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Abstract

This thesis develops a decision-support tool for optimising vehicle routing at Farm
Trans, addressing a complex Heterogeneous Fleet Vehicle Routing Problem with Pickup
and Delivery and Time Windows (HF-VRPPDTW). The solution incorporates real-
world constraints such as driver breaks, vehicle capacities, and electric vehicle charg-
ing. A metaheuristic based on Simulated Annealing is used to generate high-quality
solutions efficiently. The tool evaluates fleet configurations and order volumes using
key performance indicators like distance, utilisation, and cost. Results show signif-
icant improvements over existing planning methods and support strategic decisions
around electric fleet adoption.
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Management Summary

This Master’s thesis presents the development of a decision-support tool designed to
address the Vehicle Routing Problem (VRP) encountered by Farm Trans, a logistics
provider specialising in food transport. The study focuses on managing a heteroge-
neous fleet of diesel and electric vehicles, with complex constraints such as pickup and
delivery, time windows, mandatory driver rest periods, and limited charging infras-
tructure. Farm Trans faces operational inefficiencies and lacks a generalised approach
to route optimisation, which is especially crucial as they explore the integration of
electric trucks into their fleet.

Objective and Scope

The primary objective is to build a flexible, scalable optimisation tool that can:

• Minimise operational costs (fixed, variable, tolls, labour).

• Improve delivery efficiency and truck utilisation.

• Support transition scenarios from diesel to electric trucking.

• Handle diverse planning constraints relevant to the refrigerated goods supply
chain.

To do so, the thesis formalises the problem as a Heterogeneous Fleet Vehicle Rout-
ing Problem with Pickup and Delivery and Time Windows (HF-VRPPDTW), an NP-
hard combinatorial optimisation problem. Due to the complexity and scale, an exact
method is not computationally feasible, and a metaheuristic approach using Simu-
lated Annealing (SA) is implemented. This is paired with a constructive heuristic to
generate the initial solution.

Solution Features

The proposed solution includes the following key components:

• A route optimisation algorithm accounting for truck capacities, charging, breaks,
and time windows.

• Configurable fleet and order input to model different real-world scenarios.

• Integrated logic for charging electric trucks during mandatory driver breaks to
reduce downtime.
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• KPIS to evaluate both operational and financial performance, including travel
time, idle time, load utilisation, cost breakdowns, and fleet composition.

Experimental Validation

A series of experiments were conducted using real and synthetic data to simulate a
variety of operational scenarios. These included different order volumes (38, 80, 120)
and various diesel/electric fleet configurations (e.g., 41 diesel and 0–41 electric trucks).
The results consistently showed that:

• The proposed method outperforms the current manual planning approach of
Farm Trans in terms of distance, cost, and fleet efficiency.

• The tool enables robust decision-making under varying demand conditions.

• Integration of electric trucks can be cost-effective in many scenarios, although
time window feasibility and charging constraints remain limiting factors.

Business Value and Implementation Considerations

The solution enables Farm Trans to:

• Evaluate trade-offs between diesel and electric deployment.

• Improve long-term planning by testing future fleet strategies in a controlled,
data-driven way.

• Reduce costs through smarter route planning and better use of available assets.

Key challenges to implementation include integrating the tool into existing IT infras-
tructure, managing change among planners and drivers, and improving data on real-
world charging and rest locations.

Conclusion and Recommendations

The tool developed in this research demonstrates clear potential to enhance opera-
tional performance and support Farm Trans’s transition to a more sustainable fleet.
Further development should focus on dynamic routing, realistic break/charging poli-
cies, and live integration with transport management systems (TMS). With these im-
provements, the tool can serve as a critical asset for day-to-day operations and strate-
gic logistics planning.
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Chapter 1

Introduction

This introductory chapter comprehensively overviews this MSc thesis’s context, ob-
jectives, and structure. Section 1.1 introduces the companies for which this research
matters. Section 1.2 discusses the study’s background and context, highlighting the
problem’s importance. Next, Section 1.3 identifies the problem faced by the company.
The problem statement, outlining the specific challenges faced by Farm Trans and the
problem statement, is presented in Section 1.4. The research objectives are introduced
in Section 1.5, providing a clear roadmap for the specific goals of this study. We out-
line the main research question (RQ1) and the sub-research questions (RQ2 to RQ7) in
Section 1.6, aligning them with the content of subsequent chapters. Finally, Section 1.7
outlines the organisation of this thesis, giving readers an overview of the structure
and content they can expect in the following sections, including the literature review,
problem formulation, and research methodology.

1.1 CAPE & Farm Trans

The following sections introduce the companies connected to this research. Section 1.1.1
introduces CAPE, a consultancy firm. Section 1.1.2 introduces Farm Trans as one of
CAPE’s clients.

1.1.1 CAPE

CAPE was founded in 2000 and is a software developer and system integrator consul-
tancy firm headquartered in Enschede. They specialise in delivering model-driven
solutions to help companies transform digitally. Their main areas of expertise are
Transport & Logistics, Supply Chain, Agrifood, and Smart Construction.

CAPE creates value by tuning three essential pillars: Human, Technology and
Methodology. The human pillar stands for collaboration to improve. Adapting new
systems is essential for a successful project, and the people in the organisation are
responsible for adjusting the latest software. CAPE strives to create user-friendly soft-
ware to make the adaptation as smooth as possible. To do so, they use the process as
a starting point and automate and optimise it. The philosophy behind this is that they
can focus on the content while delegating repetitive tasks as much as possible.

The technology pillar represents the technology CAPE relies on to bring value to
its clients. To do so, CAPE uses various technologies to develop robust solutions.

1



1.2. Background and Context

The tool they use most often is Mendix, a low-code platform used to create powerful
applications that provide their customers with insight into their processes, orders, and
operations.

1.1.2 Farm Trans

One of CAPE’s clients is Farm Trans in Zevenbergen (NL). Founded in 1987, Farm
Trans operates in the (food) logistics sector. Originally established to transport prod-
ucts for Farm Frites, Farm Trans now specialises in IT and global food transport. Al-
though much of its work remains dedicated to Farm Frites, it also serves other clients.

Farm Trans distinguishes itself by providing supply chain-wide support and opti-
mising clients’ transportation processes through their Connected Services branch. This
branch focuses on long-term partnerships, leveraging data and technology to stream-
line logistics. They offer warehousing solutions, including cross-docking and storage
in freezers (-20 °C) and cold rooms (0-4 °C). Cross-docking enables the consolidation
of orders from multiple locations at their facilities or partner sites in Germany, ensur-
ing efficient shipment. Additionally, Farm Trans uses intelligent IT solutions to map
the flow of goods and chart the most efficient transportation routes.

Farm Trans divides their transportation processes into two groups: Bulk and Fresh
& Frozen. Bulk transport started in 1987 for Farm Frites, which had large quantities
of potatoes. Nowadays, they transport other dry bulk products, such as onions and
animal feed products. Farm Trans uses dump trailers for bulk transport.

Fresh & Frozen transportation is temperature-controlled and often done in reef
trailers. These products require conditions from -30°C to 30°C during transport. Such
products include frozen foods, fresh foods, flowers and plants.

1.2 Background and Context

Electrification is becoming increasingly important in numerous sectors around the
world. This also applies to transportation. The European Union aims for climate
neutrality by 2050 [2]. Heavy-duty vehicles are responsible for 6% of the total energy-
related emissions in the European Union (EU) [3]. European Regulations state that the
emissions from diesel trucks are to be reduced by 45% by 2030 [4]. To meet these goals,
Farm Trans decided to start with the electrification of its fleet.

Farm Trans actively prepares for these regulations and currently has multiple elec-
tric trucks on order. For Farm Trans to become familiar with electric trucks, they plan
to use them for short-range transportation. In the future, they will also use them for
long-range transportation. However, electric trucks are different from diesel trucks
in several ways. Some of these differences include range, charging time, and max-
imum load. These differences result in limitations (e.g., range) and additional costs
(e.g., charging time), so Farm Trans would like to investigate the possibilities of using
electric trucks.

Farm Trans has no automated method to support the decision-making process
when scheduling transportation operations. The planners look at the orders that need
to be planned and determine a cut-off point, after which they do not accept any new
orders. From this, they plan all orders that are currently known. The planner plans
manually, so no automated method is used. When a planner sees a possibility to group
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orders in the same truck, he does this manually; again, no automated method is avail-
able. The lack of an automated method provides room for improvement since using a
tool can significantly improve efficiency and reduce costs.

Additional costs or savings are essential when using electric trucks to remain com-
petitive. Furthermore, unforeseen costs could financially hurt Farm Trans if certain
factors are not adequately considered before starting transport. By researching the
costs and possibilities of using electric trucks, Farm Trans can make the right decisions
regarding what truck to use for what route.

Electrification is a transition process, meaning that it will take multiple years or
decades before Farm Trans can become fully electric. Therefore, there will be an ex-
tended period during which Farm Trans can choose between using electric trucks or
diesel trucks. Using an automated method will make it easier for Farm Trans to adapt
their planning accordingly to changes in the future (e.g., a fully electric fleet).

1.3 Problem Identification

The transportation sector is highly competitive. Therefore, it is necessary to gain an
advantage over competitors [5, 6]. This results in a necessity to use resources as effi-
ciently as possible. Including not just the load in each truck, but the routing of each
truck can also contribute to an increase in efficiency.

Farm Trans currently has no method or tool that incorporates heterogeneous vehi-
cle loading. Additionally, they have no experience with electric trucks and this new
technology’s possible costs and risks. Therefore, the core problem of Farm Trans is;

No automated method for heterogeneous vehicle routing, resulting in a loss of
efficiency, competitiveness and possibly additional costs

The absence of an automated method to plan and route the new electric trucks in
combination with the conventional diesel trucks results in a loss of efficiency. Espe-
cially since scheduling electric trucks is more complex due to longer charging dura-
tions compared to refuelling diesel trucks. This increase in scheduling complexity,
in combination with the lack of an automated method, results in a loss of efficiency,
which increases costs and weakens Farm Trans’s competitive position.

By creating a method to efficiently and feasibly plan diesel and electric trucks, Farm
Trans becomes more efficient and strengthens its competitive position.

1.4 Problem Statement

The main objective of this research is to create and implement a method so that Farm
Trans can use their electric and diesel trucks as efficiently as possible. This solution
focuses on the decision of where to use electric trucks and where to use diesel trucks.
Furthermore, the method includes additional costs and considerations for the solution
to be as efficient as possible. These routes consider several parameters, including truck
parameters, route parameters and costs. Additionally, the solution becomes more effi-
cient by using grouping. The specific problem is formulated as follows:

To design a method for the specific routing problem at Farm Trans, focusing on
the decision between diesel and electric trucks.
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1.5 Research Objectives

The research objectives of this thesis are as follows:

i To analyse the current situation at Farm Trans, in terms of parameters, fleet char-
acteristics, order characteristics, and current scheduling approach.

ii To conduct a comprehensive literature review of existing routing problem instances
and solution approaches (including grouping and routing), focusing on those ap-
plicable to Farm Trans’s specific requirements, such as electric trucks.

iii To analyse and model the routing problem at Farm Trans, considering factors such
as truck choice, capacity constraints, delivery time windows, weight restrictions
and geographical considerations.

iv To develop an efficient algorithm tailored to solving Farm Trans’s routing problem,
aiming to minimise transportation costs and improve efficiency.

v To experiment with different orders, fleet configurations and to explore the possi-
bilities of simultaneous charging and resting.

vi To provide practical recommendations and insights to Farm Trans based on the
results obtained to optimise their planning method.

1.6 Research Questions

To guide this research, the following research questions are formulated:

1.6.1 Main Research Question

The main research question of this research is:

RQ1: How can Farm Trans solve their routing problem as efficiently and effectively
as possible, whilst including electric and diesel trucks, considering capacity, range,
weight, and delivery time windows?

1.6.2 Sub-Research Questions

Each chapter of this thesis corresponds to a sub-research question addressing specific
aspects of the main research question. These sub-research questions are as follows:

1. Chapter 2: Problem Context

• RQ2: What is the current planning method used at Farm Trans, and what
are the specific parameters (e.g., costs, range, capacity) and practical chal-
lenges that need to be addressed when designing an improved planning
method for its routing and decision problem?

2. Chapter 3: Literature Study
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• RQ2:What are the key definitions and solution approaches relevant to the
routing and decision challenges at Farm Trans?

3. Chapter 4: Problem Description

• RQ3: How can Farm Trans’s routing and decision problem be formally de-
fined, including its parameters, constraints, and objective?

4. Chapter 5: Solution Approach

• RQ4: What algorithmic approach is developed to solve Farm Trans’s rout-
ing and decision problem efficiently and feasibly?

5. Chapter 6: Experimental Setup & Chapter 7: Results and Discussion

• RQ6: What are the practical implications of the results obtained, and what
recommendations can be made to Farm Trans for optimising their trans-
portation and delivery processes?

6. Chapter 8: Conclusion and Recommendations

• RQ7: What are the practical implications of the results obtained, and what
recommendations can be made to Farm Trans for optimising their trans-
portation and delivery processes?

1.7 Thesis Structure

This thesis is structured as follows:

• Chapter 2: Problem Context - This chapter provides an in-depth review of Farm
Trans, incorporating current operations, challenges and the current planning and
routing approach.

• Chapter 3: Literature Study - This chapter reviews the existing literature on
routing and decision problems and relevant solution approaches and algorithms
for Farm Trans.

• Chapter 4: Problem Description - In this chapter, we formally define the prob-
lem faced by Farm Trans, specifying its parameters, constraints, and objectives.

• Chapter 5: Solution Approach - This chapter presents the algorithm or method-
ology developed to address the problem, including mathematical formulations
and implementation details.

• Chapter 6: Experimental Setup - Here, we discuss the experimental setup, data
collection, and results from testing the proposed solution on Farm Trans’s data.

• Chapter 7: Results and Discussion - This chapter analyses the results, discusses
the implications, and provides practical recommendations for Farm Trans.

• Chapter 8: Conclusion and Recommendations - The final chapter summarises
the key findings, contributions, and future research directions.
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Chapter 2

Problem Context

In this chapter, we explore Farm Trans’s operations. Farm Trans maintains an exten-
sive customer base worldwide, especially in Europe, which requires complex supply
chain management. We examine Farm Trans’s logistics and transportation network in
Section 2.1, where a fleet of trucks actively transports goods from a depot to various
customer locations in Europe. In this section, we elaborate on truck & trailer data,
customer & order data, and costs. Section 2.2 elaborates on their current planning ap-
proach, incorporating parameters, loading, cross-docking and planning. In Section 2.3,
we address the challenges that Farm Trans faces. These challenges give rise to a dis-
tinct and intricate variant of the Vehicle Routing Problem (VRP), tailored specifically
to Farm Trans.

2.1 Farm Trans: Background and Operations

As mentioned earlier, Farm Trans is active in the food logistics sector. They trans-
port produce all over the world using both sea and road transport methods. This
study focuses on a part of their transportation operations, the Fresh & Frozen sector.
This sector transports temperature-controlled goods, such as fresh food, flowers, fish,
meat, bread, etc., that require cooling during transport. They service various European
customers, especially in the Benelux, France and Germany.

2.1.1 Truck & Trailer Data

Farm Trans provided their trucks’ data in Table 2.1. They currently have 36 trucks
of the type 4x2 (4 wheels, two axles) and five trucks of the type 6x2 (6 wheels, three
axles). All these trucks are diesel-powered.

Farm Trans has five electric trucks on order: one Volvo truck and 4 Mercedes Ac-
tros E600, which will be delivered later. Farm Trans purchased these trucks to explore
electrification possibilities in their fleet. Once electric trucks prove viable and sustain-
able, Farm Trans will consider buying additional electric trucks. Table 2.1 provides an
overview of truck specifications; this includes quantity, range, costs and charging or
fueling time.

Farm Trans uses these trucks to pull 173 trailers. There are two types of trailers:
single-temperature and multi-temperature. The first trailer can only be cooled to one
temperature, while the second divides into two zones with different temperatures.
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Farm Trans always places the coolest temperature in the trailer first and the warmer
temperature later. Since the back of the trailer is colder.

Name Type Amount
Fuel(L)/
Electric

capacity(kWh)

Range
(km)

Charging time/
Fuelling time

4x2 Diesel 36 800 2,800 15min

6x2 Diesel 5 800 2,800 15min

Volvo FH
Aero Electric 1 540 300

2 hours
Full charge

(DC 250kW)

Mercedes
eActros 600 Electric 4 621 500

1 hour
20% to 80%
(DC 500A)

Table 2.1: Farm Trans’s Truck Data

2.1.2 Customer & Order Data

One order line contains the following information:

• Pickup location

• Delivery location

• Number of pallets

• Weight

• Pickup time window

• Delivery time window

The pickup location is often the cross-dock facility in Lommel, Belgium. However,
this can happen in other locations throughout Europe as well; 35% of all orders are
pickup orders with a different pickup location than the cross-dock in Lommel. De-
livery locations are primarily in Germany, France, and Austria. Figure 2.1 shows the
order frequency per country from 2022 until 2024. We see that 98% of the orders are
delivered in Germany.

Each order line contains the number of pallets and the total weight of the load. Fig-
ure 2.2 shows the number of pallets per order in a histogram. Most orders have fewer
pallets; therefore, grouping orders can efficiently increase truck capacity utilisation.

Finally, there are time windows and always a time window for pickup and delivery.
All time windows are considered hard deadlines, and planners can not violate these
deadlines. Additionally, rejecting orders is not possible.
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Figure 2.1: Order Frequency per Country
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Figure 2.2: Histogram of Pallets per Order

2.1.3 Costs

This section consists of 3 subsections that elaborate on the costs: conventional truck
costs, electric truck costs, and toll costs.
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2.1. Farm Trans: Background and Operations

Conventional Truck Costs

A truck’s costs consist of fixed and variable costs. Fixed costs are yearly, and variable
costs are per kilometre. Farm Trans considers the following costs in their calculations:

• Lease costs: cost of leasing the truck for one year.

• Depreciation: estimated truck value reduction.

• Eurovignette: a certificate that trucks must drive in some countries.

• Insurance: insurance of the truck.

• ICT: on-board computer/dash-cam and telematics.

• Tyres: cost for tyres, calculated per kilometre

• Repair & Maintenance (R&M): cost for repairs and maintenance, calculated per
kilometre.

Farm Trans uses a system with 13 yearly periods, thus four weeks per period. Specific
costs are in Table 2.2. These are averages to understand the expenses; specific costs
can differ per vehicle.

Cost Type Price (€) Period

4x2 6x2

Lease cost € 36,487.97 € 18,477.73 per year
Depreciation € 416.69 € 40.69 per year
Eurovignette € 1,250.00 € 1,250.00 per year
Insurance € 3,377.47 € 3,508.33 per year
ICT € 975.00 € 975.00 per year
Tyres € 0.0142 € 0.0208 per kilometre
R&M € 0.015 € 0.015 per kilometre

Table 2.2: Farm Trans’s Truck Costs

Of these costs, two are considered variable costs, namely, tyres and repair and main-
tenance. For these, Farm Trans uses the rates as shown in Table 2.3.

Additionally, we have fuel costs; Farm Trans states that their trucks drive 2,800 kilo-
metres on 800 litres of diesel. 1 litre of diesel (excluding tax) costs € 1.487. Thus, a full
tank costs 800*1.487=€1,189.60. Therefore, the cost per kilometre equals €1,189.60/2,800≈
€0.425 per kilometre. Table 2.3 shows all variable costs and the total cost per kilometre
per truck type for diesel trucks.

Electric Truck Costs

Since Farm Trans purchases the electric trucks, there are no lease costs. However, since
the trucks are not yet in Farm Trans’s possession, it is difficult to know the costs for
depreciation, euro vignette, insurance, tyres, and repair and maintenance.

