
MSc Computer Science
Final Project

Building a Grammar: Generating
samples for Weighted Attribute
Grammars.

Nick Wolters

Supervisor: Vadim Zaytsev, Marcus Gerhold

April, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 1
1.1 Content of the document . 4

2 Background 5
2.1 Grammars . 5

2.1.1 Chomsky’s Hierarchy . 5
2.1.2 CFG and Attribute Grammars . 7
2.1.3 Weighted/Stochastic Grammar . 11
2.1.4 Weighted Attribute Grammar . 13

2.2 Artificial Intelligence, Machine Learning & Neural Networks 16
2.2.1 Formalising Machine Learning and Neural Networks 16
2.2.2 Convolutional Neural Networks . 20
2.2.3 Recurrent Neural Networks . 21
2.2.4 Residual Neural Networks . 23
2.2.5 Autoencoders Networks . 24

3 Research Questions 27

4 Research 29
4.1 Input for grammar generation. 29
4.2 Grammarinator . 32
4.3 Transformer Networks . 34
4.4 XSmith . 36
4.5 Genetic Algorithms . 39

5 Results 46
5.1 Comparing Generated Results . 46

5.1.1 ANTLR Preview . 46
5.1.2 Generated Results. 47
5.1.3 Comparing Results between basic English and WAGON. 51

5.2 Generator Characteristics. 52
5.3 Complimentary Results . 54

5.3.1 Syntax Highlighter . 54
5.3.2 Transformer TUI. 55

6 Related Work 56
6.1 Probabilistic Grammar Evolution. 56
6.2 Grammar-Constrained Decoding . 58

7 Conclusion 59
7.1 Discussion . 61

2

7.2 Future work . 62

A WAG Syntax. 63
A.1 Syntax Highlighter. 63

A.1.1 Language configuration file(language-configuration.json) 63
A.1.2 TextMate configuration file.(wag.tmLanguage.json) 63

A.2 WAG Attribute Parses . 65
A.3 Grammarinator . 66

A.3.1 Grammarinator Structure . 66
A.3.2 Grammarinator Parses . 67

A.4 Transformers . 69
A.4.1 GPT Parsing Results . 69

A.5 XSmith . 70
A.5.1 XSmith Hole Filling Example . 70
A.5.2 XSmith Larger Sample . 70

A.6 Evolutionary Grammars . 74
A.6.1 Grape parses . 74

3

Abstract

Grammars are vital in the development of grammarware tooling, where a large set of generated
grammars can aid in the development and testing of their applications. However, the existing
methodologies of generating new grammars are insufficient to generate a high amount and variety
of these grammars. Where either a high number of language samples, positive and negative, are
needed to generate a similar grammar in the form of grammar inference, or the implementation
of non-CFG features is too hard to achieve. This thesis will research four state-of-the-art gener-
ative techniques: Grammarinator, XSmith, transformer networks, and evolutionary grammars. A
comparison will be made on both the quality and the quantity of the artefacts, and using two differ-
ent meta-grammars to differentiate results. The conclusion is that both transformer networks and
evolutionary grammar are the most interesting techniques to perform further research, providing
either some semantic similarity to meta-grammar or a high number/level of grammatically correct
artefacts.

Keywords: Computer Science, Neural Networks, Weighted Attribute Grammar, Attribute Gram-
mar, Weighted Grammar, Context-Free Grammar, Transformer Networks, Genetic Algorithms,
Genetic Programming, Evolutionary Grammar

Chapter 1

Introduction

The use of grammar occurs daily, during conversation, writing, and is prone to error in both speech
and writing. Grammar is used to convey information, but most importantly, it provides structure
to either sentences or lines of text. There are a variety of ways to express grammar G , which
can be in the form of natural language, such as English, programming languages, like Java, or
Domain-Specific Language(DSL) like SQL. It is the rule that for each grammar there is a related
language L , for which a structure is formulated. Each language is structured by rules declared
as grammar, where a set of rules creates a sentence, and multiple sentences create an artefact.
To illustrate the difference between grammar and language, compare the same two sentences in
natural language: “Are you good?” and “You are good!”. In the case of language, both sen-
tences are identical since all the tokens(unique words) match, however, the sentence can have
two different interpretations, which can be seen in grammar. The first is a question of whether
someone is good(i.e. if everything is well), while the other is a definitive statement that they feel
well. Similar cases can also be found in both programming languages (different grammar structure
of constructors and functions), and DSL(the different grammar rules of MySQL and PostgreSQL).

Figure 1.1: Programming and domain-specific language, grammar rule comparison.

How grammar is declared prevents the misinterpretation or incorrectness of information. In
most spoken languages, the structure of each grammar is different, but still contains similar el-
ements. Since each natural language will have nouns, verbs, adjectives, etcetera. However, the
arrangement through grammar is what distinguishes them. Each individual spoken language or
natural language is defined by linguistics, Natural Language Processing [62] and Formal Lan-
guage / Grammar [20].

This thesis, however, will not focus on grammar for Natural Language, but will focus on

1

(a) Grammar Convergence
(b) Grammatical Infer-
ence

Figure 1.2: Type of Grammar Evolution

grammar for both programming and domain-specific language. The reason is that the content of
this thesis focuses on the topic of Computer Science, and specifically, the application of grammar
in computing languages. Each programming language and DSL generally has a related grammar,
where each language sample s is a combination of a subset of the language corpus L , which has
been put into a grammar G , i.e. s ∈ G (L). One problem arises, however, in cases where the
language sample is of a language that is either unsupported or threatened with extinction, they are
often referred to as legacy languages.

There are several cases of both public and private institutions that still rely on software systems
written in legacy languages. COBOL was a commonly found language in the financial sector.
The risk COBOL brings is that these programs handle financial traffic with an estimated value
of three billion dollars a day [17]. However, though Cobol was the most commonly used legacy
language with 42% still on mainframes, there are also other contenders such as Assembler (37%),
and PL/I (22%) [44]. The issue with legacy languages is that they are a fundamental part of
the mainframe infrastructure, and it is therefore necessary to perform maintenance for optimal
performance. However, there are modern architectures in both software/hardware which are faster
and more maintainable, and evolving to a more state-of-the-art language is labour-intensive.

The process of modernising these systems is called software evolution [18], which categorises
different types of activities to do so. These range from updating documentation, translating user
functionality, and, most importantly for this research, the study of evolving legacy languages into
more modern iterations. Other options to run these older languages are to develop a new compiler/
parser using compiler design [34], to support more modern architectures.

When a language has to be modernised, it is implied that the current grammar has to be trans-
ferred from the language of origin to the modern implementation. To achieve this, one of the
solutions would be to look for grammar conversion models and tools, which could be found in the
realm of grammarware[57, 112]. The term refers to the modelling and formalisation of grammars,
and the advancement of grammar implementations/techniques in topics such as parsing, interpre-
tation and others.

Several grammarware techniques are interesting to research, where two grammatical tech-
niques can be taken as examples: grammar inference [98, 93] and grammar convergence [112].
Figure 1.2 shows two models visualising both of these grammar techniques. Grammar conver-
gence is a methodology to generate an intermediate representation of the grammar, based on the
grammar rules from two or potentially more grammars. This is performed by liberally adding

2

Figure 1.3: Grammar generational model.

transformations between the grammars such that they converge to a shared limit. This process is
mostly done by the human-guided system, where a domain expert infers these transitions from
multiple grammars to one. Grammatical inference, on the other hand, tries to infer the meaning of
a grammar by generalising the resulting languages. This is done either in state space, such as fi-
nite automata, or using non-terminal merging in a grammar. An example of this is by Sayilir [93],
where the Grammatical Inference of fourth-generational languages(4GLs) is used to generate new
positive and negative language samples after inferring the grammar. However, there are potential
issues when trying to convert two of the same language but of a different implementation. An
example of this is the difference between Mysql and Postgresql, or different versions of the same
language.

Both grammars can generate new grammars based on either positive/negative language sam-
ples or grammar samples. The downside of both techniques, though, is that the resulting grammar
is only one grammar. So what happens in the case where it is necessary to test grammarware
tooling, using a set of multiple different, but similar grammar implementations?

To potentially improve grammarware, it is a good option to train a tool/model with more than
one specific implementation. An issue that arises when it comes to grammar is that, in comparison
to language samples, there is a lack of samples you can test. One of the reasons for this is that
once a grammar is written down, it only goes through revisions of the original grammar. In the
case of languages, there are multiple different examples since the content of a language can be
written in a million different ways, depending on the size of the corpus and the grammar rules.
Therefore, this thesis proposes to define a meta-grammar of the original grammar and, through the
use of generational techniques, to generate these test samples for grammarware. Both the concept
for Grammar Convergence and our proposed meta-grammar result in the structure that is shown in
Figure 1.3

Within the realm of Formal Grammar, there are multiple ways to denote all the different gram-
mars, about which specific types will be elaborated upon in Chapter 2. For the research, it was

3

necessary to choose one grammar for the generation of these grammar samples. A decision was
made to use Weighted Attribute Grammar(WAG) [114], as the main form of grammar notation.
The reasons for WAG are that adding weights to your grammar makes it possible to specify the
probability of different choices of a subsequent grammar rule/terminal state one ends up in. Sec-
ondly, attributes increase the expressiveness of the grammar by using additional values to define
and declare specific rules, which helps in making grammar decisions. And the last advantage of
using WAG is that since it is an extension of Context-Free Grammars(CFG) [22], all possible so-
lutions should be achievable within O(n3) [102]. More on the particular choice for WAG is also
given in Chapter 2.

1.1 Content of the document

The thesis starts with a Background chapter, going into the selection for WAG and its formalisms.
Starting by describing the domain through Chomsky’s hierarchy of grammar, continuing with
the choice for Context-Free Grammar, and explaining both Attribute Grammar(AG) [58] and
Weighted Grammar(WG) [21], as each of these is integral to WAG. A brief section will be pro-
vided on machine learning(ML) and neural networks(NN) with a few specified techniques. This
will contain the different techniques that are part of some generational techniques that are used to
create grammar samples.

After providing context on grammar, the research questions will be formulated to specify the
specific questions around generating grammar. Based on the research questions, four different
approaches to grammar generations have been found and will be given further explanation and re-
sults. These four approaches are: Grammarinator [41], transformer networks [104], XSmith [36],
and lastly evolutionary grammars(EG) [90]. These techniques were researched, and an explana-
tion will be given on the principles of each technique. Furthermore, there are additional techniques
for both transformers and evolutionary grammars, where the different neural networks and the ar-
chitecture are important to understand transformers. For evolutionary grammars, the fundamentals
of their parent subjects, genetic algorithms(GA) [42] and genetic programming(GP) [3], are fun-
damental to understanding how the generator functions.

The results chapter will provide the implementation of each of the four different techniques.
Each of the different techniques will be compared to the criteria on grammatical correctness and
a set of other predefined criteria, such as the generation of multiple samples, and generational
speed(artefacts per second). Additionally, there are complementary results, such as a syntax high-
lighter for WAG.

After the given results, some related work in different fields of generation and grammar will be
shown, to give a broader context of both domains and where they intersect. This includes potential
improvement to EG by adding probability variables called Probabilistic Grammar Evolution [74],
ending with a combination of techniques; i.e. transformer with grammar specified Large Language
Models(LLM) [31].

This document concludes by answering the research questions and discussing the results. And
ending with a section on potential future work on the topic of grammar generation.

4

Chapter 2

Background

This chapter provides the necessary information to give a basic level of understanding of the topic
of grammar. Starting with Chomsky’s hierarchy, to show the different levels of grammar and the
choice based on complexity and expressiveness. After that, the following section will dive deeper
into the chosen level: Context-Free Grammar(CFG), providing the formal specification. Following
CFG, different additions to the grammar in the form of Attribute Grammars(AG), Weighted Gram-
mars(WG), and culminating in Weighted Attribute Grammars(WAG) will be formalized hereafter.
Concluding by explaining the choice of WAG as the output grammar the generational techniques
should produce, and in some case the input grammar to generate the grammars from.

After the definitions of grammar, there is some background research that is vital to understand-
ing the generation techniques that are discussed in the Research chapter 4. This includes the for-
malization of both Machine Learning and Neural Networks(NN), and a summary of specific NNs
such as Convolutional Neural Networks(CNN), Recurrent Neural Networks(RNN), Long Short-
Term Memory(LSTM), Residual Neural Networks(ResNet), and Encoder/Decoder Networks.

2.1 Grammars

2.1.1 Chomsky’s Hierarchy

To reiterate on the definition of both the meaning of language and grammar, the definition of
language is a finite collection of sentences, based on a finite alphabet of symbols, let’s call it L .
For each language L the length could be potentially infinite, and therefore the interest is in finite
devices (i.e. grammars G) to make an enumeration of possible sentences. To make a grammar
G viable you’ll need a class of functions, to give a structure to a given language. Defining these
functions can be done in multiple ways, e.g. using unrestricted Turing Machines, or strongly
limited condition Markovian sources, e.g. finite automata.

There are several different functions F to a language L , which is specified by the grammar
type. Chomsky in another paper called, "Three Models for the Description of Language" [20],
goes over the models that make building a grammar possible, of which transitional an phrase
structure are applicable in this case. An example of the phrasal structure is commonly found in
NLP, where the relation between linguistical concept are structure inside a tree structure. However,
this research is mainly interested in transitional structure where you go from one rule in grammar
to others without explicitly referring to a phrasal structure. Each grammar rule consists of two
different concepts, non-terminals(NT) and terminals, more on the definitions will be given in the
next section. But to summarize an NT is a state in grammar form which it can go to other states
or a value; referred to as a terminal. Each non-terminal in the grammar should have at least one
function, which declares what the NT does, e.g. go to other NTs or terminals

5

Most commonly the definition of each of the grammar functions is classified using types, of
which Chomsky Hierarchy is commonly cited ad defines four different types [22]. The properties
that distinguish the difference between each type of grammar is given as follows:

• Type 3, Regular grammar: Grammar where each of the non-terminal states has a direct
terminal, which can be in combination with a maximum of one non-terminal state. Some
examples are A → a, A → aB, and A → ∅, where capital letters are the non-terminal states
and non-capitalized letters represent the terminal state.

• Type 2, Context Free Grammar(CFG): A grammar that starts in a non-terminal state and
results in a combination of terminal and/or non-terminal state. The syntax of context-free
grammar is written as: A → α , where A is a non-terminal state and α ∈ (N ∪T), a set of
terminal and non-terminal states.

• Type 1, Context Sensitive Grammars(CSG): Similar to Context-free grammar, however, this
type of grammar has a context variable, before and after the non-terminal; increasing the
level of complexity. The notation for CSG is as follows: αAβ→αγβ , where A represents
the non-terminal, α/β represents the context used in the function, and γ all possible terminal
and non-terminal states that have been influenced by the rest of the context.

• Type 0, Recursive Enumerable(RE) Grammars: RE can express the set of all possible gram-
mar in a given alphabet of a given language L , such that any form of potential output from
a corpus is possible. This also can include recursive series, such as the Fibonacci sequence,
though RE can break them of at some point This type is the highest in complexity since it
can contain all of the different potential states with the grammar. This makes it also im-
possible for any size/complexity formalization since the results can be defined as literally
everything or a combination of every state, to any other possible combinations of states.

Each of the given types increases in complexity, where regular grammar is restrictive, up until
RE where every combination of words within sentences is potentially possible. If you want to parse
each of the different types, regular grammar would be the fastest and simplest to parse. Since you
only go from one non-terminal state to an empty set, a terminal, or a combination between the
terminal state with one non-terminal state. CFG becomes a bit harder but is still solvable since
there should always be an eventual terminal state within the grammar for it to be viable. CSG
however is as of the writing quite implausibly solvable, because of the sensitivity component.
Since the added context can completely change the values when going from one state to another,
meaning that there are multiple different resulting solutions to a grammar rule depending on the
context.

An example in the English language can be seen through the combination of specific nouns
with certain verbs. Take a set of Verb {going, leaving, being} and Noun {home, bridge, John},
with the grammatical rule Verb Phrase -> Verb Noun. Some samples work fine going home, leav-
ing John. However, being bridge, or going John are examples that don’t make sense without the
proper usage of the English language. The context itself would describe these particular excep-
tions to prevent wrong usage in not only English but also in other languages, which extends to
programming language and DSL as well. In the case of RE, you can go from one word to po-
tentially any other word. This makes it impossible to parse since literally, a sentence can have
potentially close to infinite meanings, depending on the size of the subset of L and the set of all
G .

The choice was made to use Context-Free Grammar since the grammar isn’t as complex as the
lower-order grammar types, but also expressive enough to describe most grammar. However, the
CFG may suffer from not having the contextual component of CSG to make the grammar more

6

expressive, such as the English grammar example. To make the grammar more expressive, there
are specialised implementation of CFG. More on one of these grammars will be given in the next
section, together with a broader explanation of CFG, and its variables.

2.1.2 CFG and Attribute Grammars

Context Free Grammar

There multiple implementation of CFG, each having their own rules and different extensions that
might be interesting for implementation. The first definition is from the one used in the Chomsky
Hierarchy. The formal definition of CFG can be described with a 4-tuple, a set of different sets,
noted as G = (T, N, P, S0). Within different research papers, there are many different letters given
to these variables, so keep in mind that these might change depending on their use. The variable
G is the complete grammar defined as a CFG. Each of the properties can be described as follows:

• T, is the set terminal variables within the given grammar. These terminals mean that there
are no further elements to explore and to return a value(s). Each value is defined though
typing such as strings, integers, or any other type that has been predefined.

• N, is the set of non-terminal states within a given grammar, and the rule on the set applies
N∩T = /0, since there should not be an overlap. Non-terminal, as the name implies is a state
that doesn’t terminate, but leads to other states, that should terminate. Each non-terminal
can either lead to terminal(s) when they are used in function/procedures, into multiple other
non-terminals, or a combination of both.

• S0, is the initial state, or start symbol, which is a part of the non-terminal states, e.q. S ∈ N,
where N ̸= /0. This is because the grammar would directly end in the empty set, which
would represent a grammar that contains potentially only values and no grammar rules. The
initial state is the beginning point of the grammar from which multiple different terminals
and non-terminals will be used during parsing. In the case of a tree structure, this variable
will represented by the root.

• P, is the last element and stands for the procedural/production steps, these are steps that
are taken to go from one non-terminal state to either a different non-terminal state(s) or a
terminal state(s) or any combination. The production rules are strictly defined as relation
α → β , where α ∈ N and β ∈ N ∪T . It is always the case that α is a non-empty singular
non-terminal, where β can be any combination of terminals and/or non-terminal states. β

can even be a reference to an empty string(ε), also called the ε-production rule.

There is a particular way to write down grammar. Take for example some grammar rules to
concatenate words together, where G = ({S},{a,b},P,S0). Given the following production rules:

• S → aS

• S → bSb

• S → ε , or empty set

Example output of the production rule can be ε,aa,bb,aaaa,bbbb,aabb,bbaa,etc. Not only
grammars can be context-free, but the same goes for a language, referred to as Context-Free Lan-
guages(CFL). For a language to be context-free there should be a CFG(G) where L = L(G) and
L(G) = {w ∈ T : P ⇒ w}. From the example you can say that for CFG there is a CFL, since
L(G) = {wwR : w ∈ {a,b}}.

7

Context-free grammars come in many forms, Chomsky created his variation which is more
restrictive than base CFG, called the Chomsky Normal Form(CNF) [22]. This grammar is particu-
larity interest since the procedure can be transposed into a binary tree. The grammar has the same
4-tuple but has additional restrictions, such as:

• All production rules start with a singular non-terminal and either return a singular terminal
statement or a maximum of two non-terminals. The rule where the ε-production rule applies
as terminal.

• A combination of both terminals and non-terminals is not allowed in CNF on the right side
of the production rule i.e. β ∈ N ⊊ T

• Lastly each production rule van cannot end with a singular non-terminal on the right side of
the equations. An example of this is Nom → Noun, which states that all noun words in the
text can be written as nominal variables. What can be done is that the noun terminals values
can directly be referenced by Nom, e.g. Nom → ‘window‘, ‘door‘.

The advantage to create these binary trees, is that it has predictable properties for iterations on
the tree, such as insertion, shifting, and deletion. It is also used within the real of natural language
processing for example in the CYK(Cocke–Younger–Kasami) [33] algorithm. This is an algorithm
that parses sentence and give multiple different natural language parse to interpret sentences.

The downside of context-free grammar, that was mention in the Chomsky hierarchy section is
that has issues expressing context. However, since context sensitive grammar has a high level of
complexity, an alternative approach should be chosen. A solution to question of context could be
resolved by Attribute Grammar, which will be elaborated upon in the next section.

Figure 2.1: CFG Vs CNF.
[51]

8

Figure 2.2: Context Free Language examples.
[58]

Attribute Grammars

The formalisation of attribute grammar is written in the paper "Semantics of Context-Free Lan-
guages" [58]. The purpose of attributes is to potentially provide attributes for non-terminals in a
CFG, which means that they play a part during the parsing of a grammar. To better illustrate the
grammar, let’s take an example from the paper to convert binary numbers to decimal. Where the
binary value 1101.01 is transferred to the decimal value of 13.25, and vice versa.

