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Abstract

Photoacoustic imaging techniques are capable of creating high-resolution images
with high optical contrast. It has the potential to be used for breast cancer screening,
but there are still some hurdles to overcome. One of them is the need for faster
reconstruction algorithms, which is the main topic of this thesis. Reconstructing
photoacoustic images over large fields of view is computationally expensive, not just
because of the large domains involved, but also because the measurements can be
sparse, requiring many iterations of an iterative algorithm. In this thesis, several
deep learning techniques, known as continuous neural representations, are explored
to see whether they can speed up photoacoustic reconstruction and improve the
reconstruction quality by providing a continuous view of the underlying objects.
Experimental results show significant speed-ups, up to a factor of 100 for small
computational domains. It is also shown that these continuous neural representation
reconstructions can be evaluated on an arbitrarily fine grid. However, this does not
imply that arbitrarily small features are actually recovered, which raises questions
about how “continuous” these representations really are.
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Chapter1
Introduction

1.1 Assignment Description

Breast cancer is the most common cancer type in The Netherlands for women, and
1 in 7 of all women in The Netherlands get breast cancer [1]. The large prevalence
of breast cancer is the reason why a national screening program has been set up
by the Dutch government [2]. An often reported downside of the mammography
screening is the need for the breasts to be compressed, which can be quite painful.
Besides that, tumours can be missed, especially in dense breast tissue. To solve these
problems, other methods are investigated, one them being photoacoustic imaging.

The 3rd generation photoacoustic mammoscope (PAM3) is a powerful breast
imaging system which is capable of providing high resolution images of the blood
vessels and quantitative speed of sound maps of the breast. This device can image
the full breast with a high resolution and is capable of imaging vessels up to 0.4mm
[3]. The PAM3 can offer high optical contrast without the need for compressing the
breast. The PAM3 does comes with various drawbacks though, the following two of
which will be studied in the report:

1. Slow speed of sound corrected image reconstruction: Currently, a clas-
sical iterative optimization procedure is used for photoacoustic (PA) image re-
construction which compensates for an inhomogeneous speed of sound (SOS)
[3]. The most time consuming step in each iteration is simulating the wave
propagation, which takes 10 minutes on a modern GPU. Two of these wave
simulations are performed in each iteration, resulting in a computation time
of 3 hours and 20 minutes for just 10 iterations. This is just for a single
wavelength. Image reconstruction for a single wavelength is not enough for
quantitative PA imaging, which requires images to be reconstructed for mul-
tiple wavelengths. Reconstructing the PA images for 5 different wavelengths
takes 20 hours, which exceeds any acceptable time limit for PAM to be used
for screening purposes.
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1.2. REPORT OUTLINE

2. Detector sparsity: The PAM3 has 512 detectors [3] which is not enough to
reconstruct photoacoustic images of the desired quality (detector sparsity). In
order to increase the number of detectors artificially, the array of detectors can
be moved to a new position by rotating the bowl that holds all the detectors,
and performing multiple measurements for different positions of the imaging
bowl. This whole process of data acquisition at each position of the image bowl
followed by rotating the bowl to a new position takes 5 minutes for a standard
imaging protocol [3], during which data can be corrupted, for example as a
result of breathing artifacts.

In this report, an attempt will be made to solve these problems using a novel
class of deep learning techniques, specifically, neural networks that treat objects
and operators as continuous objects instead of discretizing them: continuous neural
representations.

1.2 Report Outline

The main topic of this report is investigating several techniques that solve the spar-
sity problem and the problem of slow reconstructions, introduced in the previous
section. Before discussing the different methods investigated for solving these prob-
lems, some necessary background knowledge is required to understand the rest of this
report. This general background knowledge will be provided in chapter 2. Next,
three chapters follow, each discussing a method for solving the previously stated
problem. If we think of forward and inverse imaging problems as two domains con-
nected by operators, as shown in figure 1.1, we can place the three different chapters
in different locations in this image. Chapter 3 discusses a technique that works in
the measurement domain. A technique based on neural functions is described for
inpainting missing data. Next, so-called neural operators are introduced in chap-
ter 4, which can be used as surrogates for classical wave solvers to speed up the
reconstruction process. They can not only describe the forward problem, described
by the wave-equation, but also time-reversal and adjoint wave simulations. Chap-
ter 5 discusses deep operator networks for describing the inverse operator, which
takes objects in the measurement domain and outputs the corresponding source in
the image domain. In the two remaining chapters, chapter 6 and chapter 7, the
results will be discussed and an outlook for the future will be given.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Model-based image reconstruction focuses on inverting a forward oper-
ator that maps objects from one domain to another, referred to here as the image
domain and the measurement domain. The three main chapters of this thesis ex-
plore various techniques that intervene at different points in and between the two
domains, as illustrated in the overview image.
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Chapter2
General Background

In this chapter, I will provide some basic background information necessary for un-
derstanding the rest of this report. The reader can skip the sections with which they
are already familiar. I will begin with an introduction to the physical mechanisms
fundamental to photoacoustic imaging. Next, I will discuss a specific photoacoustic
imaging system, namely the 3rd generation photoacoustic mammoscope (PAM3).
In the second half of this chapter, I will give a brief introduction to the use of
continuous neural representations for scientific machine learning.

2.1 Photoacoustic Imaging

Imaging from coupled physics refers to imaging modalities that make use of one type
of signal generated by another. These approaches often produce high-resolution,
high-contrast images, unlike modalities that rely on a single type of physical signal,
which typically provide either good resolution or good contrast, but not both [4]. An
example of an imaging technique based on coupled physics is photoacoustic imaging.

Photoacoustic imaging is an imaging technique that can provide images of light
absorbing structures. One application of this technique is breast cancer detection
based on images of tumour blood vessels, which is possible thanks to the high optical
absorption of haemoglobin for infrared wavelengths [5]. Images of these light ab-
sorbing structures can be formed by detecting ultrasound signals that are generated
by these structures after pulsed illumination, an effect known as the photoacoustic
effect, the physics of which will be discussed in subsection 2.1.1. Several differ-
ent imaging architectures exist to detect these acoustic signals, one of which is the
PAM3, which will be introduced in subsection 2.1.2. After detection, inversion based
on the detected signals is necessary to obtain an image of the light absorbing struc-
tures. Solving this inverse problem is not an easy task, as will be further elaborated
on in subsection 2.1.3.
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CHAPTER 2. GENERAL BACKGROUND

2.1.1 Signal Generation through the Photoacoustic Effect

Photoacoustic imaging (PAI) is based on the detection of ultrasound (US) waves
formed after illumination of an absorbing object with a short laser pulse, an effect
known as the photoacoustic (PA) effect. When pulsed light is absorbed, absorbing
molecules will convert the light into heat, which results in a local pressure increase
through a process know as thermoelastic expansion. In the case of sufficiently short
laser pulses (stress confinement [6]), the pressure increase, p0, is given by1

p0(r) = Γ(r)H(r), (2.1)

where H, is the absorbed energy per unit volume due to light absorption, Γ is the
dimensionless Grüneisen parameter and r is the spatial coordinate [7]. The heating
function, H, is given by

H(r) = µa(r)Φ(r;µa, µs, g), (2.2)

where µa is the absorption coefficient, µs is the scattering coefficient, g is the
anisotropy factor and ϕ is the fluence distribution [5]. Note that equation 2.2 is
highly nonlinear due to H being a product of µa and Φ, and µa also being an
argument of Φ.

The two-step process of photoacoustic signal generation in human tissue
starts with the optical transport problem described by the radiative transport equa-
tion [7]. Light at the surface of the tissue is transported throughout the tissue,
which results in an inhomogeneous fluence distribution due to an inhomogeneous
distribution of absorption coefficients, scattering coefficients and anisotropy factors.
It is often tried to obtain a fluence distribution at the surface of the tissue that is as
homogeneous as possible, because in this case the generated initial pressure distri-
bution, even though not exact, gives a good approximation of the optical absorption
coefficients in tissues [5]. The second part of the two-step process is the acoustic for-
ward problem. The generated pressure, given by equation 2.1, propagates according
to the wave equation. An overview of this two-stage signal generation process is
shown in figure 2.1.

1Wavelength dependence of all variables will be ignored in this thesis.
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2.1. PHOTOACOUSTIC IMAGING

Figure 2.1: The forward problem resulting in photoacoustic signal generation con-
sists of the optical forward problem followed by the acoustic forward problem [7].

2.1.2 The PAM3

Signals generated according to the process described in section 2.1.1 need to be
detected to make image reconstruction possible. Several different photoacoustic
imaging systems exist that can detect these signals, most of which use one of three
different geometries: planar, cylindrical or spherical [5]. The imaging system that
is studied in this thesis is the PAM3 [3] which is a breast imaging system.

The PAM3 consists of a hemispherical bowl containing 512 1 MHz US transducers
(�3mm) and 40 optical fibres that provide a homogeneous illumination of a chosen
wavelength on the surface of the breast (with a pulse repetition frequency of 10 Hz).
The whole bowl with detectors can rotate in order to move the transducers to a
new position. Due to the clever spiral positioning of the transducers, none of the
measurements will be redundant. In addition to photoacoustic imaging, the PAM3
can also be used for ultrasound tomography, to obtaining speed of sound (SOS)
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CHAPTER 2. GENERAL BACKGROUND

maps. The photoacoustic resolution of the system is 0.426mm and the resolution of
the speed of sound maps is approximately 2mm [3]. An overview of the PAM3 is
shown in figure 2.2.

Figure 2.2: Overview of the PAM3. a) shows the bed-top on which a patient lies.
The breast of the patient is placed in the hemispherical bowl which is lined with 512
US transducers and 40 optical fibres. b) shows a fibre bundle, microlens array on
the fibre bundle and a transducer. c) shows a cross section of the system. d) shows
a block diagram of the connections between different components of the PAM3. e)
shows a graphical depiction of an imaging protocol. There is a minimum 100 ms
between two laser pulses. During these 100 ms, US pulses are fired, which are used
for the SOS reconstruction [3].

