which is life-threatening. This thesis presents an 8 DOF tendon continuum robot, that
is capable of avoiding the walls of the organ its passing through. It has 24 optical reflective sensors
on the robot’s sides, pointed outwards in four sets of six. These sense the robot’s surroundings up
to a distance of 3.5 cm, with a field of view of 40.8◦ per sensor. Two control methods evaluated: 1)
A PID controller that controlled the 8 DOF as 4 sets of 2 DOF. 2) A model-based (MB) controller
that uses the constant curvature model to control all 8 DOF. In simulations, the MB controller had a
92.6%(p = 0.000) loss reduction compared to the PID controller when positioning the robot in a de-
sired location. Physical robot experiments were performed whereby an obstacle was moved towards
the robot to measure the robot’s deflection. If this obstacle was visible only to the fourth segment
from the base, then the the MB controller was able to avoid the obstacle for a 92.9% (p = 1.0 · 10−10)
longer distance than the PID controller. If the obstacle was visible to both the fourth and third seg-
ment, the MB controller outperformed the PID controller by 65.5% (p = 1.8 · 10−5). If the obstacle
was visible only to the third segment, the MB controller is outperformed by the PID controller by
23.5% (p = 1.9 · 10−6). Overall, the robot and the MB controller demonstrated effective obstacle
avoidance and adaptability within constrained environments. Further research should focus on reduc-
ing the robot size, to more closely align its design with endoscopes.

1 Introduction

One of the main methods that allows physicians
to visually inspect the internal organs of their
patients is endoscopy. It is a common medical
procedure, performed over 22.2 million times in
2019 in the US alone [1]. These procedures are
vital steps in the diagnosis of illnesses of a pa-
tient, either by visually inspecting an abnormality
present on organ tissue or by taking samples for
histopathology[2]. The latter of these procedures
can only be done with flexible endoscopes.
Flexible endoscopes are one of the two main
types of endoscopes, the other being rigid
endoscopes[3]. Rigid endoscopes are commonly
used in minimally invasive procedures. Flexible
endoscopes are instead used for a wider range
of diagnostic and therapeutic applications. It
can perform these procedures whilst inside var-
ious cavities of the human body, also called the

lumen[4], such as the GastroIntestinal (GI) or the
respiratory system[3].
Endoscopes are made up of different parts. There
is the handle, which the endoscopist uses to con-
trol the endoscope. There is also the insertion
tube, which is the part of the endoscope that en-
ters the human body. The flexible tip of the endo-
scope is connected to the insertion tube. On the
tip, there is a camera, as well as a channel to al-
low the usage of tools during the procedure. The
flexible tips curvature can be actively controlled
by the physician. This actuation is done with a set
of tendons, that are linked to a wheel or lever on
the handle of the endoscope. in essence, this is a
manually controlled Tendon Continuum Robot
(TDCR) [5]. The curvature control is necessary,
as this is used to steer the endoscope as it moves
through the body during its insertion. It is also
used to orient the tip towards a region of interest
inside the lumen during the procedure.
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Controlling the endoscopes is something that
requires experience, as its controls are not intu-
itive [6]. There is a strong correlation between
the speed of the endoscope insertion and the ex-
perience level of an endoscopist, showing that
learning to control an endoscope takes time and
experience to do successfully.
Improper control of the endoscope can cause
complications to occur. The tip might hit the walls
of the lumen, or shear against them during the
procedure [7], causing the wall of the lumen to be
perforated. This perforation can also occur fur-
ther down along the endoscope, along the bent
section of an endoscope. As the endoscope is ma-
noeuvred, this section of the tube might start to
put pressure against the walls of the lumen, and
if sufficient pressure is applied, a perforation will
also occur at this location [8].
Perforation of the walls of the lumen can be life-
threatening. If they occur in the upper GI tract
have a mortality rate of 2% and 36% [9], and can
occur between 1 in 1100 and 1 in 2500 cases. In
colonoscopies, perforations occur between 0.03%
and 0.8% of cases.
The risk of a perforation can be reduced by better
control of the endoscope. More comprehensive
information about the surroundings of the endo-
scope can help in that control. One of the ways
control was improved was by using haptic devices
[6]. These enabled the user to intuitively steer the
tip of the endoscope, and enable a more intuitive
method of control. This did not fully solve the
issue, however, as the endoscopists were more
adept at using the conventional control method.
Other research looked into the automation of the
endoscope guidance and control. One method is
to use the front view of the endoscope camera to
automate. [10]. This method limits can perfora-
tions of the tip of the endoscope by trying to keep
the endoscope view in the centre of the lumen.
This is effective, however, it only works for ob-
stacles that can be seen through the front-facing
camera. Perforations caused by the sides of the
flexible tip section or the insertion tube are not
prevented. This method also only works on en-
doscopes that have a front-facing camera. Not all
endoscopes contain a front-facing camera, such
as echo-scopes [3] and as such this method might
not work. Looking more broadly in the field of
continuum robotics, a lot of research is focused on
automated control of TDCR using various control

methods[11]. Many of these works use either an
external camera setup to track and estimate the
pose of the robot, or another method of externally
measuring the pose of the robot to calculate the
controller response. In a medical context, this can
be done using an external imaging method such
as ultrasound [12]. However, this adds another ex-
pensive medical device to control the first, which
is undesired. Some other methods [13] use force
feedback from the endoscopes surroundings for
automated control through that environment. This,
however, means that the robot must already be
in contact with the walls of the lumen before it
can start avoiding them. Placing sensors upon the
robot itself is a common method to inform con-
trollers [14], however it is only rarely applied in,
TDCR context. A TDCR [15] was developed that
did use optical and force sensors along the length
of the robot to estimate the robot surroundings. Its
applicability to endoscopy is limited however, as
the sensor suite that was too large to implement in
endoscopes. Furthermore, the sensor refresh rate
was low, which complicated control.

There are methods that are capable of measuring
the surroundings of an endoscope. Capacitive sen-
sors [16] can detect the distance of the tip from its
surrounding environment. Echo-endoscopes and
optical coherence tomography endoscope sensors
are also not pointed in the forward direction[3],
although these are used in a diagnostic capacity,
rather than to improve control.

Another advancement in endoscopy itself is the
creation of more complex multi-bending endo-
scopes [17]. These endoscopes have an additional
bending segment, doubling the Degrees of Free-
dom (DOF) of the continuum robot. Their design
allows the user to more effectively reach regions
of interest in the lumen that other endoscopes can-
not. However, The control of these endoscopes is
more difficult than conventional endoscopes [18],

To generalize, it can be seen that a lot of work has
been done to make endoscopy a safer procedure
for the patient and in automating the the control of
tendon continuum robots. However, these control
methods often rely on external sensing methods,
or only use the front facing camera of the endo-
scope. This all means that the problem of perfo-
rations of the walls of the lumen has not yet been
solved by the field, and it shows that there is rea-
son to explore a solution to these problems. From
this, the question can be posed:
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How can a multi-segment tendon continuum
robot be designed and controlled so that it avoids
the walls of the lumen?
Here, a novel fusion of endoscopy sensing and
control will be utilized to both estimate the po-
sition of the robot segments within the lumen by
using integrated sensors. It can then calculate a
control response to ensure it will stay within the
centre of the lumen.

2 Materials and Methods

The environment around which the robot is de-
signed is the ”lumen”, which is defined as ”the
space inside a tube, blood-vessel or hollow organ”
[4]. For example, he stomach, oesophagus, colon,
and small intestines are all lumena.

These areas are highly diverse in their geome-
try. The stomach is an open cavity, the oesophagus
is an approximately linear tube, whilst the colon
and small intestines contain multitudes of curves
in three-dimensional space [4]. The cross-sectional
diameters of these lumena vary, with the stomach
and large intestine being the largest at about 7 cm
[4], while the small intestine and oesophagus are
smaller. For this reason, the largest endoscopes
have a diameter of 12.8 mm [19]. As each endo-
scope has design requirements laid out by the spe-
cific geometry of its environment it will be used in,
it will be impossible to create a single robot arm
that is capable of performing well in all these en-
vironments. Instead, it was chosen to design the
robot arm in such a way that it is capable of making
omnidirectional curved bending motions in three-
dimensional space to allow the testing and valida-
tion of sensorization and control. Further research
can then focus on applying the concept to specific
endoscope types. Regardless of the specific endo-
scope type, all designs must operate inside the hu-
man body. As such, the robot must be able to detect
the distance to the walls of the lumen.

Endoscopic operation time varies, full endo-
scopic procedures in the oesophagus can last for
5.8 minutes [20], whilst the insertion time for some
colonoscopies takes 13.5 minutes [21]. In all cases,
however, this is so short that the robot must be
able to react to its surroundings in a short time
frame. So, real-time control [22] is required to en-
sure the functionality of this robot. Normal endo-
scope cameras have frame rates of 25 to 30 Hz [23],
which is sufficient for the endoscopist to safely

guide the endoscope through the human body. This
means that the controller and sensor must also be
able to have a control speed of at least 25 Hz. This
controller must be designed so that it can avoids
obstacles, and by doing so, conform the robot to its
environment.