It is possible to calculate the cost of electricity per kilometre. We know the Volvo
FH Aero has an electric capacity of 540 kWh and a range of 300 km. Additionally,
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Truck Type Tyres
(€/km)

Repair and
Maintenance (€/km)

Diesel
(€/km)

Total
Costs (€/km)

4x2 0.0142 0.015 0.425 0.4542

6x2 0.0208 0.015 0.425 0.4608

Table 2.3: Farm Trans’s Variable Costs per Diesel Truck Type

we use a price of € 0.32 per kWh. This results in a cost of € 0.58 per kilometre of
electricity. The Mercedes eActros 600 has an electric capacity of 621 kWh and a range
of 500 kilometres, resulting in a price of € 0.40 per kilometre on electricity. Based on a
price of € 0.32 per kWh, we find costs as shown in Table 2.4.

Truck Type Tyres
(€/km)

Repair and
Maintenance (€/km)

Electricity
(€/km)

Total
Costs (€/km)

Volvo FH Aero Unknown Unknown 0.58 Unknown

Mercedes eActros 600 Unknown Unknown 0.40 Unknown

Table 2.4: Farm Trans’s Variable Costs per Electric Truck Type

Toll Costs

In Europe, there are many different approaches to collecting tolls from trucks. In Den-
mark, Luxembourg, the Netherlands, and Sweden, the Eurovignette is used. The Eu-
rovignette is a mandatory certificate for trucks weighing 12,000 kilograms or more.
This certificate shows that a special tax has been paid. The price depends on the truck’s
emission class and the number of axles.

Other countries use a kilometre charge. Again, the height of this toll rate depends
on the emission class and the truck’s weight.

Since toll costs change regularly, the model should be able to adapt to these changes.
For now, we consider the following toll costs per kilometre per country. France is an
exception since it has different prices depending on the highway used.

Country Toll type Price (€/km)

4x2 and 6x2 Volvo Mercedes

Austria Kilometre charge € 0.46 € 0.10 € 0.10
Belgium Kilometre charge € 0.29 € 0.13 € 0.13
France Kilometre charge Variable Variable Variable
Germany Kilometre charge € 0.48 € 0.10 € 0.10

Great-Britain HGV Levy Tax
£ 1,000.00 per year
or £ 10.00 per day

£ 1,000.00 per year
or £ 10.00 per day

£ 1,000.00 per year
or £ 10.00 per day

Luxembourg Eurovignette € 1,250.00 per year € 750.00 per year € 750.00 per year
Netherlands Eurovignette € 1,250.00 per year € 750.00 per year € 750.00 per year

Table 2.5: Toll Cost per Kilometre per Country
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2.2 Current Approach

Farm Trans faces a complex problem that involves optimising vehicle allocation, de-
termining optimal routes, considering vehicle capacity constraints, adhering to de-
livery time windows, and minimising transportation costs. Solving this problem is
paramount to enhancing the efficiency and competitiveness of Farm Trans’s opera-
tions. To further specify the issue, this section describes the parameters and methods
of Farm Trans’s current approach.

2.2.1 Paramters

Farm Trans’s problem involves essential parameters they use to schedule their fleet.
We categorise these parameters as follows: truck parameters, route parameters, and
costs.

• Truck Parameters

1. Type of Truck
The main decision in the solution is how to use electric and diesel trucks
efficiently. This decision depends on other parameters listed below.

2. Weight/Capacity Restrictions
Each truck has different capacity restrictions in terms of weight or size.

3. Range of truck
Range is one of the most important parameters in the decision between elec-
tric and diesel trucks. Since electric trucks have shorter ranges than diesel
trucks.

4. Fuelling & Charging
As mentioned earlier, charging takes time, so the solution method should
consider these times. Farm Trans already includes refuelling time in their
current solution approach.

• Route Parameters

1. Routing & Grouping
The problem instance includes a wide variety of possible routes. Each spe-
cific solution alters the parameters determining whether to use an electric
or diesel truck.

2. Time-Windows & Deadlines
Farm Trans uses time windows with hard deadlines to ensure all customers
get served on time.

3. Mandatory Resting Time
Drivers have to adhere to regulations concerning resting times. These influ-
ence the time windows and are therefore considered in the solution.

4. Combination between Resting and Charging
Since charging takes longer than fueling and no supervision is needed, it is
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possible to combine resting with charging. The solution will explore these
possibilities.

• Costs

1. Toll
Farm Trans explained that tolls in some countries depend on the type of
truck. Therefore, the objective function includes the toll and aims to min-
imise total costs.

2. Variable Cost per Truck
The cost per kilometre is different for electric trucks and diesel trucks. This
model incorporates the difference in the solution.

2.2.2 Loading

Farm Trans uses two types of pallets to load its goods: euro pallets and block pallets.
The characteristics of these types are in Table 2.6. A euro pallet is smaller in width
compared to a block pallet. Farm Trans uses load meters to measure capacity and
loads. Load meters are a standardised benchmark in road transport. A loading meter
is 1 meter of the loading space of a truck in length. Due to the width of a truck of
approximately 2.40 m, one loading meter corresponds to approximately 2.4 m² (2.40 m
width x 1 m length). This results in load meters per pallet type, as shown in Table 2.6.
FTL stands for Full Truckload (FTL), and the column FTL shows the amount of that
type of pallet needed to create a Full Truckload.

Type Dimensions (m x m) Surface (m2) Load meter FTL

Euro Pallet 1.20 x 0.80 0.96 0.4 33

Block Pallet 1.20 x 1.00 1.00 0.5 26

Table 2.6: Farm Trans’s Pallet Characteristics

Farm Trans has no data on the weight of each pallet. They do know the weight of the
entire order. If they have to calculate the weight per pallet, they do it with an average
weight of 750kg.

Each country has different regulations concerning a truck’s maximum load. Since
trucks must always adhere to these regulations, the country with the lowest maximum
load through which the truck drives on a route becomes the bottleneck of that route.

2.2.3 Cross-Docking

As mentioned in Section 1.1.2, Farm Trans has cross-docking capabilities and enables
the consolidation of orders from multiple locations at their facilities or partner sites
in Germany, ensuring efficient shipment. However, this is outside the scope of this
research. The focus is on efficient transportation when orders have been collected and
are all present at the facility in Lommel or require pickup at other locations.
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2.2.4 Current Planning

Farm Trans uses two separate planning approaches based on the destination of the
order. They split between the Benelux and Germany. Planners schedule daily and for
the next day; for Germany, they make the schedules for two days. For the Benelux, it
works as in Figure 2.3:

Start Orders arrive
before 13:00

Planning
finishes

before 15:00

Loading
starts at 18:00

Loading
finishes

before 04:00

Trailer
pickup starts

after 04:00
End

Figure 2.3: Timeline of Planning

It works the same for Germany but is scheduled one day further ahead. So, instead
of making the schedule for tomorrow, they make it for the day after tomorrow. All
the times remain the same, with only a one-day delay. According to this overview,
planning can take up to 2 hours.
Farm Trans tries to incorporate grouping orders in their planning methodology. Group-
ing of orders means combining multiple orders in the same truck. However, this is
currently done manually with no generic method. Therefore, this is an area where
they believe a lot of improvement is possible.

2.2.5 Planning Method

Farm Trans plans their logistic operations one to two days in advance. They separate
the orders into three groups: Great Britain, FTL Benelux, and Germany. All groups
receive their orders in the morning and schedule for the day after. They plan to pack
the trucks that night so a driver can collect them the next day. They determine the load
times of each trailer based on the delivery time windows and travel time.

The planner for FTL Benelux only receives Full Truckload (FTL) orders. The plan-
ner determines load times based on the delivery time windows. He then checks what
trucks are available and creates a schedule. All this is done in Excel, from which he
loads the schedule into their Transport Management System (TMS).

The planner for Germany receives all kinds of different order sizes. Once all the
orders are in, he loads them into the TMS and manually combines them based on their
delivery location. The system then creates a route and incorporates travel time. The
first thing the planner checks is capacity. Do the orders he manually selected remain
below the maximum weight and number of pallets? When this happens, the planner
checks to see if all deliveries in the route meet their time windows. If this is not the
case, he manually moves orders until the route becomes feasible. His final check is
the payoff per kilometre; he looks at the payoff of the entire route and divides this by
the total travel distance. When this value exceeds 3.5, it is profitable, and the planner
schedules the route in the TMS. If this is not the case, he might add or remove some
deliveries from the route to make it more profitable.

For Great Britain, the planning is slightly different. They have several trucks sta-
tioned in Great Britain. All the planners have to do is schedule a delivery to a port in
the Netherlands or Belgium. The driver then loads the trailer but unhooks the truck.
The driver in Great Britain then collects the trailer from the port and delivers it to the
customer(s). Farm Trans has a facility in Great Britain that schedules the pickup.
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Figure 2.4: Order Frequency in March 2024
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2.3 Challenges in Transportation and Delivery

Farm Trans faces several significant challenges in its transportation and delivery oper-
ations, such as variability in demand, capacity constraints, time windows, rest times,
grouping of orders, electric considerations, and costs.

2.3.1 High Variability in Demand

One of the primary challenges is the high variability in customer demand. Orders
can vary greatly in quantity, size, and urgency, making it challenging to allocate ve-
hicles efficiently and schedule deliveries optimally. Furthermore, many orders are
last-minute, resulting in ad hoc planning that incorporates these last-minute orders.

Figure 2.4 shows the number of orders per day in March 2024. We observe a wide
range of order frequencies, with a minimum of 20 and a maximum of 115. Upon
closer examination, we noticed that the minimum occurs on weekends. This can be
explained by the fact that fewer clients are open for pickup and delivery of orders.

2.3.2 Delivery Time Windows

All Farm Trans customers have strict delivery time windows, which Farm Trans must
meet to ensure customer satisfaction and operational efficiency. Missing these time
windows is not an option for Farm Trans.

Farm Trans has various delivery time windows, depending on the customer. They
vary from a time interval of 1 hour to a time interval of 24 hours.
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2.3.3 Mandatory Rest Time

Drivers must adhere to specified rest times per day and week. These regulations con-
sist of three sections: maximum total driving time, maximum continuous driving time,
and minimum rest time.

Maximum Total Driving Time

These rules apply whilst driving the truck. The driver is allowed to

• Drive a maximum of 10 hours per day twice a week (and a maximum of 9 hours
per day on other working days in the same week);

• Drive a maximum of 56 hours per week (if you meet the conditions below);

• Drive a maximum of 90 hours per 2 weeks. This applies to weeks 1 and 2. But
also to weeks 2 and 3, and so on.

Maximum Continuous Driving Time

A maximum applies not only to the total driving time but also to the uninterrupted
driving time. Uninterrupted driving time is the total accumulated driving time be-
tween 2 interruptions (breaks). Or between a rest period and a break. These rules
apply to the maximum continuous driving time:

• The maximum continuous driving time may not exceed 4.5 hours.

• After 4.5 hours of driving, the driver must take a break of 45 minutes. The driver
may divide this 4.5-hour driving time into two parts. The first break will then
last at least 15 minutes. In addition, the driver must take a break of at least 30
minutes within the 4.5 hours of driving time.

• A double-manned truck or bus does not have to stand still for 45 minutes every
4.5 hours. A stop is only required to change drivers (and driver card or regis-
tration sheet). The condition is that the driver taking a break does not assist the
driver driving the vehicle. For example, with navigation.

Not only is driving work, but also other activities, such as loading and unloading. If
you work more than 6 hours in a row (continuously), you should also take a break:

• Do you work continuously between 6 and 9 hours a day? Then, you must take a
break of at least 30 minutes.

• Do you work continuously for more than 9 hours? Then, you must take a break
of at least 45 minutes.

You may also take these breaks in 15-minute chunks.
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Minimum Rest Time

As a truck driver, you must take daily and weekly rest. Daily rest is the period during
which you are not allowed to work. You may also not be available to your employer.
The daily rest is when you can freely dispose of your time and have no obligations to
your employer. These rules apply to daily rest:

• Daily rest must be at least 11 hours in a row.

• Between 2 sufficient weekly rest periods, you may reduce the daily rest period
three times to nine hours. This is called the reduced daily rest period. You do
not have to make up for this reduction at another time.

• You may also take the daily rest in 2 parts. The 1st part must be at least 3 hours.
The 2nd part must be at least 9 hours. The other way around (first 9 hours and
then 3 hours) is not allowed. A daily rest in 2 parts counts as a regular daily rest
period.

• The new daily rest period must end within 24 hours of the previous (daily or
weekly rest). So, if you finish your weekly rest at 8 a.m. on Monday, your next
rest must end before 8 a.m. on Tuesday. A 30-hour period applies to 2 drivers.

• Additional rules apply to international transport. Outside the Netherlands, a
driver may take a reduced weekly rest period of 2 weeks. A shortened weekly
rest lasts a minimum of 24 and a maximum of 45 hours. An extended regular
weekly rest must compensate for this shortened rest. The number of hours the
reduced weekly rest deviates from the standard 45-hour rest period. In addition,
the driver must take a regular weekly rest at least twice in 4 weeks.

2.3.4 Grouping of Orders

Farm Trans currently groups orders manually when planning. The planner identifies
orders near each other and attempts to combine them into a single truck. A generic
method to group orders would be valuable for Farm Trans to maximise utilisation and
create as many FTL’s as possible.

2.3.5 Electric Considerations

The main reason for this research is the electrification of Farm Trans’s transportation
operations. Multiple electric trucks are on order, yet Farm Trans has no method to
optimise their use in combination with its existing fleet. Electric trucks bring different
considerations, such as range and charging time, which Farm Trans is unfamiliar with.
Section 3.3.3 will elaborate on electric considerations and strategies.

2.3.6 Costs

The two main types of costs that Farm Trans considers when planning are the cost per
kilometre and toll. Farm Trans uses a price per kilometre for each truck. The most
significant costs considered here are fuel costs and depreciation. These variable costs
per kilometre vary per truck type.
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Additionally, some countries impose a toll, which Farm Trans must pay. These tolls
can depend highly on the type of truck used. For instance, Germany has a toll of 0.35
cents per kilometre for a diesel truck. This toll is substantially less when transporting
by an electric or hybrid truck; sometimes, the truck is exempt from paying the toll.
Farm Trans considers these costs and tries to keep them to a minimum.

2.4 Summary

The current planning method at Farm Trans relies heavily on manual processes and ba-
sic route planning tools, which are increasingly inadequate in handling the operational
complexity of its transportation and delivery network. Several key parameters and
constraints must be considered when designing an improved planning method. These
include vehicle range limitations (particularly for electric trucks), strict weight and
loadmeter capacity constraints, diverse and interdependent cost components (such as
fuel, tolls, labour, fixed vehicle costs, and per-kilometre expenses), and the operational
objective of minimising idle time and improving vehicle utilisation.

Moreover, the fleet’s heterogeneity—comprising diesel and electric trucks—introduces
varying performance profiles, energy requirements, and route feasibility constraints.
A critical operational factor further complicating planning is the legal requirement for
mandatory rest times for drivers, which must be integrated into route scheduling to
ensure regulatory compliance and driver welfare.

These factors—cost structures, sustainability goals, fleet heterogeneity, legal driv-
ing regulations, and operational constraints—create a complex and tightly interwoven
planning environment. This makes Farm Trans’s routing and decision problem a par-
ticularly challenging variant of the Vehicle Routing Problem (VRP), necessitating a
tailored, data-driven optimisation approach that addresses both strategic and tactical
objectives.
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Chapter 3

Literature Study

This chapter comprehensively reviews the literature on the Vehicle Routing Problem
(VRP) and its various variants. This literature study aims to set the stage for under-
standing and addressing the VRP variant encountered at Farm Trans, as discussed in
subsequent sections.

In Section 3.1, we discuss the problem requirements. Next, in Section 3.2, we estab-
lish the foundational concepts and principles of the VRP, laying the groundwork for
a deeper exploration of the problem. From there, Section 3.3 highlights certain VRP
variants connected to this study. Next, Section 3.4 describes the specific VRP vari-
ant encountered at Farm Trans. Understanding this variant’s unique constraints and
objectives is essential, as this knowledge guides our approach to developing a cus-
tomised solution. Section 3.5 elaborates on various Key Performance Indicator (KPI).
We then move on to Section 3.6, where we examine existing approaches and method-
ologies used to solve VRP and its variants.

This literature study equips us with the necessary background knowledge and con-
textual understanding to develop a customised solution for Farm Trans, as discussed
in subsequent chapters.

3.1 Problem Requirements

As mentioned in Chapter 2, Farm Trans faces a planning and routing problem. The
focus of the problem is the electric trucks since Farm Trans does not yet know how to
use electric trucks effectively. By creating a generic planning method for Farm Trans,
they can use their electric and diesel trucks effectively. Furthermore, such a method
can incorporate grouping orders to become even more efficient. Based on Chapter 2,
there are requirements to which the solution method should adhere.

The solution method should result in a set of routes per truck. The overall objective
is to minimise all costs while adhering to the time windows/deadlines the orders pro-
vide. These time windows are hard, meaning that they can not be violated. Further-
more, each truck has weight and load meter restrictions; these must also be adhered
to.

Regarding costs, we have multiple considerations: toll, fuel/electricity, tyres, re-
pair and maintenance, etc. The toll depends on the type of truck and the country in
which it drives. Section 2.1.3 shows a cost per kilometre. Including tyres, repair &
maintenance and fuel costs.
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These requirements combined result in a problem instance called a Vehicle Routing
Problem (VRP). The VRP is a well-known problem in logistics and transportation. It
involves optimising the routes of a fleet of vehicles to deliver goods to a set of Cus-
tomers [7]. A VRP is often a NP-hard problem, meaning there is no guarantee that an
optimal solution can be found in a reasonable time [8]. Section 3.2 elaborates more on
the Vehicle Routing Problem.

3.2 Fundamentals of the Vehicle Routing Problem

This section presents an overview of the basic concepts and principles of the Vehicle
Routing Problem (VRP). We discuss the key elements, such as the problem formula-
tion, objectives, constraints, and various VRP variants from the literature. This foun-
dational knowledge is essential for understanding the context in which Farm Trans’s
specific VRP variant operates.

A key challenge in solving the VRP is finding a Feasible solution that minimises the
total travel distance while adhering to various constraints [6]. The term Route refers
to the sequence of locations visited by a vehicle during a VRP solution. As mentioned
earlier, the VRP is often NP-hard. Therefore, finding an Optimal-solution is difficult
in a reasonable time. Thus, finding a Feasible solution is the main objective. The final
solution is the Feasible solution with the lowest cost.

There are many variants to be found in the literature of the VRP [9]. Figure 3.1
visualises some of the variations of the VRP found in the literature [9]. In the centre
of Figure 3.1 we see the VRP, which is not a model but a collective name for all VRP
variants. Adding parameters and constraints creates variants. The most standard form
of the VRP is the Capacitated Vehicle Routing Problem (CVRP); this variant introduces
capacity constraints to the vehicle.

The VRP variants in Figure 3.1 are not the only variants. Other variants relevant to
this research are:

• Electric Vehicle Routing Problem (EVRP): deals with electric vehicles.

• Heterogeneous Fleet Vehicle Routing Problem (HF-VRP): deals with heteroge-
neous vehicles (e.g. each with their characteristics).

• Heterogeneous Fleet Vehicle Routing Problem with Time Windows (HF-VRPTW):
deals with heterogeneous vehicles and time windows.
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Figure 3.1: VRP Variants Hierarchy [10]

Figure 3.2 visualizes how the HF-VRPTW derives from the other variants of the VRP.
We assume the VRP uses diesel trucks, combined with the EVRP results in the HF-VRP
variant. When combining the HF-VRP with the VRPTW, the HF-VRPTW occurs. The
VRP and its variants are fundamental problems in operations research and logistics.

