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Multi-variable optimization problem for tailoring
ankle-foot orthosis stiffness to end-users’ needs

Emma A. Gille1

Abstract—Ankle Foot Orthoses (AFOs) are devices commonly
used to assist or rehabilitate gait, with stiffness being a key
parameter influencing their effectiveness. However, the absence
of clinical guidelines for tuning AFO stiffness often results in
inconsistent outcomes and low user satisfaction. This may be
due to two key challenges: the limited number of gait variables
considered, which may not capture the full complexity of walking,
and variability in how stiffness relates to gait variables across
individuals.

To address these challenges, we propose a user-tailored opti-
mization framework that identifies and incorporates relevant gait
variables based on individual needs and preferences. First, key
performance variables across five gait domains were examined in
five participants with cerebral palsy (CP) to assess their relevance
for predicting stiffness levels, using SHapley Additive exPlana-
tions (SHAP) to interpret feature importance. Subsequently, user
and healthcare professional preferences were integrated into the
stiffness optimization framework.

Our findings highlight the importance of multiple performance
variables in capturing gait complexity and reveal that the
most relevant variables differ between participants. Within the
optimization framework, we identified a stiffness level that min-
imized the total error for each participant. The optimal stiffness
varied between the participants, emphasizing the need for a
personalized approach to stiffness optimization. Incorporating
user and clinician preferences did not alter the optimal stiffness
levels.

Index Terms—Cerebral palsy, ankle foot orthosis, stiffness op-
timization, performance variables, gait analysis, user & clinician
preferences

I. INTRODUCTION

Cerebral palsy (CP), with a prevalence of 1.7 to 3.1 per
1,000 live births [1], is a group of motor disorders caused by
early damage to the developing brain [2]. It is a neurological
condition that primarily affects movement, muscle tone, and
posture, often resulting from brain injury or abnormal brain
development during early childhood [3]. The severity and type
of motor impairments vary depending on the location and
extent of brain damage [3].

Walking is a fundamental aspect of daily life, playing a
crucial role in children’s development by enabling mobility,
participation in activities, and social engagement [3]. For
children with CP, improving mobility is a key goal in achieving
greater independence and an active lifestyle [4].

Ankle foot orthoses (AFOs) are commonly used to assist
or rehabilitate gait in people with motor or neurological
disorders like CP [5]. These devices provide support to the
ankle joint, correct gait deviations, and effectively reduce
energy cost when walking. The AFO stiffness is a feature that

1Department of Biomechanical Engineering, University of Twente, The
Netherlands. Correspondence: e.a.gille@student.utwente.nl

Fig. 1: Five domains that represent different aspects of gait.
Several performance variables (pie chart at the center) were
selected in this work to assess these gait aspects.

highly influences the final user’s walking performance [5]–
[7]. Therefore, to maximize the benefits of an AFO, it is very
important that this stiffness is tailored to the end-user’s needs.

Optimal stiffness varies depending on the user’s capacity
[8], the task [9] and the terrain type [10], among other factors.
Therefore, objective data of the performance of the user in all
these different conditions would be useful to inform clinical-
decision making in prescribing new AFOs [11]. However, clear
clinical guidelines to determine a personalized value of the
AFO’s stiffness are lacking [11], and available experimental
methods still face challenges like long measuring times and
lack of inclusion of user preferences [5].

Human in the loop optimization (HILO) is a method aiming
to optimize AFO stiffness based on an objective function that
most often targets metabolic cost [12]. This target variable
is computed indirectly from breath by breath measurements
of carbon dioxide and oxygen. Nevertheless, metabolic cost
requires a long measuring time, and even when a reduction
in metabolic cost is achieved via HILO, this improvement
is not reliably perceived by the user [13]. This can be
explained by the fact that users prioritize several aspects of
gait simultaneously, with metabolic cost not being the highest
priority. Therefore, trying to optimize a single physiological
measurement (i.e., metabolic cost) without considering other
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variables and user preferences, may not yield the desired
results in terms of user satisfaction and acceptance [13].

Gait domains, aside from effort, that may also be relevant
for optimization include kinematics, spatio-temporal parame-
ters, balance, user perception, and muscular control (Fig.1).
Variables related to these domains are typically not used
in combination during AFO stiffness optimization, limiting
the understanding of gait performance [12]. When multiple
domains are considered, the combination is often partial and
constrained by predefined decision schemes [14]. These deci-
sion methods assess the performance of each target variable
at different stiffness levels and rank optimal stiffness based on
the first target variable. In case of a tie, they use subsequent
variables one by one to make a decision. The hierarchy of
target variables in these decision schemes is manually selected
by researchers, potentially leading to high variability in the
results between participants [14].

Tankink et al. [15] highlighted the importance of selecting
the appropriate cost function (including the objective and
variables), as different choices can highly influence the results
and, in turn, affect the ability to design personalized features
that suit the individual. This emphasizes that a “one-size-
fits-all” approach may be suboptimal. Therefore, optimization
of AFO stiffness should be improved by incorporating a
tailored multi-variable hierarchy that aligns with individual
user’s priorities.

The aim of this thesis is to develop an alternative method
that better captures the complexity of gait while incorporat-
ing user preferences and achieving faster results than HILO
methods in selecting an optimal stiffness. This leads to the
primary research question: RQ: How can a multi-variable
optimization model be designed to determine the optimal
stiffness of an Ankle-Foot Orthosis, tailored to the specific
needs of individual users?