The requirements can be summarized as follows:

1. The robot must be able to sense the distance
from itself to the walls of the lumen.

2. The robot arm must be smaller than 12.8mm
in diameter.

3. The robot must be able to curve omnidirec-
tionally in three-dimensional space.

4. The robot must be controllable in real-time,
with a control loop speed of at least 25 Hz.

5. The robot must be able to avoid obstacles and
conform itself to an environment.

2.1 Robot Design

The full robot that was designed can be seen in
figure 1.D. The robot consists of a robot arm con-
nected to a rectangular box containing servo actu-
ators, with the control electronics placed on top.

The robot arm is analogous to the insertion tube
of an endoscope, without its outer shell, and with
modifications to simplify the construction. The
sensors or the robot are spaced equally around its
radius, upon 4 disks. The rest of the robot is analo-
gous to the handle of the robot, which is responsi-
ble for the actuation of the arm in a specific config-
uration. Signal processing, controller algorithms
and tendon actuation are all performed in this part.
To establish this design, the general shape must
first be ascertained. Specifically, the number of
segments that can be actuated by the robot. For
this, two approaches can be followed:

• An endoscope with only one bendable section
and an otherwise passive insertion tube.

• An endoscope whose entire insertion tube
consists of bendable segments, making it fully
actuated.

The single bendable segment is the most similar
to the current form factor of the majority of endo-
scopes. However, this design is limited in its range
of motion, as it has, at most, 2 DOF. The develop-
ment of Multi-bending endoscopes [17] shows that
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an increase in the range of motion is desired. A
fully actuated insertion tube has an increased DOF,
but the construction is more complex, due to the in-
creased amount of components. For example, the
”Harvard Apparatus Flexible Endoscope” (HAFE)
[24] has a length of 300 mm, with a bendable sec-
tion with a length of 30 mm. Therefore, a fully
actuated insertion tube would require 10 bendable
segments, which gives 20 DOF, at the cost of a ten-
fold increase of tendons in the system.

In the end, it was chosen to construct the robot
with the entire insertion tube consisting of bend-
able sections. The reasoning was mostly practical,
as it was easier to convert actuated segments to pas-
sive segments than to add new actuated segments
to a passive tube. This allows for the evaluation of
the control scheme in both configurations. There-
fore, the robot was designed to have four bendable
segments. This allows for L and S configurations
of the robotic arm, whilst not having a design so
complex that it could not have been made in a rea-
sonable time frame. The robot arm was chosen to
to have a length of 25 cm as this was the length of
the available spring which was used as the spine of
the robot. The diameter of this spring was 9 mm.

2.1.1 Tendons and Actuation

To be able to control a tendon continuum robot in
three dimensions, a minimum of three tendons are
needed [5]. Actuation of a single segment with
four tendons is also possible and allows control of
the curvature with only two actuators instead of
three. However, more tendons increase the com-
plexity of the robot arm design, whilst more motors
only require more space in the base of the robot.
Having a less complex robot arm is preferable to
having a smaller robot base, and as such, a three-
tendon configuration was chosen.

For the actuators, position-controlled servos
were used. These servos have an internal PID con-
troller, which moves them to any angle between 0◦

and 180◦. The robot can control this angle by trans-
mitting a PWM signal to each of these motors. As
there are four segments, with three tendons each,
a total of 12 of these servos are required. Each
of these tendons has its guiding holes in the robot
disks, as seen in figure 1.C.1.

For a single segment, the three tendons are
spaced 120◦ from one another, as seen in equation
6. To then space out all four segments equally, each

set of tendons will need to be rotated with 30◦ com-
pared to the previous, which is also accounted for
in 6 with the Nseg term. This ensures that each
of the segments has the same orientation definition
in three-dimensional space. The tendons are con-
nected to the robot with a pulley. These ensure a
larger ∆ln is possible for the same rotation of the
servo.

2.2 Sensors

The sensors of the robot were placed upon the
robot itself. This allows for low latency integration
of the sensor response, as well as an occlusion-free
view of the surroundings of the robot [14].

Both capacitive sensors [16] and optical Time Of
Flight (TOF) sensors [15] are sensor methods that
have previously been used as proximity sensors on
continuum robots in this manner. These implemen-
tations both had their difficulties. Capacitive sen-
sors are prone to parasitic capacitance [16] and are
difficult to manufacture. TOF sensors need time
to converge to a solution, which might slow down
the overall speed of data acquisition, and thus limit
the speed of the robotic control[15]. Instead, in
this research, reflective optical sensors were cho-
sen. These were chosen as they are commercially
available in a small size[25], whilst being cheap,
and because of their ease of use and implementa-
tion. Optical proximity sensors also use a diverg-
ing light source [26], which might more readily
pick up obstacles when compared to the laser of
a TOF.

2.2.1 Sensor Design

The design is as follows: an infrared LED placed
next to a photo-diode, called a Light Receiving
Diode (LRD) for clarity. If the LED is turned on,
the LRD measures a signal only if an obstacle re-
flects the light from the LED back into the LRD
[26]. The intensity of the reflected light Lraw is
proportional to the distance of the obstacle as fol-
lows:

Lraw ∝ 1

distance4
(1)

This equation is idealized, and the usage of these
sensors in a real environment complicates this.
Most notably, external light sources will influ-
ence the brightness that is measured by the sensor,
which reduces the accuracy of 1. This is solved by
first measuring the light intensity Lambient whilst
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Figure 1: A shows the schematic diagram of the electronics, with the RPI, and the method to control
the tendons (grey arrows) and the sensors (green and purple arrows). Power, ground, as well as aux-
iliary components are omitted for clarity. MULTIPLEX is the Analog Multiplexer chip. PWM is the
Pulse Width Modulation multiplexer board. ADC is the Analog to Digital Converter chip. GPIO, SPI
and I2C are three different communication protocols. The arrows indicate the direction of informa-
tion flow. B shows the method by which the 12 motors are placed in the robot, with 2 of these plates.
C shows the full assembly of the disks of the robot. C.1 shows the acrylic disk. C.2 shows how the two
inner components are fitted onto the disk. C.3 shows how the sensors are fitted onto the inner com-
ponents. C.4 shows how the outer components are fitted onto the inner components. D shows the full
robot, with the components highlighted. 5



the LED is off, before measuring with the LED on.
The ”true” signal Lsignal can then be calculated as:

Lsignal = Lraw − Lambient (2)

To then be able to convert this signal into mean-
ingful data, Lsignal needs to be calibrated. This is
done by measuring the maximum (Lmax) and min-
imum (Lmin) sensor response for each sensor and
then applying min-max normalization [27]

Ln =
Lsignal − Lmin

Lmax − Lmin
(3)

This results in 0 ≤ Ln ≤ 1 for all sensors. How-
ever, Ln still follows the curve of 1. If this signal
was used for control, it would bias the controller
response, which is undesirable. Instead, the signal
must be linearized. 1 can be rewritten into:

distance = a 4
√

Ln + b (4)

Where a and b can be fitted against a measured
signal-to-distance graph. To do this, a small test
setup was built with a sliding rectangular obstacle
connected to one sensor. The sensor signal was
measured as the obstacle was slid to specific dis-
tances along the slider. This data was then recorded
and used to fit 4. However, in doing so, a prob-
lem arose, as the final fit of the fitted equation was
so poor that it was unusable in practice. Instead,
5 was found to better approximate the signal re-
sponse found with the test setup.

dsignal = 6.0(Ln−1)14−0.1(Ln−1)4−1.5(Ln−1)
(5)

where dsignal is the distance of the obstacle from
the sensor in centimetres.

2.2.2 Placement and Wiring

The robot must be able to see obstacles in a 360◦

arc around its central spine. As each sensor only
has a limited Field Of View (FOV), we need multi-
ple sensors to be able to measure this full arc. How-
ever, each sensor needs to be powered and read for
it to be of use. This means that there is a balance
that must be attained within the design. Too few
sensors and obstacles might be missed. Too many
sensors and the wiring will be impractical to fit
within the robot. Initial experiments with four sen-
sors on a single segment showed that there were
large gaps in the overall sensed area, and it was
therefore chosen to have six sensors placed on each

of the robot segments. This means that the robot
has 24 total sensors placed on it.

The robot should have few wires, as each wire
increases the rigidity of the system. Furthermore,
as endoscopes have limited internal space, addi-
tional wires might be hard to fit. Each sensor has
four total pins: two for the LED and two for the
LRD. The LED has a signal pin, whose current de-
cides the LED’s brightness, and a ground pin. The
LRDs were connected in ”photoconductive mode”
[28], and as such, they have a positive voltage pin
and a signal pin.

This brings the total number of pins to 96. How-
ever, each ground and positive pin is the same. If
these are connected, we are left with 48 individ-
ual connections. A few approaches are possible
to reduce this number further. In other work fea-
turing a similar design goal[15], it was chosen to
process the signals of each sensor on the disk and
then transmit the result using I2C. While this is an
elegant solution, it requires a space on the disk to
place the ICs that would handle the signal process-
ing, and this space is not available due to the size
limitations imposed by our design requirements.

