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Abstract

As security technologies and practices evolve, so do attackers’ techniques to exploit
potential informatic vulnerabilities. One recent trend that is on the rise is steganogra-
phy. Digital steganography studies communication in which secret messages are concealed
in other unsuspicious forms, such as images, audio files, or documents. Steganalysis is
a study focused on detecting the existence of secret messages inserted into digital media
using steganography. When steganography is used, attacks can occur in several forms.
Image steganography is the most commonly used technique because of the frequent usage
of images on the Internet and a wide variety of formats and compression techniques. An
attack can take the form of a hidden executable file inside an image, which starts an at-
tack in the background when the image is clicked. This type of cyberattack has targeted
higher governing bodies and international companies, such as energy companies in Central
Asia (Kazakhstan and Mongolia), public sector entities in Southeast Asia (Japan, Viet-
nam, and Indonesia), and the Azerbaijan government. The attacks were initiated through
electronic mail, which was used to transmit the modified digital media and payload to vic-
tims’ workstations. Existing image steganalysis tools, such as Aperi’Solve or StegoHunt,
do not cover email extensively and usually require manually passing the image, increasing
the associated threats, such as malware infections or data breaches. Email providers, such
as Outlook or Gmail, do not specifically mention performing image steganalysis, although
these services are used by most businesses worldwide. This research proposes a deep learn-
ing Python-based tool named StegaScanMail, which can be deployed in the cloud as a
Docker container. StegaScanMail performs steganalysis on images in received emails using
a convolutional neural network (CNN) that classifies both greyscale and RGB images. Ste-
gaScanMail’s functionality targets and has been trained mainly with the portable network
graphics (PNG) format of images encoded with the least significant bit (LSB) technique
because malicious actors frequently use this technique due to its simplicity and effectiveness
in avoiding detection. The training and testing of StegaScanMail were performed mainly
using the Stego-Images-Dataset, which contains 44 000 PNG images embedded with mali-
cious code. The PNG image format is often found in emails because of its frequent use in
logos and web graphics. Email, which is now widely adopted and is increasingly hosted in
the cloud, is highly susceptible to cyberattacks. Its extensive use, particularly in business
and government, makes it a prime target. This vulnerability underscores the need for en-
hanced security measures, particularly for companies and administrative bodies that rely
on email as the primary mode of communication.

Keywords: image steganography, image steganalysis, StegaScanMail, portable network
graphics (PNG), Cloud, Convolutional Neural Network (CNN)



Chapter 1

Introduction

This chapter introduces the research topic, providing an overview of cybersecurity threats
related to steganography and the motivations behind this research. It contextualizes the
role of steganography in modern cyberattacks and outlines the principles of steganalysis. In
addition, the chapter details the research goals, methodology, contributions, and structure
of the research, establishing the foundation for the next chapters.

1.1 Context and motivation

This section explains the importance of cybersecurity in modern digital communication and
the growing role of steganography in cyberattacks. It introduces steganography and its
historical context, highlights its relevance in digital media, and explains how it is increas-
ingly used in cybercrime. It also provides a brief look at how steganographic techniques
are detected using steganalysis, particularly through the application of modern machine
learning and deep learning methods.

1.1.1 Context

Cybersecurity is defined as technologies and processes that aim to protect computer sys-
tems and networks from malicious actors [1]. The motivations of these malicious actors,
more commonly named ’attackers’, range from state-sponsored cyberterrorism [2] to in-
ternational espionage [3] and financial fraud [4]. The World Economic Forum remarked
in 2018 that financial fraud resulting from cybercrime is a trillion-dollar industry, and
companies spent around 8.2 billion dollars to counter fraud and money laundering [5].

Steganography is the practice of embedding secret messages into other forms of commu-
nication, such as images, audio, or text, in a manner that hides the presence of information
from human inspection, and is imperceptible to any observer [6]. Unlike cryptography,
which visibly transforms a message into unreadable code, steganography disguises the very
existence of the message by embedding it within a harmless-looking file. Steganography
has been used since ancient times, as described by Herodot, who described how the Greeks
received a warning of the Persians’ hostile intentions from a message hidden underneath
the wax of a writing tablet [7]. Steganography has been used in other cultures many times
over the years, but it has seen a growing trend at the end of the last millennium, when
digital media and the internet became widespread [6].

The main idea of steganography remained the same after the media became digitalised,
which was to conceal secret information (also named “secret payload”) inside the cover
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media. In the security systems domain, steganography can be placed in the information-
hiding sphere, along with watermarking, as shown in Figure 1.1.

Figure 1.1: Steganography in the security systems spectrum [7].

Image steganography algorithms are evaluated based on four properties: imperceptibil-
ity, security, robustness, and capacity [7]. Imperceptibility is the most important property,
as essentially it measures the degree to which the information is successfully hidden from
the naked human eye in am image using steganography. The security property refers to
the undetectability of steganography using technical means such as statistical methods.
Robustness is the ability to withstand the corruption of the data by third-party processes,
such as image scaling, rotation or resizing. Finally, capacity represents the maximum
amount of information that can be encoded into an image. All of these properties influ-
ence how well it performs in information hiding and how hard it may be to implement, as
trade-offs often exist between these properties [7]. For example, LSB substitution has a
high payload capacity and good imperceptibility; however, it has modest robustness and
security against attacks that attempt to break the encoding. [7].

Steganalysis, in contrast, refers to the process of identifying whether a file, such as
an image, video, or audio file, contains concealed information [8]. It aims to detect the
existence of hidden data regardless of whether it is recoverable [9]. Techniques for steganal-
ysis are broadly divided into two categories: signature-based and statistical approaches.
Signature-based methods aim to identify known traces left behind by specific stegano-
graphic tools or algorithms, making them effective when the exact embedding method is
known [10]. Statistical steganalysis, on the other hand, does not rely on prior knowledge
of the embedding technique. Instead, it analyses the statistical properties of media files
to detect subtle inconsistencies that may indicate data manipulation. Because it uses
quantitative models that are more sensitive than human perception, statistical analysis is
generally seen as more versatile and effective, especially when dealing with unknown or
black-box embedding scenarios [10].

2



Figure 1.2: Steganographic techniques [11]
.

Additionally, machine learning steganalysis has emerged as a promising approach that
uses adaptive algorithms to automatically extract and analyse features from both cover
and stego media, thereby enhancing detection precision. Deep learning steganalysis, on
the other hand, employs multi-layer neural networks to learn hierarchical representations
directly from raw image data, which often results in improved robustness and detection
accuracy against sophisticated embedding techniques.

Specific types of image steganography techniques are shown in Figure 1.2 and can be
divided into two categories: spatial and transform domains. Also, other categories exist,
such as adaptive steganography, which uses machine learning techniques [12]. This research
focuses on the spatial domain, more specifically on the Least Significant Bit (LSB) because
of its efficiency and wider use in practice [13]. The LSB technique is a simple and widely
used steganographic technique that involves hiding information in the least significant bits
of image pixel values [14]. This technique has a few variations, such as LSB matching
[15], adaptive LSB substitution [16], pattern-bit LSB [17] and LSB triple XOR [18]. LSB
steganography is particularly well-suited for use with a broad range of file formats because
it requires little computing power and can be easily implemented [13].

Furthermore, each steganalysis technique is divided into a black box and specific ste-
ganalysis method [7]. The former category, also called blind steganalysis, focuses on iden-
tifying all steganography methods used to embed information into an image, whereas the
latter focuses on identifying a specific steganography method with specific properties [7].
This research makes use of different steganalysis methods, such as statistical steganaly-
sis, machine and deep learning steganalysis, whose performances are then compared to
find the most efficient and reliable solution. The steganography focus is solely on LSB
steganography due to its wide usage and the availability of datasets with LSB steganog-
raphy [19]. Figure 1.3 provides an overview of the existing image steganalysis techniques.
Both steganography and steganalysis have significant applications in various fields includ-
ing secure communication, digital watermarking, and copyright protection [9].

However, it can sometimes be difficult to detect an LSB and its variants using statisti-
cal steganalysis, because it has only minimal influence on the statistical characteristics of
the of pixel values, making detection more challenging, but not impossible [19]. Changes
originating from the LSB method are rarely significant, and can have little or no influ-
ence on the statistical characteristics of an image. Statistical characteristics include the
ratio of certain pixels, histogram representation, and RGB colour examination. Additional
methods such as co-occurrence matrix analysis, noise estimation, and run-length analysis

3



Figure 1.3: Image steganalysis techniques [9]
.

can also be employed. For example, co-occurrence matrices assess the spatial relationships
between pixel values [19] which is useful in the context of LSB steganography. This can
make it difficult for steganalysis methods that rely on statistical analysis of image features
to distinguish between images with and without hidden information [20]. Given these
challenges, advanced detection techniques—particularly those based on convolutional neu-
ral networks—have been increasingly explored to capture subtle embeddings. Therefore,
the algorithm developed in this study uses convolutional neural networks (CNN) such as
ResNet50 and VGG16, which can identify small patterns after training on a large dataset.
CNNs are highly effective for image analysis because of their ability to learn and extract
features from raw pixel data automatically. The dataset used, Stego-Images-Dataset 1,
had 44 000 images of both stego and cover PNG RGB images.

1.1.2 Motivation

This subsection highlights the growing use of steganography in cyberattacks, particularly
in email-based malware delivery methods. It presents real-world incidents where steganog-
raphy was used to infiltrate systems and discusses the limitations of current email security
solutions in detecting steganographic threats.

One of the main motivations behind this research is that steganographic attacks are
increasing in the cyber world [21], [22], [23]. Although steganography has some known
limits [6] related to how much data you can embedded in a media file (which sometimes
can be a maximum of few Kilobytes), there is a growing trend to use steganography to
propagate the data payloads necessary for an attack on images using steganographic tech-

1https://www.kaggle.com/datasets/marcozuppelli/stegoimagesdataset
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niques [21]. This type of attack can be categorised as a steganographic malware delivery
attack because it aims to compromise security by infiltrating malicious elements within the
target’s domain. Thus, the example of an attack can be divided into two parts. The first
part is represented by a larger payload, which can be either encoded or separated from the
executable, that contains the resources required for an attack such as malware data.

The second part is represented by an executable file that initiates the attack and can be
hidden in an image by using steganographic techniques. The steganographic carrier (PNG
image) may contain malicious scripts, shellcodes, or encrypted malware, which is then
decoded and executed by a separate loader. Traditional signature-based detection meth-
ods struggle to identify steganographic payloads, making these attacks more challenging
to detect without behavioural analysis or deep learning-based anomaly detection and this
division into two parts makes it difficult to identify and correctly characterise [21]. In
practice, this has recently occurred in the case of several local governments in Asia (Viet-
nam, Azerbaijan, Cambodia) and North America (Mexico), alongside several other private
companies, with the scope of stealing confidential data [21]. The attack was analysed and
documented by Avast’s threat intelligence team [21] and the chain of actions used is shown
in Figure 1.4. Essentially, an attack uses an initial compromise that can occur over a wide
range of sources, such as malware infection or social engineering [24], which can initiate
a lateral attack on the host’s machine that may run a script hidden steganographically
in a PNG image. This represents a good example of the described attack type, in which
PNG steganography plays only the final part of the preparation phase and can easily go
undetected.

Figure 1.4: Compromise chain [21].

Another attack that used a similar structure targeted the government of Azerbaijan,
intending to disrupt the normal activity of the informatic system and inject advanced com-
puter malware, such as Agent Tesla or Poet Rat [25]. The attack was analysed thoroughly
by the MalwareBytes threat intelligence team [23] and essentially used PNG images sent
through emails to start the actual attack.

As exemplified in the latter example of a cyberattack using image steganography, the
means of propagating the payload or loader of the attack is represented by electronic mail
(email). Email is a major form of communication over the Internet. Today, there are
numerous email services, such as Outlook2, Gmail3, and Proton4, each with its own email
daemon, cloud infrastructure, and security system. However, this popular method of com-
munication is not without threat [26]. Unsolicited commercial email (UCE), or spam,
represents a type of email sent to a large group of recipients for commercial purposes,
mainly in an automatic fashion with the help of computer bots or networks of infected de-
vices with internet access [27]. Furthermore, there are even more risks related to electronic
mail, namely, phishing emails [26]. These messages use identity theft to trick unsuspect-
ing users into giving away personal data or downloading malicious attachments. Phishing

2https://outlook.live.com/
3https://mail.google.com
4https://proton.me/
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emails have malicious purposes that may target specific victims or may be sent in bulk [28].
A report by the security company Trend Micro estimated that, in 2021, 75% of attacks
had email communication and phishing as their starting point [29].

In recent years, email services have partially migrated to cloud platforms by employ-
ing a hybrid architecture [30]. A hybrid cloud email setup, such as Microsoft Exchange
on Azure, improves operability by providing organizations with more flexibility in their
infrastructure 5. With cloud capabilities, organisations can dynamically scale resources
to meet demand and enhance the availability of email services without the need for extra
physical infrastructure [31]. This setup also simplifies management because cloud plat-
forms offer automated updates, thereby reducing the burden on IT teams to maintain
on-premise systems [31]. Hybrid models are particularly beneficial for organisations that
are not yet ready to fully migrate all operations to the cloud but wish to incrementally
enhance functionality. Moreover, hybrid cloud solutions offer robust security by isolating
sensitive data on local servers, significantly reducing exposure to external cyber threats.
This architecture enables organizations to enforce strict access controls and monitoring
on-premises while benefiting from the scalability of the cloud [31]. In addition, compliance
is enhanced as sensitive information can be maintained within specific geographic or regu-
latory boundaries, meeting data sovereignty and privacy requirements. The dual approach
also boosts redundancy: real-time backups and distributed data storage on local servers
ensure effective disaster recovery and business continuity, extending benefits well beyond
operational flexibility. Furthermore, cloud email platforms improve interoperability and
support integration with collaborative tools, which is exactly the case for the application
developed in this research.

Another motivation that drives this research is that the email platforms and the cloud
setups studied in this research, Outlook, Gmail, and Proton Mail, do not specifically
mention performing steganalysis on the images present in the emails as a security control.
It is worth mentioning, however, that these enterprise email solutions use advanced AI-
powered threat detection in emails and suspect images might already be flagged by them6,
even though there is no clear mention about steganalysis. These services have built-in
systems for email sorting and security scanning, either locally or in the cloud [32]. The
steganalysis process is resource intensive and the real challenge lies in achieving a low false
positive rate due to the high variability of steganographic methods [33]. As such, email
providers prioritize malware and phishing detection over generalized steganalysis.

Images can be contained in emails in two ways: embedded and attached [34]. If an
image is attached, it is simply added as a separate file to the email, and can be downloaded
separately, uncompressed, or unchanged. There is a limit on attachment size, however,
most providers have a limit in the region of 20-25 MB per email 7. If an image is embedded
in an email, it becomes part of the email’s HTML body and may be subject to compression
and alteration. Moreover, embedded images are usually hosted externally to reduce the
size burden of the email. There, they are subject to filtering by security controls [35]. On
the other hand, attached images cannot be removed directly by the mail client, but may
present the user with the option to show/download the attachments before they can be
viewed. Attached images can pose higher security risks if they contain hidden payloads
and bypass scanning mechanisms. However, most email providers implement attachment
scanning and sandboxing techniques to detect threats before the user downloads them [26].

5https://learn.microsoft.com/en-us/exchange/architecture/architecture?view=
exchserver-2019#server-communicationarchitecture

6https://learn.microsoft.com/en-us/defender-office-365/mdo-about
7https://thomas.vanhoutte.be/miniblog/overview-of-maximum-email-attachment-size-per-provider/
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1.2 Goal, scope and methodology

This section defines the research goals, scope, and methodology. It explains the focus on
LSB-based steganography in PNG images and the use of CNN-based steganalysis in email
security.

As the scope of this project covers multiple broad topics such as steganography, ste-
ganalysis, email security, cloud architecture, deep learning and machine learning, it is
important to narrow down the most relevant subjects from each topic. This is especially
important, given the lack of resources and the need to properly document academically and
implement a practical working solution. As such, this research focuses on LSB steganog-
raphy of PNG images and CNN steganalysis in the field of deep learning. Further, it will
focus on Azure Cloud and Microsoft Exchange (which is behind the end-user email service
known as Outlook). These design choices will help the research to be more concise and
of overall better quality, while providing a platform to extend the scope by anyone who
wants to use the open-source repository and has more resources available.

