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Abstract—In modern radar applications utilising multiple inde-
pendent transmitters, optimisation challenges arise due to various
complex signal interactions. This is especially so in non-linear
radar systems that rely on non-linear properties of the target
to produce a return signal at a frequency different from that
of the illuminating signals. The aim of this thesis is to improve
the coverage area of an existing non-linear harmonic radar
setup through the utilisation of multiple auxiliary transmitters
(helpers) and the optimisation of their placement. Using the same
power budget and equal transmit power distribution, the results
presented in this work indicate that adding one helper transmitter
increases coverage area by roughly 35.8% in comparison to the
stand-alone conventional harmonic radar system. Coverage area
can increase with 37.0%, 44.4%, 54.3% and 59.3%, by utilising 2,
3, 4 and 5 helper nodes, respectively. Using multiple low-power
transmitters is less costly than a single high-power transmitter,
making the use of auxiliary transmitters a more cost-effective
solution to increase coverage area.

I INTRODUCTION

Radio detection and ranging (radar) systems emit electromag-
netic (EM) waves, and receive reflections from objects in
their field of view. This is mainly applied to determine the
location, motion or speed of an object [1]. In some applications,
conventional radar suffers from clutter. Clutter makes it difficult
to isolate the target signal of interest due to unwanted reflections
from other objects. What constitutes clutter is largely dependent
on the application of the radar, e.g. movement by sea waves
create clutter for marine radar [2].
To mitigate clutter, the transmit and receive frequency bands
are separated using non-linear radar, such as harmonic radar. In
harmonic radar, the return signal is a harmonic of the frequency
used to transmit. However, such a system requires a non-linear
target capable of generating these harmonics, e.g. oxidated
pieces of metal or semiconductors such as diodes. This target
reflects harmonics of incident signals, enabling suppression of
clutter as it remains at the transmit frequency [3].
When there are several signal sources operating at different
frequencies, non-linear targets generate both harmonic return
and intermodulation reflected signals. A dual-mode system can
utilise both [4]. This is done using auxiliary transmitters with
frequencies slightly offset from the main radar, but within the
same band.
This work is about optimising the coverage area of a dual-
mode X-band frequency modulated continuous wave (FMCW)
harmonic radar using auxiliary transmitters, where X-band is
the operation range from 8 to 12 GHz [5]. Using both harmonic
and intermodulation signals, the radar can achieve a higher
maximum detection range while using cheap and simple single
carrier transmitters [6].
When multiple independent transmitters are used, the resulting
signals affect each other, e.g. in terms of phase and amplitude
interference. Optimal placement of these transmitters thus be-
comes a combinatorial problem that grows with the number of
transmitters used and the area under investigation. The objective
of this work is to maximise coverage area when considering
both the harmonic and intermodulating signal returns. Since

the intermodulation signal is the result of mixing two signals
from the main radar and the auxiliary transmitters, all placement
combinations need to be considered for a comprehensive result
in optimisation.
To reach the objective, a software optimiser is designed and
used. This optimiser is able to use multiple input parameters,
such as the transmitter position and antenna orientation, for a
varying number of helper nodes. It is realised through use of
a MATLAB simulation model which is verified through exper-
imental data for one helper. The results of the optimiser are
expressed in area coverage and its increase. All evaluations are
done using equal total power budgets to make the comparison
easier and more fair.
Necessary background information on non-linear radar, specif-
ically harmonic radar (HR) and intermodulation radar (IR),
is provided in Section II. Section III introduces the provided
initial simulation model, detailing single helper and multiple
helper set-up configurations and calculations. In Section IV,
the improvements made to the initial simulation model are
discussed, starting with a single helper before moving to a mul-
tiple helper configuration. Section V discusses helper placement
optimisation. A problem statement is given before presenting
an optimisation approach using simulated annealing. Section
VI presents the results of the designed optimiser, followed
by a discussion on the findings and possible improvements in
Section VII. Lastly, Section VIII concludes the report with a
summary on key findings. Additional materials are included in
the appendices, such as the glossary in Appendix A which is
provided for convenience.

II BACKGROUND

II-A Harmonic Radar
Harmonic radars work on the principle that the target exhibits
non-linear properties when they are illuminated with a radar
signal, e.g. intermodulation effects and a non-linear output
response. One such target is called a tag. It contains an antenna
and a non-linear device, such as a Schottky diode. It uses a
transmitted signal illuminating its antenna as an energy source
and re-emits harmonics of the transmitted frequency [7]. The
power level of the non-linear response is thus dependent on the
conversion loss provided by the tag.
This thesis is built on the set-up proposed in [4] and [6], namely
a dual-mode FMCW harmonic radar that is capable of receiving
both harmonic and intermodulation terms simultaneously. The
set-up uses a tag consisting of a half-wavelength planar dipole
antenna, a low barrier Schottky diode (SMS7621) and a small
inductive loop [6].
Modelling the response of a generic non-linear target as a power
series yields [4]:

Eout(t) =

∞∑
n=1

kn E
n
in(t) =

∞∑
n=1

En(t), (1)

where Ein(t) is the incident electric field, Eout(t) is the reflected
electric field, kn is the power-series coefficients that depend on
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the target and En(t) = kn E
n
in(t). Using a passband input in the

form of Ein(t) = ARe
{
s(t) e j2πfct

}
, where s(t) is a baseband

complex envelope signal and A is the signal amplitude. Then
the nth power term in (1) is written as:

En(t) = kn
∑
m

hm,nA
nRe

{
sm(t)|s(t)|n−m e j2πmfc t

}
, (2)

where hm,n is a combinatorial coefficient whose value can be
found in [4]. Assuming for simplicity that s(t) has unit magni-
tude (e.g., a constant amplitude for nth power term or suitably
normalized waveform), equation (2) is further simplified to

En(t) = kn
∑
m

hm,n A
n Re

{
sm(t) e j2πmfc t

}
. (3)

The radar transmitter emits a radio frequency (RF) compressed
high-intensity radiated pulse (chirp) signal at some fundamental
frequency f1, and the receiver detects returns at the harmonic
frequencies mf1. As the amplitude of the harmonics decreases
with m, the strongest harmonic, which is the second-harmonic,
is commonly chosen for system design. At low incident power,
the target response is dominated by the n = m term. This
simplifies the second-harmonic response to:

Eref(t) = 0.5 k2 A
2 Re

{
s2(t) e j2π (2f1) t

}
, (4)

where k2 is dependent on the target properties.