(1) Vehicle Rout-
ing Problem (VRP)

(2) Electric Vehicle
Routing Problem (EVRP)

(3) Vehicle Routing
Problem with Time
Windows (VRPTW)

(4) Heterogeneous
Fleet Vehicle Routing

Problem (HF-VRP)

(5) Heterogeneous
Fleet Vehicle Routing
Problem with Time-

Windows (HF-VRPTW)

Figure 3.2: VRP and Variants

Figure 3.3 combines Figure 3.1 and Figure 3.2 into one complete overview of VRP
variants relevant to this research. The colours indicate how different components get
passed through to different variants. A full list of VRP variants is in Appendix A.
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Figure 3.3: VRP and Variants Combined, showing the relations between variants
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3.3 VRP Variants

This section focuses on the variants described in section 3.2. Section 3.3.1 provides
the mathematical model of the CVRP. Next, Section 3.3.2 expands on this model by
addressing time windows. Section 3.3.3 elaborates on using electric vehicles. Then
Section 3.3.4 further explains the considerations when using pickup and delivery. Fi-
nally, Section 3.3.5 describes the additional constraints when using a heterogeneous
fleet with time windows.

Most VRP models have some assumptions in common:

• All vehicles start at the central depot (n = 0) and finish their route at the central
depot (n = 0 or n = n + 1).

• All VRP variants aim to minimise a function. This can either be a cost-dependent
or distance-dependent function.

• All vehicles have a capacity restriction.

• Demand at a customer should be met by one vehicle (i.e. splitting orders is not
allowed).

For understandability, most of the models in this research use the same notation:

Set of Customers, indexed by i and j C = {1, ..., n}
Set of Locations, where 0 and n+1 is the depot N = {0, ..., n + 1}or

N = {0, ..., n}
Set of arcs between depot and all customers A

Set of vehicles in the fleet, indexed by r K = {1, ..., k}
Capacity of the vehicle Q or Qr

Cost of driving from i to j cij

Distance between node i and j dij

Demand of customer i qi

Set of charging stations F
Set of dummy nodes to allow multiple visits to a charging station F ′

Set of customers and charging stations V ′

Set of customers and depot node V0,VN+1

Energy consumption rate of the vehicles per unit distance h
Battery capacity of the vehicle B

Time associated with driving from node i to j tij

Time window associated with customer i [ai, bi]

3.3.1 Standard Formulation

Model Description

One of the standard forms of the VRP is the Capacitated Vehicle Routing Problem
(CVRP). This variant incorporates truck capacity constraints, meaning a truck can only
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transport a maximum amount of goods. Considering the vehicle capacity constraints
is essential to achieve a feasible solution [10]. Otherwise, the solution might dictate
that one vehicle should deliver all goods, while in the real world, the goods would not
fit in that one vehicle.

In the CVRP, demands are known in advance, are deterministic, and should be
delivered by one vehicle (i.e., splitting orders is not allowed). Vehicles are identical
and originate from a single central depot. As mentioned earlier, the vehicles have
capacity restrictions, and the objective is to minimise the total cost needed to serve all
customers [11].

Within the CVRP, there are two alternatives: the two-index capacitated vehicle
routing problem and the three-index capacitated vehicle routing problem [10]. The
main difference is in the number of indices in the decision variable. The two-index
formulation shows the use of the arc, whilst the three-index formulation also speci-
fies which vehicle travels which arc. The three-index formulation is more flexible to
incorporate additional constraints since it can address specific constraints to each ve-
hicle [10, 12]. Since this research focuses on multiple vehicles, only the three-index
formulation is considered.

Mathematical Model

As mentioned earlier, the main goal of the CVRP is to minimise costs. In this variant,
the only costs are travel costs from one node to another. The model is based on the
work of Kallehauge et al. [13] and uses the following variables:

xijr =

{
1, if vehicle r uses the arc between node i and j
0, otherwise

The model uses the following mathematical formulation:

Minimize: ∑
r∈K

∑
i∈N

∑
j∈N

cijxijr (1.1)

Subject to:

∑
r∈K

∑
j∈N

xijr = 1 ∀i ∈ C (1.2)

∑
i∈C

qi ∑
j∈N

xijr ≤ Q ∀r ∈ K (1.3)

∑
j∈N

x0jr = 1 ∀r ∈ K (1.4)

∑
i∈N

xihr − ∑
j∈N

xhjr = 0 ∀h ∈ C, ∀r ∈ K (1.5)

∑
i∈N

xi,n+1,r = 1 ∀r ∈ K (1.6)

xijr ∈ {0, 1} ∀i, j ∈ N , ∀r ∈ K (1.7)

The objective function (1.1) minimizes travel cost. Constraint (1.2) ensures each cus-
tomer is visited exactly once. Constraint (1.3) limits the load of a vehicle to its capacity.
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Constraints (1.4), (1.5) and (1.6) are the flow constraints. Finally, constraint (1.7) is the
binary constraint.

3.3.2 Time-Windows

The VRPTW adds a constraint to enforce time windows. A time window is the interval
during which a vehicle must arrive at a customer [14]. These intervals can be hard or
soft. When using hard time windows, violations are impossible, meaning that when
a vehicle arrives too early, it must wait until the start of the window and a vehicle is
not allowed to arrive late. Soft time windows allow violations. However, it incurs
a penalty cost for arriving late. Therefore, these penalty costs are considered in the
objective function and minimised [13].

To do so, the model incorporates one additional variable and two additional con-
straints. The variable sir denotes the time vehicle r starts to service customer i. The
two additional constraints are:

xijr(sir + tij − sjr) ≤ 0 ∀i, j ∈ N , ∀r ∈ K (1.8)

ai ≤ sir ≤ bi ∀i ∈ N , ∀r ∈ K (1.9)

Constraint (1.8) creates the relationship between the current customer and its succes-
sor. Finally, constraint (1.9) enforces the time windows.

3.3.3 Electric Considerations

Model Description

With fuel accounting for 39% to 60% of operating costs in the transport industry, it
is possible to consider alternative energy sources to remain competitive [15]. An al-
ternative is electric trucks instead of diesel trucks [16]. However, electric trucks have
a smaller range than diesel trucks and may require recharging during transport [17].
Charging takes longer than stopping for refuelling; this changes the model from the
classic VRP to a distinctive variant, the EVRP.

The proposed model is based on the work of Kucukoglu et al. [18] and considers
two charging policies, one for a partial charging policy and one for full charging. It
therefore requires one additional variable yr

i . This variable tracks the battery level
of vehicle r when arriving at node i. Furthermore, four additional constraints are
required:

∑
j∈C′N+1

∑
k∈K

xr
ij ≤ 1 ∀i ∈ F ′ (1.10)

yr
j ≤ yr

i − (h · dij)xr
ij + B(1− xr

ij) ∀i ∈ C, ∀j ∈ C ′N+1, ∀r ∈ K (1.11)

yr
j ≤ B− (h · dij)xr

ij ∀i ∈ F ′ ∪ {0}, ∀j ∈ C ′N+1, ∀r ∈ K (1.12)

yr
0 < B ∀r ∈ K (1.13)

Constraint (1.10) ensures that each dummy charging station can be visited at most
once. Constraints (1.11) - (1.13) track the battery level and state when the full charging
policy is used.
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Additional Adaptations

This model has some additional adaptations. When considering partial charging, con-
straints (1.12) and (1.13) should be replaced by constraints (1.14) and (1.15). These
constraints introduce a new decision variable Yi representing the vehicle’s battery level
before leaving node i.

yr
j ≤ Yi − (h · dij)xr

ij + B(1− xr
ij) ∀i ∈ F ′ ∪ {0}, ∀j ∈ C ′N+1, ∀r ∈ K (1.14)

yr
j ≤ Yi ≤ B ∀i ∈ F ′ ∪ {0} (1.15)

In case capacity needs to be considered in the EVRP, constraint (1.16) needs to be added
to the model.

∑
i∈C

∑
j∈C′N+1

qi · xr
ij ≤ Q ∀r ∈ K (1.16)

The proposed model can be extended further to incorporate time windows. This re-
quires the following additional parameters, variables, and constraints:

Decision variable to track service start time at node i pi

Service time at node i si

Recharging rate of the electric vehicles g

Constraints:

pi + (tij + si) ∑
k∈K

xr
ij ≤ pj + b0(1− ∑

k∈K
xr

ij) ∀i ∈ C0, ∀j ∈ C ′N+1 (1.17)

pi + tij · xr
ij + g(Q− yr

i ) ≤ pj + (b0 + g ·Q)(1− xr
ij) ∀i ∈ F ′, ∀j ∈ C ′N+1, (1.18)

∀r ∈ K
ai ≤ pi ≤ bi ∀i ∈ C ′0,N+1 (1.19)

When combining partial charging with time windows constraint (1.18) should be re-
placed with constraint (1.20).

pi + tij · xr
ij + g(Yi − yr

i ) ≤ pj + (b0 + g ·Q)(1− xr
ij) ∀i ∈ F ′, ∀j ∈ C ′N+1, (1.20)

∀r ∈ K

This model can be extended further to incorporate a heterogeneous fleet by replacing
constraints (1.11)-(1.13), (1.14)-(1.15), (1.16), (1.17), and (1.18) with constraints (1.21)-
(1.23), (1.24)-(1.25), (1.26), (1.27), and (1.28) respectively.
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yr
j ≤ yr

i − (hr · dij)xr
ij + Qr(1− xr

ij) ∀i ∈ C, ∀j ∈ C ′N+1, (1.21)

∀r ∈ K
yr

j ≤ Qr − (hr · dij)xr
ij ∀i ∈ F ′ ∪ {0}, (1.22)

∀j ∈ C ′N+1, ∀r ∈ K
yr

0 ≤ Qr ∀r ∈ K (1.23)

yr
j ≤ Yi − (hr · dij)xr

ij + Qr(1− xr
ij) ∀i ∈ F ′ ∪ {0}, (1.24)

∀j ∈ C ′N+1, ∀r ∈ K
yr

i ≤ Yi ≤ Qr ∀i ∈ F ′ ∪ {0} (1.25)

∑
i∈C

∑
j∈C ′N+1

qixr
ij ≤ Qr ∀r ∈ K (1.26)

pi + tij · xr
ij + gr(Qr − yr

i ) ≤ pj + (l0 + grQr)(1− xr
ij) ∀i ∈ F ′, ∀j ∈ C ′N+1, (1.27)

∀r ∈ K
pi + tij · xr

ij + gr(Yi − yr
i ) ≤ pj + (l0 + grQr)(1− xr

ij) ∀i ∈ F ′, ∀j ∈ C ′N+1, (1.28)

∀r ∈ K

3.3.4 Vehicle Routing Problem with Pickup and Delivery

Most orders from Farm Trans originate in Lommel. However, some orders require
pickup. Such a VRP is called a Vehicle Routing Problem with Pickup and Delivery
(VRPPD). Desaulniers et al. [19] provide a model for the VRPPD, requiring additional
constraints.

∑
k∈K

∑
j∈Nk∪{d(k)}

xijk = 1 ∀i ∈ P (1.35)

∑
j∈Nk

xijk − ∑
j∈Nk

xj,n+i,k = 0 ∀k ∈ K, ∀i ∈ Pk (1.36)

Constraints (1.35) and (1.36) ensure that each request (pickup and delivery) is served
exactly once and by the same vehicle.

3.3.5 Heterogeneous Fleet with TW

The HF-VRPTW considers a heterogeneous fleet with time windows [20]. This model
is, therefore, a combination of the VRPTW as described in Section 3.3.2 and the HF-
VRP. This results in a model in which each vehicle has different characteristics and
each customer has time windows. The vehicle-specific characteristics are capacity and
fixed cost. Compared to other models, this model incorporates a fixed cost per vehicle,
meaning that using a vehicle incurs initial costs. This model has no new constraints.
As mentioned before, it combines the VRPTW and HVRP.
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3.3.6 Combining Charging with Resting

As mentioned in Section 2.3.3, regulations exist for drivers to rest during transport.
Since the range of an electric truck is shorter, more stops for charging are required
compared to diesel trucks. Additionally, charging takes longer than fuelling. This
poses the possibility of combining the charging of electric trucks with the mandatory
resting times of drivers [21]. No models were found in the literature on this specific
variant of the VRP.

3.3.7 Comparison between VRP Variants

Section 3.3 discusses various VRP variants. Each variant has different constraints
which the model considers. Table 3.1 compares the different VRP variants and what
elements each variant considers. Furthermore, additional papers are present in this
table and categorised in standard models, electric truck models, pickup and delivery
models, and break models. These categories provide insight into the most important
parameter of the models in that category. All the models consider the capacity of
trucks and the grouping of orders.

The ”Objective Function” column lists the parameters each model aims to optimise.
The following columns outline the constraints each model includes. For clarity, the
table uses abbreviations to label constraints. In the ”Fleet” category, var E indicates
the use of electric trucks, var H refers to a heterogeneous fleet (where trucks differ in
capabilities like capacity and range), and var E+D shows the use of both electric and
diesel trucks. While var H and var E+D might seem similar, they represent different
ideas: var H highlights varying truck capabilities, whereas var E+D indicates a mixed
fleet without emphasising performance differences.

In the routing category, var P+D stands for pickup and delivery, and var TW means
time windows are considered. In the truck category, var W represents the impact
of weight on the range, and var B+R stands for the consideration that breaks and
charging can be done simultaneously.

From table 3.1, we see that using the extended model of the EVRP variant incorpo-
rates the most considerations. The missing consideration is the combination of both
diesel and electric trucks.
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Table 3.1: Comparison between VRP Variants.

Paper Objective Function Capacity Grouping
Fleet Routing Truck

MethodE1 H2 E+D3 P+D4 TW5 B6 B+C7

Standard Models
Kallehauge et al. (2005) [13] Travel cost ✓ ✓ – – – – – – – Column Generation
Molina et al. (2020) [14] Travel cost ✓ ✓ – – – – ✓ – – Tabu Search
Riano et al. (2022) [20] Travel cost, fixed cost ✓ ✓ – ✓ – – ✓ – – Simulated Annealing
Electric Truck Models
Cortés-Murcia et al. (2019) [22] Charging time ✓ ✓ ✓ ✓ – ✓ – – Variable Neighbourhood Descent

Kucukoglu et al. (2019) [23] Travel distance ✓ ✓ ✓ ✓ – – ✓ – – Simulated Annealing and
Tabu Search

Kucukoglu et al. (2021) [18] Travel distance ✓ ✓ ✓8 ✓ – – ✓8 – – Large Neighborhood Search

Lin et al. (2015) [16]
Charging cost,

travel time cost,
waiting time cost

✓ ✓ ✓ – – – – – –
Exact method

(small problem
instance)

Pickup and Delivery Models
Desaulniers et al. (2002) [19] Travel cost ✓ ✓ – ✓ – ✓ ✓ – – Column Generation

Mahjoob et al. (2021) [24]
Fixed, travel,

inventory, loading ✓ ✓ – ✓ – ✓ – – – Priori method

Yanik et al. (2013) [25] Travel cost, fixed cost ✓ ✓ – ✓ – ✓ ✓ – – Genetic- and Savings Algorithm
Break Models
Bernhardt et al. (2017) [26] Fuel cost ✓ ✓ – – – – ✓ ✓ – Exact method

Kok et al. (2010) [27]
Vehicles used,

Travel distance,
Tuty time

✓ ✓ – – – – ✓ ✓ – Dynamic Programming

THIS PAPER
Variable, Fixed,

Toll, Wage ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Simulated Annealing

1 Considers Electric Trucks 2 Considers Heterogeneous Fleet 3 Considers both Electric and Diesel trucks 4 Considers Pickup and Deliveries
5 Considers Time Windows 6 Considers Breaks 7 Considers combining Breaks with Charging 8 When using the extended model description.



3.4. Farm Trans’s VRP Variant

3.4 Farm Trans’s VRP Variant

Farm Trans faces a specific version of the VRP, a combination between the EVRP and
the EVRP-WR, as mentioned in Section 3.3.7. This section elaborates on Farm Trans’s
specific VRP variant.

Capacity & Loading

Each truck has a maximum weight it can carry. Furthermore, weight restrictions per
country state the weight a truck can take based on its type. An additional limitation
is the space within the trailer; for this, Farm Trans uses load meters. Each trailer has a
capacity of 13.2 load meters.

Farm Trans currently has no generic method for grouping orders. A VRP incor-
porates this in the solution to make routing as efficient as possible. However, if one
truck takes multiple orders with different delivery locations, it is efficient to consider
the unloading sequence when loading the trailer. This is to ensure that no unneces-
sary unloading is necessary for the customer. Since Farm Trans only uses pallets, it is
unnecessary to consider a bin packaging problem; loading should occur in the reverse
order of the route. So the delivered order is closest to the door without other orders
being in the way.

Time-Windows

Orders need to be delivered within specified time windows. These time windows are
hard and can not be missed. Furthermore, orders can not be rejected. All orders must
be executed.

Fleet

The main decision in this VRP is the use of electric trucks. Therefore, Farm Trans must
consider additional limitations associated with this use. An electric truck’s range is
shorter than a diesel truck’s, and charging takes longer than refuelling. This must all
be considered in the solution instance.

There are not as many charging stations as there are fuel stations. Therefore, the
model should appoint the location where electric vehicles should recharge. Recharg-
ing an electric truck takes time; it would be beneficial if recharging occurred when the
driver needs a break. There are regulations for how long a truck driver can drive a
truck before needing a mandatory rest. Combining the break with recharging saves
time and is financially beneficial.

Costs

The main goal of the model is to minimise costs in transportation operations. There-
fore, the model considers several costs. First, the cost of fuel or electricity uses a price
per kilometre. Furthermore, Farm Trans stated that there are two types of costs they
calculate per kilometre: the cost of tyres and the cost of repair and maintenance, as
shown in Section 2.3.6.
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Additionally, there is the cost of tolls. Electric vehicles currently have a reduction in
tolls compared to diesel trucks; this must be considered in the model since it can result
in savings and more sustainable transportation.

3.5 Key Performance Indicators

To measure the solution’s performance compared to the current solution method, KPIs
are used. Radovic [28] created a list of KPIs often used in VRPs, shown in Appendix
B. Not all the KPIs in this figure are relevant to this research, but some can provide
insights when comparing solutions. Soysal and Çimen [29] propose the following
KPIs; number of trucks used, total travel distance, total energy use, total driving time,
total fuel cost, total wage cost and total routing cost.

The main objective of a VRP is to minimise costs by minimising the travelled dis-
tance. Therefore, total travel distance is an important KPI. Another KPI often used is
the number of routes needed to deliver all orders.

Since this model uses a heterogeneous fleet, it is essential to have KPIs that indicate
the solution’s performance on this topic. The percentage of orders delivered using
electric vehicles is a KPI that provides insight into this metric.

3.6 Existing Approaches to VRP and Variants

In this section, we explore the existing approaches and methodologies proposed to
tackle various aspects of the Vehicle Routing Problem (VRP) and its numerous vari-
ants. We categorise these approaches into different subsections based on their nature
and characteristics.

3.6.1 Exact Solution Methods

The exact solution methods are algorithms that guarantee an optimal solution to the
VRP or its variants. Many mathematical programming solutions and approaches to
solving the VRP have been proposed in recent years. Despite this effort, only the
problems of around 100 customers can be optimally solved with a high computation
time [30].

The VRPTW (Vehicle Routing Problem with Time Windows) and HF-VRP (Hetero-
geneous Vehicle Routing Problem) are both classified as NP-hard problems [31, 32].
As discussed in Section 2.3, Farm Trans’s Fresh & Frozen department handles an av-
erage of 100 delivery orders per day. Since two key features of the Farm Trans routing
problem—time windows and a heterogeneous fleet—are themselves NP-hard compo-
nents, and given that solving instances of up to 100 orders requires significant compu-
tational effort for optimal solutions, we conclude that the Farm Trans routing problem
is NP-hard. Therefore, this study does not include exact solution methods as possible
approaches.

3.6.2 Heuristic Methods

Heuristic methods are problem-specific techniques that construct good, though not
necessarily optimal, solutions to the Vehicle Routing Problem (VRP) in a computation-
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ally efficient manner. These methods are particularly useful when exact approaches
become impractical due to problem complexity. Moreover, heuristics often serve as
essential components or building blocks within broader metaheuristic frameworks.
In this subsection, we explore classical heuristics such as the Nearest Neighbour algo-
rithm, the (enhanced) Clarke-Wright Savings heuristic, and Solomon’s insertion-based
heuristics.