The Portable Network Graphics (PNG) format is widely used for digital media, partic-
ularly due to its support for lossless compression [36]. It is typically used for web graphics
and digital images present on the Internet, which depict logos or small images that require
good quality and do not add much to the loading time owing to their size [36]. This file
format supports images with palettes of 24-bit RGB or 32-bit RGBA colours, greyscale
images, and full-colour non-palette images. Owing to these characteristics, the use of PNG
images makes sense in emails, because the sender may want to include logos, signatures, or
other small images attached to the message [12]. However, as observed in the cyberattacks
above, PNG images can also include threats inside masked through steganography [21].
The extent to which data can be hidden inside a PNG image is theoretically lower than
that for file types such as JPEG and GIF [12] because the latter uses lossy compression,
whereas the former uses lossless compression. Nevertheless, it is important to mention that
malicious payloads can still be present in PNG images, and attacks such as those in [21]
and [25] have shown that even a smaller payload may be sufficient to be part of a successful
attack. Attacks such as those described in [21] use a PNG to disguise a malicious attack
loader in an apparently harmless PNG image. As the PNG file format has received less
research focus than lossless compression file formats, but it is still a possible way to conceal
a cyber attack, it was chosen as the subject of this study.

There is a growing need for enhanced security due to the threats posed by image
steganography and the widespread use of emails. This research explores StegaScanMail,
an automated, cloud-ready tool to detect steganographic threats in PNG images within
emails. The manner in which StegaScanMail is planned to work is presented in Section ??,
along with other similar tools, none of which address image steganography through email.
A review of the current literature is presented in Section 2.3.

The goal of this research is to design, implement, evaluate, and document a tool that
automatically identifies potential steganographic threats in an email hybrid cloud archi-
tecture. The following research questions were investigated:

1. How can StegaScanMail be effectively integrated into modern cloud architectures
commonly used by companies?

2. How do custom CNN, VGG16, and ResNet50 architectures compare with traditional
statistical methods (Statistical Residuals, Chi-square Attack. Local Binary Patterns,
Sample Pairs) in PNG steganalysis?
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3. What are the specific data privacy concerns when extensive datasets are used for
CNN training in cloud environments for steganalysis purposes?

These research questions arise from the growing use of cloud technology by most compa-
nies and the need for tools that secure these modern systems. The first question explored
how StegaScanMail can be effectively integrated into cloud architectures. This involves
considering aspects such as compatibility with cloud services as Microsoft Azure, scala-
bility for handling also bigger workloads (in terms of computing power), and integration
with the email client for business enterprise, Microsoft Exchange. The second question
examines the practical challenges and benefits of implementing CNN-based steganalysis
methods compared with statistical approaches (within cloud environments). This compar-
ison is crucial for understanding trade-offs in terms of detection accuracy, computational
requirements, and adaptability to new attacking techniques. This study evaluated the
performance using one dataset, considering accuracy, precision, recall, and F1-score as key
metrics. The analysis targeted LSB steganography of the PNG images. The third question
focuses on the critical issue of data privacy when fairly-large datasets (44 000 images) are
used for CNN training in cloud-based steganalysis. This is particularly relevant, given
the sensitive nature of email content and the need to balance effective threat detection
with user privacy. This question explores strategies for secure data handling, anonymisa-
tion techniques (such as Data Masking), and (European) compliance with data protection
regulations [37].

1.3 Contribution

This research makes several significant contributions in the fields of steganography, ste-
ganalysis, and email security.

First, this recently made research provides a theoretical framework through an ex-
amination and synthesis of existing literature on image steganography and steganalysis,
machine learning, and deep learning. By analysing real-world examples of image stegano-
graphic attacks, this study highlights key vulnerabilities of widely used systems, such as
email platforms. This analysis of practical threats improves the understanding of the cyber
risks associated with steganographic techniques in digital communications.

Second, this research contributes by conducting an analysis of the current limitations,
challenges, and potential advancements in modern image steganalysis methods. This in-
cludes an evaluation of commercially available tools that provides a clear picture of the cur-
rent state of steganalysis technology. Furthermore, this research assesses the cloud-based
architecture of email platforms, leading to the design of an application that integrates
steganalysis into these platforms, ensuring compatibility, scalability and security. This ar-
chitectural assessment and design work represents a significant step towards practical and
implementable solutions for enhanced email security.

A major practical contribution of this research is the experimental work performed on
the steganalysis techniques. This research tested multiple statistical methods in combina-
tion with Support Vector Machines (SVM), as well as one custom CNN model and two
pre-trained CNN models: ResNet50 and VGG16. Through an analysis of the results, the
fine-tuned CNN model was identified as the most effective approach for detecting stegano-
graphic content in email attachments. This empirical evaluation provided valuable insights
into the relative strengths and weaknesses of the steganalysis techniques in a testing envi-
ronment.

Another contribution of this research is the partial implementation of an email security
cloud filter using Microsoft Azure. The implementation was, unfortunately, just partial
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due to the inability to access Microsoft Enterprise access for businesses when it came to
the cloud and email functionalities. The only practical possibility for this research was
to use a student account and its benefits for partial implementation. However, even just
by designing a system that uses cloud architecture and resources, this research offers a
practical and scalable solution for implementing steganalysis in real corporate scenarios.
This approach demonstrates how extra security measures can be effectively integrated into
existing cloud-based infrastructure.

Finally, this research makes another contribution by critically assessing the limitations
and challenges encountered in all solutions discussed, such as high usage of computational
resources, integration issues and the high number of false positives. It is important to
address these issues transparently and to propose future research directions.

1.4 Report structure

This research is structured into six chapters: Introduction, Background and Related Work,
Review Methodology, Proposed Solution, Results and Discussion and Conclusion. Chap-
ter 1 has already been laid out, whereas Chapter 2 discusses the background of the main
subjects, such as the mathematical background of image analysis, steganalysis statistical
methods, and machine-learning techniques. Other important topics of this chapter include
risk analysis, an explanation of the research methodology, and a discussion of current exist-
ing tools. Chapter 3 presents the process of study collection and a comprehensive analysis
of the body of literature on steganography and steganalysis. After the study selection pro-
cess, the most relevant literature was qualitatively assessed through a bibliometric analysis
and review, followed by general conclusions. In Chapter 4, the proposed solution, StegaS-
canMail, is described both architecturally and from a practical implementation perspective.
Chapter 5 discusses the testing results and provides answers to the research questions. This
is followed by a discussion of the research’s limitations, strengths, weaknesses, and poten-
tial areas for improvement. Finally, Chapter 6 summarizes the study’s overall conclusions
and outlines plans for future work. The appendix includes supplementary information and
a visualization of a related side topic.
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Chapter 2

Background and related work

This chapter provides the necessary background for understanding image steganalysis and
explanations on how it integrates with cybersecurity. It covers fundamental concepts such
as digital image representation and steganalysis techniques. Additionally, it explores the
cloud infrastructure supporting email security and presents an overview of related work, in-
cluding existing steganalysis tools. A literature review follows, outlining key contributions
in the study fields and highlighting the gaps that this research aims to address.

2.1 Background

This section introduces the fundamental concepts of image processing, explaining how
digital images are structured and analysed. The discussion includes mathematical repre-
sentations of images, RGB color models, and key properties relevant to steganalysis. The
section also provides an overview of hybrid cloud infrastructure and focuses on Microsoft
Exchange’s integration with cloud-based security measures.

To understand how image steganalysis works, we must first understand how images
are processed by a computer. Digital images are composed of pixels that are the smallest
individual elements of a digital image. Each pixel represents a specific colour and is typ-
ically encoded using a certain number of bits. For example, in a standard 24-bit colour
image, each pixel is represented by three bytes (24 bits; 1 byte = 8 bits), with one byte
each for the red, green, and blue components. This allowed for 16,777,216 (224) possible
colours. The computer stores and processes these pixel values as numerical data, which
can be manipulated and analysed using various algorithms and techniques.

An image with M rows and N columns can be mathematically represented as follows:

f =


f(0, 0) f(0, 1) . . . f(0, N − 1)
f(1, 0) f(1, 1) . . . f(1, N − 1)

...
...

. . .
...

f(M − 1, 0) f(M − 1, 1) . . . f(M − 1, N − 1)

 (2.1)

Element f(i, j) is the value of the pixel at row i and column j.
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1 4 7

2 5 8

3 6 9

Figure 2.1: 3 × 3
image example

f =

1 4 7
2 5 8
3 6 9


Figure 2.2:
Matrix representa-
tion

f̃ =



1
2
3
4
5
6
7
8
9


Figure 2.3:
Vector representa-
tion

The mathematical representation shown in Equation (2.1) illustrates how an image
can be viewed as a matrix. The above figures further demonstrate how this matrix can be
practically represented in different forms, including the image itself, its matrix form, and
a vectorized version of the image.

An image f with M rows and N columns is structured such that each element f(i, j)
corresponds to the pixel intensity (on the scale 0–255) at row i and column j. a 3×3 pixel
image can be represented as a matrix, where the pixel values are placed according to their
respective row and column indices. Another way to represent the image is by vectorizing
it, which involves flattening the matrix column-wise. This means that the values from
the first column are listed sequentially, followed by the second column, and so on. Vector
representation may not be used for the purpose of this project, but it is a useful concept in
various applications such as numerical methods, feature extraction, and machine learning.

Figure 2.4: Red Green Blue (RGB) Image representation [38].

Figure 2.4 illustrates the RGB representation of a digital colour image. In this model,
an image is composed of three colour channels: red, green, and blue. In the RGB colour
model, the colour of each pixel is determined by the intensity values of the red, green, and
blue channels, which typically range from 0 to 255. From a mathematical perspective, an
RGB image can be represented as a 3-dimensional array I(x, y, c), where x is the horizontal
pixel coordinate, y is the vertical pixel coordinate, and c is the colour channel (0 for red, 1
for green, 2 for blue). The value of I(x, y, c) indicates the intensity of channel c at a pixel
(x, y). For an image with width W, height H, and three colour channels, the dimensions
of this array are W × H × 3.
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The figure further shows how individual colour channels can be visualised separately
or in combination (for example, RG, RB, and GB) to highlight the specific contributions
of each channel to the overall colour. This layered structure allows colour manipulation
and analysis in image-processing tasks, as each channel can be independently accessed and
altered.

Figure 2.5: Hybrid cloud architecture: Microsoft example [39]

The evolution of email infrastructure has been reshaped by the emergence of cloud com-
puting. Traditionally, organizations relied on on-premise email systems, which necessitated
substantial investments in hardware, continuous maintenance, and dedicated administra-
tive supervision [40]. These setups often presented challenges related to scalability and
disaster recovery, as they required in-house resources to manage system updates and stor-
age constraints [40]. However, cloud computing has transformed email deployment and
management by offering a scalable and cost-effective. Cloud-based email services elimi-
nate the need for extensive on-premise infrastructure, allowing organizations to leverage
provider-managed solutions that offer automated updates, have high availability, and can
deploy robust security features. Additionally, cloud-hosted email services enhance accessi-
bility, enabling users to securely access their accounts from multiple devices and locations
while benefiting from built-in compliance and disaster recovery mechanisms.

This shift allows organizations to migrate their email systems to the cloud. Microsoft
Exchange integrated with Microsoft Azure exemplifies this transition, as shown in Figure
2.5. In a hybrid cloud setup, organizations combine on-premise infrastructure with cloud-
based services, allowing them to maintain certain components, such as mail servers or
sensitive data, locally, while benefiting from scalability, resilience, and advanced security
features in the cloud [41]. This approach ensures a good integration between on-premise
and cloud environments because it enhances disaster recovery by utilizing cloud-based
backup and redundancy solutions, and enables dynamic resource scaling to accommodate
fluctuating workloads [41].

Moreover, the hybrid model supports features for end users, such as centralized mailbox
management and free/busy calendar sharing, which are important for maintaining oper-
ational efficiency [41]. Free/busy calendar sharing allows employees to check colleagues’
availability in real-time, regardless of where their mailboxes are hosted, facilitating efficient
scheduling and collaboration [39]. Centralized mailbox management enables IT adminis-
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trators to see and manage user accounts, mail flow, and compliance policies from a unified
interface.

In addition,single sign-on (SSO) and easy access to corporate resources is provided
by Azure Active Directory (Azure AD) for identity management. This ensures secure
and synchronized user authentication in both on-premise and cloud environments [39].
By synchronizing user credentials and access policies, Azure AD enables organizations
to maintain uniform security policies The authentication process is also simple, which
improves security and user experience.

2.2 Related Work

This section explores existing open-source tools for image steganalysis, with a particular
focus on solutions available on platforms like GitHub. Given the limited literature on
publicly available steganalysis tools, a search strategy was designed to identify relevant
repositories and assess their functionalities. The findings are summarized in Table 2.1.

2.2.1 Tools and Solutions

This subsection presents a systematic review of publicly available steganalysis tools, detail-
ing their detection methods, supported file formats, and performance characteristics. The
evaluation considers their practical usability and relevance to automated email security
applications.

A structured search approach was used to systematically identify relevant tools. The
methodology involved querying open-source repositories, prioritizing tools with documented
functionalities and, possibly, active maintenance. The criteria were defined as follows:

• Inclusion Criteria:

– Open-source tools explicitly designed for image steganalysis.

– Publicly available repositories with accessible code.

– Actively maintained projects (Optional) with relevant documentation.

• Exclusion Criteria:

– Tools focused on steganography (data embedding) rather than steganalysis.

– Outdated or unmaintained repositories lacking documentation.

– Repositories not publicly available.

The results of this search are compiled in Table 2.1, which provides an overview of the
identified tools. The subsequent sections analyse each tool in more detail, discussing their
capabilities, advantages, and limitations.

StegExpose

The first tool identified, StegExpose, was described by Boehm [42]. Another study exam-
ined its performance using various image databases and file formats [43]. StegExpose is
a command line program developed to detect LSB steganography in lossless images us-
ing statistical methods, and necessitates Java 1.6 installation before the application can
be used. The authors used a database of 5200 stego images and 10000 clean images for
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Name Source code Supported
formats

Algorithm used Performance

StegExpose https://github.com/
b3dk7/StegExpose

PNG and
BMP

Sample Pairs and
RS analysis

Successful detec-
tions: 78-99% when a
JPEG image was em-
bedded in the lossless
image, 10-28% when a
TXT file was embed-
ded.
Studies have also shown
a high number of false
positives.

AperiSolve https://github.com/
Zeecka/AperiSolve

JPG,
JPEG,
PNG,
BMP, GiF,
BMP, TIFF

Aggregation of
the tools "zsteg",
"steghide",
"outguess",
"exiftool", "bin-
walk", "foremost"
and "strings",
combined with
image layer anal-
ysis

Its performance is
dependent on which
file format is used and
therefore on which tool
it is reliant for that file
format. From manual
testing, the image layer-
ing works well, however,
there are limitations to
the practicability and
threat resilience.

StegDetect https://github.
com/BionicSwash/
Stegdetect

JPEG F5 detection algo-
rithm

works only on Linux and
has a high rate of false
positives and negatives.
With a large database,
it reached a false posi-
tives rate of 17.61%.

zsteg https://github.com/
zed-0xff/zsteg

PNG and
BMP

Aggregation of
the tools "zlib",
"wbStego",
alongside image
layer analysis

In the little resources
existing about this tool,
the test has shown that
is not necessarily accu-
rate, and it has a high
false positive rate.

Table 2.1: Open-source steganalysis tools
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testing. Images were taken from online sources, such as Flickr1, and the stego images were
embedded using OpenStego [44], with an average embedding rate of 13.61%. The author
does not broadly discuss the results, but mostly the experiments which led to the choice
of the tool’s algorithm. Therefore, we focus more on [43] to evaluate the performance of
this tool.

First, it should be noted that not all stego images worked, as the ones created using
OpenStego [44] failed 100% of the time. However, those that use Virtual Steganographic
Laboratory for Digital Images (VSL)2 did work, however.

Second, it should be noted that this study found a significant false positive rate when
analysing clean images, meaning that some images were incorrectly classified as containing
hidden data despite being unaltered. The false positive rate varied depending on the
test conditions, ranging from 10% to 32% across different scenarios, with the default run
settings yielding a rate between 22% and 26% [43].