In this example, there are three symbols: B(bit), L(list), and the number(N). Besides these
symbols, there are a few declared rules:

• Each bit has a value attribute v(B), which is an integer

• Each list has a length attribute l(L), which is an integer

• Each list of bits has a combined value attribute of v(L), which is an integer.

• Each L has a "scale" attribute s(L) which is an integer.

• Each number has a value attribute v(N), which is declared as a rational number Q.

In these examples, you can see that each of the non-terminals has a separate attribute(s) that
is declared. In this grammar, each Binary and number has a direct value(v) in decimal, while L
has both the decimal value and the length of the list, e.g. how many items it can still traverse. For
example, the B(v=1), this means that a value v with integer one is attributed to non-terminal B.
While the length and value attributes of a L(v=6, l=3), the value at this point in parsing is six, and
the height level of the tree is three. Each of the different relations and assignments to both values
and lengths can be found in Figure 2.3.

Formally, for each attribute grammar G = (V,N,S,P), there is a symbol X ∈ V, the set of
terminals and non-terminals. Where N ⊆V , are the non-terminal states of the grammar. Such that
there is an associative finite set A(X), which are the related attributes of each of the non-terminal
symbols. The attributes can be separated into two different categories: synthesised A0 and inher-
ited attributes A1, where there are no overlapping attributes A0 ∩A1 ∈ /0. The difference between
the two attributes is the direction the value is propagated. In the case of synthesised attributes,
values transfer is from child to parent, and is inherited from parent to child. The grammar starts
by defining the attributes for the initial value S, where there are no inherited attributes A1(S) ∈ /0,

9

Figure 2.3: Semantics and Syntactic Rules.
[58]

since the initial state has no parent. And the synthesised attribute set is empty when the initial state
starts with a terminal symbol. Also, each attribute α ∈ A(X) has a potentially infinite amount of
possible values Vα , for which eventually one value will be selected in the derivation tree.

Within the sample attribute grammar in Figure 2.3, two variables show an example of a syn-
thesised and inherited attribute. To start, the attributes v and l are synthesised, since the value and
length are calculated/synthesised in each of the leaf nodes and will be done for each node, till the
root element is reached. The calculation of the length is independent and increased by one for
each parent node visited. However, to calculate the value of a binary at a specific index, you need
to scale. This is where the inherited attributes come, in which they take the opposite path from the
root to the leaves. In this case, it takes the synthesised length variable that is used on the right side
of the equation to calculate the fractional values. On the right side, starting with 0 and increasing
each left child, reverse the value of s with 1. Which scale attribute gets used in the calculation,
e.g. the fourth element binary value is 1, and s = 3, giving the value of v(B) = 2s(B) = 23 = 8. For
an attribute grammar to be valid, it has to adhere to the following properties:

• A → α ∈ P, meaning that each attribute in the list of attributes is linked to at least one
element in the set of procedures

• a = a1 . . .an,∀i,1 ≤ i ≤ n : ai ∈ (Vn
⋃

Vt), implying that for every symbol in the rules, there
is either a terminal or non-terminal symbol.

• A,a = f (a j1 × a1, . . . ,a jm × am), where {a j1, . . .a jm} ⊆ {a1, . . . ,an}. This means that for
every value of a, there is a function that will be applied to the attribute value based upon the
chosen non-terminal A.

Furthermore for the set of productions rule P has for each p-th production the following
property: Xp0 → Xp1Xp2...Xpnp, where np ≥ 0, Xp0 ∈ N and (Xp j) ∈V for 1 ≤ j ≤ np. This means
that for each p-th production, there is a combination of non-terminal and terminal variables, each
potentially has its related attributes.

An example of the use of attribute grammar can be found in Henriques et al. [38], to create
a compiled piece of Java code, based on a class diagram. Firstly, the class diagram is converted

10

Figure 2.4: Chomsky Ambiguous sentences. [22]

through the use of context-free grammar, defining both the terminal and non-terminal states. After
the states are defined, particular attributes are assigned to keep track of certain states.

CFG can also be more explicit by other means than providing attributes. One of these methods
is to use probability to make decisions in parsing trees, called Weighted Grammar. The next
chapter will expand more on the topic.

2.1.3 Weighted/Stochastic Grammar

Grammar can be written in different ways, but when they are executed, there might be cases in
which you have overlapping grammar rules, see the case in Figure 2.4. In this case, the non-
terminal and terminal are the same, however, other grammar rules were implemented in both
cases. A potential solution would be to add some value to indicate the likelihood of a parse be-
tween grammar rules. One of these implementations goes by many names: Stochastic Grammar,
Weighted Grammar(WG), or Weighted Context-Free Grammar(WCFG). The concept was intro-
duced by Chomsky and Schützenberger [21], in which they added so-called algebraic theory to
context-free grammar. The basic idea is to take grammars(G), and vocabulary (V) and combine
this with weights. The vocabulary itself is a finite set of words belonging to a specific language, be
it linguistic or programmatic. Each grammar contains its procedures (P), where for each P there
is a pair (sigma,G), where sigma is a string that will be transformed by the grammar. The main
reason for adding probability to grammar relates to the topic of ambiguous parsing.

The solution to making these grammatical choices can be performed by adding weights to
parsing, such that the parser can make decisions based on probable parsing rules. In the example,
we can add a higher weight for the combination of Adjectives(Adj) and Nouns(N) as a Noun-
phrase(NP) and then upgrade an N directly to an NP. In this case, option (7) will be taken as
the parse and not (6). To prevent the potential of randomised parsing, the variable n is introduced,
which is a numerical value representing ambiguity. This number is paired up with the string sigma,
giving a pair of (σ ,n). The combination of sigma and n means that the string generated through
the grammar has n levels of ambiguity. The term ambiguity can express the value as a weight
value, which implies that it can also be expressed in the form of probability. Let’s imagine two
different potential parses one ’A’ with a weight of 5 and the other ’B’ of 10. From this, we can
deduce that the parse from B is more likely to occur, and if we would treat both probabilities that
A = 5

(10+5) =
1
3 and B = 10

(10+5) =
2
3 .

Chomsky and Schützenberger defined multiple algebraic functions, of which a few of these
definitions are vital for understanding the formal basis for WCFG. Starting of finite V contains
a terminal vocabulary(Vt) and a non-terminal vocabulary(Vn). Presuppose there is a set of all
terminals F(Vt), then L ⊂ F(Vt). Now let’s consider that there is a potential string f ∈ F(Vt),
which is mapped to some value r, such that < r, fi >. The mapping onto r then represents some
power series, in the non-commutative variables x of Vt . Giving:

• r = ∑i < r, fi > fi =< r, f1 > f 1+< r, f2 > f2 + . . .

For f1, f2, . . . is an enumeration of all strings that are available in Vt . To check if these strings
are supported, it makes use of the function Sup(r), where the output should not be zero. Therefore,

• Sup(r) = fi ∈ F(Vt)|< r, fi ≯= 0

11

It is explicitly a non-zero value, which means that the value of Sup(r) can also be negative if
they have a negative correlation. However, a positive power series can be made by changing the
comparison parameter to < r, fi >≥ 0.

A weighted context-free grammar works by weighting the edges of each procedure in the
grammar. Let’s say that for each procedure, we have a string f ∈ F(Vt), and there also exists a
weight parameter, which is a numerical value N(G, f). The value of the weight itself is dependent
on the implementation of the grammar itself and always is a positive value in case that f ∈ L(G).
We can also express it in the power series where for r(G), provides < r(G), f >= N(G, f), where
< r(G), f > is the coefficient for the power series of F in r(G). The coefficient itself is only zero
if the grammar can’t generate f, and one if only one possible generating sample in G, two for two
different interpretations, etcetera.

The first implementation of WCFG can be found in a paper written a decade later by Salo-
maa [92]. In this paper, Salooma took Chomsky’s CFG and combined it with probability theory. It
still uses the CFG four-tuple; however, it added new variables as well, written as Gw = (G,δ ,ϕ).
Where G is the CFG four-tuple, δ is the initial distribution, which contains all non-negative vari-
ables. While ϕ is a vector of probabilities given to each of the different procedures, where the
value of each is ϕ : P → [0,1][P]

The weighted grammar Gw can also be expressed as a type of language where L = Ls(Gw,η),
where Ls is a stochastic type grammar. Also η is used as a cut-point where it goes from the initial
state to some singular terminal state, where the probability of at least one path has the property
η > 1. Another relevant property is that for every probabilistic grammar where η > 0, it follows
that the language Ls(Gw,η) is finite.

There is, however, a much smaller implementation written by Rabin [84], which is related
to the subject, but is called probabilistic automata. Instead of using the probability as extended
grammar, on top of CFG, it is based on non-deterministic finite automate a 5-tuple (Q,∑,δ ,qo,F),
where Q,∑ are finite states and input symbols, δ are transition functions δ : Q×∑ → ρ(Q), Qo

the initial state, and F a list of the final states. In the case of probabilistic automata, they add to the
transition function, and the initial state is replaced with a stochastic vector giving the probability
in a given state. These are mentioned since they helped to influence the creation of some similar
implementations in grammar, written by Ellis [28]. The weighted grammar given in the paper
is still a four-tuple CFG, however, it directly assigns the stochastic value to an already existing
variable. The tuple is G =< N,∑,P,∆ >, where N,∑ are the sets of non-terminal and terminal,
∆ ∈ RN is a vector of stochastic variables combining both the δ and s0 into one set, and P is the
procedures, with each given a weight variable. An example of a procedure in this grammar is the
following:

• ni
wi j−→ σ j, where ni ∈ N; σ ∈ (N ∪T)∗ and wi j ∈ R

• Implying, P ⊆ N × (N ∪T)∗×R

Weighted grammars are also an integral part of weighted attribute grammar, which is combined
with attribute grammars and will be elaborated upon in the next section.

12

2.1.4 Weighted Attribute Grammar

Both attribute grammar and weighted grammar give more expressiveness to context-free grammar,
which aids in the parsing of this grammar into languages. However, joining both would create an
even more expressive grammar, which leads us to the topic of Weighted Attribute Grammar[114].

An example of trying to model using WAG is the "binary exponential back-off" algorithm,
which is an algorithm to prevent collision in a network where two or more entities are using
the same resource. The simplified version has the following properties: the first step is that two
communicating entities are connected on one channel, with messages from each being sent one at
a time. Secondly, it chooses a frequency band and starts sending messages, and is successful if
the other system is not using the same frequency. The message gets corrupted if it is used by both
entities, meaning that each entity will back off. Lastly, after backing off, each entity doubles its
range and goes for the next attempt. A visual representation of the model can be seen in Figure
2.5

Figure 2.5: Model of binary exponential back-off.

This system can be implemented through an adaptable model since the changes need to be
made based on the collision at run-time. To model this, some probabilistic methodology is used to
validate the choice and calculate the probability of a sequence of messages being sent intact. The
expression of the system in language can be done by creating two instances γ and γβ where γ is
a correct sentence and β is its probability. Where [1,2](25%) describes entity one as on channel
one and entity two as the second, which has a 0.25 change, and 2,1 as the reverse with an equal
amount of chance. Where a collision is [1,1];[1,2](6,25%), meaning collision on channel one and
the second cycle choosing channel 2 for the second entity. Making a grammar for all cases is
impossible since, in the end case [5,2], you need to provide all possible back-offs that preceded,
which, after each of these, increase in complexity. Only when bounding the model to a condition
size n, will it become possible to encode having ∑

n
i=0 22i production rules. A better grammar

to handle the productions would be to use attribute grammars, however, this will need to take
into account that the probabilities have to be calculated separately. Using semantic predicates, e.g.
formulae that can fail production rules that potentially create undesirable results after computation,
will reduce the production rules to 4+n. When combining both attribute grammar and probability,
i.e. weighted grammar, it has the best of both worlds. The combined version of it makes WAG.

The formalised definition of WAG is given in both Latin and Greek letters, where order tuples
are represented by Greek capital letters, mappings of lowercase Greek, and Latin letters are un-
ordered sets. Otherwise, there is T which is a set of a non-specifically defined type and can be of
integer, real, string, lists, and objects. WAG is defined as a tuple of G=≺ Γ,Ω,Λ,Φ ≻. Where Γ

represents the CFG, Ω the weight-related component, Λ the attribute component, Φ representing
computational formulae. Each of these has its tuples, except Φ gives computations, like ⟨x := 0⟩.

13

The first set in the tuple context-free grammar is denoted as Γ = ⟨N,T,P,s⟩. This includes the
non-terminals(N), terminals(T), production rules(P), and the initial state (s). WAG includes colour
to describe specific sets as either being of terminal (red) values, or non-terminal (blue), such as
the initial state.

The weighted component tuple is Ω = ⟨ω,β ⟩ where:

• ω : P → T, which is a set of the types for each of the weighted components, which have to
be of a comparable type.

• β is the assignment of a weight to each of the production rules (P); however, the co-domain
is dependent on input where β (p) ∈ ω(p)∪A

The last tuple is the attribute component defined as Λ = ⟨A,τ,κ,π,σ⟩, where:

• A is a set of attributes.

• τA → T assign type to each of the attributes.

• κ : N → A∗ specifies each inherited attribute for all non-terminals, is passed by a parent;
these attributes are denoted with x ↓

• π : N → A∗, these are synthesised attributes, for instantiating nodes to their parent; attribute
donated as upward arrow x ↑.

• σ : N → A∗, refers to attributes shared amongst multiple nodes of the same Non-terminal. It
is not a part of the initial attribute grammar, and these attributes are also referred to as static
attributes.

Another property WAG has is that every CFG can be transferred into WAG, with the following
properties:

• N, T, P and S are similarly formatted as the base implementation of context-free grammar.

• ω and β are empty having no weights or associations.

• A = ∅ is empty, trivialising all components of Λ.

Proving that all context-free grammars can be made into WAG, but not in the opposite direc-
tion. Previously, the example of binary back-off was mentioned as a system to model. Implement-
ing this using WAG leads to the following result:

• S 1−→ P{[1,1]}

• P{↓ v} 1−→ E{↓ v,↑ l}E{↓ v,↑ r}C{↓ v,↑ l,↑ r}

• P{↓ v,↑ r} vi/|v|−−−→ ε⟨r := i⟩

• C{↓ v,↓ x,↓ y} x=y−−→ ↓ x′,′↓ y′;′P{dup(v)}

• C{↓ v,↓ x,↓ y} x ̸=y−−→ ↓ x′,′↓ y′.′

In this model, there are four non-terminal states: the initial state (S), protocol (P), entity (E),
and channel (C). The first line defines two different entities that need to communicate with one
another. The protocol itself is defined by inheriting v results in two different entities E, and a
channel between these two entities in C. Each entity inherits the value v from the protocol, and the
value for the communication channel is inherited and chooses one of the channels in the channels
list. As for choosing the channel, there are two options:

14

• The channels of both different entities have the same value, e.g. (x = y), then double the
range and let both x and y select a new potential channel.

• If both channel x and channel y are completely different channels, e.g. (x ̸= y), then the
values can be passed to each of the different entities.

There are several implementations of WAG, one generator of Rust code based on WAG called
Weighted Attribute Grammar-Oriented Notation or WAGON [27]. A second implementation for
an IOT application which uses WAG to implement a chatbot, called WAGIOT [97].

WAGON is a Domain Specific Language, which is specially made based on the WAG gram-
mar. The purpose of WAGON is to convert WAG Grammar and parse it into executable Rust code.
One of the examples given in the thesis is a Pokémon grammar, which represents elements of the
trading card game such as stats, name, and typing. WAGON itself is also the base for WAGIOT
thesis, which defines an IOT Grammar, such that a conversational bot can facilitate the interaction
between IOT devices and their user, use human speech and make decisions, such as turn a light on
or off. An example of the communication of WAGIOT is seen in 2.6

Figure 2.6: Two WAGIOT examples.

To conclude the section on Grammar, WAG will be used as the syntax for are meta-grammar
input, to generate new grammar samples. The next chapter will go into the research question and
will specify WAG as the chosen grammar, but will also ask questions about what generational
techniques/implementations are needed. Some of these techniques are found in neural networks
and are included in the research. To give more context to these research techniques, the following
section provides a summarised explanation of the basics of Neural Networks and includes specific
techniques that are used in the chosen generators.

15

2.2 Artificial Intelligence, Machine Learning & Neural Networks

This section is on the use of Artificial Intelligence(AI), Machine Learning(ML), and Neural Net-
works (NN). The topic comes up when researching different techniques to generate artefacts,
which in our case would be grammar. This section is used to provide summarised information
on different techniques, most of which are neural networks, that are part of the generational al-
gorithms. Start with an introduction on the topics of machine learning and neural networks, by
giving them a formal definition, and in the case of machine learning, define the three different
types. Then will go over several neural networks that are used in the generational algorithms.

2.2.1 Formalising Machine Learning and Neural Networks

The topic of machine learning is quite broad, and to concretise the application to the thesis, we
will provide some fundamental concepts. Machine learning itself is a subset of AI [69], which is
defined as the automation of different processes using computers. The term doesn’t necessarily
mean that a computer has the same capacity as the human brain, but that it can mimic human tasks
through calculations. The term Machine Learning has been attributed to Arthur Samuel [105],
where it is described as the following:

“Field of study that gives computers the ability to learn without being explicitly pro-
grammed.”

The particular difference between the two is found and the end of the quote: “without being
explicitly programmed”. This means that the inference on how the process should be performed is
explicitly learned, and not programmed in advance. Examples of the implementation of machine
learning are computer vision [116], routing [59], and speech recognition [85]. The implemen-
tation of machine learning can be achieved by selecting one out of three different types. These
types consist of learning: supervised learning [89], unsupervised learning [95], and reinforcement
learning [50]. These types of machine learning are summarised as follows:

• Supervised Learning: This type of machine learning is used by guiding the algorithm to
some preferred outcome of the system, with the use of a set of predetermined inputs and
outputs. There are a total of five steps to supervised learning that are used in order:

1. Define a data set that has both predefined inputs and outputs, which makes both testing
and training possible.

2. Separate the original datasets into two, one training set to train the machine learning
algorithm and one to test.

3. Optional step, encoding the input for the machine learning algorithm by transposing
it, in the case of an image, take the pixel matrix of the image as the format.

4. Select a type of machine learning algorithm, i.e. support vector machine.
5. Run the algorithm, and depending on the size, run all possible inputs. In the case of

sizeable input, define a cut-off point, or in the first step, take a smaller subset of the
input.

• Unsupervised Learning: The opposite of supervised learning, meaning the system is agnos-
tic about the outcome of the system, and may provide all types of different results. However,
the result still depends on the amount/values of the input and the model/algorithm. The
advantage of using unsupervised learning is that the results are unfiltered and unlabelled,
meaning that the raw data can be used to analyse trends or patterns after a model has been
executed.

16

• Reinforced Learning: The last form of learning is Reinforcement learning, which is a tech-
nique of learning to promote the greatest cumulative result. This is done by training over
multiple iterations and encouraging certain decisions in the model/algorithm. The best way
to describe reinforcement learning is to show how reinforcement learning is through the use
of the following visual representation of the model, see Figure 2.7. Though it sounds similar
to supervised learning, the difference is that reinforcement doesn’t have a defined output to
reach, but uses some predefined reward value to nudge the result to some preferred outcome.
Examples of implementing reinforcement learning are IBM Deep Blue [15].

Figure 2.7: Example selecting training and test sets [13]

The generation of the grammar will be done through unsupervised learning. Not because it
is the best method, but because the generative networks that are used make use of unsupervised
learning, such as encoders and decoders [66]. The reason is that unsupervised learning doesn’t
use predefined labels, meaning that these results are not trained for a specific outcome. There are
compromises of these types called semi-supervised training [103], but it is not relevant for this
research.

Neural networks Neural Networks [61, 115], also referred to as Deep Learning (DL) [64, 47],
is a subset of machine learning which uses layered networks to perform probabilistic computations
on a set of inputs. A common example of drawing these neural networks can be seen in 2.8a.

Neural networks can be found in multiple applications, with classification being their most
common use case. The reason that neural networks are used for classification is that in a neural
network, you can generalise characteristics by embedding the attribute in each node within the
network, in the form of weights. All of these layers of nodes together are an amalgamation of
these characteristics and are commonly referred to as perceptrons. After training the network, it
will be tested and an accuracy value will be calculated by: Cg

C = accuracy, where C is the set
of all classifications and Cg contains all good classifications of the set. Common examples of
classification are ImageNet [61] and CIFAR [60], used to classify images.

The values of each node in a layer are based on the sum of input weights ∑
n
i=1 xi, plus some

bias, which is a fixed value. The value itself gets added to an activation function [46], which is are
mathematical function. Activation functions introduce non-linearity into the network, providing
the ability to learn and represent complex patterns in the data. Common activation functions

17

(a) Weight relations in neural net-
works [13]

(b) Output calculations in neural networks

Figure 2.8: Basic Neural Networks

and their mathematical equations/functions are Sigmoid, Tanh, Rectified Linear Unit (ReLU), and
Leaky ReLU.