II-B Intermodulation Radar
With IR the target is illuminated by multiple RF signals.
The first signal is the main radar’s chirp signal at carrier f1,
the second signal is an auxiliary single-tone carrier at f2. A
baseband complex envelope signal with carrier frequency f1
and a single tone transmitter with carrier frequency f2 are used
to describe these incident electric field, respectively:

Ein1(t) = A1 Re
{
s1(t) e

j2πf1 t
}
,

Ein2(t) = A2 Re
{
1(t)e j2πf2 t

}
.

(5)

To ensure that the components for IR and HR do not overlap,
it is required that f2 > f1 +∆f , where ∆f = 3B/2 and B is
the bandwidth of s1(t). The electric field going into the tag is
described as:

Ein(t) = Ein1(t) + Ein2(t). (6)

Using the same approach as in (3), the return signal will contain
four second order mixing products:

- a harmonic chirp signal with bandwidth 2B centred around
2f1;

- a harmonic of the single-tone signal with bandwidth 2B
centred around 2f2;

- two intermodulation product chirp signals of bandwidth B,
centred around f1 + f2 and f2 − f1.

The resulting reflected field is described by:

Eref(t) =
k2
2

[
A2

1 Re{s21(t)ej4πf1t}

+A2
2 Re{1(t)ej4πf2t}

+ 2A1A2 Re{s1(t) ej2π(f1+f2)t}

+ 2A1A2 Rr{s1(t) ej2π(f2−f1)t}
]
.

(7)

When the amplitudes of the incident signals in (7) are equal,
the second order intermodulation products yield 6 dB higher
reflected power than just the harmonic reflections.
Figure 1 describes the power ratio of the reflected intermodulat-
ing power over the harmonic power using (7). At lower incident

Fig. 1: Received power of the intermodulation term FI relative to the received power
of the harmonic terms FH as a function of the incident power density on the non-linear
target [4].

power, the received power of the intermodulation products are
measured to be 6 dB larger than the harmonic products. Low
power application is considered, therefore higher power incident
density from the auxiliary transmitters is beyond the scope of
this work.

III INITIAL SIMULATION MODEL

III-A Single helper set-up
A simulation model using an integrated graphical user interface
(GUI) was provided at the start of the thesis. The GUI is a
MATLAB application that calculates the return signals from
a harmonic tag in response to two independent input signals,
which are the main radar signal and the auxiliary helper
signal. The two input signals each get assigned parameters,
(e.g. centre frequency, transmission power, position, antenna
gain and antenna orientation). After this, the tag position is
iterated in steps over a grid to calculate the power of the
signal return products at distances d1 and d2 from the first
and second transmission antenna positions, respectively. Using
the transmission signals as its input, the calculated signals are
the main radar harmonic return when no auxiliary transmitters
are present, the main radar harmonic return with added helper
nodes and the intermodulation signal. The power of the return
signals is calculated and the three outputs are presented in the
form of a heat map. The total power used in the system from
[6] is a distributed 100 Watt for the main radar and 100 Watt
for the helpers. All parameters that can be set and the input
parameters used as a verification metric are recorded in Table
I. A screenshot of the GUI can be seen in Appendix B, Figure
B.1.
TABLE I: Table containing all input parameters and options contained in the GUI for
reference

Symbol Description Value Unit
X Range of the grid 120 m
dX Calculation resolution 5 m
PRx,min Minimal power threshold value (optional) (-70) dBm
f1 Centre carrier frequency of main radar 9.34 GHz
PTx,main Transmission power of main radar 50 dBm
GTx,main Transmission gain of main radar 15 dBi
GRx,main Return signal gain of main radar 15 dBi
Xmain,Ymain Position of main radar 0,60 m
θ Orientation of main radar 0 ◦

f2 Carrier frequency of helper nodes 9.5 GHz
PTx,helper Transmission power of helper nodes 50 dBm
GTx,helper Transmission gain of helper nodes 15 dBi
Xh,Yh Position of helper nodes 120,60 m
θh Orientation of helper nodes 180 ◦

N.A. Gain patterns for main radar and helper- (Horn) dBi
transmission and return signals (optional)

The GUI is built on the experimental results obtained from [6].
The signal power going into the tag from the radar at a given
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point in space a distance d away can be calculated using:

Pin = Ptx +Gtx − FSPL(d, f) +Gin,D, (8)

where Ptx is the transmit power of the radar transmitter, Gtx

is the transmit gain of the radar transmitter, FSPL is the free
space path loss and Gin,D is the tag input antenna gain. The
amplitudes of the incoming signals are obtained from the power
going into the tag at a given point in space after accounting for
the FSPL:

FSPL(d, f) =
( c

4πfd

)2
=
( λ

4πd

)2
, (9)

where d is the distance from the transmitting antenna to the tag
and λ = c/f is the wavelength. Converting Pin to linear power,
allows a single electric field input amplitude to be obtained
using the impedance of the tag Zf1 at fundamental frequency
f1:

Vin(t) =
√
Pin · Re(Zf1) sin(2πf1t). (10)

When two incident signals with different frequencies and dif-
ferent input powers are received by the tag, the total voltage is
the superposition of two individual signal contributions using
the same input impedance used in (10) as follows:

Vin(t) =
√

Pin,1 · Re(Zf1) sin(2πf1t)

+
√
Pin,2 · Re(Zf1) sin(2πf2t).