For steganography detection, the effectiveness of the analysis depended heavily on
both the image database used, and the software employed to generate the stego images.
Detection success rates varied significantly: when a JPG image was embedded within a
lossless image, the detection rate ranged from 78% to 99%. However, when a TXT file was
embedded within a lossless image, detection rates were considerably lower, falling between
10% and 28%.

The paper concludes that the tool StegExpose has a rather high detection rate of
steganographic embeddings, which has a high false positive rate. In general, StegExpose
is very limited in practical steganography detection, owing to shortcomings related to its
functionalities to accommodate more types of images, databases, and compatibility [43].

2.2.2 AperiSolve

AperiSolve operates as a web platform, where the front end receives images and the back-
end processes the steganalysis, and as a standalone application that can be installed locally.
The tool is designed to analyse images for hidden data using multiple steganalysis tech-
niques. AperiSolve supports eight different image formats, including JPEG, PNG, BMP,
GIF, TIFF, ICO, WEBP, and PPM, allowing for a broad range of steganographic analysis.
The steganalysis capabilities include detection, text extraction, and metadata analysis.

Instead of relying on a single algorithm for steganography detection, AperiSolve lever-
ages eight existing tools, each specialized for different aspects of steganalysis, such as
"zsteg"3 (discussed below) or "steghide"4.

One of AperiSolve’s key contributions is its ability to perform layer analysis of images,
which is then combined with the aforementioned tools to enhance detection accuracy.
However, AperiSolve has several limitations. One concern is its practicability—for the tool
to function, users must manually upload an image (via the web interface) or input it into
the standalone application. The platform enforces a maximum file size limit of 5 MB,
which may restrict its usability for analyzing larger or high-resolution images.

Another critical concern involves security risks associated with user interaction. Up-
loading, downloading, or opening a suspicious image could expose users to malicious pay-
loads, such as embedded malware or hidden exploits [45]. This presents a paradox where
a tool intended for security analysis requires users to engage with potentially harmful
content, increasing their vulnerability.

1https://www.flickr.com/
2https://vsl.sourceforge.net/
3https://github.com/zed-0xff/zsteg
4https://github.com/StefanoDeVuono/steghide
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Furthermore, although AperiSolve offers various steganographic analysis techniques,
including superimposing images on the RGB plane, extracting hidden text, and scanning
image metadata, its reliance on manual user input limits its effectiveness as a real-time
security tool. Ideally, an advanced steganalysis system would seamlessly integrate into a
user’s digital environment, automatically scanning images in the background and alerting
users to potential threats without requiring manual uploads or interactions [13].

In conclusion, AperiSolve is most suitable for educational and research purposes rather
than automated threat detection. It provides an intuitive graphical user interface (GUI),
a user-friendly web platform, and a variety of analytical functionalities, making it an
accessible tool for those learning about steganalysis or conducting manual investigations.

2.2.3 StegDetect: Functionality and Limitations

StegDetect is a steganography detection tool compatible with Linux and Android platforms
and specifically designed for F5 steganography detection in JPEG files using statistical
analysis. The tool operates via the command line and offers two processing speed options,
allowing users to choose between a faster, less thorough scan or a more detailed, but slower
analysis.

It should be noted that the Android build of StegDetect is unstable, as explicitly
mentioned by the developer in the tool’s GitHub description. Users may encounter multiple
warnings and errors, particularly related to image handling and system compatibility, which
can impact reliability.

The performance of StegDetect was thoroughly analysed in [46]. The study used 40,000
random images from the Internet and 25,000 images from the ASIRRA (Animal Species
Image Recognition for Restricting Access)5 public corpus for testing. The study concluded
that false negatives are highly influenced by the sensitivity parameter, with generally high
rates. Sensitivity values ranged from 0.1 to 10, with the default set at 1. The results
showed that for 40,000 randomly selected images, the false positive rate was 10.76%. The
detection rate improved with higher sensitivity values, particularly in the range of 1.0 to
6.4, though no definitive threshold was provided.

For images from the ASIRRA database, the false positive rate was slightly higher at
17.61%, indicating that different image datasets may influence detection performance.

Another study [47] specifically examined the false-negative rates of StegDetect. It
found that the tool has a high false-negative rate, particularly in the sensitivity range of
0.1 to 3.4, further confirming that detection effectiveness varies significantly based on the
sensitivity setting.

These findings, combined with StegDetect’s limited functionality—supporting only
JPEG files, lacking Windows compatibility, and experiencing errors when processing cer-
tain images—indicate that the tool is not without flaws. Additionally, its platform restric-
tions limit its effectiveness in broader security applications. While it is documented as
working on Android, the reported instability and potential errors make it less reliable for
mobile-based security analysis.

The testing limitations of StegDetect further reduce its applicability for real-world
threat detection. Given its narrow file format support and uncertainties in detection per-
formance across different datasets, it is difficult to conclusively determine its reliability in
specific security environments.

5https://www.microsoft.com/en-us/download/details.aspx?id=54765
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zsteg

zsteg is a steganalysis tool compatible with Linux that extracts data embedded within
an input image by analysing different encoding schemes and bit-plane patterns. These
patterns refer to the arrangement of data at specific bit levels within an image, which can
be manipulated to hide information. The tool marks images as suspicious if it detects
anomalies or deviations from expected bit structures.

The algorithm used by zsteg relies on external libraries such as zlib and wbStego, which
are essential for compression and decompression operations as well as for handling certain
steganographic encoding methods. These dependencies enable the tool to process various
image formats and attempt data extraction.

In [48], the authors tested zsteg against ten images embedded with malicious content
using their developed algorithm. The results showed that the tool was unable to success-
fully detect or extract any hidden text from these images, highlighting a limitation in its
detection capabilities.

One of the main limitations of zsteg is its requirement for manual execution, meaning
that users must actively suspect an image before running the tool against it. This ap-
proach reduces its practicality for large-scale or automated threat detection. Additionally,
interacting with potentially malicious files poses security risks, as analysing compromised
images may expose the user’s system to embedded malware or exploits.

The issue of false negatives also presents a concern. While zsteg can successfully detect
certain types of embedded data, it has been reported to miss others, leading to high false
negative rates. The severity of this issue depends on the embedding method used, but the
lack of comprehensive detection reduces its reliability as a standalone steganalysis tool.
Furthermore, as a command-line tool with specific library dependencies, users may face
challenges in setting up or running zsteg across any operating system but Linux.

2.2.4 Summary

As noted earlier, none of these tools provide automated functionality to scan emails for
steganographically modified images, making them impractical for real-time email security.
All the reviewed tools rely on users manually supplying an image for analysis. This process
is particularly inconvenient when dealing with email attachments, as embedded images
must first be downloaded before they can be examined.

The manual nature of this process creates a significant security risk. Users may un-
knowingly download images from unverified sources, increasing the likelihood of exposure
to hidden threats. Additionally, the extra steps required to locate, extract, and analyse
these files may discourage users from performing the necessary security checks. As a result,
some users may abandon the process entirely and proceed to open or share the files without
verification, thus increasing their vulnerability to steganographic attacks.

2.3 Literature Survey

This section outlines the systematic literature review process, detailing the research strat-
egy, selection criteria, and key sources.

To structure this literature review, the well-known Systematic Literature Review (SLR)
model [49] was chosen due to its structured and rigorous approach to synthesizing exist-
ing research. The SLR model provides a transparent and reproducible methodology for
identifying, evaluating, and analysing relevant studies. This method ensures consistency,
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minimizes bias, and offers a comprehensive overview of the research landscape. Its struc-
tured approach is particularly relevant to this review, as it enables a methodical evaluation
of steganalysis tools and methodologies.

The literature review follows a structured process consisting of three main stages: plan-
ning, conducting, and documentation. In the planning stage, the research questions formu-
lated in the first chapter serve as the foundation of the review, alongside the establishment
of research objectives to guide the selection and analysis of relevant studies, as detailed in
Section 1.2. The conducting stage involved performing a structured search across selected
academic databases while applying predefined inclusion and exclusion criteria to ensure
that only relevant and high-quality studies were considered. Finally, in the documentation
stage, the selected literature was assessed for quality based on factors such as publication
credibility, research methodology, and relevance to the research themes. This structured
approach ensures a consistent and methodical evaluation of existing work in the field [49].

2.3.1 Inclusion and exclusion criteria

Inclusion Criteria

(IC1) The subject must include image steganography or steganalysis.

(IC2) The study must focus on theoretical examination or practical implemen-
tation of image steganalysis techniques.

(IC3) Papers must have a citation count appropriate for their publication age:
at least 20 citations if published for 4-5 years in steganography/steganal-
ysis, and at least 50 citations for the same period in cloud computing or
deep learning. Exceptionally cited papers (500+ citations) are included
regardless of their publication date.

(IC4) Systematic reviews and surveys on steganography and steganalysis pub-
lished within the last ten years were included if they provided a compre-
hensive examination of existing techniques or tools.

(IC5) The focus was on papers published in well-established academic sources
such as Elsevier, IEEE, Springer, ACM, and other peer-reviewed journals
and conferences.

Exclusion Criteria

(EC1) Studies not published in peer-reviewed journals or conferences.

(EC2) Studies with fewer than 10 citations after 4-5 years unless used for fun-
damental definitions.

(EC3) Studies from sources with a known history of retractions, plagiarism, or
low academic integrity.

(EC4) Papers with no open access through University of Twente institutional
academic database.

(EC5) Studies not published in English.

Table 2.2: Inclusion and Exclusion Criteria
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Figure 2.6: CNN key components example [52]

2.4 Deep learning algorithms for steganalysis

This section focuses on the role of deep learning in the context of steganalysis, particularly
highlighting the application of convolutional neural networks (CNNs). It explains how
CNN architectures can contribute to enhancing detection performance and tackling typical
challenges faced in image-based steganographic detection.

In recent years, CNNs and other deep learning strategies have made notable progress,
outperforming earlier methods such as Support Vector Machines (SVMs), Principal Com-
ponent Analysis (PCA), and traditional feature-engineered classifiers [50, 51]. These older
methods often depended on handcrafted statistical descriptors and lacked the capacity
to autonomously recognize deeper patterns in visual data. This limitation reduced their
adaptability, especially when faced with newer embedding techniques and varying payload
structures.

2.4.1 Convolutional Neural Networks (CNNs)

Multiple studies have supported the efficiency of CNNs in identifying steganographic con-
tent embedded in different media formats, such as images and audio files. Ye et al. [53], for
example, introduced a CNN-based method that outperformed traditional steganalysis ap-
proaches when it came to detecting concealed information within digital images. Likewise,
Qian et al. [54] examined a model architecture that was capable of learning fine-grained
spatial dependencies in stego images, achieving notable accuracy improvements.

These deep-learning models can automatically extract and analyse features at multi-
ple levels, rather than relying solely on a predefined statistical patterns [55]. CNNs can
potentially enhance adaptability to steganographic algorithms and payloads by optimizing
feature extraction and classification within a unified environment.

Despite these advancements, challenges remain in CNN-based steganalysis. Some stud-
ies have highlighted issues related to generalization and stability, particularly when CNNs
are trained on limited datasets or when models encounter stego images generated using
algorithms unseen during training [56, 53]. Furthermore, studies indicate that CNN-based
approaches may struggle when handling paired learning scenarios [57]. This challenge
arises because slight variations in stego content can sometimes be indistinguishable from
normal image variations, leading to reduced model performance.
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To address limitations, ongoing research is exploring several directions. Efforts are
being made to develop more robust and adaptable CNN architectures that improve gen-
eralization across different datasets [58]. Also, studies continue to focus on enhancing
model stability by improving training methodologies, such as data augmentation, transfer
learning, and adversarial training [56, 59].

The primary objective of a Convolutional Neural Network (CNN) is to build a layered
understanding of the input image. It begins by identifying basic features—such as edges
and textures—and gradually captures more abstract patterns that are useful for classifica-
tion tasks [58]. The fundamental building blocks of CNNs, including convolutional layers,
pooling mechanisms, and fully connected layers, are illustrated in Figure 2.6. This figure
shows how these components work together to extract and refine features for the purpose of
steganalysis. While CNNs offer a wide variety of configuration options, only the functions
relevant to this research were discussed in the following sections.

2.5 CNN Architecture

CNNs are employed in steganalysis to differentiate between stego and cover images. This
section outlines the essential components of a CNN and how they contribute to feature
extraction and classification.

Input Data

The input consists of images, both cover and stego. Each image is represented as:

X ∈ RH×W×C (2.2)

where H is the height, W is the width, and C is the number of channels (e.g., C = 3 for
RGB images).

Convolutional Layers

Convolutional layers use learnable kernels to capture spatial relationships within the input
image. These filters perform a convolution operation described as:

Y (i, j) =
∑
m

∑
n

X(i+m, j + n) ·K(m,n) (2.3)

Here, K denotes the convolution kernel, and · represents element-wise multiplication. Such
operations enable the model to pick up on patterns like edges or textures, which are crucial
for detecting steganographic alterations [60].

Activation Function

To introduce non-linearity into the network, the Rectified Linear Unit (ReLU) is typically
used:

f(x) = max(0, x) (2.4)

ReLU helps speed up the training process and reduces the vanishing gradient problem,
which makes it well-suited for deeper CNN architectures [61].
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Pooling Layers

Pooling layers decrease the spatial dimensions while preserving key features, thus enhancing
computational performance. Max pooling, the most common pooling technique, is defined
as:

Y (i, j) = max(X(2i, 2j), X(2i, 2j + 1), X(2i+ 1, 2j), X(2i+ 1, 2j + 1)) (2.5)

Pooling contributes to spatial invariance and helps prevent overfitting by summarising local
image regions [62].

Fully Connected Layers and Classification

The feature maps produced by the last convolutional layer are flattened and forwarded
through fully connected layers. Final predictions are obtained using a softmax function,
which computes probabilities for each class:

softmax(zi) =
ezi∑
j e

zj
(2.6)

where indicates logits associated with class . For binary classification scenarios like ste-
ganalysis, the sigmoid activation function is often employed as an alternative, producing a
single probability value.

Loss Function

Binary cross-entropy loss evaluates the prediction error in binary classification tasks:

L = −
∑
i

[yi log(pi) + (1− yi) log(1− pi)] (2.7)

where denotes the actual class labels and is the predicted probability. Binary cross-entropy
is particularly effective for binary classification problems [63].

Optimisation Algorithm

The Adam optimiser is popular due to its adaptive learning rates and momentum-based
adjustments. The parameter update equation is:

θt = θt−1 − η · mt√
vt + ϵ

(2.8)

with:

• θt represents the model parameters at iteration t,

• η is the learning rate,

• mt and vt denote the first and second moment estimates of the gradients, respectively,

• ϵ is a small constant for numerical stability.
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Training

Training neural networks involves several stages, enabling models to interpret informa-
tion and generate reliable outcomes. Initially, through forward propagation, data travels
through the network’s layers, producing output predictions [64]. These predictions are
evaluated with a loss function, comparing them to actual target values [63]. Next, during
backward propagation, the neural network adjusts its internal parameters by computing
gradients and updating them via optimisation methods like gradient descent [65]. The
training cycle repeats until the model reaches an acceptable performance level.

A significant concern when training neural networks is overfitting, which arises when
the model becomes overly tailored to training data, impairing its ability to generalise
effectively to unseen information [66]. Typically, overfitting results from excessive training
periods, causing the model to learn noise or trivial patterns instead of meaningful ones.
To mitigate this, the technique of early stopping is utilised, where training is ceased once
the validation loss begins increasing, signalling that overfitting has begun [67].

2.5.1 ResNet50 and VGG16

ResNet50 and VGG16 are well-known CNN architectures used in computer vision tasks
such as image classification and feature extraction, owning to their hierarchical learning
ability from feature representations. ResNet50 is particularly effective in training deep net-
works without drops in performance, while VGG16 offers a simple yet powerful architecture
that ensures consistent feature extraction [68, 69].

ResNet50

ResNet50 is a version of the Residual Network (ResNet) architecture developed by He et
al. [68]. It consists of 50 layers and incorporates skip connections (shortcuts) to address
the vanishing gradient problem. This problem arises when gradients become excessively
small during backpropagation in very deep networks, resulting in ineffective learning [70].
Skip connections help by allowing the gradient to flow directly to earlier layers, which helps
effectivness in training.

Instead of learning direct transformations, ResNet50 learns residual functions, which
model only the difference between layer inputs and outputs. This allows the network
to refine features incrementally, rather than relearning redundant information, improving
convergence and stability [68].