Instead, it was chosen to have sets of sensors
share signal wires. To be able to do this, we can use
the way the sensor works to our advantage. Each
sensor only works if both the LED is on and the
LRD is measuring a signal. If the signal of the
LRD is not captured, it does not matter if the LED
is on or off. And because of 2, if the LED is never
turned on, the signal will be 0. This means that
multiple sensors can share the same signal lines as
long as each sensor has a unique combination of
signal lines, so a minimum of 10 signal wires in to-
tal is necessary for all the sensors to function. This,
however, would not be ideal as this means that 2
LRDs or two LEDs on a single segment would be
turned on at one time. Instead, it was chosen to
have 12 signal wires, so that each no sensors on a
segment would share signal wires.

By reducing the wires in this manner, signal
crosstalk might occur if two sensors are close to-
gether and the LED of one is on whilst the LRD
of the other is also on. To minimize this, the robot
was constructed in such a way that the LED and
LRD of each signal wire are as far away from one
another as possible unless they combine into a sen-
sor.

The sensors can then be read by the rest of the
robot by turning on a specific LED signal wire, fol-
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Table 1: The table shows the LRD wires that cor-
respond to each LED wire. Selecting a number
combination present in this table enables a spe-
cific sensor.

LED 0 1 2
LRD 3,2,5,4 5,0,3,1 4,1,0,3

LED 3 4 5
LRD 1,3,2,5 2,4,1,0 0,5,4,2

lowed by reading the 4 LRD signals that are rele-
vant to that wire, as shown in table 1. The robot
will continuously measure its surroundings when-
ever it is turned on, as fast as the system is able.
Because of some time delays that are required for
the proper functioning of the code, this results in a
sensor rate of ∼ 110 Hz.

As this sensor rate can be higher than the calcu-
lation speed of the controller, it is possible for the
Sensors to the surroundings of the robot multiple
times before the results are necessary. In this case,
the sensor results are averaged to minimize some
of the noise seen in the sensor signal response. If
the sensor is instead slower than the controller, the
controller will use the last previously sent sensor
signal for its control input, to ensure that the robot
control does not need to wait for the sensors.

2.2.3 Disks and Spacers

Knowing the design of the sensors, we can con-
struct disks and spacers. These disks are both the
housing for the sensors, as well as the connection
point of the tendons, used for the actuation. The
spacers help guide the tendons along the spine.
Both the disks and spacers were manufactured us-
ing a laser cutter as their 2D geometry was well
suited for this fabrication method. Acrylic was
chosen as it is lightweight, durable, and easily cut
with the laser. During prototyping, plywood was
also noted as a viable alternative to acrylic. How-
ever, it was more likely to contain certain defects,
notably holes in the material, which could reduce
the strength of the disk or spacer. The disks and
spacers were connected to the central spine using
hot glue.

The disk in figure 1.C.1 contains a central hole
0.5 mm larger than the diameter of the spring. This
was done to both ensure easy assembly, and to

leave some space so that the glue could get a good
bond with both the disk and the spring. 4 cutouts
were spaced evenly across the disk, which allows
the routing of wires through the disk. On the out-
side rim, 12 holes are placed evenly around the
disk, one for each tendon of the robot. Routing
each tendon into a separate hole prevents tangling.
As the robot has no internal knowledge of the ac-
tual tension on each of the tendons, it cannot know
if they are slack or not. In an ideal scenario, this
would never occur. However, if the robot is touch-
ing the environment, or if its bending is not ideal,
the equations in 6 do not hold, and the tendons be-
come slack. It also prevents friction between wires,
as they are not in contact with each other.

On the outer rim of the disk, 6 sets of semicircu-
lar cutouts are present that connect the disk to the
sensor assembly. Two semicircles were chosen in-
stead of one to ensure a larger surface area between
the two components as they are press-fitted to-
gether whilst simultaneously ensuring that enough
material is present around the holes through which
the tendons pass.

The spacers are identical to the disks, lacking
only the 6 sets of semicircles as no sensors are con-
nected to the spacers.

The sensor assembly that is placed on the disks
comprises of four structural components and 12
sensor components(6 LEDS and 6 photo-diodes).

Figure 1.C.2 shows the first two components,
made of 3d printed PLA. They are mirrors of each
other and can be press-fitted onto the disk, guided
by semicircular extrusions on the inside of the
component. The overhang of these components
around the disk keeps the signal wires within the
robot, protecting them.

The first two components contain holes in which
the 12 sensors are placed, as seen in figure 1.C.3.
These holes protect and electrically isolate the sen-
sors’ cathodes and anodes. This design allows the
sensors to be easily replaced if they break, as they
can be lifted out of these holes and de-soldered
from the wires. The groove on the outside allows
for an easier method to connect the photodiodes in
parallel by laying the positive wire in that groove.
Only one groove is needed, but to simplify man-
ufacturing, both mirrored components contain the
groove.

In Figure 1.C.4 the last two components of the
assembly can be seen. These were also made of
3D-printed PLA. Their purpose is to clamp the
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sensors so that they point in the same direction
and cannot move. They also protect the wiring
and further electrically isolate the cathodes and an-
odes of the sensors. It also gives the overall de-
sign a smoother exterior. They are press-fitted onto
the inner disk assembly, and during testing, this
method was deemed to be satisfactory, as they do
not fall off during trials, even when interacting with
the environment.

During testing, it was observed that the overhang
of the end-effector of the robot would sometimes
get stuck to the edges of the obstacles after tri-
als and that the wiring could come in contact with
these obstacles, risking damage. For this reason,
one of the outer shell components was expanded to
have a hemispherical shape to give the end effec-
tor of the robot a more conical appearance. This
successfully protected the wires and prevented the
robot from getting stuck

2.3 Controller

To create a control scheme that would function
well within the given situation, we need to take a
look at what information we can gather from the
robot and its environment, as well as what the de-
sired task entails. The task is to move through a
tube-shaped environment without hitting or dam-
aging the walls during an endoscopy. This gives us
the following constraints:

• The control must be in real-time, which
means that the data collected from the robot
must be processed in a short time frame [22]
of 25 Hz [23].

• The control needs to be able to individually
control the separate segments simultaneously.

• The only inputs are the sensor output values
and the previous control positions.

Within the literature, control within human-robot
interaction is generally based on allowing a rigid
robot to perform a task whilst avoiding certain ar-
eas within its environment [14, 29]. This way
of thinking is not applicable in this work, for a
few reasons. Firstly, the environment of the robot
is very constrained, with obstacles surrounding it
(nearly) entirely. Secondly, the robot itself does
not need to move its end effector to a certain pre-
cise position in three-dimensional space, its main
task is to avoid obstacles as the entire robot arm is
moved forward or backward.

For these reasons, it is better to redefine the
problem. The desired control task of the robot is
that it needs to be able to conform to a changing
constraining environment, in real-time. For this,
two control approaches were identified. The first
method is similar to the rigid robot control method
described in [29]. It is a greedy control algorithm
whereby each segment only considers the sensors
present on that segment to calculate a position that
avoids its environment. As the method to calcu-
late this position uses a PID controller, we call this
method the PID controller. The second method in-
stead considers the responses of all sensors to cal-
culate the positions that avoid the environment for
all the segments simultaneously. As the method to
calculate these positions uses a kinematic model,
this method is called the Model-Based controller
(MB).

Both methods are implemented onto the same
robot to find what control method would work best,
both in simulation and on the physical robot.

2.3.1 PID Controller

Figure 2: The full control loop of the PID con-
troller.

As each segment is controlled individually, we
only need to consider the position of a single seg-
ment. We can describe the current position of that
segment with ϕc and κc, where the former de-
scribes the angle by which the segment deflects
from 0 to 2π, and the latter describes the amount
that the segment deflects away from the centre line
of the segment. If we have three tendons which
control the position of the segment placed equidis-
tant around the centre axis, we can write the fol-
lowing set of equations of the length of each of
these segments to constrain the movement of this
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specific segment [5]:

l1 =κcsin(ϕc +
−0.5 +Nseg/2

3
2π) (6)

l2 =κcsin(ϕc +
1.5 +Nseg/2

3
2π) (7)

l3 =κcsin(ϕc +
3.5 +Nseg/2

3
2π) (8)

where Nseg = 1, 2, 3, 4 indicates the segment.
These equations ensure that the sum of the length
of the tendons stays constant, regardless of the cho-
sen ϕ and κ. Therefore, the robot workspace can be
defined as a polar coordinate system, where ϕ and
κ are the angle and magnitude.