Each of these nodes will propagate its variables to the next layer until they reach the output
layer. How many layers and how deep the network goes depend on the architecture of the network.
This architecture will hinge on the use case of each of the neural works. When the architecture of a
network has a high number of layers, it is called a Deep Neural Network(DNN) [9]. The depth of a
neural network correlates with the complexity of the classification, in the sense that more abstract
concepts would contain more ’features’. For example, the topic of image processing, where a low
layer count can identify the contours of an object, but by increasing the layer count, it can generate
better classification on what type of object something is, e.g. vehicle, food, or computer. However,
while adding more layers to a neural network helps increase potential accuracy for classification,
it also increases the complexity of calculations and makes proper classification slower. Another
issue that is known to occur is overfitting. This is a problem of training so well on the initial train,
that it overgeneralizes, such that some characteristics get removed and correct classifications get
rejected. Which will eventually result in a decrease in the prediction in the test set. The training of
the neural network itself is done using the weights and values of the nodes, and these values with
backpropagation [64, 40]

Backpropagation works by training the networks to an expected output and updating the per-
ceptrons to conform better to the output. Let’s take Figure 2.8a as an example. Within the figure,
the updating of neurons is done by calculating the cost function, which compares the output layer
of the network after the activation function α(L) with the expected output y. The cost function of
a singular node in the output layer L is: C = (α(L)− y)2. The larger the difference between the
generated output and the expected, the higher the cost; it will increase the value quadratically. To
lower the cost function, the values of the weights and biases need to change to reflect such that the
result in α(L) equals or is close to that of the expected value y. To find the most optimal point, it
needs to calculate the derivative of the cost function concerning the weights. This is denoted as

∂C
∂w(L)

.
In most cases, there is a network with a depth of size two or more, and the output can be

multiple. In that case, the cost function is divided into multiple smaller costs per output node.
The reason for gathering the derivative of the cost function using weights is that you want to
find the gradient of the cost function. This process is called gradient descent. To calculate the
gradient of the cost function ∇C, we need the values of all features of the output such that ∇C =

18

[∇C0,∇C1, . . . ,∇Cn]. to reflect this we need to sum over all the input neurons. Which results in
z(L) being rewritten as z(L)j = ∑

D(L−1)
n=0 w(L)

jn a(L−1)
n +b(L)j , where is D is a function to get the depth of

the previous layer. The activation function of the layer itself does not change only by adding the
j-th output neuron such that a(L)j = σ(z(L)j). Lastly, the cost function will need to take into account
that all the other outputs will be influenced by the other outputs that will be changed as well by
updating the weights and activation of the previous nodes. Therefore, the first cost function of the
output is written as: C0 = ∑

nL−1
j=0 (a

(L)
j − y j)

2.
The cost function calculation through backpropagation is needed to update the weights, using

a technique called stochastic gradient descent [11](SGD). In mathematics, gradients are used to
find the fastest rate of growth in functions, which in a graph would be the local or global maxima.
However, when taking a negative gradient, you will find the values for the greatest descent in the
function to the local or global minima. With each gradient, you will descend the slope until a
minimum has been found. After calculating and applying the gradient, the weights get closer to
the minimum, however are not there yet. So this process has to be repeated until the gradient is
zero or close to zero. The formula for the new weight update is the following:

• ∆w = w−η∇Q(w) = w− η

n ∑
n
i=1 ∇Qi(w)

The w is the set of weights, where old are the values before backpropagation and new are
after SGD has been applied to the set of old weights. ∇Q(w) represents the derivative of the cost
function, which is calculated by the aforementioned mathematical functions. The last variable is
η , which represents the variable called learning rate. This is a value is a rate which can either
increase/decrease the strength of the calculated cost function. The best approach for learning rate
would be to make the learning rate, sometimes referred to as gain, adaptive [96]. This means that
initially, the gain can be higher; however, after multiple iterations by decreasing the learning rat,e
you can prevent the issue of overshooting the targeted minimum.

There are three types of gradient descent: batch, stochastic(SGD) [52], and mini-batch [45].
Batch gradient descent goes over each of the elements in the training set and averages out the
values to update the weights. This method is good at finding gradients and quickly and accurately
decreases the cost function since it takes all possible weights in the network into account. How-
ever, in the case of a large neural network, such as LLM [82], this type would be slow in execution,
because of its size. Another method that works better with larger neural networks is SGD. The
term SGD is sometimes conflated with the concept of batch gradient descent, mainly because most
literature around Machine learning for neural networks. SGD differs from batch gradient descent
in that it selects a random sample each time and calculates the gradient for that specific instance.
The notation given for SGD is the following:

• ∆w = w−η∇Qi(w), where ∇Qi(w) is a randomly chosen example in the training set.

The last type of mini-batch takes an intermediate approach in which you take a fraction of
the test set and average over a preselected batch of training data. This has the advantage that
the convergence after each iteration is done more directly into the minima, but it is also much
faster than a normal batch since only a portion of all data is selected. Mini-batch’s mathematical
notation is similar to that of batch gradient descent; however, instead of going over all n samples,
n represents a select random fraction of the training set.

Neural Networks however are not only used for classification but also generate content, this is
dependent on the network that has been selected. It can furthermore be combined with classifica-
tion, such that the generated result reflects the characteristics of some pre-defined output. In the
next view section will discuss these specific neural network for both classification and generation.

19

2.2.2 Convolutional Neural Networks

CNN [67, 68, 49] is a type of neural network that uses kernel functions and convolution techniques
to extract features from a training dataset into the set of inputs that will be fed to a neural network.
The most common examples of CNN are in image processing, such as image classification. An
example of a convolutional network can be seen in Figure 2.9

Figure 2.9: Convolutional Neural Network Example. [91]

The stated example takes an image of a written number as input, and based on a fraction of the
image, tries to predict the number by first compressing and assigning features to the data through
kernels and using the flattened network to train on numbers between zero and nine. The network
itself works through the use of convolution, which is a process that adds padding to a matrix of
numbers, adds a kernel function, and then executes max pooling on the data sets.

First, there is the defined input, defined as a matrix of numbers. To this input, padding could
be added to the edges of the matrix. It is used to provide a way to make the spatial size more
malleable to get to some expected output size. However, this is optional and not mandatory if
the output size already satisfies the network. The next step which is used in every network is the
execution of convolution kernels on the network to both shrink the size of the input matrix and
increase the number of inputs. But also to add some function to strengthen certain values and
decrease others. Examples of these kernel functions for the CNN example for image processing
are in the form of filters, such as grey-scaling, stretching, sharpening, blurring, and many others.
Thereafter, are the pooling layers, of which max pooling is the most common, but others can be
used like average pooling. This function takes the size of an N X N matrix over the convoluted
matrix and searches for the maximal value within a piece of the matrix. The mathematical calcu-
lation to find the maximal value is:

fX ,Y (S) = max1
a,b=0 S2Y+b

2x+2,a.

As you can see in 2.9 these kernel functions and pooling can be executed plenty of time after
one another, however, to be useful, at the end of the series of convolutions the network will flatten
in a set of outputs, instead of a matrix. The flatting of the network is done so the matrix is
represented as an N X 1 matrix. The last step on the part of the Neural Network is that each of
the flattened input nodes is fully connected since each of the nodes in the network depends on the
context of the nodes in the input.

20

There are many different applications for CNNs, for topics such as image/video processing,
natural language processing(NLP), games and puzzle solving(e.g. chess), and many others. Well-
known implementations of CNN are found in the realm of image processing such as AlexNet [61].

The main interest for WAG and CNNs is in the NLP and generation portion of applications.
There are already some examples in semantic parsing [63, 32], sentence classifying [55] and pre-
diction [23] can be found. The main interest would be to potentially train a Neural Network for
either parsing to WAG, through the use of weights or to use prediction models to train a network
to create WAG, from the predefined meta-grammar.

However, CNN is not the only type of Neural Network that is applicable, Recurrent Neural
Network(RNN) can also be used. These network are found in generative network, since uses
continuous training on the previous iterations, different from CNN which generates based on a
train-set. The next chapter will go into this topic with an explanation of how it works.

2.2.3 Recurrent Neural Networks

RNN [40, 94] is a form of architecture that trains a neural network by using both the input and the
output of the previous layer to train the next layer or generate the output. Visually, an RNN looks
like the model in Figure 2.10. RNNs function by taking input and the previous iterated values and
calculating the new values for one iteration.

The main difference between RNN and other neural networks like CNN is that these network
can change their forward propagation, by continuously reusing the ’memory’ function to embed
previous output within the other nodes within the network. One downside of RNN, however, is
that for big networks, such as language models, it will discount each long-term memory less and
less since the propagated value h gets updated with other values. Of which the latest values have
a potentially higher influence than those that were propagated from the start.

One of the iterations of RNN takes the output of the previous one and continuously creates new
iterations on the previous executions. These types of networks will potentially go on indefinitely
if the input is really big, such as LLMs. One problem that occurs with RNN is that it has an
impact on weights during gradient descent, called the vanishing gradient problem. What happens
is that the weight update is influenced either in the direction of a slower-decreasing gradient or one
that is increasingly uncontrollable. This happens in most cases only when encountering a large
network, however, it does still affect the network. To solve this issue, there is a network that solves
this problem called Long Short Term Memory(LSTM) [40] (Figure 2.11) or an alternative called
Gated Recurrent Unit(GRU) [19].

Figure 2.10: Recurrent Neural Network example.

21

Figure 2.11: Long Short Term Memory(LSTM).

Long Short-Term Memory LSTM solves the problem of gradient vanishing by adding a second
parameter called a forget gate, which takes into account whether the network should ’remember’ a
value and use it in the recurrence. Each LSTM contains a set of values which is dependent on this
gate. The variables mentioned are weights Wq and Uq, input i, output o, forget gate f , and memory
cell c. The equations are as follows:

• ft = σ(Wf xt +U f ht−1 +b f)

• it = σ(Wixt +Uiht−1 +bi)

• ot = σ(Woxt +Uoht−1 +bo)

• c̃t = tanh(Wcxt +Ucht−1 +bc)

• ct = ft ct−1 + it c̃t

• ht = ot tanh(ct)

The initial value of c0 and h0 are zero and the symbol is the element-wise multiplication
(i.e. A B = C). All of the variables depend on time t, where one till t-1 is the previous iterations
that occurred before this time slot. The first is the calculation of the forget gate, by taking the
sigmoid over the Wf (weights of f) multiplied with the input x at time t, plus the previous forget
gate at t −1 with weights U , and at last the bias for the forget gate(not time-sensitive). The other
three equations are similar, the only difference being the calculated value for input i, output o, and
cell input c̃t . All these four equations are activation functions, with a value between (0,1), and
are activated through either the sigmoid function σ or the hyperbolic tangent(tanh). The last two
functions are the calculation for both the long-term memory ct and short-term memory ht . The
first does the matrix multiplication of the forget gate with the long-term memory of the previous
calculation, and adds the newly calculated cell activation input with the matrix product of the input
activation function. The new short-term memory multiplies the output with the hyperbolic tangent
of the long-term memory. The new value of the short-term memory is also the value that gets
propagated as the output of the LSTM at t.

22

As for the range of each of the variables, we have the following listing:

• xt ∈ Rd : is the input vector from the previous LSTM layer.

• (ft , it ,ot) ∈ (0,1): Activation value for the forget/input/output gate.

• (ht , c̃t) ∈ (−1,1): The long and short-term memory values.

• ct =∈ Rh: both the output and the new short-term input.

• W ∈Rh×d ,W ∈Uh×h,b∈Rh: are the weights and biases used to train the activation function
needed to calculate both short and long term memory.

The advantage of this construction is that long-term memory helps to prevent the vanishing
gradient problem, the network does this through the calculations of the activation values for long-
term memory, if a value is important enough to be propagated for the long term the activation
functions used to will end up being altogether close to one (ft , it , respectively). While the short-
term memory uses the output gate activation function ot , using the values of the previous states,
together with the value of long-term memory, will generate this value. Both the values balance
each other out, meaning that the gradient calculation stabilises and doesn’t vanish or go in the
ascending direction.

The advantage of RNN in comparison to CNN is that train on the sequential changes which
are better suited to textual implementation like grammars. Another example to use this memory
component is to use a different, but similar network called Residual Neural Networks or ResNet.

2.2.4 Residual Neural Networks

Residual Neural Networks(ResNet) [107, 71, 100] is a type of neural network that uses skip con-
nection, which uses the value of input or previous set of layers to update the calculated weights.
The principle is similar to LSTM, however is different in the sense that the residual step is done
on a block of multiple layers and not on each layer continuously. A basic version of ResNet can
be seen in 2.12a, which has a connection, called skip-connection, which combines the input of the
layersx, with the variable after the function performed on the set input F(x).

ResNet comes in many variations, but each variation has the principle that after each block of
layers, the input weight is added to the output. Such that y = F(x)+ x, which is similar to LSTM
in the sense that you use the previous output, with short and long-term memory yt = F(yt−1)+
yt−1 to prevent accuracy loss. An example of accuracy loss in CNN, is AlexNet [61], which has
an issue of decreasing accuracy when adding more layers to the architecture, referred to as the
"degradation" problem [37]. This is resolved by a process to normalise the layers (e.g. batch/layer
normalization [4]) and backpropagation and gradient descent.

The advantage is that they are less complex and therefore, potentially faster than RNN. As
for all the discussed networks, they are mostly used for classification. However, this research is
mostly interested in generational techniques. One of the most common generational techniques is
the encoder and decoder network, otherwise referred to as auto-encoders which will be discussed
in the next section.

23

(a) Residual Neural Network example (b) Layer Normalization Example

Figure 2.12: Layer Normalization

2.2.5 Autoencoders Networks

Autoencoders [66, 10, 39] are a type of network that uses both encoding and decoding techniques.
Encoding is used to generalise the input to a set of features, which afterwards gets decoded to
generate samples based on these generalisations. Such a network can be seen in Figure 2.13

From the figure, you can see that the encoder dimension is reduced to fewer features, and
decoding takes these reduced features and generates samples. As for the functional definition of
auto-encoders, there are 2 rules:

• There are two sets, an input set used to encode data, let’s call it Φ, and an output set to
save the decoded data ζ . In most cases, both can be found in the Euclidean space being of
dimension m,n such that: Φ = Rm and ζ = Rn

• There are two function families, one encoding function where Eφ = ζ →Φ with a parameter
φ . But also a decoding function where Dσ = Φ → ζ with parameter σ .

With these rules for a feature x ∈ ζ , there is an encoded variable z = Eφ (x); this variable has
many names, such as latent variable, code, and latent representation. And for z ∈ Φ there is also a
decoded variable x′ ∈ ζ that is retrieved by x′ = Dσ (z), which is commonly referred to as decoded
messages. These encoders and decoders are mostly defined in the form of multi-perceptrons, for
example, a one-decoder layer, which would be defined as: Dσ (x) = ε(Wx+ b). For where ε are
activation functions such as sigmoid or ReLu, W is the weight given to the layer, and b is the bias
of the layer.

Just like other neural networks, the training is performed by backpropagation. The function
to calculate the loss function is done through tasks. A task is defined by using a probability
distribution, with attribute µre f over a set of size ζ . The function called "reconstruction quality"

24

is defined as d : ζ × ζ → [0,∞], where for variable x there is a d(x,x′)), which measure the
difference with x′. The loss function itself is defined as the following:

• L(σ ,φ) := Ex µre f [d(x,Dσ (Eφ (x)))]

The reference distribution µre f itself is a dataset of x1, . . . ,xn ⊂ ζ , such that µre f =
1
N ∑

N
i=1 δxi .

In this case δxi is the Dirac measure, which is similar to a step function that only occurs at xi.
Another way to write the loss function is the L2 function, where: d(x,x′) = ||x− x′||2, which can
be trained by using least squares optimisation, where:

• min L(σ ,φ), where L(σ ,φ) = 1
N ∑

N
i=1 ||xi −Dθ (Eσ (x))||2

There are a few different types of auto-encoders, such as sparse auto-encoders(SAE) [101],
denoising auto-encoders(DAE) [66], and variational auto-encoders (VAE) [56]. If there is a high
degree of noise, the DAE will find a solution, but even after execution, the general classification
becomes harder. These types of noise are sometimes used in so-called adversarial attacks [76].
These are attacks against neural networks to make classification harder on purpose. Defending
against these types of attacks will only improve the ability of the neural network to classify.

Figure 2.13: Auto-Encoder Architecture

25

Concluding Neural Networks and Background. To conclude the section on Neural Networks,
several interesting techniques aid in both classification and generation. Some of the researched
techniques make use of these techniques and provide some sense of the technical formulation.
In particular, the Transformer Networks in the form of GPT use an LSTM, an encoder/decoder
network in both pre-training and fine-tuning. This will be continued in the Research chapter.

As for the conclusion of the background, WAG is an interesting grammar to apply to the use
case of grammarware. The question arises, how can it be applied to generate grammar samples,
and what meta-grammar are we using the generate these samples? These questions will be for-
mulated in the next chapter, which describes each of the research questions and which should be
answered in the subsequent chapters.

26

Chapter 3

Research Questions

In the research on how generative techniques can develop new grammar from the meta-grammar,
it is necessary to state the main question that has to be answered. This is done by specifying what
is being researched and what results are expected when the main research question is answered.
The main research is:

• Which generational techniques can be implemented to generate grammar samples from a
meta-grammar, using WAG as the output grammar?

The context of the question relates to the introduction, where the addition of new grammars
can provide samples to test grammarware-based applications. The question itself will be answered
in two sections: research and results. The former will answer the questions about which techniques
and meta-grammar will be used, and why these have been selected. In the Results chapter, these
generative techniques will be implemented, and each of the characteristics of the different tech-
niques will be compared. Furthermore, a comparison is made between different meta-grammars
used as input for generation. In the introduction, the four different techniques of Grammarinator,
transformers, XSmith, and evolutionary grammars(EG) have already been provided. The research
section will go on and describe how each of them works and why these are potentially interesting
to generate grammar samples.

The answer to the main research questions is that you can generate results with these tech-
niques. However, what about the quality of the generated results? Are the generated results reflec-
tive of the meta-grammar, and are the generated results applicable to grammarware applications?
To answer these follow-up questions, sub-questions were developed, which are to be answered at
the end of the research. These research questions are:

• What are the results when the generated samples are parsed, and how does each of these
techniques compare?

• Does each meta-grammar generate differing results, and what constitutes that difference?

• Are the results of generation applicable to grammarware, and if not, what can be done about
it?

The first question is quite straightforward: can we parse the results that have been generated?
This can be tested by trying to generate an AST based on the meta-grammar and comparing it to
the generated results. One requirement is that each of the generated results should be predictable.
Since it is the case that some generative networks create parses that are inspired by the grammar
but are not restricted by it. This means that the resulting samples are quite unpredictable, either
generating samples that are completely unparsable. The result will also count the partial parses

27

of the grammar and will compare the average percentage of correct parses. The interest in this
percentage is that there are cases where the grammar is not completely parsable; only partially. In
such a case, it is advantageous to know to what degree that is the case, and which technique has a
higher percentage chance of parsing.

The second question depends on the chosen grammar in the Research section, but is asked
since grammar can be expressed in many ways. In some cases, such as CNF, the grammar is more
restrictive than in CFG, and if one takes a meta-grammar of both and generates a new grammar,
the newly generated CNF would probably also be a more restrictive expression than CFG. And
potentially the opposite with WAG, since it is more expressive, containing both the weighted
and attribute components. To test this hypothesis, different meta-grammars will be used, and a
comparison made between their expression and generated results.

The last question is to conclude the generated samples by assessing whether the results might
be applicable as a grammar. There is the possibility that, though new grammar is generated suc-
cessfully from the meta-grammar, the results are insufficiently applicable to both cases, or the
generated grammar rules conflict with the principles of a language. In that case will go over the
results and describe its flaws and which generator(s) show the most potential based on the needed
characteristics.

28

Chapter 4

Research

This section is about the research performed before the implementation of each of the different
generational techniques, and comparing them in the results. The section starts by defining the
meta-grammars that will be used to generate new grammar samples. Then, a description of each
of the four different generational techniques will be given, starting with Grammarinator. There-
after, transformer networks will be discussed, which use the neural network techniques from the
Background chapter. After that will go into the framework called XSmith and provide context
on the purpose, origin, and use. Lastly, the topic of Genetic Algorithms(GA) will be given. This
section will contain information on crossover/mutation, and the specific subset of both Genetic
Programming(GP) and Evolutionary Grammars(EG) will be discussed.

4.1 Input for grammar generation.

To be able to generate new grammar, we need to define the meta-grammar, which is used to
generate each of these results. As mentioned in the introduction, WAG syntax will need to be
generated, which means that each of these meta-grammars should also reflect both aspects of
attributes and weighted grammar. This research came up with two different grammars that were
tested. The first is a subset of English grammar, containing basic grammar rules like: sentences,
noun-phrase and verb phrases. The second one is based upon the meta-grammar for the WAGON
thesis of Rafael Dulfer [27].