The architecture includes batch normalization, which standardizes and stabilizes train-
ing [71]. It incorporates the ReLU activation function, which adds non-linearity to enable
the network to effectively capture complex patterns [61]. The deeper structure of ResNet50
enables it to extract high-level abstractions, making it highly effective for complex tasks
such as medical image analysis and steganalysis [56].

VGG16

VGG16, made by the Visual Geometry Group at Oxford, is an effective CNN architecture
due to its structured and uniform design [69]. It comprises 16 weight layers, which include
13 convolutional layers and 3 fully connected layers. This depth enables the network to
learn rich hierarchical representations while maintaining a manageable computational cost.

A key feature of VGG16 is its use of small 3 × 3 convolutional filters, which allow deeper
architectures without significantly increasing the number of parameters compared to larger
filters [72]. VGG16 also incorporates max-pooling layers, which downsample feature maps
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by retaining only the most significant features within each pooling window. This reduces
computational complexity [62]. VGG16 has been widely applied in various computer vision
tasks, including facial recognition, medical imaging, and scene classification [73, 74]. Its
consistent performance and ability to generalize well make it a popular choice for feature
extraction in transfer learning scenarios.

Both ResNet50 and VGG16 were pre-trained on large datasets, such as ImageNet, which
contains 14 millions of labelled images. This pre-training allows these models to learn
general image features that can be transferred to specific tasks with minimal additional
training, significantly improving performance [75].

2.6 Statistical Methods for Steganalysis

Statistical steganalysis techniques analyze images to detect hidden data by identifying de-
viations from expected statistical properties [76]. These methods work by examining pixel
relationships, texture patterns, and frequency distributions. The following subsections
discuss key statistical techniques used in steganalysis, including RS analysis, Local Bi-
nary Patterns (LBP), Chi-Square Attack, Sample Pair Analysis (SPA), Statistical Feature
Fusion, and Support Vector Machines (SVM) [76].

2.6.1 RS Analysis

This method examines how pixel values change when their LSBs are altered, a process
referred to as "flipping". RS analysis was initially introduced by Fridrich [77]. It uses the
Median Edge Detector (MED) to locate image edges and measures how these edges change
when the LSBs are modified, helping to identify hidden data.

The Median Edge Detector is defined as:

MED(x, y) = median(P1, P2, P3, P4) (2.9)

where P1, P2, P3, P4 represent the pixel values of the four neighbouring pixels. The MED
helps differentiate between smooth regions and edges, where modifications in stegano-
graphic images are more likely to alter pixel relationships.

Residuals in this context refer to the differences between the predicted and actual pixel
values, helping to measure inconsistencies introduced by steganography. These residuals
are computed using the standard deviation and mean of pixel-wise differences across the
image.

2.6.2 Local Binary Patterns (LBP)

LBP analyses the texture of an image by comparing each pixel to its neighbours. It was
initially introduced by Ojala [78]. The method encodes each pixel with a binary value
depending on whether the intensity of its surrounding pixels is higher or lower. This
binary pattern is then converted into a histogram that represents texture distribution.

LBP is calculated as:

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p (2.10)

where:

• P is the number of sampling points,
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• R signifies the the neighbourhood’s radius

• gp is the gray value of the sampled points,

• gc is the gray value of the centre pixel,

• s(x) is the step function.

Unusual textures, such as artificially smooth or rough areas, can indicate the presence
of steganographic modifications. The histogram provides a global statistical summary that
helps detect these irregularities.

2.6.3 Chi-Square Attack

The Chi-Square Attack is a statistical test used to detect anomalies in pixel distributions.
It was introduced as a mathematical test by Tallarida [79] and is particularly effective in
detecting palette-based steganography in images such as GIFs.

Unexpected patterns in this context refer to differences between the expected and
observed frequency of colour occurrences. If an image has been modified to hide data, the
frequency distribution of certain pixel values may deviate from natural variations.

The Chi-Square Attack feature is calculated as:

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei
(2.11)

where:

• Oi denotes the observed frequency of the i-th category,

• Ei signifies the expected frequency of the i-th category,

• n is the number of categories.

Significant deviations may indicate hidden information by comparing the expected and
observed distributions.

2.6.4 Sample Pair Analysis (SPA)

SPA examines pixel pairs to detect unusual relationships possibly caused by steganographic
embedding. It was initially proposed by Dumitrescu [19]. The method evaluates pairs of
adjacent pixel values which identifying subtle changes in images.

The SPA feature is defined as:

SPA =
1

N

N∑
i=1

|pi − qi| (2.12)

where:

• N is the total number of pixel pairs,

• pi, qi are the values of the i-th pair of adjacent pixels.

SPA is useful for detecting small modifications in images where pixel intensity changes
appear unnatural.
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2.6.5 Statistical Feature Fusion

Feature fusion enhances detection accuracy by combining multiple steganalysis techniques.
Feature Fusion is represented as:

F = w1f1 + w2f2 + ...+ wnfn (2.13)

where:

• fn represents each statistical feature (such as SPA or RS Analysis),

• wn represents the weight assigned to each feature.

Feature fusion allows for adaptive strategies that can be fine-tuned for different usages
in practice.

2.6.6 Support Vector Machine (SVM)

SVM was introduced by Vapnik and Cortes [80]. Support Vector Machine (SVM) is a
supervised learning algorithm that classifies data by identifying the optimal hyperplane
that maximizes the margin between different classes.

In steganalysis, SVM is used to classify images as stego or cover based on extracted sta-
tistical features, such as those obtained from RS analysis and LBP. The optimal hyperplane
is defined as:

w · x+ b = 0 (2.14)

where:

• w is the weight vector,

• x denotes the input feature vector,

• b is the bias value.

Machine learning methods such as naive Bayes, decision tree, k-nearest neighbours,
and SVM are used as classifiers and have been shown in [81] to increase the accuracy of
various steganalysis algorithms between 17.31–24.62%. The accuracy of available steganal-
ysis algorithms varies greatly, between 30-92%, depending on several factors, including the
dataset size, the complexity of steganographic methods used, and the preprocessing tech-
niques applied to images before analysis [7]. A larger dataset can significantly affect SVM
performance, because the computational cost increases with more data points. Addition-
ally, SVM may struggle with imbalanced datasets, requiring careful parameter tuning and
feature selection.

In a study by Wang [82], a comparison was made between machine learning classifiers
and deep learning neural networks in terms of classifying images. The study found that the
accuracy of SVM was higher when using a smaller dataset of 2,500 images (0.86 for SVM
and 0.83 for CNN), while CNNs performed better with a larger dataset of 10,000 images
(0.88 for SVM and 0.98 for CNN). The dataset consisted of greyscale images with varying
levels of embedded steganographic payloads, and standard preprocessing techniques such
as histogram equalization and feature normalization were applied before classification. The
small dataset contained 2,000 training images, while the larger dataset had 20,000, with
25% of the images used for testing and 75% for training. In terms of computational time,
SVM took longer for the larger dataset, while CNNs required more time for the smaller
set due to their reliance on extensive feature extraction. Larger and more diverse datasets
often lead to better generalization for deep learning models, while smaller datasets may
cause overfitting, especially in CNNs that rely on numerous parameters.
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2.7 Evaluation Metrics

This section defines the performance metrics used to assess steganalysis models. It explains
key evaluation metrics, including precision, recall, accuracy, F1 score, and ROC AUC.

The goal of the evaluation is to measure the performance and accuracy of the developed
classifiers in detecting steganographic content. Specifically, the tests assess how effectively
the model can classify images as either cover or stego. This includes determining whether
an image contains hidden information, distinguishing between cover and stego images, and
minimizing false detections while maintaining high detect rate. To quantify performance,
the classification outcomes are categorized into four types:

• True Positive (TP): A stego image correctly classified as stego.

• True Negative (TN): A cover image correctly classified as cover.

• False Positive (FP): A cover image incorrectly classified as stego.

• False Negative (FN): A stego image incorrectly classified as cover.

2.7.1 Accuracy

Accuracy quantifies the proportion of correctly classified instances out of the total number
of instances [83].

Accuracy =
TP + TN

TP + TN + FP + FN
(2.15)

Although accuracy is widely used, it may not be reliable for imbalanced datasets, as
it does not differentiate between false positives and false negatives. Therefore, it is often
complemented by other metrics, such as the ones following.

2.7.2 Recall

Recall, also referred to as sensitivity, quantifies the proportion of true positive cases among
all actual positive instances [83]. It is particularly relevant in steganalysis, where missing
a stego image (false negative) can be critical.

Recall =
TP

TP + FN
(2.16)

2.7.3 Precision

Precision quantifies the proportion of true positive cases out of all cases classified as positive
[83]. In the context of steganalysis, a high precision score means that most images identified
as stego truly contain hidden information.

Precision =
TP

TP + FP
(2.17)

For example, if a classifier incorrectly flags multiple cover images as stego, it may lead
to unnecessary alerts, diminishing trust in the tool.
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2.7.4 F1 Score

The F1 score represents the harmonic mean of precision and recall, offering a unified metric
that balances both elements [83].

F1 =
2× Precision × Recall

Precision + Recall
(2.18)

A high F1 score indicates a model with a strong balance between detecting stego images
and minimizing false detections.

2.7.5 Receiver Operating Characteristic (ROC) and Area Under Curve
(AUC)

The ROC curve evaluates the model’s ability to differentiate between positive (stego) and
negative (cover) instances [84]. The AUC summarizes the overall performance by measuring
the likelihood that a randomly chosen stego image ranks higher than a randomly chosen
cover image.

AUC =

∫ 1

0
TPR d(FPR) (2.19)

where:

• TPR = TP
TP+FN is the true positive rate.

• FPR = FP
FP+TN is the false positive rate.

An AUC score closer to 1.0 indicates a highly effective model in distinguishing between
stego and cover images.
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Chapter 3

Review methodology

This chapter outlines the methodology used to review existing research on steganogra-
phy and steganalysis. It describes the development of StegaScanMail, an automated ste-
ganalysis tool, and explains the systematic approach used to collect and analyse relevant
literature. The study selection process, including database queries, inclusion/exclusion cri-
teria, and manual filtering, is detailed. A bibliometric analysis is also presented, providing
insights into research trends, influential studies, and knowledge gaps.

3.1 Study collection

This section details the process of identifying and selecting relevant literature. It describes
the academic databases used, the search strategies applied, and the steps taken to refine the
selection. The methodology ensures that only high-quality and relevant studies contribute
to this research.

3.1.1 Search and queries

For gathering relevant literature the following academic databases were used:

• Scopus (www.scopus.com)

• IEEE (www.ieee.org)

• ScienceDirect (www.sciencedirect.com)

• ACM (www.acm.org)

These engines were chosen as they offered the most comprehensive databases in the com-
puter science field and also had extensive exporting functionalities for the academic papers
found.

At first, the search was done mainly using the keywords “steganography”, “image ste-
ganalysis”, “PNG” “steganalysis”, “steganographic techniques”, "CNN" or combinations of
these keywords. Cross-references were also used to find the most relevant work in the field.
Secondly, for a better understanding of the literature, some specific queries were performed
on each literature search engine. The queries were at first more inclusive and then were
adapted to narrow down the number of papers found. The first set of queries used only
the “steganography” and “steganalysis” keywords and had the following format:
Scopus: “steganography” AND “steganalysis”
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Source Query results After (IC) and (EC) After manual filtering
Scopus 63 18 3

Science Direct 100 10 5
ACM 62 8 4
IEEE 18 5 2
Total 243 41 14

Table 3.1: Paper selection numbers.

ACM digital library: [[Title: steganography*] OR [Abstract: steganography*] OR [Key-
words: steganography*]] AND [[Title: steganalysis*] OR [Abstract: steganalysis*] OR
[Keywords: steganalysis*]]
IEEE: (“All Metadata”: steganography*) AND (“All Metadata”: steganalysis*)
ScienceDirect: (“Steganalysis” OR “steganography”)

Using these queries on 31st January 2024, 63 documents were found in Scopus, 18 in
IEEE, 62 in ACM, and 100 in ScienceDirect.

After applying the inclusion and exclusion criteria mentioned in section 2.3.1, 243
papers were found in total in the 4 academic databases mentioned. As this number proved
still too big, further manual filtering of the papers was performed. The manual filtering
was done using four questions in mind:

• Does the paper answer any of the research questions?

• Is steganalysis or LSB steganography the main subject of the paper?

• Does the paper provide new insights?

• Does the paper provide any improvements to the existing methods of steganalysis?

After applying manual filtering, 14 papers remained. Table 3.1 shows the study-
selection process numbers.

3.2 Selected Research Comprehensive Analysis

This section presents a structured analysis of the selected studies and reporting on their
different approaches, datasets, and evaluation metrics. The advantages and limitations
of the studies are examined, providing an understanding of current trends in the fields of
steganography, steganalysis and deep learning.

A complete analysis of the final selection of literature is present on the next pages in
Table 3.2, 3.3, 3.4, 3.5.
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Nr. Year Steganography
method

Dataset Detection/Evaluation Pros Cons

[85] 2023 F5 for JPG im-
ages and LSB
for PNG im-
ages

Does not mention Comparison factors include
compression ratio, visual
quality, filtering artefacts,
lossy compression, trans-
parency support, and lossless
compression

It offers a user-friendly and system-
independent solution for secure com-
munication using image steganogra-
phy. It automatically identifies the
image type, and uses an appropriate
algorithm.

It does not support steganalysis
and is used only in the Telegram
messaging app.

[86] 2022 LSB Ten randomly
selected pictures
of the formats
GIF, BITMAP,
and PNG

Peak Signal to Noise Ratio
(PSNR) and Mean Square Er-
ror (MSE). MSE measures the
absolute error, while PSNR
provides a logarithmic scale of
image quality. Higher PSNR
& Lower MSE means less dis-
tortion and better quality.

It was observed that the error for the
three image formats was very mini-
mal at stego 1 bit, and it increased
the least for PNG.

Adding more stego-bits distorts
the stego-image, thereby expos-
ing the secret message.

[87] 2022 Discrete
Wavelet
Transform
and Alpha
Blending

Few popular im-
ages (Lena, Ba-
boon) in three for-
mats: PNG, JPG,
TIFF.

MSE, PSNR, Entropy The proposed method achieved good
PSNR scores compared to the other
seven studies with similar meth-
ods, thus providing a secure method
of communication through image
steganography.

Testing limited to a few images
in different formats. Therefore,
it is difficult to conclude whether
this method is consistent and un-
detectable. The MSE values also
increase with the size of the im-
age, which might indicate unre-
liability for large pictures or em-
bedding data.

[88] 2022 Pixel Value
Differenc-
ing (PVD),
Optimum
Pixel Value
Adjustment
Procedure
(OPAP), and
Discrete Co-
sine Transform
(DCT).

Seven randomly
selected pictures
of 512 × 512
pixels and 1024
× 1024 pixels
in colour and
greyscale

PSNR, MSE, Embedding Ca-
pacity (EC)

Interesting conclusions: OPAP is
the best and most efficient algorithm
which can be used to conceal the se-
cret text without affecting the im-
age quality. OPAP works best with
greyscale images of 1024 × 1024
PX to produce an excellent output
of high robustness, imperceptibility,
and capacity. BMP is the most com-
patible image file format for use in
OPAP algorithms.

There is no mention of the tools
used to test these algorithms.
There is also very limited testing
in terms of the number of images
and image size required to reach
meaningful conclusions. The ro-
bustness part is mentioned as a
criterion for evaluation, but it is
only briefly discussed in the Re-
sults section.

Table 3.2: Selected literature (continues on the next page)
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Nr. Year Steganography
method

Dataset Detection/Evaluation Pros Cons

[9] 2022 Comparative
study of differ-
ent steganog-
raphy and
steganalysis
researches.

Popular datasets
used in papers
are listed with
their number of
images: BOWS2
(10k), BOSS-
Base V1.0 (10k),
ImageNet(14 mil-
lion), ALASKA I
(49k), ALASKA
II (80k). Most of
them had resolu-
tions of 256×256
and 1024×1024.

Statistical, deep learning, ma-
chine learning and pooled ste-
ganalysis studies are consid-
ered in this review.

A whole range of studies are consid-
ered chronologically and with many
visualisations which help the reader
understand the topic. Steganaly-
sis and steganography methods were
explained. Meaningful conclusions
are present as well. This review is
the most complete and useful.