Performing PID control with polar coordinates
will cause undesired control movements for our
robot design. The coordinate system is therefore
converted from polar to Cartesian coordinates σ
and ρ:

σ =κ cos(ϕ) (9)

ρ =κ sin(ϕ) (10)

The controller input can be defined as the average
of the distances di measured by each of the sensors
per segment i = 1, .., 8. We use A rotation matrix
to account for the two-dimensional rotation of each
sensor as follows:[

dσi
dρi

]
= Ri

[
di
0

]
(11)

with which we can calculate the average qd, which
is our desired control position defined in σ and ρ.
We can then subtract the current robot configura-
tion qc. This gives us an error e. This is then passed
through a PID controller, which was tuned so that
the system would not move too fast or erratically.
The output will be the new qc. this value will need
to be converted back into ϕ and κ by converting it
back into polar coordinates:

κc =
√
σ2
c + ρ2c (12)

ϕc =atan2(σc, ρc) (13)

These values can be input into 6 to move the robot
to the new position. The servos are run using their
own internal PID control that moves them to the
new position. It is not possible to retrieve the po-
sition of these servos at any time instance which
makes direct control of the servo impossible. In-
stead, it is assumed that by continuously updating
the position of the servo with positions where ∆qc

Figure 3: The full control loop of the model-based
controller. GD1 to GD4 are all the gradient de-
scent sub-steps of the controller, one for each seg-
ment

is small, the servo has time to move to the approxi-
mate new location that is desired before a new qc is
given. Furthermore, these servos can dynamically
change their desired endpoint, which means that if
a new desired position is calculated, the robot will
instantly try and move to this new point.
The full PID control scheme can be seen in figure
2.

2.3.2 Model Based Controller

We can expand the equations found in 6 to create
the Constant Curvature model as described in [5].
The model describes a transformation matrix:

T (κ, ϕ, s) =
cosϕ cosκs − sinϕ cos ϕ sinκs cosϕ(1−cosκs)

κ

sinϕ cosκs cosϕ sin ϕ sinκs sinϕ(1−cosκs)
κ

− sinκs 0 cosκs sinκs
κ

0 0 0 1


(14)

where s is the length along the curve. This curva-
ture is capable of approximating the kinematics of one
segment. Each following segment can be calculated
as a kinematic chain of the previous segments where
n = 1, 2, 3, 4.

Tn = T1...Tn−1 (15)

Using these matrices we can entirely describe the ap-
proximate shape of the robot. Furthermore, we can use
these matrices to describe the sensor responses in this
three-dimensional space as follows:

dxni
dyni
dzni
1

 = TnRi


0
di
0
1

 (16)

where the sensors is described as i = 1n, ..., 6n and
Ri as three dimensional rotation matrix in the z axis.
With this equation, all sensor responses can be defined
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in three-dimensional space. The overall desired posi-
tion can then be calculated by averaging the sensor re-
sponses per segment, resulting in a three-dimensional
qdn.

In any case other than d1n = d2n = ... = d6n, the
new desired position will lie outside of the workspace of
that segment, and while multiple segments can be used
to allow a single segment achieve some of these posi-
tions, a solution is not possible in the case where all four
segments must reach an unreachable position. There-
fore, the controller must be robust against unreachable
desired configurations.
This was achieved using gradient descent. For this, a
minimizable loss function is required. We can define a
general loss function for a multi-segment robot with n
segments as:

L(qdn, qcn) =|qd − qc| (17)

qd =


qd1
qd2
...
qdn

, qc =

qc1
qc2
...
qdn

 (18)

We can calculate the full set of desired positions qd as
previously discussed for any robot shape, as long as that
shape is known. qc is the current position of the final
disk of each segment, described in x, y, z. We can cal-
culate this position using:


qc1
qc2
...
qdn

 =

T1 04 04

04
. . . 04

04 04 T1 . . . Tn



j
j
...
j

 (19)

with j = [0, 0, 0, 1]T . This allows us to fully define
the loss function with known variables as we know the
robots’ positions in κn and ϕn, and qdn can be calcu-
lated using 16. To enable us to then minimize this loss
function, we can use gradient descent.

This once again brings the issue of the polar coordi-
nate definition of κn and ϕn. If we take n = 1 and
plot the loss function, as seen in figure 4 A, we can
see that the loss function contains multiple local min-
ima. Though these minima are identical in value, they
will result in finding solutions such as (κ = a, phi =
b + 2πk) ∨ (κ = −a, ϕ = b + 3πk). By using 9 as
substitutes for κn and ϕn in function 14, the loss func-
tion is redefined to be dependent on Cartesian values
for robot position. In figure 4.B, it can be seen that this
redefinition shows a convex loss function for a single
segment case, which converges to a single κ = a, ϕ = b
solution. Furthermore, it ensures that the robot moves
in ”straight” lines through its workspace, which is im-
portant if the steps of the gradient descent are used as a
control output. The final loss function for four segments

Figure 4: A shows the results of L(κ, ϕ, p1) B
shows L(σ, ρ, p1), where p1 is an point is 3D
space. We see that A shows a wavelike shape, a
result of the sinusoids in the loss function. B in-
stead shows a convex shape, which is preferable.

can then be defined as:

L(σ1, σ2, σ3, σ4, ρ1, ρ2, ρ3, ρ4, s) = |Pd−T1(σ1, ρ1, s) 04 04

04
. . . 04

04 04 T1(σ1, ρ1, s) . . . T4(σ4, ρ4, s)



j
j
...
j

 | (20)

with s being the length of a segment. The gradient can
then be calculated as follows:

∇L(σ1, .., σ4, ρ1, ..., ρ4) =[
∂L

∂σ1
, . . . ,

∂L

∂σ4
,
∂L

∂ρ1
, . . . ,

∂L

∂ρ4

]
(21)

This gradient is used to minimize the loss function using
momentum gradient descent [30]:

q1 = q0 − η∇L(q0)− p (22)
p = η∇L(q0)β (23)

with η as step-size of the gradient descent, and β as the
momentum constant. This system would converge to a
solution, However, when visualizing specific 2D slices
of the 8D loss function, as seen in figure 5, it can be
seen that the system is not a single concave solution as
seen in 4.B. This might cause local minima to be found
instead of the global minima that is desired. In figure 5,
it is seen that the loss function is more chaotic for vari-
ables of different segments( A and B) than for variables
of the same segment (C and D). It was therefore cho-
sen to separate each segment’s gradient function, while
keeping the global loss function. Each segment gradient
descent has a few steps that it performs, after which its
resultant q1 is used as the starting point for the next step.
This also ensures that the gradient descent more closely
follows the movement principles of the real robot con-
figuration. If we run the 8D gradient descent and the
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Figure 5: Four plots showing the same loss func-
tion for different sets of variables, with all oth-
ers constant. in A, the ρ’s of segments two and
three are plotted. In B, the same is done for σ. C
shows ρ and σ of the second segment. D shows
the same, but for the third segment. We see that A
and B are more chaotic than C and D.

segmented gradient descent for the same set of 10,000
tasks with the same allowed computation time for each
task, we see a statistically significant decrease in loss
of 5.4% (p = 9.6 · 10−7) for the segmented method,
which shows that this method is better at finding a min-
imal loss configuration for the robot. The full control
method that is used can be seen in figure 3.

2.4 Electrical Design
For the robot to function, the electrical design of the
robot must include the following subsystems:

• A processor is required that can perform complex
mathematical control operations at 25Hz [23].

• Electronics that can transmit digital and receive
analog signals from the sensor array on the robot
arm.

• Electronics that can generate and transmit PWM
signals to the servo motors.

These subsystems must be connected using low-latency
methods such as GPIO, I2C, or SPI so that real-time
control of the robot is possible. To simplify the design,
the processor that runs the controller should also han-
dle the sensor array and motor subsystems. Based on
these requirements the design shown in figure 1.A was
developed. In grey, the signal path from control output
to motor movement is shown. In green and purple, the
communication with the sensor array is shown.

2.4.1 Central Processor

The central processor can thus be stated to have two
requirements. It must contain low latency IO function-
ality, to be able to control the subsystems, and it must
be able to have a processor powerful enough to perform
the required control calculations and the switching at
the same time. Initial experiments were performed us-
ing the Arduino Mega. which meets these requirements.
However, the Arduino board only has 248kB of storage
[31], which is lower than the required 1.86 MB needed
to store the compiled robot control. Another problem is
that the Arduino Mega is single-threaded. To have the
control and sensing run simultaneously multi-threading
is preferable.

Instead, it was chosen to use a Raspberry Pi 4b (RPI).
The RPI has 16 GB of static storage, which is more than
enough to run the robot control program. The RPI is ca-
pable of running a full Linux operating system. This
allows the usage of C++, with many common libraries,
simplifying the development process. Using the GUI
capabilities of the RPI, the process of development was
simplified, as a debug graphical interface was made that
was able to show relevant sensor, control and actuator
values. This allowed for ”software in the loop” test-
ing of the control, which vastly increased the speed of
implementation of the robotic control onto the RPI. A
downside of the RPI over the Arduino Mega, is its lim-
ited IO capabilities. It lacks an ADC and only has 2
PWM signals. Therefore, external Integrated Circuits
(IC) were required.

