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ABSTRACT 

Accurate mapping of crop types is essential for solving problems of food security, crop inventory and to 

help farmers in making decisions regarding improving productions and managing agricultural practices. A 

variety of scientific methods starting from conventional supervised and unsupervised classifiers to 

machine and deep learning classifiers has been utilized to perform crop type classification from remote 

sensing images. In reality an agricultural field appears to have a lot of majority crops with a few scattered 

minority crops in a particular cropping season. Generally, crop classification studies ignore these minority 

crops or gather them together into a class called other crops and carry out classification. This study is 

aimed at providing a solution for the problem of class imbalance that occurs in deep learning based 

classification. Owing to the limited availability of labelled data, a 1D CNN sequential deep learning model 

is selected. The study area chosen is Jhansi District in the Bundelkhand Region of Uttar Pradesh in India. 

Sentinel 2 freely accessible optical data with a high spatial resolution of 10 m is chosen for the study. 

Taking into account the Rabi Season, 23 multi-temporal Sentinel 2 images covering Rabi crop season is 

considered. The majority crop class identified is wheat and the minority crop classes identified are mustard 

and chickpea. The Hyper-parameter of the model is optimized through Bayesian Optimization.  

 

Two approaches are considered in this study to address the problem of class imbalance. They are 

algorithm level balancing techniques and data level balancing techniques. Cost sensitive learning is 

introduced in the 1D CNN model by making changes to the loss function. Three different loss functions 

such as categorical cross entropy, focal loss and class weighted loss are employed to arrive at one best loss 

function that can solve imbalance problem in crop classification. Secondly, data level balancing methods 

such as under sampling, oversampling and hybrid methods (combination of under sampling and 

oversampling) are applied to the training dataset and the 1D CNN model is trained and tested with these 

balanced dataset. The results are assessed based on accuracy metrics such as Overall Accuracy, F1 –score, 

Precision, and Recall.  G-Mean score is preferred to assess the accuracy of individual classes as it is proved 

to be utilized in imbalanced classification problem.  

 

It was observed that class weighted loss performed the best out of all loss functions with an overall 

accuracy of 70.37 % and a G-Mean score of 56.24%. When it comes to data level balancing techniques, 

under sampling outperformed oversampling as it lead to the generation new incorrect artificial samples. 

After carefully interpreting the results of both these techniques, and comparing those with sampling 

techniques algorithm level balancing with class weighted loss was chosen to be the best out of all the 

different methods incorporated to solve the imbalance in the classification problem.  

 

Keywords: Crop Mapping, CNN, Time-Series, Deep Learning, Class Imbalance, Oversampling and under 

sampling, cost-sensitive learning.  
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1. INTRODUCTION 

1.1. Research Background and Problem Statement 

 
Agriculture is an important sector that aids in the production of food, fiber, and energy, which contributes 

significantly to a country's economy. In light of the growing global population, climate change, and 

Sustainable Development goals demand the agriculture industry to be effective and sustainable, to ensure 

ensuring food safety and security (Martos et al., 2021). Particularly, Goal 2 – Zero Hunger of the 

Sustainable Development Goals designed by the United Nations thrives on ending hunger and achieving 

food security while promoting sustainable agriculture by 2030. To accomplish this, accurate mapping and 

efficient monitoring of the agricultural landscape are essential. To sustain and enhance crop production, 

farmers and stakeholders must make informed decisions on many related activities(Z. Sun et al., 2020). 

Crop types maps and estimates of their extent provide essential information for agricultural monitoring 

and management (Inglada et al., 2016).  In this context, crop type classification provides information 

about production, yield estimation, crop rotation, crop stress detection, crop damage measurement, 

agricultural activity monitoring and crop insurance (Gumma et al., 2020). 

 

“In situ crop type mapping is labour-intensive time-consuming and expensive” (Adrian et al., 2021; 

Orynbaikyzy et al., 2019). Remote Sensing plays a vital role since it delivers consistent, repetitive data with 

a global coverage allowing for near-real-time monitoring of agricultural croplands with more efficient and 

scalable crop mapping. Satellite Remote Sensing is recognized as a reliable and trustworthy tool for crop 

species identification and area estimation since 1970 (Alabi et al., 2016). Earlier, coarser resolution (1 km) 

NDVI derived from the Advanced Very High Resolution Radiometer (AVHRR) was used for crop-related 

studies (Doraiswamy & Cook, 1995; Gallo & Flesch, 1989). Cropland mapping has made substantial use 

of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra and 

Aqua satellites, which provides nearly daily global coverage. (Y. Chen et al., 2018; Massey et al., 2017; 

Zhong et al., 2011). For sustainable agriculture production and food security, up to date cropland 

distribution maps that are precise, accurate, and have a high spatial resolution are essential. (Teluguntla et 

al., 2015; Thenkabail et al., 2012). With its historical dataset, Landsat aids in long-term crop mapping and 

change detection studies(Xu et al., 2018).  A considerable number of crop mapping studies use Copernicus 

Sentinel 2, owing to its high spatial resolution of 10 meters and public availability of dataset (Hernandez et 

al., 2020; Immitzer et al., 2016; Pinjarla et al., 2019). Despite providing acceptable results, cloud cover and 

shadows leading to gaps in optical imagery are major drawbacks that substantially reduce the classification 

accuracy. In contrast to optical-only classification, Van Tricht et al., (2018)  demonstrated that the 

combining all-weather radar and optical data produced more information thereby improving the  accuracy 

of crop classification. 

 

Furthermore, using SAR data that is rich in spatial and spectral information may help distinguish specific 

crop types that are difficult to identify with only optical images. (Inglada et al., 2016). Crop type mapping 

based on multi-temporal methods is preferable than single-date image analyses due to the dynamic nature 

of agricultural systems since the seasonality of crops is effectively captured when utilising multi-temporal 

images (Foerster et al., 2012). 
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MODIS-based NDVI time-series data in 250 m resolution has been extensively used in phenology-based 

research works (Massey et al., 2017). Zhong et al., (2011) adopts piecewise logistic function and 

asymmetric double-sigmoid function to extract phenological parameters from 250 m MODIS data to 

classify major crop types present in the San Joaquin Valley, California. Phenological metrics calculated 

from MODIS Normalised Difference Vegetation Index and Enhanced Vegetation Index are used by Yan 

et al., (2015) for mapping different vegetation cover types. High spatiotemporal resolution data acquired 

from MODIS and Landsat 8 NDVI fusion is used to map crop species and rotation types using Random 

Forest(RF) and Decision Tree(DT) Classifier (Li et al., 2021). 

 

Because of its ability to generate high classification results with a small number of training samples and 

irregular satellite image time series, Dynamic Time Warping (DTW) has been effectively employed for 

crop mapping (Belgiu et al., 2020).  Belgiu & Csillik, (2018) evaluated Time-Weighted DTW (TWDTW) 

method using Sentinel-2 time series and performed pixel-based and object-based classifications to map 

crop types. In this study, the object-based classification provided better accuracy when compared to the 

pixel-based approach. Based on Sentinel 2A/B multi-temporal data, winter wheat was identified using 

phenology time weighted dynamic time warping (PT-DTW) method and an overall classification accuracy 

of 89.90% was achieved (Dong et al., 2020). 

 

 

Over the years, several shallow machine-learning classifiers like RF, DT, Support Vector Machines (SVM) 

and Neural Networks (NN) have been used by researchers for mapping complex heterogeneous 

agricultural landscapes(Li et al., 2021; Shelestov et al., 2017). A large number of studies compare the 

performance of one algorithm against the other and RF and SVM seem to provide better classification 

results (Fang et al., 2020; Feng et al., 2019). Machine Learning Shallow classifiers require optimal feature 

selection and exhaustive parameter tuning to reach high accuracy (Moreno-Revelo et al., 2021). Some of 

the limitations of shallow machine learning shallow classifiers are overcome by Deep Learning 

approaches. Deep Learning is a subset of Machine Learning which can be used to solve complex 

problems with a high precision and performance using a hierarchical representation of data employing 

different convolutions. Artificial Neural Networks (ANNs), Recurrent Neural Networks (RNNs) and 

Convolutional Neural Networks (CNNs) are the major DL methods. 

 

Out of these, CNN has been widely utilized in Remote Sensing for crop classification problems (Adrian et 

al., 2021; Moreno-Revelo et al., 2021). Some of the most common architectures used in Deep Learning for 

crop classification are SegNet, 2D UNet and 3D UNet. Zhong et al., (2019) concluded that compared to 

long short-term memory (LSTM) of RNN family, which is widely used for time-series studies, by using 

one-dimensional convolutional (Conv1D) layers, a deep network model was able to produce a good 

classification result. Adding to this, the study recommends utilising a 3D spatiotemporal convolution 

model in future works to produce high accuracy. Although, a 3D CNN which would capture the spectral, 

temporal and spatial information of crops would beneficial for producing highly accurate crop 

classification, this method is limited to studies having training data with larger spatial coverage of the study 

area. In case of studies with limited training samples, 1D CNNs are preferred as they have demonstrated 

good performance(Wei et al., 2019).  
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Neglecting minority classes is a significant problem that many studies fail to address. Most common 

approach to resolve this problem is to group these minority crops into a class named „other crops‟ and 

perform classification (Ibrahim et al., 2021; Zhao et al., 2019). Yet, these infrequent minority crops present 

in the fields are mapped with poor accuracy owing to lesser training samples. This problem of class 

imbalance has been addressed by incorporating sampling techniques such as under sampling and 

oversampling in Machine Learning studies for crop classification (Douzas et al., 2019; Waldner et al., 

2019). Under sampling is the process of removing majority class instances whereas oversampling creates 

new minority class instances. Previous deep learning studies have tried to solve the problem of class 

imbalance using cost sensitive learning techniques and data augmentation techniques (Ando & Huang, 

2017; Schaefer et al., 2021; Waldner et al., 2019). This research will focus on implementing crop 

classification using a 1D Convolutional Neural Network architecture capable to account for the 

imbalanced classification problem. In addition to this, the impact of oversampling and under sampling 

techniques for addressing class imbalance is also studied.  

 

1.2. Research Objectives and Questions  

The main objective of this research is to evaluate the performance of 1D CNN Deep learning architecture 

for crop type mapping. In this research, the following sub-objectives and the corresponding research 

questions will be addressed, 

 

1) To design and implement a deep learning model capable of addressing the sample imbalance challenge 

in crop type mapping. 

 What are the number of epochs, neurons, learning rate, dropout rate and batch size required to 

produce accurate classification results? 

 What is the final loss and accuracy of the proposed deep learning model? 

 

2) To assess the sensitivity of the deep learning model with different loss functions to sample distribution 

of crop types.  

 Does the developed deep learning model increase the accuracy of minority classes? 