Nearest Neighbour

The nearest neighbour heuristic is a standard constructive heuristic used to create a
feasible solution for any VRP problem. The logic behind the heuristic method is to
start from the depot, select the nearest customer node to the depot, select the nearest
customer node to the current customer, and so on. The depot is the start and end point
of the route. The route is stopped when the vehicle’s maximum capacity is reached.

Mazin et al. [33] propose a different approach using the K-Nearest Neighbour Al-
gorithm.

Algorithm 1: K-Nearest Neighbour Algorithm
1 Begin;
2 Generate the InitialSolution by applying the nearest rule between nodes, i.e.
3 Route 1: 1→ 5→ 6→ 7→ 10;
4 Route 2: 2→ 3→ 4→ 8→ 9;
5 //d denotes the distance, q denotes demands, s is the concerned solution
6 Calculate the fitness of InitialSolution as follows:
7 ds = dRoute1 + dRoute2 + ... + dRouteN,
8 qs = qRoute1 + qRoute2 + ... + qRouteN,
9 dRoutei = d0,1 + d1,2 + ... + dn−1,n,

10 qRoutei = q1 + q2 + ... + qn,
11 //Fitnesss is the fitness of the solution
12 Fitnesss = ds + qs;
13 Set best solution (BestSol) = InitialSolution;
14 Loop for 10,000 iterations, in each iteration:
15 Generate new random solution (NewSol) with applying a nearest rule

between nodes;
16 Calculate the fitness of a NewSol;
17 If NewSol is better than saved BestSol, then BestSol = NewSol;
18 End of loop;
19 Checking BestSol feasibility;
20 Write out the path of each route stored inside the BestSol;
21 End;

This algorithm creates multiple solutions over 10,000 iterations and every time a new
solution is created a Fitness is calculated. This Fitness consists of the distance(ds) and
demand(qs) of the solution. If the Fitness improves with a new solution, it becomes
the BestSolution; if not, it is discarded.
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Clarke-Wright Savings Heuristic

The Clarke and Wright Savings Heuristic [34] is a constructive heuristic that creates a
feasible, near-optimal solution using the following formula:

sij = ci0 + c0j − cij (a)

With the following variables:

sij = Savings from joining customer i and j in the same route

cij = Costs for travelling from node i to node j

Suppose node i = 0 represents the depot, the following steps create a feasible near-
optimal solution:

1. Start linking all solutions to the depot (i = 0).

2. Determine the savings for joining two customers and eliminating a trip back to
the depot using Equation (a).

3. Sort savings non-incrementally.

4. Form a route by linking customers according to savings. Concerning:

• Do not break any links formed earlier.
• Stop when all customers are on the route.

Suppose the following costs from travelling from node i to node j, suppose A is the
depot:

cij 0 1 2 3

0 - 8 9 13
1 8 - 4 11
2 9 4 - 5
3 13 11 5 -

Table 3.2: Cost cij table for Clarke & Wright Heuristic

It is essential to note that since cij is symmetric, it is not necessary to calculate the
savings for both sij and sji since these would result in the same savings.

Figure 3.4a visualises the initial state of the problem. All customer nodes are linked
directly to the depot, resulting in three separate tours (Step 1). Next, calculate the
savings for joining two customers by using Equation (a) (Step 2):

s12 = c10 + c02 − c12 = 8 + 9− 4 = 13
s13 = c10 + c03 − c13 = 8 + 13− 11 = 10
s23 = c20 + c03 − c23 = 9 + 13− 5 = 17

Next, the values of sij are sorted non-incrementally (Step 3), resulting in the connection
between node i = 2 and i = 3 as shown in Figure 3.4b (Step 4). This connection does
not break any previous connections since it is the first one. Not all customers are on
the route yet, so the heuristic would continue calculating the new values sij.
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(a) Initial State (b) Merged State

Figure 3.4: Clarke & Wright Savings Heuristic States

Enhanced Clarke & Wright’s Method

The Clarke & Wright Method is very fast and simple to implement. However, some
weaknesses exist.

Savings are the foundation of the heuristic, meaning that the approach iteratively
accepts the best improvement. This results in good routes at the algorithm’s begin-
ning, but later, when fewer choices are available, the heuristic is left with customers
located further away from each other, which might result in a circumferences route at
the end of the heuristic. The solution considers a Route Shape Parameter (λ) to prevent
circumferences routes.

Another improvement is to consider the spatial distribution of the customers by
incorporating an additional term and parameter to the savings formula µ|c0i + cj0|
where µ denotes the parameter to incorporate spatial distribution.

The final improvement considers customer demand when determining what routes
to merge. The VRP considers not only the route but also the capacity of the vehicles.
Therefore, it might be convenient to consider capacity constraints when merging two

routes. The following addition considers this in the savings formula: v
di+dj

d
. Where

v is a parameter to consider capacity in the savings formula, di is the demand of the
customer i and d is the average demand calculated with ( 1

n )∑n
i=1 di.

Altinel and Öncan [35] propose an enhancement on the Clarke & Wright method
to overcome these weaknesses. The savings formula changes to Equation (b):

sij = ci0 + c0j − λcij + µ|c0i + cj0|+ v
di + dj

d
(b)

The proposed savings formula by Altinel and Öncan [35] combines multiple parame-
ters and strives to obtain a better solution than the original Clarke & Wright method.
However, the tuning of the parameters λ, µ and v is essential to obtain better solutions.

Solomon Nearest Neighbour Heuristic

The work of Clarke and Wright [34] is the foundation on which Solomon [36] built the
Solomon Nearest Neighbour Heuristic. This heuristic incorporates the time windows
denoted by [ei, li].

The heuristic uses additional variables where tij is the travel time between any
two customers, and let dij be the distance between any two customers. si denotes the
service time at each customer, and bj is the service beginning at node j. vij stands
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for the urgency to deliver to customer j by calculating the remaining time until the
vehicle’s last possible service start. Additionally, the weights λ1, λ2, λ3 are assigned to
dij, Tij, vij respectively. The following steps are taken in the Solomon heuristic:

1. Create a new metric (cij) to determine the closest customer.

2. Formulas;
bj = max{ei, bi + si + tij}
Tij = bj − (bi + si)
vij = lj − (bi + si + tij)
cij = λ1dij + λ2Tij + λ3vij
λ1 + λ2 + λ3 = 1

3. Select the customers constructively using the lowest cij.

The Solomon nearest neighbour heuristic constructs a feasible solution concerning the
time windows. The weights λ1, λ2, λ3 are used to give the three considerations ad-
ditional importance. These considerations are distance (dij), difference between com-
pletion time at i and start of service at j (Tij), and urgency to deliver to customer j
(vij).

3.6.3 Metaheuristic Methods

Metaheuristic methods are high-level strategies designed to guide and improve heuristic-
based search processes, enabling efficient approximations for complex VRP instances
where exact solutions are computationally infeasible. Unlike simple heuristics, meta-
heuristics incorporate mechanisms for exploring a broader solution space and escap-
ing local optima. The metaheuristic approaches discussed here—genetic algorithms,
simulated annealing, and tabu search—are selected based on a comprehensive litera-
ture study and are informed by both their theoretical robustness and practical success
in VRP applications.

Local Search

A local search is one of the most basic heuristics. It uses an initial solution from which
we generate a neighbour solution [37]. This neighbour is then compared to the initial
solution, and the new solution is accepted if it is better. If not, we maintain the original
solution, and we compare another neighbour. Below is a description of a local search
that uses the following two parameters. S is the set of feasible solutions. N(x) is a set
of neighbouring solutions of x.

1. Generate a feasible solution x (i.e. route in VRP)

2. Generate an unexamined neighbour y of x: N(x)
⋂

S

3. If f (y) < f (x), set x := y. Go to Step 2

4. Stop, if all neighbours of x are examined without improvement: x is locally opti-
mum solution
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Suppose a route for a VRP can generate a neighbour by swapping two customers in
the sequence. When the objective function yields a lower total cost, the neighbour is
an improvement. When considering all neighbours of the current best solution and
finding no improvement, the local search finishes.

Simulated Annealing

Simulated annealing (SA) is a metaheuristic capable of escaping a local optimum [38]
and a well-known improvement heuristic. SA balances both exploration and exploita-
tion.

Suppose a VRP is solved by minimising the objective function. Figure 3.5 visualises
the value of the objective function. Solving starts at the black arrow, and the solution
value decreases over time in the direction of the white arrow (exploitation). Usually,
when reaching the lowest point of the parabola (local optimum), the algorithm stops.
SA can escape this local optimum and continue with the algorithm (exploration). So,
it is further to the right of the Local Optimum in Figure 3.5. It, therefore, accepts larger
values (i.e. worse) than the current best to escape and hopefully descend again to a
lower minimum than the local optimum (the global optimum).

Figure 3.5: Local & Global Optimum Visualization

The SA algorithm escapes the local optimum by accepting solutions with a less optimal
solution value. A constructive heuristic provides the initial solution (istart), which SA
needs as input. Additionally, the model initialises the variables (ck and Lk). Accepting
a worse solution is based on probability and the variable ck. In the beginning, the
value of ck is large, thus almost every solution is accepted. After a fixed number of
iterations called the Markov-Chain length, the temperature decreases by a factor of
alpha. This shifts the focus from exploration to exploitation. Towards the end of the
algorithm, SA focuses only on exploitation, not exploration. The algorithm stops when
the temperature reaches a pre-determined value or when no improvement occurs for
a pre-determined number of iterations.

The main advantage of SA is the possibility of exploration and exploitation. Com-
pared to Local Search, SA is more likely to find a global optimum since Local Search
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only focuses on exploitation and ends up in a local optimum. SA is mighty when
solving problems with large solution spaces.

Tabu Search

Tabu search is a robust global optimisation algorithm that uses a local search proce-
dure to navigate a neighbourhood in search of better solution instances [1]. The algo-
rithm stores visited solutions and uses these to avoid poor-scoring areas. Figure 3.7
visualizes the procedure.

Tabu search starts with an initial solution as input to the algorithm. From this solu-
tion, the method creates a candidate list containing neighbouring solutions. It selects
the solution with the best objective value from this list. Then, the algorithm checks
whether this solution appears on the Tabu list. If it does, the method removes it from
the candidate list and checks the next candidate against the Tabu list. Once the algo-
rithm finds a solution in the candidate list that doesn’t appear on the Tabu list, it selects
that solution as the new current solution and uses it to generate a fresh candidate list.
The algorithm also updates the Tabu list with the newly banned solutions. This cycle
continues until the stopping criterion is met.

The strength of Tabu search lies in its ability to eliminate undesirable neighbour-
hoods. As a result, it reduces the number of solutions the algorithm needs to consider
before reaching an optimum.

Start

Input function &
Initial Solution

Generate new solution

Accept new
solution?

Update stored values

Adjust temperature

Stopping crite-
rion satisfied?

End

Y

Y

N

N

Figure 3.6: Simulated Annealing pseudo
code
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rent solution S

Create a candidate
list of neighbours
to current solution

Find the best solution S’
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tabu list?

Let solution S=S’
and update tabu list

Delete S’ from
candidate list

Stopping crite-
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End
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Y

Figure 3.7: Tabu Search pseudo code [1]
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3.6.4 Comparison between solution methods

Among the methods for solving the Vehicle Routing Problem (VRP), Enhanced Clarke
& Wright’s and Solomon’s Nearest Neighbour are fast, constructive heuristics that
provide quick but often suboptimal solutions. While useful for initial routing, they
can struggle with complex constraints and typically get trapped in local optima.

In contrast, Simulated Annealing and Tabu Search are metaheuristic approaches
that offer significantly better solution quality. Simulated Annealing explores the so-
lution space probabilistically, occasionally accepting worse solutions to escape local
minima. Tabu Search uses memory-based strategies to avoid revisiting recent solu-
tions and systematically explores the neighbourhood for improvements.

While the heuristic methods are fast, Tabu Search and Simulated Annealing con-
sistently yield higher-quality solutions, especially in larger or more constrained VRPs.
Based on the literature review and Table 3.1, Tabu Search and Simulated Annealing are
often used to solve VRP problem instances with similar specifications as the variant
Farm Trans is facing.

3.7 Summary

This chapter has presented a comprehensive literature study on the Vehicle Routing
Problem (VRP) and its many variants, with a particular focus on the specific routing
and decision-making challenges faced by Farm Trans. We first introduced the foun-
dational concepts of VRP and examined key variants such as the VRP with Time Win-
dows (VRPTW) and the Heterogeneous VRP (HVRP), which are particularly relevant
to Farm Trans’s context.

We then reviewed a range of solution approaches, including classical heuristics
(e.g., Clarke-Wright and Solomon’s heuristic) and advanced metaheuristics (e.g., ge-
netic algorithms, simulated annealing, and tabu search), highlighting their strengths,
limitations, and applicability to large-scale, real-world routing problems. In addition,
we identified the critical constraints and practical considerations—such as time win-
dows, vehicle heterogeneity, range limitations, cost structures, and mandatory driver
rest times—that define the complexity of Farm Trans’s variant of the VRP.

In conclusion, the key definitions relevant to Farm Trans include those of VRPTW
and HVRP, as they directly reflect the operational constraints and objectives of the
company. The most suitable solution approaches are those that combine domain-
specific heuristics with metaheuristic optimization techniques, as they offer the nec-
essary flexibility and scalability to address the company’s complex routing problem.
This foundational understanding will directly inform the design of a tailored solution
in the subsequent chapters.
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Problem Description

In this chapter, we provide a comprehensive and detailed exposition of the Vehicle
Routing Problem (VRP) variant encountered by Farm Trans. The chapter is organ-
ised into five sections: ”Formal Problem Definition” (Section 4.1), ”Assumptions”
(Section 4.2), ”Definition” (Section 4.3), ”Mathematical Formulation” (Section 4.4) and
”Toy Instance” (Section 4.5). These sections collectively offer an in-depth understand-
ing of the problem’s scope, context, objectives, and complexities.

4.1 Formal Problem Definition

The problem is defined on an undirected graph G = (N ,A), where N represents the
set of nodes, and A denotes the set of arcs connecting them. The set of customers
consists of pickup locations (P) and delivery locations (D). A central depot, denoted
as 0, serves as the starting and ending point for all vehicle routes. Alongside customer
nodes, the network includes charging stations (CS) for electric vehicles, fuel stations
(FS) for conventional vehicles, and break locations (BL) to accommodate mandatory
rest periods.

The fleet comprises electric vehicles (Ke) and conventional vehicles (Kd), each with
a maximum load capacity Qr, battery and fuel capacities Br and Fr, respectively, and
specific consumption rates Bcon and Fcon. Vehicles incur various costs, including toll
costs ctoll

ij , variable travel costs cvar
ij , fixed costs per vehicle cfixed

r , and labor costs clabour
r .

The service time at each location si affects scheduling and overall efficiency.
Each vehicle must begin its route at the depot and return upon completing deliver-

ies. The travel distance dij and travel time tij between nodes influence route planning
and scheduling decisions. Battery and fuel levels, represented by yr

i and f r
i , are con-

tinuously updated as vehicles move between nodes. Vehicles must stop at charging
stations or fuel stations to replenish energy levels when necessary. Customers have
predefined service windows [ai, bi] that must be respected, ensuring timely deliveries.
The arrival time at each location Tr

i must adhere to these constraints.
The optimisation model seeks to minimise the total cost. Additionally, it aims to

design efficient routing strategies that meet customer demands while complying with
vehicle constraints. Balancing workload distribution across the fleet ensures opera-
tional efficiency and equitable service allocation. This formulation integrates routing
and location-based decisions, providing a structured approach to minimising costs
and optimising vehicle usage while maintaining reliable service levels.
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4.2 Assumptions

This section outlines the foundational assumptions that underpin our problem formu-
lation. These assumptions are crucial for delineating the problem’s boundaries and
simplifications, facilitating a clear understanding of the problem’s context. Key as-
sumptions include:

• Single Depot: Farm Trans operates from a single central depot in Lommel, Bel-
gium, as the starting and ending point for all vehicles.

• Heterogeneous Fleet: We assume a fleet of heterogeneous vehicles with different
performance characteristics.

• Static Demand: We consider a scenario with static customer demand, where
customer orders do not change during the day.

• Time Windows: Customers have specified time windows during which deliver-
ies must be made (i.e. time windows are hard deadlines).

• Distances: Distances between all locations are calculated using an Application
Programming Interface (API). Resulting in a distance matrix; a matrix with travel
distances between all locations.

• Travel Times: Travel times between locations are calculated using the distance
matrix and an average 70 km/h speed.

• No Split Deliveries: We do not allow the splitting of customer deliveries across
multiple vehicles.

• Recharging: Charging duration depends on the truck’s electric capacity. The
model uses different charging rates depending on the specific charger. A busi-
ness relation of CAPE provides this data. Furthermore, we assume that we al-
ways charge the battery all the way; partial charging is not considered.

• Dividing Breaks: Breaks can not be divided into multiple breaks.

• Daily Working Time: We assume a maximum daily working time of 13 hours
and a maximum daily driving time of 9 hours.

These assumptions provide a foundation for defining and modelling the VRP variant.

4.3 Definition

We define Farm Trans’s VRP as a Heterogeneous Fleet Vehicle Routing Problem with
Pickup and Delivery and Time Windows (HF-VRPPDTW). The VRP consists of a het-
erogeneous fleet incorporating electric and diesel trucks. Furthermore, all orders con-
sist of corresponding pickup and delivery orders with hard time window constraints.
The problem can be defined as NP-hard.
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4.3.1 Problem Objectives

The primary objective of the VRP variant faced by Farm Trans includes minimising
total transportation costs. These costs are separated into four distinct costs:

• Variable Cost:
Consists of a price per kilometre, which differs per truck. Therefore, this min-
imises travel distance.

• Toll Cost:
Consists of a rate per country per truck type. Again, it minimises travel distance
and assigns trucks with lower toll rates to more expensive countries.

• Labour Cost:
Consists of a standard hourly wage and minimises total travel time.

• Fixed Cost:
Consists of a fixed cost per truck, only incurred when the truck is being used.
Minimises the number of trucks used in a solution.

4.3.2 Problem Parameters

The problem is characterised by several parameters, which collectively define the
problem and its complexity.

• Customer Locations: The locations of customer pickup and delivery points within
the operational area.

• Customer Demand: The quantity of goods each customer requires for delivery.

• Vehicle Capacities: The maximum load capacity of each vehicle. In terms of
weight and load meters.

• Time Windows: The time windows during which deliveries must be made to
each customer.

• Vehicle Range: Each truck has a range it can travel on a full tank/battery.

• Depot Location: The location of the central depot from which all vehicles start
and end their routes.

• Distance Matrix: A matrix detailing the distances between all pairs of nodes,
calculated using an API.

• Travel Times Matrix: A matrix detailing the travel times between all pairs of
nodes. Based on the Distance Matrix with a set average speed.

• Charging Station Locations: A list of charging stations the trucks can use to
charge during transport.

• Fuel Station Locations: A list of fuel stations the trucks can use to refuel during
transport.
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• Break Locations: A list of break locations the trucks can use for breaks during
transport.

• Breaks: The solution should incorporate breaks for the driver. Furthermore, this
can be combined with charging.

4.4 Mathematical Formulation

The solution’s foundation lies in developing a rigorous mathematical formulation for
the VRP variant. In this section, we outline the objective function, decision variables,
and constraints that constitute the optimisation problem. We provide a clear mathe-
matical representation that captures the problem’s essence and prepares it for algorith-
mic solutions. This model is based on the models from Kallehauge [13], Kucukoglu
[18] and Desaulniers [19]. It has been tested in Python for correctness.