2.4.2 Sensor Circuitry

To utilize the sensors, two things are needed: A trans-
mitting signal to power LEDs and receiving a signal to
measure the LRDs. For the LEDs, it is theoretically pos-
sible to directly control them using the General Purpose
Input Output (GPIO) pins on the RPI, however, they
only support limited voltage and current, which would
severely limit LED brightness. Using a separate ana-
log signal instead allows calibration of the LED bright-
ness to optimize measurement accuracy. To switch this
analog signal, an Analog Multiplexer(AM) is used. The
LEDs are connected to this multiplexer in series, as seen
in figure 6. This ensures that all LEDs receive the same
current, as the LEDs might otherwise get damaged. The
AM also has one of its pins connected to a single red
LED. This LED is led is turned on when the sensors
are turned off, to ensure that the system is functional.
The AM has a resistance of 150 Ω [32], which limits
the brightness of the LEDs at 5 volts analog input. This
resistance was reduced to 50 Ω by connecting 3 AM in
parrallel. The AM is controlled with 3 IO signals, con-
nected to the RPI.

The LRDs need to be read using an ADC. During
testing with Arduino, it was observed that 10 bits is
enough precision to be able to measure the signal re-
sponse of the LRD. So a 10-bit ADC was chosen, which
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Figure 6: Figure showing the photodiodes in
white, the IR LEDs in black, and the way they are
wired. The robot contains 6 sets of these wires.

allowed measuring all 6 data channels [33]. The LRDS
are connected in parallel, in photoconductive orienta-
tion. They are connected to the ADC with a 1 MΩ
resistance voltage divider. The ADC measures the volt-
age of the LRD with the highest conductivity, which
is proportional to the amount of light shining on that
LRD[28]. The ADC is connected to the RPI using the
Serial Peripheral Interface (SPI).

Both these systems work better at 5V, compared to
the 3.3V of the RPI. For the ADC a higher voltage
means a larger range that can be measured by the ADC,
as well as an improved communication speed[33]. For
the LEDs, this means a higher maximum analog voltage
[32]. To allow communication between this subsystem
and the RPI, voltage converters were used that allowed
for uninterrupted SPI communication.

2.4.3 Motor Circuitry

The position of the motors is controlled with a PWM
signal. These signals can be generated using an ex-
ternal driver board that is connected to the RPI using
the Inter Integrated Circuit (I2C) communication. This
allows the RPI to send signals as desired to the PWM
driver, who then handles transmitting this PWM signal
until a new signal is desired. Both the driver and mo-
tors accept 3.3V as a signal strength, and as the range
of motion is dependent on pulse width, and not voltage,
no accuracy is lost. As such no voltage conversion is
required. The motors themselves are powered using a
separate 6V power line. This is the maximum voltage
allowed for the chosen servos.

2.5 Experimental Design

To experimentally evaluate and validate the robot’s per-
formance, each subsystem must first be independently
assessed. The subsystems that require this assessment
are the controllers and sensors.

2.5.1 Simulated Controller Performance

The performance of the controllers was estimated using
simulated control tasks. For this, a set of random κd

and ϕd were generated. We use the CC model 14 to
calculate a robot configuration from this, which gives
us a set of qd. Both controllers were then tasked to
get as close to these reachable points as possible. The
simulation was run with 5000 sets of random κd and
ϕd values to ensure the reliability of any measured
differences.

2.5.2 Experimental Setup

Both the sensor and the full robot experiments used a
Universal Robot 5e™(UR) to facilitate data acquisition.
The end effector of this robot was controlled using a
MATLAB script that was able to send a series of posi-
tions to the UR. It would then move its end effector to
the designated position. After the movement was com-
pleted, the same MATLAB script would get the sensor
response and position data from the continuum robot.
During the experiments, it was ensured that the robot
position was static before information was recorded to
ensure that the position data of both robots was accu-
rate.

2.5.3 Sensor Experiments

For the sensor experiments, a white orb with a diameter
of 10 mm was used as the sensor target. It was con-
nected to the rest of the robot with a matte black screw
with a length of 40 mm, to ensure that the orb was the
only thing that the sensors would measure. Two differ-
ent movements were used to map the sensor response,
to be able to estimate the sensor range and the sensor
FOV. The starting configuration of both the UR and the
robot can be seen in figure 7.A.
The first experiment moved the UR in a semi-cylindrical
motion starting at the tip of the continuum robot. The
UR moved the target in a 180-degree arc around the
robot, close to the sensors, and after that arc was com-
pleted, it would move up slightly and repeat the arc in
reverse. This happened until the UR reached the base
of the continuum robot. In the second experiment, the
UR moved in a semicircular motion, whose radius in-
creased. This motion was started at the centre line of a
disk.

2.5.4 Robot System Experiment

Quantitative and qualitative experiments were devised
to test the functioning of the entire robot system. It
was not viable to develop a test setup that could quan-
titatively estimate the performance of the robot in a
fully constrained environment, as the ground truth of
the robot orientation would not be able to be calculated
or measured. Inertial Measurement Units (IMU) are too
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impractical, as they would not easily fit inside the de-
vice. Furthermore, they require a lot of post-processing
and calibration to estimate an accurate position, which
would fall outside the scope of this research. Visually
measuring the positions using motion capture is simi-
larly unattainable. Motion capture systems use IR retro-
reflections to estimate the position of a target, which
would be blocked by the constrained environment. The
motion tracking would also be influenced by the prox-
imity sensors on the robot itself, causing incorrect mea-
surements.

Instead, it was chosen to quantify the effectiveness
of the control methods by looking at how the robot re-
sponds to a single obstacle. The position of this obsta-
cle can then be accurately controlled with the UR. This
obstacle, a white plane, was moved towards the robot in
small steps. After each step, it was evaluated if the robot
was in contact with the plane or not. If contact was ob-
served, the travelled distance was recorded, and the ex-
periment was reset. In figure 7.B the test setup can be
seen, where the white plane obstacle is positioned next
to the fourth segment of the robot.
This was done in three ways. One where only the
sensors on the fourth segment would be able to detect
the plane, one where only the third segment would de-
tect the plane, and one where both the fourth and the
third segment could detect the plane. These three tasks
highlight the different capabilities and constraints of the
robot.

For qualitative experiments, a smooth white pipe seg-
ment with a diameter of 7.5 cm was additively manufac-
tured, as seen in figure 14.B. This tube contained a small
door, which made it possible to see the position of the
robot within the tube at the end of the experiment. This
was then placed onto the end effector of the UR, which
enabled the positioning of the tube in three-dimensional
space. The curve of the tube was chosen so that the
robot would fit inside in its straight configuration dur-
ing initialization. After the controller was turned on,
the tube was rotated to constrain the robot.

3 Results

The results from the three experiments that were con-
ducted were separated into categories: control simula-
tions, sensor experiments and robot experiments.

3.1 Control Simulations

In figure 8, the results of the 5000 controller simula-
tions are shown. Both controllers ran for 50 iterations.
In 8.A, it is seen that for this task, the loss of the model-
based controller is significantly lower than the loss of
the PID controller. The difference is almost immediate,
and before 10 iterations are reached, both controllers lie
outside their respective standard deviations. The aver-
age MB controller loss was reduced by 94.6%, whilst

Figure 7: Images showing the experimental se-
tups. A shows the sensor experiments, where a
white point target was moved along the static
robot. B shows the obstacle avoidance experi-
ment, where the obstacle is the white plane. This
photo was taken while the robot was turned on,
and as such, it has curved away from the plane.

Figure 8: In the figure, the results of 5000 sim-
ulations of the control task are shown. In A, the
loss function values are shown as each control
method calculates for 50 iterations. In B, the error
between the current segment position and the de-
sired control position is shown at the end of each
trial.

the average PID controller loss was reduced by 26%
compared to the initial loss. The MB controller has an
average final loss of 92.6%(p = 0.000) lower than the
PID controller.

In figure 8.B, the average and Standard deviation of
the Euler distance between the desired control position
and the simulated robot position at iteration = 50 is
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shown. We see that the MB error stays consistent per
segment, while the PID error gets progressively larger,
the further along the robot the segment is. In figure
9, the results of desired and robot configurations at
iteration = 50 of a single trial are shown. It shows
that the first two segments of the PID robot output are
similar in shape compared to the desired configuration.
However, the last two segments are far away from the
desired positions. The MB controller more closely fol-
lows the desired configuration for all segments. During

Figure 9: The figure shows the controller output
after 50 iterations for one of the 500 control trials.
The dashed line is the desired output, the yellow
line is the MB controller output, and the blue line
is the PID output.

another test of 5000 trials, this time for 100 iterations,
the computation time of each trial was recorded. These
results can be seen in table 2. The measurements were
performed using MATLAB 2024, running on an Intel i7
9th gen CPU, with 16 GB of RAM. Note that this is not
the same hardware as used for the final robot. We see
that the PID requires a shorter calculation time than the
MB controller.

Table 2: temporal results of 5000 trials. Each trial
is 100 iterations long. Run on MATLAB2024,
Intel i7 9th gen CPU.