2.1.3 PAT Inverse Problem

After detection of photoacoustic signals, using a system like the one described in
section 2.1.2, a reconstruction method is used to invert the forward problem as is
shown abstractly in figure 2.3. To be more specific, the goal is to find the initial
condition that propagated according to the wave equation and produced the pres-
sure measurements at a discrete set of locations and for a discrete number of time
steps. Relating this to figure 2.3, f is the initial pressure that is transformed to
the measurement domain by a forward operator, K. The goal is to reconstruct this
initial pressure by finding the operator K−1 or an approximation of K−1.

13



2.1. PHOTOACOUSTIC IMAGING

Figure 2.3: The general idea of inverse imaging problems is that an imaging operator,
K, transforms an object or image, f , to a measurement domain, resulting in the
measurement Kf . Often, we only have access to the data, g, in the measurement
domain, and want to find the corresponding image, K−1g, by applying an inverse
operator, K−1. In a simple and perfect world, we would have thatKK−1 = K−1K =
I, so K−1Kf = f , but often things are more complex.

I will now describe more precisely what the photoacoustic inverse problem is.
The problem can be described in the following way (see also figure 2.4). Let Ω ⊂
R3 denote the domain of interest, with spatial coordinates r ∈ Ω, which is the
hemispherical imaging bowl in which the breast is placed and let ∂Ω denote the
boundary of Ω.

Let t ∈ [0, T ] denote the time since the laser pulse, which illuminates the tissue,
has fired, where 0 < T ∈ R+. T is the time it takes to perform the measurement.
The moment a laser pulse is fired, a pressure distribution, p0(r) ∈ C∞

0 (Ω)2, is formed
almost instantaneously [9], as explained in section 2.1.1.

p0 travels according to the wave equation, where the medium is assumed to be
inhomogeneous, given by [6]:(

1

c2(r)

∂2

∂t2
−∇2

)
p(r, t) = 0, (2.3)

The speed of sound is often assumed to be a constant, but this assumption
introduces artefacts in the reconstructed images if the SOS of sound is very inhomo-
geneous, like in of breast tissue where the speed of sound varies from 1400 to 1540
m/s[6].

2The assumption that p0 ∈ C∞
0 (Ω) is justified because there is always some heat diffusion

present in the thermalisation process [8].
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CHAPTER 2. GENERAL BACKGROUND

Figure 2.4: An initial pressure at t = 0, p0, propagates according to the wave-
equation. Ultrasound transducers (US-T) detect the pressures at the boundary of
our domain Ω.

Detectors are placed at the boundary of Ω. Let Λ ⊂ ∂Ω denote the set of
coordinates that make up all the detectors. The operator P : C∞

0 (Ω) → C∞
0 (∂Ω ×

[0, T ]) propagates p0 to the boundary ∂Ω. An operator representing the detectors3,
Dk : C

∞
0 (Λk× [0, T ]) → RNdet×Nt , transforms the pressures at Λk to discrete detected

signals, where Ndet is the number of detectors and Nt is the number of time samples.
Figure 2.4 shows the detected signal for one of the transducers for a single laser pulse.

The inverse problem is [10]:

Find p0(r) ∈ C∞
0 (Ω) given the following PDE with initial and boundary conditions:

(
1

c2(r)

∂2

∂t2
−∇2

)
p(r, t) = 0, t ≥ 0, r ∈ R3

p(r, t = 0) = p0(r),
∂p

∂t

∣∣∣
t=0

= 0

p(r, t)
∣∣∣
Λ
= D {P {p0(r)}} 4, r ∈ Λ, t ∈ [0, T ]

(2.4)

This inverse problem would be uniquely solvable if Ω is surrounded with a smooth
and closed detection surface and if we measure for a time long enough for the sound
waves to have disappeared[10]. For practical reasons, a closed surface is rarely
an option in biomedical applications, instead planar, cylindrical and hemispherical

3The operator D includes factors like integration over the detector surface area and convolution
in time to account for the finite size and the time response of the detectors respectively.

4In real situations, the data will be noisy, but let’s ignore that for now.
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2.2. CONTINUOUS NEURAL REPRESENTATIONS

detection surfaces are often used [6]. Theoretically, a unique reconstruction is still
possible in these cases, but the reconstruction process is unstable [10].

Many different reconstruction techniques exist. See for example [6] and [10] for
a nice overview. Three common ways of solving the photoacoustic inverse problem
[8] will be mentioned here :

1. Inverse Spherical Radon Transform: In the case of a constant speed
of sound and with the absence of attenuation the signal can be projected
back along arc’s of a constant radius. In case of an inhomogeneous speed of
sound, the signals are still projected back, but this time along arcs that have
a constant time-distance, i.e. signals coming from points along this arc arrive
at the same time at the detector.

2. Time Reversal: The pressures detected by the detectors are played back in
time reversed order as Dirichlet boundary conditions. The pressure distribu-
tion at t = 0 is then an estimate of p0. An advantage of this technique is that
it can deal with inhomogeneous acoustic properties, like an inhomogeneous
SOS.

3. Variational Formulation: The reconstruction problem can be rewritten to
the form argminp0

{
1
2
∥D {P {p0(r)}} − f∥+ λJ (p0)

}
, where f is the detected

noisy data, λ > 0 is the regularization parameter and J is a regularization
functional. The variational formulation is especially useful in cases of incom-
plete data because of the option to add a regularizer which includes prior
knowledge of the solution p0.

2.2 Continuous Neural Representations

The first mathematical models of artificial neurons were already introduced in 1943
[11]. Still, it took many decades, and several deep learning winters [12], before mul-
tiple artificial neurons were combined to form multi-layered deep learning networks
that exhibited significant learning capabilities [11]. Since then, deep learning mod-
els have permeated many different fields of science and everyday life. One scientific
field that has greatly benefited from deep learning is the study of partial differential
equations, which will be the main focus of this report.

Not all deep learning methods can be used for all deep learning applications:
One size does not fit all. A good example of this is that some of the AI models
which have shown awe-inspiring results for computer vision tasks, like transformers
and convolution neural networks (CNNs), are unsuitable for scientific modelling [13].
This is because scientific modelling deals with real-world continuous objects, unlike
many other deep learning fields that solely deal with discrete objects like images and
language. This means new methods had to be developed to deal with the continuity
of functions and operators in real-world physical systems. In the rest of this section,
I will explain how both functions as well as operators can be represented with neural
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CHAPTER 2. GENERAL BACKGROUND

networks in a continuous way. Basic knowledge of deep learning is assumed. Readers
not familiar with deep learning are referred to [14] for a basic introduction.

2.2.1 Continuous Neural Function Representations

Functions and operators are ubiquitous through all fields of science and engineer-
ing, and are the two important objects when studying partial differential equations
(PDE). No standard definitions exist in the literature to distinguish between func-
tions and operators. However, for clarity and ease of explanation, I will adopt the
following definitions for functions and operators in this thesis:

Definition 2.1. A function is any mapping that takes as an input an element
x ∈ D ⊆ RNin , called a coordinate, and assigns to this element a single unique
element f(x) ∈ R or a finite vector of length d, f(x) ∈ Rd. D is called the domain
of the function.

Example 2.2. The function p takes as an input the tuple (x, y, t) ∈ R3, and outputs
the pressure value at the spatio-temporal coordinate, or both the pressure and the
speed of sound.

Definition 2.3. An operator is any mapping that takes as an input an element
f ∈ F and outputs a single unique element g ∈ G, with F and G being function
spaces, i.e. a vector space whose elements are functions.

Example 2.4. The operator F , called the 1-dimensional Fourier transform operator,
takes as an input a function f ∈ L1(R) and outputs a function F {f} ∈ C(R), with
L1(R) the first order lesbesgue space, and C(R) the space of continuous functions,
both containing functions whose domain is R [15].

Example 2.5. Operators can be used to find the solution of a PDE. An operator
can take the initial and boundary data, represented by functions, as an input and
output the solution to the PDE. In the case of the wave equation, a solution operator
could take the initial pressure as an input and output the pressure as a function of
space and time.

If we want to model real-world phenomena with computers, we need to come up
with a discrete way of representing functions and operators. One way of discretizing
a function is sampling the function for a certain set of coordinates. Off course, this
method has the downside that we could lose information about the function values
at coordinates that lie in between the sampled coordinates. However, if we have
some prior knowledge about the function we want to represent, for example that the
function is a third degree polynomial of the form f(x) = a0+a1x+a2x

2+a3x
3, then

all we need to store in the computer is the discrete vector (a0, a1, a2, a3). So, storing
the function coefficient allows us to represent a continuous object in a discretized
way, and this function can be evaluated on all coordinates in the domain of the
function.

17



2.2. CONTINUOUS NEURAL REPRESENTATIONS

Imagine that we have a situation where we are given a set of N coordinates and
their corresponding function values, {xi, f(xi)}Ni=1, and want to obtain an expression
for the function, f(·), that represents this data. We can now distinguish two different
scenarios, either we have a model for the process that generated the data, and thus
know the form of the function f(·), up to a set of unknown parameters, or we have
no knowledge about the function f(·) and the process through which the data was
generated has to be treated as a black box. In case of the first scenarios, techniques
like least squares fitting, can be used to find the optimal set of parameters that
describe the data. The second scenario is more challenging, but can be solved using
neural networks since any (Borel measurable) function can be approximated using
neural networks [16]. In this case, the function is represented by a neural network,
like a fully connected network, that takes a coordinate, x, as an input, and the
output is the function value, f(x). A fully connected neural network consists of
layers where each neuron is connected to every neuron in the previous layer. Let
the input be a vector x ∈ Rd, and the output of the network be f(x) ∈ Rm. A fully
connected neural network with L layers can be written compactly as:

N (x) = AL (σ (AL−1 (· · ·σ (A1x+ b1) · · · ) + bL−1)) + bL (2.5)

where:

• Each Al ∈ Rnl×nl−1 is a weight matrix for layer l,

• bl ∈ Rnl is the corresponding bias,

• σ is a non-linear activation function (e.g., ReLU),

• N (x) = f(x) ∈ Rm is the final network output.