4.4.1 Notation

Set of Customers, indexed by i and j C = {1, ..., n}
Set of Pickup nodes P = {1, ..., n}

Set of Delivery nodes D = {n + 1, ..., 2n}
Set of all nodes, where 0 is the depot N = P ∪D ∪ CS ∪ FS ∪ BL ∪ {0}

Set of Charging Stations CS = {n ∗ 2 + 1, ..., n ∗ 2 + 4}
Set of Fuel Stations FS = {n ∗ 2 + 5, ..., n ∗ 2 + 8}

Set of Break Locations BL = {n ∗ 2 + 9, ..., n ∗ 2 + 12}
Set of Vehicles in Fleet, indexed by r K = {1, ..., k}

Set of Electric Vehicles Ke = {1}
Set of Conventional Vehicles Kd = {2}

Capacity of the vehicle Qr

Toll Cost of driving from i to j ctoll
ij

Fixed Cost for using vehicle r cfixed
r

Variable Cost of driving from i to j cvar
ij

Cost of labour for vehicle r clabour
r

Distance between node i and j dij

Demand at node i ℓi

Battery capacity of vehicle r Br

Fuel capacity of vehicle r Fr

Battery consumption per unit distance Bcon

Fuel consumption per unit distance Fcon

Service time at node i si

Earliest time at node i ai

Latest time at node i bi
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Variables:

xr
ij =

{
1, if vehicle r uses the arc between node i and j
0, otherwise

Lr
i = Load carried by vehicle r upon arrival at node i

yr
i = Battery level of vehicle r upon arrival at node i

f r
i = Fuel level of vehicle r upon arrival at node i

Tr
i = Arrival time of vehicle r at node i

ur
i = Continuous variable representing the position of node i in the tour of vehicle r

4.4.2 Mathematical Formulation

Minimize: ∑
r∈K

∑
i∈N

∑
j∈N

ctoll
ij · xr

ij (Toll Costs)

+ ∑
r∈K

cfixed
r ·

(
∑

j∈N
xr

0j

)
(Fixed Vehicle Costs)

+ ∑
r∈K

∑
i∈N

∑
j∈N

cvar
ij · dij · xr

ij (Variable Travel Costs)

+ ∑
r∈K

clabour
r · (pend(r) − p0) (Labour Costs)

∑
j∈N ,j ̸=i

∑
r∈K

xr
ij = 1 ∀i ∈ P ∪D (4.1)

∑
j∈N ,j ̸=i

∑
r∈Ke

xr
ij ≥ 0 ∀i ∈ F (4.2)

∑
j∈N ,j ̸=0

xr
0j ≤ 1 ∀r ∈ K (4.3)

∑
j∈N ,j ̸=i

xr
ij = ∑

j∈N ,j ̸=i
xr

ji ∀i ∈ N , i ̸= 0, ∀r ∈ K (4.4)

yr
j ≤ yr

i − Bcon · dij · xr
ij + Bcap · (1− xr

ij) ∀i ∈ P ∪D ∪ BL ∪ FS , ∀j ∈ N , i ̸= j, ∀r ∈ Ke

(4.5)

yr
j ≤ Bcap − Bcon · dij · xr

ij ∀i ∈ {0} ∪ CS , ∀j ∈ N , i ̸= j, ∀r ∈ Ke (4.6)

xr
ii = 0 ∀i ∈ N , ∀r ∈ K (4.7)

∑
j∈N ,j ̸=i

∑
r∈K

xr
ij = 1 ∀i ∈ P ∪D (4.8)

yr
0 ≤ Bcap ∀r ∈ Ke (4.9)

ur
i − ur

j + |N | · xr
ij ≤ |N | − 1 ∀i, j ∈ N , i ̸= j, i ̸= 0, j ̸= 0, ∀r ∈ K (4.10)

∑
j∈N ,j ̸=i

∑
r∈K

xr
ij = 1 ∀i ∈ P ∪D (4.11)
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∑
j∈N ,j ̸=i

∑
r∈Kd

xr
ij ≥ 0 ∀i ∈ FS (4.12)

f r
j ≤ f r

i − Fcon · dij · xr
ij + Fcap · (1− xr

ij) ∀i ∈ P ∪D ∪ BL ∪ CS , ∀j ∈ N , i ̸= j, ∀r ∈ Kd

(4.13)

f r
j ≤ Fcap − Fcon · dij · xr

ij ∀i ∈ {0} ∪ FS , ∀j ∈ N , i ̸= j, ∀r ∈ Kd

(4.14)

f r
0 ≤ Fcap ∀r ∈ Kd (4.15)

∑
j∈N ,j ̸=i

xr
ij = ∑

j∈N ,j ̸=i+n
xr

ji+n ∀i ∈ P , ∀r ∈ K (4.16)

Tr
j ≥ Tr

i + si + tij − 1000 · (1− xr
ij) ∀i, j ∈ N , i ̸= j, i ̸= 0, j ̸= 0, ∀r ∈ K (4.17)

Tr
i ≥ ai ∀i ∈ P ∪D, ∀r ∈ K (4.18a)

Tr
i ≤ bi ∀i ∈ P ∪D, ∀r ∈ K (4.18b)

Tr
i+n ≥ Tr

i + si ∀i ∈ P , ∀r ∈ K (4.19)
Lr

j ≥ Lr
i + ℓi − 1000 · (1− xr

ij) ∀i, j ∈ N , i ̸= j, ∀r ∈ K (4.20)

Lr
i ≤ Qr ∀i ∈ N , ∀r ∈ K (4.21a)

Lr
i ≥ 0 ∀i ∈ N , ∀r ∈ K (4.21b)

Lr
0 = 0 ∀r ∈ K (4.22)

The objective function minimises the total cost. It consists of four components: toll
cost, fixed cost, variable cost, and labour cost. Constraint (4.1) ensures each customer is
visited exactly once. Constraint (4.2) enables multiple visits to charging stations. Con-
straint (4.3) ensures that each vehicle departs from the depot at most once. Constraint
(4.4) guarantees flow conservation by ensuring that incoming arcs equal outgoing arcs
for each node. Constraint (4.5) maintains battery levels at customer nodes, break loca-
tions, and fuel stations for electric vehicles. Constraint (4.6) ensures that battery levels
for electric vehicles are properly initialised at the depot and charging stations. Con-
straint (4.7) prevents direct loops, ensuring a vehicle does not revisit the same node.
Constraint (4.8) ensures that all customer nodes are visited by exactly one vehicle.
Constraint (4.9) sets the initial battery level of electric vehicles to be within capacity.
Constraint (4.10) prevents subtours by enforcing logical node sequencing. Constraint
(4.11) ensures unique customer visits, preventing redundant assignments. Constraint
(4.12) allows multiple visits to fuel stations by conventional vehicles. Constraint (4.13)
ensures proper fuel consumption tracking for customer nodes, break locations, and
charging stations. Constraint (4.14) sets fuel levels appropriately at the depot and fuel
stations. Constraint (4.15) ensures the initial fuel level is within capacity. Constraint
(4.16) enforces flow balance between pickup and delivery nodes. Constraint (4.17)
maintains correct sequencing of travel times, excluding the depot. Constraints (4.18a)
and (4.18b) enforce lower and upper bounds on time windows for customer nodes.
Constraint (4.19) ensures that pickups occur before corresponding deliveries. Con-
straint (4.20) updates vehicle load based on pickup and delivery requirements. Con-
straints (4.21a) and (4.21b) enforce a non-negative load condition without exceeding
vehicle capacity. Constraint (4.22) initialises the vehicle load to zero at the depot.
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4.5 Example

The following small-sized instance shows the problem considerations and a solution,
helping to create a better understanding of the problem at hand. Suppose we have
two trucks, one diesel truck and one electric truck. These trucks have different charac-
teristics, as shown in Table 4.1. We assume distance = time in this example instance.

Truck-ID Type Range Refuel or
Recharge Time

DT Diesel 14 1

ET Electric 9 2

Table 4.1: Toy Instance Truck Data

These trucks need to deliver three orders; these orders have a coordinate, weight and
time window as shown in Table 4.2. Orders A and B originate from the central depot
(Lommel, Belgium) and must be delivered to two distinct customer locations. Order
C is different; this order requires pickup at location C1 and delivery at location C2.

ID X-coordinate Y-coordinate Weight Time
Window Country

A 2 8 2 [0, 5] Netherlands

B 7 9 2 [8, 10] Netherlands

C1 3 2 2 [0, 4] Germany

C2 9 3 2 [2, 12] Germany

Table 4.2: Toy Instance Order Information

Additionally, there is a charging station (CS) where the electric vehicle can recharge if
necessary. The depot and charging station coordinates are shown in Table 4.3.

Location X-coordinate Y-coordinate

Depot 5 5

Charging Station 6 2

Table 4.3: Toy Instance Depot and Charging Station Coordinates
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The Euclidean distance between all points is shown in Table 4.4.

Depot CS A B C1 C2

Depot 0 3.16 4.24 4.47 3.61 4.47

CS 3.16 0 7.21 7.07 3.00 3.16

A 4.24 7.21 0 5.10 6.08 8.60

B 4.47 7.07 5.10 0 8.06 6.32

C1 3.61 3.00 6.08 8.06 0 6.08

C2 4.47 3.16 8.60 6.32 6.08 0

Table 4.4: Toy Instance Distance Matrix

Together, the locations of the depot, charging station and orders are visualised in Fig-
ure 4.1. Additionally, the time windows of the orders are shown in this figure.

Figure 4.1: Map of Locations
(including time windows)

When solving this problem instance, we find the following routes.

DT : [Depot− A− B− Depot]
ET : [Depot− C1− CS− C2− Depot]

Figure 4.2 visualizes the routes and the arrival times at all locations. Both trucks han-
dle two orders; each has a capacity of 4, and all orders weigh 2. Thus, the capacity is
not exceeded.

DT travels a total distance of 13.81, which is within this truck’s maximum range.
The truck arrives at A at 4.24 and at B at 9.34. Both are within the time window for
that order, meaning that truck DT’s route is feasible.
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Figure 4.2: Map of Locations with Routes
(including arrival times)

ET travels a total distance of 14.24, larger than the maximum range. However, the
truck recharges between the two customers. The distance from the depot to the CS is
6.61, and from there back to the depot, it is 7.63. Both are within this truck’s maximum
range. Additionally, charging takes two units. Thus, the truck arrives at C at 3.61 and
at D at 11.77. Both are within the time window for that order, thus making this route
feasible.

It is important to note that one truck could not deliver all these orders on time due
to time window constraints. Therefore, this problem instance uses two trucks. Further-
more, using an electric truck benefits the transportation company since it is cheaper to
drive an electric truck than a diesel truck due to toll prices as seen in Section 2.1.3. In
this case, sending electric trucks to Germany is beneficial due to the significant benefit
to the toll prices. Additionally, other routing was impossible due to the location of the
charging station.

4.6 Summary

This chapter has comprehensively described the VRP variant faced by Farm Trans.
We began by explaining the assumptions that define the problem’s scope and context.
We then provided a precise definition of the problem, specifying its objectives and
parameters. Finally, we illustrated the practical implications of the problem through
an example. This chapter sets the stage for the subsequent exploration of solution
methodologies and experimental evaluations, providing a solid foundation for ad-
dressing Farm Trans’s logistics challenges.
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Chapter 5

Solution Approach

This chapter delves into the methodology and strategies employed to tackle Farm
Trans’s Vehicle Routing Problem (VRP) variant. Our approach is structured into sev-
eral key subsections, each addressing a specific solution development and implemen-
tation aspect.

5.1 Algorithm Selection

Selecting an appropriate algorithm is crucial for solving complex optimisation prob-
lems like the VRP. As discussed in Chapter 4, this problem is NP-hard, making exact
solution approaches impractical. Furthermore, Desaulniers et al. [19] present a wide
range of VRPPDTW problem instances and note that all multi-vehicle cases require
heuristic methods to solve. Only small instances, with approximately 10 nodes, could
be solved optimally using exact methods. Based on Table 3.1, we define two candidate
solution methods for this problem: Simulated Annealing and Tabu Search. Based on
the comparison in section 3.3.7 and the arguments in Section 3.6.3, Simulated Anneal-
ing (SA) was chosen as the solution method due to its widespread use and its ability
to balance diversification and intensification.

Based on Konstantakopoulos [39], Simulated Annealing is widely used due to its
ease of implementation and the ability to improve solutions fast. As explained in
Section 3.6.3, diversification allows the algorithm to escape local optima by accepting
worse solutions, while intensification focuses on refining the current solution. Addi-
tionally, Farm Trans has a strict one-hour time limit for running the algorithm, which
is the window between receiving orders and finalising their schedules. The combina-
tion of the characteristics of SA and the time constraints supports the use of SA, as it
effectively requires time to diversify and intensify the solution space.

5.2 Metaheuristic Design

The algorithm has two components: a Constructive Heuristic (CH) and Simulated
Annealing (SA). CH provides SA with a feasible, initial solution. SA then improves
this solution.
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5.2.1 Constructive Heuristic

The CH provides the SA with an initial feasible solution. We build a solution step by
step. Figure 5.1 visualises the steps to create an initial solution. Algorithm 2 provides
the pseudo code for the CH.

The algorithm starts by verifying whether a pickup-delivery order combination is
feasible (Step 1). It checks whether the truck can travel from the pickup location to
the delivery location within the given time window constraints. If the order is not
feasible, it is excluded from the solution and not added to the list of planable pickup
orders (Step 2). We then sort the remaining planable orders by their earliest pickup
time window.

Next, the algorithm iterates over the available trucks, selecting the first truck (Step
3) and the first order from the planable orders list (Step 4). It then checks whether
the truck has enough capacity to accommodate the selected pickup order (Step 5). If
the truck lacks capacity, the algorithm determines the next pickup order (Step 4). If
the order fits, an intermediate route is created from the truck’s current position to the
pickup location, incorporating necessary stops for charging, fueling, and breaks (Step
6).

Once we have established a route, the algorithm checks whether the truck arrives
at the pickup location within the required time window (Step 7). If the truck arrives
late, the algorithm selects the next pickup order (Step 4). If it arrives on time, the truck
picks up the order, schedules it (Step 8), and removes it from the planable orders list
(Step 9).

The algorithm then retrieves the corresponding delivery order (Step 10) and creates
an intermediate route from the pickup location to the delivery destination (Step 11). It
verifies whether the truck arrives within the delivery order’s time window (Step 12). If
the truck arrives too late, the algorithm restores the corresponding pickup order to the
planable orders list (Step 13) and selects the next pickup order (Step 4). We schedule
the delivery order if the truck arrives on time (Step 14).

The algorithm then checks whether all planable orders have been tried for the cur-
rent truck (Step 15). It selects the next pickup order if there are still remaining orders
(Step 4). If all orders have been tried for this truck, the algorithm checks whether an-
other truck is available (Step 16). If a new truck is available, the algorithm selects it
and repeats the process (Step 3). If no trucks remain, the algorithm terminates.

Finally, it could be the case that a solution can not include all orders. Therefore, the
CH returns a list called unplannedOrders, which includes unscheduled orders due to
capacity constraints, time-windows or a lack of trucks.

Intermediate Route

The function Intermediate Route creates a route between any two starting points and
incorporates fuel stops, charging stops and breaks. This function is used often in the
CH but also in the SA when we have an altered solution and require a new route
between two new points. Since this study incorporates electric and diesel trucks, the
intermediate route function consists of two parts, depending on the truck used.

If a diesel truck is used, we must schedule fuel stops and breaks sequentially, mean-
ing we schedule the fuel stops and then insert the breaks when necessary.

For electric trucks, we only need to schedule breaks since we always recharge the
truck when taking a break. Additionally, it can be the case that only charging during
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breaks is insufficient and additional charging is required. These are all scheduled si-
multaneously, meaning after an event is scheduled (e.g. break, handling, charging),
we check what time we have left until all other events must take place, and we sched-
ule the earliest one.

Start

1. Check im-
possible orders

2. Create a list of
planable orders

3. Select next truck

4.Select the next
Pickup order in

the planable orders

5. Enough
capacity left?

6. Create inter-
mediate route

7. Arrives
on time?

8. Schedule the
pickup order

9. Remove pickup order
from planable orders

10. Retrieve corre-
sponding delivery order

11. Create inter-
mediate route

12. Arrives
on time?

14. Schedule the
delivery order

15. Tried all
planable orders

in this truck?

16. New trucks
available?

End

13. Restore pickup
order in planable orders

Order Data,
Truck Data,

Costs,
Travel Distances,

Travel Times,
Break Locations,
Fuel Locations,

Charging Locations

Y

Y

Y

Y

N

N

N

N

N

Y

Figure 5.1: Flowchart of the Constructive Heuristic
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Algorithm 2: Constructive Heuristic
Input: Trucks, Orders, Depot, Distance Matrix, Travel Times Matrix
Output: Feasible Solution, Unplanned Orders

1 Function checkPickupDeliveryTWs()

2 Function createRouteBreaks(truck, order, breaks)

3 Function removeOrder(truck, order)

4 Function createIntermediateRoute(currentPosition, order)

5 Function scheduleReturnToDepot(truck, breaks, Depot)

6 Function ConstructiveHeuristic()
7 for truck ∈ Trucks do
8 Save truck state

9 impossibleOrders← checkPickupDeliveryTWs()

10 plannableOrders← sorted orders by earliest start time, exclude impossibleOrders
11 for truck ∈ Trucks do
12 if plannableOrders = ∅ then
13 break

14 for order ∈ plannableOrders do
15 if order is pickup then
16 if truck has capacity for order then
17 breaks, travelTime←

createIntermediateRoute(truck.currentPosition, order)
18 pickupArrivalTime← truck.lastTime + travelTime
19 if pickupArrivalTime > order.endTime then
20 continue

21 createRouteBreaks(truck, order, breaks)
22 Remove order from plannableOrders
23 deliveryOrder ← corresponding delivery order
24 if deliveryOrder exists then
25 breaks, deliveryTravelTime←

createIntermediateRoute(truck.currentPosition, deliveryOrder)
26 deliveryArrivalTime← truck.lastTime + deliveryTravelTime
27 if deliveryArrivalTime < deliveryOrder.endTime then
28 createRouteBreaks(truck, deliveryOrder, breaks)
29 continue

30 else
31 RemoveOrdertruck, order
32 Add order back to plannableOrders
33 continue

34 else
35 continue

36 for truck ∈ Trucks do
37 if truck used then
38 breaks, travelTime← createIntermediateRoute(truck.lastPosition, Depot)
39 scheduleReturnToDepot(truck, breaks, Depot)

40 unplannedOrders← Orders not in any truck’s route
41 return unplannedOrders
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5.2.2 Simulated Annealing

The SA algorithm uses the initial solution from the CH and tries to improve this solu-
tion. Therefore, operators alter the solution to create new solutions. SA uses diversifi-
cation and intensification to move through the solution space and compare solutions.
First, we explain the algorithm and then the operators used.

Figure 5.2 is based on figure 3.6, it visualizes the SA algorithm. In this case, the
initial function and solution is the CH. Operators generate the new solution. Further-
more, the created algorithm includes a Markov chain, meaning that the temperature is
only adjusted when reaching the Markov chain length. An additional stopping crite-
rion next to the temperature is the running time; Farm Trans have a strict 1-hour limit
to run the algorithm. The algorithm stops and returns the best solution if it exceeds
the 1-hour time limit. Algorithm 3 provides pseudo code for the SA algorithm.

Start

Input function &
Initial Solution

Generate new solution

Accept new
solution?

Update stored values

Markov chain
limit reached?

Adjust temperature

Stopping crite-
rion satisfied?