The English Grammar has been written to generate simple parses of the English grammar,
which contain some basic procedures. A portion of this Grammar containing most procedures
can be seen in Listing 4.1. It can be seen that the grammar has few rules for generation, but
still contains the most basic assignment of the WAG grammar, such as weight and attributes.
The weight variables will either be a static variable or have a reference to a numerical fraction.
As for the attributes, these have been predefined and refer to natural language concepts, such as
active verbs, tenses, and acronym definitions. All of the concepts are implemented as terminal
values to restrict the expression of the grammar, such that the generated samples should have
predictable outcomes. This is to say that the sentence“I am going home”, could be one of the
potential parses where S → [$p] Pronoun {$active = true}Verb Noun, where $p is an attribute
reflecting probability.

29

1 grammar SmallEnglishGrammar;
2
3 //Root element
4 small_english_grammar : rule*;
5
6 // Production Rules
7 rule : nTAssigment PROPESITION_SIGN rhs

STATEMENT_END;
8 rhs : weight? chunk*;
9 weight : BRACKET_L weightVariable BRACKET_R;

10 weightVariable : FRACTION | attrIdentifier;
11 chunk : nTAssigment | TERMINAL;
12
13 attrIdentifier : ATTRSPEC ATTR_IDENTIFIER;
14 attrIdentifierList : attrIdentifier DELIMITER attrIdentifierList
15 | attrIdentifier;
16
17 nTAssigment : NON_TERMINALS attributeAssignment?;
18 attributeAssignment: ATTR_ASSIGN_L (INVERSE_SIGN? attrIdentifier EQ

atom STATEMENT_END ?)* ATTR_ASSIGN_R;
19 atom : attrIdentifier | BOOL | FLOAT | INT | STRING |

FRACTION;
20
21 // Lexer
22 // English Terminals
23 NON_TERMINALS : 'S' | 'NP' | 'VP' | 'PP' | 'DET' | 'Verb' | '

Noun' | 'Nominal ' |
24 'ProperNoun ' | 'Pronoun ' | 'Preposition ' ;
25 ATTR_IDENTIFIER : 'tense' | 'active ' | 'acronym ' | 'literal ' | '

proper ';
26
27 TERMINAL: NOUN | PROPER_NOUN | VERB | PRONOUN | DET | PREPOSITION;
28 NOUN : 'door' | 'house' | 'apple';
29 PROPER_NOUN : 'Tom' | 'Fred' | 'Enschede ';
30 VERB : 'visiting ' | 'going' | 'eating ' | 'visited ' |

'went' | 'ate';
31 PRONOUN : 'I' | 'you' | 'him' | 'they' ;
32 DET : 'the' | 'a' | 'this' | 'there' | 'his' | '

their';
33 PREPOSITION : 'to' | 'with' | 'for' | 'at';
34
35 // Grammar Variables
36 PROPESITION_SIGN : '->';
37 ATTRSPEC : '$' | '*';
38
39 BOOL : 'true' | 'false';
40 INT : NUM+;
41 NUM : [0-9];
42 FLOAT : [0 -9]*'.'[0-9]*;
43 FRACTION : '0.'[0-9]*;
44 STRING : '"' ~('\r' | '\n' | '"')* '"'
45 | '\'' ~('\r' | '\n' | '"')* '\'';
46
47 STATEMENT_END : ';';
48 EQ : '=';

30

49 INVERSE_SIGN : '!';
50 BRACKET_L : '[';
51 BRACKET_R : ']';
52 ATTR_ASSIGN_L : '{';
53 ATTR_ASSIGN_R : '}';
54 LPAREN : '(';
55 RPAREN : ')';
56 DELIMITER : ',';

Listing 4.1: English Meta Grammar.

The WAGON generation takes the opposite approach by generating non-terminal, terminal,
and attributes in grammars based on randomly generated strings. This means that the names
of each of these are randomised and depend on the generational techniques that are generated
by them. The specifics can be found in the cited document. For this particular research, some
tweaking to the grammar has been done to make it possible to be used in ANTLR. The reason is
that when using ANTLR, the parser had certain grammar rules that came first, which resulted in
parses which are grammatically correct but were not reflective of the meaning of the grammar. As
an example to test whether the grammar works, I used the Pokémon WAG example from WAGON.

Each of the grammars, however, is modelling behaviours from some concept, where the small
English grammar reflects on the linguistic aspect of the English language, and WAGON, which
reflects on potential new grammars generated by the WAGON definitions. To assess whether the
results are contextual to each of these concepts, it is necessary to mention semantics, which will
is discussed in the next paragraph.

Semantics Some definitions are fundamental to be able to explain the results that will be gener-
ated by the different techniques. This section is about the definition of the words ’meaning’ and
’semantics’. The reason for providing these specified definitions is that both have a deep linguistic
and philosophical underpinning. Furthermore, the word’s meaning has different meanings/defi-
nitions based on the context it is in. The first step was to look at both dictionary definitions of
meaning and semantics. This was done through Encyclopedia Britannica and was taken as the
source. Meaning [77], is said to be the sense of linguistic expression that can be understood in
contrast to its referent. Examples are referents but no contrast (they/that), and contrast without
reference (the current prime minister of the Netherlands). In the case of generating new grammar,
this would imply that the generated results are made with the meaning of the grammar by being
referent, with the domain of the grammar as the context. Another word for giving meaning to lan-
guage is the scientific study of Semantics [78]. The most foundational paper on the meaning of
semantics was written by Gottlob Frege, named "Über Sinn und Bedeutung" [83], translated into
English as Sense and Reference. Where the Reference is the proper naming given to an object,
sense is the expression of the reference in language. An example of this is made between two
Greek Gods, Hesperus and Phosphorus, which both can refer to the planet Venus, where the fol-
lowing statement is true: "Hesperus is the same planet as Phosphorus". In this case, the referent is
the same for both, which means that the sense is specified for one mode of representation. This is
to say that only one aspect of both Gods is taken, which is their relation to the planet Venus. This
is only one representation of the word sense. Another representation of sense is giving inherent
meaning to words, even when not referring to a specific object. Frege’s example is the use of the
name Odysseus, though the Greek hero is not an object, his name still has sense, i.e. as the main
character in the Odyssey. As for reference, there is some debate on the specific translation. In the
Germanic language family, the words Bedeutung(German) and betekenis(Dutch) are translated as
meaning, purpose, or significance. However, the translation in English uses the word reference.
The proper word is referent, which is the most accurate translation of Frege’s work [8]. From this

31

point we can also go into different definitions of sense from both Bertrand Russell [88], or others
such as John McDowell [70], however, this would go into hard into the philosophical discussion,
about the definition of sense and language.

The way it is used in this thesis is that each of the non-terminals, terminals and attributes is a
representation of the semantic meaning of a grammar. Where the references are concepts within
the grammar, like “Noun” in the English language, representing the building block of sentences.
Where the sense of a noun is the type of values the noun refers to, i.e. “House” or “bed”. For a
grammar to be semantically correct, not only should it be able to generate references which reflect
the grammar, but each of the values and their types should be correct as well.

4.2 Grammarinator

The first application of generating grammar was to use a tool called Grammarinator [41]. Gram-
marinator is a fuzzing tool to generate samples for testing the implementation of grammar, based
on an ANTLR definition. Grammarinator and XSmith are both used to generate samples by us-
ing fuzzing techniques. These types of techniques are used to generate samples to test code for
its robustness. The upside of using fuzzing techniques is that each generated sample conforms
to the grammar specification. However, with some fuzzers, the generated result does not reuse
the identifiers within the grammar and replaces them with randomised characters. An example of
these fuzzer types is similarly mentioned in XSmith section 4.4 called AFL. The main purpose
of these types of fuzzer tools is to find bugs or vulnerabilities in code, not to generate readable
grammar. As for the structure of the generator, there is a block diagram, which shows each of the
components needed to generate results, see Appendix A.3.

To be able to generate the sample with Grammarinator, it uses the defined grammar from the
previous section, where it is then separated into two parts: a parser containing all the grammar
procedures from NT to other NT, and a lexer containing all NT to terminal procedures. Both these
files will be added together to generate a generation file. The file itself is a Python file used by
Grammarinator and contains each of the different grammar rules and variables. An example of a
section of the generation file can be seen in Listing 4.2.

The generation of these new files is done, by taking the code from Grammarinator’s own
GitHub repository. Thereafter, in a terminal of choice, two commands will need to be entered to
create the grammar generator file, from the lexer and parser. The second is using this generated
file to generate new samples. These two commands that were used in the case of generating the
WAG samples can be seen in Listing 4.3

For the command to generate the samples using the Python generator file, some parameters
can be taken. The first of which is the root element, i.e. non-terminal in the grammar from
which the rest of the grammar will be generated. In the case of the WAG grammar, this is
“wag” non-terminal. This is done by adding the non-terminal after the -r <start-rule> termi-
nal argument. After providing the starting element, the user can provide how far Grammari-
nator can go through the generated AST to generate new elements, which is given by setting
-d <max-depth> . The other variables are mainly what, how many, and where to store the gener-

ated results. For the output format/directory you can provide -o <output-directory> , the amount

of samples -n <number-samples> and the path to run the program -sys-path <path>

32

1 import itertools
2
3 from math import inf
4 from grammarinator.runtime import *
5
6 class SmallEnglishGenerator(Generator):
7
8
9 def EOF(self , parent=None):

10 pass
11 EOF.min_depth = 0
12
13 def NON_TERMINALS(self , parent=None):
14 with RuleContext(self , UnlexerRule(name='NON_TERMINALS ',

parent=parent)) as current:
15 with AlternationContext(self , [0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) as
weights0:

16 choice0 = self._model.choice(current , 0, weights0)
17 UnlexerRule(src=['S', 'NP', 'VP', 'PP', 'DET', '

Verb', 'Noun', 'Nominal ', 'ProperNoun ', 'Pronoun
', 'Preposition '][choice0], parent=current)

18 return current
19 NON_TERMINALS.min_depth = 0
20
21 def ATTR_IDENTIFIER(self , parent=None):
22 with RuleContext(self , UnlexerRule(name='ATTR_IDENTIFIER ',

parent=parent)) as current:
23 with AlternationContext(self , [0, 0, 0, 0, 0], [1, 1,

1, 1, 1]) as weights0:
24 choice0 = self._model.choice(current , 0, weights0)
25 UnlexerRule(src=['tense', 'active ', 'acronym ', '

literal ', 'proper '][choice0], parent=current)
26 return current
27 ATTR_IDENTIFIER.min_depth = 0
28
29 def TERMINAL(self , parent=None):
30 with RuleContext(self , UnlexerRule(name='TERMINAL ', parent=

parent)) as current:
31 with AlternationContext(self , [1, 1, 1, 1, 1, 1], [1,

1, 1, 1, 1, 1]) as weights0:
32 choice0 = self._model.choice(current , 0, weights0)
33 [self.NOUN , self.PROPER_NOUN , self.VERB , self.

PRONOUN , self.DET , self.PREPOSITION][choice0](
parent=current)

34 return current
35 TERMINAL.min_depth = 1

Listing 4.2: Grammarinator generated class of WAG grammar.

33

1 /bin/bash
2
3 grammarinator -process WagLexer.g4 WagParser.g4 -o codegen/ --no-

actions
4 grammarinator -generate WagGenerator.WagGenerator -r wag -d 10 -o

samples/sample_%d.wag -n 100 --sys -path codegen

Listing 4.3: Commands to generate WAG samples

4.3 Transformer Networks

Machine Learning and, particularly, neural networks are commonly used in different fields of
development, ranging from classifiers to decision-making and learning. One of these topics is
generation, which ranges from generating text [66] to images [60], or even videos [108]. One of
the most well-known iterations of these generation networks is ChatGPT [80], which uses prompts
to generate output to the question from the user. ChatGPT is based on Generative pre-trained
transformers(GPT) [12], which is based on a technique called Transformer Networks [104, 26, 35]
to generate these results. The question is can we use the transform networks, and add a WAG
example as input, to create a similar but different grammar?

The transformer networks generate results based on an encoder/decoder network, in combi-
nation with an attention network. The main difference between transformers and other neural
networks is the use of attention layers. The definition of attention is best described in the initial
paper on transformers("Attention is all you need") [104]

An attention function can be described as mapping a query and a set of key-value pairs
to an output, where the query, keys, values, and output are all vectors. The output is
computed as a weighted sum of the values, where the weight assigned to each value
is computed by a compatibility function of the query with the corresponding key.

The advantage of using transformer networks is that computationally can be equal if not better,
than both recurrent and convolutional networks. An example of the complexity is given in the same
paper.

Figure 4.1: Complexity comparison between RNN/CNN/Transformer Networks.

When performing sequential operations, self-attention layers are instant operations similar to
convolutional networks, while recurrent networks have a dependency on the length of the se-
quence. As for the maximum path, the self-attention layer is instant while both recurrent and

34

convolutional are dependent on the size of the sequence; an exception is the restricted version,
which is similarly dependent on the sequence length. As for the complexity per layer, it is less
complex when the size of the sequence is smaller, while the size of the representation layer is
larger. The reason why transformer networks might be applicable for the generation of WAG code
is based on the properties of the networks to generate results based on previous examples.

The upside of this approach is that the generation of the network will look at input samples
and try to generate a similar output. This potentially implies that the result would be closer to the
real application of the grammar, that is to say, reflect on the use of grammar, i.e. semantics, instead
of grammatical correctness. This might be a potential downside since parsing the grammar would
lead to potential errors or misinterpretations.

The architecture for the transformer network with attention layer consists of the mentioned
technique, the background: encoding/decoding networks used in the form of unsupervised learn-
ing. An overview of the overall architecture of these types of networks can be seen in Figure
4.2

Figure 4.2: Transformer Networks Architecture of GPT.[110]

35

It might be mitigated by filtering out results using the output and putting it through a grammar
tooling, i.e. ANTLR. If it doesn’t create a partial AST Tree based on the predefined definition
of WAG, it would reject the output sample, and the result would be more semantically correct
samples, and would also be grammatically correct for the most part.

GPT can potentially take up the role of grammar generation results based on different corpora.
The cited paper [2] is the first release of what would become GPT and mentions the two different
stages the framework goes through. These are unsupervised pre-training and supervised fine-
tuning, and were defined as such:

• Unsupervised Pre-training: The layer is specifically used to explore a given dataset to find
minima, based upon the distribution of data [29]. There are different versions of unsuper-
vised pre-training, such as the use of LSTM to perform the pre-training [43], however, this
does not apply to GPT, since, as the name suggests uses transformer networks to perform the
pre-training. The network is given a corpus of tokens U= {u1, . . . ,un}. Furthermore, in this
stage, the log-likelihood will be calculated, which is needed in the supervised fine-tuning,
by the following equation:

– L1(u) = ∑i logP(ui|wu−k, . . . ,wu−1;Θ), where k is the size of the context window, P
the conditional probability and Θ are the parameters of a neural network, and all is
trained using a stochastic NN.

– h0 =UWe +Wp

– hl = trans f ormerBlock(hl−1)∀i ∈ [1,n]

– P(w) = so f tmax(hnW T
e)

– Where U = (u−k, . . . ,u−1) contains a vector of tokens, and n is the number of layers
in the NN.

• Supervised fine-tuning: After the model has been trained in the previous step, we can use
the generated parameters to target a specific task. Assume there is a given dataset which is
labelled (C). Each instance in the set contains a sequence of input tokens (x1, . . . ,xm) and
an output variable y. The inputs x are put into the pre-trained model, with a last transformer
block action variable hm

l , combined with a linear output layer with a parameter Wy to predict
the output as: P(y|x1, . . . ,xm) = so f tmax(hm

l Wy). To maximise the result it combines the
log-likelihood of x and y: L2(C) = ∑(x,y) logP(y|x1, . . . ,xm)

After both steps, you can combine both results into one, by the following equation: L3(C) =
L2(C)+λ ∗L1(C), where λ is the learning rate given to the pre-trainer.

The most popular/mainstream implementation is ChatGPT [80], which is a chat wrapper
around the GPT LLM, which latest version runs on GPT-4 with different versions such as (GPT-
4o, GPT-4 mini, and o1 preview and 01 mini). However, these models are behind a paywall and
not publicly accessible. A model that is, however, is GPT-2, through either GitHub or the Hug-
gingFace website [86], specifically the Open-AI GPT library.

4.4 XSmith

The next iteration in the generation of WAG will be XSmith, a tool written by the University of
Utah, Flux Research Group. The tool itself is based on a different project from the same university
called CSmith, which is a generator suite used to create C generate programs [109]. The main use
of generating C code was to try and find bugs in the GCC compiler, using a fuzzing algorithm.
The idea behind fuzzing is to generate a large number of samples and use them as inputs for

36

compilers, programs, API, or any piece of software that takes inputs. To test if all functionalities
of a program work, it has to have a known output to verify the results. If there are failures within
the program, there will be a case that gives an output that is not expected. If this is the case, a bug
has been found. An example of such a bug can be seen in Figure 4.3. In this particular case, a
loop optimisation caused a wrong assignment, where the answer should have been eleven. Since
&y (reference) is given to *p (pointer), and then the value to which p points is set to x, where x
= 4. The last assignment is to add 7 in the next iteration of the for loop, so 7 + 4 = 11. This will
go through once and afterwards leaves since 11 ≮ 8. Instead, the link through p was skipped by
GCC, so y remained 1, and the next cycle 7 was added, and the loop was exited the next cycle,
leading to 8.

Figure 4.3: Example of the use of CSmith to use fuzzing to find bugs. [109]

In the paper, there are plenty of examples of generated fuzzing examples that are useful to
spot potential bugs in code or vulnerabilities in the code base. CSmith is not the only tool that
generates fuzzing results, there are also other examples, such as American Fuzzy Lop(AFL) [65],
which is a C++ fuzzer using genetic algorithms to generate fuzzing results to find vulnerabilities in
a program. This, in turn, can lead to security breaches. The question is why and how these fuzzers
can be applied to the generation of WAG. The answer is that fuzzers work by generating large
samples of inputs based on a specific language specification. These samples are used in several
ways of testing, unit/integration/performance, to see whether the specified language/framework is
sturdy enough to handle all forms of inputs and provide expected outputs. This would make the
fuzzer useful for generating specific samples for languages, but could also be implemented on a
grammar specification. The use of CSmith does not apply to WAG, since it is written specifically
for the C implementations, and wouldn’t apply to WAG’s grammar.

This is where XSmith comes into the picture, with its main difference being that this fuzzer
is not written for a specific language, but generates results based on the language specification
itself. XSmith itself is a DSL that is written in the Racket language [30]. Racket is a language
initially developed to aid in teaching Computer Science at several American universities in the
Scheme Language, which is part of the LISP [99] family. The purpose of Racket is to develop
other programming languages by using its language specification and being able to do so quickly.
To show how XSmith works, we take the example from one of the cited papers [36] and quickly
go over it. In this example, a simple calculator grammar will be written in which you either
have expressions or values. The calculator itself only has two possible operations: addition and
division. Also, the values of each of the integers must be between 0 and 99. An example of the
grammar can be seen in Figure 4.4. Each of these functions can be translated into Racket and will
give the code in Figure 4.5.

From both of the examples, it can be seen that the structure of both grammar and code is quite
similar; this does not mean that this is the case for all possible grammars within the language. It
can be because of the level of complexity within the grammar, or the size of the grammar/language

37

Figure 4.4: Simple grammar calculation
example using Racket DSL. [36] Figure 4.5: XSmith code example of the

calculator. [36]

is too big to potentially model all aspects. The generation itself works by using elements called
’holes’, in which any expression can be placed. The idea is that you have a tree with holes, which
can be filled by a pre-defined set of expressions, each can have other potential sub-expressions,
which are also holes that can be filled. An example of how this works can be seen in the abstract
under Figure A.5.1. From the example in Figure 4.5 it can be deduced that the generation of a
nearly infinite number of differences since the method can recursively call the ADD or DIV ex-
pression in each of the left or right-hand side of the tree. However, a potential issue might be that
the grammar has different amounts of occurrence of certain expressions, and you might want sim-
ilar results to WAG by adding weight to profess importance. XSmith has implemented this feature
by being able to add an integer value to the specific expression and set the weight; the higher the
weight value, the higher the likelihood the specific expression will be part of one of the resulting
outputs. An example of the notation with the calculator would be:

1 [Div 20]
2 [Int 3]

Since XSmith is agnostic, in that it doesn’t conform to a pre-defined language, it performs
some basic validation on the definition. However, to validate the language itself, XSmith can use
systems under test(SUT), which are generated to prevent errors. In the case of both syntactical and
semantic cases, SUT will reject the generation when SUT detects errors and often provides related
error messaging.

Otherwise, XSmith also takes both language and syntax into account when trying to generate
the results. The generation of these languages themselves depends on an attribute grammar called
RACR [14]. Attribute grammar is used to keep track of certain variables through the AST that are
made through each of the generations and by the generation of each of the AST trees. The use
of these grammars is crucial to the syntactical correctness of the generated result since it needs
to convert the AST into a proper compilable/interpretable definition. Besides the grammar to
improve the speed of generation, XSmith also makes use of different types. The type declaration
supports inheritance, and you can also define whether the child element has inherited the parent
type. An example of the declaration of these types can be seen in Figure 4.6.

To compare how well XSmith performs to other similar fussers, we have an example of the
number of lines needed to be able to generate samples for a specific coding program; see Figure
4.7 for reference. From it, it can be deduced that most of the grammar needed to generate samples
needs a much larger code base than XSmith itself. This should also simplify the WAG implemen-
tation since the potential amount of LOC to write will be smaller than other fuzzer variations.

