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Abstract

During the COVID-19 pandemic, online learning has become increasingly popular.
However, this method of learning possesses some challenges. Many students struggle
to maintain focus in high-distraction environments. Research indicates that the use of
brain-computer interfacing (BCl) systems to monitor engagement during online learning
can keep the users engaged. These methods, however, often rely on auditory and visual
feedback, which compete for the same cognitive resources needed for online learning. To
address this limitation, this study investigates how haptic feedback can be used to enhance
sustained attention during online learning. By integrating BCl with haptic feedback, real-
time engagement monitoring and intervention can be used to potentially improve learner
focus.

An experiment was conducted with ten university students who watched a 35-minute
online lecture under three conditions: no feedback, vibrotactile feedback, and thermal
feedback. Their sustained attention, or engagement, was measured by the EEG Engagement
Index using a Electro-Encephalography (EEG) headset. While the study analyzed the mean
EEG Engagement Index across feedback modalities, no significant differences were found
between them. Some participants noted that the haptic feedback worked distracting,
which could explain the lack of a significant difference.
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Acronyms

API Application Programming Interface. 18
BCI brain-computer interfacing. 1, 5, 7-9, 12-14
CLT Central Limit Theorem. 21

EEG Electro-Encephalography. 1, 6, 8-10, 12-15, 18, 19, 24, 32

EWMA Estimated Weighted Moving Average. 16, 26
fMRI functional magnetic resonance imaging. 9
MEG magnetoencephalography. 9

PSD Power Spectral Density. 10, 15, 16

PWM Pulse-Width Modulation. 15
SDK Software Development Kit. 24

UAV Unmanned Aerial Vehicle. 12



Glossary

EEG Engagement Index A metric that quantifies the users’ level of alertness based on
the ratio of beta to alpha and theta brain waves. This metric is often used in brain-
computer interface (BCI) systems to monitor and assess cognitive engagement. 1,
5, 6, 10, 12-14, 16, 19-34

Haptic feedback A range of feedback modalities that utilize the sense of touch, including
vibrotactile, thermal, pressure, and electrotactile feedback, commonly used in devices
to convey information through physical sensations. 5-7, 10, 11, 13



Chapter 1

Introduction

The presence of online learning has significantly increased, especially since the COVID-19
pandemic, and it is likely not going anywhere anytime soon [1]. This shift has made edu-
cation more accessible, allowing students to view recorded lectures regardless of time or lo-
cation. However, this method of learning has downsides as well. A survey done on a group
of students shows that the majority of students have shown to have had some difficulty
with online learning [2]. Online learning often occurs in high-distraction environments,
making it even more challenging to stay focused. This is problematic since focusing, also
known as active engagement, is essential for effective learning [3, 4]. Maintaining focus is
especially important in the context of online learning because the students are mainly re-
sponsible for their own learning process. Automatically monitoring student attention can
help identify when the focus is lost, enabling timely interventions to re-engage students,
which could improve their learning experience.

Previous studies have demonstrated the potential of using BCIl systems to monitor
engagement during online learning [5]. These systems measure brain signals and provide
automatic feedback when a user’s alertness decreases. This combination has been shown
to improve the engagement of the users [6]. However, these studies often rely on auditory
and visual feedback, which utilize the same cognitive resources required for lectures. To
address this, the present study focuses on haptic feedback, which leverages the user’s
sense of touch. Unlike auditory and visual feedback, Haptic feedback makes use of touch
to convey information to the user. This distinction suggests that Haptic feedback might
be particularly effective in improving user engagement [7]. Specifically, this research looks
at vibrotactile and thermal feedback due to their practicality and ease of deployment,
making them well-suited for applications beyond the scope of this study.

Based on this objective, the following research questions have been formulated:

MQ: To what extent does haptic feedback, compared to no feedback, help improve at-
tention in university students during an online lecture, as measured by the EEG
Engagement Index?

SQ 1: To what extent does vibrotactile feedback, compared to no feedback, help improve
attention in university students during an online lecture, as measured by the EEG
Engagement Index?

SQ 2: To what extent does thermal feedback, compared to no feedback, help improve sus-
tained attention in university students during an online lecture, as measured by the
EEG Engagement Index?



SQ 3: To what extent does vibrotactile, compared to thermal feedback, help improve sus-
tained attention in university students during an online lecture, as measured by the
EEG Engagement Index?

This project addresses the research gap concerning the effectiveness of Haptic feedback
in enhancing user engagement. Rather than begin offering a definitive answer to this
problem, the research findings are intended to inform and inspire further research into the
role of haptic feedback in enhancing sustained attention during online learning. [8].

To address the research questions, an experiment was conducted involving ten partic-
ipants who watched a 35-minute online lecture. The lecture was divided into four phases:
a five-minute calibration period, a ten-minute baseline period with no feedback, and two
consecutive ten-minute periods during which feedback was provided.

The experiment begins with a five-minute calibration period to determine participants’
minimum and maximum engagement levels so the results can be normalised, and an aver-
age engagement to serve as a threshold to determine whether the participant is alert or not.
Engagement values falling outside the calibrated minimum and maximum will be capped
within a 0 to 1 range. Determining a threshold is necessary because the EEG Engagement
Index lacks a standardized scale, allowing the method to adapt to participant engagement
differences. Engagement levels were assessed by measuring participants’ brain activity us-
ing EEG, from which the EEG Engagement Index was calculated. To minimize the potential
effects of fatigue on the results, the order of the feedback modalities was switched across
participants. Feedback was administered whenever the EEG Engagement Index dropped
below the adaptive threshold. After the experiment, the EEG Engagement Index values
were analyzed and compared across the different feedback conditions to evaluate their
effectiveness.

This research aims to provide insights into how haptic feedback can be used to keep
students engaged in online lectures. Because the EEG Engagement Index has no standard-
ized scale, the proposed pipeline will initially be tested on a pre-existing dataset. This
approach ensures the methods are in the same context of prior research [5].

Chapter 2 provides the necessary background information. Chapter 3 reviews related
studies on this topic. Chapter 4 details the research methods. Chapter 5 presents and
discusses the research findings. Chapter 6 discusses the results, confounding factors and
possible future directions of this research. Chapter 7 shows the conclusions drawn from
this study.