A key step in this process is analyzing which variables
matter in predicting the stiffness, so the first sub-question
is: rq1: Which performance variables are most relevant for
predicting stiffness, and how does their sensitivity vary across
users? If we find that across participants there are variables
with weaker correlations to stiffness, those variables could be
excluded as they may be less effective for optimization. It
would reduce the number of required sensors and complexity
of the protocol, and potentially increasing user comfort during
the experiment. Focusing on the most relevant variables allows
for a more efficient and personalized optimization process.

Beyond performance variables, the inclusion of user and
clinician preferences is essential. A key challenge in the
optimization process is the divergence between clinical func-
tional objectives and patient preferences [11]. For instance,
factors such as replicability of normal walking patterns and
adaptability to walking speed have been shown to differ
significantly in perceived importance between healthcare pro-
fessionals and end-users [11]. This possible discrepancy raises
the second sub-question: rq2: How will the optimal stiffness
based on preferences of the user differ from that based on the
preferences of the health care professional?

Addressing this question will refine the optimization model,
ensuring a balance between clinical effectiveness and user

Fig. 2: Magnified view of the leaf spring-CAM mechanism
in the inGAIT-VSO, highlighting the adjustable slider for
stiffness adjustment. Figure taken from [17].

satisfaction.
By addressing the above-mentioned research questions, this

thesis aims to develop a personalized multi-variable stiffness
optimization framework that integrates both user and clinician
preferences. The proposed optimization is tested on five pedi-
atric participants with CP using the inGAIT-VSO device [16].

II. METHODS
This section outlines the steps involved in stiffness op-

timization. First, the inGAIT-VSO is introduced in section
II-A. Next, the selection of performance variables used in
the optimization is outlined in section II-B1, followed by
the feature selection process for identifying key variables in
section II-B2. Subsequently, the stiffness optimization process,
including the incorporation of user and clinician preferences,
is covered in sections II-C and II-D, respectively. Finally,
the methods for studying this process with five participants
diagnosed with CP are described in section II-E.

A. Variable stiffness orthosis

The inGAIT-VSO is a pediatric-focused Variable Stiffness
Orthosis (VSO) designed for children with CP [9], [16], see
Fig. 2. It features a non-actuated mechanism that provides a
non-linear ankle angle-torque curve, active during both the
stance and swing phases. The stiffness curve can be manually
adjusted according to user/clinician preferences to impact the
user’s gait. The inGAIT-VSO is sensorized and allows for data
capturing without needing sophisticated lab equipment. For a
detailed description of the inGAIT-VSO, refer to [16].

B. Feature selection

1) Performance variables: To take into account different
aspects of gait, we defined five domains: 1. Kinematic Proper-
ties, 2. Spatio-Temporal Characteristics, 3. Balance and Stabil-
ity, 4. User Perception and Physiological Demand, and 5. Mus-
cular Control (Fig. 1 & Table I). Within each domain, specific
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TABLE I: Summary of performance variables and their corresponding domain, gait aspects, typical developing (TD) values,
acceptable bounds (as obtained from the literature), and the computational interval, with “W.S.” referring to walking segment
and “W.T.” to walking trial.

Domain Gait Aspect Performance variables TD values Bounds Interval

Kinematic Properties Amplitude Strike ankle dorsiflexion (deg) -2.15 [-5.9, 1.6] Gait cycle
Peak ankle dorsiflexion (deg) 12.5 [9.5, 15.5] Gait cycle

Spatio-Temporal
Characteristics

Pace Walking speed (m/s) ≥ 1.2 [1, 1.4] Gait cycle
Rhythm Stance duration (%) 57.97 [56, 59.9] Gait cycle
Variability Stance duration variability (%) ≤ 1.93 [0, 1.93] W.S.
Coordination Walk ratio (cm·min/step) 0.45 [0.38, 0.53] Gait cycle

Balance and Stability Body compensation Trunk lateral motion (m/s2) ≤ 1.47 [1.08, 1.86] Gait cycle
Asymmetry Step time asymmetry (ms) ≤ 32 [25.6, 38.4] W.S.

User Perception and
Physiological Demand

Effort Physiological cost index (beats/m) ≤ 0.39 [0.3, 0.48] W.S.
Perceived effort (Borg’s scale) ≤ 12 [6, 12] W.T.

Muscular Control Smoothness Co-contraction index (–) 26.5 [24, 29] Gait cycle

performance variables were selected to comprehensively assess
both functional and physiological aspects of user performance,
with a particular focus on the ankle joint. The selection was
based on previous literature [18] and prioritized variables that
could be measured using wearable and onboard lab equipment,
aiming to minimize duplication and redundancy within and
between domains.

For the Kinematics domain, the angle between the foot and
shank at heel strike, representing the ankle angle as a degree
of dorsiflexion (DF), and the peak ankle DF, representing the
maximum DF observed during the stance phase for each gait
cycle, were computed (Table I). Within the Spatio-Temporal
domain, walking speed, stance duration (the percentage of the
gait cycle during which the foot is in contact with the ground),
and walk ratio (defined as the ratio between step length
and cadence) were computed every gait cycle as variables
representative of pace, rhythm and coordination respectively.
Additionally, the stance duration variability was determined
every 20-meter walking segment by looking at the standard
deviation of the percentage of stance phase durations computed
along that segment. For the Balance and Stability domain, the
trunk lateral motion was computed as a form of compensation
mechanism every gait cycle, while step time asymmetry (STA)
was computed for every 20-meter walking segment. Trunk
lateral motion was derived from the root mean square of the
lateral acceleration as done in [19]. The STA was computed
using the formula presented in [20]:

STA =
∑

n
i=2(STi −STi−1)