38

Figure 4.6: Example of the use of CSmith to
use fuzzing to find bugs. [36] Figure 4.7: XSmith code compari-

son other fuzzers. [36]

Figure 4.8: Visual example of GA crossover

4.5 Genetic Algorithms

The last variant to research is Genetic Algorithms(GA) [42, 72, 53], of which there are many dif-
ferent combinations and variations. The principle of GA is based on evolutionary theory and took
inspiration from Charles Darwin’s book: "On the Origins of Species" [25]. The idea is that you
have an initial population of data that will be assessed on its fitness. Fitness is a set of competi-
tive criteria which will test parts of a population by competing for the best-fitting resolution to a
specific case. Each of these parts of the population is called a chromosome, which is represented
as a set of variables. Each of these individual variables is called a gene. New chromosomes are
created by using a technique called crossover to create a new chromosome. Crossover works by
taking two chromosomes and creating a new one by randomly choosing genes alternating between
the genes of each of the chromosomes. An example of this can be seen in the Figure 4.8. Besides
crossing genes, in the process of evolution, there is also the phenomenon of gene mutation. In the
case of genetic algorithms, it means that genes in a chromosome will have their value altered to
make a more unique chromosome. A similar sketch to crossover has been sketched, see Figure
4.9.

Figure 4.9: Visual example of GA mutation

Combining both techniques on a population will generate a new population, on which testing is
performed to check the fitness variable. The goal is to find the best-fitting result, and the algorithm
will continue until it converges. In most cases, this means retrieving some optimal population after

39

the maximum number of performed iterations. When going through the whole procedure of GA
in pseudo-code, it will get the following result:

1 BEGIN
2
3 P r o v i d e an i n i t i a l p o p u l a t i o n o f chromosomes ,
4 i . e . p o p u l a i t o n = { [1 , 2 , . . .] , [. . .] , e t c . }
5 f i t n e s s _ v a r i a b l e = f i t n e s s (p o p u l a t i o n)
6 WHILE (! p o p u l a t i o n _ c o n v e r g e d)
7 c r o s s o v e r _ p o p u l a t i o n = c r o s s o v e r (p o p u l a t i o n)
8 m u t a t e d _ p o p u l a t i o n = m u t a t i o n (c r o s s o v e r _ p o p u l a t i o n)
9 f i t n e s s _ v a r i a b l e = f i t n e s s (m u t a t e d _ p o p u l a t i o n)

10 p o p u l a t i o n = m u t a t e d _ p o p u l a t i o n
11 p o p u l a t i o n _ c o n v e r g e d = c a l c u l a t e _ c o n v e r s i o n (f i t n e s s _ v a r i a b l e)
12
13 END

There is a part missing from this pseudo-code that is needed as a precondition to be able to
execute genetic algorithms, which is encoding each of the genes, and the selection of the chromo-
some to create a new iteration through crossover and mutation. The encoding is used to format
data such that it has an input to perform both tasks. After the data has been encoded, a selection is
made, using different tactics to gather the sets of chromosomes for crossover and mutation. Within
one of the papers on GA [53], there is a diagram that gives a list of the more common variants of
each of the encodings, selections, crossovers, and mutations.

Figure 4.10: Genetic Algorithm overview [53].

For encoding, it depends on what each of the different genes should refer to. In the case of
binary encoding, it might be a binary choice (true/false), or a numerical value which can be in
octal(0-7) or hexadecimal(0-F). Besides these numerical variants, there are three other types of

40

Chromsome Fitness
A 16
B 6
C 3
D 2
E 8
F 1

Figure 4.11: Fitness
variables

Figure 4.12: Roulette Wheel Selection Example

encoding: permutation, value, and tree encoding. The permutation variant is represented by a
string of numbers that represent the positions of the sequence in a gene or chromosome. In the
case of value encoding, each of the different variables can be of a range of types, which includes
real / integer numbers or characters. The main use case of this type of encoding scheme is in
neural networks, since it has a more varied range of possible values than the different numerical
encodings. The last potential encoding is tree encoding, which uses a tree structure to encode the
chromosomes, where each gene is a node in the tree. This technique is also common in LISP, and
the structure looks nearly identical to XSmith hole filling of trees, Figure A.7. Where each node
can contain similar values to those of value encoding. The downside of these trees is that not all
solutions of genetic algorithms can be expressed in a tree structure.

These encodings will then be put through a selection process, by taking the parent chromosome
and which “mates” and create offspring through crossover and mutation. To perform selection, we
need to have a defined set of fitness variables for each of the chromosomes in the population. For
the explanation will use the table in Figure 4.11.

There are several ways to select the chromosomes, one of which will take a look at the Roulette
Wheel first. To better illustrate the working of the Roulette Wheel selection, an example sketch of
a pie chart in Figure 4.12, which will represent the population and the percentage of fitness in the
entire population from the example table. The first step is to select a random point on the chart
and fix it, which is done by generating a random number between zero and the sum of all fitnesses.
Then, similar to the game of roulette, the value will land somewhere in a predefined quadrant of a
variable that has been assigned to a particular chromosome. The chance that a chromosome will
be selected is px =

fx

∑
N
j=1 f j

. Each of the different steps the selection algorithm goes through can be

described as follows:

• Calculate the sum of all fitness values fx ∈ F , where F is the set of all fitness values. The
result will be calculated as S = ∑

F
x fx.

• Generate a random variable a, where 0 ≤ a ≤ S.

• Start from the origin of the population till the fixed point.

• Then, if you reached the fixed point, take the related chromosome that the fixed point points
to, and set it as the first parent. Do the same for the second parent.

41

From the example, you can see that a high fitness level means that it has a higher chance of
choosing that particular chromosome for the next generation. The upside is that the technique is
quite simple to implement and is free of biases. The downside is that you have a dependence on
the variance of the fitness results, and convergence might finish prematurely.

A solution to the issues with Roulette Wheel where developed by Baker et al. [7], and is
called Rank Selection. The difference with Roulette is that Ranked mainly focuses on the ranking
between all different chromosomes, and doesn’t focus on the variance in the population. Ranked
makes use of a variable called selection pressure, which is between 1 and 2. The possibility for a
rank position of a chromosome (Ri), is calculated with the following equation:

P(Ri) =
1
n(sp− (2sp−2) i−1

n−1),
where 1 ≤ i ≤ n,1 ≤ sp ≤ 2 and P(Ri)≥ 0,∑n

i=1 P(Ri) = 1

The mathematical function will try to spread the probability, not based on the fitness value,
but on where the fitness criteria rank between the rest of the fitness criteria and setting a fixed
probability for each ranking. The rule is still that the combined probability of all ranks is 1, and
that each chance for a chromosome is still possible. The probability distribution depends on the
selection pressure sp variable, when increased, creates a smaller disparity between each of the
different rank probabilities.

Crossover and Mutation Both of these are common examples of how selection can be applied,
which will then be passed over to crossover. One of the simplest examples has already been shown
in Figure 4.8, which is called uniform crossover. This takes random genes from both and swaps
them interchangeably to generate a new child with chromosomes of both parents. There are also
other forms, including the following, with each given a concise description:

• Single/two point/k-point crossover: Each of these is in the same category of crossover. The
commonality between each is that the cross-over divides two parents into fragments and
alternates between each parent, to select which of the genes goes into the offspring. Single
crossover divides into two fragments, two into three, and k into k+1 fragments to use. An
example can be seen in Figure 4.13.

• Partially Mapped(PMX): This crossover iteration is used by taking two parents and using a
specific part from index n to m. For each of these items, we make it so that the values of
one parent in that particular segment are replaced with those of the other parent. Take, for
example, parent #1 is 1 | 23 | 3 and parent #2 is 5 | 67 | 7. In this case, the 2 in parent #1
will be interchanged into 6 in the first child of parent #1 with parent #2, and vice versa for
the second child. This is the same for values of 3 and 7. This leads to two children with the
numbers 1 | 67 | 7 and 5 | 23 | 3.

There are also plenty of other variations of crossover, such as Order Crossover(OX) [73],
Precedence Preservative(PPX) [87], Shuffle/Cycle Crossover [79]. These three iterations are both
quite simple to implement, like k-point. The last choice to make to finish a working GA is to
define the mutation component.

Three common types of mutations are used in GA: displacement mutation, Simple-Inversion
Mutation(SIM), and scramble mutation. Displacement is taking a subset of the crossover child
data and placing it somewhere randomly in the data array. Let’s suppose there is a substring from
index x to y, for displacement and transform it to index z. Then the substring indexes will be from
z to z+(y-x) and the other chromosome after will be from z+(y-x)+1 up till the last chromosome.
This technique is quite simple in execution, but depending on the size of the data set might suffer

42

Figure 4.13: K-point Crossover Example

Figure 4.14: Genetic Programming example.

from premature convergence [48]. When using SIM, a subset is taken from the child from two
indices x and y, where all variables in between will be in reverse order. This technique is really
simple to execute but suffers from the issue of premature convergence [48]. Both of the techniques
can also be combined and are known as Displacement Inversion Mutation, where the substring is
first inverted and then placed somewhere else in the gene. Lastly, the scramble method takes a
gene from crossover, swaps the chromosome in a random order, and checks whether the generated
result has improved or not. The upside is that this technique can be used for large-sized problem
instances; however suffers from long-term deterioration of results during longer-term generation.

Depending on a particular problem statement, one can fine-tune the specific encoding crossover
and mutation to develop the optimal solution. These solutions can be found in a range of exam-
ples image/video processing, medical imaging, gaming, localisation, and many more. However,
for this project, the main interest lies in the use of GA for grammar. This means that either the
grammar or a sample of WAG is needed as input to execute the GA algorithms. Some of these are
examples of papers in the neighbouring realm of NLP [6, 16]. These types of algorithms are part
of a specialised version of GA called Genetic Programming(GP) [3]. Genetic programming is a
subset of GA where the population is made up of programming-related data. An example of these
can be best sketched with an example found in Figure 4.14.

The figure represents a tree structure commonly found in programming languages, in which
either an interpreter or a compiler will interpret the node to perform some form of manipulation.

43

The example might represent for example a scientific calculator which uses symbols(
√

, log, e),
variables (x, y, z), or numerical values (R,I,Z). In the example the equation (5.672 ∗ 2.12) +
(log(100)− tan(0,57)) is expressed in tree form. What makes the GP so special is that these trees
can be manipulated into different forms and can be made to have different formulations. This is
not exclusively mathematical, but the input for selection is just like other genetic algorithms. The
selection process involves selecting part of the tree to perform the crossover on. For crossover, it
might take two different trees, which both take a sub-tree, and swapping both trees to create two
new offspring(trees). These offspring will be potentially altered during mutation. The form of
mutation can differ from mutating leaves or the mutation sub-tree of the offspring. Both mutation
and crossover can have different types of implementation, such as PMX and SIM.

Evolutionary Grammar There are also a lot of different variants of implementations of genetic
programming, of which one is very interesting for the current problem statement. This particular
technique is called Evolutionary Grammar [90]. Instead of using trees, it generates coding samples
based on the definition of a specified grammar. This makes evolutionary grammar very interesting,
for this project, since we can use the WAG’s grammar definition to generate samples. The original
form in which the evolutionary grammar is written is the Backus-Naur Form(BNF) [5], which has
been used as a meta-language to define ALGOL-60. BNF uses a few signs to define the grammar,
and they are as follows:

• <>: These triangular brackets are used to define each of the rules of the grammar, similar to
Non-Terminal values in WAG/CFG.

• ::= : These combinations of symbols are the separator for the left-hand-side(LHS) and right-
hand-side(RHS) of the grammar/production rule and are similar to the → in WAG/CFG.

• | : The ‘OR’ sign is used to define different options within the grammar. And example of
this would be <Noun> :== ’desk’ | ’lamp’.

• { and } : These curly braces are used to indicate repetitive parts of a grammar rule, for
example <array_content> :== [<identifier> { , <identifier> }]

1 <expr > ::= a = 0; b = 0; c = 0; <e>
2 <e> ::= <op > | <op >;<e> | <sub > | <sub >;<e>
3 <op> ::= a += 1 | b += 1 | c += 1
4 <sub > ::= a -= 1 | b -= 1 | c -= 1

Listing 4.4: Example of BNF.

To develop a grammar for a specific program, each of the grammar rules can be defined by
adding new rules. An example of such a grammar can be seen in Listing 4.4. These small exam-
ples generate a different set of additions and subtractions on the variables a,b and c. A possible
result from the grammar is the following:

1 a = 0; b = 0; c = 0; a += 1; c -= 1; c += 1
2 a = 1
3 b = 0
4 c = 0

44

The advantage of BNF is that the grammar notation doesn’t have many rules, meaning it can
describe several grammars without the problem of mandatory declarations. However, this also
means that quite some types that are common in most grammars and languages have to be de-
clared themselves. Examples of these types can be variables such as identifiers, characters/letters,
Doubles, Strings, etcetera. Some extensions define some of these common types, of which there
are Extended-BNF(EBNF) [1] and Augmented-BNF(ABNF) [24]. ABNF, as the name implies,
is an augmented version of BNF, which has specifically been developed for network communica-
tion protocols, such as TCP/IP. It contains functionalities such as concatenation, comments, value
ranges, and others. EBNF not only add particular functionalities, but also defines the common
types referred to before, such as strings, letters, symbols, identifiers, and others. The caveat is
that there are different implementations of EBNF, which can lead to different implementations of
grammars [113]. Therefore, it is important to define the grammar when applying the evolutionary
grammar to avoid misinterpretation.

45

Chapter 5

Results

This section shows the results of each developed implementation in the Research section. The
first step is to compare the results of both types of grammar: basic English and WAGON. After
the generation of each of the grammar samples, each of the four researched techniques will be
compared based on both context and their applicability to either of the two meta-grammars. Fur-
thermore, a section will take more quantitative analysis, in which we compare variables such as
speed, grammatical correctness, and more. This is partially done by using the samples as input for
an ANTLR parser, and comparing if the result is a fully or partially parsable. The results chapter
ends with complementary results for this thesis, mainly a syntax highlighter and a TUI to generate
a sample of grammar not specifically for WAG.

As for all of these examples, there is a GitHub page[106] at the end of the thesis where other
researchers can tinker with grammar generation, for each of the researched techniques.

5.1 Comparing Generated Results

To compare each of the different grammars, it would be an advantage to try and be able to parse the
grammar based on the overall meta-grammar. More on this in the next subsection. Then will take a
sample of each of the generated files and explain how these results were achieved, comparing them
to one another and the meta-grammar. Furthermore, a separate sub-section provides the difference
between the parses of both restricted and dynamically generated NT, terminals, and attributes.

5.1.1 ANTLR Preview

For Grammarinator, the meta-grammar had to be developed for both the simple English and
WAGON meta-grammar variants. An additional benefit to using ANTLR is that it has a plugin
called ANTLR Preview. This tool takes the grammar definition written in a .g4 file and an input
of grammar to try to generate a parse tree from both. The meta-grammars provide the grammar
to parse, and the input will be given by the generated WAG files. An example of such generated
parses, in this case WAGON, can be seen in Figure 5.1.

46

Figure 5.1: Wag Syntax highlighter example.

Some of the generated results might give partial parsing, meaning that only a subset of vari-
ables can be parsed. In that case will take a set of samples and aggregate all the percentages of
partial parses, giving an average percentage of variables that can be parsed.

One of the advantages of using Antlr Preview is that we found a parsing bug in the WAGON
grammar. An example was the use of attribute types in places where they can’t be defined. This is
based on the specifications in the related thesis paper [27]. This meta-grammar defines a third type
of attribute, local, which is only used in the local procedure declaration; however, it was declared
in a place of either synthesised or inherited attributes. Also, other changes were made to WAGON
to make the results more consistent, such as changing some of the “*” (0 or more NT) with “+”(1
or more NT), to prevent empty generated files or sections in the grammar.

5.1.2 Generated Results.

Each of the generated results will describe the content that has been generated and, at first, will
look at the generated parses of WAGON. This is because these results are the most ambiguous of
both meta-grammars. This means that it will show the largest variance in the generated results of
each of the four generators. Hereafter, a separate section will discuss the difference between the
dynamically defined variables in WAGon and the predefined ones in basic English meta-grammar.

Grammarinator Grammarinator was the first to be implemented, using the ANTLR meta-
grammar of WAGON. One of the generated WAGON samples is the following:

1 Q<*y_ ,&wv >->[$()]wVPjPuP?<'ac^I'>;
2 VF_9E <&s>->[0.6]('')@;
3 T<&MaQk >->-05.87-282;
4 z<&bmb >->[$()]"FNU ,MRB+";

Listing 5.1: Grammarinator WAG generated sample.

In this example, two things spring out: the generated values are indeed random strings, and
even when using the same grammar file, the parses that Grammarinator generates are not always
parsable. However, most of the code is parsable. The downside of these results is that the generated
variables have no reference to one another, and don’t relate to one another, since each is only used
once. A fuzzer would be fine with the results; however, in the case of grammarware, like grammar
inference and grammar convergence, it would be important to know the context of each of the
non-terminals, terminals, attributes, and weight values.

47

As for the result of the ANTLR Preview parses, they are quite large, but in the appendix, two
sections of the parse are shown. The first in Figure A.4 shows the first rule parsing normally, and
the second in Figure A.4 shows the issues with parsing the third procedure.

Transformers The generated results of the Transformers are a bit different from the others in
that they do not only use the meta-grammar but where provided with an example grammar to
show to which form the results should conform. The reason for doing so is that GPT specifically
uses prompting to generate results. When initially running the program, it interprets the result in
many different forms. By specifying that it should generate grammar, based on the meta-grammar
and with an example, it would generate more targeted parses. The prompt that was used had the
following structure:

Generate a grammar based on this meta-grammar: <Meta-grammar>, where a sample
is <WAG sample>

As a sample for the WAG, snippets were taken from a Pokémon grammar formulation in the
WAGON project, an example of which is the following:

1 S -> { $shiny = false ; $nickname = false ; $gender = " U "; $item
= false }

2 Pokemon < $shiny , $nickname , $gender , $item >;
3
4 Pokemon <&shiny , &nickname , &gender , &item > ->
5 Info <&nickname , &gender , &item >
6 { $d_ability = false; $d_shiny = false; $d_level = false;

$d_happy = false;
7 $d_nat = false; $d_ev = false; $d_iv = false; }
8 Optionals < $d_ability , $d_shiny , $d_level , $d_happy , $d_nat ,

$d_ev , $d_iv , &shiny >*
9 { $move_count = 0; } Moves < $move_count >+;

10
11 Info < &nickname , &gender , &item > -> Name

Listing 5.2: Pokemon grammar in WAG portion

The sample GPT generated was quite varied. In some cases, the generator would generate
samples that seemed to be correct WAG, but in some cases, it interpreted the grammar differently.
Take the two examples in Listing 5.3 and 5.4. The first example shows that GPT can generate
semi-parsable results, which has an advantage compared to the parses of Grammarinator. This is
because GPT uses the grammar input given as an example and generates new non-terminals that
are semi-contextual to the grammar. In the example, no Evolution non-terminal was specified, but
it is indeed the case that in the game of Pokémon, there are rules for evolution. The inference that
GPT takes is a welcome addition to generation, but it can make wrong inferences at times, hence
the second example.

The second example shows that GPT also infers the input as code and tries to generate a c
code example using the variable. Although it retains these values, it can’t be parsed at all since
the Context Free Grammar: i.e. NT → NT ∪ T is not declared anywhere. From this, it can
be concluded that Transformers, specifically GPT, focus not on grammatical correctness, but on
generating samples that are similar to the input. As for the semi-parses of the partially parsed
example, go to Figure A.6 in the Appendix.

48

1 Evolves <%d_ability , $d_shiney , &nickname , &gender , &item > -> Info
<&nickname , &gender , &item >

2 {$d_ability = false; $d_shiny = false; $d_level = false;
$d_happy = false; $d_nat = false; $d_iv = false}

3 Optional <&d_ability , &d_shiny , $d_level , $d_happy , $d_nat ,
$d_iv >{ $move_count = 0;} Moves <$

Listing 5.3: Pokemon grammar in WAG portion

1 # include < Pokemon.h >
2
3 int main()
4 {
5 # include < u8.h >
6 int status = 0;
7
8 int status_size = 20;
9

10 Pokemon pokemon = [[[" status " , " status ", " 0 "]];
11
12 for (int i = 0 ; i < status_size ; i ++) {
13 player.status.forEach(Pokomen(name ,status)) {
14 status_size ++;
15 }
16 }
17 return 0;
18 }

Listing 5.4: Randomized C++ generation with GPT2

XSmith The implementation of XSmith had initially some issues in generation, the main rea-
son for this is that XSmith itself is specifically developed to write language samples. It doesn’t
inherently mean that it is not possible, since there are some grammar samples, but its technique
had some conventions that complicated development. An example that is particularly catered to
language is the use of code blocks, called “Block”, this also goes for base types like “Expressions”
and “Lambda” functions.