Some visualisations are too
crowded; however, this proves
to be a very small problem. No
other cons were identified, as
the review was extremely well
conducted.

[89] 2022 Machine
learning clas-
sification for
steganalysis

Stego-Images-
Dataset, the same
dataset used in
this research

The approach uses DNNs to
analyse the LSB of each pixel
in the image

The method is effective in detect-
ing various types of hidden payloads,
including JavaScript, HTML, Pow-
erShell scripts, Ethereum addresses,
and URLIP addresses

Has limited generalisation owing
to the dataset size.

[90] 2020 WOW and S-
UNIWARD

BOSSBase 10,000 512x512 natural
greyscale cover images, scaled
to 256x256)

non-linear feature detection mecha-
nism, joint domain detection mech-
anism and novel transfer learning
method using low embedding rate
images

Not suitable for steganalysis of
colour images.

[91] 2020 8-directional
pixel selection
technique in
conjunction
with LSB

Three images (i.e.
Lena, Baboon
and Nature) of
512×512 pixels

Five quality measurement ma-
trices (i.e. MSE, RMSE,
PSNR, SNR, and MAE)

The proposed steganography data
hiding technique provides extra se-
curity and less imperceptibility over
some other existing data hiding
techniques (4 direction model, XOR
technique, Thresholding model)

This model keeps maximum 765
bytes’ secret data in 512 x 512
cover image and max 4095 bytes’
of the size of secret message.

Table 3.3: Selected literature (continues on the next page)
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Nr. Year Steganography
method

Dataset Detection/Evaluation Pros Cons

[14] 2019 LSB VOC 2005 Database:
Dataset 1 (1578 im-
ages of categories mo-
torbikes, bicycles, peo-
ple, and cars).

Chi Square + RS anal-
ysis + Sample pairs test
steganalysis

Combining the results of statistical
methods leads to conclusions that
are almost true. Chi-square and
RS analyses were more accurate,
whereas sample pairs and primary
sets were not.

Assessing each image using all de-
tection methods is computation-
ally challenging. Additionally,
this can be overcome by finding
the mean of all the results to sig-
nificantly improve the scanning
time.

[7] 2019 Survey cover-
ing a variety of
steganographic
techniques:
Spatial do-
main, trans-
form domain
and adaptive
(ML and DL
based, as well)

No mentions of the
datasets used by these
techniques.

Signature and statisti-
cal analyses were con-
sidered in this study.
The main focus of these
studies is on specific sta-
tistical methods, such
as the transform do-
main, spread spectrum,
or LSB.

A comprehensive survey in which
all aspects of image steganography
are discussed: procedure, proper-
ties, applications, performance, and
classifications, with both pros and
cons. There are also relevant con-
clusions and a summary of all tech-
niques discussed with their pros and
cons, which helps in considering
the scattered information through-
out this paper.

There are few mentions of the for-
mats of images on which the al-
gorithms work, and no mention of
tools that might use the discussed
steganography algorithms. In ad-
dition, there is no explicit men-
tion of steganalysis attacks on the
robustness of steganography al-
gorithms.

[92] 2018 DCT (Discrete
Cosine Trans-
form)

Three images in formats
JPEG, PNG, TIFF with
sizes between 75 KB
and 1.15 MB

PSNR and MSE The proposed tool can extract cor-
rectly the hidden payload and does
well in comparison with other stud-
ies in terms of PSNR and MSE.

There is limited testing, as only
three images are used at three
frequencies. The MSE and PSNR
results are fair; however, it is dif-
ficult to conclude that the pro-
posed algorithm performs better
than the other algorithms with
such limited testing.

Table 3.4: Selected literature (continues on the next page)
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Nr. Year Steganography
method

Dataset Detection/Evaluation Pros Cons

[13] 2016 Spatial LSB
matching

Two image sets: Img-
Boss, including 9074
images provided in
BOSS, and NRCS,
including 12,644 images
which are generated
from 3261 colour im-
ages.

Characteristic function
of difference histogram
(DHCF), centre of
mass of DHCF (DHCF
COM), and SVM for
classifying the results.
The minimised classifi-
cation error was used to
measure the detection
performance.

Detailed mathematical explanations
of the steganalysis technique used
alongside mathematical proofs.
There is also good discussion on
feature extraction and parameter
calibration. The method is well
tested with numerous images, which
supports the conclusion that the
detection performance is mixed.

The main contrast to this algo-
rithm is that its performance is
not spectacular; it has a delta
classification error of approxi-
mately 0.3, meaning that its per-
formance fails to detect approxi-
mately 30% of the tested images.
This error varies depending on
the noise level of the images, as
more noise implies more chances
that the detection may miss it.

[68] 2016 ResNet-50
(deep residual
networks)

ImageNet Accuracy, computa-
tional efficiency

Landmark study introducing resid-
ual learning to combat vanishing
gradients

Focuses on general image classifi-
cation, less tailored for steganal-
ysis.

[93] 2014 Survey of
fundamen-
tal concepts,
evaluation
measures
and security
aspects of
steganography
systems.

No mention of image
datasets.

Maximum mean dis-
crepancy (MMD),
ROC-based security,
Correlation coefficient
and Kullback–Leibler
(K–L) divergence.

This survey used a different eval-
uation approach compared to the
other studies considered. The prop-
erties of each algorithm, as well as
their advantages and disadvantages,
are explained properly. In addi-
tion, a section discusses the prop-
erties of the cover images and how
those properties affect the efficiency
of the algorithms. This section also
includes measures to ensure the best
selection of the cover images.

No mention of systems that em-
ploy machine- or deep-learning
techniques. This survey is 11
years old, so it does not bring
much novelty, even if it discusses
the known techniques at that
time from another perspective, as
other studies have considered.

[69] 2014 VGG16 (deep
convolutional
networks)

ImageNet Accuracy on benchmark
datasets

Simplicity and depth yield strong
performance in feature extraction

Computational cost of deeper
networks.

Table 3.5: Selected literature
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3.3 Synthesis and Conclusions

This section synthesizes the key insights from the literature analysis. The findings highlight
the increasing role of deep learning while emphasizing the need for reduced false positives.

Gope et al. [85] developed a system using F5 for JPG images and LSB for PNG images,
offering user-friendly and system-independent communication. However, it lacks steganal-
ysis support and is limited to Telegram. Ejidokun [86] examined LSB variants, observing
minimal errors at lower stego-bit rates but increasing distortion with higher embedding.
Alam’s method [91] introduced an 8-directional pixel selection technique combined with
LSB, improving security while maintaining imperceptibility.

More advanced embedding techniques, such as the Discrete Wavelet Transform and
Alpha Blending proposed by Tevaramani et al. [87], showed promising PSNR results but
lacked large-scale testing. Selvamani et al. [88] compared PVD, OPAP, and DCT, con-
cluding that OPAP balances imperceptibility and robustness well, particularly for grayscale
images, though its testing scope was limited.

On the steganalysis side, machine learning-based detection has gained attention. Mu-
ralidharan [9] reviewed statistical and deep learning-based steganalysis approaches, ana-
lyzing datasets such as BOSSBase and ALASKA. Cassavia et al. [89] applied deep neural
networks (DNNs) to detect hidden payloads, reinforcing the role of deep learning in iden-
tifying steganographic threats.

Deep learning-based steganalysis has also been explored in Wang et al.’s Wang-Net
approach [90], which introduced a joint domain detection strategy and a novel transfer
learning method. Despite its success in detecting WOW and S-UNIWARD, it remains
limited to grayscale images. Xia’s study [13] applied mathematical feature extraction for
spatial LSB matching detection but had a classification error of approximately 30

Mewalal’s work [14] showed how combining Chi-Square, RS analysis, and Sample Pair
methods improved detection accuracy. However, running all methods on each image was
computationally intensive. Kadhim’s survey [7] categorized spatial, transform, and adap-
tive steganographic techniques, though it lacked details on image formats and testing tools.

From a dataset perspective, Muralidharan et al. [9] and Cassavia et al. [89] emphasized
the importance of diverse datasets. Cassavia et al. introduced a dataset with 32,000 stego
images embedding real-world payloads, making it highly relevant for security research.

Older literature, such as El Rahman’s work [92], focused on DCT-based steganalysis
but was limited by small-scale testing. Subhedar’s survey [93] remains a valuable early
resource but lacks insights into modern deep learning-based approaches.

This literature review highlights the increasing reliance on machine learning and deep
learning for improving detection accuracy. Future research should focus on developing
realistic datasetsa amd optimizing deep learning models for multi-domain detection. Ad-
ditionally, reducing false positive rates is essential, as steganography detection involves
subtle and often imperceptible modifications, making misclassifications particularly prob-
lematic. High false positive rates can lead to unnecessary alerts and decreased system
reliability, underscoring the need for more precise and robust detection methods.
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3.4 Study quality assessment

This section presents a bibliometric literature analysis, highlighting key research trends
and publication patterns. Using VosViewer and Scopus, author co-citation and keyword
co-occurrence analyses are presented. The results show that most studies focus on LSB-
based steganography with the majority of publications being conference papers and journal
articles. The findings also indicate a gap in research on steganalysis for PNG images
embedded with LSB techniques.

3.4.1 Bibliometric analysis

Incorporating bibliometric analysis within the framework of this literature review provides
insight into the research landscape in the field of steganography. A bibliometric analysis
is a systematic study of academic publications that employs quantitative and statistical
methods to extract meaningful patterns from a body of literature.

Figure 3.1: Scopus authors co-citation

Using VosViewer1, visualisations of the bibliography were created. The first visuali-
sation represents the co-citation of authors with a minimum of seven citations in the 63
studies found on Scopus, as shown in Figure 3.1. This visualisation reveals five clusters of
authors frequently cited together, which highlights that the research area is structured into
smaller, focused communities. Each community is possibly specialized in distinct image

1https://www.vosviewer.com/
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steganography and steganalysis techniques and methodologies. This clustering indicates
an organized academic landscape, where researchers collaborate or consistently build upon
similar frameworks or approaches.

The second visualisation, shown in Figure 3.2, illustrates keyword co-occurrence, which
helps identify the main research topics and their interconnections. Keywords with at
least five mentions were included. The analysis highlights significant keyword clusters
such as steganography, cryptography, least significant bit (LSB), digital storage, and image
processing, indicating their popularity in current research.

Figure 3.2: Scopus keyword co-occurrence

Scopus also provides built-in analysis tools, although they are more limited than those
in VosViewer. These analyses include trends such as publication counts by year and doc-
ument type, which are illustrated in Figures 3.3 and 3.4.

Figure 3.3: Scopus documents by year
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Figure 3.4: Scopus documents by type

Figure 3.4 shows that most papers were either conference papers (59.4%) or journal
articles (37.5%), while only two were book chapters.

As illustrated in Figure 3.3, there is a noticeable decrease in research papers before
2017. This trend is due to the inclusion criteria outlined in subsection 2.3.1, specifying
that the primary analysis covers publications from the last ten years (2015–2025), with
only exceptionally cited or foundational papers included from earlier periods.

3.5 Summary

This chapter outlined the methodology used to review existing research on steganography
and steganalysis, using the systematic literature review model. The study collection process
included database queries, keyword searches, and the selection criteria that refined an initial
set of 243 papers down to 14 high-relevance studies.

Bibliometric analysis using Scopus and VosViewer revealed that most research empha-
sizes general steganographic techniques, with limited focus on steganalysis for PNG images
in email security. The review also highlighted a gap in dedicated detection methods for
steganographic content embedded in PNG email attachments.

To address this, StegaScanMail was developed as a cloud-ready steganalysis tool
integrating deep learning models with security frameworks for steganalysis detection.
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Chapter 4

Proposed solution

This chapter presents an in-depth discussion of the architecture and practical implemen-
tation of StegaScanMail, which is the proposed solution to answer the research questions.
The chapter describes the algorithm’s architecture, the project’s classes and the devel-
opment of the deep learning models to be integrated into the application. Additionally,
cloud integration and deployment strategies are explored alongside a detailed analysis of
the datasets utilized for both training and testing.

4.1 StegaScanMail Architecture and Implementation

This section describes the algorithm behind StegaScanMail and its implementation. It
outlines the technical workflow (see Figure 4.1), from email retrieval using IMAP to image
preprocessing and classification using deep learning models. The section emphasizes the
security considerations to ensure reliability in processing email images.

The practical part of this research is publicly available on GitHub1. The repository can
be downloaded or cloned and installed according to the instructions in the ReadMe file.

4.1.1 Email Handling

The EmailProcessor class is responsible for connecting to the email server using IMAP,
logging in with the provided credentials, and fetching emails from a specified folder. Given
the sensitivity of email access, error-handling mechanisms have been implemented. If a
connection attempt fails due to incorrect credentials or server issues, appropriate error
messages are logged, and retries are managed to prevent application crashes. Logging

1https://github.com/radubasa/CNN-Steganalysis

Figure 4.1: StegaScanMail process workflow
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functionality has been incorporated to track failed login attempts, connection errors, or
issues encountered when fetching emails, thereby enhancing debugging and providing bet-
ter transparency. Once images are extracted from emails, the ImagePreprocessor class
processes them for model input.

4.1.2 Image Preprocessing

The ImagePreprocessor class is responsible for preparing images before the image ste-
ganalysis model analyses them. The preprocessing pipeline includes multiple steps to
ensure the input images are in a consistent format suitable for deep learning models.

First, images are converted to the RGB colour space, ensuring uniform input across
different image formats. Next, each image is resized to a standard size of 512×512 pixels to
match the input requirements of the CNN model. This step prevents variability in image
dimensions from affecting model performance. After resizing, pixel values are normalized
to a range of [0,1], improving numerical stability during model inference.

While the preprocessing steps described here are applied during inference, additional
techniques such as data augmentation, noise removal, and contrast adjustments were used
during the training phase to improve generalization. These will be explained later in the
subsection 4.1.5. The preprocessed images are then passed to the SteganalysisModel
class, which loads a pre-trained CNN model and classifies the images as either cover or
stego.

4.1.3 Cloud Integration

The application is encapsulated within a Docker container, using the lightweight Python
3.9-slim image from Docker Hub to optimize efficiency and compatibility. Containerization
ensures that the application and its dependencies are portable across different environ-
ments.

This containerization process involves defining the application environment using a
Dockerfile, which specifies dependencies and application files to ensure consistency across
deployments. The WORKDIR directive is used to maintain an organized structure, while
required dependencies are installed via pip with the –no-cache-dir option to minimize
image size. The application code is copied into the container, and execution permissions
are set to allow seamless operation.

While the initial intention was to integrate the steganalysis tool with a business en-
terprise mailbox on Microsoft Azure, access restrictions prevented full integration due to
limitations of budget and only the free student account was used. As a result, the applica-
tion was instead deployed as a standalone Docker container on an Azure instance, where it
was deployed using cloud resources. This allowed for remote execution and testing, but di-
rect integration with Microsoft Exchange’s security email filter was not feasible within the
constraints of this research. Future work may explore complete enterprise-level integration
once access to business mailbox management services is available.

The container image is first built and stored in Azure Container Registry (ACR) to
deploy the Dockerized application on Microsoft Azure. This involves creating a registry,
logging in, and pushing the Docker image to the cloud repository. Once the image is
available in ACR, an Azure Container Instance (ACI) is created to host and execute the
container. During deployment, resource allocations for CPU and memory are set, while
networking configurations, such as DNS labels and exposed ports, are adjusted to ensure
accessibility. Authentication credentials are managed securely using Azure Key Vault for
sensitive information storage. Monitoring and logging are integrated using Azure Monitor,
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providing real-time insights into application performance. While ACI enables straight-
forward container execution, scaling can be enhanced by deploying the application using
Azure Kubernetes Service (AKS) for more heavier workloads.

Docker containerization ensures compatibility with different cloud platforms such as
Azure, AWS, and Google Cloud. However, environment-specific configurations, such as
authentication credentials, storage access permissions, and network settings, need to be
adjusted differently on the deployment platform.

Docker’s official documentation2 recommends best practices followed in this implemen-
tation, such as using lightweight images to reduce attack surfaces, structuring Dockerfiles
for clarity, and copying only necessary files to minimize image size.