Chapter 2

Background

This chapter discusses the background information of this research. The topics engage-
ment, BCl and Haptic feedback are covered.

2.1 Sustained Attention

Attention is not constant but fluctuates over time, alternating between focused and un-
focused states [9, 10]. Over time, the intervals between the focused and unfocused state
become shortened [11]. Sustained attention is the ability to maintain focus over an ex-
tended period of time. This is an important skill for monotonous or repetitive tasks like
studying [10]. The term sustained attention is often used interchangeably with vigilance,
alertness, and engagement [5].

Because of its important role in studying, researchers have investigated the impact
of sustained attention on learning performance. One study used eye-tracking to mea-
sure participants’ sustained attention during online lectures by analyzing the duration
and frequency that participants were fixated on the lecture [12]. Learning performance
was assessed through pretests and posttest with questions. Results revealed a significant
correlation where participants with higher levels of sustained attention also had a bet-
ter learning performance, indicated by the improved posttest scores in relation to their
pretest scores [12]. These findings are consistent with results from other studies in the
field [13, 14].

Several factors influence sustained attention, which can be broadly categorized into
three groups: task parameters, environmental or situational factors, and subject charac-
teristics [15]. These factors do not only influence sustained attention individually, but
interactions between these categories influence sustained attention as well. This research
will mainly focus on the task parameters as it researches the relationship between haptic
feedback on sustained attention.

Given the importance of sustained attention in learning and its natural decline dur-
ing prolonged tasks, developing effective interventions to counteract this decline could
significantly improve the effectiveness of online learning.

2.1.1 Measuring Engagement

To better understand engagement, various methods have been developed to measure users’
engagement. These methods can be categorised into direct and indirect approaches. Indi-
rect methods include questionnaires, behaviour logging, observation, task outcomes, and
interviews [16]. A study did a systematic review of engagement on 351 articles and 102
definitions [16]. They found that questionnaires are the most commonly used, with 124



applications recorded, followed by behaviour logging with 69 applications, and observation
with 44 applications [16].

While widely used, these indirect methods are often subjective and susceptible to bias.
Questionnaires, for example, rely on self-reported data, which can be affected by mis-
remembering or personal bias. In contrast, direct measurement techniques such as eye
tracking (19 applications), galvanic skin response (8 applications), and EEG (10 applica-
tions) provide more objective data [16]. This research uses explicitly EEG for real-time
monitoring of brain activity, as it offers a direct measure of engagement, which is less
susceptible to the biases associated with self-reported data.

2.2 Brain Computer Interfaces

The human brain reveals much about people’s thoughts, actions, emotions, and motor
functions. This information can be retrieved using BCIl. BCl is the field of acquiring,
analyzing, and translating brain signals to create a direct interface with external devices
[17]. Gathering this information can give valuable insights into how people make decisions
and perceive the world.

2.2.1 Electroencephalogram (EEG)

EEG is a subset of BCl, dedicated to capturing and interpreting the brain’s electrical
activity. During cognitive activity, the brain generates electrical signals in the region in
which it is active. EEG uses electrodes to detect these signals, which are amplified for
analysis. These electrodes are either attached directly to the scalp using adhesive stickers
or incorporated into specialized EEG headsets designed to ensure stable and consistent
contact [18]. These signals are then further processed and interpreted. This process is
demonstrated in Figure 2.1.

p
for each electrode

Processing

Amplifier

FIGURE 2.1: Illustration of EEG Recording Setup [19]

For this research, EEG is preferred over other BCl methods because of its several
advantages [20] over other BCl methods. First, EEG has a high temporal resolution, which
allows for capturing brain activity in the milliseconds range [21]. This allows for detecting
rapid changes in engagement levels.

In addition, EEG is a non-invasive method, meaning it does not require surgical pro-
cedures or implants. This feature ensures a safer and more accessible option for research
participants.

Additionally, EEG does not require large devices to work. This allows it to be portable
and deployable in various settings outside the laboratory, such as a classroom or study



FIGURE 2.2: Electrode placement according to the 10-10 EEG system [23]

room. Dry measurement systems further enhance accessibility, as these systems do not
require specialised gels for electrode application.

Despite its advantages, EEG has limitations compared to other BCl methods like func-
tional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). EEG has a
lower spatial resolution, which makes it difficult to precisely identify the location of brain
activity. Additionally, EEG is limited to measuring the electrical signals from the surface
of the brain and is less effective for detecting activity deeper in the brain. However, these
limitations are not a significant concern for the present study, as the focus is on overall
trends in brain activity rather than localizing brain activity in specific neural regions.

Overall, the high temporal resolution, non-invasiveness, portability and direct measure-
ment capabilities make EEG a good fit for this research. Especially with dry measurements.

2.2.2 Electrode Placement

To ensure consistency in EEG measurements across research, electrodes are placed at
specific, standardised locations on the scalp. A standardised system, known as the 10-20
EEG system, has been developed. Each electrode placement is assigned a unique identifier,
which includes a name and a number, reflecting the region of the brain where the electrode
is positioned [22].

The precise placement of these electrodes is crucial. Incorrect positioning can cap-
ture signals from adjacent brain regions, leading to inaccurate data and potentially false
conclusions. This can compromise the validity of the research findings [22].

In some cases, the 10-10 system (Figure 2.2) is used for electrode placement, which is
an extension of the 10-20 system [23]. This research uses a subset of the 10-10 system,
explicitly using the nodes Fz, Cz, Pz, Oz, C3, C4, PO7, and POS.

To align the electrodes with the head of the participants, anatomical landmarks such
as the inion, nasion, and the left and right pre-auricular points are used, ensuring that the
central electrode (Cz) is approximately aligned with the vertex [24].



2.2.3 The EEG Engagement Index

The EEG Engagement Index is a measure of mental engagement and sustained attention
[25]. It is calculated by examining the relationship between the different frequency bands
of brain activity. Higher frequency bands, such as the Beta band (/3), are associated with
increased engagement, while lower frequency bands, such as the Alpha («) and Theta
(f) bands, are linked to lower engagement. The EEG Engagement Index is determined by
dividing the Beta band by the sum of the Alpha and Theta bands, as shown in Formula
2.1 [26].

p
E tinder = —— 2.1
ngagementIndes = —~— (2.1)
In this formula, 5, a, and 0 represent the power of the EEG signal within the Beta,
Alpha, and Theta frequency bands, respectively.