 

3) To compare the developed deep learning model with the sample balancing techniques such as under 

sampling and oversampling. 

 Which data sampling method is suitable for the current study and improves the accuracy of 

classification?  

 To what extent does the developed deep learning model outperform the class balancing 

techniques? 

 

1.3. Innovation Aimed at 

The innovation in this research work is focussed on developing a novel deep learning based classification 

algorithm capable of addressing imbalanced class distribution problem in crop type mapping. Different 

cost-sensitive learning techniques are explored to arrive at the deep learning model with the best loss 

function which can account for the problem of class imbalance. 
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1.4. Structure of the Thesis 

 

There are six chapters in this thesis. The rationale for the research and the problem statement are 

discussed in the first chapter, "Introduction." Along with the innovation used in the work, this chapter 

also covers the main research objective, sub objectives and relevant research questions. The details of 

earlier research works done for applications similar to this research are included in the second chapter, 

"Literature Review." The study region and datasets that were selected for this research are explained in 

depth in the third chapter, "Study Area and Datasets Used," along with the reasons of why they were 

selected. The fourth chapter, titled "Research Methodology," goes into great detail about this study's 

methodology. It also explains in depth on how different crop classes were split up and employed in this 

study. Additionally, the preparation of data followed by the implementation of Algorithm Level Balancing 

and Data Level Balancing techniques are discussed in detail in this Chapter. The fifth chapter, "Results 

and Discussions," discusses the significant results of the research. The final chapter, "Conclusions and 

Recommendations," presents the findings from the study's analysis along with future recommendations. 

This section also includes responses to each research question. 
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2. LITERATURE REVIEW 

This chapter provides a description of relevant literature to establish the state of art and justification for 

the choice of method used in this research.  

2.1. Crop Mapping using Multi temporal Remotesly Sensed Images  

 

Remotely sensed time series images are being created at an extraordinary rate and scale from a variety of 

platforms, including Sentinel-2 (5-day frequency) and Landsat (16-day frequency). As a consequence, 

numerous research studies have been focussed on the objective of extracting meaningful information 

from these massive amounts of multi-temporal remote sensing images. Particularly in agricultural remote 

sensing studies, the advantage of multi-temporal images is employed to capture the seasonality of the 

crops. One of the most important feature of vegetation is its seasonality (Zhong et al., 2019). Vegetation 

phenology and plant growth dynamics retrieved from multi-temporal remote sensing images serves as an 

efficient tool for crop classification (Y. Xie et al., 2008). The seasonal evolution of plant activity through 

stages of dormancy, active growth, senescence, and back to dormancy is referred to as vegetation 

phenology (Penuelas et al., 2009; Richardson et al., 2013). Remote sensing derived vegetation phenology is 

often monitored using time series of vegetation indicators. (Cai et al., 2018)suggests that inclusion of 

temporal phenology information as well as uniformly distributed spatial training samples in the research 

domain increases classification performance.  A wide range of studies use crop phenology derived from 

vegetation indices (NDVI, EVI) provided by satellites such as MODIS and Landsat for automatic crop 

mapping (Foerster et al., 2012; Li et al., 2021; Massey et al., 2017; Yan et al., 2015; Zhong et al., 2011). 

 

2.2. Drawbacks of Machine Learning for Crop Classification 

 

Shi et al., (2016) uses RF Classifier and investigates how providing different algorithmic parameters 

namely number of trees, number of features affects the performance of the RF algorithm for remote 

sensing image classification and concluded that these parameters had an impact of accuracy of the 

classifier and also the thematic map‟s accuracy. Feng et al., (2019) explored how distinct band information 

significantly helps in distinguishing different crop types and established the robustness of machine 

learning methods over traditional classification by comparing non-parametric classifiers ( RF and SVM ) 

with statistical-based maximum likelihood classifier.  In this study, the size of the feature space was proven 

to impact the classification accuracy of SVM, and RF-based feature selection is suggested as a solution to 

this problem. Despite a little loss in accuracy, SVM that employed fewer features reduced uncertainty for 

several crops (Löw et al., 2013).Therefore, it is clear that selection of optimal features is essential in order 

to produce high classification accuracy with machine learning.   

2.3. Deep Learning 

 

Deep Learning which is an extension of classical machine learning is a type of representation learning that 

can extract hidden patterns from the data using hierarchical representation of data which constitutes layers 

of convolutions (Schmidhuber, 2015). This allows larger learning capabilities and thus higher performance 
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and precision (Kamilaris & Prenafeta-Boldú, 2018). Also, deep learning has been demonstrated to be very 

effective in image classification and object detection. In the field of remote sensing, deep learning has 

opened up new possibilities through its application to computer vision and image analysis(Hoeser & 

Kuenzer, 2020; Huang et al., 2018; Kulathunga & Afanasyev, 2018; Zhu et al., 2017). “Deep learning 

differs from classic visual recognition methods in that it automatically learns features from enormous 

amounts of data rather than requiring feature engineering manually” (L. Zhang et al., 2016). This allows us 

to easily learn the best features for new specific problems without requiring high expertise and effort.  

 

A deep neural network (DNN) is an artificial neural network (ANN) which has multiple layers of neurons 

between the input and output layers. In general, a neural network has three major layers, namely input 

layer which is the first layer of the neural network, hidden layer which has n number of layers constitutes 

the middle layer and output layer, is the last layer of the neural network. Many different types of neural 

networks are in practice depending on the type of application and the data used. Feed-forward neural 

network, Multi-Layer Perceptron (MLP), CNN, RNN, Modular neural network are some of the 

commonly used and popular deep neural networks. RNNs have demonstrated success in identifying and 

extracting temporal correlations. 

 

2.4. Convolutional Neural Networks  

 

CNN, also referred to as ConvNets, is a deep learning neural network intended for processing structured 

arrays of data, particularly images. CNNs have demonstrated high performance in image classification 

when compared to other types of deep learning models (Guo et al., 2017).CNN introduced by LeCun et 

al., (1989) made use of concepts developed by a Japanese researcher by the name of Kunihiko Fukushima 

Fukushima, (1988),who created a fundamental image recognition neural network. The convolutional layers 

in the CNN performs operations similar to image processing filters(Teoh & Rong, 2022). Convolutional 

neural network finds its applications in object detection (You Only Look Once (YOLO), Fast Region-

based Convolutional Neural Network (R-CNN), Mask R-CNN, SSD) and image classification (AlexNet, 

VGG network, ResNet) Three types of CNN that are mainly used are 1D CNN, 2D CNN and 3D CNN. 

In 1D CNN, the input and output data is two dimensional array and the kernel moves in one direction. 

1D CNN finds application in time-series. 2D CNN has three dimensional data with the kernel moving in 

two directions. It is used for image data problems. 3D CNN has four dimensional data and kernel moves 

in three dimensions (Shukla & Iriondo, 2022).  Figure 1 depicts the essential layers of a CNN.  

 

 

 

 

 

 

 

 

 

  
 

Figure 1 Basic Components of Convolutional Neural Network 
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2.5. Remote Sensing based Crop Mapping using Deep Learning  

 

According to the survey done by Kamilaris & Prenafeta-Boldú, (2018), regarding the Deep Learning 

techniques and their applications for agriculture, conclusion is drawn that the research based on deep 

learning surpasses the traditional machine learning-based methods in terms of accuracy. As CNNs and 

RNNs extract sequential information, they are preferable to conventional ANNs in the context of image 

classification (Moreno-Revelo et al., 2021).  

 

Zhong et al., (2019) used EVI time series to classify 13 summer crop categories in a very diverse irrigated 

agricultural system in California using different classifiers such as XGBoost, RF and, SVM in machine 

learning and, Long Short-Term Memory (LSTM) and 1D CNN in deep learning and established that 1D 

CNN architecture provided the best accuracy out of all the DL and non-deep learning models. In the 

same way, 1D CNN performed better than Recurrent Neural Network(RNN), Multi-Layer Perceptron 

(MLP),  and machine learning methods like RF, SVM and XGBoost for crop mapping with optical SAR 

fused data(Van Tricht et al., 2018).  

 

Convolutional long short-term (ConvLSTM) memory network and fully convolutional network (FCN) 

were combined by Teimouri et al., (2019)  to identify different crops using multi-temporal Sentinel 1 SAR 

data and an overall accuracy of 86% was achieved. A 2D CNN  multi-source multi-temporal crop 

mapping performed by Kussul et al., (2018) provides an accuracy greater than 90%. A 3D Convolutional 

Neural Network was used by (Ji et al., 2018) to classify crops in spatio-temporal remote sensing images 

and the results suggested that 3D CNN with proper structure was able to capture the crop growth 

dynamics effectively and outperformed 2D CNN where the temporal information is lost owing  to its own 

mathematical restriction. The crop types in the US Corn Belt were mapped using a 3D FCN, accounting 

for the spatial-temporal relationship in satellite imageries (Mohammadi et al., 2021). In this research work, 

the employed IOU loss function learnt individual crop types better. 

 

For application with insufficient training samples, the performance of compact 1D CNN is superior 

(Kiranyaz et al., 2021). 1D CNNs have several advantages in comparison to 2D CNNs and many other 

deep learning architectures, including lower computational complexity, a faster training process, a better 

capability of extracting relevant features from time-series and sequence data, and, most importantly, 

effective performance even on a small amount of data (Rala Cordeiro et al., 2021). In conclusion, this 

research adopts 1D CNN Deep learning architecture to perform crop classification taking into account 

the limited labelled data.  

 

2.6.  Sample Imbalance Issue in Crop Classification 

 

Class imbalance happens when there aren't enough samples of some classes to train classifiers, which 

causes the rare classes to have high error probabilities (Waldner et al., 2019). In day to day classification 

problems, class imbalance is a common issue, where a significant difference in the number of training 

samples across different classes causes learning algorithms to over-generalize for the classes in the majority 

(Ando & Huang, 2017).  For the classifier to perform at its optimum, it is crucial that there should be no 

or very little imbalance in the training samples (Z. Liu & Sun, 2008). Figure 2 and 3 gives a representation 

of sampling techniques in a graphical and spatial context.  
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Figure 2 Representation of the concept of under sampling and oversampling. (Badr, 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Spatial Depiction of under sampling and oversampling (Pilotti, 2020) 

Oversampling is the most widely used data balancing technique and is proven to be robust (Ling & Li, 

1998). Random Oversampling is the basic version of oversampling and it simply replicates randomly 

selected samples from the minority class ie. it generates duplicate minority class instances (Buda et al., 

2017). Cluster-based oversampling clusters the majority and minority classes first using K-means algorithm 

and then oversampling is performed on each cluster independently (Jo & Japkowicz, 2004). This 

minimises both between-class and within-class imbalance. Japkowicz, (2000) used random under 

sampling, which is removes the majority class samples until their numbers are equal to those of the 

minority class. Under sampling is an excellent option for class imbalanced problems with large amount of 

data, such as millions of rows. Both random resampling methods have various short-comings. Random 

Oversampling can easily result in overfitting of model as duplicated samples are visited frequently (N 

Chawla et al., 2002). Additionally, “Over-sampling will cause an increased training time due to the 

increased size of the training set” (Nitesh Chawla et al., 2004).  Overfitting occurs when a model fits too 

closely to the training data, that it becomes difficult to generalise to new data. On the other hand, random 

undersampling can potentially remove certain valuable information. 