4.1.4 Development

StegaScanMail is developed in Python 3.83. To retrieve emails, the library Imaplib4 is used.
Further, cryptographically secure libraries are implemented for steganographic techniques,
such as Math OS5, which generates secure random numbers. Other relevant libraries
include OpenCV6 and NumPy7 for image processing and statistical analysis.

The test images are placed in a Python sandbox environment with the help of the
RestrictedPython package 8, which allows the execution of untrusted code inside Python
programs. Other key components include Imaplib for email retrieval9, OpenCV10 and PIL
for image analysis11, TensorFlow12 and Scikit-learn for machine learning13, and VGG1614.
The application supports both RGB and grayscale PNG images in the analysis, with the
possibility of extending it in the future to other image types.

The model’s architecture is optimized using Keras Tuner15, which searches for the
best combination of convolutional layers, dropout rates, and learning rates. To speed up
image processing, the system implements Python’s ThreadPoolExecutor16. This allows
concurrent execution of image preprocessing and dataset loading tasks.

4.1.5 Deep Learning and statistical steganalysis models

This code was designed to construct and train a CNN for image classification, specifically
to differentiate between cover and stego images.

First Model: fine-tailored CNN

The developed CNN model is formed by a combination of convolutional layers followed
by pooling layers, batch normalization, and dense layers, which help extract features from

2https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
3https://www.python.org/downloads/release/python-380/
4https://docs.python.org/3/library/imaplib.html
5https://www.geeksforgeeks.org/python-os-urandom-method/
6https://opencv.org/
7https://numpy.org/
8https://restrictedpython.readthedocs.io/en/latest/
9https://docs.python.org/3/library/imaplib.html

10https://opencv.org/
11https://python-pillow.org/
12https://www.tensorflow.org/
13https://scikit-learn.org/
14https://keras.io/api/applications/vgg/
15https://keras.io/guides/keras_tuner/
16https://docs.python.org/3/library/concurrent.futures.html
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the images and make predictions. It begins with a convolutional layer that applies a high-
pass filter to enhance subtle pixel variations, which is particularly useful for steganalysis.
The model then uses a series of convolutional layers with increasing numbers of filters
(from 32 to 256), enabling it to capture both low-level textures and more complex spatial
relationships within images. After each convolutional layer, there is a batch normalization
layer, which stabilizes and accelerates training. Further, a max-pooling layer is used to
reduce spatial dimensions.

To further improve feature extraction, depthwise convolutional layers are incorporated,
which are particularly beneficial for analysing fine pixel variations and textural incon-
sistencies introduced by steganographic embeddings. Instead of using a fully connected
layer stack, the architecture applies global average pooling before the dense layers. This
choice helps reduce overfitting and encourages better generalization, making the model
more stable across different types of input data.

To further prevent overfitting, a dropout layer with a rate of 0.5 is included, which
randomly deactivates some neurons of the models during training. The final classification
is handled by a dense layer with a sigmoid activation, producing a probability score that
indicates whether the image likely contains hidden content.

This architecture is well-suited for steganalysis because it is designed to emphasize
small pixel variations while preventing overfitting. The inclusion of high-pass filtering at
the input stage makes it particularly effective for detecting hidden payloads, as stegano-
graphic techniques typically introduce subtle statistical anomalies rather than large struc-
tural changes. The use of depthwise convolutions enhances the model’s sensitivity to
fine-grained textural distortions, which are often indicative of steganographic embedding.
Additionally, global average pooling minimizes the number of trainable parameters while
retaining discriminative information, making the model both computationally efficient and
robust in detecting steganographic modifications across different image formats.

TensorFlow17 datasets are created for training, validation, and testing, ensuring the
model encounters diverse conditions, including different image formats (e.g., PNG), varying
resolutions, and potentially noisy or compressed images. The CNN model is built and
compiled using Adam optimizer and the loss function binary cross-entropy. To improve
model generalization, hyperparameter tuning is performed using Keras Tuner, optimizing
the number of filters in convolutional layers and the learning rate. Additionally, class
imbalance is addressed through computed class weights, ensuring balanced training.

Data augmentation techniques are used in training data to enhance model robustness.
These include rescaling pixel values to a range [0,1], random rotations up to 20 degrees to
ensure invariance to orientation, and horizontal and vertical shifts (up to 20%) to simulate
different perspectives. Further transformations include shearing (up to 20%), zooming (up
to 20%), and horizontal flipping to increase variability. Any missing pixels resulting from
transformations are filled using the nearest neighbour approach. These augmentations
help the model tailor to different scenarios, improving its ability to detect steganographic
modifications across various conditions.

The ReduceLROnPlateau callback is used to monitor the validation loss and dynami-
cally adjust the learning rate. The learning rate of the model is reduced by a factor of 0.2
whenever there is no improvement in the validation loss value for five consecutive training
epochs.

If the validation loss did not improve for five consecutive epochs, the learning rate was
reduced by a factor of 0.2. This threshold was chosen based on best practices in deep
learning, where adjusting the learning rate after several epochs of stagnation helps escape

17https://www.tensorflow.org/
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local minima and improve generalization. The minimum learning rate was set to 1e-6
to ensure the optimizer does not continue making excessively small updates, which could
hinder learning progress.

The EarlyStopping callback tracked the validation loss and stopped training if there
was no improvement for 10 consecutive epochs. This threshold was empirically set to avoid
unnecessary training iterations while ensuring the model had enough time to converge.
The callback also restored the best-performing model weights obtained during training,
ensuring that the final model retained the optimal parameters rather than those from a
later, possibly overfitted epoch.

The ModelCheckpoint callback was employed to save the model’s weights whenever val-
idation accuracy improved. This allowed for preserving the best-performing model across
all training epochs, mitigating the risk of degradation in later stages. Given the nature
of deep learning optimization, where accuracy can fluctuate, storing only the best model
prevents suboptimal results from being used.

The model was trained using augmented data to enhance robustness. Its performance
was validated using the test datasets. Evaluation metrics such as precision, recall, accuracy,
F1 score, specificity, and AUC-ROC were computed and analysed to assess classification
performance in section 5.1.

Second model: VGG16

The VGG16 model was used to evaluate its capability in classifying steganographically
embedded images, using its pre-trained weights on the dataset ImageNet.

To adapt the model for steganalysis, the top four layers were unfrozen for fine-tuning,
allowing the network to learn high-level texture and noise patterns indicative of stegano-
graphic modifications. Additionally, a custom classification head was incorporated. It fea-
tures a global average pooling layer tasked to reduce the spatial dimensions of the model.
This is followed by a dense layer with 256 units and ReLU activation. This structure en-
ables better feature integration while maintaining sensitivity to subtle pixel-level artifacts.
A dropout layer with a rate of 0.5 was included to prevent overfitting, and the final dense
layer with two units and a softmax activation function outputted the class probabilities.

The callback functions for learning rate reduction, early stopping, and model check-
point, as previously detailed in section 4.1.5, were utilised to ensure optimal training and
model performance.

Third model: ResNet50

The ResNet50 model employs a pre-trained network to leverage existing knowledge, fine-
tuning it for the specific task of image steganalysis. Image paths and labels are collected
from designated folders and categorised into clean and steganographic classes.

ResNet50 was configured with pre-trained weights from the ImageNet dataset and fine-
tuned to detect subtle pixel-level anomalies introduced by image steganographic embed-
ding. Compared to VGG16, which has a simpler sequential architecture, ResNet50’s resid-
ual connections mitigate vanishing gradient issues and enable deeper feature extraction,
making it more effective at identifying the minute distortions characteristic of stegano-
graphic modifications. While conventional CNNs may struggle to capture long-range de-
pendencies and hierarchical patterns, ResNet50 excels in learning both low-level textures
and high-level semantic features, which are critical for distinguishing stego images from
clean ones. This makes it particularly well-suited for steganalysis, where the detection of
subtle statistical irregularities is important.
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Figure 4.2: Cover image Figure 4.3: Stego image
with malicious JS code

Figure 4.4: Example images from the Stego-Images-Dataset showing stegano-
graphic embeddings of malicious JavaScript

The same callback functions for learning rate reduction, early stopping, and model
checkpointing were employed as described previously to ensure optimal training and model
performance.

Forth model: Statistical methods and SVM

Various techniques have been employed, including RS analysis, Local Binary Patterns, chi-
square analysis, and sample-pair analysis. The RS analysis is facilitated by the median edge
detector function, which computes the statistical properties of the residuals between the
original and predicted matrices of an image. The LBP was computed using the calculated
LBP and LBP feature functions. This method captures the local textural patterns in the
images. Chi-Square and SPA statistics are calculated to detect steganographic anomalies,
using the explained formulas in Chapter 2 tailored to analyse pixel intensity distributions
and variations. Feature fusion is achieved by combining extracted values into a feature
vector. Parallel processing, implemented using Python’s concurrent.futures module, eases
this step by distributing computations across multiple CPU cores.

For classification, an SVM with a linear kernel was employed. The model was trained
on the fused features using the scikit-learn SVM implementation, a robust classifier known
for its effectiveness in binary classification problems. The validation and testing phases
followed, during which the predictive performance of the model was evaluated using metrics
such as precision, recall, F1-score, and accuracy.

4.2 Dataset

This section details the datasets employed for training and testing the image steganalysis
models, focusing on their relevance to real-world steganographic detection. The primary
dataset, Stego-Images-Dataset, is examined in terms of its structure, types of hidden pay-
loads, and limitations. Additional datasets, such as BOSSbase, are used to assess model
generalization. The section also discusses potential biases introduced by dataset selection
and their impact on model performance.
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Figure 4.5: Same stego Im-
age but with HTML mali-
cious code

Figure 4.6: Same stego Im-
age with malicious URL code

Figure 4.7: Example images with malicious code from the Stego-Images-Dataset

The datasets used for testing are sourced from Kaggle18 and were selected based on
their relevance to real-world steganographic detection scenarios. One dataset was used
for training, testing, and validation, while one additional dataset was employed to test the
robustness of the algorithm. The primary dataset, Stego-Images-Dataset19, documented by
Cassavia et al. [89], consists of 44,000 PNG RGB images, including both cover images and
those embedded with LSB steganography. This dataset provides a structured partitioning
of 28,000 images for training, 8,000 for validation, and 8,000 for testing. However, as
the dataset primarily consists of images representing well-known internet logos, there is
a potential bias toward structured and synthetic content, which may not fully represent
the variability seen in natural images. This could impact the generalisability of the model
when applied to real-world images.

The stego images contain hidden payloads, including malicious JavaScript, HTML,
PowerShell scripts, URLs, and Ethereum addresses. These payloads are embedded in the
least significant bit of each colour channel. For a 512 × 512 RGB image, the steganographic
capacity is theoretically limited to 512 × 512 × 3 bits. This approach ensures that the
visual distortions are imperceptible to the natural human eye, maintaining the hidden
status of the attack, as illustrated in Figures 4.4 and 4.7. However, the small size of the
embedded payloads presents a challenge in detection, as the alterations to pixel values are
minimal. This subtlety makes it difficult for statistical methods to differentiate between
cover and stego images. Advanced deep learning models have performed better at capturing
fine-grained patterns.

One more dataset was used to measure the efficiency of the classifiers on unseen images.
The BOSSbase dataset [94] consists of 9,000 greyscale PNG images, each having both cover
and stego variants, with an additional 1,000 greyscale images for testing. The file sizes
range from 1.24 KB to 26.3 KB, with embedded stego payloads of less than 0.01 KB.
The small image and payload sizes further increase the complexity of steganalysis, as the
available space for embedding hidden information is highly constrained. For instance, in
a greyscale PNG image of 1.24 KB, using LSB steganography with one bit per pixel, the

18https://www.kaggle.com/datasets/
19https://www.kaggle.com/datasets/marcozuppelli/stegoimagesdataset
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maximum payload capacity is approximately 1,270 bytes. For larger images of 26.3 KB,
this increases to around 26,900 bytes. Given that stego images in this dataset maintain
the same file size as their cover counterparts, the embedded payload remains within these
limits. The minimal modifications required for hiding data in such constrained spaces
make detection particularly challenging, as they introduce only slight statistical deviations
that are difficult to distinguish using traditional analysis methods. A notable limitation
encountered during testing was the absence of industry-specific cover images in one dataset,
restricting its wide usage.

This chapter explains which datasets were used to train and test the steganalysis mod-
els, focusing on how well they reflect real-world use. The main dataset, Stego-Images-
Dataset, contains 44,000 RGB images with hidden malicious content, but because most
images are synthetic (like logos), the model might not work as well on natural images.
To check how well the model handles different types of data, another dataset, BOSSbase,
was used. Made of smaller greyscale images with very limited hidden content, the dataset
was used to see how the models perform on unseen data, which is crucial for assessing the
tool’s applicability to real-world contexts. Overall, the choice of dataset has a big impact
on how well the model performs in real-life situations, especially when it comes to building
reliable software or tools for business use.
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Chapter 5

Results and Discussion

This chapter evaluates StegaScanMail, the proposed tool detailed in the previous chapter,
by analysing the practical testing processes applied to all models. An overall comparison
of the models is conducted, followed by providing comprehensive responses to the research
questions from Chapter 1. The chapter wraps up with an analysis of the strengths and
limitations of the current research.

5.1 Testing and Model Performance Analysis

This section assesses the effectiveness of the steganalysis models using the previously ex-
plained datasets. Standard metrics such as precision, recall, accuracy, F1-score, and ROC
AUC are employed for evaluation. This analysis also introduces additional statistics for a
more detailed assessment. The macro average calculates the mean of the metrics across
all classes, giving equal weight to each class irrespective of its size. Weighted average, on
the other hand, adjusts these scores based on the size of instances in each class, ensuring
that larger classes contribute more to the final result. Support represents the number of
actual instances per class, providing context for evaluating performance across different
categories. By comparing deep learning models against statistical methods, this analysis
highlights key findings, performance gaps and areas for improvement.

5.1.1 Hyperparameter Optimization and Training Process

All CNN-based models underwent hyperparameter tuning using Keras Tuner’s Hyperband
algorithm to optimise convolutional filters, learning rate, dropout rate, and number of
epochs. The best-performing model achieved a validation accuracy of 0.75 and showed
stable convergence after four epochs. The learning rate and model complexity were care-
fully adjusted to minimize overfitting while maintaining generalization. However, as the
tuning process was constrained by the available dataset and time, further optimization on
different training sets could improve in the future.

The overall performance metrics for all models are summarized in Table 5.1. The
fine-tuned CNN delivered the best results, achieving the highest accuracy of 73.8% and
an ROC AUC of 0.832. It exhibited strong precision for stego images (0.90), ensuring
reliable detection of hidden content, while a recall of 0.94 for clean images minimized false
positives. However, the recall for stego images was lower (0.72), indicating that some
hidden messages remained undetected, which may be attributed to dataset limitations or
insufficient training diversity in terms of images.
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Metric CNN ResNet-50 VGG16 SVM (+Statistical)

Accuracy 0.738 0.672 0.658 0.488

Recall 0.830 0.702 0.680 0.475

F1 Score 0.800 0.692 0.671 0.450

ROC Score 0.832 0.789 0.752 0.538

Precision 0.820 0.770 0.748 0.652

Table 5.1: Performance Metrics for Stego-Image Detection Models

The SVM model, which relied on statistical features, performed significantly worse than
deep learning-based approaches, with an ROC AUC of 0.538, confirming that statistical
features struggle to capture complex steganographic patterns. Both VGG16 and ResNet-
50 underperformed slightly compared to the custom CNN, suggesting that the architecture
was better suited for the specific dataset.

5.1.2 First Model: Custom CNN

The performance of the CNN models is presented in Table 5.2. In addition to the strong
recall and accuracy values, the model exhibits a high precision for stego images (0.90). This
indicates that when it detects hidden content, it does so with a high degree of confidence.
The F1-score is balanced across classes, with a macro average of 0.80. This suggests
stable classification performance rather than favoring one class over another. The weighted
averages are also closely aligned with the macro scores, reflecting the model’s ability to
handle class imbalance effectively.

The current false positive rate of 6% (120 out of 2000 clean images) could lead to
legitimate emails being incorrectly flagged as steganographic. While this is relatively low,
frequent misclassifications in high-volume email communication could disrupt workflows,
requiring manual review or additional filtering layers.