2.2.4 EEG Frequency Bands

To analyse EEG signals, spectral analysis can be employed to break down the EEG signal
into frequency bands. Spectral analysis is the process of estimating the power spectrum
of a signal from its time-domain representation [27]. After calculating the Power Spectral
Density (PSD), the signal is divided into frequency bands by range. The ranges are Delta
(0-4Hz), Theta (4Hz-8Hz), Alpha (8-12Hz), Beta (12-30Hz) and Gamma (30-80Hz) [28].

Each of these different frequency bands is correlated with a different behavioural pro-
cess. For instance, Delta waves are associated with deep sleep, whereas Gamma waves
are associated with tasks that involve higher cognitive functions [29]. Research shows a
negative correlation between students performance and the Theta/Alpha and the Delta
band [30].

2.3 Haptic Feedback

Haptic feedback encompasses a range of feedback technologies that use the sense of touch
[31]. It is defined as the "sensory and/or motor activity of the skin, muscles, joints, and
tendons" [32]. There are several types of Haptic feedback: vibrotactile, thermal, pressure,
and electrotactile feedback [32]. A summary of these different haptic feedback modalities
can be seen in 2.3.
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Electrotactile feedback:
Provide low level current
pulses to the tissue using elec-
trodes placed on the skin

Thermal feedback:
Provide thermal cues dur-
ing interactions with objects

Vibrotactile feedback:
Provide mechanical vibra-
tion on the user’s skin to
convey tactile information

Pressure, contact feedback:
Provide contact/pressure when
encoding virtual object surface

FIGURE 2.3: Haptic interface classification [32]

2.3.1 Vibrotactile Feedback

Vibrotactile feedback is the most common form of Haptic feedback, where vibrations convey
information to the user [33]. This technology is prevalent in mobile and wearable devices,
such as smartwatches, where continuous vibrations effectively notify users of messages and
incoming calls. Additionally, discrete vibration bursts are often used as a substitute for
the tactile feedback that physical keyboards provide during typing [32].

2.3.2 Thermal Feedback

Thermal feedback involves using temperature changes to deliver sensory information. This
type of feedback can create distinct sensations by altering the temperature of a device or
surface in contact with the user’s skin [32].

2.3.3 Pressure And Contact Feedback

Pressure or contact feedback uses applied pressure or physical contact on the skin, typically
through motors, to convey information or prompt a response [32].

2.3.4 Electrotactile Feedback

Electrotactile feedback gives feedback to users through electrical pulses transmitted via
electrodes placed on the user’s skin [32]. This type of feedback stimulates the nerves
directly, creating a touch sensation.

11



Chapter 3

Related Work

This research aims to enhance engagement during online lectures. This chapter reviews
related studies on the EEG Engagement Index and feedback modalities.

3.1 EEG-Engagement Index

The EEG Engagement Index is a well-established metric used in research to assess sustained
attention [34]. The EEG Engagement Index has also been proven useful in the context of
cognitive engagement, which is the extent to which students can learn [35]. Research
shows that differences in cognitive task demand have different levels of cognitive engage-
ment, which can be measured through the EEG Engagement Index [36]. This can even be
done with dry measurements [34]. Because of its ability to detect variations in cognitive
engagement, the EEG Engagement Index is a valuable metric for monitoring student en-
gagement, as it allows for real-time monitoring of students’ cognitive behaviour during
learning activities.

3.2 EEG-based Engagement Measurement And Feedback Systems

The EEG Engagement Index is often combined with a sensory feedback mechanism to detect
and address declines in sustained attention.

One prominent application is in high-focus environments where maintaining alertness
is critical. For example, a study developed a system for Unmanned Aerial Vehicle (UAV)
operators to prevent them from falling into inattention [6]. The researchers proposed
a system composed of three components. First, a signal processing unit to collect and
preprocess the EEG signals of the user of the system. Based on these signals, it could be
determined whether the user was paying attention. If it were detected the user was not
paying attention anymore, the user would receive visual and audio cues to start paying
attention again. They tested the accuracy and effectiveness of their proposed system on
four participants with a flight simulator. Based on their test, it was shown that their
system helped users focus when attention was lost. However, because of the small number
of subjects, statistical significance could not be established.

One study investigated the impact of visual feedback based on the EEG Engagement
Index in an educational setting [5]. The researchers developed a BCl system that provided
real-time feedback during an educational video. Participants watched three videos with
visual, false, or no feedback. Although the study did not find a statistically significant
difference between the three feedback conditions, the researchers suggested that this re-
sult could be due to several factors, including the limited sample size, the variability in

12



individual attention patterns, artefacts in the EEG signal, and the design of the feedback
and lecture content. The researchers suggested exploring alternative modalities, such as
haptic feedback (vibrotactile and thermal), for potentially greater effectiveness [5].

Most studies have focused on visual or auditory stimuli, engaging the same brain
regions in online learning. This overlap can be problematic if users are distracted from
the screens or audio, as they might miss the feedback, reducing its effectiveness [7].

There is also research that looks at haptic feedback as a feedback mechanism for
sustained attention. Haptic feedback has been extensively utilized in various forms in
combination with BCl within the context of learning. One such form is thermal feedback,
which has been explored in an online engagement setting [37]. In this study, researchers
tested the effectiveness of using thermal feedback to notify presenters about audience
engagement. Despite the small sample size, the researchers observed positive results,
suggesting that informing users of their engagement levels may also be feasible.

Vibrotactile feedback has also been explored in BCl as a haptic feedback mechanism.
One study proposed a two-part system consisting of an EEG headband and a scarf equipped
with subtle vibration mechanisms that activate when the user’s EEG Engagement Index
drops below a certain threshold [38]. Participants watched three online lectures or attended
three face-to-face lectures on different subjects. They received either accurate, false or no
feedback, comparing the results across these conditions. The findings indicated that the
vibrotactile feedback positively influenced engagement and led to improved performance
on subsequent tests.

This research aims to directly compare vibrotactile and thermal haptic feedback in the
context of online learning. By looking at the effect of these haptic feedback modalities
on student engagement, this study attempts to understand how different forms of haptic
feedback can support cognitive engagement in educational settings.