An important network to mention is the Sinusoidal Representation Network
(SIREN), which uses the sine function as activation functions: σ(z) = sin(ωz),
where the hyperparameter ω is a frequency parameter. This type of network will be
used later in the report due to its excellent ability to represent data [17].

Similar to the case of representing a continuous polynomial function by saving a
discrete set of polynomial coefficients, any continuous function can be represented by
a neural network represented by the discrete set of weights and biases that describe
the network. The weights and biases that best describe the data are found by
optimizing some kind of loss function. With this self-supervising deep learning
method a function, represented by a neural network, is fitted to data, so there is no
’learning’ from data.

Several different names are used for these neural function representations, like
coordinate-based neural networks [18], neural fields [19], neural radiance fields (NeRFs)
[20], implicit neural representations (INRs) [21] and physics informed neural net-
works (PINNs) [22]. In this thesis, the term Neural Function (NF) will be used to
refer to these coordinate-based networks. These NFs can be evaluated at any coor-
dinate. Therefore, it is often stated that neural functions offer an infinite resolution

18



CHAPTER 2. GENERAL BACKGROUND

[18]. I will go deeper into what this means exactly in chapter 3.

2.2.2 Continuous Neural Operator Representations

Just like functions, real-world operators are continuous objects, i.e. they are maps
between function spaces, like the integral from example 2.4. Surrogates for operators,
represented by neural networks, are termed neural operators. Not every type of
neural network is considered a neural operator. Something that differentiated a
neural operator from other networks like transformers or CNNs is that they can
generalize to different discretizations due to their discretization invariance [13].

It is easy to see that the types of networks used for neural functions are not
considered neural operators. Those networks take the coordinates as an input and
represent functions instead of taking the the whole function as an input.

Some of the neural networks that are neural operators are the Fourier neural
operator (FNO)[23] and the deep operator network (DeepOnet)[24] be described in
the following subsections.

The general idea of operator learning is that we are given pairs of data, {fi, gi}Ni=1,
just like we saw before for the neural functions, but in this case fi and gi are both
functions living in function spaces, and they are connected through an operator
A such that A{f} = g [25]. The goal of operator learning is to approximate the
operator A using a neural network N . What follows now is a brief introduction to
two different neural operator architectures.

2.2.2.1 Deep Operator Network

We have seen before how neural function can be used to overfit to data in a self-
supervised manner in section 2.2.1, resulting in a continuous function representation.
One example is solving the wave equation for p(r, t) given an initial condition p0(r).
For each initial condition, the NF has to be trained to find the solution p(r, t)
making the technique slow, and unable to learn from patterns in the data. Several
different groups have come up with ideas to create adaptive neural functions, where
the neural function is modified based on sensor data. One possibility is the use
of conditional neural fields [26], which make use of a so-called hypernetwork [27]
which outputs the parameters of a second network, which is the actual NF. Another
network architecture is the deep operator network (DeepOnet) introduced by Lu
et al. [24], which is usually termed a neural operator, but can be considered as a
conditional neural field if we realize that a weighted sum of NFs results in a new
NF:

D(x) =

p∑
k=1

bkTk(x)

where the NF, D(·), is formed by a sum of p networks Tk, which can be seen
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2.2. CONTINUOUS NEURAL REPRESENTATIONS

as basis functions, weighted by the coefficients bk. The idea behind DeepOnets is
to condition the basis coefficients based on the values of sensor data, to create an
adaptive NF. The value of the basis coefficients is determined by another set of p
neural network with as an input some sensor data, u, given on a finite fixed set of
locations, x1, . . . , xm. This results in the following architecture [24]:

D {f} (x) =
p∑

k=1

Bk {u(x1), u(x2), . . . , u(xm)} Tk(x) (2.6)

where B {·} is called the branch network, which gives the basis coefficient, and
Tk(·) is called the trunk network, and provides the continuous basis functions. A
problem here is that using p branch and trunk networks gives problems with scaling
this architecture. Therefore Lu et al. came up with the idea of using for both the
branch and the trunk networks, a single network that output a vector of length p,
thus merging all the branch networks and trunk network into a single network [24].
In this case, Bk in equation 2.6 refers to the kth output of the branch network 5.
See figure 2.5

Figure 2.5: The DeepOnet architecture consists of two networks. Shown are two
fully connected networks, where the branch network takes sensor data at discrete
fixed sensor locations, f(xk), as an input, and the trunk takes the coordinate at
which the ouptut function is evaluated as an input. The output of the DeepOnet is
formed by the dot product of the output vectors of both networks, i.e. D {f} (x) =∑3

k=1 Bk {f} Tk(x) =
∑3

k=1 bktk.

Lu et al. have proven that the DeepOnet architecture is a universal approxi-
mator for operators [24] and it has been shown experimentally that many different

5This is similar to the conditional neural fields introduced before, with the branch network
being a hypernetwork that only outputs the network parameters of a final linear layer.
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CHAPTER 2. GENERAL BACKGROUND

operators can be approximated using DeepOnets with great accuracy [28].

2.2.2.2 Fourier Neural Operator

Another very popular neural operator network besides the DeepOnet from the previ-
ous section, is the Fourier neural operator (FNO) [23]. The FNO is inspired directly
from equation 2.5, but instead of using discrete objects and matrix multiplication,
functions and kernel integration are used [25], resulting in network layers of the
form:

ui+1(x) = σ

(∫
Ωi

K(i)(x, y)ui(y)dy + bi(x)

)
, x ∈ Ωi+1, (2.7)

where we are trying to learn the bias functions, bi, and the kernels, K(i). Calcu-
lating the integrals and approximating the kernelsK(i) is computationally expensive.
To overcome these problems, the FNO makes two assumptions, first of all that the
input and output domain are d-dimensional toruses, Td, and that the input and
output functions are sampled on a fixed and equally spaced grid, allowing the use
of the fast Fourier transform (FFT) for evaluating convolutions and secondly that
the kernels K(i) are translation invariant, i.e. K(i)(x, y) = ki(x − y). The kernel
integration in equation 2.7 can thus be written as:

∫
Ωi

k(i)(x− y)ui dy = F−1
{
F{k(i)}F{ui}

}
(x) = F−1 {R · F {ui}} (x), x ∈ Ωi.

(2.8)
To make use of the FFT, all the function in equation 2.8 have to be discretized:

• ui ∈ RC×H×W , so u has C channels, each of size H ×W .

• F {·} and F−1 {·} are applied channel-wise.

• R ∈ CC×C×kH,max×kW,max , and the product R·F {ui} is a tensor product, which
is the same as applying a matrix of size C×C to each of the Fourier coefficients
of F {ui} separately. kH,max × kW,max are chosen maximum frequencies, the
rest of the frequencies are set to zero.

So, instead of learning the parameters of ki in the coordinate space, we learn the
parameters of R directly in Fourier space. The FNO consists of multiple of these
Fourier layers. The full FNO architecture is shown in figure 2.6, where the learnable
parameters are the coefficients of the tensor R and the vector b [29].
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2.2. CONTINUOUS NEURAL REPRESENTATIONS

Figure 2.6: This figure shows the FNO architecture for a 2D input of size H by W
and 1 channel. Above each object the size of the array is written. An input function
is combined with features, like spatial encoding, before going through a channel-wise
FCN that lifts the input to a higher dimensional representation with C channels.
Next, the input goes through several Fourier layers, before a second channel-wise
FCN projects the function back to the desired dimension. The Fourier layer consists
of two paths. The top path takes the input and applies in order a channel-wise
Fourier transform, FC , a filter, R, and a channel-wise inverse Fourier transform
F−1

C . The bottom path mixes the channels by applying a linear layer in the spatial
domain. Both paths are combined, a bias, b(x) is added, and an activation function,
σ, is applied element-wise to produce the output of the Fourier layer.
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Chapter3
Neural Functions in the Measurement
Domain

Photoacoustic image reconstruction is the process of estimating the object that
generated the measured data, typically recorded at the boundary of the domain.
In an idealized scenario with perfect measurements, theoretical results have shown
that complete enclosure of the object by the detection surface is not strictly neces-
sary for reconstruction. In fact, under certain conditions, it is possible to uniquely
reconstruct an object from measurements taken over only a small portion of the
surrounding surface [10]. So why does the PAM3, introduced in section 2.1.2, still
collect so many measurements? The first reason is that real-world conditions are
far from ideal. Photoacoustic signals are extremely weak and highly susceptible to
noise. Secondly, even in a noise-free setting, reconstructions based on data from
only a small part of the detection surface are extremely unstable, making practical
reconstruction virtually impossible [10].

Therefore, many measurements are needed to obtain a decent reconstruction
quality with the PAM3. However, acquiring more measurements takes time, and for
practical reasons, there is a limit to how long a scan can take. To address this, several
techniques have been proposed to reduce the number of required measurements. For
example, [30] discusses a method called compressed sensing, which leverages inherent
sparsity to reconstruct objects from far fewer measurements than what the Shannon-
Nyquist sampling theorem would suggest. Another approach, described in [31], uses
deep learning to inpaint missing data based on the learned distribution of commonly
scanned images.