The foremost struggle was with some of the base types of XSmith, these types are predefined
in XSmith, such as String and Boolean. Though this is quite useful, it also caused some issues
with some of the defined types. These mainly consist of the implementation collections, such
as arrays. Which is fine, since there are examples of CFG using terminals of collections. The
downside is that for the array to work you have to implement multiple specific different imple-
mentations, such as “MutableStructuralRecordReference” and “MutableStructuralRecordAssign-
mentStatement”. This is, however, mitigated by declaring them in code from the example grammar
but never assigning them to any rule.

One advantage that XSmith has compared to the other generational techniques is that it uses a
technique to try and preserve semantic validity. This is to say that the generated non-terminal and
attribute will be generated in such a way that each consecutive procedure can use these variables in
its rules. This differs from Grammarinator and evolutionary grammar, which generate randomised
variables in the case of WAGON. The downside of these semantical variables is that the name
convention is a combination of a name with a number; i.e. “lift_234” or “attr_756”. It is still
better than randomised variables, but still less contextual than some of the generated samples from

49

Transformers. An example of XSmith generation can be seen in Listing 5.5 and a larger one in the
Appendix Listing A.3.

1 Lift_32 -> Lift_33;
2 Lift_31 -> Lift_32;
3 Lift_30 -> Lift_31;
4 Lift_29 -> Lift_30;
5 Lift_28 -> Lift_29;
6 Lift_27 -> Lift_28 {arg_26= true ;};
7 Lift_26 -> Lift_27;
8 Lift_25 -> -15356745
9 Lift_24 -> Lift_26 {args_24 = 152135; , args_25=false;}

Listing 5.5: Small XSmith example

The generated results are valid WAG and partially parsable WAG samples. There were some
issues with declaring the attributes, specifically the typing and assignment in this case, the only
way I could assign a value to an attribute was to use punctuation with the variable and the attribute.

Evolutionary Grammar As discussed in the Research chapter, we use Grape to implement the
generator. For this, we change both the definition of English and WAGON grammar to BNF. And
generated samples for both. One of the generated parses for EG can be seen in Listing 5.6

1 FR -> {$zK = if (12 x 1.8 != -2) // (0.956 % 8 / -2 x 0 > 0 +
0.89 / -5.0 - 0) // (-0 != 1.4 % -7.6) \// false && !false
&& (0.890 / 0.78 - 9.98142 % 6 + 3.37 + 0 != -0.430 + 0 x
285 / 0) && true then (0.0 % -9 <= 0.6 + 0) // (0.0 - 0 +
-334.0 > -2.9 + 0.7) // (0 - -50.8 >= 40.2 % 0 x 6.293) //
(0 <= 0) else if (0.4 - -4.2 % 0 < -0.9 - 0) // (-0 / 0.4 !=
-54.0 + -9 / 3.5 x 0 x -4.8410 - 0.92 - 2.7) && false then

(0.36 / -5 < 984.461 - -7) && !true && (0 != 50) // !false
else (-4.95 == -4.5);}; u<&b, *j> -> [0.8] 7.6 - -51.9 !=
0.0; Ppo <&zn , *j4 > -> (-7 != 0 x -0 / 0.46 / 3)?; R7 ->
[0.6] 0.7 > -5 {&Kij7 = if (21.8 / 0 < 0 x <Float > <SumP >)
then <Disjunct >;}; <Rules >

Listing 5.6: English Grammar sample from Grape.

The results that Grape generates for Grammarinator look similar to those that are generated for
Grammarinator. This is mainly the case that both of these generators are focused on the grammar
and use a grammar input, i.e. ANTLR or BNF, to generate the results. Similarly, in this, all
the variables(non-terminals, terminals, and attributes) are randomly generated strings. Again,
these results are applicable for fuzzing, however, the use case of grammarware, such as Grammar
Inference and Convergence, might give issues. For an example of the parse tree, see Figure A.8
A.9 and A.10 in the Appendix.

Concluding sample generation techniques. All of these techniques have their advantage and
disadvantages, but based on the generated samples, it can be concluded that Grammarinator, trans-
formers, and evolutionary grammars are better suited for grammar generation for meta-grammar
than XSmith. This is mainly the case that most features written for XSmith are written specifically
for languages, which forces the user to perform tricks to be able to generate results, even though
it has the advantage of using semantical variables.

As for the others, we can separate them into two categories: grammatically correct and con-
textual representation. In the former case both Grammarinator and EG, are good candidates to

50

generate grammatically correct samples, however, it has an issue when generating variables that
are contextual to some input representation. While Transformer has the opposite problem, it is
quite good at interpreting some context from the grammar. It suffers however, in the grammatical
correctness department, since the generated samples are not restricted by the grammar rules.

In the next sub-section, a comparison will be made on the level of expression, in which we
compare to generate samples of the English and WAGON grammar and explain why the results
differ.

5.1.3 Comparing Results between basic English and WAGON.

In the research, we specified two types of meta-grammars: English simple and WAGON. This
was mainly done to show the difference in the generated results. For this comparison, I took the
example of Evolutionary Grammar, however, the result of the other generators might differ. In the
case of Transformer, since it doesn’t enforce grammar rules, there is no proper conclusion that can
be taken from the results, since it depends on the interpretation of the transformer. Grammarinator
itself is built similarly, and the difference there would mainly be in the implementation of the
grammar and its perspective syntax. XSmith itself can’t implement the English grammar variant,
since it only works by defining grammar rules, and then generates semantic variables.

The example of WAGON has already been shown in the previous section as a sample in Figure
5.6. As for the English grammar, we have the following variant.:

1 Preposition{$proper = $tense ;} -> [0.4] VP door ate DET for;
2 Verb{} -> NP Pronoun ate Preposition

Listing 5.7: English Grammar sample from Grape.

In both cases, there are similarities and differences between the given parses. The most ob-
vious difference is that the grammar rules of basic English grammar retain the context in English
Grammar. In the case of dynamical variables, it is dependent on the implementation, where ran-
dom variables for WAGON don’t provide reference to any concept, while Transformers infer type
through their LLMs.

Where both are similar and also quite consistent through all techniques and meta-grammars,
it is a semantics issue. When using a dynamically generated string with no reference, you don’t
generate similar related context. But even in the case you declare all non-terminals, terminals, and
attributes, there are still issues with semantics. Since in the English language, a proposition is not
made out of a VP, terminals(door, ate), or some determinant variable.

This can be remedied by specifying more specific grammar rules that already assign some of
the known attributes. The example shows that declaring fixed values can make grammar more
predictable. However, this process is quite time-consuming, and also increases the potential depth
of the parse tree, needing potentially more resources to generate extremely specific cases.

To summarize the generational techniques further, a table is provided with an overview of the
characteristics of each of the different techniques and provides some metrics such as speed of
generation, and percentage of correct parses for both Grammarinator and EG.

51

5.2 Generator Characteristics.

To compare all of the generation techniques, a table was made to give an overview of each of the
different characteristics that make each of the generations unique. We provided data on the set of
characteristics, given the following description:

• Batch generated samples: If we want to use grammar for grammarware, it might need a
large set of newly generated grammars. This is specified as either a true or false statement.

• Grammar Input Format: This is a true or false statement whether the generated results use
a grammar definition for the input; i.e. ANTLR or some form of BNF.

• Identifier references: This question asks whether each of the attributes of the non-terminal
is related to the grammar; i.e. are they semantically valid?

• Parsing Results: This variable shows whether the results of the generation are accurate. If
this is the case, five samples of both the simple English grammar and WAGon will be put
into ANTLR Preview, and the aggregate percentage of correct parses will be given. If this
is not the case or is unclear, a reason will be provided.

• Time to generate samples (s): Each of the generations takes time, to compare each on their
performance, the generators had the task to generate a hundred, a thousand, and ten thousand
samples, each having a timer. The specific type of timer is qualified in the results.

In Figure 5.1, you can see the table containing each of the different results, and we will go
through each of these points.

Firstly all except XSmith can generate a multitude of samples at once. The reason for this
is that the tool to write XSmith for called DrRacket, generates one sample each run, and doesn’t
specify anywhere where multiple samples can be generated.

As for the correct parses, two generators are most interesting, mainly Grammarinator and
Grape. These results can also be seen in the comparison of the samples, and most likely have to
do with them being based on the grammar definition. For GPT, the result, as mentioned before,
is randomised. Them being either non-parsable or semi-parsable, depending on the interpretation.
Lastly, for XSmith, there were difficulties generating correct parses, since, as mentioned in the
previous section, it has an issue specifying the English Grammar, so no clear comparison could
be made. In the case of basic English grammar, all five samples of Grammarinator and EG were
parsed completely; i.e. hundred percent. However, this is not the case for WAGON, which has two
causes: conflict in the parsing decision and the grammar itself. ANTLR Preview sometimes makes
preferential parsing decisions, which makes larger grammars sometimes difficult to parse, since
some symbols or rules conflict. Secondly, as mentioned before, the grammar of WAGON had to
be changed since the original grammar only provided a partial parse. Interestingly, the result from
Grammarinator also didn’t fully parse, though it is based on the grammar.

52

Batch
generated
samples.

Grammar
Input
Format.

Identifier
References

Parsing Results
(English /
WAGON)

Time to generate
samples(s).
(100, 1000, 10.000).

GR ✓ ✓
Randomized
String / value

(100%, 81,98%)
(0.373, 1.556,
11.540)

GPT ✓ X
Inference from
corpus / input

X
(1200.76,
11.397.555,
117025.775)

XSmith X X
Identifier_
{number}

X X

Grape ✓ ✓
Randomised
String / value

(100%, 77,03%)
(0.075, 0.821,
8.384)

Table 5.1: Generation technique comparison.

The third and fourth points have already been specified in both research and previous results,
so they won’t be discussed again. The next characteristic is more important, which is the perfor-
mance of each of the three generative techniques that could produce multiple samples: Grammar-
inator, GPT, and Grape. For reference, the generation has been run on a laptop with the following
specifications:

• Model: Lenovo ThinkPad P1 Gen 3.l.

• Memory: 16GB.

• Processor: Intel Core ™ - i7-10750H x 12.

• Graphics: Quadro T1000.

• Disk: Samsung 970 EVO M.2 1TB (SSD)

From the results, it can be seen that both Grammarinator and Grape are way faster than gener-
ating samples in GPT. The main reason for this is that GPT is an LLM with 1.5 billion parameters,
though it has been pre-trained, the network is still really large. Each result for GPT takes about 12
seconds, which isn’t that long; however, for extremely large datasets, that is a different case. For
the research, the last result couldn’t even be executed since when taking the aggregate per sample
/ s of a hundred and thousand and multiplying by ten thousand will get 117.025,775 seconds of
run time which would take about 32.507 hrs, which will take too long and would cost unnecessary
power since it is only meant as a comparison between the other generators. As for Grammarinator
and Grape, both can generate a lot of samples quite quickly, with Grape having a smaller edge than
Grammarinator. The calculation of time for Grammarinator was done through the time command
in the Linux CLI(Ubuntu) and used the real-time variable. While for both Grape and GPT calcu-
lated the difference was calculated when the algorithm started until all of the generations finished
in a for loop with the length of the number of samples using the Python time library.

This concludes both sections by comparing each of the different generational techniques, how-
ever during the implementation, additional tools have been created. These are syntax highlighters
for WAG, to highlight attributes and variables and a TUI to generate samples using GPT.

53

5.3 Complimentary Results

5.3.1 Syntax Highlighter

The first step is to create a syntax highlighter to distinguish parts of the grammar. This is done
firstly by declaring the file type, such that the syntax highlighter extension can be applied to the
correct file. For this, it has been declared that the ".wag" file type has been made specifically
for this purpose. The syntax highlighter itself is written for Visual Studio Code, which is a code
editor, in combination with the Yeoman [111] framework. The first step when running Yeoman
was to add a syntax highlighter by specifying that the highlighter only works on the .wag files.
This resulted in the generation of a folder with a Markup Language file for wag specifications and
a language configuration file for general language features.

These features are defined in the language-configuration.json file and are separated into three
sections: brackets, autoClosingPairs, and surroundingPairs. Brackets are signs that surround
a value, like characters and strings; these signs surround a value and define the specific type.
AutoClosingPairs are signs that open and close either statements, arrays, comments, or any other
type that has an opening sign and closing sign, f.e, []. The last one is similar; the difference
between both is that autoClosingPairs generates the closing sign after the opening sign is filled in.
The highlighting of the code itself is done through the wag.tmLanguage.json file, in which five
different types of variables will be highlighted. An example of a file which has the WAG syntax
highlighter:

• Keywords: These are the words in the language that are reserved, since they are a vital part
of the grammar. In the case of the current implementation of WAG, these are: if, else, then,
true, false, and in.

• String: These are quite self-explanatory; every value that starts and ends with a double quote
presents a String value.

• Attributes: These highlight the attributes in the Attribute Grammar of WAG. There are three
signs which can refer to these attributes: ’&’, ’$’, and ‘*’. The “&” sign represents the
synthesised attributes, “$” represents local attributes, and last, the inherited attributes are
represented by “*”.

• Comments: These are the sections within the code that have been commented on. In the
following case, it is a multi-line where ’/*’ and ’*/’ are the beginning and end symbols of
the comment.

1 /*
2 This is a comment section from the syntax highlighter.
3
4 Where you can define the program or general comments
5
6 @author: Nick Wolters
7 @version: 1.0
8 */
9

10 Sentence {$active = true} -> NP {$proper = false} VP {$active =
true}

Listing 5.8: Code Highlighting example of WAG.

54

5.3.2 Transformer TUI.

The last result is a small addition to the grammar transformer network in the form of a Textual
User Interface(TUI). Since there is a multitude of potential Transformer networks, selecting which
one to generate was a challenge. The user has to enter the name they want to give to their file and
the number of samples they want to generate. This tool has been used to generate each of the
samples used in the performance comparison.

Figure 5.2: Wag Syntax highlight comments.

55

Chapter 6

Related Work

6.1 Probabilistic Grammar Evolution.

A solution that looks promising is based on the research for the development of EG and combining
these with probabilistic context-free grammars, which is named: probabilistic Grammar evolution
(PGE) [74, 75, 54]. The idea of PGE is that each of the different alternatives in each of the grammar
rules in BNF will be given a probability value and which combined probability should equal to one
(P(x) ∈ GR and ∑

n
x P(x) = 1, where Gr is the grammar rule and n the number of alternatives). This

differs from the original selection process of GE, which uses a genotype of randomly generated
integers between (0 . . . 255) and depends on the number of alternatives n. Each of the elements
in the genotype array will start from the initial state and go down the tree by using the modulo
(%) of the random number with the total number of different paths. Each of the alternatives will
be provided with an incremental number from (0 . . . n− 1). An example of how this affects the
grammar can be seen in Figure 6.1.

Figure 6.1: Implementation of alternative choosing in standard GE. [54]

The example shows a simple grammar, which generates basic equations using operations(addition,
subtraction, multiplication, and division), values (x,y) and elements refer to values or an opera-
tion on two elements. The GE generates the genotype of integers and starts at the element rule.
The first element <e> in the genotype is 20 and has two different alternatives <e><o><e>(0) and

56

< v >(1), so n = 2. So the alternate is 20mod2 = 0, which gives that <e><o><e> is chosen, and
from this point you continue. If you have multiple NTs as in this step, the algorithm will traverse
each from left, until it encounters a terminal and continues to the right. This happens either until
all values declared are of the non-terminal variety, or the traversal of the genotype has used the
last element.

Figure 6.2: Grammar example of PGE [54]

A similar basic structure is used, however, the genotype uses probability at its base instead of
doing modules on randomly generated integers. The genotype now contains a value between zero
and 1, and as mentioned before, each rule gives is alternative probability, and the sum equals one.
The decision process now works by comparing each gene in the genotype to which quadrant of
the probability the value is. Take Figure 6.2 as an example, where the same steps are taken by
using probability. The first choice for the grammar rule to go from <e> to <e><o><e> is done by
checking where 0.13 is on the range of probabilities in the BNF definition. That is to say that both
probabilities from are 0.5, which means that <e><o><e> contains all values from 0.01 to 0.50 and
<v> 0.51 to 1, which can be seen in the next mapping where 0.75 leads into <e> becoming <v>.
When written in mathematical form, where n is the current step, the range of probability Pr gives
that Pr(x,y) = (Pn−1 +0.01,Pn−1 +Pn).

This particular way of generating grammar can aid in the development of the WAG generation
using EG. By using these probabilities, the results of the current implementation of the Grape
algorithm could potentially be improved. The upside is that the code from [74] is publicly available
through GitHub, and the software, similarly, is an extension to DEAP. This means that a potential
conversion should not be difficult.

57

6.2 Grammar-Constrained Decoding

The generation of grammar can also be performed by combining different models; an example
of such a combined generator is Grammar-Constrained Decoding [31, 81]. Similar to this thesis
implementation of GPT both uses an LLM to generate results based on grammar. The difference
is that instead of using grammar as an input to generate results, they used grammar to restrict the
generation to examples that adhere to the grammar definition. Secondly, their model uses grammar
to generate languages; specifically, NLP languages, while ours generates other grammars from the
meta-grammar.

Figure 6.3: Grammar-Constrained Decoding example. [31]

The paper also mentions the use of Input-dependent grammars (IDG), which are grammars
that are dependent on the input to retain semantics. The use of IDG could potentially solve a
problem that the current generations have, which is the lack of semantic correctness.

58

Chapter 7

Conclusion

This chapter is the end of the thesis and will answer the research questions in Chapter 3. Further-
more, there is a discussion portion, which discusses some hurdles and changes that were made.
And ending with recommendations for future work on the topic of grammar generation. The main
research question of the thesis was:

Which generational techniques can be implemented to generate grammar samples
from a meta-grammar, using WAG as the output grammar?

The answer is that through the use of Grammarinator, GPT, XSmith, and Grape we can gen-
erate samples for both implementations of the simple English and WAGON meta-grammars. A
model of the implementation can be seen in Figure in 7.1, and is similar to the figure on the
generative model in the introduction.

Figure 7.1: Overview of the generative implementation.

The implication is that there a four sets of two meta-grammars as the results; however, the
English grammar has not been implemented in XSmith, since it uses semantic generation;i.e.
non-terminal_number, and can’t therefore implement the predefined attributes and non-terminals.

59

Otherwise, all of these techniques were successful in generating grammar samples. The resulting
generated samples are different in each of the cases, depending on the generative technique and
selected meta-grammar. This leads us to the first sub-question:

What are the results when the generated samples are parsed, and how does each
technique compare?

To summarise, of the four different generators, Grammarinator and Grape were the most gram-
matically correct, while the results of GPT related the most to the context of the input. While it
was a struggle to implement XSmith, since the tool is mainly meant to generate language sam-
ples, and isn’t optimised for grammar. Furthermore, XSmith is restricted in that the tool used to
develop XSmith code, called DrRacket, only generates a single sample at a time. Only in the case
of WAGON could it produce some samples, which seem to be grammatically correct.

As for the characteristics of the other three, it seems that both Grammarinator and Grape are
fast in generating new samples, being able to generate ten thousand samples in less than 15 sec-
onds. Grape has a small advantage of barely 3 seconds compared to Grammarinator. While GPT
is not slow per se, since it generates a sample round every 12 seconds, however is comparatively
extremely slow. When comparing the time to generate 100 samples, it is 3219 times slower than
Grammarinator, and 16010 times slower than Grape.

The last characteristic to compare is the parsing of the results themselves; in the case of the
basic English grammar, both Grammarinator and Grape could fully parse both samples. As for
WAGON, both couldn’t be completely parsed, but were somewhat comparable in the averaged
percentage of partial parses; Grammarinator 81.98%, and Grape 77.03%. The reason is because of
the higher level expressiveness of WAGON, and ANTLR Preview preferences for other grammar
rules over others.

Does each meta-grammar generate differing results, and what constitutes that differ-
ence?

The comparison of the meta-grammars is between the basic English and WAGon meta-grammars,
and it was noticeable that the difference can mainly be found in the context of the results. In the
case of English grammar, when interpreting the result as grammar rules for a subset of English,
it is comparable in structure to similar rules from Figure 2.1, the comparison between CFG and
CNF in the Background chapter. While the results in WAGON are mostly parsable for Grammar-
inator and Grape in structure; however, it is quite dissimilar to the comparison of the Pokémon
sample grammar in the WAGON paper. The main difference is that the WAGON meta-grammar
has not specified its variables, which leads to random strings that have no relation to contextual
variables, like in XSmith, and the grammar has more grammar rules, leading to more potential
parsing decisions.

Where both cases are similar is that, though the result of the English meta-grammar was in
structure more similar, it created rules that are not possible when applied to the English language.
Examples such as Listing 5.7, where a preposition consists of nouns and verbs. This is not only
restricted to the non-terminals but also includes attributes and the assignment of attributes, which
can, similarly to WAGON, be randomised variables and don’t reflect their related typing.

The only potential exception is GPT, since it is not restricted by the grammar, but uses the
WAG samples as input, where it can try to retrieve context from. However, since it is not restricted,
it can also generate completely other parses. An example of that is the generated C code in Listing
5.4.

60

The last question from the research question to answer is:

Are the results of generation applicable to grammarware, and if not, what can be
done about it?