13



Chapter 4

Methodology

This chapter proposes a method to investigate how sustained attention can be enhanced
using haptic feedback during online learning. By integrating BCl with haptic feedback,
real-time feedback can be provided to learners, possibly improving their attention and
engagement. The primary dependent variable in this study is the EEG Engagement Index,
which is the measurement of the sustained attention of the participants. The EEG Engage-
ment Index will be examined during three different conditions of the independent variable:
no feedback, vibrotactile feedback, and thermal. The mean of each condition is compared
using a two sided paired t-test. This is done to assess the impact of haptic feedback on
engagement.

4.1 BCI Pipeline

The research makes use of the Unicorn EEG hybrid black EEG headset (Figure 4.1) which
is used to measure brain activity using eight EEG channels (Fz, Cz, Pz, Oz, C3, C4, PO7
and PO8) [39]. This headset is chosen for its availability at the university and quick setup.
This headset was selected for its availability at the university, ease of setup, and ability to
perform dry measurements. Since participants will be seated and the data is recorded in
5-second windows across the head, the dry measurements are expected to suffice. Because
of this, the preparation will take less time compared to other EEG methods while still
yielding valid results [40].
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FIGURE 4.1: (A) The Unicorn Hybrid Black system (B) The available channels of
the system. The ground and reference electrodes are placed on the mastoids using
disposable sticky electrodes. [41]

The feedback is delivered through a vibration motor for vibrotactile feedback and
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a Peltier element to create a cold sensation on the wrist as thermal feedback. A cold
sensation is chosen because the cold range is safer than the heat range. Cold is also
associated with boredom, which participants may more easily associate with a lack of
attention [42, 43]. These devices are connected to an Arduino Uno and controlled via
Pulse-Width Modulation (PWM). Communication with the Arduino is established through
a serial connection.

4.1.1 Data Processing

Raw EEG signals are recorded in 5-second intervals, called epochs. To reduce high-
frequency noise and minimize artefacts caused by movements, blinks, and other distur-
bances, each epoch is processed using median filtering [44]. A median filter protects the
edges of the signal and removes random noise [45]. The median filter uses a window size
of 3, meaning that the median is calculated using each data point and its two nearest
neighbours [5]. This process smooths the signal by removing noise while preserving its
overall trend, as shown in Figure 4.2. In Figure 4.2, the blue line represents the filtered
signal, while the red dotted line shows the unfiltered signal. After filtering, many of the
peaks caused by noise are removed, but the general shape and trend of the signal remain
intact.

30 A -—- Original data
—— Filtered data

20 1

10 1

Amplitude

T T T T T
0 100 200 300 400 500
Sample

FIGURE 4.2: Visualisation of median filtering of the EEG data with a window size
of 3.

The filtered signal’s PSD is calculated using Welch’s method [46], with a bandpass
filter applied to exclude frequencies below 1 Hz and above 50 Hz. This is done because
the frequencies outside of this range are not relevant for the frequency bands Theta,
Alpha and Beta; and thus not needed for the analysis. The data is then divided into the
specific frequency bands (see Section 2.2.4) and visualized as seen in Figure 4.3. The mean
value for each frequency band is computed for every channel, preserving local frequency
characteristics. A peak at 25 Hz can be observed, this corresponds with a sub-harmonic
of the 50 Hz power grid, which must be filtered out.
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FIGURE 4.3: Visualisation of the PSD using Welch’s method and the division
into different frequency bands, with a minimum threshold of 1 Hz applied to the
delta band to mitigate low-frequency noise; Peak at 25 Hz because of sub-harmonic
frequency of 50 Hz power grid.

The EEG Engagement Index is calculated using Equation 2.1. Signal smoothing is
applied using an Estimated Weighted Moving Average (EWMA) with o = 0.2 [5], as shown
in Equation 4.1. Because the EWMA references previous values, the first time it is used,
the first time it is initialised by being set to the value of the EEG Engagement Index instead
of calculating the EWMA. From that point on, the EWMA can be calculated.

a-EI+(1—a)-Elgwvma if Elgwara has been previously computed

ET =
EWMA { ET otherwise

(4.1)

Engagement threshold

A threshold is introduced to detect drops in engagement. It is calculated by taking the
mean of the calibration period and removing outliers from the measurements by using a
threshold of two standard deviations. This step is graphed in Figure 4.4.
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FIGURE 4.4: Visualization of the threshold of the calibration. The threshold is
marked in red.

The complete data processing pipeline is depicted in Figure 4.5.
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Record for 5 second period

Apply median filtering

Compute Power Spectral Density (PSD)
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Compute engagement index

I

Compute the Estimated
Weighted Moving Average

{

Compare to threshold

FIGURE 4.5: Data processing steps [5]

4.2 Data Acquisition

The Unicorn Hybrid Black EEG headset records EEG signals and connects to a laptop
for processing using Bluetooth. The device can be controlled using the provided Uni-
corn Hybrid Black Python Application Programming Interface (API) [39]. Feedback devices
(vibration motor and Peltier element) are controlled by an Arduino Uno, which commu-
nicates with the laptop through a serial connection. The experimental setup is shown in
Figure 4.6.

18
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EEG Headset H PC ‘

’ Peltier Element

FIGURE 4.6: Experiment setup: The EEG headset is connected to a laptop, which
controls the Peltier element and vibration motor via an Arduino.

4.3 Validation

The pipeline was validated by replicating the validation step of a prior study [5]. Since
the same results were obtained, it was assumed that the two methods were similar. This
allowed for a direct comparison of the results of the two studies.

To validate the system, a driver fatigue detection dataset [47] was used. This dataset
included EEG data collected from 12 participants during a simulated driving task, divided
into normal and fatigued states [5].

The hypothesis was that as the drivers became fatigued, their alertness decreased,
leading to a lower EEG Engagement Index. This decrease was expected to be detectable by
the EEG Engagement Index values.

The data were segmented into 5-second epochs to align with the experimental setup
of this study. The first 10 minutes of the standard and fatigued data were processed for
each participant, and the results were averaged over the 10 minutes for each state. The
results were validated using a one-sided paired sample t-test with a significance level of
o = 0.05. The t-test revealed whether there were any significant differences between the
three methods.

4.4 Experiment Setup

Before participating, participants were provided with an information sheet (Appendix
B) detailing the study. Before proceeding, they were required to sign a consent form
(Appendix A). Participants were allowed to ask questions at any time.