The neural functions, introduced in section 2.2.1, accept coordinates as an input,
and output the function value at the input coordinate and therefore it is often stated
that they offer a continuous view, so offering an infinite resolution [19]. This inspired
Sun et al. [18] to use these networks for data inpainting in the context of X-ray
computed tomography, which relies on the implicit regularization properties of NFs.
There is a lot of overlap between the reconstruction methods used for x-ray computed
tomography (CT) and photoacoustic tomography, so the use of neural functions for
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3.1. SINOGRAM INPAINTING USING LINEAR INTERPOLATION

photoacoustic tomography could possibly also improve the reconstruction results.
The central question of this chapter is whether NFs can be used for photoacous-

tic data inpainting for the PAM3 to improve the reconstruction quality by reducing
the sparsity in the measurements. Similar reconstruction methods are used in pho-
toacoustic imaging and CT imaging, like the inverse (spherical) Radon transform.
The planar CT geometry is easier to study than the spherical geometry used for
photoacoustic imaging. That is why the case of CT reconstruction will play an im-
portant role in this chapter. The first section of this chapter, section 3.1, discusses
data inpainting using linear interpolation. Linear interpolation is fast and intuitive
to understand and is a good method to compare the NFs to which offer a continu-
ous representation of the measured data and form the subject of section 3.2. The
chapter is finished with a discussion and conclusion in section 3.3.

3.1 Sinogram Inpainting Using Linear Interpola-

tion

This section starts by introducing the mathematical forward and inverse operators
used for planar tomographic imaging. Next, an analytical description follows for
how linear interpolation in the sinogram domain affects the reconstruction result for
the case of the 2D planar Radon transform.

The forward operator that is used for CT imaging is the Radon transform. The
Radon transform is a well-studied operator, see for example [32] and [33], and many
theoretical results are available. The Radon transform is often defined as a map
between Schwartz spaces, because many of the interesting properties of the Radon
transform are easy to proof when the restriction is made to Schwartz spaces, even
though many of the results can be extended to larger spaces [34].

The Schwartz space is defined as

Definition 3.1 (Schwartz Space [33]). The Schwartz space, also referred to as the
space of rapidly decreasing functions, is the function space

S(Rn) =
{
f ∈ C∞(Rn)|xα∂βf(x) ∈ C0(Rn) ∀α, β ∈ Zn

+

}
where C∞ is the space of continuous functions that are infinitely differentiable,

C0 is the space of continuous functions that go to 0 for |x| → ∞ and the multi-index
notation is used, i.e. xα = xα1

1 xα2
2 . . . xαn

n and ∂β = ∂β1

1 ∂β2

2 . . . ∂βn
n .

The forward operator that describes the CT imaging problem is the Radon trans-
form operator, which is defined by taking integrals of an object along straight lines:

Definition 3.2 (Radon Transform [32]). The 2D Radon transform operator, R :
S(R2) → S(R× S1) of an object f ∈ S(R2) is given by

g(l, θ) = R{f} (l, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − l) dx dy,
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CHAPTER 3. NEURAL FUNCTIONS IN THE MEASUREMENT DOMAIN

where g ∈ S(R× S1) is called the sinogram data , l ∈ R is the detector position
and θ ∈ S is the angle of the detector array.

Note that g is an even function, i.e., g(l, θ) = g(−l,−θ), which means that the
data obtained by rotating the detectors over more than 180 degrees is redundant.

A graphical depiction of definition 3.2 is given in figure 3.1. The sinogram data,
g, is obtained by integrating the object, f , over parallel lines for different angles, θ,
and detector positions, l.

Figure 3.1: Geometry of the Radon transform. Due to the sifting property of the
delta function, integration in definition 3.2 is performed over lines, L(l, θ) (the no-
tation g(l, θ) is used in this chapter), whose direction is perpendicular to θ and is
shifted away from the origin in a direction perpendicular to the line by a distance l
[35].

One way of trying to recover the original object, f , is by smearing out all the
measurement data over parallel lines, a technique known as backprojection.

Definition 3.3 (Backprojection [32]). The 2D backprojection operator, R∗ : S(R×
S1) → S(R2) of sinogram data, g ∈ S(R× S1), is given by

fb(x, y) = R∗ {g} (x, y) =
∫ 2π

0

g(x cos θ + y sin θ, θ) dθ,

where fb ∈ S(R2) is called the back-projected object and R∗ is the adjoint of R.
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3.1. SINOGRAM INPAINTING USING LINEAR INTERPOLATION

A downside of image reconstruction using backprojection is that low-frequency
components are oversampled. To compensate for this, the convolution backprojec-
tion algorithm was developed, which gives the following reconstruction

Definition 3.4 (Filtered Backprojection [35]). The 2D filtered backprojection op-
erator, Rfb : S(R× S1) → S(R2) of sinogram data, g ∈ S(R× S1), is given by

ffb(x, y) = Rfb {g} (x, y) =
∫ 2π

0

[c(l) ∗ g(l, θ)]l=x cos θ+y sin θ dθ,

where ffb ∈ S(R2) is called the filtered back-projected object and c(l) is a filter
that compensates for the enhanced low-frequency components, whose exact form is
not important for now. Note that for c(l) = δ(l), we recover the backprojection
summation as given in definition 3.3.

Having introduced the forward and inverse operators used in tomographic image
reconstruction above, I will now describe analytically what happens in the image
domain if the missing parts of the sinogram are filled using linear interpolation.

In definition 3.2 the assumption is made that we have an infinite number of
detectors, i.e. l ∈ R, and measure for an infinite number of angles, i.e. θ ∈ S1.
Experimentally, we are always dealing with a discrete number of angles and a discrete
number of detectors. However, the assumption will be made here that there is an
infinite number of detectors and a discrete number of angles for which a measurement
is performed. The reason for this is to stay closer to the photoacoustic imaging
geometry of the PAM3. For the PAM3 the sampling in time is high enough to
capture all the frequency content in the detected signals, and for the analogy to
the planar Radon transform used for CT imaging, this corresponds to an infinite
number of detectors.

Let’s assume that we have an infinite number of detectors, so l ∈ R, and the
measurements are performed for the discrete angles θ ∈ [0,∆θ, 2∆θ, . . . , π −∆θ],
where the angular spacing is given by ∆θ = π

Nθ
, with Nθ ∈ N being the number

of detector angles for which a measurement is performed. In this discrete case, an
approximation of the object to be reconstructed, f ∗, is given by

f ∗(x, y) =

Nθ−1∑
n=0

∆θ [c(l) ∗ g(l, n∆θ)]l=x cos θ+y sin θ . (3.1)

The quality of the reconstructed object can be improved by using a finer sam-
pling of the angles. The question is whether it is possible to reduce the spar-
sity of measurements artificially using interpolation techniques, to improve the re-
construction quality. For example, the number of measurements can be doubled
using linear interpolation. The interpolated measurements at the angles θintp ∈
[∆θ/2, 3∆θ/2, . . . , π −∆θ/2] are then given by

gintp(l,
2n− 1

2
∆θ) =

g(l, (n− 1)∆θ) + g(l, n∆θ)

2
, for n = 1, . . . , Nθ. (3.2)
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CHAPTER 3. NEURAL FUNCTIONS IN THE MEASUREMENT DOMAIN

The effect on the reconstruction using the inpainted sinogram data, for which
the number of angles for which a measurement is performed is increased by a factor
of 2, is shown in appendix B. A more interesting case of filling the whole sinogram,
not limited to an increase of a factor 2 but an arbitrary number of measurements,
will be discussed here. First the follwing definitions need to be introduced.

Definition 3.5. Given two projection measurements, g(l, θ1) and g(l, θ2), for the
neighbouring measurement angles θ1 and θ2 respectively, a new linearly interpolated
measurement at an intermediate interpolated angle θintp = (1− λ) θ1 + λθ2 is given
by g(l, θintp) = (1− λ) g(l, θ1) + λg(l, θ2), with λ ∈ [0, 1].

Definition 3.6. The rotation operator R∆θ rotates, in a clockwise direction, a
function, in polar coordinates, by an angle ∆θ, i.e.

R∆θ {f} (r, θ) = f(r, θ −∆θ),

where r ∈ R+ is the distance from the origin and θ ∈ S1 is the angle.

Definition 3.7. The triangular function, also known as the hat function, is defined
as

Λ(x) =

{
1− |x| if |x| ≤ 1,

0 otherwise.

Definition 3.8. The indicator function is defined as

1A (x) =

{
1 if x ∈ A,

0 otherwise.

Definition 3.9. Given two functions, f, g ∈ S {R+ × S}, where we are using polar
coordinates, the angular convolution, denoted by ∗θ, is defined as

[f ∗θ g] (r, θ) =
∫ 2π

0

f(r, τ)g(r, θ − τ) dτ.

Proposition 3.10. [36] Let f ∈ S(Rn), then

F {Rθ {f}} = Rθ {F {f}} .

Let’s now say that we have used filtered back projection using the sinogram
data, g(l, θ), for l ∈ R, and discrete angles θ ∈ [0,∆θ, 2∆θ, . . . , π −∆θ], where the
angular spacing is given by ∆θ = π

Nθ
, with Nθ ∈ N being the number of detector

angles for which a measurement is performed, to obtain an approximation f ∗(x, y),
of the object f(x, y). The relation between a reconstruction that is obtained after
artificially filling the empty parts of the sinogram using linear interpolation according
to definition 3.5, denoted by fintp,∞, and the sparse reconstruction, f ∗, is given by
proposition 3.116.

6The convolution kernel from definition 3.4 is ignored in the following proof to simplify notation,
but the proof can be extended easily thanks to the linearity of the convolution operator.
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3.1. SINOGRAM INPAINTING USING LINEAR INTERPOLATION

Proposition 3.11. The backprojected reconstruction based on sparse data and the
reconstruction based on inpainted data according to definition 3.5, under the same
circumstances as defined above, are related to each other by:

fintp,∞(r, θ) = f ∗(r, θ) ∗θ
Λ
(

θ
∆θ

)
∆θ

.