PID Gradient
Total computation time [s] 1.1925 993.9272
Time per trial[s] 2.3850 · 10−4 ± 3.5470 · 10−4 0.1988± 0.0264
Time per iteration [s] 2.3850 · 10−6 ± 3.5470 · 10−6 0.002± 0.00026

3.2 Sensor Experiments
To achieve the results in figure 10, a white reflective
target was moved around the robot in a semicircle of in-
creasing radius. Sensors 19, 20 and 21 were the only

sensors in the path of the target. This means that the re-
sults are based on these three sensors. The sensor signal
of each sensor was recorded as the target passed through
its centre line. These results were then averaged to get
the ”mean of sensor” result, with the respective SE.

Signals were also recorded when the target moved
through another sensor’s centre line so that a baseline
sensor response could be established, as seen in figure
10. In the baseline, it can be seen that the distance of
the target does not affect the sensor signal if the sensor
cannot see the target. When a sensor can see the target,
the sensor response of that sensor is dependent on the
distance of the target to the sensor. We see that the SE
of the baseline is lower compared to the sensor SE and
that the sensor SE increases as the target gets closer to
the sensor. The solid line seen in the figure represents
the polynomial 5, where Ln is the ”mean of sensor” nor-
malized lsignal values. The dashed line represents the
equation 4, where a and b were fitted using the ”mean
of sensor” normalized lsignal values. Figure 11 is the

Figure 10: The mean signal response of three sen-
sors is shown, with its standard deviation, both
when exposed to an obstacle and the baseline re-
sponse. The solid black line is the estimated dis-
tance used by the controller, and the dashed black
line is an improved estimation, based on this fitted
to this dataset.

result of the UR moving in a semicircular motion at a
changing vertical height along the sensor for a total of
20 cm along the robot. This creates a semi-cylinder. In
figure 11.A, the maximum sensor response is shown as
the z value of the plot. We see four horizontal bands,
each with three peaks of intensity. This corresponds to
the robot’s four segments and the three sensors on each
of these segments. Only three sensors are seen, as the
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target only moves around half the robot, 0◦ to 180◦.
Using a threshold of 0.02, the background noise is

manually filtered from the rest of the signal. By look-
ing at the horizontal lines in figure 11.B the cumulative
angle of the semi-cylinder that is visible to the sensor
can be calculated. This peaks at approximately 110◦

for each segment, but quickly falls off on each side of
that peak. There are large gaps in this FOV, which cor-
respond to the areas on the robot where the spacers are
located. This plot can also be used to calculate the over-
all percentage of this semi-cylinder that is within the
view of the robot, which is 16.7%. When looking at the
rows of the image, we see that 45.2% of the rows are
within the FOV of the robot. Within figure 11.A, there

Figure 11: A shows the maximum sensor re-
sponse as a target was moved around the robot
in a hemispherical grid. B shows the sum of all
fields of view of each sensor, separated according
to height along the robot.

are eight sensor responses with their full FOV in the
traversal and longitudinal axis within the dataset. This,
combined with the circular motion along the horizontal
axis of the robot, allows us to calculate the FOV of these
eight sensors that are fully in view. The average FOV of
these sensors, with their SE is 40.8◦ ± 1.2◦.

3.3 Robot Experiments

In figure 12, the results of the obstacle avoidance ex-
periment are shown. Each of the tests was repeated 5
times. The static test is the control, whereby no con-
troller is turned on, and the robot is placed in its ini-
tial position. Therefore, the deviation seen in this bar
is fully caused by observation error, as the test relies
on human eyes to detect the hit. We see that the MB
controller performs better than the PID controller for
the fourth segment test, increasing the travelled dis-
tance by 92.9% (p = 1.0 · 10−10). The third and
fourth segment test shows an increase in the robot per-
formance of 65.5% (p = 1.8 · 10−5). The second ex-
periment instead shows a decrease of performance of

23.5% (p = 1.9 · 10−6). P values were calculated using
2 sample T-tests.

Furthermore, we see that the standard deviations are
low for all tests, aside from the MB controller test for
both segments. Visual observation of the robot during
the first and third tests showed that hits on the robot oc-
curred on the inner rim of the disk rather than on the
sensor itself. For the second experiment, the obstacle
hit the sensor itself.

In figure 13, the mean MB controller response is

Figure 12: A figure showing the distance a 10 cm
long and 5 cm wide obstacle could travel along
the Y axis towards the robot before the robot was
hit. For the fourth segment experiment only the
sensors on the fourth segment could sense the
obstacle. For the third segment experiment, only
the third segment could sense the obstacle. For
the Fourth and Third Segment experiment, both
segments can sense the obstacle.

shown. We see that in all cases multiple segments are
all curved, indicating that the MB controller uses multi-
ple segments to adapt to the environment. Each of these
curves is in three dimensions. However, as the curves
were for the most major part in the y+ direction, only
this was shown.

Figure 14.A shows that the robot design itself is ca-
pable of orienting itself into complex three-dimensional
shapes. Figure 14.B shows the result of the qualitative
robot experiment, whereby the robot was able to config-
ure itself inside the tube. The controller that was turned
on during this experiment was the MB controller.

4 Discussion
As the multiple components of the robot were individu-
ally constructed and experimentally assessed, it makes
sense to individually examine where these components
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Figure 13: A figure showing the mean of the MB
controller response for each of the tests. The ob-
stacle was placed at the Y- side of the robot, mov-
ing towards Y+.

Figure 14: A shows an image showing the robot
positioned in a complex configuration. This was
done with arbitrary κ and ϕ values that were sent
to the servos and not due to a control input. B
shows an image of the robot partially constrained
in a curved tube with a diameter of 7.5 cm. The
pose was calculated by the robot controller based
on the sensor signal. When a steady-state was
reached by the controller, it was turned off, and
the side panel was removed to take the image.

succeed and where improvements in the approach can
be made. At the end of the discussion, it is assessed if
the requirements set out in the methods are achieved.

4.1 Sensor
The results of the optical sensors in figure 10 show that
there is a clear separation between baseline sensor sig-

nals and excited sensor signals up to a distance of 35
mm from the sensor. This means that each sensor can
measure obstacles for distances up to half the length of
the largest lumen. Or, if the robot is in the centre of the
largest lumen, to detect any of the walls. Furthermore,
we see that the standard error is low, which indicates
that all individual sensors have approximately similar
sensor responses and follow a similar curve.

We see that the variance of the baseline is low, which
indicates there is no hysteresis in the sensor, which was
desired and expected based on the method by which
the sensor functions[28]. Furthermore, it indicates that
when one sensor is excited by an obstacle, another
nearby sensor will not also be excited. This means that
there is no sensor crosstalk, which shows that the wire
reduction method works as expected.

Within figure 11.A, it can be seen that there is a vari-
ation in the signal intensity of the sensor response, even
though all sensors should be at the same distance and
target. This might be caused by imperfections in the
sensor assembly. Each sensor is constructed individ-
ually, as seen in figure 1.C, and small differences in
that construction can contribute to sensor baseline vari-
ations. In figure 10, min-max calibration was used on
the measurement data before the sensor responses were
averaged. The low variance in sensor response in this
figure shows that the min-max calibration is a viable
method to improve sensor consistency.

If these results are compared to the results of this ex-
periment with the capacitive sensors[16] developed for
endoscopy, some differences can be noted. The capaci-
tive sensors have a range of approximately 10 mm, 3.5
times less than the optical sensors. This suggests that
these sensors are less likely to be able to fully measure
larger lumena. The FOV of the capacitive sensors is
78◦, which is 1.9 times wider than the FOV of the opti-
cal sensors. This would mean that fewer capacitive sen-
sors are required to fully estimate the surroundings of
the robot, simplifying the robot design. A main short-
coming of the capacitive sensors compared to the op-
tical sensors is the parasitic capacitance. This parasitic
capacitance will mean that control outputs will be based
on incorrect information, limiting the overall robot per-
formance.

Comparing the optical sensors to TOF sensors [15],
the opposite can be seen. These sensors have an ef-
fective range of 130 mm, with a FOV of 16.5◦. The
increased range of the TOF is useful in many scenarios
but unnecessary within the lumen, as this range is more
than double the diameter of the largest lumen. The lim-
ited FOV is also problematic, as this would require 2.4
TOF sensors for each optical sensor to achieve the same
FOV. One of the main limitations identified for TOF
[15] sensors was the slowdown of the signal process-
ing when more TOF sensors are used, which indicates
that using more TOF sensors to estimate the same area
is undesirable.
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4.1.1 Lumen Structures

Using literature, the effectiveness of the sensors in de-
tecting structures present on the walls of the lumen can
be quantified. The stomach walls contain pits with a
depth of 0.2mm with a diameter of 70µm[34], The
depth of these pits falls within the SE range as seen in
figure 10, which means that the sensor will not detect
these pits, and it will instead measure the stomach wall
as a smooth wall. For the small and large intestine, the
surface has many villi, which are 0.5−1mm long hair-
like protrusions on the surface. The sensor will also not
be able to detect these and will measure the walls of the
intestine as smooth curvatures.