4.4.1 Installation

It was essential to ensure the electrodes of the headset were positioned correctly for accu-
rate measurements. Two sticky electrodes were placed behind each of the mastoid bones
behind the ears [48]. These sticky electrodes were replaced for every participant. The
electrodes were turned clockwise and counterclockwise to ensure they reached the head
through the hair. A waiting time of three minutes was observed according to the headset’s
instructions to ensure signal accuracy [48]. The signal strength was tested with the soft-
ware suite provided with the headset. If signals were unclear, the electrodes were adjusted
again until the signals became mostly clear.

During the experiment, participants were instructed to sit upright with both arms
resting on the table and to remain as still as possible. This minimized noise in the EEG
signal caused by movements and helped ensure cleaner data.
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The vibration motor was attached to the participant’s right wrist. After the vibro-
tactile feedback experiment was completed, the vibration motor was replaced with the
Peltier element for the thermal feedback experiment. The Peltier element was mounted
with the cold side in contact with the wrist and the heated side facing away. The order of
the feedback modalities was alternated between participants.

4.5 Participants

Ten participants were selected for this study. While this sample size was insufficient
for statistically significant results, it provided insights into how future research could be
structured to explore how haptic feedback may raise engagement. The participants in this
study were primarily university students to ensure a consistent education level. An equal
number of male and female participants were recruited to help balance the results.

4.5.1 Ethical Approval

This study received ethical approval from the Ethics Committee of the University of
Twente. Before the experiments, participants were provided with an information sheet
(Appendix B) explaining the purpose of the study and the procedure. They were also
required to sign a consent form (Appendix A) before participating. Participation in the
study was entirely voluntary, and participants were allowed to withdraw at any time with-
out consequences.

All collected data were anonymized and could not be traced back to the participants.

4.5.2 Experiment Task

Participants were required to watch a video lecture on economics [49]. This subject was
intentionally chosen because the participantsmostly students from a technical universi-
tywere presumed to have little to no prior knowledge of the topic. This ensured that
participants had roughly equal experience with the content, minimizing variability in en-
gagement due to prior knowledge. The selected video was an introductory lecture from a
university bachelor’s program, making the material accessible and understandable for all
participants given their academic backgrounds [49].

The lecture lasted 35 minutes, allowing participants time to lose attention over its
duration. The video was divided into three equal parts, with three different methods tested
across these segments. In one segment, engagement was measured without administering
feedback. In another, participants received a vibration when the EEG Engagement Index
dropped below a certain threshold. In the final segment, participants received thermal
feedback instead.

The same video was used across all conditions to eliminate bias related to specific
topics. The video always started without feedback, serving as a baseline for the experi-
ment. Additionally, the order of vibrotactile and thermal feedback was alternated between
participants to control for order effects. Table 4.1 shows the order in which participants
were tested. The order of the feedback was randomized, but it was made sure that both
vibrotactile and thermal feedback occurred equally often in the first and last segments.
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Test # First Position Second Position Third Position

1 N \Y T
2 N A% T
3 N T A%
4 N A% T
5 N T A%
6 N T V
7 N T V
8 N T A%
9 N v T
10 N A% T

TABLE 4.1: Test sequences with feedback conditions: V (Vibrotactile Feedback),
T (Thermal Feedback), and N (No Feedback).

4.5.3 Calibration Period

Before beginning the main experiment, participants underwent a brief calibration period.
This calibration was important for establishing the upper and lower bounds of the EEG
Engagement Index so the results can be normalised. The EEG Engagement Index values
are also used to calculate a threshold threshold to be used for the remainder of the video
by taking the mean over that period. During this phase, participants were asked to
watch the first five minutes of the video. This initial period allowed for the collection
of engagement data under relatively consistent conditions, providing a reference point
against which subsequent engagement levels could be compared. Based on this calibration
the results can be normalised using formula 4.2.

EI — min(EIcalibration)

maX(Elcalibration) — min (EIcalibration)

(4.2)

EInormalised =

4.5.4 Statistical Analysis

To examine the effect of haptic feedback on sustained attention during an online lecture,
a paired two-sided t-test was conducted on the mean EEG Engagement Index across three
conditions: no feedback, vibrotactile feedback, and thermal feedback.

The mean and standard deviation of the EEG Engagement Index were calculated for each
condition. Because of the large sample size of the EEG Engagement Index measurements
(n > 30), the measurements were assumed to be normally distributed based on the Central
Limit Theorem (CLT) [50]. A two-sided t-test was used to compare pairs of conditions: no
feedback, vibrotactile feedback, and thermal feedback. The t-test used a=0.05 as the
threshold for statistical significance. The test determined whether there were significant
differences in sustained attention across conditions in this experiment.

A boxplot was generated to visualise each of the different conditions for each partici-
pant. This boxplot was used to identify outliers through visual inspection. If outliers were
detected, they were removed.

The analysis aimed to determine whether haptic feedback modalities significantly en-
hanced engagement compared to the no-feedback baseline. All statistical analyses were
performed using Python, with SciPy for hypothesis testing and Seaborn and PyPlot for
data visualization.
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Chapter 5

Results

This chapter discusses the results of the research. The study’s primary objective was to
find out how haptic feedback could improve sustained attention in university students
during online lectures. The study is concerned with the EEG Engagement Index, which
serves as a measure of sustained attention.

The chapter is split up into two sections. The first section presents the results of an
online dataset, where the findings of previous studies are replicated. The second section
addresses the main and subquestions by presenting the results for each feedback condition:
vibrotactile, thermal, and no feedback. The results are shown with data visualizations and
statistical analyses.