2n
(1)

where STi is the step time of the step i in milliseconds, and
n is the total number of steps on the corresponding walking
segment. For the domain User Perception and Physiological
Demand, the Physiological Cost Index (PCI) [21], used to
assess the energy cost of walking by relating changes in heart
rate to walking speed, was calculated every walking segment
as:

PCI =
HRwalk −HRrest

vwalk
(2)

where HRrest and HRwalk are the heart rate measurements
at rest and during walking, respectively, and vwalk represents

walking speed. Moreover, the Borg’s scale [22], a subjective
measure of perceived exertion, was used to report user’s
perceived effort. Finally, for the Muscular Control domain,
the co-contraction index (CCI) was computed during stance
phase as presented in [23]:

CCI =
101

∑
i=1

EMGL(i)
EMGM(i)

(EMGL(i)+EMGM(i)) (3)

where i represents the individual time points of stance phase
(0–100%, or 101 data points), and EMGL(i) and EMGM(i) are
the normalized activations of the less and more active muscles
at point i, respectively. The CCI quantifies the simultaneous
activation of antagonist muscle pairs, indicating the level
of muscle co-contraction in the lower leg during walking.
Specifically, the antagonist muscles used were the tibialis
anterior (TA) and gastrocnemius medialis (GM).

Some performance variables were measured separately
for the left and right sides of the body, while others
were non-side-dependent. Specifically, trunk lateral motion,
STA, PCI, and perceived effort were assessed as non-side-
dependent values, whereas all other variables were calculated
individually for both the left and right sides.

2) Classification model for feature importance: A classi-
fication model was developed using XGBoost, with perfor-
mance variables as inputs and stiffness as the output. This
model enhances the basic gradient boosting method by passing
residuals from each decision tree to the next, hierarchically
(see Fig. 3). It offers the benefit of being well-suited for high-
dimensional datasets and includes inherent regularization to
prevent overfitting [24]. The purpose of training this model
and employing an explainability framework was to identify
the variables that were significantly affected by stiffness. To
train the XGBoost model, observations of each performance
variable were obtained across a range of stiffness levels (see
section II-E). Some variables could only be computed once
per walking trial or segment, rather than for each gait cycle
(Table I). To ensure consistency with other variables, these
values were repeated to match the number of gait cycles within
each respective trial or walking segment, resulting in an equal
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Fig. 3: Schematic illustration of functioning of XGBoost
models. Original data has two classes circles and squares.
The first decision tree (DT1) gives an imperfect classification.
The errors or residuals from DT1 are fed as input to the next
decision tree (DT2). DT1 and DT2 are combined to give the
final prediction

number of data points per variable, as required by SHAP for
accurate feature importance assessment.

To quantify the contribution of each variable to the predic-
tions, SHapley Additive exPlanations (SHAP) were employed
[25]. SHAP values explain the contribution of each individual
variable to the overall prediction. The SHAP value of a
variable is calculated by assessing the effect of excluding
that variable from the prediction process. If removing the
variable has no effect on the result, its SHAP value will
be 0, indicating the variable’s irrelevance to the prediction.
Different combinations of variables were tested to account
for interactions between features, ensuring accurate calculation
of SHAP values. The XGBoost model for classification and
SHAP for result explanation were performed for each partici-
pant individually. Since SHAP values do not represent absolute
quantities but rather indicate how much each variable deviates
from the baseline prediction, they were normalized so that the
total SHAP sum for each participant equaled 10.

We created two thresholds for the total SHAP value to
categorize variable importance: a low-relevance threshold at
2.5% (0.25 out of 10) and a high-relevance threshold at 10%
(1.0 out of 10). Variables with SHAP values below the low-
relevance threshold were considered to have minimal influence
on the model’s prediction. Values between the two thresholds
were interpreted as moderately important, while values above
the high-relevance threshold indicated a strong contribution
to stiffness prediction. These thresholds were selected to
avoid overinterpreting minor fluctuations and to support clear
groupings of variable influence.

C. Stiffness Optimization

After computing the SHAP values to assess the sensitivity
of each variable to the stiffness prediction, the goal was to

determine the optimal stiffness for each participant’s perfor-
mance. This optimization process has the main objective of
minimizing the error between measured participant’s data and
reference values from typically developing (TD) children (see
these TD values and their acceptable bounds in Table I). The
TD values were obtained from the literature (i.e.,strike ankle
DF, peak ankle DF, walking speed, stance duration, stance
duration variability, and walk ratio [26], trunk lateral motion
[19], STA [20], PCI [16], perceived effort [22], and CCI [27]).
We tried to base our decisions primarily on data from TD
children’s gait. When pediatric data was unavailable, data from
healthy adults was used.

For each gait cycle, the errors between the computed
performance variables and the TD values were calculated using
the root mean square error (RMSE):

RMSE =

√
1
N

N

∑
n=1

( f (XT D,XCP))2 (4)

where N is the number of gait cycles within a walking
trial for a specific variable, XT D is the TD value of that
variable (from Table I), and XCP represents the computed
value of the same variable. RMSE was chosen because it
penalizes larger errors more heavily, making it more sensitive
to outliers. These errors were calculated for each gait cycle
and performance variable. The error function f (XT D,XCP) was
defined in three ways, based on the characteristics of the
performance variables.