Proof. Knowing that the interpolated data is defined according to definition 3.5, and
using the Fourier slice theorem (see appendix B), it is easy to see that the following
relations holds7.

F {fintp,∞} (ρ, θ) =
∫ 1

0

(1− λ)Rλ∆θ {F {f ∗}} (ρ, θ) + λR−(1−λ)∆θ {F {f ∗}} (ρ, θ) dλ

Using proposition 3.10, followed by applying the inverse Fourier transform, we get

fintp,∞(r, θ) =

∫ 1

0

(1− λ)Rλ∆θ {f ∗} (r, θ) + λR−(1−λ)∆θ {f ∗} (r, θ) dλ

=

∫ 1

0

(1− λ)f ∗(r, θ − λ∆θ) + λf ∗(r, θ + (1− λ)∆θ) dλ

=

∫ 1

0

(1− λ)f ∗(r, θ − λ∆θ) dλ+

∫ 1

0

λf ∗(r, θ + (1− λ)∆θ) dλ

=

∫ 0

−1

(1− λ)f ∗(r, θ − λ∆θ) dλ+

∫ 0

−1

(λ+ 1)f ∗(r, θ − λ∆θ) dλ

=

∫ 1

−1

1[0,1] (λ) (1− λ)f ∗(r, θ − λ∆θ) + 1[−1,0] (λ) (λ+ 1)f ∗(r, θ − λ∆θ) dλ

=

∫ 1

−1

f ∗(r, θ − λ∆θ)
(
1[0,1] (λ) (1− λ) + 1[−1,0] (λ) (λ+ 1)

)
dλ

=

∫ ∞

−∞
f ∗(r, θ − λ∆θ)Λ(λ) dλ

=
1

∆θ

∫ ∞

−∞
f ∗(r, τ)Λ

(
θ − τ

∆θ

)
dτ =

1

∆θ

(
f ∗(r, θ) ∗θ Λ

(
θ

∆θ

))
■

To see what the results given by proposition 3.11 means, a quick experiment
is performed. First, assume we have an object whose sparse reconstruction can
be written as f ∗(r, θ) = f ∗(r)δ(θ). According to proposition 3.11, the resulting

interpolated reconstructed is then given by fintp,∞(r, θ) = f ∗(r)
Λ( θ

∆θ )
∆θ

.
For the experiment, an object which has the value of 1 on the x- and y-axis

and zero else is used, and is shown in figure 3.2. A measurement was performed

7If the reader does not see why this holds, see the proof of proposition B.2 in appendix B.
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CHAPTER 3. NEURAL FUNCTIONS IN THE MEASUREMENT DOMAIN

for 30 equally spaced angles between 0 and 180 degrees. The sinogram was filled
by increasing the number of measurement angles by a factor of 100 using linear
interpolation. The result is shown in figure 3.2. A case with Gaussian noise, with
an amplitude of of 5% of the maximum value in the image, added to the measurement
is also shown.

It can be seen how linear interpolation in the sinogram domain results in a
convolution in the image domain along the angular direction. The shape of the con-
volution kernel, the hat function, is clearly visible. and the shape of the convolution
kernel is visible in the reconstruction of the crossed-line phantom.

Figure 3.2: Top left: reconstruction after a sparse measurement. Top right, the
reconstruction followed after filling the empty parts of the sinogram using linear
interpolation. Similar for the bottom row, but with noise added to the measured
data. Notice how rotational smearing reduces the noise and the artifacts, but also
smears out the features of the object.

The methods of linear interpolation for data inpainting, was also applied on a
more complex phantom than the crossed-line phantom, namely the Shepp-Logan
phantom. The Shepp-Logan phantom is defined on a 256 by 256 grid shown in
figure 3.3. Artificial sinogram data is generated by interpolating the pixel values on
a 320 by 320 grid and applying the forward radon transform operator, from 0 to
180 degrees in steps of 0.01 degrees, to the phantom followed by adding 1% noise
and interpolating back from 320 to 256 pixels. The interpolation steps to different
grid resolutions are performed to prevent an inverse crime. An inverse crime is
committed when the same model is used for both the forward and inverse operator
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3.1. SINOGRAM INPAINTING USING LINEAR INTERPOLATION

resulting in ’trivial inversion’ [37]. The sparse data is generated by subsampling
the fine resolution data for the angles from 0 to 180 degrees with steps of 2 degrees
and a sinogram with steps of 6 degrees. The filtered back projected reconstructions,
with a Ram-Lak filter, will be used as a reconstruction method. The reconstruction
with these sparse measurements, and the measurements after inpainting using linear
interpolation, are compared.

The generated sinogram data and corresponding reconstructions for sparse data
are shown in figure 3.3. Notice how the the sparse sampling artifacts become more
pronounced when increasing the sparsity. The results after filling the sinogram do-
main using linear interpolation is shown in figure 3.4. The sparse sampling artifacts
are less pronounced after filling the sinogram using this artificial data. The amount
of noise is also reduced. For the case with a 6 degree angular spacing, the rotational
convolution as predicted by proposition 3.11, getting wider for larger radii, is clearly
visible. Especially for the small circles at the bottom of the phantom, this results
in decreased visibility of these fine features.

The spherical case of photoacoustic reconstruction is also considered. Time re-
versal is used as a reconstruction method, which is explained in section 2.1.3. An
image of a blood vessel was used as a source, surrounded by a half-ring of 30 de-
tectors. Data was generated using the popular wave propagation toolbox k-Wave
[38]. The reconstruction using a sparse measurement with 30 detectors, a measure-
ment with a full set of 90 detectors and a reconstruction after linear interpolation
to increase the number of measurements artificially is shown in figure 3.5.

We have seen how linear interpolation in the measurement domain results in
an angular convolution in the image domain for the planar CT geometry. Visual
inspection tells us that the benefit of linear interpolation are suppression of the sparse
view artifacts, and noise reduction by smearing out the noise. A downside is loss of
details and resolution by also smearing out the fine details of the actual object. This
gets even worse for larger radii. It is very clear that linear interpolation is a very
’stupid’ way of filling the empty spaces of the measurement domain. None of the
characteristics of the imaging operator are taken into account. Linear interpolation
can be seen as a regularizer that favours solutions that are smooth in the angular
direction, which is hard to justify for the usual objects of interest, like the internal
organs of human patients. For the spherical geometry used for photoacoustic imaging
and time reversal as a reconstruction method, there is a considerable improvement
in the reconstruction quality. It is known that time reversal does not perform well
for sparse detector geometries [39] and that continuous detector surfaces perform
much better. Clearly, even just using linear interpolation to simulate measurements
for extra detectors improves the reconstruction quality.
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Figure 3.3: In the left column, the Shepp-Logan phantom is shown alongside its
sinogram. The middle column displays a sinogram with an angular spacing of 2
degrees and the corresponding reconstruction obtained using filtered back projection.
The right column presents a similar setup, but with an angular spacing of 6 degrees.

Figure 3.4: From left to right: the filled sinogram for all detector angles, for an
angular step size of 2 degrees and an angular step size of 6 degrees, with in the
bottom row the corresponding reconstructions obtained using filtered back projec-
tion. Notice the rotational smearing in the sparsely sampled reconstructions and
the horizontal smearing in the sinograms (see insets).
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Figure 3.5: The photoacoustic reconstruction are shown for 30 and 90 detector
geometries. Also shown, is the reconstruction for 30 detectors after inpainting in
the measurement domain using linear interpolation.

3.2 Sinogram Inpainting Using Neural Functions

In the previous section, we saw the effect of a simple interpolation method in the
sinogram domain on the resulting reconstructions. In this section, method used by
Sun et al. [18] will be used. Sun et al. used neural functions to represent data. An
advantages of these neural functions, as often stated in literature, is that they can
be used to create images of arbitrary resolution [18]. In the article by Sun et al. [18]
a multi-layer perceptron (MLP) with Fourier feature mapping is used. Instead of an
MLP a Fourier feature mapping, the SIREN architecture introduced in section 2.2.1,
will be used as a neural function because it has been shown that SIRENs perform
better than Fourier features mappings for representing details in data [17]. Thanks
to the implicit regularization properties of NFs, i.e. the inherent smoothness of NFs,
a smooth continuous representation of data can be obtained while still preserving
all the fine details.

The architecture for the MLP was taken from [17]. The input is a 2D coordinate
that goes through 4 hidden layers of 256 nodes per layer and is transformed to a
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single output for the network. The frequency parameter for the activation function
of the SIREN, ω, is set to 30. The network is trained for 10000 epochs using an
Adam optimizer with a step size of 0.0001 and a mean squared error loss. The
result for the reconstructions using a SIREN network, is shown in figure 3.6. The
case with a 6 degree angular detector spacing was also trained after reducing the
frequency parameter, ω, to 20, which helps to increase the distance over which the
output is smooth. Notice how the case with a 2 degree angular detector spacing is
very similar to the results using linear interpolation in figure 3.4. For the 6 degree
angular spacing, the reconstruction quality improved a lot after decreasing omega
to 20. The result for a 6 degree spacing might look better than when using linear
interpolation at first sight, since the sparse view artifacts are a lot less pronounced,
but small features are also reduced in visibility (see the small circles at the bottom
of the phantom. The NF is also again applied to the photoacoustic geometry. The
result is shown in figure 3.7. Notices how the result improved compared to the
sparse detector geometry in figure 3.5. The result is even better then for linear
interpolation. Because the detector are very far apart, linear interpolation does not
capture the curves in the sinogram well, something which the NF can do.