5.1 Validating Against Previous Research

Participant Normal Mean Fatigue Mean Difference Mean

1 1.471 0.434 1.037
2 0.694 0.944 -0.250
3 1.114 0.935 0.179
4 0.605 0.896 -0.291
5 0.796 1.354 -0.558
6 0.839 0.909 -0.070
7 1.062 0.998 0.064
8 0.798 0.541 0.257
9 0.798 0.541 0.257
10 1.703 1.833 -0.130
11 1.343 1.040 0.304
12 1.102 1.222 -0.120
Mean 1.027 0.971 0.057

TABLE 5.1: Comparison of Driver EEG Engagement Index Between Normal and
Fatigued States
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Metric Value

Number of participants 12

Degrees of freedom 11

Alpha 0.05
Mean difference (Normal - Fatigued) 0.057
Standard deviation of difference 0.404
Standard error of difference 0.117
T-value 0.485
T-critical 1.796
P-value 0.319

TABLE 5.2: Inferential statistics summary for comparing Normal and Fatigued
groups.
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FiGURE 5.1: Comparison of driver alertness between normal and fatigued states
by normalised engagement index

Table 5.1 lists the difference in alertness levels of the participants during the driving
simulation before and after they were labelled as fatigued. This data is visualised in
Figure 5.1. On average, the participants had an EEG Engagement Index of 1.027 during
the normal state, which decreased to an average of 0.971 during the fatigued state (Table
5.1). Although the participants had a lower EEG Engagement Index while fatigued, results
showed no significant difference in engagement levels between the normal and fatigued
data (t = 0.465,p = 0.319, see Table 5.2).

These results are similar to the results of the previous study [5]. However, while this
study did not find any significant differences between the normal states and fatigued states,
they found significantly larger EEG Engagement Index values for the normal states than
the fatigued states [5].

Although the validation was designed to replicate the setup of the original research as
closely as possible [5], certain details, such as the chosen 10-minute segment of the dataset
used in the original study, were unavailable. This means that the setup was likely not
identical, which may account for any differences in the results. The differences in data
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selection between the two studies make direct comparisons of the methods challenging.

5.2 Experimental Results

The experiment aimed to investigate the effect of haptic feedback on sustained attention
during online lectures. To address this, the study examined the impact of the three
feedback conditions: vibrotactile, thermal, and no feedback on the participants’ sustained
attention, as measured by the EEG Engagement Index. This section presents the results
of the experiment, structured as follows. First, the trends in sustained attention across
the three conditions, including the identification and handling of outliers to ensure data
validity. Next, the mean EEG Engagement Index is analysed for each condition to show the
differences and variability in participant responses. Finally, the results of the participants
are graphed in Figure 5.5 to show how the EEG Engagement Index behaved throughout
the research. Statistical analyses are included to evaluate the significance of the observed
differences.
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FIGURE 5.2: Normalised mean EEG Engagement Index of participants during the
video across different conditions: normal, vibrotactile, and thermal.

Figure 5.2 shows the participants’ mean EEG Engagement Index, normalised according
to Formula 4.2 between the minimum and maximum EEG Engagement Index value of the
calibration period. Note that the engagement index for participants 1 and 6 is extremely
high. The measuring equipment is sensitive to noise and movement. As shown in Figures
5.5a and 5.5f, the data for these participants is capped at 1 towards the end of the record-
ing, indicating that the values exceeded this threshold for the remaining duration.

The results of participant 10 were invalid because of errors with the headset. hese er-
rors could have been resolved by restarting the headset, this was not possible during the
experiment. Restarting the headset could not be done with the EEG headset’s Software
Development Kit (SDK) and had to be done manually, which would have disrupted the
ongoing experiment. As a result, the issue could not be addressed in real-time.

Due to these recording errors, the data from participants 1, 6, and 10 were excluded from
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further analysis to maintain the validity and reliability of the results.
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FIGURE 5.3: Normalised EEG Engagement Index of participants during the video
across different conditions: normal, vibrotactile, and thermal.

Figure 5.3 shows a boxplot of the EEG Engagement Index of participants during the
experiment. The EEG Engagement Index is shown on the y-axis while the participants’
number is shown on the x-axis, with the colours representing the different conditions.
Note that participants 1 and 6 are removed because they were labelled as outliers.
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FIGURE 5.4: Mean EEG Engagement Index of participants during the video across
different conditions with error bars representing standard deviation.

Figure 5.4 shows the mean EEG engagement index across conditions, with error bars
indicating standard deviation. The vibrotactile feedback condition had the highest mean
engagement index (Z = 0.70), followed by the no-feedback condition (z = 0.60) and the
thermal feedback condition (z = 0.48). However, the differences between baseline and
vibrotactile, baseline and thermal, and vibrotactile and thermal were not statistically
significant (p = 0.864, p = 0.308, and p = 0.262, respectively; a = 0.05).

Notably, the standard deviation increased for the vibrotactile feedback condition. This
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means there EEG Engagement Index and thus the engagement of the participants more at
the later parts of the study. This shows that participants transitioned between focusing
on the lecture and not focusing more frequently compared to the beginning of the video
when the no feedback baseline was recorded, which signals that participants had shorter
sustained attention at the end of the lecture.

Figure 5.5 shows the normalised EEG Engagement Index of the participants, with values
limited between zero to one. Four different phases of the experiment can be seen as
indicated by the dotted vertical lines. The four phases were calibration, no feedback,
thermal feedback and vibrotactile feedback. The graph also shows a red line, which is the
average of the calibration period and serves as the threshold for the feedback. The points
where feedback is administered are recorded alongside the EEG Engagement Index and are
displayed by the red dots.

5.3 Statistical Analysis

Table 5.3 shows the EWMA of the participants’ EEG Engagement Index across the four ex-
perimental phases: calibration, no feedback, vibrotactile feedback, and thermal feedback.

Participant # Calibration No Feedback Vibrotactile Thermal

Participant 2 0.133 0.116 0.135 0.118
Participant 3 0.065 0.058 0.083 0.048
Participant 4 0.086 0.089 0.086 0.088
Participant 5 0.059 0.064 0.083 0.071
Participant 7 0.081 0.083 0.079 0.072
Participant 8 0.107 0.146 0.103 0.114
Participant 9 0.059 0.068 0.067 0.073
Mean 0.084 0.089 0.091 0.083

TABLE 5.3: Mean EWMA of the participants’ EEG Engagement Index across the
different experimental phases. Data from participants 1, 6, and 10 were excluded
due to errors.

No feedback No feedback Vibrotactile

Metric vs Vibrotactile vs Thermal vs Thermal
Number of participants 7 7 7
Degrees of freedom 6 6 6
Alpha 0.05 0.05 0.05
Mean difference -0.002 0.006 0.007
T-value 0.178 1.112 1.239
P-value 0.864 0.308 0.262

TABLE 5.4: Inferential statistics summary for comparing No Feedback, Vibrotactile
Feedback and Thermal Feedback.