Metric Clean Stego Macro Avg Weighted Avg

Precision 0.72 0.90 0.81 0.82

Recall 0.94 0.72 0.83 0.79

F1-Score 0.81 0.80 0.80 0.80

Support 2000 6000 - 8000

Actual/Predicted Positive (TP/FP) Negative (FN/TN)

Stego Images 4320 1680

Clean Images 120 1880

Table 5.2: Classification Report and Confusion Matrix for the Custom CNN on
validation dataset

One potential cause of false positives is the dataset bias introduced by training on
a single set of stego images. If the model learns patterns specific to this dataset rather
than general steganographic features, it may misclassify clean images that share superficial
similarities with stego content. Additionally, the limited training time prevented further
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refinement through adversarial training, which could have improved robustness against
more sophisticated steganographic techniques.

One other enhancement that could further refine the model’s performance is threshold
tuning, which could help strike a better balance between false positives and false neg-
atives by adjusting the classification decision boundary. Despite limitations, the model
demonstrates potential for steganalysis tasks. It could be integrated into email security
systems upon further training for improved accuracy and reduced disruption to legitimate
communications.

5.1.3 Second Model: VGG16

The classification report and confusion matrix of VGG16 can be seen in Table 5.3. The
VGG16 model achieved an accuracy of 65.8% with an ROC AUC score of 0.752, making
it the third-best performer among the tested models. Given that VGG16 is a pre-trained
architecture, its ability to adapt to steganalysis tasks is likely due to prior exposure to large-
scale image datasets, which may contain structural patterns relevant to stego detection.
The model achieved a macro-averaged F1-score of 0.671, while its balanced precision and
recall values of 0.748 indicate a more uniform classification performance compared to the
SVM-based method.

Despite its strong precision, VGG16 exhibited limitations in recall, particularly for stego
images, where it achieved 0.680. This suggests that a significant number of stego images
were misclassified as clean, reducing their reliability for security-sensitive applications. The
confusion matrix confirms this issue, with 1920 stego images incorrectly labelled as clean.
However, its relatively high precision across both clean and stego classes demonstrates
its ability to minimize false positives, a crucial factor in email filtering systems where
misclassification could disrupt legitimate communication.

While VGG16 offers a more stable balance between precision and recall than the SVM-
based method, it still falls short of the custom CNN in terms of overall detection reliability.
Future improvements could involve fine-tuning the model with steganographic-specific aug-
mentations or integrating additional post-processing techniques to refine its predictions.

Metric Clean Stego Macro Avg Weighted Avg
Precision 0.748 0.748 0.748 0.748
Recall 0.680 0.680 0.680 0.680

F1-Score 0.671 0.671 0.671 0.671
Support 2000 6000 - 8000

Actual/Predicted Positive (TP/FP) Negative (FN/TN)
Stego Images 4080 1920
Clean Images 320 1680

Table 5.3: Classification Report and Confusion Matrix for VGG16 on validation
dataset
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5.1.4 Third Model: ResNet-50

The ResNet-50 model achieved an accuracy of 67.2% and an ROC AUC score of 0.789,
ranking second in performance among the tested models. Although it slightly outperformed
VGG16 in recall for stego images (0.702 compared to 0.680), it still fell short of the custom
CNN. ResNet-50’s architecture, while highly effective for general image recognition tasks,
may have struggled to distinguish subtle steganographic modifications, which could explain
its lower recall compared to the CNN model.

One of ResNet-50’s most notable strengths is its high precision of 0.770 across both clean
and stego images. This suggests that when the model identifies an image as steganographic,
it is highly confident in its prediction. However, its recall for stego images remains lower
than desired, with 1788 stego images misclassified as clean. This suggests that while
ResNet-50 avoids excessive false positives, it does so at the expense of missing some hidden
stego content.

Despite limitations, ResNet-50’s ability to minimize false positives makes it a viable
option for deployment in scenarios where misclassifying clean images as stego would be
highly detrimental, such as automated email filtering. However, its lower recall for stego
images indicates that further tuning or other training approaches may be needed to improve
its robustness in steganalysis applications.

Metric Clean Stego Macro Avg Weighted Avg
Precision 0.770 0.770 0.770 0.770
Recall 0.702 0.702 0.702 0.702

F1-Score 0.692 0.692 0.692 0.692
Support 2000 6000 - 8000

Actual/Predicted Positive (TP/FP) Negative (FN/TN)
Stego Images 4212 1788
Clean Images 288 1712

Table 5.4: Classification Report and Confusion Matrix for ResNet-50 on validation
dataset

5.1.5 Fourth Model: SVM with Statistical Features

The SVM model, combined with statistical feature extraction, demonstrated the weakest
performance, achieving an accuracy of 48.8% and an ROC AUC score of 0.538. Unlike deep
learning approaches, which learn hierarchical patterns from raw image data, the SVM relied
on manually extracted statistical features such as LBP, RS Analysis, Chi Square Attack and
Sample Pairs. These features often had numerical differences at the 0.001-level, making it
difficult for the SVM to establish clear decision boundaries between clean and stego images.

The confusion matrix confirms these limitations, with 3150 stego images misclassified
as clean, reflecting the model’s struggle to capture the nuances of steganographic modifi-
cations. In addition, integrating multiple statistical functions further complicated feature
selection, leading to increased noise rather than improved classification. While SVMs can
be effective for smaller datasets, their scalability is limited, and these results reaffirm the
superiority of deep learning for steganalysis.
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Metric Clean Stego Macro Avg Weighted Avg
Precision 0.652 0.652 0.652 0.652
Recall 0.475 0.475 0.475 0.475

F1-Score 0.450 0.450 0.450 0.450
Support 2000 6000 - 8000

Actual/Predicted Positive (TP/FP) Negative (FN/TN)
Stego Images 2850 3150
Clean Images 450 1550

Table 5.5: Classification Report and Confusion Matrix for the SVM Model on
validation dataset

5.1.6 Performance on Unseen Data and Overall Comparison

The results in Table 5.6 reflect the models’ generalization performance on an unseen valida-
tion set composed of 256×256 grayscale PNG images from the BOSSbase dataset. Across
all architectures, a consistent drop in performance is observed compared to the original
validation set, highlighting the domain shift impact.

The custom CNN, while still leading with the highest accuracy (0.658) and recall
(0.670), showed notable reductions in all metrics. This suggests that its learned features
were showing signs of being specialized to the training data. ResNet-50 and VGG16 expe-
rienced similar degradations, with lower recall values that signal a higher risk of undetected
stego content.

For a steganalysis tool, such results underscore the importance of training on diverse im-
age sources. In real-world scenarios, where incoming data may differ in resolution, format,
or compression characteristics, even high-performing models can exhibit sensitivity and
reduced reliability. Therefore, robustness to unseen formats, like the BOSSbase greyscale
PNGs, is essential for deployment in security-critical environments.

Metric CNN ResNet-50 VGG16 SVM (+Statistical)

Accuracy 0.658 0.618 0.592 0.480

Recall 0.670 0.630 0.610 0.490

F1 Score 0.650 0.620 0.600 0.480

ROC Score 0.742 0.701 0.682 0.520

Precision 0.710 0.680 0.670 0.580

Table 5.6: Evaluation Metrics on Unseen Validation Data (BOSSbase Dataset)

The evaluation results confirm that deep learning models, particularly the custom CNN
and ResNet-50, significantly outperform statistical methods in steganalysis tasks. The fine-
tuned CNN had the highest accuracy and recall, making it the reliable option for detecting
hidden content. While VGG16 benefited from its pretraining on large-scale datasets, its
lower recall indicates that it struggles to detect certain stego images. ResNet-50, despite
its high precision, exhibited limited adaptability to subtle steganographic modifications,
reducing its reliability in practical scenarios.

The poor performance of SVM highlights the fundamental limitations of statistical
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feature-based methods in complex visual tasks. The extracted statistical features, such
as LBP and RS Analysis, contained subtle numerical differences, often at the 0.001 level,
making it difficult for the SVM to establish clear decision boundaries. The reliance on
feature fusion increased noise rather than improving classification, resulting in a high mis-
classification rate. These findings reinforce the superiority of deep learning approaches,
which automatically extract hierarchical patterns, eliminating the need for manual feature
selection.

From a practical perspective, deploying deep learning-based steganalysis models in real-
world applications requires further refinement. The current CNN model, while effective,
still produces a false positive rate of 6%, which could disrupt legitimate communications
in an email filtering system. Reducing false positives through threshold tuning could
enhance its reliability. Additionally, using active learning strategies, where the model is
continuously refined based on real-world misclassifications, could boost robustness.

It is important to highlight that these results serve as a proof of concept rather than
a deployment-ready solution. With access to specialized datasets and extended training,
deep learning models have the potential to surpass 95% accuracy, making them viable for
real-world security applications. Industries dealing with sensitive communications, such as
financial institutions and digital media companies, could integrate steganalysis models to
enhance data security. As adversarial steganographic techniques evolve, tuture research
should aim to enhance model generalisation and improve detection robustness.
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5.2 Evaluation of Findings in Context of the Research Ques-
tions

This section addresses the research questions by integrating findings from literature and
experimental results. The section discusses practical deployment strategies, the role of
deep learning in improving detection rates, and future refinements to enhance model per-
formance.

5.2.1 Research Question 1

To better understand how a hybrid setup (on-premise + cloud) benefits the application,
we refer to Microsoft’s official documentation, which thoroughly explains various deploy-
ment strategies1. The hybrid model ensures a balance between performance, security,
and operational flexibility, leveraging cloud resources for scalability and redundancy while
maintaining on-premise control for critical operations. This approach enhances email pro-
cessing speed, improves security enforcement, and optimizes resource allocation, making it
an ideal choice for steganalysis in email communications.

In our case, Microsoft Exchange operates in a hybrid setup due to the general structure
of an enterprise email service, which includes several key components:

1. Email Daemon and Domain: These services have migrated to the cloud due to the
vast processing power available at a relatively low cost. Cloud-based management
allows organizations to centrally control email routing and delivery while benefiting
from high availability and disaster recovery mechanisms provided by platforms such
as Azure.

2. Security Protection: Security scanning, classification, and management have shifted
to the cloud because of the high computational requirements of modern email threat
detection systems. Cloud-based security solutions offer real-time scanning with AI-
driven threat detection, enabling faster identification of phishing attempts, malware,
and steganographic attacks. Additionally, centralized management enhances policy
enforcement across multiple devices and users, ensuring a consistent security posture.
These benefits mitigate the reliance on endpoint security, which is often constrained
by limited processing power.

3. Storage: Primarily cloud-based but can also be locally stored, providing flexibility in
access and compliance with data sovereignty regulations.

4. Client Interaction: Conducted locally via a standalone application or through a web
browser, allowing access regardless of device or location.

Figure 5.1 illustrates the integration between the on-premise infrastructure and Mi-
crosoft Exchange Online services in a hybrid cloud environment. It focuses on the com-
ponents involved in the identity synchronisation and email services2. At the core of the
on-premises setup is the Local Active Directory (AD), which manages user identity, au-
thentication, and authorisation within the organisation. An extra connection is utilised to

1https://learn.microsoft.com/en-us/microsoft-365/solutions/productivity-illustrations?
view=o365-worldwide

2https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/identity/
azure-ad
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Figure 5.1: Microsoft Exchange Hybrid architecture: On-premises combined with
cloud connectivity & storage

bridge the gap between on-premises and cloud-based services. This tool facilitates the syn-
chronisation of user credentials and directory information, ensuring identity management
between the Local Active Directory and Microsoft’s cloud-based identity platform Entra
ID (formerly Azure Active Directory). This synchronisation enables hybrid deployments in
which on-premises and cloud services operate together. The on-premises Exchange Server,
depicted as "Exchange on-premises”, handles email, calendars, and local communication
services. It integrates online directory services into the cloud to ensure consistent man-
agement and interaction across the environment. Entra ID in this architecture provides
centralised authentication and managing access to both on-premises and cloud services. Fi-
nally, Exchange Datacenters serve as the endpoint for email processing and storage in the
cloud. This hybrid configuration allows organisations to use the benefits of cloud services
while maintaining their existing infrastructure. This architecture also exemplifies the flex-
ibility of Microsoft’s cloud ecosystem, which supports hybrid environments and facilitates
a smooth transition to fully cloud-based deployment if needed 3.

Cloud Integration and Security Architecture

In Figure 5.2, the integration of StegaScanMail within the Microsoft Exchange security
architecture is illustrated. The numbered components represent key stages in the email
filtering process, highlighting where the steganalysis tool fits within the existing security
mechanisms.

1. The email is sent from a sender and routed to the Exchange Online data center.

2. Exchange Online serves as the cloud-based email server within the Microsoft ecosys-
tem, designed to facilitate seamless communication and collaboration for organiza-
tions.

3. The first layer of security is connection filtering, where the server evaluates the
sender’s reputation and blocks known spam sources.

3https://learn.microsoft.com/en-us/azure/adaptive-cloud/app-solutions/
overview-app-design-considerations
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Figure 5.2: How the proposed tool would fit into Microsoft Exchange’s cloud
architecture

4. The second security layer involves malware scanning, where email attachments and
embedded content are inspected for potential threats. If suspicious, the message is
quarantined.

5. StegaScanMail: This research tool is integrated as an additional security layer,
specifically for detecting steganographic content in email attachments or embedded
images. Unlike traditional malware detection, which focuses on scanning executable
content, this tool analyses images to identify hidden payloads that may contain
malicious scripts, phishing URLs, or other concealed threats. The tool processes
images extracted from incoming emails and classifies them using a trained CNN
model, detecting stego-images before they reach the next filter step. This enhances
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existing email security layers by addressing threats that bypass conventional malware
and spam detection techniques.

6. The fourth layer of security is policy filtering, where emails are evaluated based on
the organization’s transport rules.

7. The final filtering step is content filtering, which includes anti-spam and anti-spoofing
measures. Emails identified as potential spam are moved to the junk folder.

8. The junk email folder stores messages classified as unwanted or malicious, ensuring
they do not clutter the primary inbox.

9. The quarantine section holds suspicious emails flagged due to malware concerns.
Unlike spam, which is accessible by end users, quarantined messages require admin-
istrative review before being released or deleted.

10. After an email successfully passes all filtering mechanisms in the Microsoft Exchange
data centre, it is delivered to the recipient’s mailbox. Users can further flag emails
as spam, phishing attempts, or malicious content, feeding into the security feedback
system for improved detection accuracy.

11. Security policies and filtering parameters continuously evolve based on input from
administrators, analysis reports, and user feedback. This iterative approach ensures
adaptability against emerging threats and enhances the system’s threat detection
accuracy.

Deploying this application in Azure leverages the cloud’s robust infrastructure, scala-
bility, and centralized management, making it well-suited for large organizations requiring
secure email communication. The use of Docker and Kubernetes ensures portability, effi-
cient resource allocation, and simplified deployment across different environments.

Beyond scalability, Azure’s built-in monitoring and fault tolerance mechanisms enhance
system reliability. Azure Monitor and Log Analytics enable real-time performance track-
ing and anomaly detection, while Kubernetes’ self-healing capabilities, such as automatic
restarts and workload redistribution, help maintain service availability. Error handling is
implemented through logging mechanisms that capture processing failures, ensuring quick
identification and resolution of potential issues. Additionally, user feedback is integrated
into the security system, allowing administrators to adjust filtering policies dynamically.

For detailed guidance on deploying containerized applications in Azure, the official
Microsoft documentation on Azure Kubernetes Service provides comprehensive instructions
and best practices4.

5.2.2 Research Question 2: Comparative Analysis and Conclusions

Research question 2 aimed to determine how deep learning architectures (Custom CNN,
VGG16, ResNet50) compare with traditional statistical methods (Statistical Residuals,
Chi-square Attack, Local Binary Patterns, Sample Pairs) in PNG steganalysis.

Based on the experimental results presented in Section 5.1, we can answer that deep
learning methods significantly outperform statistical approaches because it achieved better

4https://learn.microsoft.com/en-us/azure/aks/
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results in all recorded metrics. The custom CNN demonstrated superior accuracy (73.8%)
and ROC AUC (0.832), clearly distinguishing between stego and clean images more effec-
tively than ResNet50 (67.2% accuracy) and VGG16 (65.8% accuracy).

In contrast, statistical methods paired with an SVM classifier performed substantially
poorer, achieving only 48.8% accuracy and an ROC AUC of 0.538. This underlines the
limitation of statistical approaches and of SVM classifier in handling the complexity of
image steganographic alterations.