Figure 3.6: The left column shows the filled sinogram that was obtained with an
angular spacing of 2 degrees and the corresponding reconstruction. The middle
column is for the angular spacing of 6 degrees. The last column is also for an angular
spacing of 6 degrees, but with the frequency parameter of the SIREN reduced to
ω = 20.
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Figure 3.7: Enter Caption

3.3 Discussion and Conclusion

In this chapter, we have seen that linear interpolation in the measurement domain
for the planar geometry used in CT imaging has the same effect as angular con-
volution. While this smooths out noise and artifacts, it also blurs actual features
in the image, making it a poor choice for improving image quality in most cases,
as was confirmed experimentally. Interestingly, for the spherical geometry used in
photoacoustic imaging, there was some improvement in image quality. However,
this is likely due to the specific reconstruction method used for PA imaging.

For interpolation using neural fields, similar outcomes were observed in the CT
setting. We also saw that the frequency parameter has a significant impact on re-
construction quality. No hyperparameter tuning was performed in this chapter, so
it is possible that better results could be achieved by optimizing the frequency pa-
rameter and the network architecture for specific applications. In the photoacoustic
case, neural fields outperformed linear interpolation, which failed to capture the
curved structures present in the sinogram. However, this does not necessarily mean
that NFs are better than classical methods in general. Other approaches like spline
interpolation may be more suitable for approximating curves.

Overall, the use of NFs for data inpainting relies on implicit regularization,
meaning their outputs are inherently smooth. While NFs can produce outputs
at arbitrarily high resolution, this refers to grid resolution, not the ability to recover
finer details. As such, their usefulness for photoacoustic imaging appears to be quite
limited.
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Chapter4
Neural Operators for Wave Simulations

Large scale photoacoustic image reconstruction is a computationally expensive task.
As an example, photoacoustic image reconstruction for the PAM3 takes 3 hours
and 20 minutes [3]. The bottleneck in the current iterative reconstruction scheme,
are the forward and backward wave simulations, which take take 10 minutes per
simulation on a powerful GPU [3]. The popular MATLAB toolbox k-Wave [38], a
pseudo-spectral time domain solver, is the current standard for wave simulations
for photoacoustic image reconstruction, but is a limiting factor for speed up of the
reconstruction process.

Several attempts have been made to create classical wave solvers that are faster
than k-Wave. See for example [40]–[42]. New to the field of solvers for PDEs are
the so-called neural operators. These deep learning techniques can approximate
maps between function spaces by learning from data [13]. Impressive speed ups, up
to a factor of 700,000 increase in computational speed [13], have been reported in
literature for simulating various scientific phenomena, like weather forecasts, with
neural operators.

An initial attempt of using neural operators, specifically the FNOs introduced
in section 2.2.2.2, for speeding up wave simulations was made by Guan et al. [43].
They have shown that FNOs can be used to simulate waves on a square domain
with a line detector and a homogeneous medium. They hypothesize that FNOs can
be used for the simulation of waves in media with inhomogeneous properties, but
do not demonstrate this.

In this chapter, I will explore the use of FNOs as fast solvers of the wave equation
and reconstruction methods for the PAM3 geometry. I will start by using the FNO
as a forward wave solver in section 4.1 followed by using FNOs as backward wave
solvers in section 4.3. I will go a step further than Guan et al. [43], by not only
simulating waves in homogeneous media, but also in media with inhomogeneous
speed of sound distributions. Next, I will show how these surrogates for forward
and backward wave solvers can be used in an iterative reconstruction framework
in section 4.4. Finally, I will study and comment on the claimed super-resolution
capabilities of FNOs [23] in section 4.5.
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4.1. HOMOGENEOUS FORWARD WAVE SIMULATIONS

4.1 Homogeneous Forward Wave Simulations

Simulating the propagation of waves can often easily be described in k-space, see
for example the pseudo-spectral solver used by k-Wave [38] or the angular spectrum
method [44]. Therefore, I will try to use FNOs as a fast surrogate for wave solvers,
since FNOs are known to perform well for problems that have a simple represen-
tations in k-space [25]. In this first chapter, FNOs will be trained to work as a
forward wave solver, so describing the acoustic forward problem in figure 2.1. As
mentioned before, Guan et al. [43] have already made a first attempt at solving the
wave equation using FNOs, and their article forms a basis for this chapter.

Before describing the used FNO architecture and the method used to train the
FNO, it is important to mention the following. An FNO that describes the acoustic
forward problem takes an initial pressure as its input, and should output the solution
to the wave equation, which is a pressure as a function of space and time. The initial
pressure, p0(x, y), x, y ∈ [0, 1], will be defined on a 2D domain. The solution to the
wave equation, p(x, y, t), x, y ∈ [0, 1], t ∈ [0, Tfinal], will then live on a 3D domain.
FNOs have the limitation that the input and output domains have to be the same.
There are two possible solutions to solve this problem [28]:

• Recurrent 2D FNO: An FNO can be applied in a recurrent way, where the
input is p(x, y, t), x, y ∈ [0, 1]] and the output is p(x, y, t+∆T ). By using the
output as an input, we can predict the pressure for all t, albeit with a step
size of ∆T .

• 3D FNO: The initial pressure can also be lifted to 3D space, and by applying
the FNO to this new input, p3D0 (x, y, t) = p0(x, y), we obtain the complete
solution, p(x, y, t), to the wave equation for all t ∈ [0, Tfinal].

An advantage of the 2D FNO is that it can extrapolate beyond the final training
time, and an advantage of the 3D FNO is that it gives the whole time series at
once, without have a finite step size for the time. 3D FNOs are known to be more
expressive and easier to train than their 2D counterparts [23] which is also why
Guan et al. [43] use the 3D FNO.

The architecture that will be used for the FNO that acts as a forward wave
solver is inspired by Guan et al. [43]. The used FNO contains 4 Fourier layers with
5 hidden channels for each layer. All frequency components in the spatial direction
are kept in R (see equation 2.8) and 64 frequency components are kept along the
time dimension. After the 4 Fourier layers, a small channel mixing MLP transforms
the data to 128 channels before outputting a single channel. The network is trained
with a batch size of 4, for 2000 epochs with an Adam optimizer with a learning
rate of 0.001 and a cosine annealing scheduler that slowly brings the learning rate
down to 0 after 2000 epochs. A Sobolev loss will be used, because it is better at
capturing high frequency details than the standard L2 loss function [45]. The used
1st order Sobolev norm is defined as the square root of the sum of the squared L2
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CHAPTER 4. NEURAL OPERATORS FOR WAVE SIMULATIONS

Figure 4.1: An initial pressure representing blood vessels is placed in the centre of a
rectangular domain and is surrounded by a half-ring of perfect point-like ultrasound
detectors.

norm of a function and its derivative, i.e. ∥f∥ =
(
∥f∥22 +

∑#dim
i=1 ∥ ∂f

∂xi
∥22
)1/2

, where

#dim is the dimensionality of the input coordinate of f . For the discrete inputs, the
derivatives are calculated using a central differencing scheme along all the different
dimensions separately.

The training data consists of 528 training pairs, consisting of the initial pressure
and the solution to the wave equation. In a computational domain of 64 by 128
pixels, a small patch of blood vessels is placed in the centre of a ring of detectors,
as shown in figure 4.1. This will be the initial condition. The solution to the wave
equation is found using k-wave [38], as described in more detail in appendix C.

Training was performed on a 48GB NVIDIA A40 GPU and took 53 hours. The
performance of the FNO is evaluated on an unseen test set of 120 images. The
average relative mean squared error for the total test set is 0.0066. The result for
one of the images in the test set is shown in figure 4.2.

The network has been trained and evaluated using images of blood vessels. It
is essential for neural networks to generalize well for the output of the network to
be trustworthy. As an example, for the PAM3, you do not want the network to
remove signals coming from a circular tumour if it has only been trained on images
of blood vessels. The capabilities of the network to generalize to unseen inputs
will be tested by evaluating the network on the standard ’cameraman’ test image
[46]. This image is chosen, because unlike the vessels which consist of fine lines,
the camera image consists of large high intensity areas with a stronger presence of
low frequency components. The results are shown in figure 4.3. The relative mean
squared error is 0.0087.

The main reason for using FNOs is the possible increase in simulation speed. The
speed of the wave simulations using FNOs was evaluated determining the average
time it takes to perform wave simulations for 50 initial pressures. This test was
performed on a consumer laptop with a NVIDIA RTX 1000 Ada GPU and an intel
core ultra 7 155h processor. The FNO and k-Wave wave simulations were both
performed on the GPU. The average time it took for the FNO to perform the
simulations was 0.162 seconds, and for k-wave it was 3.832 seconds, so there is a
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4.1. HOMOGENEOUS FORWARD WAVE SIMULATIONS

Figure 4.2: This figure shows a comparison of the output of the FNO and the ground
truth provided by k-Wave for an unseen instance from the test set for the forward
wave simulations. Visually, it is impossible to tell both results apart.
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CHAPTER 4. NEURAL OPERATORS FOR WAVE SIMULATIONS

Figure 4.3: The forward FNO is tested on an out-of-distribution input. Some vertical
stripes are apparent, especially for the later time points.
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4.2. INHOMOGENEOUS FORWARD WAVE SIMULATIONS

factor 24 increase in speed. For small domains, the the k-waves CPU code might
actually be faster than the GPU code, so the CPU code was also tested, and after
optimizing the number of threads used for optimal speed, it was possible to reduce
the simulation time to an average of 2.080 seconds. The increase in speed is thus a
factor of 13, similar to the results reported by Guan et al. [43].

4.2 Inhomogeneous Forward Wave Simulations

We have seen before in section 2.1.3 that breast tissue is not acoustically homoge-
neous. Artifacts are introduced in the wave simulations when, incorrectly, a constant
speed of sound assumption is made, as was done in the previous section. With the
PAM3, the speed of sound distributions can be determined, by using the transducers
in emission mode for ultrasound tomography, and using a fast time of flight recon-
struction method [47]. In this section, the inclusion of the SOS map as an input
of FNOs will be studied to test the abilities of FNOs to correctly describe wave
propagation in inhomogeneous media.