 

A novel strategy was developed by N Chawla et al., (2002) to address the overfitting problem and widen 

the decision zone of minority class occurrences. This method involved the generation of new synthetic 

samples by operating in the feature space instead of the data space. This method was called as Synthetic 

Minority Oversampling Technique (SMOTE).  This was the first effort to add new training samples 

to the training data in order to enhance the data space and reduce the data distribution's sparsity. In short, 

along the path connecting a minority class samples to its K nearest neighbours, SMOTE creates new 
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synthetic minority class samples. The k nearest neighbours is randomly chosen in accordance to the 

amount of over-sampling required (Nitesh Chawla, 2005). Figure 4 represents the working of SMOTE. 

This method greatly reduced overfitting. However, the surroundings of the artificial examples are ignored, 

and artificial examples may be produced in the regions adjacent to the majority samples, leading to 

misclassification. (Waldner et al., 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Synthetic Minority Oversampling Technique (SMOTE) (ALENCAR, 2018) 

 

 

By introducing new minority samples in safe regions, Safe Level SMOTE aims to counteract SMOTE's 

shortcoming (Bunkhumpornpat et al., 2009). Each minority case is given a safe-level ratio based on the 

proportion of surrounding minority examples. When the safe-level ratio is close to zero, it is regarded to 

be noise, but when it is high, it is considered safe. Safe Level SMOTE achieves improved accuracy 

performance than SMOTE and Borderline-SMOTE by synthesising the minority cases more around a 

larger safe level (Bunkhumpornpat et al., 2009). The effect of Safe Level SMOTE in unbalanced data 

classification was studied by (Meidianingsih & Sartono, 2017)and they proved that safe-level SMOTE 

method showed a better performance than SMOTE method by using F- measure as accuracy metric. 

 

ADAptive SYNthetic sampling (ADASYN) approach adaptively generates minority data samples 

according to the data distributions. The basic idea behind ADASYN is to employ a weighted distribution 

for each and every minority class examples based on their level of difficulty in learning, with more 

synthetic data created for minority class samples which are more difficult to learn than minority class 

examples that are easier to learn (He et al., 2008). The number of neighbours necessary to create 

minorities is not determined in ADASYN, which is a major distinction between ADASYN and SMOTE. 

 

Tomek Links are pairs of very close instances but belonging to different classes(Tomek, 1976). Removing 

the instances of the majority class from each pair of Tomek Link increases the space between the two 

classes, making classification easier. Another option is cleaning where both instances are removed.  Tk can 

be implemented by either of these methods. The working of Tomek Links in shown in the Figure 5. 
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Figure 5 Tomek Links - An under sampling technique (ALENCAR, 2018) 

 

Edited Nearest Neighbour (ENN) method was introduced by (Wilson, 1972). Most of the samples with 

class labels that are different from the vast majority of their k nearest neighbours are eliminated by ENN. 

The parameter K denotes the number of nearest neighbours and by default it takes the value of 3.  

 

The combination of SMOTE and under-sampling performs better than plain under-sampling(Bowyer et 

al., 2011). A combination of SMOTE and Tomek Links employed  by (Batista et al., 2003) gave promising 

classification results. Likewise, the work of (Batista et al., 2004) demonstrated that  Smote + Tomek and 

Smote + ENN in particular for data sets with few minority samples, provided very good results in 

practice. This process where different sampling methods are combined is called as hybrid technique. 

 

2.7. Algorithmic Level Balancing 

Class imbalance is a frequent issue that has been thoroughly researched in traditional machine learning, 

but there is relatively little systematic study available in the context of deep learning (Buda et al., 2017). 

In algorithmic level balancing methods, the imbalance issue is addressed in the training phase of the model 

(Boogaard et al., 2022). This is accomplished with the help of loss function. Loss function also referred to 

as cost function quantifies the deviation between the predicted class values from the model and the actual 

target class values (ground truth). In simple terms, it gives the prediction error of the neural network. 

During training, loss is used to learn the optimum weights in the neural network. The goal of the training 

process is minimizing the loss so that the accuracy of the model can be maximized.  

 

In multi-class classification problems, Cross Entropy loss function is prominently utilized (Zhou et al., 

2019). The majority of crop mapping techniques based on deep learning use categorical cross entropy loss 

to determine the crop types (Kattenborn et al., 2021). Errors of each class are given equal weights in cross 

entropy loss (Boogaard et al., 2022).  In order to implement cost sensitive learning, focal loss and class 

weighted loss are used. These loss functions which provide an emphasis on minority classes are preferred 

in the context of classification problems with imbalanced training data. Focal loss (FL) is an improved 

and reshaped version of standard cross entropy loss which attempts to solve imbalance by reducing the 

weight of the loss assigned to well-classified samples at the same time increasing the weight of hard-

misclassified samples (T.-Y. Lin et al., 2017). In FL, the weights are inversely proportional to the class 

share of the dataset (Boogaard et al., 2022). “In Class Weighted loss, per-class weights are computed for 

each class by which the focus of a learning algorithm is shifted towards minority classes and these 

computed weights are then used to increase the loss for minority classes and decrease the loss for majority 

classes” (Boogaard et al., 2022; Schiele et al., 2019). 
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3. STUDY AREA DESCRIPTION AND DATA ACQUISITION  

3.1. Study Area Description 

 

The study area chosen is Jhansi district located in the Bundelkhand region in central India. The 

Bundelkhand region covers seven districts of Uttar Pradesh (Jhansi, Chitrakoot, Lalitpur, Jalaun, Banda, 

Mahoba, and Hamirpur,) and six districts of Madhya Pradesh (Panna, Sagar, Tikamgarh, Chhatarpur, 

Damoh, and Datia). Jhansi, one of the districts of Uttar Pradesh state is located in the south western part 

of Bundelkhand. The geographical extent of the study area lies between 25°07′ to 25°57′ N latitudes and 

78°10′ to 79°25′ E longitudes, covering a total area of 5,024 km2. Its borders are formed by the district of 

Jalaun to the north, Mahoba and Hamirpur to the east, Tikamgarh of Madhya Pradesh to the south, 

Lalitpur District to the southwest, and Datia and Bhind Districts of Madya Pradesh to the west. Pahuj, 

Betwa, and Dhasan are the three principal rivers that intersect or border the district. Figure 6 denotes the 

study area. 

 

The climate in the region is sub-humid with four distinctive seasons, namely winter (January-February), 

pre-monsoon (March-May), monsoon (June-September), and post-monsoon (October-December) 

characterized by a hot dry summers and cold winters. Historical records show that the district receives 850 

mm of rain on average annually, with the monsoon season accounting for roughly 91% of that total 

(Central Ground Water Board (CGWB), 2017). The region is mostly rain-fed, with less than 25% of 

cropland being used for double cropping (R. & Yadav, 2015). January is the coldest month of the year, 

with a mean daily lowest mean temperature of 9.2°C. A mean maximum temperature of 42.6 °C and a 

minimum temperature of 28.8 °C are recorded in May, making it the hottest month. 

 

Presently, agricultural fields have replaced major parts of the study area which were covered by forest 

earlier. Approximately 62.4 percent of the district's land is used for agriculture (Kumar et al., 2021). 

According to the district profile, 30 percent of the land is fallow or barren. 80% of the people in the 

district live in villages and are relying on agriculture, cattle, and forest resources. (Singh et al., 2013). 

Chickpeas, wheat, paddy, sorghum, barley, lentil, maize, sesame, mustard, groundnut, soybean, urad, 

moong, peas, vegetables, and fruits are some of the most important crops cultivated in the Bundelkhand 

region(Gupta et al., 2014). Contrary to other croplands, the percentage of Rabi crops (69%) is higher than 

the Kharif crops (31%).  Major crops grown in the Rabi season are wheat and gram and the sowing of 

these crops is influenced by October rainfall (Pandey et al., 2021). “Under normal rainfall years, cereals 

account for 54.6 % of food grain output, followed by pulses (32.4%), oilseeds (8 %), sugarcane (0.2 %), 

and other crops (4.8 %)” (R. & Yadav, 2015). Therefore, it is highly indispensable to map the different 

crop types present in the study area. 
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Figure 6 Study Area Map denoting a) Study Area Location in India b) Location of the Study Area in the 
Bundelkhand Region located in the state of Uttar Pradesh c) Sentinel 2 Image of Jhansi District d) Patch from the 

Study Area used for prediction.  
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3.2. Satellite Data 

 
This research will utilize multispectral, wide-swath data from the Sentinel-2 satellite constellation. Sentinel 

2 optical data is chosen as it has shown high capability in mapping crop types, evaluation of the state and 

change of vegetation and it has also been successfully applied in various crop classification studies (Belgiu 

& Csillik, 2018; Immitzer et al., 2016; Van Tricht et al., 2018). 

  

The European Space Agency (ESA) originally launched Sentinel-2A in June 2015 as a part of the 

Copernicus Earth observation programme of the European Union. Subsequently, in March 2017, Sentinel 

-2B was launched. These 2 satellites together provide a high temporal resolution of 5 days at the equator. 

The Sentinel 2 Multispectral Instrument (MSI) collects data in 13 spectral bands, visible and NIR at 10 

meters, red edge and SWIR at 20 meters, and atmospheric bands at 60 meters spatial resolution. ESA 

provides Sentinel 2 data products at two levels: orthorectified top-of-atmosphere reflectance (Level 1C) 

and orthorectified atmospherically corrected surface reflectance (Level 2 A). This research will take 

advantage of the analysis ready Level-2A optical data (with bottom of atmosphere reflectance) available in 

Google Earth Engine (GEE) cloud computing platform. Sentinel 2 spectral bands with the bands selected 

for the study highlighted in bold is shown in the Table1. 