Table 5.4 shows the statistics for the paired t-test that was used to compare the
different methods, each with an alpha level of 0.05. The results indicate no statistically
significant differences between the conditions. For instance, the comparison between no
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FiGURE 5.5: Normalised EEG Engagement Index of participants during the four
different phases of the experiment. The red dots label the moment feedback is
applied.

feedback and vibrotactile feedback resulted in p = 0.864, while no feedback versus thermal
feedback resulted in p = 0.308. Similarly, the comparison between vibrotactile and thermal
feedback resulted in p = 0.262. These findings suggest that neither vibrotactile nor thermal
feedback significantly impacted sustained attention compared to the no feedback condition.
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Chapter 6

Discussion

This study has provided insights into the extent to which haptic feedback modalities,
namely vibrotactile and thermal, affect sustained attention in university students during
an online lecture. It is important to note the study’s limitations, which will be discussed in
detail in this chapter. Because of this, the findings of this study should be interpreted with
caution. This chapter will also compare the results with existing research and conclude
with recommendations for future studies.

6.1 Method Validation

The method of a previous study was replicated to validate whether the methodologies of
both studies were consistent [5]. Because the EEG Engagement Index lacks a standardized
scale, comparing results between studies can be challenging. If the research methods of
the studies had been found similar, it would have allowed for a direct comparison between
the results. However, the differing results between the two studies suggest differences in
their methods.

Both the previous research and this study used 120 instances of 5-second long epochs
[5]. However, the timeframe of the dataset was not specified. It was assumed that the
first ten minutes were used, but given the dataset’s length of 12 hours, it is likely that a
different segment was analyzed [47].

Regarding the findings, the previous study reported a correlation between the EEG
Engagement Index and fatigue, which was not observed in this study [5]. These differences
may be because the first ten minutes of the dataset were selected, where fatigue might
not yet have been apparent, which could account for the differences in results. Differences
in the pipeline can also be the reason for the differences in the results. The study used
a random sooth effect to account for variability of the different participants which this
study did not [5].

As for the results of this study, engagement is influenced by factors other than fatigue
(see Section 2.1). Thus, while participants may have experienced fatigue, it did not neces-
sarily result in reduced engagement which could explain the lack of a correlation between
fatigueness and a reduced EEG Engagement Index.

6.2 Experiment Results

The results of this experiment revealed no statistically significant differences in the EEG
Engagement Index across the no-feedback, vibrotactile feedback, and thermal feedback con-
ditions. Vibrotactile feedback showed the highest mean EEG Engagement Index, indicating
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it could possibly be used to enhance engagement. Thermal feedback resulted in a lower
mean EEG Engagement Index, suggesting that it may be less effective in maintaining at-
tention during online lectures. However, because of the lack of statistical significance due
to the small sample size, the current dataset is insufficient to draw definitive conclusions
about the effectiveness of these feedback methods.

None the less, it needs to be noted that the frequent administration of feedback may
have overwhelmed or distracted participants, reducing its benefits. Participants mentioned
outside of the experiment that the feedback could be removing their attention from the
online lecture at times. Reducing the frequency of feedback interventions could minimize
distraction and allow participants to better adapt to the stimuli, potentially yielding differ-
ent results. Further research is needed to find the balance of haptic feedback to optimally
keep the sustained attention of the participants high.

An important observation is the increased variability in EEG Engagement Index dur-
ing the vibrotactile and thermal feedback conditions, as indicated by a larger standard
deviation. This variability is presented in Figure 5.4 by the error bars in relation to the
mean, the bars. This shows that while receiving feedback, there was more fluctuation
in the data. This suggests that participants alternated between focused and unfocused
states more frequently while receiving feedback. This can be seen in Figure 5.5. Because
the feedback was given towards the end of the lecture, participants were already more
easily distracted. This finding aligns with research indicating that our attention shifts
from focussed to unfocused more frequently when time goes on [11].

6.3 Outlier Removal

The results of participants 1 and 6 were removed because of outliers due to abnormally
high EEG Engagement Index. The high readings toward the end of their recordings were
likely caused by headset displacement or movements of the participants, which led to a
difference in the relation between the reference node and the rest of the nodes. Because of
this the recordings experience EEG Engagement Index values that are well above expected.
The results of participant 10 also had to be removed, because they were cut short by
software-related errors of the EEG-headset itself. Removing these outliers improved the
validity of the results by ensuring that the analysis better reflected genuine engagement
patterns. However, this exclusion also reduced the sample size, which may have impacted
the study’s statistical power.

6.4 Improvemenets

6.4.1 EEG-headset

The equipment-related issues discussed in Section 6.3 emphasize the importance of proper
headset placement and minimizing movements of the nodes during future experiments
to prevent similar problems. These factors are critical for ensuring data accuracy and
reliability. If the study were to be repeated, using a different EEG headset, preferably one
with sticky electrodes, could improve measurement accuracy by keeping the electrodes
stationary during the experiment. This could help mitigate the problems observed by
Participants 1 and 6.

Additionally, addressing the technical issue with Participant 10, where the headset
crashed, could also be resolved by using a more reliable EEG-headset.
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6.4.2 Engagement Detection

In this study, the EEG Engagement Index was used as the primary metric for engagement,
with comparisons made against a fixed threshold derived from the calibration period at
the start of the experiment. This threshold represented the engagement level of partici-
pants when they just started watching the lecture and were still mentally fresh. However,
engagement tends to decrease naturally over time, making it potentially unfair to compare
later engagement levels to the initial threshold [11].

To address this limitation, recalibrating the threshold during the lecture could pro-
vide a more accurate representation of engagement over time. Instead of relying on a
single calibration period before the study, the system could be recalibrated between dif-
ferent feedback modalities. This way the threshold can better reflect participants’ current
engagement levels, rather than being tied to their initial state.

Additionally, to maintain the flow of the experiment, recalibration could be done seam-
lessly without interrupting the lecture. For instance, calibration could occur during transi-
tions between feedback modalities, ensuring that the video lecture continues uninterrupted.
This continuous recalibration method would not only improve the accuracy of engagement
measurements but also preserve the natural progression of the experiment.