FNOs can accept multiple channels as their input. Up till now, only one channel
has been used, containing the initial pressure distribution. A second channel can
be added containing the SOS distribution. This second channel is constructed in a
similarly to the first channel, where the SOS map is copied to generate a 3D input for
the FNO, i.e. c3D(x, y, t) = c(x, y), where c(·) is the SOS map, and c3D(·) contains
stacked copies of c(·) to get the input and output dimensions of the FNO to match.

For the following experiments, the same initial pressure distributions, represent-
ing blood vessels, will be used as before. A second channel, representing an inho-
mogeneous SOS distribution, is created by first setting the background pixels to the
value of 1470 m/s. Next, 6 elliptically shaped regions are selected and the speed of
sounds of the first three is set to 1540 m/s and the other three is set to 1400 m/s,
which is approximately the range of SOSs that can be found in breast tissue [6].
The ellipsoids have a random orientation, the semi-major axis has a length between
10 and 17 pixels, and the semi-minor axis has a minimum size of 10 pixels and are
smoothened with a Blackman window. The ellipsoids are placed completely within
the the rectangular area 15 pixels away from the boundary of the complete domain.
See figure 4.4 for 2 examples of generated speed of sound distributions.
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Figure 4.4: This figure shows two of the randomly generated speed of sound maps.
The colorbar shows the value for the SOS in m/s.

The same training conditions and architectures were used as for the homogeneous
case. This new FNO is tested, and the results of the wave simulations are again
compared and shown in figure 4.5.

To see whether that there is actually a benefit of including the SOS map, the
ground true wave simulation provided by k-Wave, simulated in a medium with an
inhomogeneous SOS distribution, is also compared to the output of the network that
assumes a homogeneous SOS. The results are shown in figure 4.6 and figure 4.7. The
output of the FNO that has the speed of sound map as an input is much closer to
the ground truth than the FNO which assumes a constant SOS. The relative MSEs
are 0.1610 and 0.4905 respectively.
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Figure 4.5: The ground truth, provided by k-Wave, is compared to the prediction
of the FNO. Note the harmonic oscillations present in the output of the FNO
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Figure 4.6: The solution to the wave equation, given an inhomogeneous SOS, pre-
dicted by the FNO which assumes a inhomogeneous SOS is compared to the FNO
that takes the SOS as an input (FNO-SOS). The SOS distribution is shown in the
background. The white circles correspond to locations with a speed of sound of 1540
m/s and the black circles to a SOS of 1400 m/s, for the rest of the medium, the SOS
is 1470 m/s. Some obvious differences are marked by the red box, and the green and
blue arrows. Red box: the two wave fronts in the high-SOS region are further apart
in the FNO-SOS prediction than the FNO prediction. Green arrow: the wave front
travelling upward, which passed through a high-SOS region, has travelled further in
the prediction by the FNO-SOS than the FNO prediction. Blue arrow: The wave-
front travelling downwards, just exciting the high-SOS region, has travelled further
in the SOS-FNO prediction than the FNO prediction. The differences of the SOS-
FNO are correctly predicted as can be seen in figure 4.7.
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Figure 4.7: The difference between the ground truth and the FNO-SOS is shown
in the left column. The error is relatively small compared to the middle column,
showing the error between the FNO and the ground truth. Comparing the errors of
the FNO and FNO-SOS, we find that much of the error in the FNO, arising from
the incorrect assumption of a homogeneous SOS, is mitigated by incorporating the
SOS as an input in the FNO-SOS.

4.3 Time Reversal Wave Simulations

In section 4.1, we have seen how FNOs can accurately describe the forward problem
in figure 2.3. For image reconstruction, an operator is needed that transforms objects
from the data domain back to the image domain. Off course, it would be optimal
to have access to an inverse, but often this is not possible, for example in the case
of sparse measurements. In those cases, alternatives like a pseudo-inverse [48] or
iterative scheme in which the adjoint [8] and forward operator are used to go back
and forth between the image and object domain can be used. Another option, which
can be explained in a very intuitive way, is time reversal, which is the technique that
will be studied in this section.

Time reversal takes the measurements at the sensors, reverses them in time, and
plays them back, where the sensors act as the source of the ultrasound waves. After
solving the backward wave equation, using these time dependent Dirichlet boundary
conditions, the reconstruction, corresponding to the initial pressure, is given by the
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CHAPTER 4. NEURAL OPERATORS FOR WAVE SIMULATIONS

Figure 4.8: Sensor data can be represented as a function of detector number and
time since the start of the measurement.

pressure at t=0 [8].
Training an FNO to act as a time reversal operator is similar to the method

used for training an FNO as a forward operator. The main difference being the way
the data is represented. Sensors in the photoacoustic imaging setup of figure 4.1
measure the pressure as a function of time. We can represent this measurement as
shown in figure 4.8. Just like for the case of the forward wave simulations, we have
the problem that the domain on which the sensor data is represented in figure 4.8 is
different from the domain on which the solution to equation 2.4 lives. This problem
can be solved by representing the sensor data in a different way. The output of the
network is a pressure as a function of space (2D) and time (1D). We can represent
the sensor data by setting all values in a 3D array to zero, except for the voxels
at the sensor locations. These voxels are given the value of the pressure the sensor
measured, but then in time reversed order. So, the input to the network, pTR

input,
representing the sensor measurement, is given by:

pTR
input(x, y, t) =

{
0, if (x, y) is a sensor location (see figure 4.1),

p(x, y, T − t), else.

(4.1)
where p(x, y, t) is the solution to the forward problem, and t ∈ [0, T ] is defined

like before. This input is graphically depicted in figure 4.9.
The output part of the training data, which is the time reversal simulation, was

simulated using k-Wave. The same training parameters were used as in section 4.1.
The average relative mean squared error for the images in the test set was 0.0063.
The result for one of the instances in the test set is shown in figure 4.10. Note how
there is a large difference in the frequency content between the input and output
array, but there this does not seem to cause any problem, and just like for the
forward simulations, it is practically impossible to tell the ground truth and the
network prediction apart.
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Figure 4.9: The pressures measured at the detector locations, are reversed in time,
and placed in the 3D grid at the locations of those detectors to satisfy the need for
the input and output of the domains of the FNO to be equal.

4.4 Iterative Reconstruction

In the one-step reconstruction of the photoacoustic image in figure 4.10, clear arti-
facts are visible, caused by sparse distribution of detectors. It is known that time
reversal will give artifacts in non-ideal imaging circumstances like sparse-view and
limited-view imaging, but this can be solved using an iterative approach [39]. The
basis for many iterative photoacoustic reconstruction algorithms is the same, and
the idea is the following:

1. Start with an initial guess for p0.

2. Use the forward model to generate the sensor data p0 would produce (forward
wave simulation).

3. Compare the sensor data to the actual measured sensor data.

4. Update p0 based on the difference between the actual sensor data and the
sensor data p0 would have generated using a backward wave simulation.

The trained FNOs from section 4.1 and section 4.3 are very flexible and can be
used as surrogates for all wave simulations in any reconstruction method, as long as
the size of the domain is the same as the size of the training domain. These FNOs
will now be tested for iterative time reversal reconstruction. Let K {·} denote the
forward FNO, and KTR {·} the time reversal FNO, then the iterative time reversal
algorithm is given by:

Algorithm 4.1 (Iterative time reversal with a non negativity constraint). Iterative
time reversal is a reconstruction method used for photoacoustic image reconstruction
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Figure 4.10: The time reversal solutions provided by the FNO is compared by the
ground truth solution provided by k-wave. Visually, it is impossible to tell the
difference between both results. Note the clear circular artifacts caused by sparse
sampling.
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and consists of the following steps:
The initial guess for p0, p

1
0, based on the measured data, S, is given by:

p̂10 = KTR {S}
p10 = P

∣∣
R+

{
p̂110

}
Each next iteration is then given by:

p̂n+1
0 = pn0 +KTR {S −K {pn0}}
pn+1
0 = P

∣∣
R+

{
p̂n+1
0

}
,

where P
∣∣
R+ is the projection operator that projects the input onto the positive

reals.

The previously trained surrogates for the forward and time reversal wave simu-
lations were implemented in the iterative time reversal framework and tested on one
of the images of blood vessels in the test set. The result of iterative reconstruction
is shown in figure 4.11. Note how the error is getting smaller for each iteration
and how the absolute amplitude is getting closer to the true amplitude. After a few
iterations, sinusoidal patterns start to appear for the FNO reconstruction. This gets
even worse if the algorithm is run for more iterations (see appendix D).

4.5 Zero-Shot Super Resolution?

In the previous sections we have seen that FNOs can be used as a fast alternative
for the classical wave solver k-Wave. The results are very close to the true solu-
tions, both for the forward and backward wave simulations, and even in an iterative
framework. But why did we use neural operator, specifically FNOs, and not any
other deep learning technique, like convolutional neural networks? The reason is
that an FNO is a neural operator, which differentiates itself from standard networks
like multi-layer perceptions in the sense that they can map between function spaces
[13], so describing maps between functions defined on continuous domains and have
infinite-dimensional inputs [25]. Neural operators are also said to be very different
from standard networks like convolution neural networks because they are not lim-
ited to learning and making predictions at higher resolutions than of the training
data [13] and they are discretization invariant [29].