 

Table 1 Spectral Bands of Sentinel 2 Image (European Space Agency) 

Band and Description Central Wavelength (μm) Spatial Resolution (m) 

B1 Coastal Aerosol 0.443 60 

B2  Blue 0.490 10 

B3  Green 0.560 10 

B4  Red 0.560 10 

B5  Vegetation Red Edge 0.705 20 

B6  Vegetation Red Edge 0.740 20 

B7  Vegetation Red Edge 0.783 20 

B8  NIR 0.842 10 

B8A Vegetation Red Edge 0.865 20 

B9  Water Vapour 0.945 60 

B10  SWIR - Cirrus 1.375 60 

B11  SWIR 1.375 60 

B12  SWIR 2.190 20 

 

 

The size of landholdings not only impacts agricultural productivity but also affects the accuracy of 

satellite-generated spatial maps (Gumma et al., 2020). Marginal land holdings (less than 1 hectare) 

accounted for 40% of all holdings in Madhya Pradesh, Bundelkhand. Small and Semi medium holdings of 

1-2 hectares and 2-4 hectares respectively make up the majority of Bundelkhand, whereas medium and 

large holdings (greater than 10 hectares) represent 30% to 45% of the total area of all holdings across 
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Bundelkhand districts. Considering the landholding size, Sentinel 2 data with a spatial resolution of 10 

meters is chosen to capture the high variability of crop types in the croplands of Jhansi District. 

 

3.3. Ground Truth Data / Reference Data 

Vector point data provided by International Crop Research Institute for Semi-Arid Tropics (ICRISAT)  

and Agriculture and Soil Department, Indian Institute of Remote Sensing(IIRS) are combined together to 

form the ground truth data. The data is collected during the years 2019- 2020. Finally, this dataset is 

divided into training, validation and testing sets to perform crop type classification. 
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4. RESEARCH METHODOLOGY 

4.1. Overall Methodology  

 

The flowchart of the overall methodology adopted in the research is denoted in the Figure 7. This 

research makes use of multi-temporal satellite imagery that captures the growth phase of crops to map the 

crop types present in the study area. Most importantly, a major problem ignored in classification – class 

imbalance is also addressed. The methodology adopted is divided into three subsections namely, ⅰ) Data 

Pre-Processing, ⅱ) Addressing Class Imbalance problem and, ⅲ) Accuracy Assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 Overall Methodology 

 

 

 

 

 



DEEP LEARNING BASED MULTI-TEMPORAL CROP MAPPING ACCOUNTING FOR SAMPLE IMBALANCE  

 

16 

Pre-processing of the satellite imagery and reference data used is discussed in the section 4.2. Section 4.3 

briefly discusses the CNN deep learning model utilized. A 1D CNN deep learning model is used and the 

hyper parameters of which are optimized by selecting the ones yielding high accuracy. The problem of 

imbalance is addressed by incorporating algorithm-level balancing techniques discussed in the Section 4.4 

and data level balancing techniques discussed in the Section 4.5. Usage of various loss functions are 

attempted to solve the class imbalance issue. Generally, deep learning models use cross entropy loss 

function. Besides, other loss functions such as focal loss and class weight loss are incorporated in the 1D 

CNN deep learning model and classification of the crop types are carried out. The results of the three loss 

functions are compared by means of accuracy metrics to arrive at the one with the best accuracy which 

classifies both the minority and majority classes without any bias. Section 4.6 describes the different 

accuracy metrics used in detail. Different accuracy measures such as Overall Accuracy, Precision, Recall 

and F1 score are used.  Also, G mean accuracy is preferred as it gives a true picture of individual class‟s 

accuracy and performs better for classification problems with minority classes. The accuracy of each 

individual class are computed and compared against each other. Next, data level balancing techniques 

discussed in the Section 4.5 are explored to address imbalanced class problem at data level. Three main 

approaches followed are: Oversampling, under sampling and hybrid methods. Nine different data level 

balancing techniques are used and the results of classification for each of these methods are compared in 

terms of accuracy metrics. Finally, the results of algorithm level balancing and data level balancing 

methods are compared against each and the method that performs better in classifying the majority and 

minority classes accurately is picked out. 

 

 

4.2. Data Preparation and Preprocessing 

4.2.1. Satellite Data Pre-processing 

 
Imageries from November, 2019 to April, 2020 were selected considering the growing season of the crops 

from the crop calendar. The percentage of cloud cover given was 50 and cloud masking was applied. 

Additionally, cloud masking generates regions with no data which could not be interpolated from previous 

and next day images. Because continuous cloud-free images were not available, temporal interpolation was 

not feasible. Added to these shortcomings, the NDVI trend also showed spikes and dips due to presence 

of clouds.  Most of the crops selected had sowing season starting from November.  Each and every image 

from the image collection was examined for spatial coverage of the study area with less cloud cover. 

Images with high cloud cover were ignored. For the entire time period, there were 23 images in total 

covering the entire study area. The Figure 8 shows the distribution of Sentinel 2 images over the selected 

months. To cover the full study region, 6 images are needed. Therefore, dates with less than 6 images are 

not considered for the study.  
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          Figure 8 Distribution of Sentinel 2 Imageries over the study period (November 2019 - April 2020) 

 

Most deep learning studies on crop classification are based on Red(R), Green(G), Blue(B), and Near 

Infrared(NIR) spectral bands (Ji et al., 2018; Z. Sun et al., 2020; Zhong et al., 2019). Accordingly, the 

Sentinel 2 bands B2, B3, B4, and B8 which denote R, G, B and NIR are selected as suitable bands and the 

other bands such as cloud and aerosol are dropped due to their coarse resolution and unsuitability to crop 

related studies. Normalised Difference Vegetation Index (NDVI) is calculated for all the 23 images from 

November to April using the formula  

 

     
       

       
      (1) 

 

This newly computed NDVI is also stacked with the other bands. Finally, each image in the study period 

contains 5 bands namely R, G, B, NIR and NDVI with a spatial resolution of 10 meters. 

 

4.2.2. Ground Truth Data Preparation and Cleaning 

 Initially, the ground truth dataset for the study area was in the form of vector points which included 

mixed cropping class also. Mixed cropping is dropped as it may create confusion within crop class 

identification and finally eight land cover classes which included three crop classes were selected. Class 

barren and fallows were merged into one class named Barren/Fallows as they depicted the same NDVI 

trend. The finalised classes are Wheat, Mustard, Chickpea, Forest, Scrubland, Barren/Fallows, Settlements 

and Water.  More ground data points for classes such as water, forest, settlements are added by manually 

by visual interpretation. The final ground truth points overlaid in the study area is represented in the 

Figure 9. 
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Figure 9 Distribution of ground truth points over the study area 

Now, polygons are created by digitizing the ground features for every class. For this delineation, Google 

Earth imagery and the Sentinel 2 satellite imagery of the same time of the year are chosen as reference. 

The reason for polygon creation is to improve the number of pixels for each class. Finally, there are 310 

numbers of polygons in total. The distribution of ground truth polygon samples for each class is given in 

the Table 2. From the ground truth sample count, it can be inferred that there is a high imbalance between 

different classes.  
Table 2 Class wise sample count of polygon ground truths 

  

 

 

 

 

 

 

 

 

 

 

 

 

In order to be fed into the deep learning model, the sample dataset has to be divided into training, 

validation, and testing sets. As the name suggests, training data is used for training of the deep learning 

model whereas the validation set aids in improving the model‟s accuracy by fine tuning the model after 

every epoch during the process of model training. The main reason for dividing the dataset into a 

validation set is to prevent the model from overfitting, which occurs when the model gets exceptionally 

good at identifying samples in the training set but struggles to generalise to new data and make accurate 

classifications. Finally, the test set which is a separate dataset, gives the accuracy the model after the 

completion of training process by testing the correctness of the predicted samples with the help of the 

Class Name Sample Count 

Wheat 93 
Mustard 33 
Chickpea 25 
Forest 30 
Scrubland 24 
Barren/Fallows 26 
Settlements 43 
Water 36 
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metrics such as accuracy, precision, recall etc. The model should never be built using the test set. Out of 

the three, the training set forms the largest ratio because the model should have sufficient data to learn. 

These three datasets should be completely spatially independent of each other, and distributed over the 

study site. 

 

Remote sensing data naturally contains spatial autocorrelation (Griffith & Chun, 2016; Wulder & Boots, 

1998). The tendency for nearby locations or places to share similar values is called spatial autocorrelation. 

In the context of Remote Sensing, neighbouring pixels are more similar than faraway ones. If this is 

ignored during the split of training and testing sets, it can result in overestimation of generalisation 

capabilities of the model (Karasiak et al., 2022). This can be solved by using a data splitting strategy that 

guarantees spatial isolation in between training and test sets. One possible solution to this problem is by 

separating the training and testing datasets spatially during the data-splitting process. To solve the issue of 

spatial autocorrelation, one option is to spatially stratify the object samples, assuring spatial independence 

across the training and test sets (Cánovas-García et al., 2017; Inglada et al., 2017). Sampling based on 

objects is preferable to sampling based on pixels. Figure 10 provides an overview of the train test split.  

The optimum split ratio depends upon the type of application, the model used and the dimension of data. 

In this study, the sample data (delineated polygons) is divided into training, validation and test set in the 

ratio of 70:30 (train: test) taking the spatial distribution of the samples into account.  The unique values of 

each data set are checked to confirm if the training, validation and testing sets include all the class types. 

Table 3 represents the number of polygons in the train, validation and test sets.  

 

 
 
 

 

 

 

 

 
 

Figure 10 Train, Validation and Test Split (How to Train and Test Data Like a Pro, 2021) 

Table 3 Per Class Distribution of Ground Truth Polygons in Training, validation and Testing Sets 

Class  Training Validation Testing Total 

Wheat  50 9 34 93 

Mustard 17 6 10 23 

Chickpea 13 3 9 25 

Forest 18 2 6 26 

Scrubland 11 5 8 24 

Barren/Fallows 17 5 4 26 

Settlements 24 8 12 44 

Water 10 2 3 15 

Total  160 40 86 286 
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Figure 11 Spatial distributions of training, validation and testing set in the study area 

The polygon samples are rasterised using the polygon to raster tool provided under the Conversion tool of 

Arc Tool Box. Land cover classes are given as the value field and cell size of the new raster takes the pixel 

size of the Sentinel 2 image. The spatial distribution of training, validation and testing labels is shown in 

the Figure 11. The pixel distribution of each class is given in the Table 4.  Observing the distribution of 

this dataset one can infer that it is highly imbalanced and, the majority crop class is wheat with a pixel 

count of 4139 and Mustard and Chickpea are the minority crop classes with pixel count 1546 and 1824 

respectively.  Besides Barren/Fallows, a non-crop class is also a minority class. 
Table 4 Number of pixels per class used in the training set 

Class Train Set 

Wheat 4139 

Mustard 1546 

Chickpea 1824 

Forest 4776 

Scrubland 3196 

Barren/Fallows 1374 

Settlements 3678 

Water 2695 
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4.2.3. NDVI trend for different crop types  

 

In general, the quality of the satellite observations is often influenced by the presence of clouds and 

atmospheric aerosols. This results in the generation of images undesirable for environmental remote 

sensing studies. Therefore, the acquisition of good quality multi-temporal remote sensing data decides the 

generation of an NDVI time series of high quality which in turn is responsible for accurate crop type 

mapping(X. Liu et al., 2022; X. Zhang et al., 2022). In practice, these images with high cloud cover can be 

either discarded or reconstructed using the temporal filters for remote sensing classification(X. Zhang et 

al., 2022). Savitzky-Golay (SG) filter designed by (J. Chen et al., 2004) is based on the notion that NDVI 

time-series exhibit annual cycles of vegetation growth and decline. It is a simple but robust temporal 

filtering method which smoothens out noise in NDVI time-series. According to the study's findings, this 

technique is more efficient in producing NDVI time-series of excellent quality. SG filter is employed in 

several crop mapping studies (Amin et al., 2022; Htitiou et al., 2021; L. Pan et al., 2021).  