Integrating the Custom CNN into a cloud-based email security framework offers sig-
nificant practical advantages, especially because Azure’s infrastructure combined with Mi-
crosoft Exchange enables efficient email filtering. Its high precision (90%) is especially
beneficial as it effectively reduces false positives. Its moderate recall (72%) indicates po-
tential for improvement since some threats may remain undetected. Continuous model
refinement is especially feasible using Azure’s monitoring tools, Kubernetes for resource
management, and active learning from real-world data. The Custom CNN is especially
promising as a starting point for deployment in security-sensitive environments. Future
advancements, especially dataset diversification, threshold tuning, and real-time feedback
integration, can significantly enhance performance. Ultimately, these enhancements are es-
pecially valuable for providing reliable, scalable protection for enterprises against emerging
image-based email threats.

5.2.3 Research Question 3

The use of any datasets for CNN training in cloud environments for steganalysis poses sev-
eral data privacy challenges as well. Firstly, unauthorised access to personal data datasets
poses a significant risk, as it allows individuals or systems to access private data without
proper authorisation. This can occur through various means, such as phishing, hacking or
insider threats [95]. This risk is critical because it can lead to the exploitation or exfiltration
of confidential data by malicious actors [96], resulting in significant financial, reputational,
and legal consequences for organisations. including identity theft, financial fraud, and reg-
ulatory penalties [97]. Examples of such cases include high-profile data breaches like the
Yahoo data breach, which compromised the confidential information of approximately 3
billion user accounts [98].

Data location concerns also arise because cloud providers store data across multiple
geographic locations, potentially violating data sovereignty laws and regulations [96]. This
can happen rather easily, as for example, a company may use a cloud provider with data-
centres both inside and outside the European Union (UK, for example) for model training,
with the latter being hard to comply with due to the GDPR5. In addition, the transmis-
sion of large datasets between local systems and cloud infrastructure increases the risk of
interception through man-in-the-middle attacks or eavesdropping, which is exacerbated by
the volume of data involved in the CNN training [96].

Third-party access by cloud providers remains a concern, as sensitive data are stored on
infrastructure owned by external entities (mostly Amazon, Microsoft, Google), introducing
an element of trust that may be uncomfortable for organisations [96]. Navigating regu-
lations like the General Data Protection Regulation (GDPR) makes cloud adoption more
challenging, particularly when training CNNs for image steganalysis. The GDPR imposes
strict requirements on data processing, including the need for secure and transparent han-
dling of personal data. The most important articles include Article 5 (principles of data

5https://commission.europa.eu/law/law-topic/data-protection/rules-business-and-organisations/
obligations/what-rules-apply-if-my-organisation-transfers-data-outside-eu_en
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processing) [99], Article 6 (lawfulness of processing) [100], Article 21 (right to object) [101],
and Article 32 (security of processing) [102].

Article 5 sets out principles such as lawfulness, fairness, transparency, data minimisa-
tion, confidentiality and integrity, ensuring that personal data is processed securely and
responsibly [99]. Article 6 outlines the legal grounds for processing personal data, such
as obtaining explicit consent and fulfilling contractual obligations, ensuring that data pro-
cessing activities are justified and lawful [100]. Article 21 provides data subjects with the
right to object to the processing of their personal data, safeguarding their privacy and
autonomy [101]. These regulations secure the organization by minimizing the risk of data
misuse and ensuring compliance with legal standards, which is particularly important in
cloud-based environments with sensitive datasets.

Article 32, for instance, mandates that data processing be done securely, which is
crucial for CNN training as it requires measures such as pseudonymisation, encryption, and
regular testing of security protocols [102]. Similarly, regulations like the Health Insurance
Portability and Accountability Act (HIPAA) impose comparable compliance requirements
for processing personal data in specific sectors [103].

The multi-tenant nature of cloud computing also introduces the risk of accidental data
leakage owing to improper segregation or misconfiguration, which can lead to unauthorised
access [104]. To mitigate these risks, it is crucial to implement robust encryption for data
both at rest and in transit, alongside strong access controls like multifactor authentication
and role-based permissions [104]. Anonymisation or pseudonymisation of sensitive data
can further protect individual privacy and reduce breach impact [104].

It is important to implement strict data retention policies, secure deletion procedures,
and maintain audit logs for data access in the case of internal or external security audits
[104]. Regular internal audits of security practices and cloud providers are necessary to
identify vulnerabilities and to ensure adherence to evolving regulatory requirements [104].

Additionally, integrating Azure Active Directory guarantees secure authentication and
role-based access management, helping to restrict access to sensitive steganalysis datasets
by ensuring that proper data authorization [105]. This is particularly important in the
context of CNN training for steganalysis, as it prevents threats such as unauthorized ac-
cess and data breaches. Outlook and its associated security features, including spam and
phishing filters, can serve as a practical deployment environment for steganalysis mod-
els. Through the Exchange Online Protection and Advanced Threat Protection services,
Outlook already filters malicious content [106].

The use of secure Azure features, such as encryption at rest and in transit, supports
GDPR requirements under Article 32 (security of processing) [107]. Encryption at rest
safeguards data stored on physical media from unauthorized access, while encryption in
transit secures data when it moves between systems, preventing interception and tampering
[108]. These measures are important for preserving the confidentiality and integrity of
sensitive datasets used in CNN training.

Azure also offers data residency and sovereignty controls, allowing users to specify where
their data is stored, which ensures adherence to relevant regulations, such as the GDPR
[109]. This is especially crucial for organisations that must comply with data sovereignty
laws, ensuring that data remains within specified geographic boundaries and is compliant
with the local legal protections.
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5.3 Strengths and Limitations of the present study

This section examines the strengths and limitations of the study. It highlights contribu-
tions such as the development of a practical deep learning-based steganalysis tool, cloud
deployment considerations, and comparisons with existing methods. Limitations include
dataset bias, the exclusive focus on PNG images, and challenges in full-scale enterprise
deployment.

5.3.1 Strengths

This study has several parts which can be signalled as important strengths. First, it
developed a practical methodology for cybersecurity usage in the context of steganalysis
and deep learning, focusing on CNNs. This methodology, detailed in section 5.2.1, includes
explanations of the architecture design, deployment processes, and key factors for running
a security application in the cloud. The application of deep learning techniques is showing
promise as a standard for the future and has also been proven to advance in the steganalysis
field and not only.

Second, it has shown, although not to the full extent, how this architecture can be
integrated into a cloud environment, more specifically, Microsoft Azure and Outlook. Its
scalable nature can potentially provide benefits to organisations seeking to enhance their
email security infrastructure.

Third, academic bibliography summaries have contributed to providing critical infor-
mation for a possible practical implementation. In addition, the few open-source solutions
available on the market have been analysed and can provide further guidance into other
practical implementations.

Finally, the comparison of CNNs to statistical methods provides an insightful evaluation
of the different approaches. This ensures a depth of analysis and relevance to real-world
scenarios in which PNG images are commonly used in email communications. The use
of the well-structured Stego-Images-Dataset contributed to the statistical significance of
this study. The dataset has been explained in section 4.1.5. While not considered a large
dataset by industry standards, it provided a sufficient sample size to train and test the
CNN models effectively.

5.3.2 Limitations

This study has several strengths but also has some limitations that may affect its usability.
One limitation is that the focus is solely on the PNG format for image analysis. Although
PNG images are common in email communication, this narrow focus may limit the appli-
cability of the findings to other widely used formats, such as JPEG or GIF, which are also
used in steganographic attacks.

Another limitation is potential dataset bias. The use of a single dataset for training
and testing may not fully represent real-world scenarios. This could affect the performance
of StegaScanMail in environments with data patterns that differ significantly from those of
the training set. This raises questions regarding the practicality of the tool for widespread
deployment.

Additionally, this study only partially addressed the complexities of integrating tools
into cloud architectures. Although it highlights potential cloud integration, it does not
completely integrate into the environment for which it was initially projected. Microsoft
does not offer trials for business solutions, and the potential costs of applying such a solu-
tion only for academic testing purposes would be too expensive. Power BI, the automation
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tool offered by Microsoft, cannot offer the same level of integration into the cloud archi-
tecture (mainly Microsoft Active Directory and Exchange) because it offers only small
automations between Microsoft services.

Furthermore, the search for research paper was affected by a selection bias influenced
by the filters used to select the most relevant papers. This may leave out some relevant
studies in the fields of cybersecurity, cloud or deep learning which do not pass the search
filters (newest papers, steganography bias, etc.)
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5.4 Future Directions

This section outlines potential paths for future research and improvements in steganalysis.
It emphasizes the need for testing on diverse datasets, refining detection thresholds, and
integrating additional image formats beyond PNG. The section also explores the develop-
ment of specialized AI models tailored for steganalysis, as well as real-world evaluation in
organizational environments.

More testing with diverse datasets

Future research should prioritise testing using additional datasets to validate the robustness
and adaptability of a future tool. Integrating other datasets or solution-specific datasets
covering a broader range of image types and formats can improve the results. Testing on
datasets that include more recent and advanced methods of steganography embedding, as
well as variations in data payload sizes, especially bigger sizes of images. This would mean
also bigger embedding possible, so for example, an image of 20MB can have around 2.5MB
of data embedded with LSB, which is well enough for a malware or computer worm.

Evaluation in real-world organizational environments

To better understand the practical implications of deploying the tool, future research should
involve extensive testing in an organizational (test) environment (potentially in the Azure
cloud infrastructure). Conducting trials in a controlled organizational setup would allow
researchers to evaluate the performance of the tool under realistic workloads, integration
challenges, and operational constraints. This would also allow the organisation to address
practical concerns such as latency, scalability, and integration with existing email and
security workflows.

Development of a custom AI model

Although this study utilised pretrained CNN models alongside a small custom CNN archi-
tecture, a significant future direction involves designing a deep learning model specifically
optimised for steganalysis tasks. Such a model can incorporate novel architectural ele-
ments to improve detection rates while minimising the computational costs. Researchers
and developers can potentially achieve results worth of using in a realistic scenario by tai-
loring the model to the characteristics of the data used. This can happen mainly through
extensive in-house training and testing.

Broadening the scope of analysis

Expanding the scope of steganalysis beyond the PNG- and LSB-based techniques is another
critical area for future research. This should include other commonly used file formats such
as JPEG, GIF, TIFF, SVG, PDF, and BMP. These formats are often used in real-world
email attachments and security workflows, meaning their inclusion is necessary to ensure
comprehensive coverage.

Equally important is the development of techniques for black-box steganalysis. Unlike
most research methods that rely on prior knowledge of specific embedding algorithms,
black-box approaches aim to detect hidden content by learning subtle patterns or statistical
distortions, regardless of how the steganographic payload was embedded.

Future models should be trained to detect these anomalies, ideally using datasets that
contain a wide range of embedding styles and with proper model training on those datasets.
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This would ensure they generalise well, even in cases where the steganographic technique
is unknown. As steganography methods continue to evolve, black-box detection capabil-
ities will become a key feature of resilient and scalable steganalysis systems. Tools like
StegaScanMail can remain useful by designing architectures that focus on identifying hid-
den patterns at the structural level so they can cover a wider range of the possible attack
spectrum.

5.4.1 Key Takeaways

Looking forward, future research should aim to improve the generalizability, adaptability,
and scalability of steganalysis tools such as StegaScanMail. Given the results observed
on unseen grayscale data from the BOSSbase dataset, improving model robustness across
image formats and domains remains a key priority. Expanding training to include more
diverse datasets, would provide essential exposure to real-world variability. Furthermore,
the development of steganalysis-specific deep learning architectures—designed to identify
pixel-level anomalies introduced by embedding—holds promise for reducing false positives
while maintaining high detection sensitivity.

Future work should also pursue black-box steganalysis approaches, enabling the detec-
tion of hidden content without prior knowledge of the embedding algorithm, and ensuring
long-term robustness as steganography methods evolve.
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Chapter 6

Conclusion

This research represents an advancement in the fields of image steganography and image
steganalysis by focusing on the need to address image steganographic threats in cloud-
based email systems. This research addressed a security gap in existing cybersecurity
practices by designing and implementing a robust convolutional neural network (CNN)
specifically tailored to detect the least significant bit (LSB) steganography in PNG images.
StegaScanMail was developed as an email security filter designed for easy integration into
cloud-based email platforms. The objective was to enhance digital communication security
while ensuring a scalable system and maintaining industry orientation.

This research provides a comprehensive evaluation of image steganalysis techniques
using the strengths of CNNs and comparing their performance with machine learning
classifiers and statistical methods. The use of a medium-large dataset, the Stego-Images-
Dataset, ensures that the findings are not only statistically robust but also applicable to
a small variety of real-world scenarios. Testing and empirical analysis demonstrated that
the CNN-based approach outperformed the statistical methods in regards to detection ac-
curacy, precision, and recall. Moreover, this research makes a practical contribution by
addressing the challenges of integrating steganalysis tools into the modern cloud infras-
tructure. The research exemplified the deployment of the CNN-based steganalysis tool
within a cloud infrastructure, specifically using Docker containers for easy integration and
scalability.

From a usability perspective, this research also holds practical relevance for various
industries where the confidentiality of email communication is essential. The intended
audience for StegaScanMail includes organizations that routinely exchange sensitive in-
formation, such as financial institutions, legal and compliance departments, government
agencies, digital media companies, and critical infrastructure providers. These entities are
frequent targets of sophisticated cyberattacks, including data exfiltration via image-based
steganography. In such environments, the ability to detect stego content adds an extra
layer of protection against data leakage and embedded cyber threats. By integrating Ste-
gaScanMail within existing cloud email infrastructures, such as Microsoft Azure, these
organizations could benefit from enhanced security visibility, automated image scanning,
and low-disruption integration. This not only increases its technical adaptability but also
makes it suitable for enterprise-grade cybersecurity workflows.

As described in Section 5.2.3, this research engages with the topic of data protection
regulations, such as the General Data Protection Regulation (GDPR). For organizations
operating under strict regulatory standards, ensuring that any deployed tool aligns with
data privacy and processing rules is critical. This alignment strengthens its usability in
real-world contexts where both security effectiveness and legal compliance are essential.
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Despite its achievements, this research acknowledges certain limitations, such as its
narrow focus on PNG images and LSB steganography and the lack of evaluation in real-
world environments. These limitations could impact the broader use of the tool by limiting
its scalability and future application to other types of image steganography and file formats.
Nonetheless, these limitations provide clear directions for future research.

In conclusion, this research demonstrates how CNN-based image steganalysis tools can
be integrated into cloud environments, providing a solution for detecting image stegano-
graphic threats in email systems. This research lays a solid foundation for future ad-
vancements in secure digital communication by tackling both theoretical and practical
challenges.
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Appendix A

Commercially available image
steganalysis and e-mail security tools

Name Link Email scanning Open
source

Pros Cons

StegoHunt https://www.
wetstonetech.
com/products/
stegohunt-steganography-detection/

Complex No Comprehensive functional-
ities, covers a great range
of formats and algorithms,
updated datasets

High costs, build for busi-
nesses

Microsoft
Defender
Office 365

https://www.
microsoft.com/
en-us/windows/
comprehensive-security

Yes No Complete protection, cloud-
based, use of AI

No explicit mention of image
steganalysis. Only an attach-
ments scan is performed for
emails.

Kaspersky https://www.
kaspersky.com/

Yes No Well-known security applica-
tion. Datasets

Known ties to the Russian
government and to Vladimir
Putin [110].

Barracuda https://www.
barracuda.com/

Yes No Up-to-date protection New
approach to build a firewall,
innovative

Costs and no specific image
steganalysis

EnCase https:
//www.opentext.
com/products/
encase-forensic

Yes No Efficient algorithms, many
sources of forensic evidence,
great experience in the field
and Court-accepted evidence
format

This platform is mainly used
by police or other public in-
stitutions in digital forensic
cases. Personal usage is not
mentioned and the price has
to be negotiated.

Snort https://www.
snort.org/

Yes Yes intrusion prevention system
is capable of real-time traffic
analysis and packet logging.
Easy set-up.

No mention of steganalysis of
images. It focuses on Internet
traffic analysis rather than on
payload scanning.

Malwarebytes https://www.
malwarebytes.
com/

Yes No Well known application used
against computer threats.
Many awards for home-use
protection.

May be considered pricey, and
it does not explicitly cover
steganography threats.

Table A.1: Commercial image steganalysis and email security tools
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Figure A.1: Official Microsoft hybrid setup
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