End

Initial Solution,
Order Data,
Truck Data,

Costs,
Travel Distances,

Travel Times,
Break Locations,
Fuel Locations,

Charging Locations

Y

Y

Y

N

N

N

Figure 5.2: Flowchart of Simulated Annealing
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Algorithm 3: Simulated Annealing for VRP
Input: Initial VRP solution, InitialTemperature, Tempend, MarkovChainLength, CoolingRate,

Operators, maxRunningTime
Output: Optimised VRP solution

1 Function saveSolution(name)

2 Function loadSolution(name)

3 Function checkFeasibility()

4 Function checkFeasibleRoutes()

5 Function ObjectiveFunction(Labour Cost)

6 Function applyOperator()

7 Function visualizeResults()

8 Function SimulatedAnnealing()
9 startTime← current time

10 currentTime← current time
11 saveSolution(”CH sol”)
12 saveSolution(”Best sol”)
13 saveSolution(”Current sol”)
14 currentCost← ObjectiveFunction(Labour Cost)
15 initCost← currentCost
16 bestCost← currentCost

//Initialize parameters

17 Temp← InitialTemperature
18 M← MarkovChainLength
19 while Temp > Tempend and currentTime− startTime < maxRunningTime do
20 while M > 1 do

//Apply a random operator

21 applyOperator()

//Check feasibility

22 f easible← checkFeasibility()

23 if not feasible then
24 loadSolution(”Current sol”)

25 if feasible then
26 violations← checkFeasibleRoutes()

27 if violations then
28 loadSolution(”Current sol”)

//Evaluate solution

29 newCost← ObjectiveFunction(Labour Cost)
30 delta← newCost− currentCost
31 randomVar ← random value in [0,1]
32 expValue← −delta/Temp
33 expProb← eexpValue

34 if δ < 0 or randomVar < expProb then
35 saveSolution(”Current sol”)
36 currentCost← newCost
37 if currentCost < bestCost then
38 saveSolution(”Best sol”)
39 bestCost← currentCost

40 else
41 loadSolution(”Current sol”)

42 M← M− 1
43 currentTime← current time

//Cooling step

44 Temp← Temp× CoolingRate
45 M← MarkovChainLength

//Finalizing results

46 loadSolution(”Best sol”)
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Simulated Annealing uses operators to change the solution and look for other solu-
tions. This algorithm uses ten operators, which are divided into four categories: break
operators, one truck operators, two truck operators, and insert unscheduled order.

Break Operators

Move Break: The move break operator randomly selects a truck and then randomly
selects either a break, fuel stop or charging stop in the route of that truck. Next, the
five closest locations around the selected location are selected, and one is randomly
chosen. This new location replaces the old selected location, creating a new route.
Figure 5.3 visualizes the move break operator. The break previously taken at location
B66 moves to location B69. After the repair, this results in an additional break at break
location B33.

Depot P10

B66

B69

D10 Depot

(a) Original Route

Depot P10

B66

B69

D10 Depot

(b) Route operator

Depot P10

B66

B69

D10 B33 Depot

(c) Route after operator and repair

Figure 5.3: Visualisation of the move break operator

Move Long Break: An alternative to the move break operator is the move long break
operator. The start is the same. However, it only selects a break which is longer than
11 hours. Thus, a break resets the daily working limit. This break is then removed
from the route and randomly inserted. This insert is not entirely random since it must
be before the original place where it was. Next, we repair the new solution using a
separate function. Thus, all charging stops, fuel stops and breaks after the inserted
break are removed and rebuilt using the intermediate route function. Figure 5.4 visu-
alises the move long break operator. We moved the long break B66 to location B70.
The repair adds break, B38.
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Depot P10

B66

B70

D10 Depot

(a) Original Route

Depot P10

B66

B70

D10 Depot

(b) Route after operator

Depot P10

B66

B70

D10

B38

Depot

(c) Route operator and repair

Figure 5.4: Visualisation of the move long break operator

One Truck Operators

Random Insertion in Route: The random insertion operator randomly selects a truck and
randomly selects an order in the route of that truck. This order is removed from the
route and then inserted randomly. However, the insert considers that a delivery order
should be after the corresponding pickup order and a pickup order before the corre-
sponding delivery order. Next, the route is repaired for breaks, fueling, and charg-
ing. Figure 5.5 visualizes this operator. Delivery order D10 is randomly selected and
moved forward in the route between P10 and P12. The repair results in an additional
break at B133.

Depot P10 P12 B66 D10 D12 Depot

(a) Original Route

Depot P10 D10 P12 B66 D12 Depot

(b) Route after operator

Depot P10 D10 B133 P12 B66 D12 Depot

(c) Route after operator and repair

Figure 5.5: Visualisation of the random insertion in the route operator

Random Swap in Route: The random swap in route operator randomly selects a truck
and randomly selects two orders in the route of that truck. We swap these two orders
from their positions in the route. Next, the route is repaired for breaks, fueling and
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charging. Figure 5.6 visualizes this operator, P10 and P12 are swapped from their
position. In this instance, the repair does not result in changes in breaks, fuelling or
charging.

Depot P10 P12 B66 D10 D12 Depot

(a) Original Route

Depot P12 P10 B66 D10 D12 Depot

(b) Route after operator

Depot P12 P10 B66 D10 D12 Depot

(c) Route operator and repair

Figure 5.6: Visualisation of the random swap in the route operator

Two Truck Operators

Random Insertion between Trucks: The random insertion between trucks operator ran-
domly selects two trucks and randomly selects a pickup order and the corresponding
delivery order in the route of one of those trucks [40]. These orders are then removed
from the original truck and randomly inserted into the route of the other truck. The
insert only accounts for the fact that the delivery order should be after the pickup or-
der. Next, the route is repaired for breaks, fueling, and charging. Figure 5.7 visualizes
this operator. P10 and D10 are selected from another truck and randomly inserted into
the route of this truck. And finally, the new route is repaired. Random Swap between

Depot P12 B66 D12 Depot
D10P10

(a) Original Route

Depot P10 D10 P12 B66 D12 Depot

(b) Route operator

Depot P10 D10 B133 P12 B66 D12 Depot

(c) Route operator and repair

Figure 5.7: Visualisation of the random insertion between the truck operator

Trucks: The random swap between trucks operator randomly selects two trucks and
randomly selects two pickup orders and two corresponding delivery orders in each
truck’s route [40][41]. The two pickup and delivery orders are swapped from their
positions in different trucks. Next, both routes are repaired for breaks, fueling, and
charging. Figure 5.8 visualizes the swap. P10 and D10 are selected from another truck
and swapped with P12 and D12. And finally, the new route is repaired. Move Route
to unused Truck: The moving route to an unused truck randomly selects two trucks.
One truck is in use, and one truck is not in use. Then, the route from the used truck is
moved to the unused truck and repaired for breaks, fueling, and charging.
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Depot P12 B66 D12 Depot
D10P10

(a) Original Route

Depot P10 B66 D10 Depot
D12P12

(b) Route operator

Depot P10 D10 B133 Depot

(c) Route operator and repair

Figure 5.8: Visualisation of the random swap between the truck operator

Swap Routes between Trucks: The swap route between trucks operator selects two ran-
dom used trucks and swaps the routes between both trucks. Next, both routes are
repaired for breaks, fueling, and charging.

Insert Unscheduled Order

This category contains a single operator: the insert unscheduled operator. It selects
an empty truck and attempts to assign it an unscheduled order. Unscheduled orders
can result from the Constructive Heuristic (CH) being unable to fit all orders, due to
trucks being full or time window constraints caused by existing routes. As Simulated
Annealing (SA) optimises the solution, it may free up a truck, creating an opportunity
to insert one or more of these previously unscheduled orders.

This operator functions similarly to the CH. It begins by selecting the unscheduled
order with the earliest pickup deadline and attempts to schedule it. If successful, it
continues adding additional orders one by one, as long as they fit within the truck’s
capacity and time window constraints. The process stops when no further orders can
be added feasibly.

5.3 Summary

This chapter outlines the methodology designed to solve Farm Trans’s complex VRP
variant. Given the problem’s NP-hard nature, exact methods were deemed impracti-
cal. Instead, a metaheuristic approach using Simulated Annealing (SA) was selected
due to its proven ability to balance solution quality and computational efficiency.
The solution method consists of two key components: a Constructive Heuristic (CH),
which generates an initial feasible solution, and SA, which iteratively improves it by
exploring the solution space. Operators for route swapping and inserting unscheduled
orders are also introduced to refine the solutions dynamically. This chapter establishes
the mathematical and algorithmic basis for the experimental work that follows.
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Experimental Setup

This chapter outlines our experimental setup for assessing the proposed solution to
resolve Farm Trans’s VRP variant (detailed in Chapter 5).

We define diverse experimental scenarios in Section 6.1. We cover crucial ele-
ments, including data collection and preprocessing in Section 6.2. Next, we provide
an overview of software tools and the computational environment in Section 6.3. We
conduct extensive parameter tuning in Section 6.4. And finally, introduce performance
metrics in Section 6.5.

This chapter establishes the foundation for evaluating the effectiveness of our solu-
tion in tackling the real-world challenges posed by Farm Trans’s VRP variant, includ-
ing data management, scenario design, computational resources, parameter optimisa-
tion, performance measurement and experimental procedures.

6.1 Experimental Scenarios

To comprehensively assess the proposed solution, we define a set of experimental sce-
narios that represent different operational conditions and challenges faced by Farm
Trans. The main objective of this research is to provide Farm Trans with a systematic
approach to scheduling diesel and electric trucks. The experiments will focus on these
decisions since they want to explore the possibilities of electrifying their fleet.

We use three distinct order datasets to validate and analyse the performance of
the proposed method. The first order dataset has been selected together with Farm
Trans to get a good representation of an average scheduling problem instance; we call
this order dataset Orders38, since it contains 38 orders. In the second order dataset,
we increase the number of orders to 80; the order characteristics are similar to the
Orders38 dataset regarding time windows, locations and weight. We call this dataset
Orders80. Finally, we again increased the number of orders to 120 for the final order
dataset (Orders120), with the same characteristics.

Furthermore, we test on fleet configurations and derive five scenarios to experi-
ment on. Farm Trans has 41 diesel trucks, so we keep the number of trucks steady at
41 for all experiments. We, therefore, vary the number of electric trucks per experi-
ment. Experiment D41E0 has 41 diesel and zero electric trucks. We then increase the
number of electric trucks per experiment until we have the same amount of electric
and diesel trucks (e.g. Experiment D41E41).
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When we combine the order data experiments with the fleet configuration, we get the
experiments as shown in table 6.1. D denotes the number of available diesel trucks, E
denotes the number of available electric trucks, and O denotes the number of orders
that need to be scheduled.

ExperimentID Electric Trucks Orders

D41E0O38 0 38

D41E5O38 5 38

D41E15O38 15 38

D41E30O38 30 38

D41E41O38 41 38

D41E0O80 0 80

D41E5O80 5 80

D41E15O80 15 80

D41E30O80 30 80

D41E41O80 41 80

D41E0O120 0 120

D41E5O120 5 120

D41E15O120 15 120

D41E30O120 30 120

D41E41O120 41 120

Table 6.1: Fleet Configuration for Experimentation (D=Diesel, E=Electric)

Additionally, with technological advancements in electric driving, it is safe to assume
that the range of electric trucks will increase in the future. We, therefore, derived an
additional set of experiments to test the influence of additional range on the solution.
These experiments are shown in Table 6.2; we maintain a fleet of 41 diesel and 41
electric trucks and use the order data set with 38 orders (O38). Experiments E1,000
and E1,500 have an electric truck range of 1,000 km and 1,500 km, respectively. We
will compare experiments E1,000 and E1,500 to experiment D41E41 since in experiment
D41E41, the original range of 500 kilometers for electric trucks is considered whilst
having the same fleet configuration.

ExperimentID Range Electric Trucks (km)

E1,000 1,000

E1,500 1,500

Table 6.2: Range Configuration for Experimentation

The first set of experiments will compare different fleet and order configurations and
provide insights into whether electrifying the fleet is profitable and favourable for
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performance. The second set of experiments provides insight into the possibilities
of future scenarios where the range of electric trucks is increased. We increase the
range by doubling and tripling the original range (500 km). The most crucial metric in
these experiments is the E/D ratio, which is the number of routes executed by electric
trucks under different circumstances. We execute each experiment 3 times to account
for randomness and ensure statistical validity.

6.2 Data Collection and Preprocessing

Data is a critical component of our experimental setup. This section details the data
sources related to Farm Trans’s VRP operations. We explain the data collection pro-
cess, including how we gathered information on customer locations, vehicle capaci-
ties, time windows, and other relevant parameters. Additionally, we describe any data
preprocessing steps undertaken to clean and prepare the dataset for experimentation.

6.2.1 Order Data

Order data is one of the primary data inputs for the solution. It consists of a table with
order lines. Appendix D visualises this table. One row contains all the information for
one pickup delivery pair.

One orderline contains the OrderID specific to that order, the customerID, the
amount of pallets and pallettype. And finally the weight, loadmeters and tempera-
ture of the order. Table D.2 is the continuation of Table D.1 and provides information
regarding pickup and delivery. The address, the latitude and the longitude of both
pickup and delivery locations. Furthermore, it contains the time windows for pickup
and delivery. Finally, it contains the required time to load and unload the order.

To validate the model, Farm Trans provided order data for 2024. From this, we
created a dataset containing all pickups that occur on 1 day and all corresponding
deliveries. We used only orders in which all data were present. Furthermore, orders
executed in the United Kingdom were excluded from this dataset since Farm Trans
has a separate scheduling department in the United Kingdom.

This dataset contains 38 orders; all pickups must be done on 1-3-2024. Delivery
time windows vary between 1-3-2024 and 2-3-2024. The orders vary in size; there are
FTL orders and orders of one pallet. Twenty-nine orders require pickup in Belgium,
11 of those at the depot. Eight orders require pickup in the Netherlands, and one is
in France. Deliveries are evenly spread over the following four countries: the Nether-
lands, Belgium, Germany and France.

6.2.2 Truck Data

We based the truck data on the data provided in Section 2.1.1, and it is shown in Ta-
ble 6.3. The license plate poses as a truck ID; the type indicates if the truck is electric
or diesel. The range represents the range a truck can drive on a full charge or tank.
Recharge/refuel shows how long it takes for a truck to be refuelled or recharged.
For refuelling, a time of 15 minutes is scheduled, independent of the amount of fuel.
Recharge has no set time since it depends on the charger and the kWh. The price per
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kilometre is based on the explanation in Section 2.1.3. Capacity (Weight) and Capac-
ity (Load meters) provide the capacity of each truck. Finally, Capacity (Fuel/Electric)
shows the maximum capacity for litres of diesel or kWh.

License-
Plate

Type Range Recharge/
Refuel

Price/km
Capacity
(Weight)

Capacity
(Load-
meters)

Capacity
(Fuel/

Electric)

LP2 Diesel 2800 00:15 0.425 25000 13.2 800

LP1 Electric 300 - 0.58 25000 13.2 540

Table 6.3: Example Instance of Truck Data

6.2.3 Locations

To create feasible routes, we use charging locations, fuel locations, and break locations
in addition to order locations and the depot.

Fuel locations and break locations are identical. Thus, each break location is a
fuel location and vice versa. These locations are fictional and created in a grid across
Europe. The grid has an intermediate distance of 50 km per location. An assumption
is that each location in the grid is a break location. Thus, the break locations are the
same as the fuel locations.

We use the charging locations from the dataset provided by a CAPE partner. The
dataset included 286 charging locations across Europe and contained the power each
location can provide to charge the truck. This power calculates a specific charging time
based on the selected charging location.

6.2.4 Financial

As described in Section 4.3.1, the model uses an objective function consisting of 4 cost
types: toll, hourly wage, price per kilometre and fixed cost. The model includes toll
costs in a separate table, which shows the toll price per kilometre per country based
on the truck type (e.g. diesel or electric).

For the hourly wage, we use an estimate provided by Farm Trans of € 40,-. Addi-
tionally, we use a price per kilometre per truck based on the calculation in Section 2.1.3.
This cost differs per truck based on the data provided by Farm Trans. Finally, we incur
fixed costs when using a truck for a route. The fixed cost is € 1,000.

6.2.5 Travel Distance & Travel Time

We use a Google API to determine travel distances. Farm Trans calculates travel times
with an average speed of 70 km/h; we maintained this assumption when creating
travel times based on the distances from the Google API.
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6.3 Software and Computational Environment

The experiments were performed on a Lenovo ThinkPad P1 Gen 2 laptop equipped
with an Intel Core i7-9750h processor (6 cores, 2.6 GHz), 16 GB of RAM, and an
NVIDIA Quadro T1000 GPU (4 GB VRAM). The operating system used was Windows
11 Home, and the simulations were implemented in Python 3.9.19. Python uses a
variety of packages to run the experiments; they are listed in Appendix C.

6.4 Parameter Tuning

Before conducting the experiments, several trial runs were undertaken to tune the
algorithm parameters to ensure convergence and speed and to obtain high-quality so-
lutions in a reasonable computation time. These parameters were initial temperature
(Tinit), end temperature (Tend), cooling rate (c) and Markov Chain Length (ML). Since
this algorithm is designed for Farm Trans, we use a dataset from Farm Trans to tune
the algorithm’s parameters.

The initial temperature influences the algorithm’s exploration before descending
steepest. Additionally, it influences the algorithm’s running time. The end tempera-
ture determines when the algorithm ends and thus influences the running time. The
cooling rate balances the amount of exploration and exploitation and the running time.
Finally, the Markov Chain Length is the number of iterations before the temperature
decreases.

The algorithm’s performance is measured using the objective function and the run-
ning time. The main objective is to minimise the objective function. Furthermore, the
algorithm has a maximum running time of 1 hour.

We use the Python package Optuna to run multiple trials with different settings. It
requires parameter intervals and tries to find the best settings based on past results.
The following settings were the initial intervals provided to Optuna.

• Initial Temperature = [300, 400, 500, 600]

• End Temperature = [0.025, 0.05, 0.075, 0.1]

• Cooling Rate = [0.95, 0.96, 0.97, 0.98]

• Markov Chain Length = [100, 200, 300]

Based on these settings, Optuna conducted 20 trials, and for each setting, ran the al-
gorithm 5 times to achieve an average and account for randomness. We visualise the
results in Table E.1, Appendix E. Furthermore, Optuna returned the best-performing
settings, as shown in Table 6.4. These settings return the lowest average objective
value.

Based on Figure 6.1, we see sufficient exploration at the beginning of the algorithm
and, later on, more exploitation. However, the run time is 1 hour, which means the
algorithm terminated before reaching the final temperature due to the 1-hour time
constraint. Additionally, we notice in Figure 6.1 that the objective improves very little
in the last 40,000 iterations. The additional run time does not contribute to the eventual
gain in objective value.
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Figure 6.1: Objective Value Graph for best-performing settings

Parameter Desription Value

Tinit Initial Temperature 500

Tend End-Temperature 0.05

c Cooling Rate 0.98

ML Markov Chain Length 300

Table 6.4: Parameter Settings After First Tuning

Based on these observations, the algorithm terminates earlier to prevent unnecessary
run time against low gains. This can be achieved by increasing the End Temperature.

We also see in Figure 6.1 that the most significant improvements in objective value
are achieved in the first half of the algorithm. Improvements in later stages are much
less significant in value. We, therefore, determine an additional set of experiments.
In these experiments, we only vary the End temperature whilst maintaining all other
parameters at the values of Table 6.4. Table F.1 in Appendix F visualizes the results.

From Table F.1, we see that End Temperatures 0.05, 0.1 and 0.5 run for 60 minutes.
This is too long, as mentioned earlier. Furthermore, we see a running time of 21 min-
utes for an End Temperature of 50 with an objective value of 46,217.90. The run time
is shorter but yields an additional 1,725.34 on the objective value compared to the End
Temperature of 0.1. This reduction in running time does not outweigh the increase
in objective value. We, therefore, look at the End Temperature of 5, which yields an
objective value of 44,905.21 and requires a running time of 41.11. Additionally, we see
in Figure 6.2 that there is sufficient exploration and later sufficient exploitation.

Based on the experiments and the objective function graphs, we determine that the
settings in Table 6.5 are the best-performing parameter settings and will be used for
validation and experimentation.
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Figure 6.2: Objective Value Graph for Experiment 24

Parameter Desription Value

Tinit Initial Temperature 500

Tend End-Temperature 5

c Cooling Rate 0.98

ML Markov Chain Length 300

Table 6.5: Parameter Settings After Second Tuning

6.5 Performance Metrics

To evaluate the effectiveness of the proposed solution, we define a set of performance
metrics that measure various aspects of solution quality, efficiency, and robustness.