Additionally, some studies propose alternatives to the EEG Engagement Index by lever-
aging frequency bands as features in machine learning models [51]. For instance, a k-NN
classification method has been employed to assess user engagement. This approach may
be more effective in certain cases, as it allows for training for specific target groups and
removes the need for a set threshold.

6.4.3 Ojective Measurements For Learning

This study did not include pre- or post-tests to measure participants’ knowledge of the
lecture content. As a result, it was impossible to determine their understanding of the
topic before and after the lecture. This limitation introduces potential variability, as
participants with little to no prior knowledge or those with substantial knowledge might
engage differently with an introductory lecture compared to participants with moderate
familiarity.

Furthermore, without a post-test, the participants had little incentive to actively en-
gage with the lecture, unlike in typical academic settings, where students are motivated to
learn to pass exams or assignments. Because of the lack of knowledge assessments, it also
remains unclear how much participants learned from the lecture or whether their learning
outcomes differed when compared to lectures without the feedback system. The gain in
learning can be used to compare this experiment to other research to see how effective it
is in terms of helping with the learning progress.

6.4.4 Distraction From EEG And Feedback Systems

Several participants reported being distracted by the haptic feedback during the exper-
iment. This distraction was attributed to the frequent vibrations and the repeated ap-
plication of thermal feedback. These interruptions occasionally diverted participants’ at-
tention away from the online lecture, counteracting the intended goal of enhancing their
engagement. This highlights a potential challenge in balancing the use of sensory feedback
systems to ensure they support, rather than detract from, the learning experience.
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Chapter 7

Conclusion

Maintaining sustained attention during online lectures can be challenging, especially in dis-
tracting environments. While previous research mostly looks at the potential of auditory
and visual feedback [5], this research investigates whether haptic feedback, vibrotactile and
thermal. This could effectively enhance sustained attention, without sharing the cognitive
resources.

Vibrotactile feedback resulted in a higher mean EEG Engagement Index compared to
the baseline, while thermal feedback showed a lower mean EEG Engagement Index than
both the baseline and vibrotactile feedback. However, no significant differences were found
between baseline vs. vibrotactile feedback, baseline vs. thermal feedback, or vibrotactile
vs. thermal feedback. To answer the research question, "To what extent does haptic feed-
back, compared to no feedback, improve attention in university students during an online
lecture, as measured by the EEG Engagement Index?' this study found no significant
effect of haptic feedback on attention.
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Consent Form for ‘Temperature and vibrating feedback during video lecture’
YOU WILL BE GIVEN A COPY OF THIS INFORMED CONSENT FORM

Authors: Stijn Kamp (based on template by BMS EC)
Last edited: 01-11-24

Please tick the appropriate boxes Yes No
Taking part in the study

| have read and understood the study information dated dd-mm-yy, or it has beenreadtome. O O
| have been able to ask questions about the study and my questions have been answered to
my satisfaction.

| consent voluntarily to be a participant in this study and understand that | can refuse to o O
answer questions and | can withdraw from the study at any time, without having to give a
reason.

| understand that taking part in the study involves watching a video of around 30 minutes O O
while wearing an EEG-headset and a bracelet for feedback and partake in an interview
afterwards that is recorded using written notes.

Use of the information in the study

| understand that information | provide will be used for reports, publication and follow up o O
research.
| understand that personal information collected about me that can identify me, such as [e.g. O O

my name or where | live], will not be shared beyond the study team.

Future use and reuse of the information by others

| give permission for the anonymised recordings of the EEG-cap and written notes that | o O
provide to be archived in in the report so it can be used for future research and learning.

| agree that my information may be shared with other researchers for future research studies O O
that are similar to this study. The information shared with other researchers will not include

any information that can directly identify me. Researchers will not contact me for additional

permission to use this information.

Signatures
dd-mm-yy

Name of participant Signature Date

| have accurately read out the information sheet to the potential participant and, to the best
of my ability, ensured that the participant understands to what they are freely consenting.

Stijn Kamp dd-mm-yy

Researcher name Signature Date
Study contact details for further information: Stijn Kamp, s.kamp@student.utwente

UNIVERSITY OF TWENTE.
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Information sheet for ‘Temperature and vibration feedback during video
lecture’

Authors: Stijn Kamp (based on model by UCL Research Ethics)
Last edited: 01-11-24

Dear reader,

Thank you for your consideration of participating in this research project! Before you decide
to participate, it is important for you to understand your part in the research and what the
research is about. Please take your time to carefully read this information sheet. If anything is
still unclear during or after reading the sheet, feel free to ask questions.

The aim of this research is to explore if sensory feedback, such as temperature changes or
vibrations, can help regain and sustain attention during online lectures. This could potentially
enhance learning experiences and outcomes in digital education environments. During the
study, you’ll wear a specialised cap, known as an EEG-cap, which will measure your brain
activity to monitor your attention levels. If the EEG detects that your attention level is low,
you’ll receive feedback. During the video, you will either feel a vibration or a cold feeling,
administered by a bracelet.

To test both methods, you are asked to watch a videos of around 30 minutes. During the video
you’ll have to wear the EEG-cap so your attention level can be measured. Afterwards I will
ask you some questions about your experience with both methods.

The materials used for the testing setup have been extensively used in human research and are
safe. While you might experience some discomfort from wearing the cap and the bracelet,
there are no significant risks to this study.

Whilst there are not any immediate benefits for you in participating in this research for you,
you’ll help me by providing me with valuable information. This information consists of
questions asked at the end of the tests and the recordings of the EEG-cap. This information
will be published and could be used for follow up research. However, the information is
strictly confidential and will be anonymised before publishing so it cannot be traced back to
you.

The participation of this study is entirely voluntary. If you choose participate in this research,
you are asked to fill out a consent form. You’ll receive a copy of this sheet, the filled out
consent form and the notes of the interview. At any time you are allowed withdraw from the
research without any consequences.

If you have questions about your rights as a research participant, or wish to obtain
information, ask questions, or discuss any concerns about this study with someone other than
the researcher(s), please contact the Secretary of the Ethics Committee Information &
Computer Science: ethicscommittee-CIS@utwente.nl

Thank you for your time!

Yours sincerely,
Stijn Kamp, Researcher at the University of Twente
s.kamp@student.utwente.nl +31 63 724 195

UNIVERSITY OF TWENTE.
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