Larger structures that are present in the small in-
testines are the folds of Kerckring. These folds are
generally traversal and are either circular or crescent-
shaped [35]. As there are six sensors, with each hav-
ing a FOV of 40.8◦ ± 1.2◦, the FOV gaps between the
sensors are at most 20.4◦. So unless the crescent arc
is shorter than 20.4◦, the fold will be detected by the
sensor. The distance between these folds is 0.0036 to
0.0064 m.[35]. When comparing this to the height of
the sensor view, 0.023 m, it can be seen that the next
fold would be inside the FOV of the robot before the
last fold leaves its FOV.

4.1.2 Distance Function Fit

When plotting the results of 5 against the mean mea-
sured distances, as seen in 10, we can see that the final
fit is poor. If we instead look at a 4th-order approxima-
tion in the same figure, we see a closer fit to the curve of
the sensors. The reason for the discrepancy between the
approximation found in the test setup and the approxi-
mation found in the final robot is found in the way the
test setup was constructed, the rectangular target, and
the slider that was attached to it.

When close by, the large square would reflect more
light towards the sensor than the smaller point obsta-
cle used in the final experiment. This means that the
signal would, in turn, increase faster than the theory
would suggest as the obstacle moved closer to the sen-
sor. When the object was further away, the slider would
reflect some of the light towards the sensor. This light
would cause the signal to decrease less than the theory
would suggest. This fully explains the shape difference
between the initial polynomial and the improved poly-
nomial, as seen in figure 10.

The effects of this error on the controller are only mi-
nor. The signal is averaged, and the error is present in
all different directions, so they cancel out. The current
polynomial reacts more weakly to changes between 1
and 3 cm in distance from the robot, whilst it responds
more strongly to movements within one cm from the
disk. As we only tested obstacles from one side within
the experiments shown in figure 12 and measured only
the moment at which collision occurred, there is no

method by which the badly fitted polynomial would
change the values of these outcomes.

4.2 Robot
The performance robot and its control can be discussed
by looking both at the simulated controller perfor-
mance, as well as the physical robot performance. Both
elucidate various concepts and effects, allowing us to
accurately assess the successes and areas of improve-
ment of the overall robot system.

4.2.1 Simulated Controller Performance

The experimental simulations suggest that the MB con-
troller outperforms the PID controller in position con-
trol tasks. This is made evident by the differences in
both the mean and standard deviation of the loss func-
tions in figure 8.A. It shows that the loss reduction of
the MB controller is 92.6% larger than the loss reduc-
tion of the PID controller. This follows literature, where
model-based methods outperform model-free methods
[36] by having lower overall tracking errors.

Figure 8.B shows that the loss of the PID increases
for each consecutive segment, whilst the MB loss stays
constant for each segment. This indicates that the un-
derlying assumption made for the PID position control,
where κ ≈ x, ϕ ≈ y, does not hold. An example of this
can be seen in figure 9, where the last two segments of
the PID output deviate a large amount from the desired
output when they are compared to the MB output.

In literature, shape constraints can be used to guide
robot movement[37] instead of position control. These
shape constraints allow for a more explicit collision
avoidance constraint compared to the MB controller.
There are, however, problems with this method for en-
doscopic applications. The human body is not rigid,
and as such, the shape constraint needs to change con-
tinuously. For endoscopy specifically, measuring this
shape will require external mapping such as MRI or ul-
trasound, which limits the applicability. The position
control method used in this work circumvents this lim-
itation by acquiring the desired robot position via the
sensors placed on the robot itself.

4.2.2 Physical Robot Performance

The physical robot experiments suggest that the MB
controller outperforms the PID controller in most phys-
ical obstacle avoidance tasks, as seen in figure 12. This
aligns with the simulation results. The MB controller
was able to generate control outputs that used the actu-
ation of multiple segments to allow for a larger range of
motion compared to the range of motion of a single seg-
ment, as seen in figure 13. Because the PID controller
only actuates segments that measure the obstacle, it was
limited to the range of motion of that specific segment.
The reduction in performance of the ”third and fourth
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segment” obstacle avoidance compared to the ”fourth
segment” obstacle avoidance for both controllers sug-
gests that the range of motion of the robot itself was a
limiting factor. The third segment is closer to the base
than the fourth. This means that, because of the proper-
ties of a constant curvature [5], the same κ results in a
smaller deflection.

Whilst the PID is outperformed by the MB controller,
it still outperforms the static case. This might seem
contrary to the result seen in figure 8.B and 9. How-
ever, this difference is explainable by the difference in
the experiment objective. Notably, the estimated posi-
tion of the PID is not relevant for obstacle avoidance
experiments. Instead, the measurements of the sensors
directly inform the next PID output, allowing for effec-
tive obstacle avoidance. As position-tracking itself was
not required for endoscope obstacle avoidance, no such
experiments were done. This complicates a direct com-
parison of the robot that is presented in this work with
robots in the literature, such as 2 DOF [36] or 6 DOF
MPC [37] robot arms, as quantitative comparisons are
not possible. However, the MB controller outperform-
ing the PID controller in physical robot experiments fol-
lows the literature, where model-based controllers out-
perform model-free controllers in physical robot exper-
iments [36, 37].

The third segment experiment result in figure 12
shows a shortcoming in the robot design. The MB
controller performs identically to the static robot case,
with the PID controller only outperforming the MB con-
troller by 23.5%, the lowest outperformance of any test.
In particular, the MB controller result does not align
with the controller output shown in figure 13, which
suggests that the robot will create a shape different from
a static case. This is a constraint of applying the con-
stant curvature model as a kinematic model, which is
commonly observed in the literature [37]. It can be
seen that the controller output is a C-shaped curve in
the ZY plane. To create this curve the third segment
moves in the Y+ direction, and the fourth segment in
the Y- direction. These cause antagonistic tendon ac-
tuation in the robot, which constrains the robot into a
static configuration. The robot is more strongly con-
strained by the MB controller compared to the PID con-
troller. This is because the PID controller does not move
the fourth segment in any Y direction, which lessens
the antagonistic forces. To improve the accuracy of the
robot model, a redesign of the robot arm is preferable
over increasing the complexity of the model. The liter-
ature [17] shows that TDCRs are capable of configuring
themselves in shapes as shown in figure 13 if certain de-
sign constraints are met. On the other hand, increasing
the complexity of the controller offers only minor re-
ductions in tracking error at a large computation cost
[38].

The MB controller is capable of positioning the robot
in the centre of a constrained environment, as shown in
figure 14. This suggests that the MB method is similarly

capable of automatic endoscopic steering as automatic
steering based on camera vision [10]. The MB con-
troller is 25 times faster, with the camera-based method
requiring 0.05 seconds per iteration. Other soft robotic
controllers for lower DOF systems similarly show a
longer iteration time of 0.03 [37] or 0.0034 [38] seconds
per iteration. More complex models can take 2.8 hours
to solve 60-second control tasks[38]. This suggests that
the MB controller would achieve a higher control loop
speed on weaker hardware, which is promising for fu-
ture integration into endoscopes.

4.3 Robot Design and Construction

The image in figure 14.A shows that the robot can
achieve three-dimensional curvatures. This sug-
gests that the robot is physically capable of creating
compound curves. However, aside from the tendon
actuation constraints identified during the robot ex-
periment, the robot’s performance is limited by other
factors of the robot’s design.

4.3.1 Stiffness

The robot moves non-isometrically, which deviates
from the expected isometric tendon continuum robot be-
haviour [36]. The movement was constrained specifi-
cally in the plane of the sensor wiring, indicating that
the wiring was the cause of the movement constraint.
However, as both the PID and MB robot experiments
were affected by this limitation equally, the data is still
valid.

4.3.2 Spring Fixation

Hot glue adhesion of the disks to the spring resulted
in weakening bonding over time. These bonds could
break, allowing the segment to shift along the spine of
the robot. Using a set of shorter springs, mechanically
connected to the disks, as shown in [15], would be more
robust.

4.3.3 Robot Size

The robot’s design has to be modified to fit within the
12.8 mm [19] size constraint. This has mainly to do
with the sensors’ size and the wiring’s placement. Re-
ducing the size of the sensors can be done by replacing
the current LED and LRD with smaller versions of each,
both having a width of 2 mm and height of 0.8 mm [25]
or less [39]. These sensors could then be mounted on an
FPC, which would wrap around the disks of the robot.
The rest of the robot could then be constructed as endo-
scopes currently are, with the addition of the mounting
location of the sensors.
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4.4 Requirements Evaluation

If we look at the requirements set out in the methods
and the discussed results, it can be concluded that most
requirements were achieved:

1. The robot is capable of sensing human tissue as
well as other opaque objects. It can measure up
to a range of 3.5 cm. Each sensor has a FOV of
40.8◦ ± 1.2◦. Their placement around the disk al-
lows the robot to see 45.2% of its total observable
surroundings.

2. The robot is about four times as large as a normal
colonoscope, with a diameter of 43 mm. Its size
will need to be scaled down 4 times for it to be an
effective endoscope. Sensors[25, 39] and TDCR
designs[2, 3, 17, 19] at these scales are commer-
cially available. This means that the downscal-
ing would require no additional scientific advance-
ment.