Table 6.6 shows the key performance indicators (KPIs) used to evaluate the ef-
fectiveness and efficiency of the HF-VRPPDTW solution, providing a comprehensive
overview of both operational and cost-related aspects. Total Travel Distance and To-
tal Time measure the overall distance and duration travelled by all trucks, indicating
routing efficiency. Total Idle Time reflects periods where trucks are not in motion, help-
ing to identify underutilization. Resource usage is assessed through Average Weight
Utilisation and Average Load Meter Utilisation, showing how well vehicle capacities
are leveraged. The Total Number of Trucks Used gives insight into fleet deployment.
Environmental and energy efficiency are monitored via the electric/diesel ratio, along
with the electric and diesel ratios, which quantify how much of the available electric
and diesel fleets are utilised. Financial efficiency is evaluated using Total Toll Cost,
Total Labour Cost, Total Fixed Cost, and Total Kilometre Cost, representing various
expense categories. Finally, total cost aggregates all expenses to provide a holistic eco-
nomic view, and unscheduled orders highlight service gaps by counting how many
orders were not assigned to the solution.
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Metric Explanation

Total Travel Distance Total Travel Distance of all trucks

Total Time Total time of all trucks

Total Idle Time Total Idle Time of all trucks

Average Weight Utilization Average Weight Utilization Over All Trucks

Average Load Meter Utilisation Average load meter utilisation over all trucks

Total Number of Trucks Used Total number of trucks used

Electric/Diesel Ratio Ratio of used electric over diesel trucks

Electric Ratio Ratio of used electric trucks over total electric trucks

Diesel Ratio Ratio of used diesel trucks over total diesel trucks

Total Toll Cost Total toll cost of all trucks

Total Labour Cost Total labour cost of all trucks

Total Fixed Cost Total fixed cost of all trucks

Total Kilometre Cost Total kilometre cost of all trucks

Total Cost Total cost of all trucks

Unscheduled Orders The amount of unscheduled orders in a solution

Table 6.6: Performance Metrics to Compare Experiments

6.6 Summary

Chapter 6 describes the experimental design for evaluating the proposed solution. We
defined a variety of experimental scenarios, each representing different combinations
of electric and diesel truck fleets and varying numbers of orders. Data preprocessing
steps are explained for order data, truck data, location coordinates, and cost structures.
The software tools, computing environment, and parameter tuning process for SA
are also discussed in detail. Finally, the chapter defines a comprehensive set of Key
Performance Indicators (KPI’s) to assess operational efficiency, cost-effectiveness, and
fleet utilisation. This chapter builds a robust foundation for validating the solution
under realistic operational constraints.
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Chapter 7

Results and Discussions

This chapter presents the results of the experiments to assess the proposed solution
for addressing the Vehicle Routing Problem (VRP) variant encountered at Farm Trans.
In Section 7.1, we validate the solution’s performance compared to the current perfor-
mance of Farm Trans’s planning method. In Section 7.2, we analyse the experiments
as described in Section 6.1.

7.1 Comparison with Previous Approaches

To validate the new method, we looked at Farm Trans’s historical order data. We
compared Farm Trans’s solution to the algorithm’s proposed solution over a dataset
of orders to determine the improvements. However, such a comparison is difficult.
Farm Trans has no generic method to schedule fuel stops, charging stops, or breaks.
Therefore, a direct comparison could be deceiving since the algorithm’s proposed so-
lution incorporates these additional stops, resulting in a higher driving distance. Ad-
ditionally, Farm Trans currently has no electric trucks. We, therefore, compare three
methods:

• The method of Farm Trans

• The proposed method

• The proposed method without stops

We compare these solutions on several KPI’s: Total Driving Distance, number of trucks
used, weight utilisation, and loadmeter utilisation. It is impossible to use other KPI’s
since farm trans does not have data on arrival and departure times. We use the same
dataset as Farm Trans and discard the use of electric trucks. Table 7.1 visualises these
metrics of the proposed solutions.
First, let us compare the method of Farm Trans to the proposed method without stops.
The proposed method yields a lower total driving distance, about 1300 kilometres less,
which is an improvement of 10.82%. Additionally, we see higher utilisation for both
weight and load meters. Based on these observations, we determine that the proposed
solution beats the solution of Farm Trans.

Additionally, we added the proposed solution with stops. This solution still yields
a lower total driving distance (5.6%) and higher utilizations than Farm Trans’s solu-
tion. Additionally, it does account for fuel stops and breaks, thus creating a complete
solution while still beating Farm Trans’s solution.
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Solution Method
Total

Driving
Distance (km)

Number
of

Trucks

Weight
Utilization

Loadmeter
Utilization

Farm Trans’s method 12,209.20 21 0.24 0.29

Proposed solution without stops 10,888.89 21 0.28 0.30

Proposed solution with stops 11,531.60 21 0.28 0.31

Table 7.1: Performance Metrics per Method

Overall, we can determine that the proposed method to solve Farm Trans’s VRP out-
performs their current method. It yields a complete solution incorporating breaks and
fuel stops while reducing the total driving distance against a higher average utilisa-
tion.

7.2 Experimental Analysis

Based on the experiments as described in Section 6.1 we retrieved the average results
in Table 7.2, Table 7.4, Table 7.5 and Table 7.6. Table 7.2 shows the amount of unsched-
uled orders after the Constructive Heuristic (CH) and Simulated Annealing (SA). Ta-
ble 7.4 shows the performance metrics of the initial solutions. The table consists of
three parts, each part corresponds with one order dataset (Order38, Order80, Order120).
Within each part we find five experiments with different fleet configurations (D41E0,
D41E5, D41E15, D41E30, D41E41). Table 7.5 has the same structure as table 7.4 and shows
the average performance metrics after improvement using Simulated Annealing (SA).
Table 7.6 consists of three experiments with increasing ranges (E500, E1,000, E1,500). First,
we will discuss the fleet configuration experiments and then the range experiments.

7.2.1 Fleet Configuration & Order Dataset Experiments

The main objective of the first set of experiments was to provide Farm Trans with in-
sight into the possibilities of electrifying its fleet. The first set of experiments increases
the number of available electric trucks to solve the VRP instance in which we vary the
order dataset, as shown in Table 6.1.

Fleet

Figure 7.1 visualises the used trucks to solve the VRP instances with different order
datasets. We grouped the experiments in the table into three clusters, each for one
order dataset. Within each cluster, we see five experiments for the different fleet con-
figurations. We begin with the O38 cluster.

The experiments use around 21 trucks to solve the VRP problem for O38. Further-
more, in Table 7.2 we see zero unscheduled orders after the CH no matter the fleet
configuration, thus all orders are being delivered. Experiment D41E0O38 shows no
electric trucks since there were none available. From experiment D41E5O38 until ex-
periment D41E41O38, we see an increase in the use of electric trucks. When we look at
the E/D Ratio in Table 7.5, we see an increase from 0% in experiment D41E0 to 85.08%
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in experiment D41E41O38. In experiments D41E5O38 and D41E15O38, we also see that
100% of the available electric trucks were used.
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Figure 7.1: Configuration of Electric and Diesel Trucks used per Experiment

However, not all the electric trucks are always used. For instance, in D41E41O38 we
still use five diesel trucks while there are still 25 electric trucks available. Charging
stations can explain this. Fuel stations are much more frequent than charging stations,
so an electric truck cannot reach a specific location without getting an empty battery.
Therefore, this route must always be executed by a diesel truck.

The same reasoning applies to the experiments with the order dataset O80. We
see an increase in the use of electric trucks and some routes remain to de executed
by diesel trucks. In Table 7.2 we see that some orders are not planned after the CH.
However, we see that all orders are planned after SA. This means that the proposed
solution was able to bundle orders from different trucks and thus create empty trucks.
These trucks could then be used to schedule the unscheduled orders, resulting in all
orders being delivered.

The final cluster with order dataset O120 is different. We notice that the total num-
ber of trucks used increases between experiments, whilst this was not the case for the
previous two clusters. This can be explained by the unscheduled orders. In D41E0O120
we use all the trucks available (41 diesel trucks). But after SA 46 orders remain un-
scheduled. This also happens with D41E5O120 and D41E15O120, all the trucks are used,
but 39 and 30 orders remain unscheduled, respectively. In experiments D41E30O120
and D41E41O120 we see a different pattern. Not all the trucks are used, but 10 orders
remain unscheduled in both experiments. Upon closer examination, these 10 orders
were infeasible. The pickup and delivery time windows were too close to each other,
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so no truck could meet the delivery time window.

ExperimentID
Unscheduled

Orders
Initial Solution

Unscheduled
Orders

Final Solution

D41E0O38 0 0

D41E5O38 0 0

D41E15O38 0 0

D41E30O38 0 0

D41E41O38 0 0

D41E0O80 31 0

D41E5O80 26 0

D41E15O80 16 0

D41E30O80 1 0

D41E41O80 0 0

D41E0O120 71 46

D41E5O120 62 39

D41E15O120 54 30

D41E30O120 36 10

D41E41O120 25 10

Table 7.2: Unscheduled Orders per Experiment

Overall we see that the proposed method prefers electric trucks over diesel trucks
when possible. It is important to note that the increase in the use of electric trucks is
based on the costs. In these instances, electric trucks are favourable due to their lower
costs. Diesel trucks are only used for routes where electric trucks can not adhere to the
time windows or no charging locations are on the route, so an electric truck can not
reach the destination. Furthermore, we see that the proposed method has the ability
to schedule orders that remained unscheduled in the initial solution.
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Costs

The primary objective of the model is cost minimisation; therefore, the use of electric
trucks over diesel trucks must be justified by financial benefits. Analysing the experi-
ments with order dataset O38 in Figure 7.2, we observe that the significant reduction in
total costs across scenarios is mainly due to lower toll costs. Since tolls are cheaper for
electric trucks, increasing their availability directly contributes to lower overall costs.

For example, comparing scenarios D41E0O38 and D41E15O38, increasing the number
of electric trucks from 0 to 15 more than halves the toll costs—from approximately
€3,100 to €1,500.

Additionally, total kilometre costs decrease, as the algorithm identifies more ef-
ficient routes, reducing total driving distance. Labour costs remain relatively stable
across experiments, while fixed costs drop to a minimum of €20,000 due to fewer
trucks being utilised.
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Figure 7.2: Stacked Bar Chart of Cost Breakdown per Experiment for O38

The same reasoning does not apply to the experiments with the order dataset O80.
In Figure 7.3 we see a decrease in total toll cost, due to more use of electric trucks,
similar to the previous order dataset (O38). However, experiment D41E30O80 shows
an unexpected increase in total costs. For this experiment, we see an increase in total
labour, fixed, and kilometre costs. It is curious to see that experiment D41E30O120 later
yields a lower total cost and decreases further in all four cost components. Due to this
observation, we must conclude that the increased costs of D41E30O80 are a random
spike.
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Except for experiment D41E30O80, the total costs decrease throughout the experi-
ments, which is in line with the conclusion of the previous set of experiments.
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Figure 7.3: Stacked Bar Chart of Cost Breakdown per Experiment for O80

The experiments with order dataset O120 differ from the previous two experiment
sets. This is due to the unscheduled orders at the start of the algorithm, as shown
in Table 7.2. All the costs increase throughout the experiments since the increased
availability of trucks enables the algorithm to schedule more orders. This increase in
orders results in an increase in all costs, as shown in Figure 7.4. Again we notice very
small differences between experiments D41E30O120 and D41E41O120. This is due to the
infeasibility of some orders due to time window constraints, as explained earlier in
this section.
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Figure 7.4: Stacked Bar Chart of Cost Breakdown per Experiment for O120

7.2.2 Range Experiments

The second set of experiments increases the range of electric trucks. Experiment E500
is the current situation with a range of 500km; experiments E1,000 and E1,500 have in-
creased ranges of 1,000km and 1,500km, respectively. The output is shown in Table 7.6.
In this experiment, we only consider the order dataset O38.

Throughout experiments E500, E1,000 and E1,500, the E/D ratio remains the same
at about 85%. By increasing the range of electric trucks, we also increase the charg-
ing time since more electric power needs to be stored to drive longer distances. This
makes it impossible for electric trucks to reach some delivery locations within the time
window. Therefore, diesel trucks have the advantage of having a longer range and
shorter refuel times.

Upon closer examination of the proposed solutions, we noticed that electric trucks
cannot reach the delivery location within a specific time window due to the additional
charging time required. Thus, the model decides to use diesel trucks to deliver these
orders.
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Figure 7.5: Stacked Bar Chart of Trucks used per Experiment with Increased Range

7.2.3 Comparison Between Initial Solution and Final Solution

To measure the performance of the proposed method, we compare the performance
metrics of the initial solution after the Constructive Heuristic (CH) and the final solu-
tion after Simulated Annealing (SA). We look at the unscheduled orders, truck usage
and costs when comparing the initial solution with the final solution.

Unscheduled Orders

One of the most important metrics is the number of unscheduled orders. In Table 7.2
we see that for the experiments with order dataset O38, we have no unscheduled orders
in the initial solution and thus no unscheduled orders in the final solution. The exper-
iments with the order dataset O80 show unscheduled orders in the initial solution, but
after optimisation using SA, we have no unscheduled orders remaining. Thus, the SA
freed up enough space for all the orders in all the different fleet configurations. Finally,
we have the experiments with order dataset O120, again we start with unscheduled
orders in the initial solution, but after further optimisation using SA we still have un-
scheduled orders. As mentioned before the experiments D41E0O120, D41E5O120, and
D41E15O120 have too few trucks to meet the demand of all orders. Thus, after opti-
misation, some orders remain unscheduled. Experiments D41E30O120 and D41E41O120
should have enough trucks to meet all demand, since some trucks remain unused (Fig-
ure 7.1). However, upon closer examination, we see that the remaining unscheduled
orders are infeasible due to time window constraints.

The proposed method can insert unscheduled orders. However, this depends on
first creating an empty truck where the unscheduled order can be placed.
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Truck Usage

The CH does not distinguish between electric and diesel trucks. It is therefore unnec-
essary to evaluate the distribution of electric and diesel trucks between the initial and
final solutions. We can, however, analyse the total number of trucks used between the
initial solution and the final solution to determine the performance of the proposed
method.

For the experiments with the order datasets O38 and O80, we see a steady decrease
in total trucks used. However, for the experiments with O120, we see that the total
number of trucks used increases in some instances. This is due to the unscheduled
orders at the beginning of SA. In Table 7.2 we see that there are a lot of unscheduled
orders at the start of SA. The algorithm allocates orders to different trucks and con-
structs better routes to incorporate more orders, resulting in an increased number of
trucks used.

ExperimentID Used Trucks in
Initial Solution

Used Trucks in
Final Solution Difference

D41E0O38 25 22 -3

D41E5O38 26 21 -5

D41E15O38 27 21 -6

D41E30O38 27 20 -7

D41E41O38 27 21 -6

D41E0O80 41 28 -13

D41E5O80 46 27 -19

D41E15O80 56 27 -29

D41E30O80 71 30 -41

D41E41O80 71 28 -43

D41E0O120 36 41 5

D41E5O120 41 46 5

D41E15O120 48 56 8

D41E30O120 65 70 5

D41E41O120 76 70 -6

Table 7.3: Number of trucks used in initial and final solutions for each experiment.

Overall, we see that the proposed method reduces the number of trucks used when
all orders are scheduled. If not all orders are scheduled, the proposed method can
increase the number of trucks used to meet as much demand as possible.

Costs

Since the main objective of the proposed method is to minimise total costs, we exam-
ine the difference in costs between the initial and final solutions. When we compare
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the cost structures in Table 7.4 with Table 7.5, we see that the total costs almost al-
ways reduce between the initial and final solutions. Only experiment D41E15O120 and
D41E30O120 see an increase in total cost. This can be explained by the increased num-
ber of scheduled orders in the final solution compared to the initial solution, which, in
turn, brings additional costs.

The separate cost components (e.g., toll, labour, fixed, and kilometre) vary between
the initial and final solutions. Sometimes increasing and sometimes decreasing. This
is due to balancing the total costs. The algorithm only looks at total costs and accepts
increases in a component of the objective value as long as the total objective value
decreases.
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Table 7.4: Performance Metrics Output of Initial Solution per Experiment

Exp. ID TDD1 TT2 TIT3 AWU4 ALU5 TTU6 E/D7 E8 D9 TTC10 TLC11 TFC12 TKC13 TC14 UO15

Orders38
D41E0O38 13,820.12 20d 22h 32m 5d 7h 47m 0.65 0.72 26 0 NA 63.41 3,614.10 20,101.33 26,000 5,873.55 55,588.98 0
D41E5O38 13,912.46 20d 22h 12m 5d 6h 7m 0.64 0.72 26 19.23 100 51.22 3,383.67 20,088.00 26,000 5,860.53 55,332.20 0
D41E15O38 14,616.42 21d 6h 47m 5d 2h 47.5m 0.68 0.75 27 55.56 100 29.27 2,686.47 20,431.33 27,000 6,008.89 56,126.69 0
D41E30O38 15,022.84 22d 0h 42m 5d 3h 52m 0.69 0.73 28 100 93.33 0 1,599.09 21,148.00 28,000 6,009.14 56,756.22 0
D41E41O38 15,022.84 22d 0h 42m 5d 3h 52m 0.69 0.73 28 100 68.29 0 1,599.09 21,148.00 28,000 6,009.14 56,756.22 0

Orders80
D41E0O80 14,226.18 52d 20h 54m 36d 19h 14m 0.22 0.24 41 0 NA 100 3,703.20 50,756.00 41,000 6,046.13 101,505.33 31
D41E5O80 15,791.20 59d 2h 19m 41d 1h 49m 0.20 0.23 46 10.87 100 100 3,495.79 56,732.67 46,000 6,650.44 112,878.89 26
D41E15O80 19,947.85 71d 0h 54m 49d 8h 14m 0.22 0.25 56 26.79 100 100 3,986.75 68,196.00 56,000 8,317.06 136,499.81 16
D41E30O80 25,411.43 87d 6h 28m 61d 4h 11m 0.21 0.23 71 42.25 100 100 4,776.09 83,778.67 71,000 10,520.99 170,075.75 1
D41E41O80 25,731.23 87d 14h 48m 61d 5h 56m 0.21 0.24 72 56.94 100 75.61 4,528.20 84,112.00 72,000 10,588.51 171,228.71 0

Orders120
D41E0O120 16,648.83 54d 12h 8m 31d 17h 8m 0.34 0.38 37 0 NA 90.24 4,116.67 52,325.33 37,000 7,075.75 100,517.75 71
D41E5O120 19,540.80 60d 13h 28m 34d 0h 33m 0.40 0.45 42 11.90 100 90.24 4,606.23 58,138.67 42,000 8,273.00 113,017.90 62
D41E15O120 21,443.08 65d 13h 58m 38d 11h 8m 0.41 0.44 50 22.00 73.33 95.12 4,543.83 62,958.67 50,000 8,984.63 126,487.13 54
D41E30O120 25,853.23 82d 14h 53m 50d 23h 18m 0.34 0.38 66 37.88 83.33 100 4,857.98 79,315.33 66,000 10,716.29 160,889.60 36
D41E41O120 31,002.13 93d 15h 38m 56d 15h 23m 0.31 0.37 77 46.75 87.80 100 5,613.54 89,905.33 77,000 12,815.56 185,334.43 25
1 Total Driving Distance 2 Total Time 3 Total Idle Time 4 Average Weight Utilization 5 Average Load meter Utilization 6 Total Trucks Used
7 Electric/Diesel Ratio 8 Electric Ratio 9 Diesel Ratio 10 Total Toll Cost 11 Total Labor Cost 12 Total Fixed Cost 13 Total Kilometer Cost
14 Total Cost 15 Unscheduled Orders after SA