For some performance variables, such as strike ankle DF,
peak ankle DF, stance duration, walk ratio, and CCI, deviations
in either direction of the TD value contributed to the error:

f (XT D,XCP) = XT D −XCP (5)

For walking speed, exceeding the TD value was not pe-
nalized because higher speeds were considered beneficial.
Consequently, only values lower than the TD value were
penalized:

f (XT D,XCP) =

{
XT D −XCP if XCP < XT D

0 if XCP ≥ XT D
(6)

For variables where a reduction was generally beneficial,
such as stance duration variability, trunk lateral motion, STA,
PCI, and perceived effort, only values exceeding the TD value
were penalized:

f (XT D,XCP) =

{
0 if XCP ≤ XT D

XT D −XCP if XCP > XT D
(7)

To ensure comparability between errors from different vari-
ables, we normalized the RMSE, making the errors unitless
and standardized, see Equation 8. For this normalization, the
bounds from Table I were used to account for natural gait
variability, as they define the acceptable range considering TD
values. The normalization ensures that the error magnitude
is strongly influenced by the range of the bounds, which is
intentional, as larger ranges typically lead to larger errors.

Enorm =
RMSE

bhigh −blow
(8)



DEPARTMENT OF BIOMECHANICAL ENGINEERING - MASTER THESIS 6

where Enorm is the normalized error for a specific variable,
and bhigh and blow represent the upper and lower acceptable
bounds for the TD values of the same variable, respectively.

Subsequently, the normalized errors were used in the cost
function that aims to match the TD values and computed
performance variables:

min
XCP

11

∑
v=1

Enorm (9)

where from (4) and (8)

Enorm =
1

bhigh −blow

√
1
N

N

∑
n=1

( f (XT D,XCP))2 (10)

In these equations v indexes the performance variables. The
normalized errors of all performance variables per trial were
summed, and the stiffness that resulted in the lowest total error
was identified.

The errors that fall within the bounds of Table I were
considered acceptable, as they represent the natural variation
observed in TD children. Using Equation 8, the error resulted
in an acceptable value of 0.5 for the following variables: strike
ankle DF, peak ankle DF, walking speed, stance duration, walk
ratio, trunk lateral motion, STA, PCI, and CCI. For the remain-
ing variables, the acceptable error was 0 since one of their
bounds coincided with their TD values. The total acceptable
error for each participant, referred to as the acceptable error
line, was calculated by summing the acceptable errors for all
variables included in their optimization.

D. User and clinician preferences

To assess user and clinician preferences for the optimization,
a questionnaire was designed with two main components:
Likert scale questions and a ranking task. For the first question,
participants rated the importance of each considered domain
(see Table I) using a Likert scale. Each domain received a
score between 0.2 and 1 (in increments of 0.2), with higher
values indicating greater importance. For the second question,
participants selected their top three preferred domains through
a ranking task. Bonus points were assigned based on rank: +1
for the first choice, +0.8 for the second, and +0.6 for the third.
The full questionnaire is available in Appendix VI-A, and the
completed responses can be found in Table III.

The questionnaire scores quantified the weight assigned
to each domain, reflecting its relative preference. The total
domain weight was calculated as follows:

Wpre f =Wlikert +Wrank (11)

where Wpre f is the total weight derived from the question-
naire, Wlikert is the weight assigned based on the Likert scale
responses, and Wrank is the weight derived from the ranking
task.

To ensure a uniform application of weights, the total weight
for each domain was divided by the number of variables
within that domain, with the division accounting for variables
measured on both sides (left and right) as individual entities:

Wpre f ,v =
Wpre f

ndomain
(12)

where Wpre f ,v is the adjusted weight, accounting for variable
quantity, and ndomain denotes the number of variables within a
domain. These adjusted weights were then applied to the mean
normalized errors of the performance variables, resulting in the
following modification considering Equations 9 and 10:

min
XCP

11

∑
v=1

Wpre f ,v

bhigh −blow

√
1
N

N

∑
n=1

f (XT D,XCP))2 (13)

where Wpre f ,v is the adjusted preference weight given by
(12).

E. Study

1) Participants: Five participants with CP took part in this
study (weight 37 ± 19.3 kg, height 1.38 ± 0.17 m, age 9.4
± 2.8 years-old) (Table II). Participants met the following
inclusion criteria: aged 5–17 years, predominantly spastic uni-
or bilateral CP, Gross Motor Function Classification System
(GMFCS) [28] levels I–III, sufficient cognitive ability, and the
capacity to complete the walking protocol. Flexible equinus
deformities or drop-foot were preferred, with Ashworth scale
scores ranging from 1 to 3. Exclusion criteria included leg
surgery in the previous 6 months or botulinum toxin A in-
jections in the previous 3 months, significant musculoskeletal
deformities, unhealed skin lesions, gastrocnemius shortening
>10◦, or visual impairments or behavioral issues that could
hinder protocol performance. The Local Ethics Committee
at Hospital Infantil Universitario Niño Jesús (HNJ) gave the
approval (R-0064/23) and ensured the study was conducted in
alignment with the Declaration of Helsinki. Participants and
their families were informed accordingly, and parental consent
was obtained before participation.

Fig. 4: Flowchart of the study layout.

2) Experimental protocol: The study involved a single
session per participant of about 2h. Initially, participants were
assisted in putting on the inGAIT-VSO bilaterally or on their
affected side based on their clinical manifestation (diplegia
or hemiparesis), and were given the opportunity to walk
with the equipment and report any discomfort. After a brief
familiarization of approximately one minute with the device,
they performed five trials of the two-minute walking test
(2mwt) [29], walking back and forth along a 20-meter straight
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TABLE II: Participants characteristics.