3. The robot is capable of creating three-dimensional
curves using its 8 degrees of freedom. However,
its design is constrained by the tendon actuation
and the wire stiffness.

4. The sensors can run at approximately 110 Hz, sur-
passing the minimum of 25 Hz. The model-based
controller can run for 20 iterations and still pass
the loop speed requirement, with one iteration run-
ning at 500 Hz. This means that the robot is con-
trollable in real time.

5. The control can avoid obstacles and conform itself
to a constrained, curved environment. It is only
limited by the physical design constraints of the
robot.

5 Conclusion and Recommenda-
tion

In this research, a novel fusion of sensing and control
for endoscopic procedures was examined. It was found
that the created robot is generally able to avoid obsta-
cles and conform itself to an environment. Furthermore,
model-based control methods for this robot allow this
robot to be able to better avoid obstacles than compared
to a PID control method, both in simulation and real-
world experiments. In some situations, the controllers
were constrained by the physical robot design, which
resulted in inconclusive results. Overall, the results
show that this method of designing and constructing
a tendon continuum robot that avoids the walls of the
lumen was successful. The next step in development
should focus on miniaturization. Adapting a currently
existing endoscope by connecting a cap to the endo-
scope tip that contains the sensors would be the quickest
method to add sensors to currently existing endoscopes,

the bendable section can then be controlled by connect-
ing a servo to the knob on the handle of the endoscope,
which would allow the controller to steer the tip with-
out directly modifying the endoscope body. Adapting
multi-bending endoscopes in this way allows more in-
depth testing of the MB controller’s effectiveness.

Whilst the current sensor setup is fit for purpose, fur-
ther research might require an increase in the sensor
field of view. To increase the traversal field of view,
additional sensors could be placed on each disk. Inte-
gration within the system is trivial, as the sensors would
be processed the same as any other sensor. The longi-
tudinal field of view can be increased by replacing the
spacers with full disks. The sensor responses that this
would generate would only be useful for the MB con-
troller, as it would function as a separate CC curve that
shares its κ and ϕ with the segment on which the spacer
is placed.

Replacing the optical proximity sensors with force
sensors is also an interesting avenue of research. This
would allow the robot to work in more strongly con-
straining environments where contact with walls can-
not be avoided. The controller and sensor processing
would not need to change, and hypothetically, the robot
would still be able to be controlled. The main disad-
vantage of this modification would be that he constant
curvature assumption is less accurate when the robot is
in contact with the environment. This reduction in ac-
curacy would be valuable to estimate. Comparing the
proposed method of force feedback with state-of-the-art
force feedback robot control systems [13] would then
further the overall progress in developing autonomously
actuated endoscopes.

The current system runs fully autonomously. It is,
however, trivial to instead influence the position of the
robot with a user control input. There are two methods,
both of which have different effects:

1. Direct control: Hereby, the σ and ρ that result
from the controller are changed by the user. This
moves the desired segment of the robot in any di-
rection, regardless of whether there is an obstacle
in the way. It also will not try to keep the other
segments in an optimal position, as the controller
output is overwritten.

2. Informed control: Hereby the
[xdes,n, ydes,n, zdes,n]

T is influenced by the
user. This means that the control will still
optimize the robot’s shape.

The suspected ideal usage of a user control method is
that every segment except the end segment is controlled
using informed control, with the end effect being con-
trolled with direct control. This means that the overall
robot shape will find the optimal curve for all desired
points, but it gives the user the option to make precise
adjustments to find the optimal angle for the region of
interest, which is important for a high success rate for
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endoscopy [18]. Because of the fully electronic con-
trol of the endoscope, haptic control [6] or more simple
joysticks could be used to ergonomically control the en-
doscope.
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A First Prototype
An initial proof of concept was developed before developing the robot described in this work. This proof of
concept enabled the initial testing of most components and systems, as well as identifying shortcomings in the
design.

A.1 Prototype Design
In figure A1, the original robot arm design can be seen. There are a few main differences between this design
and the final design, as shown in image 1.A. Only the end segment of the prototype robot is actuated. The other
segments were kept static using tape. The robot had 4 sensors at its end segment, one pair per degree of freedom.

The robot was controlled using PID code running on the Arduino MEGA, with a small prototyping board to
connect the electronics, as seen in image 1.B.

Figure A1: Images of the first robot prototype. A shows the full robot, with the sensors on the first seg-
ment, and the servos on the plate at the end. B shows how the wires of the robot were connected to the
Arduino. C shows the test setup of the first prototype, where the tube is connected to 3D printer.

A.2 Prototype Experiments
The effectiveness of the robot’s sensing, actuation and control was tested using a tube segment that was connected
to a 3D printer. The robot was positioned inside this tube, as seen in image 1.C. This tube was then moved in
a two-dimensional plane to quantify the deflection of the robot in different directions. However, this experiment
was flawed, as it was very hard to see the response of the robot whilst inside the tube segment.

A.3 Main Lessons
The main shortcomings of the prototype were identified as:
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• Wiring each sensor individually would require too much space inside the robot arm

• Having four sensors per segment leaves large gaps in the sensor field of view and makes the robot less likely
to correctly estimate the centre of a curve.

• An improved method to fix the sensors to the disks was required

• An improved method to estimate robot response during experiments was required.

• Wood is not a good material for disk construction due to impurities in the wood.
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B Programming
As the control of the robot was performed on a Raspberry Pi, it was necessary to program this control so that
it would function on this hardware. In this is was important to design software that would perform consistently,
whilst allowing all the different components to interact with one another. For this, a multithreaded C++ program
was devised.

C++ was an ideal candidate programming language for this task for a few reasons. First and foremost, Matlab
allows the conversion of Matlab functions to C++ functions, which means that the mathematical basis of the
controller could be developed in Matlab, and no effort would need to be expended in accurately converting this to
C++. Furthermore, I have a lot of experience with C++, which allowed for a fast development cycle.

B.1 Mathematics to C++
The mathematical basis for the MB controller was developed using the MATLAB symbolic toolbox. This allowed
for fast development and easy validation of the gradient descent calculation. The final symbolic functions were
then converted into numerical functions, which is possible with the MATLAB symbolic toolbox. These numerical
functions were significantly faster than their symbolic equivalents and were the functions used during the control
simulations. They were then further converted into numerical C++ functions using MATLAB. They were ported
over to the Raspberry Pi. A test was run to confirm that the MATLAB and the C++ code would produce identical
outputs if given the same input. This was the case, which showed that the conversions performed as expected, and
no mathematical accuracy was lost.

B.2 Graphical User Interface
Using the open-source Raylib game development library, a simple graphical user interface was constructed to
debug and interpret results, which can be seen in figure A2. Using a game development library allowed for
real time updating of a 3D scene. This 3D scene, seen at the centre of the image, shows the four segments, as

Figure A2: Screenshot of the graphical user interface that was developed for the robot. In the centre a
3D view of the controllers’ estimation of the robot is visible, as well as the estimated surroundings, vi-
sualized with points. The labels were added to mark the different parts of the GUI. A shows the frame
rate of the GUI, the refresh rate of the sensors, and the refresh rate of the controller. B is the selector
used to select segment qd for debugging. C shows the current segment variables. D is the polar repre-
sentation of the variables in C. E shows the error per segment, as well as the overall loss of the robot in
a graph.
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calculated by the Constant Curvature model. It also shows the estimated position of the robot’s surroundings, with
lines showing the distance from the environment to the sensor. Using Raylib also allowed for real-time inputs
using the keyboard. With this, the robot movement can be easily paused or continued by pressing the ”P” button.
Furthermore, this enabled manual movement of the qd points that the robot would need to follow in x, y and z
directions. Using the selector marked B, we were able to select which segments qd would be manipulated. As
implementation of the control was difficult, and at times the results of the controller were unintuitive, C,D and E
were added. These allowed for a clearer interpretation of the controller and the gradient descent results.

B.3 Multithreading
The robot software has two systems that can work independently from one another, this being the controller and
the sensor algorithms. By applying multithreading, we can separate ensure that the constraints of one system do
not constrain the other, allowing both to run as fast as their design constraints allow.

B.4 Code
The code of the robot itself can be found on https://github.com/Ivenvh/Robotic control.git. Which includes all
working code and a command to compile the software. Matlab code and experimental data are available upon
request.
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C Sensor Identification
After the first prototype was designed, a redesign of the segment disks was made. To test the effectiveness of this
new design, the test setup is seen in figure A3.A. The test consisted of a section of the disk segment on a pedestal.
This was connected to a rotating slider. The rotation was measured by a potentiometer in the base of the pedestal,
whilst the slider position had to be manually recorded. In image A3.B, the position of the sensors is shown. The
results of these tests were used to estimate the 14th-order polynomial used in the sensor processing.

Figure A3: Test setup for the sensors is shown. A shows the design of the sensor test device. B shows
how the sensors are placed in this device.
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