Table 7.5: Performance Metrics Output of Experiments

Exp. ID TDD1 TT2 TIT3 AWU4 ALU5 TTU6 E/D7 E8 D9 TTC10 TLC11 TFC12 TKC13 TC14 UO15

Orders38
D41E0O38 11,825.69 16d 13h 19m 2d 0h 39m 0.27 0.30 22 0.00 NA 52.85 3,094.61 15,892.89 22,000 5,025.92 45,680.09 0
D41E5O38 11,398.96 16d 5h 2m 2d 0h 21m 0.29 0.32 21 23.81 100.00 39.02 2,275.02 15,561.56 21,000 4,762.57 43,599.14 0
D41E15O38 11,742.83 16d 5h 55m 1d 2h 11m 0.31 0.34 21 72.62 100.00 13.82 1,601.59 15,596.89 21,000 4,754.34 42,619.49 0
D41E30O38 12,054.27 16d 9h 10m 1d 11h 49m 0.30 0.33 21 76.19 53.33 12.20 1,634.98 15,727.11 21,000 4,878.78 43,240.87 0
D41E41O38 11,904.43 16d 7h 19m 1d 7h 19m 0.29 0.33 20 85.08 42.27 7.32 1,458.79 15,652.67 20,000 4,794.04 42,238.83 0

Orders80
D41E0O80 15,928.01 38d 21h 27m 12d 8h 39m 0.53 0.59 28.50 0.00 NA 69.51 4,112.70 36,823.33 28,500 6,769.40 76,205.44 0
D41E5O80 15,948.69 38d 38h 57m 9d 0h 46m 0.54 0.60 28.50 12.32 70.00 60.98 3,853.06 37,103.33 28,500 6,727.67 76,184.07 0
D41E15O80 15,287.75 38d 3h 36m 12d 13h 46m 0.53 0.59 28.50 36.82 70.00 43.90 2,898.56 36,537.67 28,500 6,349.13 74,285.35 0
D41E30O80 16,380.53 39d 17h 16m 19d 2h 27m 0.51 0.56 31.00 64.52 66.67 26.83 2,416.70 38,130.67 31,000 6,669.74 78,217.11 0
D41E41O80 16,053.43 38d 11h 47m 17d 19h 27m 0.54 0.59 29.00 86.21 60.98 9.76 1,986.25 36,951.33 29,000 6,467.09 74,404.68 0

Orders120
D41E0O120 20,688.26 40d 54h 26m 6d 23h 12m 0.67 0.75 41.00 0.00 NA 100.00 4,949.37 39,271.00 41,000 8,792.51 94,012.88 46
D41E5O120 24,565.35 48d 1h 45m 10d 10h 2m 0.63 0.71 46.00 10.87 100.00 100.00 5,397.91 46,108.00 46,000 10,356.91 107,862.82 39
D41E15O120 27,606.87 59d 33h 55m 15d 10h 35m 0.54 0.62 56.00 26.79 100.00 100.00 5,494.61 57,182.67 56,000 11,541.29 130,218.57 30
D41E30O120 35,922.47 78d 11h 13m 15d 23h 44m 0.49 0.58 70.00 41.43 96.67 100.00 6,459.03 75,059.67 70,000 14,862.94 166,381.64 10
D41E41O120 35,850.47 78d 31h 13m 21d 17h 58m 0.47 0.54 70.50 50.35 86.59 85.37 6,007.75 75,379.67 70,500 14,750.01 166,637.43 10
1 Total Driving Distance 2 Total Time 3 Total Idle Time 4 Average Weight Utilization 5 Average Load meter Utilization 6 Total Trucks Used
7 Electric/Diesel Ratio 8 Electric Ratio 9 Diesel Ratio 10 Total Toll Cost 11 Total Labor Cost 12 Total Fixed Cost 13 Total Kilometer Cost
14 Total Cost 15 Unscheduled Orders after SA



Table 7.6: Performance Metrics Output of Experiments with Increased Range

Exp. ID TDD1 TT2 TIT3 AWU4 ALU5 TTU6 E/D7 E8 D9 TTC10 TLC11 TFC12 TKC13 TC14 UO15

E500 11,904.43 16d 7h 19m 1d 7h 19m 0.29 0.33 20 85.08 42.27 7.32 1,458.79 15,652.67 20,000 4,794.04 42,238.83 0
E1,000 12,498.84 17d 0h 37m 1d 3h 57m 0.28 0.30 22 83.53 45.53 8.95 1,609.35 16,344.89 22,000 5,049.63 45,337.20 0
E1,500 11,923.64 16d 11h 42m 1d 14h 44m 0.30 0.33 21 85.71 43.90 7.32 1,467.42 15,828.22 21,000 4,801.91 43,097.55 0

1 Total Driving Distance 2 Total Time 3 Total Idle Time 4 Average Weight Utilization 5 Average Load meter Utilization 6 Total Trucks Used
7 Electric/Diesel Ratio 8 Electric Ratio 9 Diesel Ratio 10 Total Toll Cost 11 Total Labor Cost 12 Total Fixed Cost 13 Total Kilometer Cost
14 Total Cost 15 Unscheduled Orders after SA



7.3. Discussion of Findings

7.3 Discussion of Findings

In the ”Discussion of Findings” section, we elaborate on the strengths, limitations,
robustness and implications of the proposed solution.

7.3.1 Strengths of the Proposed Solution

The proposed solution method provides Farm Trans with a complete solution to its
specific VRP problem instance. Compared to the old method, the proposed solution
incorporates breaks, recharging, and refuelling, thus creating a more complete solu-
tion. It also allows for scheduling breaks and recharging simultaneously, further im-
proving the solution’s quality. The proposed method also further enhances the routing
decisions and grouping of orders, resulting in fewer trucks delivering the same num-
ber of orders and reducing the total driving distance, ultimately saving costs. Fur-
thermore, it provides Farm Trans with a tool to schedule routes and provide insights
during the transition from a diesel fleet to an electric or hybrid fleet, where managers
can adapt input parameters and test possible fleet configurations to determine if and
when an electric truck could be beneficial over a diesel truck.

7.3.2 Limitations and Areas for Improvement

The proposed method poses some limitations. Currently, the charging policy for an
electric truck is to charge during all breaks, and when an additional charge is needed,
we always fully charge. Many charging policies are available in the literature. Future
research and experimentation could improve the current solution by incorporating
alternative charging policies.

Several assumptions were made about the regulations concerning breaks. Divid-
ing breaks into multiple, more minor breaks is impossible in the proposed method.
However, this is allowed by law, as explained in Section 2.3.3. Additionally, max-
imum daily working times can vary during the week. The proposed method does
not incorporate variable maximum daily working times. Incorporating these variable
parameters could improve the quality of the solution.

Additionally, it is important to note that the outcomes of the experiments are based
on costs. In this instance, electric trucks are favourable because they have lower overall
costs. For some routes, diesel trucks are used since electric trucks are unable to adhere
to the time windows due to longer charging times.

Finally, we use an API to determine travel distances and an average speed of 70
km/h to determine travel times. This is an approximation and can be further im-
proved using other methods.

7.3.3 Robustness and Sensitivity Analysis

The proposed method provides Farm Trans with a robust solution. All input param-
eters can be altered to account for future changes. We tested against various order
datasets and different fleet configurations to see if the method could provide a solu-
tion for different parameters. Furthermore, the experimentation shows that altering
some input parameters of trucks still yields a feasible solution.
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Chapter 7. Results and Discussions

7.3.4 Practical Implications and Real-World Applicability

The main practical limitation of this research is that the current fuel and break loca-
tions are fictional and do not exist. Therefore, current solutions are not immediately
operational. Further research is necessary to determine where fuel locations are and
where a break can occur. Also, the dataset used for charging locations is not complete.
CAPE’s partner is still identifying and expanding their dataset on charging stations.

Additionally, the proposed method can reject orders if it is impossible to reach the
delivery location due to time window constraints or the lack of sufficient breaks, fuel
or charging locations.

Furthermore, the current solution schedules breaks according to international reg-
ulations and laws, but they do not account for traffic jams or other disturbances that
result in delays.

7.4 Summary

Chapter 7 presents and analyzes the experimental results. First, the proposed solution
is benchmarked against Farm Trans’s current planning method, demonstrating im-
provements in driving distance, truck utilisation, and including breaks and fuel stops.
The experimental analysis then explores how different fleet configurations and order
sizes impact solution quality. Further comparisons are made between initial and final
solutions to demonstrate the improvement achieved through SA. The discussion sec-
tion highlights strengths (e.g., robustness, efficiency, scalability), acknowledges lim-
itations (e.g., simplified charging policies, static traffic assumptions), and examines
practical implications, particularly regarding the transition to electric fleets. The chap-
ter concludes by emphasizing the method’s adaptability and relevance to real-world
logistics.
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Chapter 8

Conclusions and Recommendations

This concluding chapter encapsulates the significance of this study, highlights the
scope and limitations, and provides key insights, findings, and recommendations stem-
ming from our comprehensive exploration of the VRP variant faced by Farm Trans.

8.1 Significance of the Study

Successfully resolving Farm Trans’s problems helps the decision-making process be-
tween electric and diesel trucks. Furthermore, it can significantly impact the com-
pany’s operations by reducing transportation costs, improving delivery efficiency, and
improving its competitive position. Additionally, this research contributes to the broader
combinatorial optimisation and logistics field by addressing a real-world problem
with practical implications.

8.2 Scope and Limitations

It is essential to acknowledge the scope and limitations of this thesis. While we aim
to provide a comprehensive solution to Farm Trans’s problem instance, certain simpli-
fications or assumptions may be necessary due to the complexity of the problem and
data availability.

Farm Trans has many different transportation operations. This study focuses on
the conditioned (Fresh & Frozen) transport. Furthermore, his study considers a limited
time horizon when creating the solution. Farm Trans explained that orders continue to
come in during the day. So, a planner determines a cut-off point and plans all known
orders from this moment, and all others remain for the next cycle.

8.3 Summary of Findings

We have examined Farm Trans’s VRP variant and obtained results from our extensive
research and experimentation. The main findings are as follows:

• Our proposed solution demonstrates remarkable efficacy in optimising vehicle
routing operations at Farm Trans. It outperforms Farm Trans’s approach, show-
casing significant improvements in solution quality.
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• Experimental analyses provide insights into the use of electric trucks and possi-
ble future scenarios. Farm Trans can use the proposed solution to gain insights,
model various future fleet configurations, and quickly adapt to technological ad-
vancements.

• Comparative assessments against the previous approach underscore our solu-
tion’s advantages. It reduces costs, provides a more complete solution by in-
corporating breaks, refuelling, and recharging, reduces total travel distance, and
enhances overall operational efficiency.

• The ability to schedule recharging and breaks simultaneously mitigates the im-
pact of longer recharging times compared to refuelling.

8.4 Conclusions

This section draws overarching conclusions from our study of Farm Trans’s VRP vari-
ant. Our work has shed light on several critical aspects:

• The proposed solution effectively addresses Farm Trans’s VRP variant. It opti-
mises vehicle routing and reduces operational costs, demonstrating its potential
for significant impact.

• The adaptability of our solution to diverse operational scenarios positions it as
a versatile tool for Farm Trans. Whether dealing with fluctuating demand, com-
plex time windows, or evolving logistical challenges, the solution consistently
results in a feasible solution.

• The comparative analysis reveals that our solution surpasses previous approaches.
Its ability to provide cost-efficient routes while meeting customer expectations
positions it as a valuable asset in Farm Trans’s logistics operations.

• Experimental analysis also shows that Farm Trans can use the proposed method
to support the decisions on fleet configuration by testing various scenarios.

8.5 Recommendations

This section provides Farm Trans with recommendations and actionable suggestions
based on the research findings and insights. We propose the following recommenda-
tions for Farm Trans:

• Implementation: We recommend fully implementing our proposed solution into
Farm Trans’s logistics operations. This move will enable the company to reap the
benefits of enhanced routing efficiency and cost savings. However, Farm Trans
must acquire more insight into costs and input parameters before fully imple-
menting this solution in real-world applications.

• Operational Enhancements: We suggest further research into the use of elec-
tric trucks. Experimental analysis has shown that electric trucks have cost ad-
vantages. However, further parameter tuning and research are necessary before
purchasing additional electric trucks.
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• Integration with IT Infrastructure: Integrating the solution with Farm Trans’s IT
infrastructure is crucial. This step ensures real-time monitoring, data exchange,
and seamless adaptation to changing conditions.

• Continuous Monitoring and Evaluation: We recommend establishing a contin-
uous monitoring and evaluation process. Regular assessments of the solution’s
performance will enable proactive adjustments and refinements. This also in-
cludes updating input parameters when they change to maintain an up-to-date
solution method.

8.6 Future Research Directions

We have already named some areas for future research. Here, we identify promising
avenues for further research in Farm Trans’s VRP variant. Our study has highlighted
areas that merit continued investigation:

• Dynamic Routing Optimisation: Exploring dynamic routing optimisation tech-
niques to address real-time changes in demand and traffic conditions.

• Charging Policies: Currently, one charging strategy is used. Future research
could explore the advantages of different strategies and possibly further improve
the proposed solution.

• Fuel- and break locations: Further research in the specific locations of fuel and
break locations is needed to create a real-world feasible solution.

• Break regulations: The proposed solution has some assumptions on break reg-
ulations. Further research could incorporate these assumptions to improve the
proposed solution further.

• Parameter Tuning: Farm Trans needs to analyse specific costs for electric trucks
and keep updating input parameters for their fleet to get realistic solutions.

These research directions will contribute to ongoing advancements in solving complex
VRP variants and improving logistics management.
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Appendix A

Definition of VRP Variants

Table A.1: Definitions of VRP Variants.

Acronym Definition

1. VRP Vehicle Routing Problem
2. CVRP Capacitated Vehicle Routing Problem
3. VRPPD Vehicle Routing Problem with Pickup and Delivery
4. VRPSPD Vehicle Routing Problem with Simultaneous Pickup and Delivery
5. VRPB Vehicle Routing Problem with Backhaul
6. VRPTW Vehicle Routing Problem with Time Windows
7. VRPTW-P Vehicle Routing Problem with Time Windows Probabilistic
8. D-VRPTW Dynamic Vehicle Routing Problem with Time Windows
9. MDVRP Multiple Depots Vehicle Routing Problem
10. TDVRP Time Drive Vehicle Routing Problem
11. PTDVRP Probabilistic Time Drive Vehicle Routing Problem
12. SVRP Stochastic Vehicle Routing Problem
13. PVRP Periodic Vehicle Routing Problem
14. LDVRP Load Dependent Vehicle Routing Problem
15. DVRP Distance - Constrained Vehicle Routing Problem
16. DCVRP Distance and Capacity - Constrained Vehicle Routing Problem
17. EVRP Electric Vehicle Routing Problem
18. MVRP Multiple Vehicles Routing Problem
19. HF-VRP Heterogeneous Fleet Vehicle Routing Problem
20. HF-VRPTW Heterogeneous Fleet Vehicle Routing Problem with Time Windows
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Appendix B

KPI’s
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Figure B.1: Overview of KPIs in Categories



Appendix C

Python Packages and Descriptions

Table C.1: Description of Used Python Packages

Package Description

dataclasses Provides a decorator to create lightweight, immutable
classes for data storage.

datetime Handles date and time operations, including format-
ting and time calculations.

folium Creates interactive maps using Leaflet.js, useful for
geographic visualizations.

geopandas (gpd) Extends pandas to handle geospatial data efficiently.

geopy.distance

(geodesic)
Computes distances between geospatial coordinates
using various methods.

geopy.geocoders

(Nominatim)
Converts addresses into geographic coordinates and
vice versa.

global land mask Determines whether a given latitude/longitude point
is on land or water.

googlemaps Interfaces with the Google Maps API for geolocation
and routing services.

math Provides mathematical functions, including
trigonometry, logarithms, and rounding.

matplotlib.dates Supports formatting and handling dates in Matplotlib
visualizations.

matplotlib.pyplot Plots graphs and visualizations in Python using a
MATLAB-like interface.

numpy Supports numerical computations, including arrays,
matrices, and mathematical operations.

Continued on next page
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Package Description

openpyxl Reads, writes, and modifies Excel files in the .xlsx

format.

optuna Automates hyperparameter optimization using intel-
ligent search strategies.

pandas Manages and manipulates structured data efficiently
using DataFrames and Series.

pickle Serializes and deserializes Python objects for storage
and transfer.

random Generates pseudo-random numbers and selections for
simulations and randomness.

shapely.geometry Provides geometric objects and operations for spatial
analysis.

sys Interacts with the system, including command-line ar-
guments and system paths.

webbrowser Opens web pages in a browser from within a Python
script.
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Appendix D

Order Data

OrderID CustomerID Pallets PalletType Weight Loadmeters Temperature

1205 FT 13 EU 22275 13.2 -18

1206 CAPE 26 BL 19500 12.4 -2

Table D.1: Order Data Part 1

Pickup
Address

Pickup
Coordi-

nates

Delivery
Address

Delivery
Coordi-

nates

Pickup
Start

Pickup
End

Delivery
Start

Delivery
End

Pickup
Handling

Time

Delivery
Handling

Time

Address 1 (lat, long) Address 2 (lat, long) 1-1-2025
9:00

1-1-2025
10:00

1-1-2025
13:00

1-1-2025
15:00

1:00 1:00

Address 2 (lat1, long1) Address 3 (lat2, long2) 1-1-2025
7:00

1-1-2025
8:00

1-1-2025
16:00

1-1-2025
17:00

2:00 1:00

Table D.2: Order Data Part 2
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Appendix E

Paramter Tuning 1

Trial
Number

Initial
Temperature

Cooling
Rate

End
Temperature

Markov
Chain
Length

Objective
Value (€)

Running
Time (min)

1 500 0.075 0.95 100 45,735.32 11.21

2 300 0.05 0.98 100 46,964.62 28.45

3 600 0.075 0.95 300 46,371.11 35.06

4 500 0.05 0.98 300 44,658.85 60.05

5 500 0.1 0.95 200 45,253.37 21.63

6 600 0.1 0.95 300 46,369.00 33.06

7 500 0.05 0.98 300 43,488.23 60.17

8 400 0.025 0.98 200 46,172.49 60.06

9 400 0.05 0.95 100 46,977.43 11.16

10 300 0.025 0.95 100 46,565.87 11.12

11 500 0.05 0.97 300 44,621.41 58.87

12 500 0.05 0.97 300 44,949.38 58.54

13 500 0.05 0.97 300 44,377.02 57.61

14 500 0.05 0.96 300 44,369.11 42.07

15 500 0.05 0.96 300 45,285.34 42.97

16 500 0.05 0.96 300 43,909.44 45.63

17 400 0.075 0.96 200 45,444.41 26.33

18 600 0.025 0.98 300 44,522.53 60.13

19 300 0.1 0.96 300 47,114.24 30.83

20 500 0.05 0.98 200 45,374.69 56.12

Table E.1: Parameter Tuning Trials
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Appendix F

Parameter Tuning 2

Trial
Number

Initial
Temperature

Cooling
Rate

End
Temperature

Markov
Chain
Length

Objective
Value (€)

Running
Time (min)

21 500 0.98 0.05 300 44543.89 60.08

22 500 0.98 0.1 300 44492.56 60.06

23 500 0.98 0.5 300 44931.01 60.01

24 500 0.98 5 300 44905.21 41.11

25 500 0.98 50 300 46217.90 21.00

Table F.1: Parameter Tuning Trials for End Temperature

97



98



Bibliography

[1] P. Hao, Z. Wang, G. Wu, K. Boriboonsomsin, and M. Barth, “Intra-platoon vehicle
sequence optimization for eco-cooperative adaptive cruise control,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC). IEEE,
2017, pp. 1–6.

[2] E. Commission et al., “A clean planet for all-a european strategic long-term vi-
sion for a prosperous, modern, competitive and climate neutral economy,” COM
(2018), vol. 773, 2018.

[3] E. Commission, “Regulation (eu) 2019/1242 of the european parliament and
of the council of 20 june 2019 setting co2 emission performance standards for
new heavy-duty vehicles and amending regulations (ec) no 595/2009 and (eu)
2018/956 of the european parliament and of the council and council directive
96/53/ec,” Off. J. Eur. Union, vol. 50, pp. 202–240, 2019.
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[28] D. Radović and Ž. Stević, “Evaluation and selection of kpi in transport using
swara method,” Transport & Logistics: The International Journal, vol. 8, no. 44, pp.
60–68, 2018.
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