Participant ID Age (years-old) Weight (kg) Height (m) Shoe size (EU) Clinical manifestation GMFCS Sex
CP01 9 38 1.39 36 Hemiparesis (left) I Male
CP02 10 24 1.34 33 Spastic diplegia III Female
CP03 14 74 1.69 41 Hemiparesis (right) I Female
CP04 5 26 1.2 31 Hemiparesis (right) I Male
CP05 9 23 1.3 32 Spastic diplegia II Male

corridor. For each trial, the inGAIT-VSO was set to a different
stiffness level: (1) No stiffness (spring disconnected), (2) Low
stiffness (0.2 Nm/kg as peak restoring torque at 12 deg of
DF), (3) Medium stiffness (0.4 Nm/kg at 12 deg of DF), (4)
High stiffness (0.6 Nm/kg at 12 deg of DF), and (5) Very
high stiffness (0.8 Nm/kg at 12 deg of DF). The value of
12 degrees of DF was chosen in accordance with previous
literature [16], [30] as it is the approximate maximum value
seen during stance in healthy gait. To minimize fatigue-related
bias, the order of trials (i.e., stiffness levels) was randomized
for each participant. Participants were allowed to rest as
needed between trials.

After the five trials, participants and their physiotherapist
completed the questionnaire presented in section II-D to assess
their preferences. A detailed flowchart of the study protocol
is provided in Fig. 4.

3) Data acquisition: During the 2mwt trials, a combination
of sensors was used to compute the required performance vari-
ables listed in Table I. Magnetic encoders (AS5048b, AMS-
OSRAM AG, Premstaetten, Austria) integrated in the inGAIT-
VSO recorded the ankle angle in the sagittal plane at 100 Hz.
Force-sensitive resistors (FSRs, FlexiForce A502, Tekscan Inc,
MA, USA) embedded within the insoles were used to detect
heel strike and toe-off events also at 100 Hz [16]. Two GaitUp
sensors (Physilog, Lausanne, Switzerland) were attached to the
shoes to monitor foot movements sampled at 128 Hz. Surface
electromyography (EMG) electrodes (Trigno Delsys, Natick,
MA, USA) were bilaterally placed on the TA, GM, soleus
(SOL), and gastrocnemius lateralis (GL) muscles to register
muscle activity with a sampling rate of 1926 Hz. An inertial
measurement unit (IMU) was attached to the trunk of the
participants at the sternum height, and recorded torso motion at
100 Hz. Finally, a smartwatch (Versa 3, Fitbit, San Francisco,
USA) was used to measure heart rate at 1 Hz. Participants
also reported their perceived effort after each trial using the
Borg’s scale [22].

4) Data processing: Data from the sensors of the inGAIT-
VSO, EMG sensors, IMU sensor, and smartwatch were pro-
cessed using MATLAB 2021b (MathWorks, Natick, MA,
USA). Data from the GaitUp sensors were processed using
GaitUp Lab (Physilog, Lausanne, Switzerland). EMG data
were pre-processed to remove noise and artifacts. This in-
volved band-pass filtering (30-300 Hz), full-wave rectification,
and low-pass filtering (3 Hz). The resulting linear envelopes
were normalized to the maximum activation observed in the
no stiffness walking trial.

After pre-processing, all data were resampled to the fre-
quency of the inGAIT-VSO and synchronized. The data were
then segmented into gait cycles using heel strike events

detected by the FSRs. Each gait cycle was linearly interpo-
lated, resulting in 300 data points per cycle. Variables were
calculated as described in section II-B1 with a computation
interval specified in Table I.

III. RESULTS

Data acquisition during the study sessions went smoothly
for all participants, allowing the computation of performance
variables for each trial. As CP03 exceeded the inGAIT-VSO’s
weight limit of 60 kg, this participant did not perform the high
and very high stiffness conditions due to design limitations.

Performance variables that depended on the side where the
inGAIT-VSO was worn (i.e., strike ankle DF and peak ankle
DF) were computed bilaterally for participants wearing the
device on both sides (CP02 and CP05), and unilaterally for the
affected side of participants with hemiparesia (CP01, CP03,
CP04).

A. Feature selection for stiffness prediction

Trained XGBoost models for each participant derived SHAP
values representing the contribution of each variable to stiff-
ness prediction (Fig. 5). The variables did not consistently hold
the same level of influence across participants and stiffness
levels. For CP01, the SHAP values indicated that peak ankle
DF had a dominant influence on the model’s predictions, with
a SHAP value of 6.4, which is well above the high-relevance
threshold for strong contribution. All other variables were
below this threshold. In contrast, for CP02, CP03, CP04, and
CP05, the influence was more evenly distributed. CP02, CP04,
and CP05 each had at least four variables with SHAP values
above the high-relevance threshold, while CP03 had three.

Interestingly, certain variables were important for stiffness
prediction across multiple participants. Peak ankle DF and
PCI had SHAP values above the high-relevance threshold in
four participants, while stance duration variability and STA
exceeded this threshold in three. On the other hand, some
variables did not contribute meaningfully to the prediction
for any participant, with SHAP values consistently below the
low-relevance threshold. These included walking speed, stance
duration (except on the right side for CP01), and walk ratio,
all on both sides.

B. Stiffness Optimization

Stiffness optimization revealed a stiffness level that min-
imized the total error for each participant (Fig. 6). These
optimal stiffness levels varied among participants, with no
single level being optimal for all. Specifically, CP02 and CP03
showed clear minima at Medium stiffness, CP04 at High, and
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Fig. 5: SHAP values for all participants. Bars represent cumulative SHAP values per variable, indicating their impact on
stiffness prediction — larger bars signify greater influence. Titles indicate whether the inGAIT-VSO was worn on the left,
right, or both legs. “L” and “R” on the y-axis refer to the side where variables were computed. The black vertical dashed line
marks the low-relevance threshold (2.5%), and the grey vertical dashed line marks the high-relevance threshold (10%).