 

The NDVI trend for each crop is created by randomly selecting 50 ground truth samples and then, SG 

filter is applied to remove the noise and generate a smooth temporal profiles.  The three different crops 

are wheat, mustard and chickpea. Wheat has sowing season in the mid of November to first week of 

December and its harvesting period during the last week of March to first week of April. For Mustard, the 

sowing season is first week of November and the harvesting season is last week of February. For 

Chickpea, the sowing and harvesting period are from 1st week of November Last week of November and 

1st week of March to Last week of March respectively. This crop calendar information is found in 

accordance to the computed NDVI trend. Quality check of the ground truth samples is performed with 

the help of the shape and maximum value of NDVI trends to figure out the wrong samples and remove 

them. The NDVI time series trends for the three major crop classes and all the nine land cover classes 

considered are shown in the Figure 12 and Figure 13 respectively. Table 4 shows the growing seasons of 

the three different crops considered in this study.   

 
Figure 12 Normalised Difference vegetation Index Time Series Trends for the identified crop classes - Wheat, 

Mustard and Chickpea 
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Figure 13 Normalised Difference vegetation Index Time Series Trends for the 8 classes identified in the study 

 

 
Table 5 Sowing and Harvesting Period of Crops – Wheat, Mustard and Chickpea  

Source: (Crop Calendar PMFBY, 2018) 

 

Crop Class 

 

Sowing Period 

 

 

Harvesting Period 

 

From 

 

To 

 

From 

 

To 

Wheat 2nd Fortnight of 

November 

 

1st Fortnight 

of  December 

Last week of March 1st week of April 

Mustard 1st week of 

October 

1st week of 

November 

Last week of 

February 

Last week of March 

Chickpea 1st week of 

November 

Last week of 

November 

1st week of March Last week of March 
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The three major component of a Convolutional neural network are convolutional layer, pooling layer and 

fully connected layer. The design of the convolutional layer and pooling layer, the activation function, the 

loss function, and the regularisation are the main areas where convolutional neural network optimization is 

focused. 

 

4.2.4. Convolutional Layers 

 
The core building block and the first layer of a CNN is Convolutional layer. This layer utilises 

convolutions (or filters or kernels) to slide across the input image while looking for patterns in the image 

by computing the dot product between the kernel and the input. The depth of convolutional layer is 

defined by the number of filters used. The size of the filter depends upon the specified application and 

should always be less than the size of the input image. As a result of convolution operation, the image is 

abstracted to a feature map (or activation map). This feature map is fed into the next layer to learn more 

features from the input image. The input feature maps are first convolved with a learnt kernel in order to 

produce a new feature, and the outcomes are then fed into a nonlinear activation function (Guo et al., 

2017). The mathematical context of convolution operation is shown in the Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14 Representation of the Convolution operation in CNN(Reynolds, 2019) 

 

4.2.5. Activation Function 

 

By introducing non-linearity in the neural network, activation function improves the capability of neural 

networks to represent complex non-linear mapping (X. Pan et al., 2018). The typical activation functions 

are Sigmoid, Tanh and ReLU. Sigmoid activation is generally used for logistic regression problems. It 

ranges from 0 to 1. Tanh is similar to sigmoid but it ranges from -1 to 1. Out of these, Rectified Linear 

Unit (ReLU), proposed by Nair & Hinton, (2010) which performs a threshold operation on each input 

component, has demonstrated promising performance and results in various deep-learning research works 

(Y. Liu et al., 2017). ReLU activation function is expressed as g(z) = max(0, z). The most commonly used 

activation function is ReLU and it is used in this research. Widely used activation functions in deep 

learning are represented in the Figure 15. Softmax activation is used in the final layer in multiclass 

classification problems to map the outputs to the number of classes.  
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Figure 15 Different types of Activation Functions used in Deep Learning 

4.2.6. Pooling Layers 

 

As a result of multiple convolutions on input data, the dimensionality of data increases. To address this, 

pooling layer is used which employs down sampling strategy. The pooling layer is positioned amidst two 

convolution layers. Accordingly, it reduces the size of the feature map during the training phase, which 

minimizes the computational complexity  while preserving discriminant information and tackles the 

overfitting issue (Mohammadimanesh et al., 2019; Yao et al., 2017). Well-known pooling layers include 

maximum, minimum, and average functions. In deep learning research, the max-pooling function has 

demonstrated stability and effectiveness and outperforms other pooling strategies (Mohammadimanesh et 

al., 2019; Rizaldy, 2018). It uses a rectangular window of size 2×2 moves on top of the feature map and 

outputs the highest value within the window. The working of max pooling operation is shown in the 

Figure 16.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 16 Representation of 2×2 Max Pooling with Stride of 2 (Gholamalinejad & Khosravi, 2020) 
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4.2.7. Dropout  

 

Connecting all the features to the fully connected layer may result in overfitting of the training dataset.  

When a given model performs so well on training data that it has a negative effect on the model's 

performance when applied to new data, this is known as overfitting. In order to overcome this, dropout 

layer is utilized in the Convolutional Neural Network. “One of the most effective and popular 

regularization techniques is dropout” (Srivastava et al., 2014). When dropout is applied, a fraction of 

neurons are eliminated from the neural network during the training process. For example, a dropout of 

0.2, results in 20% of the nodes in the neural network to be dropped out randomly. Dropout's primary 

objective is to prevent the model from picking up statistical noise from the data by purposefully adding 

stochasticity to the training process. (Srivastava et al., 2014). 

 

4.2.8. Fully Connected Layers 

 

The last layer is the fully connected layer or dense layer. This layer takes the flattened input from the 

previous layers and classifies the input data into required number of output classes. Softmax regression is 

frequently used for classification because it produces an effective probability distribution of outputs (Guo 

et al., 2017) . 

 

4.3. 1D CNN Deep Learning Classfier 

 

A multi-temporal stack of the study area is prepared by stacking all 23 images, each with 5 bands. Now, 

the resulting image consists of 115 bands (23 × 5) in total. The training labels raster is overlaid on the 

satellite image and pixel values that fall with the samples are extracted and stored in the form of CSV 

(Comma Separated Values) file. This process is repeated for validation and test sets also. Any NAN values 

in the file are dropped. Finally, the array is of shape 23,223 × 115, which forms the input of the CNN 

model.  The layers of 1D CNN is shown in the Figure 17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 A visual representation of 1D CNN made up of  input layer, a convolutional layer, max pooling layer, 

flatten, fully connected layer, and final output layer (Nisa & Kuan, 2021) 
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A 1D CNN is designed and executed for crop type classification with imbalanced classes. The CNN 

model is constructed using Keras. Keras is a high-level, compact uncomplicated Python library that is built 

on top of the TensorFlow framework in Python. Creation of neural network layers, shape and 

mathematical information can be easily defined using Keras library.  

 

The main justifications for choosing 1D CNN are its shallow architecture with excellent learning 

capabilities, lower computational complexity than 2D CNN, and superior performance demonstration on 

scenarios with limited labelled data (Kiranyaz et al., 2021). Pixel wise classification of multispectral satellite 

imagery utilizes 1D operation. Therefore, the deep learning CNN model which uses this operation is 

addressed as 1D CNN. The architecture used in the model is „Sequential‟. The layers in the 1D CNN are 

arranged as follows: input layer, convolutional layer, pooling layer, flatten, dense layer and the final output 

layer. Hierarchical feature extraction is performed by the convolutional layer, the pooling layer, while the 

fully connected layer which follows these layers perform the role of a classifier by generating the predicted 

probabilities for each class sample in the input data. In reality, CNN is the dot product of the local regions 

of the input and trainable weights, allowing for effective matrix multiplication (Sidike et al., 2019). The 

architecture of the 1D CNN model adopted in this research is shown in the Figure 18.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 18 Architecture of the proposed 1D CNN Model 
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The designed model has input layer of shape (115, 1) which is equal to the number of input bands. Two 

convolutional layers with 32 and 64 filters are used. The filter size is chosen as 3×3. The Activation 

function used is ReLU. 2×2 Max Pooling with a stride of 2 is applied after every convolution layer. A 

flatten layer is placed following this. Next, a fully connected layer is placed. Finally, the last layer is the 

output layer that contains neurons equal to the number of classes which is 8 in this case. One hot 

encoding is done on the labels as it improves the classification accuracy. The optimizer used is Adam 

which is an enhanced version of stochastic gradient descent. Once the CNN architecture has been 

established, forward- and backward-propagation training is used to iteratively update the trainable 

parameters to minimise the difference between the predicted output and the actual output. 

The number of neurons, learning rate, dropout rate and number of epochs are chosen by performing 

hyper-parameter optimization.  

 

4.4. Algorithm Level Balancing 

 

Categorical Cross Entropy Loss Function In modern deep neural network algorithms, cross entropy 

loss also known as logarithmic loss is universally used for training classification related tasks(Hui & Belkin, 

2021). The categorical cross entropy loss function is preferred for multiclass classification problems as it 

yields high accuracy (Andreieva & Shvai, 2021). With classification problems having multiple class and the 

truth labels one hot encoded, categorical cross entropy loss is used.  Theoretically, a perfect model results 

in a cross entropy loss of 0. As the predicted probability moves away from the actual probability, cross-

entropy loss increases. Cross entropy loss severely penalises predictions that are confident but actually 

wrong. The Cross Entropy loss is given by the formula 

 

 

 Cross Entropy Loss =    ∑   
 
                                                     (2) 

 

Here,    is the actual class values whereas    denotes the softmax probability of class i 

 

Since each data instance is given equal weight by the traditional cross-entropy based loss function, the 

network oversees classes with fewer observations. In classification or segmentation tasks when there is a 

class imbalance, cross entropy loss is therefore inappropriate (Fernando & Tsokos, 2022). 