Regrettably, based on the samples that have been generated, the short answer is no, the gen-
erated results do not apply to grammarware. The reason is that the generated results are missing
semantic significance. Using the definitions from the research section on semantics, it can be
concluded that we can generate references, be they predefined(simple English) or dynamically
generated(WAGON). However, either the Sense component is missing in WAGON, where the
generated non-terminals and attributes are random strings. Or generated simple English grammar
that leads to the wrong application of sense, in that each reference has a sense, but the rules don’t
logically follow. An example previously mentioned is the preposition generation in Listing 5.7.

The second part of the question on whether something can be done about it can be answered
with: “Potentially.”. One of the results of generation is that Transformers, such as GPT, were able
to interpret the concept of each of the meta-grammars by using similar grammar samples, like the
Pokémon grammar, to infer potentially related types. In the related section, there was a technique
called grammar-constrained decoding, which combines a Transformer and the restriction of gram-
mar to generate results. The difference is that the results are generated in language; however, like
this thesis, the use of meta-grammar to generate grammar can be similarly explored.

7.1 Discussion

The thesis went through some iterative changes, which included different formulated research
questions. The initial thesis was to use the generated samples to train a neural network to infer
the Weighted variables from each of the grammar rules in WAG. This would mean that, based
on the weight of each neuron, we can potentially infer the probability of the grammar rule, in-
stead of using fixed probabilities. This would be performed by training a CNNs or ResNet to
classify the grammar and, based on the weight of each edge from neuron to neuron, to predict the
probability that a grammar rule is chosen. However, since generating the specific grammar from
meta-grammars was hard enough, it was decided to change the scope to focus on the grammar
generation part itself.

The question then remains: Do the generated results potentially aid in making this kind of
network? The answer, like grammarware, is no, since the generated results don’t reflect any actual
usage of grammar. However, if in future research it is indeed the case that semantics are taken into
account during generation, this topic might also be good to revisit.

Lastly, there were some issues when using WAGON in ANTLR, with some parsing issues
being found. The WAGON implementation of WAG itself was taken since it was simpler to use an
already-defined grammar as a baseline. However, during implementation, there were some flaws
in the specification defined in the paper [27], which slowed the thesis down. Furthermore, some
of the different types, such as EBNF types, were not particularly useful to generate WAG samples,
since only WAGON uses this definition. It might, therefore, have been a better choice to further
simplify the grammar and reduce the grammar to a basic implementation, which still conforms to
the WAG tuple.

61

7.2 Future work

As for future work, the first step would be to research a grammar generational algorithm similar
to grammar-constrained decoding. This can be a similar version but catering to the generation of
grammar from meta-grammar, instead of language from grammar. Otherwise, a combination of
Transformer Networks and either Grammarinator or Evolutionary Grammar, like Grape, would
also be interesting to research further. Of the two, Evolutionary Grammar is the most interesting
since it is a bit faster than Grammarinator, and could also apply Probabilistic Grammar Evolution
to specify preferential generation.

62

Appendix A

WAG Syntax.

A.1 Syntax Highlighter.

This appendix contains the code used to add syntax highlighting for WAG to Visual Studio. This
is done using a tool called Yeoman and two JSON files seen below.

A.1.1 Language configuration file(language-configuration.json)

1 {
2 "brackets": [
3 ["'", "'"]
4],
5 "autoClosingPairs": [
6 ["{", "}"], ["[", "]"], ["(", ")"], ["\"", "\""],
7 ["'", "'"], ["<", ">"], ["==", "=="], ["/*", "*/"]
8],
9 "surroundingPairs": [

10 ["{", "}"], ["[", "]"], ["(", ")"], ["\"", "\""],
11 ["'", "'"], ["<", ">"], ["=", "="], ["/*", "*/"]
12]
13 }

Listing A.1: WAG Highlighter language configuration.

A.1.2 TextMate configuration file.(wag.tmLanguage.json)

1 {
2 "$schema": "https://raw.githubusercontent.com/martinring/

tmlanguage/master/tmlanguage.json",
3 "name": "Weighted Attribute Grammar",
4 "patterns": [
5 { "include": "# keywords" },
6 { "include": "# strings" },
7 { "include": "# variables" },
8 { "include": "# comments" },
9 { "include": "# relations" }

10],
11 "repository": {
12 "keywords": {
13 "patterns": [

63

14 {
15 "name": "keyword.control.compare",
16 "match": "\\b(if|else|then|in)\\b"
17 },
18 {
19 "name": "keyword.control.bool",
20 "match": "true|false"
21 }
22]
23 },
24 "strings": {
25 "name": "string.quoted.double.wag",
26 "begin": "\"",
27 "end": "\"",
28 "patterns": [
29 {
30 "name": "constant.character.escape.wag",
31 "match": "\\\\."
32 }
33]
34 },
35 "variables": {
36 "patterns" : [
37 {
38 "name": "variable.language",
39 "match": "[&$*][a-zA-Z_]*"
40 }
41]
42 },
43 "comments": {
44 "begin": "/*",
45 "end": "*/",
46 "patterns" : [
47 {
48 "name": "comment.multiline",
49 "match": "[a-zA-z0-9]"
50 }
51]
52 },
53 "relations": {
54 "patterns": [
55 {
56 "name": "keyword.relation.arrow",
57 "match": "->"
58 }
59]
60 }
61 },
62 "scopeName": "source.wag"
63 }

Listing A.2: WAG Highlighter TextMate language configuration.

64

A.2 WAG Attribute Parses

This section shows two examples of both synthesised and inherited attribute parses in both At-
tribute Grammar and Weighted Attribute Grammar.

Figure A.1: Wag Synthesised Attributes example

Figure A.2: Wag Inherited Attributes example

65

A.3 Grammarinator

A.3.1 Grammarinator Structure

Figure A.3: Grammarinator overview.

66

A.3.2 Grammarinator Parses

Figure A.4: First grammar rule parse Grammarinator.

67

Figure A.5: Second grammar rule parse Grammarinator.

68

A.4 Transformers

A.4.1 GPT Parsing Results

Figure A.6: GPT example of a partially parsable sample.

69

A.5 XSmith

This section shows all XSmith-related results, the first an example of the XSmith hole filling ar-
chitecture, the second a large generated sample of XSmith.

A.5.1 XSmith Hole Filling Example

Figure A.7: The process of generating samples through ’holes’ [109]

A.5.2 XSmith Larger Sample

1 // This is a RANDOMLY GENERATED PROGRAM.
2 // Fuzzer: simple -wag
3 // Version: simple -wag 2.0.7 (ca130f9), xsmith 2.0.7 (ca130f9), in

Racket 8.10 (vm -type chez -scheme)
4 // Options: --output -file test.txt
5 // Seed: 1893289230
6
7 ****
8 Start of the generated WAG Code.
9 ****

10
11
12 lift_198 -> 1116391911;

70

13 lift_197 -> ({b: ({g: lift_198 })});
14 lift_192 -> [];
15 lift_191 -> lift_192;
16 lift_190 -> lift_191;
17 lift_189 -> lift_190;
18 lift_188 -> true;
19 lift_187 -> false;
20 lift_186 -> [true , lift_187 , true , lift_188 , lift_187];
21 lift_185 -> lift_186;
22 lift_184 -> [lift_185 , lift_189 , lift_186 , lift_186];
23 lift_182 -> 182656372;
24 lift_181 -> ({a: lift_182 });
25 lift_180 -> lift_181;
26 lift_175 -> false;
27 lift_174 -> ({a: lift_175 });
28 lift_173 -> ({d: lift_174 });
29 lift_172 -> lift_173.d;
30 lift_171 -> 1340383588;
31 lift_170 -> 126865899;
32 lift_169 -> 1976489753;
33 lift_168 -> ({e: [lift_169 , 1738946014 , lift_170 , lift_170 ,

lift_171]});
34 lift_167 -> lift_168;
35 lift_165 -> ({});
36 lift_164 -> ({});
37 lift_163 -> [({}) , ({}), lift_164 , ({}), lift_165];
38 lift_159 -> 1473710288;
39 lift_158 -> 1797468107;
40 lift_157 -> [-335729611 , lift_158 , lift_158 , lift_159];
41 lift_156 -> [({e: lift_157 })];
42 lift_155 -> lift_156;
43 lift_150 -> 1673550862;
44 lift_149 -> lift_150;
45 lift_148 -> ({e: lift_149 });
46 lift_147 -> lift_148;
47 lift_146 -> lift_147;
48 lift_145 -> -1468587750;
49 lift_144 -> lift_145;
50 lift_143 -> 621607329;
51 lift_142 -> ({e: lift_143 });
52 lift_141 -> lift_142;
53 lift_140 -> -359080922;
54 lift_139 -> [({e: lift_140 }), lift_141 , lift_141 , lift_141];
55 lift_138 -> [lift_139 , lift_139];
56 lift_137 -> array_safe_reference(lift_138 , lift_144 , [lift_142 ,

lift_146]);
57 lift_135 -> -1235459317;
58 lift_134 -> 1717228235;
59 lift_130 -> <arg_131 , arg_132 , arg_133 >;
60 lift_129 -> ({f: lift_130 });
61 lift_128 -> lift_129;
62 lift_122 -> <arg_123 , arg_124 , arg_125 , arg_126 , arg_127 >;
63 lift_113 -> <arg_114 , arg_115 , arg_116 >;
64 lift_112 -> ({b: ({f: lift_113 })});
65 lift_111 -> lift_112;
66 lift_107 -> <arg_108 , arg_109 , arg_110 >;

71

67 lift_106 -> ({f: lift_107 });
68 lift_105 -> lift_106;
69 lift_104 -> [({b: lift_105 }), lift_111];
70 lift_98 -> <arg_99 , arg_100 , arg_101 , arg_102 , arg_103 >;
71 lift_97 -> lift_98;
72 lift_96 -> lift_97;
73 lift_93 -> -488210641;
74 lift_92 -> ({e: lift_93 });
75 lift_89 -> false;
76 lift_86 -> <arg_87 >;
77 lift_85 -> 1542866807;
78 lift_81 -> <>;
79 lift_80 -> lift_81;
80 lift_79 -> ({e: lift_80 });
81 lift_76 -> "V_6mC7F0m ^~?$bjwJ '+|o k1V/KSI]3k4";
82 lift_75 -> true;
83 lift_73 -> <>;
84 lift_71 -> "8puNcLWUa=fP5?c+uUPdW[0O}&oBM)_A'c>QZg `v>%^@U'VV6TPrw1

-cj9Ex2J |/;+}) 'a.%Xr_u?(M @y]6= LsBvL";
85 lift_66 -> 854675232;
86 lift_63 -> <arg_64 , arg_65 >;
87 lift_60 -> "JGlneD{jCS6dHC%l\"dk)`yG8C*y)NZ0O[AW1JQ <d7Vz?PnfrZ3v ,r

.;6di y ><9mfyw;DWI#Lo";
88 lift_58 -> true;
89 lift_57 -> false;
90 lift_56 -> [lift_57 , false , lift_58 , lift_58 , false];
91 lift_55 -> [];
92 lift_51 -> <arg_52 , arg_53 , arg_54 >;
93 lift_39 -> ({d: "bT*/x-v=<H?hA416]1#90 '9y&Pl3:b<y)G9C8eKRzYAzP -g2E

%,U~>J @H#fs[!^K?Jg^lI -.gRop ?YWVM}* '"});
94 lift_38 -> -1740359514;
95 lift_33 -> <arg_34 , arg_35 , arg_36 >;
96 lift_32 -> lift_33;
97 lift_31 -> lift_32;
98 lift_30 -> lift_31;
99 lift_29 -> lift_30;

100 lift_28 -> lift_29;
101 lift_27 -> ({e: lift_28 });
102 lift_26 -> lift_27;
103 lift_25 -> lift_26;
104 lift_24 -> ({a: lift_25 });
105 lift_23 -> -1543044424;
106 lift_19 -> <arg_20 , arg_21 , arg_22 >;
107 lift_18 -> lift_19;
108 lift_17 -> ({e: lift_18 });
109 lift_15 -> ({});
110 lift_14 -> lift_15;
111 lift_10 -> <arg_11 , arg_12 , arg_13 >;
112 lift_9 -> lift_10;
113 lift_8 -> ({e: lift_9 });
114 lift_7 -> [lift_8 , lift_8 , lift_17];
115 lift_6 -> 21492682;
116 lift_5 -> -84863781;
117 lift_4 -> [lift_5 , lift_6 , lift_6 , lift_6 , -363495177];
118 lift_3 -> [lift_4 , lift_4 , lift_4 , lift_4];
119 lift_2 -> ({c: lift_3 });

72

120 lift_1 -> lift_2.c;
121 {
122 lift_183 -> lift_184;
123 lift_166 -> ({b: lift_167 });
124 lift_154 -> [lift_155];
125 lift_151 -> [];
126 lift_121 -> lift_122;
127 lift_120 -> ["e54_0)[7h2*ngCVeV)cQxE}S iF#Pn_4_C;sR4 TE`Hm!*`1

iD9_W b*^ $IznN}o|~z(O", ".ekp{=Sr_[YS\\cj~gZ <=F`y%m*
YKojyGJGVL)v`YS?#^F<T;>8Xnq *%*#}$4[", lift_71];

128 lift_119 -> lift_120;
129 lift_118 -> lift_57;
130 lift_117 -> [lift_23 , lift_6 , lift_66 , lift_66 , lift_38];
131 lift_95 -> array_safe_reference(lift_96(lift_117 , lift_56 , [

true , lift_58 , lift_118], lift_119 , lift_85), lift_66 ,
lift_121(lift_93 , lift_5 , ({}), lift_56 , ({}))).b;

132 lift_72 -> lift_73;
133 lift_70 -> ({});
134 lift_69 -> <>;
135 lift_68 -> [lift_69 , lift_69 , lift_72 , lift_72];
136 lift_62 -> lift_63;
137 lift_61 -> lift_62;
138 lift_59 -> ({c: lift_60 });
139 lift_50 -> lift_51;
140 lift_49 -> "| 7K-qZUuOR0gKAnS;fg=YGR <&w4G?hybse7ZI^QV\\a\\N1@

\\uFJOT -Ns(w^k1&.~6Rw}#rg%,HF5} Ue:UsR";
141 lift_48 -> true;
142 lift_40 -> <arg_41 , arg_42 , arg_43 , arg_44 , arg_45 >;
143 array_safe_reference(array_safe_reference(lift_1 ,

array_safe_reference(lift_7 , lift_5 , lift_24.a).e(lift_39.d,
array_safe_reference(lift_40(lift_23 , lift_56 , lift_15 ,

({}), lift_57)(lift_59.c, 488171448 , lift_6), string -length
({f: lift_60 }).f, lift_33(safe_string_append(lift_60 ,
lift_60), array_safe_reference(lift_55 , 489563983 ,
-33008271) , lift_39.d)), array_safe_reference(lift_61(
lift_57 , lift_15), lift_38 , array_safe_reference(lift_68 ,
lift_6 , lift_72))()), lift_79.e()), lift_85 , lift_86(
array_safe_reference(array_safe_reference(
array_safe_reference ([], lift_38 , [lift_3]), lift_38 , lift_3
), lift_5 , array_safe_reference(<arg_94 >(lift_71), lift_19(
lift_60 , lift_38 , "qS.H%Q:C>+g?fsk 5c~P=! wg$sjbZCNV;krxP#
oI1hN7 `Vyxsy -/A;A["), lift_55))).e);

144 lift_25.e = lift_95.f;
145 b_136 = array_safe_reference(lift_137 , lift_6 ,

array_safe_reference(array_safe_reference(lift_151 ,
-1344856040 , lift_137), lift_146.e, lift_146)).e

146 }

Listing A.3: Larger XSmith sample of generated grammar.

73

A.6 Evolutionary Grammars

An overview of some parsed samples of complete, partially complete, and non-parsable samples.

A.6.1 Grape parses

Figure A.8: Complete Grape parse.

Figure A.9: Mostly Complete Grape parse.

Figure A.10: Parsing issue of Grape.

74

Bibliography

[1] ISO/IEC 14977 : 1996(E), 1996. URL: https://www.cl.cam.ac.uk/~mgk25/
iso-14977.pdf.

[2] Tim Salimans Alec Radford, Karthik Narasimhan and Ilya Sutskever. Improving language
understanding by generative pre-training. In OpenAI, page 12. OpenAI, June 2019.

[3] Peter J. Angeline. Genetic programming: On the programming of computers by means of
natural selection,. Biosystems, 33, 1994. doi:10.1016/0303-2647(94)90062-0.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.
arXiv:1607.06450.

[5] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden,
M. Woodger, and W. L. van der Poel. Revised report on the algorithmic language algol
60. Numerische Mathematik, 4, 1962. doi:10.1007/BF01386340.

[6] Ekagrata Bahadur. Analysis of genetic algorithms in natural language processing, 02 2024.
doi:10.21203/rs.3.rs-3969717/v1.

[7] J E Baker. Adaptive selection methods for genetic algorithms. In Proceedings of the 1st
International Conference on Genetic Algorithms, 1985.

[8] David Bell. On the translation of frege’s bedeutung. Analysis (United Kingdom), 40, 1980.
doi:10.1093/analys/40.4.191.

[9] Yoshua Bengio. Learning deep architectures for ai. Foundations and Trends in Machine
Learning, 2, 2009. doi:10.1561/2200000006.

[10] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35, 2013. doi:10.1109/TPAMI.2013.50.

[11] Leon Bottou. Online algorithms and stochastic approximation, 1998.

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 2020-December,
2020.

75

https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
https://doi.org/10.1016/0303-2647(94)90062-0
https://arxiv.org/abs/1607.06450
https://doi.org/10.1007/BF01386340
https://doi.org/10.21203/rs.3.rs-3969717/v1
https://doi.org/10.1093/analys/40.4.191
https://doi.org/10.1561/2200000006
https://doi.org/10.1109/TPAMI.2013.50

[13] Christoph Brune. Deep reinforcement learning. https://canvas.utwente.
nl/courses/11534/files/3416859?module_item_id=367044, 2023. Accessed:
29/04/24, UTwente.

[14] Christof Bürger. Racr: A scheme library for reference attribute grammar controlled rewrit-
ing, 2012.

[15] Murray Campbell, A. Joseph Hoane, and Feng Hsiung Hsu. Deep blue. Artificial Intelli-
gence, 134, 2002. doi:10.1016/S0004-3702(01)00129-1.

[16] Florin Capitanescu, Antonino Marvuglia, Enrico Benetto, Aras Ahmadi, and Ligia Tiruta-
Barna. Assessing the uses of nlp-based surrogate models for solving expensive multi-
objective optimization problems: Application to potable water chains. In Proceed-
ings of EnviroInfo and ICT for Sustainability 2015, volume 22, 2015. doi:10.2991/
ict4s-env-15.2015.2.

[17] David Cassel. Cobol is everywhere. who will maintain it, 2017. URL: https://
thenewstack.io/cobol-everywhere-will-maintain/.

[18] Ned Chapin, Joanne E. Hale, Khaled M. Khan, Juan F. Ramil, and Wui Gee Tan. Types
of software evolution and software maintenance. Journal of Software Maintenance and
Evolution, 13, 2001. doi:10.1002/smr.220.

[19] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Conference
on Empirical Methods in Natural Language Processing, Proceedings of the Conference,
2014. doi:10.3115/v1/d14-1179.

[20] N. Chomsky. Three models for the description of language. IRE Transactions on Informa-
tion Theory, 2(3):113–124, 1956. doi:10.1109/TIT.1956.1056813.

[21] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages.
Studies in Logic and the Foundations of Mathematics, 26:118–161, 1 1959. doi:10.1016/
S0049-237X(09)70104-1.

[22] Noam Chomsky. On certain formal properties of grammars. Information and Control, 2,
1959. doi:10.1016/S0019-9958(59)90362-6.

[23] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12, 2011.

[24] Dave Crocker and Paul Overell. Augmented BNF for Syntax Specifications: ABNF. RFC
5234, January 2008. URL: https://www.rfc-editor.org/info/rfc5234, doi:10.
17487/RFC5234.

[25] Charles Darwin. On the Origin of Species by Means of Natural Selection. Murray, London,
1859. or the Preservation of Favored Races in the Struggle for Life.

[26] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In NAACL HLT 2019 -
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference, volume 1,
2019.

76

https://canvas.utwente.nl/courses/11534/files/3416859?module_item_id=367044
https://canvas.utwente.nl/courses/11534/files/3416859?module_item_id=367044
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.2991/ict4s-env-15.2015.2
https://doi.org/10.2991/ict4s-env-15.2015.2
https://thenewstack.io/cobol-everywhere-will-maintain/
https://thenewstack.io/cobol-everywhere-will-maintain/
https://doi.org/10.1002/smr.220
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0019-9958(59)90362-6
https://www.rfc-editor.org/info/rfc5234
https://doi.org/10.17487/RFC5234
https://doi.org/10.17487/RFC5234

[27] R.M. Dulfer. Wagon : A weighted attribute grammar oriented notation, June 2024. URL:
http://essay.utwente.nl/99790/.

[28] C. A. Ellis. Probabilistic Languages and Automata. PhD thesis, University of Illinois,
1970.

[29] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsuper-
vised pre-training help deep learning? In Journal of Machine Learning Research, volume 9,
2010.