CP05 at Low. For CP01, Low stiffness also resulted in the
lowest error, though the difference between the lowest and
second-lowest errors was small.

Notably, the magnitude of the total errors differed between
participants. The errors for CP01 and CP03 were approxi-
mately 2 to 3 times higher than their acceptable error lines,
while the errors for the other participants were 3 to 5 times
higher than their acceptable error lines.

Large errors from some variables such as strike ankle DF,
stance duration, walk ratio, or CCI are present in all error
bars across participants. However, there are notable differences
between participants. For instance, stance duration variability
contributes more to the error for CP02, CP04, and CP05, while
it is less influential for the other participants. Additionally, step
time asymmetry resulted in higher errors for CP01, CP02, and
CP04 compared to the other participants.

Interestingly, some variables that did not reflect a high
SHAP value (e.g. stance duration or walk ratio, Fig. 5) did
have an influence on the total error in the optimization (Fig. 6).
Other variables, as peak ankle DF, stance duration variability,
STA, or PCI, influenced both the total error and had high
SHAP values in some participants.

C. User and Clinician Preferences

The questionnaire responses revealed differences in domain
priorities between users and clinicians (Table III). Users con-
sistently rated Balance and Stability as important, with all
users giving it a 5 on the Likert scale and ranking it in their
top three. In contrast, clinicians prioritized Kinematics, with
four out of five rating it as a 5 and all ranking it in their top
three.

Incorporating user and clinician preferences in the optimiza-
tion problem influenced the magnitude of the total errors, as
shown by the varying sizes of the error bars compared to the
results without preferences (Fig. 7). However, neither user nor

clinician preferences affected the optimal stiffness level or the
overall optimization results for each participant. Notably, for
all participants except CP02, incorporating user preferences
resulted in larger error bars across all stiffness levels compared
to clinician preferences.

IV. DISCUSSION

In this thesis, an optimization framework was developed to
determine the optimal stiffness of a variable stiffness orthosis
(inGAIT-VSO). The framework was applied to five pediatric
participants with CP. Within this optimization framework,
a series of performance variables were selected to capture
different aspects of gait. These variables were also evaluated
to explore their relevance for stiffness prediction.

A. Feature selection for stiffness prediction

Key findings revealed participant-specific differences in the
influence of performance variables on stiffness predictions
(Fig. 5). For CP01, a single dominant variable (i.e., peak
ankle DF) stood out. In contrast, the other participants had a
broader set of variables that shared contributions for stiffness
prediction. These variables spanned different gait domains,
suggesting that excluding any of them could result in a loss
of important information for characterizing gait. Interestingly,
for all cases analyzed, at least one variable from each gait
domain–except for the Muscular Control domain–exceeded
the chosen high-relevance threshold of 10%. This suggests
that the Muscular Control domain might have the least overall
influence on stiffness prediction in this group of participants.

Some patterns emerged regarding which variables were
classified as important. For instance, peak ankle DF and PCI
exceeded the high-relevance threshold for four out of five
participants, consistently playing an important role in stiffness
prediction. Similarly, STA and stance duration variability
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Fig. 6: Total errors across stiffness levels for all participants. Dashed horizontal lines indicate the acceptable error lines: 6.5
for CP01, CP03, and CP04, and 7.5 for CP02 and CP05, reflecting differences in the number of performance variables.

surpassed the high-relevance threshold for three out of five
participants.

Contrarily, walking speed and walk ratio consistently fell
below the low-relevance threshold across all participants,
indicating minimal influence on stiffness prediction. Stance
duration also showed limited importance, exceeding the low-
relevance threshold only once. This suggests that these vari-
ables contributed little to stiffness prediction in this group.
For walking speed, this low relevance could be due to some
participants not fully understanding the instruction to walk as
fast as possible, while others may have been affected by fatigue
or varying motivation.

While some common patterns were visible, individual vari-
ation across participants remained. This underscores the risk
of relying on a limited set of variables or gait domains as
done in other studies [12], [14], as they may not fully capture
the complexity of individual gait patterns. Our findings support
the need for customized cost functions and argue against “one-
size-fits-all” approaches in optimization frameworks.

B. Stiffness Optimization

We identified the stiffness level that minimized total error
for each participant (Fig. 6), however, it is difficult to assess
whether the optimization was truly successful, as there is
no defined ground truth to compare with. Stiffness tuning in
clinical practice is traditionally based on empirical methods
such as manual adjustment, patient feedback, and observa-
tional gait assessment [31]. These methods are subjective,
relying heavily on the clinician’s experience and interpretation,

which complicates the establishment of a reliable ground truth.
This subjectivity also highlights the importance of developing
an objective optimization framework that evaluates stiffness
levels based on quantifiable gait outcomes rather than solely
on visual assessment or patient-reported feedback.

Some correlations have been observed between the com-
puted errors and the level of GMFCS, with larger errors
corresponding to higher levels of GMFCS. Participants CP01
and CP03, both classified as GMFCS I, had total errors roughly
two to three times their respective acceptable error lines (see
Fig. 6). In contrast, CP02 and CP05 classified as GMFCS
Level III and II respectively, showed total errors at least four
to six times higher than the acceptable error line. For CP04
(GMFCS I), the large errors observed may be attributed to the
participant’s young age (only 5 years old).