(11)

Multiple incident signals at the same frequency received by
the tag are summated in a specific way that will be discussed
later. The GUI makes use of a model to calculate the har-
monic response of the tag using a two-region model for a
harmonic radar transponder [8]. This models the output current
of the transponder, through the Lambert function. The Lambert
function is complex and multivalued. It calculates the complex
solution to the equation:

f(z) = z exp(z) = W(z exp(z)), (12)

where W denotes the use of the Lambert function. The model
assumes that the transponder is ideally matched and rewrites
the diode current iD(t) in terms of the dominant real equivalent
impedance at the fundamental frequency Zf1 using a modelled
voltage source vin(t). The current flowing through the antenna
and the load iT (t) can be said to be iT ≈ iD, thus:

iD(t) = Is

(
exp
( vT (t)
ni VT

)
− 1
)

≈ iT (t) =
vin(t)− vT (t)

Re(Zf1)
,

(13)

where Is is the saturation current, vT (t) is the voltage across
the diode, ni is the diode ideality factor and VT is the ther-
mal voltage. By introducing ρ = Is Zf1/ni VT and w(t) =
ρ((iT (t)/IS) + 1), (13) can be rewritten to be solved using
(12):

w exp(w) = ρ exp

(
ρ+

Vin(t)

ni VT

)
. (14)

Using (14) and (13), the resulting diode current can ultimately
be written as:

ID(t) = Is
W
(
ρ exp

(
ρ+ Vin(t)

ni VT

))
ρ− 1

. (15)

Calculating the voltage at the diode junction Vj(t) follows as:

Vj(t) = ni VT ln
( ID(t)

Is + 1

)
. (16)

The junction capacitance is dependent on (16) and is calculated
using a separate time dependent function. The GUI adds the
junction current, obtained by multiplying the junction capaci-
tance Cj with the gradient of Vj(t), to (15), for the total current:

I(t) = ID(t) + Cj∇Vj(t). (17)

The full current output in (17) includes all signal harmonics
produced by the diode for n ∈ [0,∞). To compute the current
at the frequencies of interest, an FFT is used to calculate the
power spectrum in frequency domain ι(fn), using bin size L.

ι(fn) =
2|FFT(I(t))|

L
, (18)

where fn is the output frequency. The code generalises that,
for the harmonics, 20 times the frequency of f1 can be used to
represent all sinusoids accurately. This results in a resolution
of 20480 for L and a sampling frequency of fs = 186.8GHz.
This results in a time length of roughly 0.11µs. Using (18), the
spectral densities of the output current at the relevant output
frequencies Iout(fn) is obtained as:

Iout(fn) = ι

(
fn

fs/L
+ 1

)
βn, (19)

where βn is the corresponding current division coefficient,
dependent on fn. Of note is that βn is calculated using the
conjugated input impedance of the tag under the assumption
that the antenna is fully matched to the diode. Calculating the
output impedance of the tag Zfn at some frequency fn yields
the respective radiated power out of the tag:

Prad(fn) =
1

2
|I2out(fn)|Re(Zfn). (20)

Converting allows the reflected wave power from the tag to the
radar to be expressed as:

Prx(fn) = Prad(fn) +Gout,D − FSPL(d, fn) +Grx, (21)

where Gout,D is the tag output antenna gain and Grx is the
receive antenna gain of the main radar. An example of a
resulting heat map plotting the reflected power in dBm can
be seen in Figure 2.

Fig. 2: Example heat map from GUI showing received power of the intermodulation
signal at frequency f1+f2 depending on tag position in relation to main radar and helper
node placement and orientation using [Xmain = 0,Ymain = 60, θ = 0] and [Xh =
120, Yh = 60, θh = 180] respectively

III-B Multiple helper set-up
The summation of multiple incident signals, at the same fre-
quency received by the tag, needs to be calculated as a combina-
tion of signals coming from several sources. This is done under
the assumption that the helpers are frequency synchronous,
don’t have different initial phases and have different accumu-
lated phase offsets due to different propagation distances. This
is achieved in the set-up by using GPS disciplined oscillators
(GPSDOs), as the frequency lock is within 40 kHz at a 9.5
GHz carrier frequency [6]. Then (10) is recalculated as [9]:

Va sin(x+ θa) + Vb sin(x+ θb) = Vc sin(x+ ϕ), (22)
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Fig. 3: Left, from top to bottom: dBm difference of improved code compared to GUI
result for main radar only at 2f1, using one helper node at 2f1 and using one helper
node at f1+f2. Right, from top to bottom: Percentage error of improved code compared
to GUI result for main radar only at 2f1, using one helper node at 2f1 and using one
helper node at f1 + f2. Maximum error in region of interest approximately 6.3 e-14
dBm and 9 e-14%, due to numerical rounding errors.

where the relationships between the parameters are:

V 2
c = V 2

a + V 2
b + 2VaVb cos(θa − θb); (23)

ϕ = arctan

(
Va sin(θa) + Vb sin(θb)

Va cos(θa) + Vb cos(θb)

)
. (24)

IV IMPROVEMENTS INITIAL SIMULATION MODEL

IV-A Single helper set-up
The speed of the GUI in calculating the power heat map
for a fixed setup using one helper at the placement recorded
in Table I was timed multiple times and averaged to be 92
seconds, not counting the start-up time. The number of possible
combinations to be checked is expressed as the multiplication
of the size of each parameter space:

S = |x| |y| |θ|, (25)

where |x| is the parameter space of x, |y| is the parameter space
of y and |θ| is the parameter space of θ. The time required by
the GUI to make S calculations using the settings as seen in
Table I takes 1589760[s], which roughly equates to 609 days.
This will be used as a base metric when talking about speed
improvements onwards. Due to the expected calculation time,
speed improvements were deemed priority number one to make
optimisation through numerical calculation feasible.
Initially all iterative loops are changed to matrix manipulation.
An adjustment was made to the size and index of the grid. When
using a horn antenna oriented along the x-axis, the radiation
pattern perpendicular to the x direction is significantly lower.
The GUI imposes x onto the size of y, making the grid square,
but also unnecessarily large in the y direction. Thus the size of
x is decoupled from y to allow a smaller grid in calculations.
Next, the main radar placement is fixed at (x = 0, y = 0,
θ = 0) instead of the placement used by the GUI (x = 0,
y = 60, θ = 0). This is so only the helper parameters are
considered for optimisation and to simplify calculations for the
distance between the main radar and other points in space.
After these optimisations, the output is compared against the
GUI results to ensure that the calculations are still correct.
After the aforementioned steps to optimise the code, the same
calculation for the fixed set-up using one helper is done, as with
the GUI prior. The calculation speed improves to 14.4 seconds,

Fig. 4: Left, from top to bottom: Return power coverage area of faster approximation
results for main radar only at 2f1, using one helper node at 2f1 and using one helper
node at f1 + f2. Right, from top to bottom: Return power coverage area results of
original application for main radar only at 2f1, using one helper node at 2f1 and using
one helper node at f1 + f2.

which is roughly 6.4 times faster. The introduced error in dBm
and in % due to the changed code, as can be seen in Figure 3,
both do not exceed values of magnitude 10-13. These errors are
thought to exist due to numerical rounding differences.
The code optimisation yields a new calculation time of 248832
[s], or 2.88 days, which can be improved further. MATLAB’s
profile tool is used to determine which other parts of the code
can be optimised, and returns that the Lambert function takes up
roughly half of the computation time. Through the open source
database of ”Free Open Source Software mainly for Internet,
Engineering and Science” [10], a faster Lambert function
approximation was found written in C++. This was rewritten
for use in MATLAB, together with other approximations it
uses (i.e. f = ex, f = 2x and f = ln(x)). The faster
functions approximate the original functions by using smaller
bit-lengths and using piecewise functions instead of the full
Lambert function. Other approximations mainly use clever bit
manipulation to approximate the result faster.
Deriving a relevant minimal power threshold level PRx,min

using [6], the difference in results for the GUI and the speed
improved calculations are seen in Figure 4. All grid points with
return powers lower than PRx,min are set to black.
The results of using the approximation functions are seen in
Figure 5. The calculation error when using the approximation
has increased, staying within a maximum of 3.43 [dBm] or
2.58% error inside of the coverage calculation. However, the
speed improvement is significant, as using this function drops
the time to roughly 6 seconds. The calculation time using this
approximation decreases with factors 15.3 and 2.4 that of the
GUI and the code optimisation calculation times, respectively.
Recalculating the optimisation time brings it down to 103680
seconds, (which is 1 day and 5 hours). Seeing as the resulting
field holds within a 5% error rate, the speed improvement was
chosen over the added error for use in further optimisation
calculations. It also has to be mentioned that, in the coverage
area, the error seems to be relatively homogeneous (roughly
-3.1 [dBm], aside from the field fringes).

IV-B Multiple helper set-up
For optimisation purposes, three distinct cases for wave sum-
mation can be considered. One for average power, a worst case
and a best case summation. These calculations use a predefined
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Fig. 5: Left, from top to bottom: dBm difference using approximation functions compared
to original functions for main radar only at 2f1, using one helper node at 2f1 and
using one helper node at f1 + f2. Right, from top to bottom: Percentage error using
approximation functions compared to original functions for main radar only at 2f1, using
one helper node at 2f1 and using one helper node at f1 + f2. Maximum error found in
region of interest approximately 3.43 dBm and 2.58%, due to approximations.

accumulated phase offset to give a simplified representation
of these return signal scenarios. Each case is individually
considered later for use in optimisation. These are calculated
as:

Vc,avg = V 2
a + V 2

b , forϕ = π/2;

Vc,worst = V 2
a + V 2

b − 2VaVb, forϕ = π;

Vc,best = V 2
a + V 2

b + 2VaVb, forϕ = 0.

(26)

In Figure 6 the results specific to the cases discussed in (26)
and for the real-phase signal are shown. The real-phase signal
is calculated using (23) and (24) under the assumption of the
signals being frequency synchronous, having no different initial
phases, but having accumulated phase offsets.
The top three outputs show similar results, with the worst-case
result showing a clear interference pattern. The real-phase case,
there seems to be a vague indication of the interference seen
in the second from the top result, the worst case calculation.
As the wavelength is roughly of magnitude 1000 smaller than
the resolution used in the calculation, the real phase does
not seem to be reliable, as it depends on distance. Further
considering robustness and coverage area representation for use
in optimisation, the top result, (the best case), and real-phase
case summations are disregarded. The worst case and third from
the top, (the average case), summation results are therefore
chosen for use in optimisation.
The error between the Lambert (left) and approximation func-
tion (right) for multiple helpers is shown in Figure 7. In
comparison to the error when using one helper node, it is
noticeable that the error seems to have gone down (now 1 dBm
or 0.6% within the area of interest) and that the error seems
equally homogeneous within the boundaries of the field fringes.
This might indicate that some improvements in approximation
could be made by comparison to the slower function for a
specific number of helpers and power distribution over said
helpers, but the need to fully research this is outside the scope
of the current work.

Fig. 6: Return power calculations for all cases given in (22) and (23); (Top to bottom:)
best-case, worst-case, average-case and real-phase wave summation; Used in consideration
of coverage area optimisation of the intermodulating signal at f1 + f2.