 
Focal loss is derived from cross entropy loss. By applying a adjusting term on cross entropy loss, focal 

loss weighs down easy examples assuming that the contribution of these samples to the total loss is less 

even if they are high in number and focuses on the training of hard examples or the minority classes (T. 

Lin et al., 2020). 

 

  

           Focal Loss,                
            

 

 

      (3) 

 

Where, pi is the estimated probability of the model using ground truth and γ is a focussing parameter.  
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 γ is always greater than or equal to 0. When γ = 0, the focal loss is equivalent to cross entropy loss. The 

contribution of difficult samples to the overall loss can be increased by increasing the focusing parameter 

γ.  The focussing parameter γ = 2 is found to work best in the study by T. Lin et al., ( 2020). 

In practice, α-balanced variant of the focal loss is used as it generates slightly higher accuracy compared to 

the non-α-balanced form. α is the term introduced to handle the imbalanced classes. 

  

                                                          
                                                                        (4) 

 

Both γ and α, are hyper-parameters. It should be noted that it is necessary to select values for these two 

hyper-parameters together. In practice, as γ increases, α should be slightly lowered ( γ = 2, α = 0.25 works 

best) (T. Lin et al., 2020). Fig 19 shows the focal loss curve.  

 

 
 

Figure 19 Influence of focussing parameter γ on accuracy and loss(T. Lin et al., 2020) 

 

Another approach to handle imbalance is by using, class weighted loss function. In this method, the 

imbalance is addresses by providing different weights to the majority and minority classes in the training 

phase of the deep learning model. The basic concept is to penalize the minority class for misclassifying 

itself by increasing class weight while simultaneously decreasing class weight for the majority class. In an 

imbalanced classification problem, the gradients are multiplied by a weight that is distinct to each class. 

The class weights are computed using the formula, 

 

                                          Weight of class, w j = 
         

                         
                                         (5) 

 

Where, w j denotes the weight for individual class ( j represents class), 

n samples is the total number of training samples in the entire dataset, 

n classes is the number of unique classes and, 

n samples j is the number of samples in the respective class j 

 

The weights are given between 0 and 1. Suppose in a binary classification problem, if we give the minority 

class a weight of n, the majority class will receive a weight of 1-n. The weight of the minority class will 

always be higher than the weights of majority class. 
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Class Weighted Loss, adopted by Schiele et al., (2019) the cross-entropy loss is weighed with a factor 

equal to the ratio between the number of samples in the majority class and the total number of classes 

considered and it is given by the equation, 

 

                Class Weighted Loss,    
    

  
        (6) 

 

Where, n max is the total number of majority class samples, n i is the total number of classes present and pi. 

is the estimated probability. By incorporating class weighted loss in model training, the minority classes 

also show an equal impact on the loss function.  

 

4.5. Data Level Balancing Techniques  

 
In order to perform, oversampling and under sampling techniques, the training raster label with 

imbalanced classes is converted to points using the “raster to point” conversion tool of ArcMap. Then, 

satellite imagery of 1st February 2020 is selected. This particular imagery is chosen for extracting spectral 

values considering the less cloud cover with clear atmospheric conditions and peak growth stage of crops. 

Using the “extract multi values to points” tool, the band values are extracted for all the data points from 

this satellite imagery. Now the different bands namely R, G, B, NIR, and NDVI along with latitude and 

longitude are considered as the predictor/ explanatory/ independent variable. The variable which is 

measured or tested in an experiment is known as the dependent/ response variable. The class label is 

taken as the response variable. These 23,223 training points form the data for performing class balancing. 

It should be taken care to perform data balancing techniques on training dataset alone. The testing dataset 

should be left untouched. The sample count for initial imbalanced training class is depicted in the bar 

chart in Figure 20. 

 
Figure 20 Distribution of sample count in imbalanced training dataset 

 

Imbalanced-learn (imblearn) is an open source python library which is equipped with tools for handling 

class imbalance problem in classification. This is a part of sklearn library. The main aim of data level 
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balancing techniques is to equalize the number of samples per class either by decreasing majority class 

instances or increasing minority class instances. In oversampling, methods such as Random Oversampling, 

Smote and Safe Level Smote are employed. Under sampling methods that are adopted in this study are, 

Random Under sampling, Tomek Links and Edited Nearest Neighbour (ENN). Hybrid approaches/ 

ensemble methods (combination of oversampling and under sampling) such as Smote + Tomek, Smote + 

ENN, Safe Level Smote + Tomek are applied.  

 

The working of SMOTE algorithm is shown in the Figure 21. Assume that class A is the minority class 

and class B is the majority class. The k-nearest neighbours for each x observation in class A are then 

located, and new synthetic instances are created along the line connecting the minority instance x to its k-

nearest neighbours (Elhassan & Al-Mohanna, 2017).  

 

 

 

 

 

 

 

 

 

Figure 21 Basic principle of Synthetic Minority oversampling Technique(SMOTE)(Ma et al., 2019) 

 

New synthetic instances in SMOTE are created using the formula presented in (Elhassan & Al-Mohanna, 

2017),  

                                             S syn = r (S kNN –S f ) + S f                                                                                       (7) 

 

where, S syn denote the synthetic samples generated, 

S f is the sample data selected in the minority class, 

S kNN is the k-nearest neighbour that is considered from 1 of 3 and  

r is the random constant between 0 and 1   

 

 

By using the nearest neighbour criterion, Tomek link eliminates instances of the majority class that are 

closer to the minority class (Sawangarreerak & Thanathamathee, 2020). For easy understanding of 

Tomek(T) link working, if x a and x b are the majority and minority classes respectively, then the distance 

between them d(x a , x b) is called as tomek link  with the condition that that no other class x z such that 

d(x a , x z) < d(x a , x b) or d(x b , x z) <  d(x a , x b) exits. “If any two instances are T-Link, then either one 

of them is a noise example or both examples are situated on the class boundaries” (Elhassan & Al-

Mohanna, 2017). 
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In Edited Nearest Neighbour, for an instance x, its k nearest neighbours (generally, k=3) are 

considered, and the sample instance with class labels different from majority of the k nearest neighbours is 

removed. 

 

4.6. Accuracy Assessment Metrics  

 

 
In the final stage, the accuracy of the crop type map is assessed with the help of the test set adopting 

different accuracy measures. Typically, in classification analysis, a confusion matrix is used to assess the 

classifier and the resulting map. A typical confusion matrix is represented in the Figure 22.  Before talking 

about accuracy metrics, one needs to understand the concepts of True Positives (TP), True Negatives 

(TN), False Positives (FP) and False Negatives (FN). An outcome where the model properly predicted the 

positive class is referred to as TP. Similarly, a TN is an outcome for which the model correctly predicts the 

negative class. FP is when the model predicts the positive class incorrectly whereas FN is an outcome 

where the model predicts the negative class wrongly. For simplification, a binary classification with classes 

positive and negative will have a confusion matrix denoted as 

 
 

Figure 22 Confusion Matrix depicting the terms True Positive, True Negative, False Positive and False Negative 

 
Overall Accuracy (OA) is the most commonly used accuracy measure that gives the percentage of 

correctly classified pixels in the output map.  

 

 

                       OA = 
                                   

                        
                                     (8) 

 

OA= 
     

           
                                                   (9) 

 

 

Precision is defined as the ratio of the positives that are predicted correctly by the model over total 

positive samples.  

Precision= 
  

     
                                                        (10) 
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Recall also known as Sensitivity is the ability of model for correct classification of true positives whereas 

Specificity is the ability of the model to correctly classify true negatives.  

 

Recall= 
  

     
                      (11) 

 

                                                              Specificity= 
  

     
                                                (12) 

 

 

F1-score is given by the weighted average of precision and recall. The best score of F1 is 1 and worst is 0. 

F1 score is a better metric for uneven class distribution. 

 

F1 score = 2    
                 

                 
    (13) 

 

 

 

G- Mean Accuracy  

OA gives more attention on the majority classes providing less importance to the minority classes. To 

overcome this, it will be advantageous to use G-Mean Accuracy, which offers a more accurate assessment 

in terms of imbalanced learning. Y. Sun et al., (2006). The balance between classification performances on 

both the majority and minority classes is measured by the Geometric Mean (G-Mean) accuracy 

metric(Akosa, 2017). This accuracy measure equally assesses the classification performance of each 

individual class.For multiple class scenarios, G-mean Accuracy is defined as, 

 
 

           G-Mean Accuracy = (∏    
 
   )

 

  

 

     (14) 

 

where, j denotes the number of classes and PA i is the Producer Accuracy of class i. PA measures the 

likelihood of a reference pixel being classified correctly for a specific class. It can also be denoted as  

 

        √                                                           (15) 

 

 
The accuracy of crop type maps is validated using the testing samples with the help of OA and G-Mean 

Accuracy. The Accuracy from the developed deep learning model is compared against the accuracy yielded 

by adoption of data balancing methods to arrive at the best method for crop type classification. Additional 

accuracy metrics such as precision, recall, and F1-score will also be computed for individual crop type 

classes.  

 

 



DEEP LEARNING BASED MULTI-TEMPORAL CROP MAPPING ACCOUNTING FOR SAMPLE IMBALANCE  

33 

4.7. Hyperparameter Optimization  

 

Generally trial and error method is practiced for the setting model‟s hyper-parameters. In this research, 

Bayesian Optimization is the method chosen for hyper-parameter optimization. Since it is known that the 

learning rate shouldn‟t be either too small or too large, the optimal learning rate is found by giving 

different learning rates from 0.01 to 1. Dropout rates considered are from 0.1 to 0.5.  The number of 

epochs considered for model training is given from 5 to 120. And finally, batch sizes between 50 and 1000 

are considered. The model is run several times by applying Bayesian optimization choosing different 

combinations of hyper-parameter values mentioned above and the best parameters are the parameters of 

the model which yields the highest accuracy and low loss values. The loss and accuracy curves of training 

and validation dataset also play an important role in deciding the best hyper-parameters. Rectified linear 

unit (ReLu) is chosen as the Activation function because it is the most popular and efficient activation 

functions that provides faster CNN training and is employed in several crop classification studies (Kussul 

et al., 2018; Mazzia et al., 2020; S. Wang et al., 2020; B. Xie et al., 2019). Softmax activation is used in the 

final fully connected layer.  The hyper parameter optimization is done for the CNN model with focal loss 

and class weighted loss as they have shown better accuracy than cross entropy loss (discussed in Section 

5.2.2 and 5.2.3).  The optimal hyper-parameters obtained are shown in the Table 6. 