An overlap between feature importance and optimization
results would suggest that the features influencing the
prediction also produce errors in the optimization. However,
a lack of overlap is not necessarily negative: SHAP reflects
how much a variable changes across stiffness levels, whereas
stiffness optimization focuses on the size of the error of
that variable. For example, a variable with a consistently
high error might strongly affect optimization results but have
little influence on SHAP as it does not vary much between
stiffness levels.

Initially, we considered excluding the variables that con-
sistently fell below the low-relevance threshold (SHAP <
2.5%) from the optimization. That would maybe allow to
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TABLE III: User and clinician responses to questions 1 and 2 of the preference questionnaire. Question 1 used a Likert scale,
where 5 indicated highest importance and 1 indicated lowest importance. Question 2 was a ranking task where 1 = most
important, 2 = second, and 3 = third. Unranked domains were not in the top three.

User preferences
Likert scale Ranking task

Participant ID Kinematics Spatio-Temporal Balance User Perception Muscular Control Kinematics Spatio-Temporal Balance User Perception Muscular Control
CP01 4 5 5 4 4 1 2 3
CP02 5 3 5 4 4 2 1 3
CP03 5 5 5 5 5 1 3 2
CP04 4 4 5 5 5 1 2 3
CP05 3 4 5 5 5 3 2 1

Clinician preferences
Likert scale Ranking task

Participant ID Kinematics Spatio-Temporal Balance User Perception Muscular Control Kinematics Spatio-Temporal Balance User Perception Muscular Control
CP01 5 4 4 4 4 1 2 3
CP02 5 5 3 4 4 1 2 3
CP03 5 5 5 5 5 1 3 2
CP04 4 3 4 5 5 3 2 1
CP05 5 4 3 5 4 2 1 3

reduce computation time and perform future experiments with
a simplified protocol (less sensors). However, SHAP results
varied across participants, and only walking speed and walk
ratio consistently fell below this threshold. As keeping these
variables would not eliminate any of the sensors used and did
not affect computation time, we finally retained all of them.
For each participant, excluding the low-relevance variables
from the stiffness optimization was performed and showed
no effect on the lowest total errors achieved (see Appendix
VI-B).

The optimization framework relies on TD values and bounds
from literature, which significantly influence the optimiza-
tion. In cases where pediatric gait data were unavailable, we
selected the most relevant alternatives, including data from
healthy adults, ensuring that each variable was supported by
one reliable source and was appropriate within the context of
our study. While gait characteristics can vary slightly across
age groups, a sensitivity analysis (Appendix VI-C) shows that
the optimization is robust to small variations in TD values and
bounds, indicating that minor differences in literature-based
inputs do not substantially affect the results.

C. Comparability across participants and domains
The optimization results are not directly comparable across

participants due to differences in the number of variables
included. Participants CP01, CP03, and CP04 wore the AFO
on only one side, meaning that Kinematic variables were
calculated unilaterally. The remaining participants wore the
AFO on both sides, resulting in bilaterally computed Kine-
matic variables. We considered averaging the contributions of
bilateral side-dependent variables to allow comparisons across
participants. However, we did not do so because that would
have diminished the ability to evaluate each side independently
and would have required making assumptions about the rela-
tive importance of each side.

Similarly, we chose not to normalize stiffness optimization
based on the number of variables per domain, allowing do-
mains with more variables to have a greater impact on the
optimization. This decision stems from the fact that variable
importance across domains is not directly comparable; for
example, the four variables from the Spatio-Temporal domain

do not collectively hold the same significance as the single
variable from the Muscular Control domain. Since each vari-
able was carefully selected to minimize redundancy, we treated
them as equally important, basing stiffness optimization on
performance variables rather than gait domains.

D. User and clinician preferences

As previously reported in [11], our findings also revealed
a divergence between user and clinician preferences (Table
III). Users consistently rated Balance and Stability as highly
important, whereas clinicians prioritized Kinematics.

With the inclusion of weights reflecting user and clinician
preferences in the optimization, the optimal stiffness levels
did not change for any of the participants (Fig. 7). The
weights only altered the magnitude of the errors, not the
optimization results. This may be due to the weights assigned
to the questionnaire responses. To explore the influence of
weight selection, two alternative weighting approaches were
tested: (1) only using responses from the Likert scale without
considering the ranking task, and (2) emphasizing the high-
value responses of both the Likert scale and the top-ranked
domain (see Appendix VI-D for details).

While some differences between approaches were observed
(Fig. 10), they had no effect on the final optimization out-
comes. This suggests that the choice of weighting approach
had minimal influence on the optimization results, indicat-
ing that the stiffness optimization is primarily driven by
performance variables rather than preferences. Future work
could explore additional methods to incorporate user and
clinician preferences, potentially leading to higher levels of
user satisfaction and acceptance.

E. Study limitations

The inclusion of only five participants limits the generaliz-
ability of the findings. However, even within this small group,
the results consistently pointed to the need for individualized
stiffness optimization. Future work will aim to validate and
strengthen these findings.

A second limitation is the variation in computation intervals
across variables. Three of the eleven variables were extracted
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Fig. 7: Optimization incorporating user and clinician preferences for all participants. For each stiffness level, three bars are
shown (from left to right): the original optimization, optimization including user preferences, and optimization including
clinician preferences.

for each walking segment, and one was calculated only once
per trial, resulting in repeated values across gait cycles to
match the number of data points of other variables. This
repetition could potentially reduce variability within each
stiffness level, making differences between stiffness levels
appear smaller or larger than they actually are. Furthermore,
variables with repeated values may exhibit a lower RMSE due
to their limited variation, this can reduce their influence in the
stiffness optimization.