V HELPER PLACEMENT OPTIMISATION

V-A Problem Statement
To be able to determine optimal placement for helper nodes,
an objective function has to be created where the minimum or
maximum is the ideal outcome for the problem presented. The
coverage area of the intermodulation signal is expressed as:

J = −Σ[AIM]

N
, (27)

where AIM are points at which the power of the IR signal
exceeds PRx,min and N is the number of points evaluated in
the calculation. This way, minimising (27) leads to the global
optimum value. The viability of this depends on finishing within
a feasible time-frame and the accuracy of the optimisation with
respect to the global optimum.
The possibility of the first guess being correct Pfirst is written
using (25) for the total field as used in the quantised model as:

Pfirst =
1

S
=

1

24 · 24 · 72
=

1

41472
. (28)

This is restricted to some lower and upper bounds to disregard
ranges outside of possible solution ranges. For instance, the
range of x is bounded to be [50, 120]. The lower bound is
where the harmonic return ends, therefore we aim further than
this position. The upper bound is due to the fact that, for the
radar transmission power used, the total possible distance is 120
meter in the first place. The bounds for the other parameters
can similarly be reduced to y ∈ [−40, 40] and θ ∈ [−150, 210].
These restrictions are derived as an estimate due to the result
of Figure 4 and the fact that, as previously mentioned, the
main gain of the horn antenna is restricted mainly to [−20, 20]
degrees. These new bounds make the possibility of the first
guess being correct:

Pfirst =
1

S
=

1

12 · 20 · 12
=

1

2880
(29)
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Fig. 7: Error of intermodulation signal at f1 + f2 between faster approximations and
normal calculation; (Top to bottom:) best-case, worst-case, average-case and real-phase
wave summation. Left: Error in [dBm]; Right: Error in [%]

Making use of the characteristic that SA mostly approximates
the global optimum instead of always finding a singular global
optimum, using the returned placement results as the new initial
results can be utilised. For more helper nodes, the number of
iterations and restarts using better initial guesses have to be
adjusted to compensate an increase in combinations to speed
up the optimisation.
As the search space S increases linearly with the number of
helpers, two functions adjusting the upper and lower bounds
are implemented. The first one activates when 85% of the
maximum cost is reached and the second when 90% is reached.
This function takes the best cost’s parameters obtained from an
optimisation run, if the cost exceeds a percentile threshold, and
establishes new upper and lower bounds around that point:

new bounds85% = [xn ± 5 dX, yn ± 5 dY, θn ± 5 dθ];

new bounds90% = [xn ± 3 dX, yn ± 3 dY, θn ± 3 dθ],
(30)

where dX, dY and dθ is the resolution used by the code to
which the respective parameters are constrained. This should
allow the chance of estimating global optima more accurately
to increase following (25). The dynamic bounds function is
the result after logging the average error away from the global
optimum. In these tests the maximum average parameter error
was found to be 5 for the 85% case and 3 for the 90% case.
The resulting function is seen in Appendix C, under C.2.
Depending on the number of helpers, local optima will be
able to form where linear algorithms can get stuck. Increasing
helpers also multiplies the number of possible combinations,
resulting in a large combinatorial problem. Thus, the main
criteria for the optimiser are that it:

• is able to handle large combinatorial problems due to the
large number of parameters;

• is able to escape local minima.

V-B Simulated Annealing Optimisation
Simulated Annealing (SA) is chosen as it can function for
large combinatorial problems, such as the travelling salesman
problem [11]. SA uses an algorithm to iteratively evaluate
neighbouring solutions to some initial solution based on an
objective function, usually called the cost function. This func-
tion is subject to some boundaries or constraints which are
modelled as penalties or hard parameter bounds. New parameter
combinations become a candidate for evaluation through an
acceptance probability function [12]:

Paccept(∆J,T) =

(
1 + exp

(∆J

T

))−1

(31)

where ∆J = Jbest − Jnew and T is the temperature that de-
creases over the number of iterations M , the initial temperature
T0 and the rate at which the temperature decreases, called the
cooling schedule ϑ:

T = T0ϑ
M (32)

As the acceptance probability changes over the number of
iterations, it plays a central role in the generation of new
possible parameters. If the value for ϑ is too big or too small,
it can cause the process to become stuck in local minima or
to skip possibilities completely. Getting stuck in local minima
can be prevented either by restarting the optimisation multiple
times using the previous best guess as the initial guess, or by
picking a more appropriate value for the cooling schedule. More
helpers might also mean needing a larger value for the cooling
schedule.
T0 is estimated by picking a range for cost function J . This
means that, the range of J needs to be re-scaled when the
number of helpers changes. This is under the assumption that
the coverage area will increase with an increase in helpers.
This scaling is done manually for one, two and three helper
nodes, where numbers beyond that are estimated based on the
data available. Considering the starting situation, an initially
high acceptance possibility P0 is desired. Setting the highest
possible cost Jmax = 250 allows the calculation of the starting
temperature, using a fractional value of Jmax.

T0 =
Jmax · 0.01

ln(P0)
≈ 2.5

ln(0.9)
≈ 25 (33)

Again, by setting a final temperature value to be used TFinal

and M , an indication for a value for ϑ is determined:

ϑ =

(
TFinal

T0

)M−1

=
25

2

50−1

= 0.9595 (34)

Values used for Jmax, M , T0 and TFinal are all subsequently
changed iteratively, based on previous optimisation results for
more than one helper, to allow a better indication of the global
optimum. A simple verification of the optimisation where only
the x coordinate is used as an optimisation parameter yields
coordinates [115,0] with orientation 180 degrees (towards the
main radar). This result is then verified by calculating and
comparing for every x coordinate result.
When using multiple helpers, the optimiser gets stuck in local
optima. Most notably, due to these local optima, the optimiser
returns placements where the IR field exceeding PRx,min is
discontinuous between the main transmitter and some helper
nodes. A penalty using the average case calculation is imple-
mented to ensure that the intermodulating result is continuous
between the radar and each helper node using a flood fill
algorithm. This code is based on a well known algorithm,
called flood-fill algorithm. Multiple restrictions are applied to
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the resulting coverage area in the form of penalties Q that add
to the cost function:

J = −Σ[AIM]

N
+Q, (35)

where Q is scaled such that the maximum penalty it can add
will at maximum be equal to the maximum obtainable cost, (so
250), to prevent forming of local minima. Adding this penalty
leads to a realisation of calculation errors possibly propagating
to the optimiser results. The code can be seen in Appendix
C, under C.1. After implementation, the number of times the
optimiser got stuck in local optima reduced significantly, as all
results after had no discontinuity for the intermodulating field.
The resolution of the grid is found to interfere with optimiser
results. This is because, despite the grid being bound to the
resolution, the optimiser and its parameters were not. An
example situation: using a resolution of 5 meters, the optimiser
calculates the power into the tag at [xtag = 100, ytag = 0]
for some helper node at [xh = 105, yh = 0, θh = 180].
However, due to the optimiser not being constrained to the
grid, it chooses some point closer to the global optimum:
[xh,new = 102.5, yh,new = 2.5, θh,new = 180]. Furthermore,
the horn antenna transmits a narrow beam, with a maximum
gain of 15 dB, focused between [−20,20] degrees of its centre
axis. The power resulting from the second iteration is thus
attenuated due to this narrow beam.
This results in the optimiser adding more local minima, as
now every point not on the grid likely yields worse results.
In a conservative worst case scenario, the resulting guess has
a potential 37 dB attenuation adding both potential FSPL and
antenna gains. (This conservative guess is made by taking the
worst possible result due to the horn antenna gain pattern and
adding it to the average difference for FSPL for 5 and 2.5
meters). Additionally, the code in C.1 is not usable, as the helper
node might not connect to the return field. A quantised version
for SA was found on the MathWorks file exchange [13]. The
code works by bounding new suggested candidates by the SA
algorithm to the resolution. Some functions were changed to
suit the cost function used.

VI RESULTS

In the simulated scenarios using 1 to 4 helper nodes, the results
from the optimiser were used to find the global optima. This
was done under the assumption that the optimiser parameters
are close to the global optimal parameter values; this will be
tested using the first result for optimisation using 5 auxiliary
helper nodes. All results use the same resolution (5[m]) and all
transmission antennas use the same horn antenna gain of 15 dBi.
All results also use a random initial parameter guess generated
by MATLAB’s rand function. Figure 8 is the harmonic return
coverage using both the auxiliary power budget on top of the
main radar power budget (200 Watt), which yields a coverage
area of 2025 m2. This will be used as a comparison metric for
IR coverage area.
The results for Figures 10, 11, and 12 were found through the
returned optimiser positions and orientations or by inspection
around these optimiser return values. From Figures 9, 10, 11,
and 12, the IR signal coverage areas are shown, with 2750 m2,
2800 m2, 2925 m2, and 3125 m2, respectively. These optimal
results are used to fit a curve plotting the coverage area over
the number of helpers used.

Fig. 8: Coverage area of HR return signal transmitting 53 dBm using no auxiliary helper
nodes.

Fig. 9: Coverage area of IR return signal using one auxiliary helper node, position and
orientation of helper node found by optimiser. Error from inspected global optimum is
0.0%.

Fig. 10: Coverage area of IR return signal using two auxiliary helper nodes, position and
orientation of helper nodes found by optimiser. Error from inspected global optimum is
0.9%.

Fig. 11: Coverage area of IR return signal using three auxiliary helper nodes, position
and orientation of helper nodes found by optimiser. Error from inspected global optimum
is 0.0%.

Fig. 12: Coverage area of IR return signal using four auxiliary helper nodes, position and
orientation of helper nodes found by optimiser. Error from inspected global optimum is
3.2%.

Fig. 13: Estimated coverage area over optimally placed and orientated number of helpers,
using fitted curve f(N) = 37.5N2 − 62.5N + 2775; N = number of helpers.
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Fig. 14: Coverage area of IR return signal using five auxiliary helper nodes; position
and orientation of helper nodes found by optimiser. Error from estimated global optimum
returned by optimiser after single run is 12.4%.

Fig. 15: Coverage area of IR return signal using five auxiliary helper nodes; new
global optimum found using positions and orientations returned by optimiser. Error from
estimated global optimum is 5.4%.

These points yield an approximation for the coverage area using
f(N) = 37.5N2 − 62.5N + 2775, as is shown in Figure 13.
To test the efficacy of the optimiser, it is chosen to compare the
result the optimiser gives for 5 helper nodes to the theoretical
area increase, which should result in a coverage area of 3400
m2. Figure 14 shows the optimiser’s single run result, returning
the optimal IR signal coverage area found using five auxiliary
helper nodes. The coverage area found by the optimiser is 3025
m2.
Using the resulting positions and orientations to inspect sym-
metrical nodes, reflected through y = 0, allowed to find a
coverage area of 3225 m2. Figure 15 shows this new global
optimum for the coverage area of the IR signal return using
5 helper nodes, forcing two symmetrical helper pairs from
the previously obtained optimiser results. All optimiser and
inspected results are compiled in Tables II and III. One can
see the number of helper nodes used, the coverage area results
for the IR signal using the optimiser, the (estimated) optimal
IR area coverage, the error between the aforementioned two
areas, and the time taken for the optimiser to run a single time.
The HR coverage area from Figure 8 at equal power using
0 helper nodes is recorded for comparison. In Table II, the
error of the optimiser increases as the number of helpers goes
beyond 3. Using an equal power budget of 100 Watt for the
main radar signal and 100 Watt distributed equally over all
helper nodes, the IR area coverage increases by 0.91%, 6.36%,
13.64%, and an estimated 23.64% using two, three, four and
five helper nodes respectively compared to the single helper
case.
Using 100 Watt for the main radar signal and 100 Watt
distributed equally over all helper nodes, the IR in comparison
to the HR area coverage increases with 35.8%, 37.0%, 44.4%,
54.3%, by 59.3% using the positions and orientations found
using one, two, three, four and five helper nodes, respectively,
in comparison. In comparison to just the HR signal coverage
area, as seen in Figure 8, using an equal power budget (200
Watt) and no helpers, the IR signal coverage area increase is
more significant. This is due to the fact that using multiple low-
power transmitters is cheaper than using a single high-power
transmitter, as this requires significantly more direct current (dc)
and much bigger antennas.