 
Table 6 Best Hyper-parameters for 1D CNN model 

Hyper-parameters 1D CNN with Focal 

Loss 

1D CNN with class 

weighted loss 

Learning Rate 0.01 0.01 

Dropout Rate 0.1 0.1 

No of Epochs 33 97 

Batch Size 741 952 

 

In all there cases, the hyper-parameter tuning gave a number of around 500 neurons (533 for Cross 

Entropy loss, 460 for Focal Loss and 522 for Class Weighted Loss) in the dense layer to be the best.  

Therefore 500 neurons were fixed in the dense layer present before the final output layer. 
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5. RESULTS AND DISCUSSIONS  

5.1. Comparison of results obtained by employing different loss functions 

5.1.1. Categorical Cross Entropy Loss Function 

 

First, the 1D CNN model is trained using categorical cross entropy loss function. The confusion matrix 

obtained is shown in the Figure 23. The Overall Accuracy obtained is 63.54 %.  The classes, forest, water, 

settlements being the majority classes are classified with better accuracy compared to the other classes. 

There seems a great confusion between the three crop classes. A good number of samples are classified 

correctly as wheat class opposed to the poorly classified minority crop classes such as mustard and 

chickpea. Barren/fallows, one of the minority classes also seems to have been largely confused with 

scrubland. A possible solution to this misclassification problem would be to increase the number of 

training samples. As expected, categorical cross entropy did not account for the imbalance in the dataset 

and it is not suitable for classification problems with highly imbalanced data. But, without increasing the 

training samples can the classification of individual classes be improved? A possible approach is to apply 

different loss functions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23  Confusion Matrix obtained through cross entropy loss function. 

5.1.2. Focal Loss Function  

Now, the cross entropy loss function is replaced by focal loss function. A gamma value of 2 and alpha 

value of 0.25 is set and the 1D CNN model is compiled with focal loss function. An improved overall 

accuracy of 66.57% is obtained the confusion matrix for which is shown in the Figure24. The 

classification of the minority class barren/fallows has improved while there is no significant improvement 

in the classification of other minority crop classes. There is large amount of confusion of the minority 

crop classes with the majority crop class, wheat. As Focal loss function increases the contribution of 

minority class to updating of weights, the contribution of the minority class with least number of samples 

Barren/Fallows has increased which in turn is the reason for better classification of this class. The other 

two minority crops mustard and chickpea are not classified as good as the Barren/Fallows class even after 
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the application of focal loss. Almost similar temporal trend might be a possible reason for the poor 

classification of the minority crop class, mustard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 24 Confusion Matrix obtained through Focal Loss function. 

5.1.3. Class Weighted Loss Function 

Larger weight values are assigned to minority crop classes. Mustard, Chickpea and Barren/Fallows being 

the minority classes, have weight values of 1.87, 1.59, and 2.11 respectively. Wheat, the majority crop class, 

has a weight value of 0.70. The class weights obtained by computation are shown in the Table 7. In cross 

entropy, each class is weighed by the respective weights computed and the CNN model is trained. Class 

weighted loss improved the overall accuracy of the CNN model even more, providing a testing accuracy 

of 70.37 which is higher than the focal loss. In terms of Overall Accuracy, Class Weighted loss function is 

picked up as the best out of all three loss functions used in this research. The confusion matrix of the 1D 

CNN model trained by providing class weight values is shown in the Figure 25.  Observing the confusion 

matrix, one can infer that the crop classes Mustard and Chickpea show improved classification compared 

with the other two CNN models discussed earlier.  

 
Table 7 Class weights for each individual class. 

Class Name Weights 

Wheat 0.70 

Mustard 1.87 

Chickpea 1.59 

Forest 0.60 

Scrubland 0.90 

Barren/Fallows 2.11 

Settlements 0.78 

Water 1.07 
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Figure 25 Confusion Matrix obtained through Class Weighted Loss function. 

 

5.1.4. Analysis of Best performing Loss Function in terms of solving class imbalance: Comparison of different 
Accuracy Metrics  

As we know that, overall accuracy does not account for imbalanced classes and doesn‟t provide accuracy 

of individual classes, the classification results are evaluated and compared in the Table 8 using other 

accuracy metrics such as Precision, Recall and F1 score. Generally, values of precision and recall more 

than 0.50 are regarded as satisfactory. Low precision values of mustard and chickpea indicates the 

presence of large number of false positives. Similarly, low value of recall was observed for the minority 

crop classes signifying the presence of more false negatives which means that the pixels were not being 

classified into their relevant classes.  

 
Table 8 Comparison of Precision, Recall and F1 score accuracy metric for individual classes using three different loss 

functions 

 

  

 

 

Precision 

 

Class Categorical Cross 

Entropy 

 

Focal Loss 

Class Weighted 

Loss 

Wheat 0.76 0.81 0.80 

Mustard 0.15 0.11 0.19 

Chickpea 0.24 0.29 0.28 

Forest 0.62 0.74 0.56 

Scrubland 0.38 0.42 0.63 

Barren/Fallows 0.61 0.55 0.81 

Settlements 0.87 0.92 0.80 

Water 1.00 1.00 1.00 
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Recall 

 

Wheat 0.62 0.63 0.70 

Mustard 0.11 0.13 0.22 

Chickpea 0.68 0.54 0.57 

Forest 0.99 1.00 1.00 

Scrubland 0.52 0.60 0.58 

Barren/Fallows 0.16 0.25 0.36 

Settlements 0.98 0.97 1.00 

Water 1.00 1.00 1.00 

 

 

  

F1 Score 

 

Wheat 0.69 0.71 0.74 

Mustard 0.13 0.12 0.20 

Chickpea 0.35 0.38 0.38 

Forest 0.76 0.85 0.72 

Scrubland 0.43 0.49 0.60 

Barren/Fallows 0.26 0.35 0.50 

Settlements 0.92 0.95 0.89 

Water 1.00 1.00 1.00 

 

Consequently, a poor F1 score was observed for the minority crop classes also. The Class weighted loss 

generated a F1 score of 0.74, 0.20 and 0.38 for the crop classes‟ wheat, mustard and chickpea respectively, 

which is the best out of the three models. Comparison of Overall Accuracy and G-Mean Accuracy for the 

three different loss functions used is shown in the Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26 Overall Accuracy and G-Mean Score of different Algorithmic Balancing Techniques 

The results of G Mean Accuracy, which provides a better evaluation metric for imbalanced classification 

problem is shown in the Table 9. By comparing the G- Mean Accuracy of the three loss functions, it can 

be seen that Class Weighted loss performs the best. In other two cases, there is a bias in accuracy with 
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high G mean values for the majority class and lower value of G Mean for minority classes. But, in class 

weighted loss, the accuracy of individual class is not biased towards majority classes. The three crop 

classes have a G Mean Accuracy of 0.81, 0.45 and 0.74 respectively which falls in an acceptable range. The 

minority class Mustard has a G Mean of 0.45 which is low compared to all classes. Looking at the overall 

G-Mean Accuracy provided by all three loss functions, class weighted loss has an accuracy of 56.24 % 

which is the highest of all whereas cross entropy has a G-Mean which is lesser than 50 %.  

 

 
Table 9 Comparison of Geometric Mean accuracy metric for individual classes using three different loss functions 

Class Categorical Cross  

Entropy 

Focal  

Loss 

Class Weighted  

Loss 

Wheat 0.77 0.77 0.81 

Mustard 0.32 0.35 0.45 

Chickpea 0.80 0.72 0.74 

Forest 0.95 0.97 0.93 

Scrubland 0.65 0.70 0.73 

Barren/Fallows 0.39 0.49 0.59 

Settlements 0.98 0.97 0.98 

Water 0.99 1 0.99 

Overall G-Mean 

Accuracy 

 

0.4995 

 

0.5330 

 

0.5624 

 

 

The model accuracy and loss plots for the training and validation datasets while using three different loss 

functions are shown in the Figure 27. The focal loss function took the least number of epochs (No of 

epochs: 33, provided by Bayesian optimization) to reach high training accuracy. Training with more 

epochs lead to drop in the training accuracy and subsequently the testing accuracy. Therefore, only fewer 

epochs were used. In cross entropy loss function, the training accuracy steadily increases and after around 

10 epochs, the value of accuracy doesn‟t fluctuate much.  High fluctuations in the validation loss and 

accuracy denote that the validation set doesn‟t represent the whole dataset properly. The lower number of 

validation samples provided is the reason for this. All the three models have good training accuracy of 

greater than 0.95. When it comes to validation accuracy, class weighted loss is the highest with validation 

accuracy reaching the highest value of 0.80. 
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Figure 27 Training and validation curves of accuracy and loss for Cross Entropy loss, Focal loss and Class 

Weighted loss 

 

 

 

5.2. Visualization of Classification results/ Qualitative Analysis 

 

A smaller patch of size 3423, 2100 is selected from the study area. It was checked if all classes were 

present in this region and prediction was done. Owing to the large size (12453, 9405, 115) of the multi-

    Loss                   Accuracy 

Cross Entropy 

Focal Loss 

Class Weighted Loss 



DEEP LEARNING BASED MULTI-TEMPORAL CROP MAPPING ACCOUNTING FOR SAMPLE IMBALANCE  

 

40 

temporal image, which was almost 50 GB in memory, only a subset of the study area was selected for 

prediction. The predicted map with different classes is shown in the Figure 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 28 Classification Map obtained through 1D CNN for a patch in the Study Area- Jhansi 

5.3. Results of Class balancing 

The overall accuracies and G-Mean accuracies for all nine data level class balancing techniques tested in 

this study is shown in the Figure 29. The under sampling techniques attempted are Random under 

sampling (RUS), Tomek Links and ENN. Oversampling techniques attempted are Random Oversampling 

(ROS), SMOTE and Safe Level SMOTE (SL SMOTE). And, finally, SMOTE + RUS, SMOTE+ Tomek 

Links and Smote+ ENN are the hybrid sampling techniques attempted. Each of these techniques tries to 

balance out the number of samples in each class and attempts to reduce the imbalance between the 

classes.  