[30] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzi-
lay, Jay Mccarthy, and Sam Tobin-Hochstadt. The racket manifesto. In Leibniz Inter-
national Proceedings in Informatics, LIPIcs, volume 32, 2015. doi:10.4230/LIPIcs.
SNAPL.2015.113.

[31] Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained
decoding for structured nlp tasks without finetuning, 2024. URL: https://arxiv.org/
abs/2305.13971, arXiv:2305.13971.

[32] Edward Grefenstette, Phil Blunsom, Nando de Freitas, and Karl Moritz Hermann. A deep
architecture for semantic parsing. CoRR, 2015. doi:10.3115/v1/w14-2405.

[33] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques. Springer New York, jan. 2008.
doi:10.1007/978-0-387-68954-8.

[34] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, and Koen G. Lan-
gendoen. Modern Compiler Design. Addison-Wesley, second edition, 2012. URL:
https://dickgrune.com/Books/MCD_2nd_Edition/.

[35] Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A
survey. ACM Trans. Knowl. Discov. Data, 16(4), jan 2022. doi:10.1145/3487045.

[36] William Hatch, Pierce Darragh, Sorawee Porncharoenwase, Guy Watson, and Eric Eide.
Generating conforming programs with xsmith. In GPCE 2023 - Proceedings of the 22nd
ACM SIGPLAN International Conference on Generative Programming: Concepts and Ex-
periences, Co-located with: SPLASH 2023, 2023. doi:10.1145/3624007.3624056.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015. URL: http://arxiv.org/abs/1512.
03385, arXiv:1512.03385.

[38] Pedro Rarigcl Henriques, Tomaž Kosar, Marjan Mernik, Maria Joao Varaiida Pereira, and
Viljcm Zumer. Grammatical approach to problem solving. Proceedings of the International
Conference on Information Technology Interfaces, ITI, 2003. doi:10.1109/ITI.2003.
1225416.

[39] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313, 2006. doi:10.1126/science.1127647.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9, 1997. doi:10.1162/neco.1997.9.8.1735.

[41] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. Grammarinator: a grammar-based open
source fuzzer. In Proceedings of the 9th ACM SIGSOFT International Workshop on Au-
tomating TEST Case Design, Selection, and Evaluation, A-TEST 2018, page 45–48, New

77

http://essay.utwente.nl/99790/
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2305.13971
https://doi.org/10.3115/v1/w14-2405
https://doi.org/10.1007/978-0-387-68954-8
https://dickgrune.com/Books/MCD_2nd_Edition/
https://doi.org/10.1145/3487045
https://doi.org/10.1145/3624007.3624056
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ITI.2003.1225416
https://doi.org/10.1109/ITI.2003.1225416
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.1997.9.8.1735

York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3278186.
3278193.

[42] John H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press, 1992.
doi:10.7551/mitpress/1090.001.0001.

[43] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. In ACL 2018 - 56th Annual Meeting of the Association for Computa-
tional Linguistics, Proceedings of the Conference (Long Papers), volume 1, 2018. doi:
10.18653/v1/p18-1031.

[44] Feargus Illingworth et al. Mainframe modernization business barometer re-
port. Technical report, Technical Report. Advanced. https://modernsystems.
oneadvanced. com/en . . . , 2022. URL: https://modernsystems.
oneadvanced.com/globalassets/modern-systems-assets/resources/reports/
2022-mainframe-modernization-business-barometer-report.pdf.

[45] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. 32nd International Conference on Machine Learn-
ing, ICML 2015, 1, 2015.

[46] Shruti Jado. Introduction to different activation functions for deep
learning, March 2018. URL: https://medium.com/@shrutijadon/
survey-on-activation-functions-for-deep-learning-9689331ba092.

[47] Christian Janiesch, Patrick Zschech, and Kai Heinrich. Machine learning and deep learning.
Electronic Markets, 31, 2021. doi:10.1007/s12525-021-00475-2.

[48] Khalid Jebari and Mohammed Madiafi. Selection methods for genetic algorithms. Interna-
tional Journal of Emerging Sciences, 3:333–344, 2013.

[49] Yangqing Jia, Thomas K. Leung, Alexander Toshev, and Sergey Ioffe Yunchao Gong. Deep
convolutional ranking for multilabel image annotation. In 2nd International Conference on
Learning Representations, pages 1–9, 4 2014.

[50] Deepali J. Joshi, Ishaan Kale, Sadanand Gandewar, Omkar Korate, Divya Patwari, and
Shivkumar Patil. Reinforcement learning: A survey. Advances in Intelligent Systems and
Computing, 1311 AISC, 2021. doi:10.1007/978-981-33-4859-2_29.

[51] Daniel Jurafsky and James Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition, vol-
ume 2. Prentice Hall, 02 2008.

[52] Divakar Kapil. Stochastic vs batch gradient descent, Jan-
uari 2019. URL: https://medium.com/@divakar_239/
stochastic-vs-batch-gradient-descent-8820568eada1.

[53] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algorithm:
past, present, and future. Multimedia Tools and Applications, 80, 2021. doi:10.1007/
s11042-020-10139-6.

[54] Hyun-Tae Kim and Chang Wook Ahn. A new grammatical evolution based on probabilistic
context-free grammar. In Hisashi Handa, Hisao Ishibuchi, Yew-Soon Ong, and Kay-Chen
Tan, editors, Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolution-
ary Systems - Volume 2, pages 1–12, Cham, 2015. Springer International Publishing.

78

https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.18653/v1/p18-1031
https://doi.org/10.18653/v1/p18-1031
https://modernsystems.oneadvanced.com/globalassets/modern-systems-assets/resources/reports/2022-mainframe-modernization-business-barometer-report.pdf
https://modernsystems.oneadvanced.com/globalassets/modern-systems-assets/resources/reports/2022-mainframe-modernization-business-barometer-report.pdf
https://modernsystems.oneadvanced.com/globalassets/modern-systems-assets/resources/reports/2022-mainframe-modernization-business-barometer-report.pdf
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/978-981-33-4859-2_29
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6

[55] Yoon Kim. Convolutional neural networks for sentence classification. EMNLP 2014 - 2014
Conference on Empirical Methods in Natural Language Processing, Proceedings of the
Conference, 2014. doi:10.3115/v1/d14-1181.

[56] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders, 2019.
doi:10.1561/2200000056.

[57] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for gram-
marware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, July 2005. doi:10.1145/
1072997.1073000.

[58] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2,
1968. doi:10.1007/BF01692511.

[59] John R. Koza, Forrest H. Bennett, David Andre, and Martin A. Keane. Automated De-
sign of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Pro-
gramming, pages 151–170. Springer Netherlands, Dordrecht, 1996. doi:10.1007/
978-94-009-0279-4_9.

[60] A Krizhevsky, V Nair, and G Hinton. Cifar-10 and cifar-100 datasets, 2009.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Advances in Neural Information Processing Systems,
2, 2012.

[62] David B. Kronenfeld, Roger C. Schank, and Robert P. Abelson. Scripts, plans, goals, and
understanding: An inquiry into human knowledge structures. Language, 54, 1978. doi:
10.2307/412850.

[63] Robin Kurtz, Daniel Roxbo, and Marco Kuhlmann. Improving semantic dependency pars-
ing with syntactic features. Proceedings of the First NLPL Workshop on Deep Learning for
Natural Language Processing, 2019.

[64] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning, 5 2015. doi:10.1038/
nature14539.

[65] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy for increasing
greybox fuzz testing coverage. In ASE 2018 - Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, 2018. doi:10.1145/3238147.
3238176.

[66] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. Proceedings
of the Annual Meeting of the Association for Computational Linguistics, 2020. doi:10.
18653/v1/2020.acl-main.703.

[67] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional
neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Net-
works and Learning Systems, 33, 2022. doi:10.1109/TNNLS.2021.3084827.

[68] Shengfei Lyu and Jiaqi Liu. Convolutional recurrent neural networks for text classification.
Journal of Database Management, 32, 2021. doi:10.4018/JDM.2021100105.

79

https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.1561/2200000056
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.2307/412850
https://doi.org/10.2307/412850
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.4018/JDM.2021100105

[69] John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude E. Shannon. A pro-
posal for the dartmouth summer research project on artificial intelligence, august 31, 1955.
AI Mag., 27:12–14, 2006. URL: https://api.semanticscholar.org/CorpusID:
1943Javed20059915.

[70] John Mcdowell. On the sense and reference. Mind, 86, 1977. doi:10.1093/mind/
LXXXVI.342.159.

[71] David McNeely-White, J. Ross Beveridge, and Bruce A. Draper. Inception and resnet
features are (almost) equivalent. Cognitive Systems Research, 59, 2020. doi:10.1016/j.
cogsys.2019.10.004.

[72] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary Computation, 4(1):1–32, 1996. doi:
10.1162/evco.1996.4.1.1.

[73] Melanie Mitchell. L.d. davis, handbook of genetic algorithms. Artificial Intelligence, 100,
1998. doi:10.1016/s0004-3702(98)00016-2.

[74] Jessica Mégane, Nuno Lourenço, and Penousal Machado. Probabilistic grammatical evo-
lution. In Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), volume 12691 LNCS, 2021.
doi:10.1007/978-3-030-72812-0_13.

[75] Jessica Mégane, Nuno Lourenço, and Penousal MacHado. Co-evolutionary probabilistic
structured grammatical evolution. In GECCO 2022 - Proceedings of the 2022 Genetic and
Evolutionary Computation Conference, 2022. doi:10.1145/3512290.3528833.

[76] Axi Niu, Kang Zhang, Chaoning Zhang, Chenshuang Zhang, In So Kweon, Chang D. Yoo,
and Yanning Zhang. Fast adversarial training with noise augmentation: A unified perspec-
tive on randstart and gradalign, 2022. arXiv:2202.05488.

[77] The Editors of Encyclopaedia Britannica. "meaning", 10 2024. URL: https://www.
britannica.com/topic/meaning.

[78] The Editors of Encyclopaedia Britannica. semantics, 1 2025. URL: https://www.
britannica.com/topic/meaning.

[79] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permutation crossover operators
on the traveling salesman problem. In Proceedings of the Second International Conference
on Genetic Algorithms on Genetic Algorithms and Their Application, page 224–230, USA,
1987. L. Erlbaum Associates Inc.

[80] OpenAI. Introducing chatgpt, 2023. URL: https://openai.com/blog/.

[81] Kanghee Park, Timothy Zhou, and Loris D’Antoni. Flexible and efficient grammar-
constrained decoding, 2025. URL: https://arxiv.org/abs/2502.05111, arXiv:
2502.05111.

[82] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. NAACL HLT 2018
- 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 2018. doi:
10.18653/v1/n18-1202.

80

https://api.semanticscholar.org/CorpusID:1943Javed20059915
https://api.semanticscholar.org/CorpusID:1943Javed20059915
https://doi.org/10.1093/mind/LXXXVI.342.159
https://doi.org/10.1093/mind/LXXXVI.342.159
https://doi.org/10.1016/j.cogsys.2019.10.004
https://doi.org/10.1016/j.cogsys.2019.10.004
https://doi.org/10.1162/evco.1996.4.1.1
https://doi.org/10.1162/evco.1996.4.1.1
https://doi.org/10.1016/s0004-3702(98)00016-2
https://doi.org/10.1007/978-3-030-72812-0_13
https://doi.org/10.1145/3512290.3528833
https://arxiv.org/abs/2202.05488
https://www.britannica.com/topic/meaning
https://www.britannica.com/topic/meaning
https://www.britannica.com/topic/meaning
https://www.britannica.com/topic/meaning
https://openai.com/blog/
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2502.05111
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202

[83] Eva Picardi and Annalisa Coliva. 133Über sinn und bedeutung: An elementary ex-
position. In Frege on Language, Logic, and Psychology: Selected Essays. Oxford
University Press, 07 2022. arXiv:https://academic.oup.com/book/0/chapter/
370291915/chapter-pdf/57893084/oso-9780198862796-chapter-6.pdf, doi:10.
1093/oso/9780198862796.003.0006.

[84] Michael O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 9 1963.
doi:10.1016/S0019-9958(63)90290-0.

[85] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77, 1989. doi:10.1109/5.18626.

[86] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. In Language Models are Unsupervised
Multitask Learners, 2019. URL: https://api.semanticscholar.org/CorpusID:
160025533.

[87] Kazi Shah Nawaz Ripon, Nazmul Siddique, and Jim Torresen. Improved precedence preser-
vation crossover for multi-objective job shop scheduling problem. Evolving Systems, 2:119–
129, 06 2011. doi:10.1007/s12530-010-9022-x.

[88] Bertrand Russell. On denoting. Mind, 14(56):479–493, 1905. doi:10.1093/mind/xiv.
4.479.

[89] Stuart Russell and Peter Norivg. Artificial intelligence: A modern approach (global edition).
Artificial Intelligence: A Modern Approach, 2021.

[90] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical evolution: Evolving programs
for an arbitrary language. In Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 1391,
1998. doi:10.1007/BFb0055930.

[91] Sumit Saha. A guide to convolutional neural networks — the
eli5 way, December 2018. URL: https://saturncloud.io/blog/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/.

[92] Arto Salomaa. Probabilistic and weighted grammars. Information and Control, 15:529–
544, 12 1969. doi:10.1016/S0019-9958(69)90554-3.

[93] Ömer Sayilir. Towards grammatical inference of legacy programming languages, May
2024. URL: http://essay.utwente.nl/99151/.

[94] Jürgen Schmidhuber. Deep learning in neural networks: An overview, 2015. doi:10.
1016/j.neunet.2014.09.003.

[95] Rituparna Sen and Sourish Das. Unsupervised Learning, page pp 305–318. Springer Sin-
gapore, 2023. doi:10.1007/978-981-19-2008-0_21.

[96] Dong Shen and Jian Xin Xu. An iterative learning control algorithm with gain adaptation
for stochastic systems. IEEE Transactions on Automatic Control, 65, 2020. doi:10.1109/
TAC.2019.2925495.

[97] L.D. Steenmeijer. Use weighted attribute grammars to formalize human-to-machine com-
munication in internet of things systems, January 2025. URL: http://essay.utwente.
nl/104891/.

81

https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/370291915/chapter-pdf/57893084/oso-9780198862796-chapter-6.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/370291915/chapter-pdf/57893084/oso-9780198862796-chapter-6.pdf
https://doi.org/10.1093/oso/9780198862796.003.0006
https://doi.org/10.1093/oso/9780198862796.003.0006
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1109/5.18626
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1007/s12530-010-9022-x
https://doi.org/10.1093/mind/xiv.4.479
https://doi.org/10.1093/mind/xiv.4.479
https://doi.org/10.1007/BFb0055930
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://doi.org/10.1016/S0019-9958(69)90554-3
http://essay.utwente.nl/99151/
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1007/978-981-19-2008-0_21
https://doi.org/10.1109/TAC.2019.2925495
https://doi.org/10.1109/TAC.2019.2925495
http://essay.utwente.nl/104891/
http://essay.utwente.nl/104891/

[98] Andrew Stevenson and James R. Cordy. A survey of grammatical inference in software
engineering. Sci. Comput. Program., 96:444–459, 2014. URL: https://doi.org/10.
1016/j.scico.2014.05.008, doi:10.1016/J.SCICO.2014.05.008.

[99] Gerald Jay Sussman and Guy Lewis Steele. The art of the interpreter of the modularity
complex (parts zero, one, and two), 1978.

[100] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. 31st AAAI Confer-
ence on Artificial Intelligence, AAAI 2017, 2017. doi:10.1609/aaai.v31i1.11231.

[101] Jiexiong Tang, Chenwei Deng, and Guang Bin Huang. Extreme learning machine for multi-
layer perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27, 2016.
doi:10.1109/TNNLS.2015.2424995.

[102] Leslie G. Valiant. General context-free recognition in less than cubic time. Jour-
nal of Computer and System Sciences, 10(2):308–315, 1975. URL: https:
//www.sciencedirect.com/science/article/pii/S0022000075800468, doi:10.
1016/S0022-0000(75)80046-8.

[103] Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning. Machine
Learning, 109, 2020. doi:10.1007/s10994-019-05855-6.

[104] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, volume 2017-December, 2017.

[105] Gio Wiederhold and John McCarthy. Arthur samuel: Pioneer in machine learning. IBM
Journal of Research and Development, 36, 2010. doi:10.1147/rd.363.0329.

[106] Nick Wolters. Wagenator, 2025. URL: https://github.com/NickWolters/wagenator.

[107] Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Wider or deeper: Revisiting the
resnet model for visual recognition. Pattern Recognition, 90:119–133, 2019. URL: https:
//www.sciencedirect.com/science/article/pii/S0031320319300135, doi:10.
1016/j.patcog.2019.01.006.

[108] Jinbo Xing, Menghan Xia, Yuxin Liu, Yuechen Zhang, Yong Zhang, Yingqing He, Hanyuan
Liu, Haoxin Chen, Xiaodong Cun, Xintao Wang, Ying Shan, and Tien Tsin Wong. Make-
your-video: Customized video generation using textual and structural guidance. IEEE
Transactions on Visualization and Computer Graphics, 2024. doi:10.1109/TVCG.2024.
3365804.

[109] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in
c compilers. ACM SIGPLAN Notices, 47, 2012. doi:10.1145/2345156.1993532.

[110] Gokul Yenduri, Ramalingam M, Chemmalar Selvi G, Supriya Y, Gautam Srivastava,
Praveen Kumar Reddy Maddikunta, Deepti Raj G, Rutvij H Jhaveri, Prabadevi B, Weizheng
Wang, Athanasios V. Vasilakos, and Thippa Reddy Gadekallu. Generative pre-trained
transformer: A comprehensive review on enabling technologies, potential applications,
emerging challenges, and future directions, 2023. URL: https://arxiv.org/abs/2305.
10435, arXiv:2305.10435.

[111] Yeoman. Yeoman.io. URL: https://github.com/yeoman/yeoman.io.

82

https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1016/J.SCICO.2014.05.008
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1109/TNNLS.2015.2424995
https://www.sciencedirect.com/science/article/pii/S0022000075800468
https://www.sciencedirect.com/science/article/pii/S0022000075800468
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1147/rd.363.0329
https://github.com/NickWolters/wagenator
https://www.sciencedirect.com/science/article/pii/S0031320319300135
https://www.sciencedirect.com/science/article/pii/S0031320319300135
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1109/TVCG.2024.3365804
https://doi.org/10.1109/TVCG.2024.3365804
https://doi.org/10.1145/2345156.1993532
https://arxiv.org/abs/2305.10435
https://arxiv.org/abs/2305.10435
https://arxiv.org/abs/2305.10435
https://github.com/yeoman/yeoman.io

[112] Vadim Zaytsev. Recovery, Convergence, and Documentation of Languages. Phd thesis,
Vrije Universiteit, Amsterdam, The Netherlands, oct 2010.

[113] Vadim Zaytsev. Bnf was here: what have we done about the unnecessary diversity of
notation for syntactic definitions. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing, SAC ’12, page 1910–1915, New York, NY, USA, 2012. Association
for Computing Machinery. doi:10.1145/2245276.2232090.

[114] Vadim Zaytsev. Speak Well or Be Still: Solving Conversational AI with Weighted At-
tribute Grammars. In Catherine Dubois and Julien Cohen, editors, STAF 2022 Workshop
Proceedings: Second International Workshop on MDE for Smart IoT Systems (MeSS), vol-
ume 3250 of CEUR Workshop Proceedings, pages 72–74, Enschede, Netherlands, 2022.
CEUR-WS.org. URL: http://ceur-ws.org/Vol-3250/messpaper5.pdf.

[115] X. Zhang, S. Ren, J. Sun, and K. He. Deep residual learning for image recognition. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[116] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22, 2000. doi:10.1109/34.888718.

83

https://doi.org/10.1145/2245276.2232090
http://ceur-ws.org/Vol-3250/messpaper5.pdf
https://doi.org/10.1109/34.888718

	Introduction
	Content of the document

	Background
	Grammars
	Chomsky's Hierarchy
	CFG and Attribute Grammars
	Weighted/Stochastic Grammar
	Weighted Attribute Grammar

	Artificial Intelligence, Machine Learning & Neural Networks
	Formalising Machine Learning and Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Residual Neural Networks
	Autoencoders Networks

	Research Questions
	Research
	Input for grammar generation.
	Grammarinator
	Transformer Networks
	XSmith
	Genetic Algorithms

	Results
	Comparing Generated Results
	ANTLR Preview
	Generated Results.
	Comparing Results between basic English and WAGON.

	Generator Characteristics.
	Complimentary Results
	Syntax Highlighter
	Transformer TUI.

	Related Work
	Probabilistic Grammar Evolution.
	Grammar-Constrained Decoding

	Conclusion
	Discussion
	Future work

	WAG Syntax.
	Syntax Highlighter.
	Language configuration file(language-configuration.json)
	TextMate configuration file.(wag.tmLanguage.json)

	WAG Attribute Parses
	Grammarinator
	Grammarinator Structure
	Grammarinator Parses

	Transformers
	GPT Parsing Results

	XSmith
	XSmith Hole Filling Example
	XSmith Larger Sample

	Evolutionary Grammars
	Grape parses