TABLE II: Comparison table between harmonic return signal coverage area using no
helper nodes and optimal coverage areas found for intermodulating return signal using
different number of helper nodes.

Number of helpers 0 1 2 3 4
Coverage area, [m2] 2025 2750 2775 2925 3125
Optimal coverage, [m2] - 2750 2800 2925 3225
Error, [%] - 0.0 0.9 0.0 3.2
Time optimisation [s] - 186 658 1388 1612

TABLE III: Intermodulating return signal results using 5 helper nodes. On the left the
results from a single optimisation run. On the right the optimal positions and orientations
found through utilisation of single run optimisation by inspection using helper node pairs
symmetrical through y = 0. Optimal coverage estimation from Figure 13

Optimal parameters through Optimiser Inspection
Number of helpers 5 5
Coverage area, [m2] 30252 32253

Optimal coverage estimation, [m2] 34001 34001

Error, [%] 12.41 5.4 3

Time optimisation [s] 1836 -

VII DISCUSSION

The overall optimisation up to four helper nodes is deemed
a success. Beyond four helper nodes, the accuracy of the
optimiser gives a clear indication of high coverage regions in
parameter space after a single run. Utilising a second run, using
the obtained best guess from the first run, will prove to be
effective in obtaining more chances to bypass local minima,
which lead to better guesses. The initial run accuracy could
be further improved by multiple things, such as tuning the
number of iterations, the cooling rate or starting temperature.
Due to the relatively large resolution of the calculations, the
error of the coverage area calculations is 6.25 m2. Better
performing hardware could use a smaller resolution, to increase
guess accuracy, and use more iterations and a higher starting
temperature, which will yield better results.
As is seen in Figure 13, the coverage area increases per
added helper. However, as is seen from Figures 14 and 15,
the coverage area seems to not increase as much by adding
helpers as the initial data fitted curve suggests. Due to this, the
question arises if the coverage area will keep increasing beyond
5 helpers, or if the fitted function needs to be adjusted.
Another question arises on the possibility of combining horn
and other antenna gain patterns or using other gain patterns
completely. Through inspection it is found that global optima
seemingly yield position and orientation results for helper nodes
that are symmetrical about the centre of the main radar orien-
tation θ. A penalty implementation is able to make use of this
through the optimiser and decrease the parameter search space
at the same time, but was not made due to time constraints.
Another question arises if there exists an optimum in a desired
coverage area versus the power budget that is available to the
system. An optimal power distribution over an arbitrary number
of helpers can also be found using this optimiser, but was not
implemented and tested due to time constraints.

VIII CONCLUSION

The optimal placement of auxiliary transmitters used in dual-
mode X-band FMCW HR was done successfully for one to
four auxiliary helper nodes. An optimiser was developed to
determine optimal placement using simulated annealing. For
five helper nodes, a single optimisation result is used to verify
the viability of the optimiser. The area coverage of the HR
signal using 53 dBm is used to compare IR coverage area
increases at equal total power.
Implemented code improvements yield a speed increase of
factor 6.4 to the initial GUI, with the calculation error intro-
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duced not exceeding 10-13. The use of approximative function
to calculate the return signal yields another factor 2.4 speed
increase, relative to the previous speed increase. The calculation
error increases when using various approximation functions,
but stays within a maximum 2.58% inside the coverage area
and seems to go down when the number of helper nodes are
increased. In total, a speed increase of factor 15.3 over the
initial model is obtained using approximated Lambert function.
With respect to the HR signal which uses equal power budget
and no helpers, IR coverage area increases to 35.8%, 37.0%,
44.4%, 54.3% and by 59.3% by utilisation of one, two, three,
four and five helper nodes, respectively.
Optimal estimated positions and orientations for up to five
helper nodes have been found using the optimiser, with an
error of 12.4% and 5.4%, utilising a single run optimisation
result, and by inspection, from the projected global optimum
in resulting coverage area, respectively.
The error of the optimiser increases with an increase in parame-
ter search space. This might be due to the increase in combina-
tions, which in turn forms more local optima. This suggests that
further optimisation can be done to the optimiser parameters
and process, which could improve the chance of escaping these
local optima. Multiple improvements are discussed that could
improve estimation accuracy and expand optimisation beyond
its current scope.
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APPENDIX A GLOSSARY: ABBREVIATIONS, TERMS AND SYMBOLS

• (radar) - Radio Detection and Ranging
• (EM) - Electromagnetic
• (Incident wave) - Wave direction from radar to load/target
• (Reflected wave) - Wave direction from load/target to radar
• (Dual-mode) - Radar system capable of operating using

two return frequencies
• (FMCW) - Frequency modulated continuous wave
• (X-band) - RF operation range from 8 to 12 GHz.
• (HR) - Harmonic Radar
• (IR) - Intermodulating Radar
• (Chirp) - Compressed High-Intensity Radiated Pulse
• (E(t)) - Time dependent electric field [V]
• (Tag) - Harmonic radar transponder consisting of a half-

wavelength planar dipole antenna, low barrier Schottky
diode and a small inductive loop

• (kn) - nth power coefficient term []
• (s(t)) - Arbitrary complex baseband waveform
• (Re{x}) - Denotes real part of x
• (RF) - Radio Frequency
• (f1) - Operating frequency main radar incident wave [Hz]
• (f2) - Operating frequency auxiliary node incident wave