The Borg scale, used to estimate perceived effort, was ex-
cluded from both feature importance and stiffness optimization
due to bias in registering this variable. Some participants
repeated the same value across trials, while others appeared
to adjust their ratings based on the (randomized) trial order,
suggesting they compared each new rating to the previous
one rather than reflecting actual perceived effort. Additionally,
because only one Borg value was recorded per trial, any
variation could disproportionately impact predictions, making
it an overly dominant variable for feature importance.

Lastly, the study focused on kinematic and temporal do-
mains but excluded kinetics, as measuring them would have
required assessment of forces along the 20-meter corridor. The
ankle torque measured with inGAIT-VSO was also excluded
to avoid bias in SHAP values, as it directly relates to the AFO
stiffness. Including kinetics in future research could provide
deeper insights.

V. CONCLUSION

Within this thesis, a multi-variable optimization framework
was developed to identify the optimal stiffness in the inGAIT-
VSO for children with CP. To achieve this, we first aimed to
identify relevant optimization variables and observe how they
varied across users. Our findings show that multiple variables
were classified as important, supporting the hypothesis that
relying on a single variable is insufficient to capture the
complexity of gait. Additionally, the variability in relevant
variables among participants highlights the need for individu-
alized stiffness optimization.

Within the optimization framework, we identified an optimal
stiffness level for each participant that minimized total error.
These levels varied among participants, emphasizing the im-
portance of a personalized approach to stiffness optimization.
Incorporating user and clinician preferences into the frame-
work did not change the optimal stiffness levels, suggesting
that the optimization is primarily driven by performance
variables rather than preferences. Future work may explore
additional methods to incorporate user and clinician prefer-
ences, potentially leading to higher levels of user satisfaction
and acceptance.
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VI. APPENDIX

A. Preference questionnaire

The questionnaire used to assess user preferences is shown
here. A similar questionnaire was provided to the clinician,
with the questions tailored to the clinician’s perspective on
the user. The questionnaire is presented on the following two
pages (pages 14–15).



PARTICIPANT ID:      DATE: 

We are going to ask you some questions about how you would like inGAIT to help you. If 
you don’t understand something, feel free to ask us. 

Exercise 1: Indicate how much you would like inGAIT to help you with the following: 

 

1. I would like inGAIT to help me move my foot up and down easily when I walk 

  

 

2. I would like inGAIT-VSO to help me take bigger steps and walk faster 

 

 
 
3. I would like inGAIT-VSO to help me walk steadily, without moving my body too 

much from side to side 

 

 

4. I would like inGAIT to help me walk for a longer time without getting tired  

      

 

5. I would like my muscles to be relaxed and tension-free when I walk with the 
inGAIT 

    
 
  



Exercise 2: Choose the most important phrases/the ones you like the most from the 
following box: 

Write a 1 next to the one you find most important 

Write a 2 next to the one you find second most important 

Write a 3 next to the one you find third most important 

 

  

I would like inGAIT to help me move my foot up and down easily when I 
walk 

 

 

I would like inGAIT to help me take bigger steps and walk faster 

 

 

I would like inGAIT to help me walk steadily, without moving my body too 
much from side to side  

 

 

 

I would like inGAIT to help me walk for a longer time without getting 
tired    

 

I would like my muscles to be relaxed and tension-free when I walk with 
the inGAIT 

 



DEPARTMENT OF BIOMECHANICAL ENGINEERING - MASTER THESIS 16

B. Optimization excluding low-relevance variables

Variables with low relevance (SHAP ≤ 0.5) were excluded
from the optimization (see Fig. 8). This exclusion did not
change the optimal stiffness level for any of the participants.

C. Sensitivity analysis

To evaluate the effect of slight variations in the TD values
and bounds of all variables, perturbations of -10% and +10%
were applied to the TD values and, separately, to the range
of the bounds. Error calculation and normalization were per-
formed as described in section II-C. The sensitivity bars are
present but remain relatively small (Fig. 9), indicating that the
introduced perturbations lead to only minor changes in the
optimization outcomes.

D. Preference weight testing

TABLE IV: Overview of the three preference weighting ap-
proaches and their assigned weights: original approach, (1)
Likert scale only, and (2) high-value responses. The upper part
of the table shows the weights for the first question (Likert
scale) of the questionnaire, while the lower part shows the
weights for the second question (ranking task).

Likert scale
Response original (1) Likert scale

only
(2) high-value

responses
5 1 1 1
4 0.8 0.8 0.5
3 0.6 0.6 -
2 0.4 0.4 -
1 0.2 0.2 -

Ranking task
Response original (1) Likert scale

only
(2) high-value

responses
Top 1 1 - 1
Top 2 0.8 - -
Top 3 0.6 - -

The three weighting approaches, applied to both user and
clinician preferences as outlined in Table IV, are illustrated
in Fig. 10. The overall optimization results, and specifically
the optimal stiffness levels, remained unchanged for all par-
ticipants.
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Fig. 8: Optimization excluding variables that fell below the low-relevance threshold (SHAP < 2.5%) in the feature importance
for stiffness prediction.

Fig. 9: Optimization including sensitivity analysis. Black error bars represent ±10% perturbations in TD values, and grey error
bars represent ±10% perturbations in the range of the bounds.
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Fig. 10: Optimization incorporating user and clinician preferences for all participants. For each stiffness level, three grouped
bars are shown (from left to right): the original optimization, optimization including user preferences, and optimization including
clinician preferences. Shading within the user and clinician bars indicates different preference weighting approaches.
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