 

In general, in this research, under sampling techniques provided improved accuracy compared to 

oversampling and hybrid data balancing approaches. Oversampling which has proven to be a better 
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resampling technique in most of the studies didn‟t perform well in this case. It didn‟t provide acceptable 

results. The accuracy of classification by oversampling technique dropped below 60 % with overall 

accuracy dropping as low as 46.63 % (Safe Level SMOTE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 29 Overall Accuracy and G-Mean Score of different Data Level Balancing Techniques 

The main reason for this is the generation of new synthetic minority class instances at wrong geographical 

locations. For example, let‟s consider SMOTE, which is an oversampling technique. In implementation, 

let‟s say SMOTE has randomly selected a minority class instance in the feature space, which is a mustard 

crop filed. Now, it looks for k=3 nearest neighbours of minority class instance: mustard.  Finally, new 

artificial instances of class mustard are generated along the line joining the instance of interest and the k 

nearest neighbours. Almost similar reflectance values for the crop classes are a possible reason which 

might have caused confusion during the generation of new artificial crop instances. For the construction 

of feature space the R, G, B, NIR and NDVI values of a single satellite imagery which captures the peak 

growth condition of crops is considered. Instead of this, feature space construction from multi-temporal 

images might produce information about the length of growing season as well as the temporal profile of 

crops. Adoption of this technique would be a possible approach to overcome the false synthetic sample 

generation caused by considering single satellite imagery. Similarly, hybrid sampling approaches which are 

a combination of oversampling and under sampling techniques did not perform as expected due to the 

aforementioned reason. Some possible reasons for the failure of SMOTE are blind selection of 

neighbourhood, creation of overlapping artificial samples which adds more noise to the data. (Jiang et al., 

2021).  Also, SMOTE is not very effective for high dimensions data used in the research.  

 

The incorrect artificial instances generated for minority class mustard is shown in the Figure 30. We can 

clearly observe that newly generated samples have been mixed with forest and scrubland class. In the same 

way, Figure 31 shows the newly generated chickpea instances. The NDVI trends of these instances do not 

resemble agricultural crops. Figure 32 denotes the false samples generated for class barren/fallow. In this 

case, some of the new artificial samples represent the trend of agricultural crops. Therefore, we can 

confirm that the drop in accuracy of the CNN classification model with oversampled training data is due 

to the feeding of incorrect input samples to the model. The correct temporal profiles of the three target 

crops can be referred from the Figure 15 under Methodology Section 4.2.3. 
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Figure 30 Incorrect artificial samples of Mustard class generated through SMOTE oversampling technique 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 31 Incorrect artificial samples of Chickpea class generated through SMOTE oversampling technique 

 

 

 

 

 

 

 

 

 

 

 
Figure 32 Incorrect artificial samples of Barren/Fallows class generated through SMOTE oversampling technique 
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Even though class samples with potential information were removed in under sampling, it performed 

better than oversampling as under sampling doesn‟t involve the generation of new artificial samples some 

of which could possibly be false. Training the CNN model with balanced out classes from under sampling, 

resulted in an enhanced overall accuracy in all the three under sampling techniques. The G-Mean Accuracy 

obtained by using Tomek Link (0.45) and ENN (0.49) did not show any significant improvement. In 

contrast, classification results of Random under sampling showed an enhanced G-Mean accuracy of 

0.5314 which is slightly higher than the one obtained from imbalanced classes (0.4995).  

 

5.4. Data Level Balancing Techniques vs Algorithmic Balancing Techniques  

 

By analysing the accuracy metrics, mainly G-Mean Accuracy of obtained through the classification results 

of three algorithmic level balancing techniques (cross entropy loss, focal loss and class weighted loss) and 

nine data level balancing techniques utilized in this research, it is evident that algorithmic level balancing 

methods have performed better with class weighted loss resulting with the highest accuracy. Algorithmic 

level data balancing techniques enhance classification results by adjusting the loss function, without 

disturbing or making changes to the training data.  Therefore, the results provided by these techniques are 

trustworthy as opposed to the results generated by data level balancing techniques which includes the 

generation of artificial samples which came out to be false in this research.   
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusion 

With the intent to find a solution for the issue of sample imbalance in crop type mapping, the capabilities 

of algorithmic level balancing techniques as well as data level balancing techniques were explored in this 

research. With the help of multi-temporal satellite imagery, the phenological growth information was 

captured using NDVI. Due to smaller training dataset availability, 1D CNN sequential deep learning 

model was chosen as it is known to provide better accuracy. For the first objective, Bayesian optimization 

method was opted to find the best hyper-parameters of the deep learning model. The number of epochs, 

neurons, learning rate, dropout rate and batch size were found out using this method. Now, in order to 

solve the problem of class imbalance, two techniques were adopted.  

 

To address the second objective, Algorithmic Balancing techniques were used. These techniques attempts 

to solve imbalance issue by introducing loss functions which will try to reduce the imbalance in the 

dataset. Different loss functions such as categorical cross entropy, focal loss and class weighted loss were 

employed to solve the issue of class imbalance. Focal loss weighs down the class samples that could be 

easily learnt whereas Class weighted loss emphasises learning of the minority classes by introducing 

weights for each and every class.  The best model is picked out by assessing the accuracy metrics such as 

Overall Accuracy, Precision, Recall and F1 score. The final conclusion is drawn with the help of G-Mean 

Score, which serves as the best accuracy metric for problems with class imbalance. Out of all three 1D 

CNN deep learning model, the model with the class weighted loss function showed the best performance 

with an overall accuracy of 70.37%, and a G-Mean Score of 56.24%. The G-Mean score for the individual 

crop classes from this model were 0.81 for wheat, 0.45 for mustard and 0.74 for chickpea. 

 

For the third objective, Data level class balancing was performed with under sampling, oversampling and 

hybrid techniques. After performing balancing in the dataset, 1D CNN model with cross entropy loss is 

trained and the classification results are obtained. From the results obtained, it is clear that oversampling 

and hybrid sampling techniques failed to address class imbalance issue due to the generation of false 

artificial samples and the accuracy of the models that utilized these data for training went down. Out of all 

the data sampling techniques, random under sampling, which randomly removes majority class samples to 

balance out the data performed the best with an overall accuracy of 66.52% and G-Mean Score of 53.14%. 

 

In conclusion, it is evident from the classification results that simple data level resampling techniques such 

as oversampling and under sampling techniques did not show any significant advancement in accuracy for 

imbalanced classification problem discussed in this research and just made the existing problem worse. 

Hence, these techniques are not advisable. In the contrary, modifying the learning of the deep learning 

model by exploring different loss functions provided better classification results which is highlighted by 

the enhanced G-Mean Score. Therefore, algorithmic balancing is regarded as a better method of 

addressing imbalance in crop classification studies as opposed to data level balancing techniques.  
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6.2. Answer to the reseach questions 

Question 1: What are the number of epochs, batch size, learning and dropout rate required to produce 

accurate classification results? 

 

Answer: As discussed in the Section 5.1, all the hyper-parameters of the designed CNN model are 

optimised through Bayesian hyper-parameter optimization technique. Running 25 iterations with the range 

values provided for each hyper-parameter, the best ones are selected. For the best 1D CNN model which 

utilized class weighted loss function, the optimized parameters are as follows: learning rate of 0.01 with 

Adam optimizer, dropout rate of 0.1, batch size of 952, 97 epochs and 500 neurons in the dense layer 

prior to output layer.  

 

Question 2: What is the final loss and accuracy of the proposed deep learning model? 

 

Answer: The 1D CNN model with class weighted loss yields a final overall accuracy of 70.37 % and an 

over G-mean score of 60.56 % which is the highest out of all methods of data balancing experimented in 

this research. As the validation data samples provided were less, the training and validation loss curves 

showed a small gap and did not overlap.  

 

Question 3: Does the developed deep learning model increase the accuracy of minority classes? 

 

Answer: Running the classification model with Cross entropy loss resulted in an Overall Accuracy of 

63.54 % and an overall G-Mean score of 49.95 %. Replacing cross entropy loss with class weighted loss 

function, by training the CNN model with individual class weights, resulted in an enhanced overall 

accuracy and G-Mean accuracy of 70.37% and 56.24% respectively. There a change of 6.83% in terms of 

overall accuracy. A 6.29 % change in terms of G-Mean Accuracy can be regarded as significant 

improvement of classification of, minority classes. 

 

Question 4: Which data level sampling method is suitable for the current study and improves the 

accuracy of classification? 

Answer: In comparison with the oversampling and hybrid sampling (oversampling + under sampling), 

under sampling technique performed better. Random under sampling method performed the best out of 

all the sampling methods experimented in this research in terms of G-Mean accuracy.  

 

Question 5: To what extent does the developed deep learning model outperform the class balancing 

techniques? 

 

Answer: The 1D CNN deep learning model with class weighted loss provides good classification results 

(Overall Accuracy: 70.37%, G-Mean Accuracy: 56.24%) which is higher than the best data level class 

balancing technique (Overall Accuracy: 66.52%, G-Mean Accuracy: 53.14%). The difference in accuracies 

between both these methods is a notable percentage of 3.85% in Overall accuracy and 3.1 % in G-Mean 

Accuracy.  
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6.3. Short comings of the Research, Recommendations and Future Work  

 

1. The major short coming of this research was the unavailability of essential training data. This in 

turn led to the adoption of very small validation and testing datasets. One possible approach to 

overcome this problem would be conduct exhaustive field campaign. Another approach would be 

to employ transfer learning. A number of studies have applied transfer learning in CNN for crop 

classification problems and has shown notable results (Nowakowski et al., 2021; Ribani & 

Marengoni, 2019; L. Wang et al., 2020; W. Zhang et al., 2020). Transfer learning was not possible 

in this research due to the unavailability of pertained model with the same crop classes.  

 

2. A 1D CNN model was used in this research which had the spectral and temporal information 

captured from the time series images. The presence of lesser number of training data had an 

impact on the selection of CNN model to be used for classification. The 3D CNN which is 

spatio-temporal deep learning model that captures the spatial, spectral and temporal information 

of crops couldn‟t be used for crop classification in this case to due to the lesser count and poor 

spatial coverage of labelled data. A 3D U-Net architecture with Intersection over union loss 

function is successfully used for learning the individual crop types by (Mohammadi et al., 2021). 

The capability of 3D CNN model for addressing class imbalance could be explored. 

 

3. The reference data set had ground truths in the form of point data. To increase the sample count 

for training, the individual fields and other land covers had to be digitized by visual interpretation 

with Google earth and the Sentinel 2 satellite imagery as reference. This process was time 

consuming and was the primary challenge in data preparation.  

 

4. In the temporal window of November2019 to April 2020, the dates with high cloud cover were 

dropped from the study. Although, CNN model produced acceptable results with the context of 

addressing class imbalance, some valuable temporal information might have been lost due to this 

technique adopted. Cloud gap filling couldn‟t be performed due to the lack of continues temporal 

images with good atmospheric conditions. A potential solution to overcome this problem would 

be to adopt fusion of Optical and SAR data. Compared to standalone optical data, optical SAR 

fused data provides robust classification results (Adrian et al., 2021; Riedel et al., 2007; L. Wang et 

al., 2020). 

 

5. In this study, under sampling removed led to the removal critical information whereas 

oversampling generated wrong synthetic instances and led to overfitting. Therefore data balancing 

techniques didn‟t perform as expected and did not improve the accuracy of classification and 

failed to provide meaningful solution to the imbalanced classification problem.  
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Figure 33 Identification of Wheat Samples in Classified Map 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
Figure 34 Result of SMOTE 