[Hz]
• (∆f ) - Frequency overlapping prevention term (=3B/2)

[Hz]
• (2f1), (2f2), (f1 + f2), (f2 − f1)) - All relevant second

order mixing product frequencies of reflected waves [Hz]
• (GUI) - Graphical user interface; name used to refer to

initial simulation model
• (Ptx) - Transmit power of radar transmitter [dBm]
• (Gtx) - Transmit gain of radar transmitter [dBi]
• (FSPL(d, f ) - Free space path loss [dB]
• (Gin,D) - tag input antenna gain [dBi]
• (d) - Distance [m]
• (c) - Speed of light (2.99792e8) [ m

s ]
• (λn) - Wavelength of some frequency (c/fn) [m]
• (Pin) - Signal power going into the tag [dBm or dBW]
• (Zfn ) - Impedance calculated at frequency fn

• (Vin(t)) - Electric field input amplitude into the tag [V]
• (W) - Denotes use of Lambert function
• (iD(t)) - Diode current [A]
• (vin(t)) - Modelled voltage source [V]
• (iT (t)) - Current flowing through the antenna and the load

[A]
• (Is) - Saturation current [A]
• (vT (t)) - Voltage across the diode [V]
• (VT ) - Thermal Voltage [V]
• (ni) - Ideality factor of tag (ID) - Resulting diode current

using Lambert function [A]
• (Vj(t)) - Voltage at tag junction [V]

• (Cj) - Junction capacitance at tag junction [F]
• (∇) - Nabla operator []
• (I(t)) - Total current tag [A]
• (FFT) - Fast Fourier transform from time to frequency

domain
• (ι(fn)) - Fast Fourier transform of current in tag [A]
• (L) - Bin size
• (fs) - Sampling frequency [Hz]
• (Iout(fn)) - Output current in tag at frequency fn [A]
• (βn) - Current division coefficient for frequency fn []
• (Zfn ) - Output impedance at some frequency fn

• (Prx(fn)) - Reflected signal power from tag to main radar
[dBm]

• (Prad(fn)) - Radiated power out of tag at frequency fn
[dBW]

• (Gout,D) - Tag output antenna gain [dBi]
• (Grx) - Receive antenna gain [dBi]
• (GPSDOs) - GPS disciplined oscillators
• (ϕ) - Accumulated phase offset due to different propaga-

tion distances of multiple waves
• (S) - All parameter combinations []
• (|x|) - Denotes parameter space of optimisation parameter

(x) []
• (PRx,min) - minimal power threshold level [dBm]
• (J) - Resulting cost value from cost function []
• (AIM) - Sum coverage area of intermodulating return

signal [m2]
• (N ) - Total number of points considered in calculation
• (Pfirst) - Chance for first guess being global optimum over

total parameter spaces. []
• (dX), (dY), (dθ) - Parameter resolutions used by the code

for x, y and θ respectively [m], [m], [◦]
• (SA) - Simulated Annealing
• (Paccept(J,T) - Acceptance probability function []
• (∆J) - Difference between best found cost result minus

new result of cost function []
• (T) - Temperature (in SA) []
• (M ) - Number of iterations []
• (T0) - Initial temperature parameter []
• (ϑ) - Cooling schedule; Temperature cooling rate over

iterations []
• (P0) - High initial acceptance probability, chosen to allow

parameter calculations []
• (Jmax) - Maximum cost, chosen to allow parameter cal-

culations []
• (TFinal) - Final temperature parameter []
• (Q) - Penalty used in cost function []
• (f(N)) - data fitted curve plotting coverage area estima-

tion, where (f(N) = 37.5N2 − 62.5N + 2775) [m2]
• (dc) - Direct current []
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APPENDIX B: GUI WITH SETTINGS RECORDED USED IN VERIFICATION

Fig. B.1: Example of GUI: (on the left) Parameter settings, (on the right) resulting heat maps for in-phase case (top to bottom) for main radar only, harmonic return intermodulating
return signals

All parameters shown in Section III. Initial simulation model, Table I.
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APPENDIX C: FUNCTIONS WRITTEN FOR OPTIMISER

C.1 CONTINUITY CHECKING FUNCTION USING FLOOD FILL ALGORITHM

function isConnected = findPath(Map, startcoord, endcoord)
[rows, cols] = size(Map);
visited = false(rows, cols);
directions = [0, 1; 0, -1; 1, 0; -1, 0; 1, 1; 1, -1; -1, 1; -1, -1];

function bigMemoryMoment(x, y)
% Check if the current position is out of bounds or visited
if x < 1 || x > rows || y < 1 || y > cols || visited(x, y) || Map(x, y) == 0

return;
end
visited(x, y) = true;
if x == endcoord(1) && y == endcoord(2)

isConnected = true;
return;

end
for i = 1:size(directions, 1)

newX = x + directions(i, 1);
newY = y + directions(i, 2);
bigMemoryMoment(newX, newY);
if isConnected

return;
end

end
end
isConnected = false;
bigMemoryMoment(startcoord(1), startcoord(2));

end

C.2 BOUNDARY ADJUSTMENT FUNCTION

function [lb_new, ub_new] = what_the_bounds_doin(x0_new, lb, ub)
lb_new = [x0_new(:,1)-(25) ,x0_new(:,2)-(25) ,x0_new(:,3)-(25)];
ub_new = [x0_new(:,1)+(25) ,x0_new(:,2)+(25) ,x0_new(:,3)+(25)];
lbtruedoe = lb_new<=lb; ubtruedoe = ub_new<=ub;
lb_new = lb_new.*˜lbtruedoe + lbtruedoe.*lb;
ub_new = ub_new.*ubtruedoe + ˜ubtruedoe.*ub;

end
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