In this section, these claimed benefits will be tested. To do this, one image
of the test set is taken and transformed to different grid resolutions using Fourier
interpolation. The Fourier interpolated image contains exactly the same frequency
content as the original image, as long as we are in the representation equivalent
zone. Next, the FNO is applied, and the output is transformed back to the original
grid. If the FNO is truly discretization invariant, the result should not change, as
long as we are in the representation equivalent regime. The error as a function
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Figure 4.11: The previously trained FNOs are used for photoacoustic image recon-
struction using the iterative time reversal algorithm. The results for each iteration
is shown and compared to the result provided by k-Wave. After the 4th iteration
the vertical stripes, which we have seen before, become very pronounced making the
results unusable (see appendix D for iteration 5-8).
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Figure 4.12: A single input image is transformed to different grid resolutions using
Fourier interpolation. After applying the FNO, trained on images of size 64 by 128,
the output is transformed back to a resolution of 64 by 128 pixels and compared
to the ground truth. We can see that the FNO performs very well at the training
resolution, but a huge decrease in performance is seen at different resolutions.

of grid resolution is shown in figure 4.12 and for several resolutions, the output of
the network is shown in figure 4.13. We can see that the FNO performs very well
at the training resolution, but a lot worse for different resolutions. For resolutions
below the training resolution, the sinc oscillations corresponding to filtering out the
higher frequency components with a rectangular window, become visible. for the
higher grid resolution, high frequency artifacts are introduced, possibly because high
frequencies can be created in the skip connection, which is not frequency filtered,
after applying the nonlinear activation function. See also [49] in which similar results
are observed.
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Figure 4.13: The FNO is applied on different discretizations of an image in the test
set. For grid resolutions different from the training resolution, the performance is
very poor. Note the sinc oscillations for lower grid resolutions and high frequency
errors for high grid resolutions.

In a second experiment, an image that actually contains higher frequency com-
ponents than the training set, is used as an input. The image has a size of 128 by
256 pixels, so twice the resolution, and the resulting k-wave simulation contains 955
time steps, resulting in the same Tfinal as used for the training set. The ground truth
and FNO prediction are shown in figure 4.14. The outputs have been downsampled
again to 64 by 128 pixels. The full output is of even lower quality (see appendix E).
Note the sinc oscillations that appear even more clearly than before. Also, note the
smoothing and disappearing of high frequency content.
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Figure 4.14: An image of size 128 by 256, containing higher frequency components
than seen during training, is used as an input of the FNO, and the resulting pre-
diction is compared to the ground truth. Note the sinc oscillations due to the
rectangular k-space filtering applied by the FNO, and the removal of high frequency
content.
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4.6 Discussion and Conclusion

In this chapter, we have seen that FNOs can be used as accurate and fast surrogates
of k-Wave as forward and time reversal wave solvers, and that they can generalize
to out of distribution inputs. An increase in speed of about a factor of 13 was
obtained. We must realize though, that k-Wave, even though being very popular
and the standard for PA image reconstruction, is not necessarily the fastest classical
method. This does not downgrade the result, since we have shown that FNOs can
simplify calculations, by learning the distribution of images that can be encountered,
instead of using a method that should work for all input, even though most of them
are just random noise, and this could in theory reduce the computational complexity
of any algorithm.

For the first time, it has been shown that FNOs can also accurately describe
wave propagation in media with an inhomogeneous SOS. The quality of the results
is lower than for homogeneous media, and oscillations appear, which is characteristic
of FNOs, since they work in k-space and errors in k-space translate to oscillations
in the spatio-temporal domain. The same network architecture was used for the
inhomogeneous case as for the homogeneous case, which is not optimal consider-
ing the increase in complexity of the task. Increasing the network’s complexity,
will likely improve the results and reduce the artifacts, but further hyperparameter
optimization is necessary.

The learned forward and time reversal operators have been implemented in an
iterative time reversal framework. This approach is very general, and any other
algorithm can be taken and have the wave propagations replaced with FNOs without
retraining, provided the domain remains unchanged. We have seen that the results
of iterative reconstruction are good for the first few iterations, but then degrade
due to a build up of errors. The current approach is suboptimal, and methods like
algorithm unrolling [50] can improve on these results, by preventing the error build
up.

All experiments were performed on relatively small domains of just 64 by 128
pixels. Due to the requirement for FNOs to have the input and output domains to
be the same, 2D images had to be represented as 3D arrays. This data-inefficient
representation resulted in the need of 48GB GPUs for training the network. This
is a big problem regarding scalability to the PAM3 data, which describes large 3D
volumes that must be represented as 4D arrays. This leads to the same conclusion
reached by Guan et al.” [43] that this is far from current technological possibilities.
An alternative approach to the one tried in this thesis, like a multi-grid approach
[51], could solve this problem. It is difficult to say whether there is still an increase
in computational speed using this method, warranting further investigation.

It is disappointing to see that the FNO is not capable of making predictions for
different resolutions, as is claimed in [13]. We have observed that not only changing
the grid resolution while keeping the frequency content the same, but also inputting
smaller features corresponding to higher frequency components, results in very poor
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performance. This is to be expected when considering the architecture of the FNO
shown in figure 2.6. The FNO only learns a limited number of frequency components,
and all frequencies beyond the maximum frequency present in the training data
are set to zero, which explains the observed sinc oscillations. It is therefore also
not accurate to claim that FNOs accept infinite-dimensional continuous objects as
input, as suggested in [25]. Furthermore, examining the architecture in figure 2.6 and
recognizing that multiplications in the Fourier domain correspond to convolutions
in the spatio-temporal domain, we can see that the FNO architecture is similar to
a CNN with skip connections. The important difference is that when an input is
scaled to a higher grid resolution, the corresponding convolution kernel is scaled in
the same way. This scaling is not done in standard CNNs, but a modified version
called the convolutional neural operator (CNO) has been developed [49], which scales
the convolution kernels appropriately. In the CNO, inputs with a different grid
resolution than the one used during training are simply resampled to the training
resolution using Fourier interpolation, and then later interpolated back to the desired
resolution. This approach is very similar to what the FNO does.

The term neural operator for FNOs, along with all its claims about being an
operator that maps between continuous function spaces instead of finite dimensional
vector spaces dimensional spaces [25] is misleading. FNOs are not very different from
standard CNNs, unlike what some people claim [13]. Using terms as representation
equivalent neural operators [52] is probably more useful in classifying different types
of neural networks, which relates a networks actions on the discrete function to the
action on the underlying continuous representation.

Even if FNOs are not true operators between infinite-dimensional function spaces,
this does not necessarily pose a problem for image reconstruction in the PAM3 sys-
tem. Due to the limited detectable frequency of the transducers, the Nyquist sam-
pling theorem ensures that a continuous function can be accurately represented with
a finite number of coefficients. As a result, increasing the grid resolution beyond a
certain point is unnecessary, since all information about the system is already cap-
tured within a finite set of values. However, accelerating the reconstruction process
remains desirable, so a multi-grid approach using FNOs, or even standard CNNs or
CNOs, could potentially address this challenge in the future.
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Chapter5
Neural Operators for Direct Inversion

Photoacoustic image reconstruction using iterative approaches is known to give bet-
ter results than one-step approaches like time reversal in sparse- and limited-view
imaging geometries [39], like for the PAM3 [3]. A downside of the iterative ap-
proaches is the high computational cost involved for the many wave simulation, as
was discussed in chapter 4.

An alternative to learning parts of an iterative framework, and applying the
learned operators multiple times, is using a fully learned approach where the inverse
operator is learned from data. This approach has some disadvantages, like losing
the explainability that we have in the iterative framework from chapter 4, since the
operator is doing multiple things at the same time, i.e. performing inverse wave
simulations, denoising, regularising etc. However, an advantage is having a fast
one-step reconstruction method. This idea of learning the reconstruction operator
from data is not new, see for example [53] for a more elaborate discussion on fully
learned reconstruction operators. However, the use of neural operators for learning
the photoacoustic reconstruction operator is new and will be investigated in this
chapter.

There are several candidate neural operator architectures that can be used for
learning the inversion operator. The operator architecture that will be studied, one
of the most popular neural operators besides FNOs, is the deep operator network
(DeepOnet). DeepOnets have been shown to be very successful in approximating
operators all kinds of operators [28], but have never been used in the context of
photoacoustic imaging.

This chapter consists of two sections. In the first section, a first attempt is made
to perform photoacoustic inversion with DeepOnets. Hyperparameter optimization
is performed for several DeepOnet architectures to find an optimal network that
can be used for one-step reconstruction. The resulting network is tested on unseen
data, the reconstruction speed will be determined and the super resolution capabil-
ities of this so-called neural operator are tested in section 5.1. In the section 5.2,
a connection will be made between DeepOnets and singular value decomposition
(SVD), a connection also observed by others [54], which offers some new insights
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and can help to understand what optimal reconstruction quality can be expected,
helping to explain some of the results in section 5.1. Finally, the use of DeepOnets
for direct inversion and what the results mean for the future of photoacoustic image
reconstruction, will be discussed in section 5.3.

5.1 DeepOnets for Fully Learned Photoacoustic

Inversion

The use of neural operators as photoacoustic reconstruction operators is new, so it is
not clear what networks are the best choice. In chapter 4 we have already seen how
one type of neural operators, the FNO, gives good results as a wave propagator, so
one might question whether it will also perform well as a reconstruction operator.
Besides the limitations of the FNO regarding inefficient data representation, there
are some findings that suggest that FNOs, which describe problems in k-space,
are not optimal as photoacoustic inverse operators, as is explained in appendix F.
Therefore, FNOs will not be further investigated.

Another popular neural operator architecture is the DeepOnet. Compared to
the FNO, DeepOnets do not have the disadvantage that they require the input and
output domain to be the same. DeepOnets also work in the spatiotemporal domain
instead of in k-space, and the results in appendix F show that this is beneficial.
DeepOnets have the disadvantage that they only accept a fixed input size for the
representation of the sensor data, but that is not problem in this case, since the
sensor locations for the PAM3 are fixed8. DeepOnets also do not have the FNO’s
requirement that data is represented on a regular grid, but can be defined on an
coordinate system. Another important difference with the FNO, is that the output
of the DeepOnet can be queried at an infinite (grid) resolution, like for the neural
functions in chapter 2, without the need for increasing the input size.

This chapter aims to find a suitable DeepONet architecture for rapidly solving
the inverse photoacoustic problem and to evaluate the quality of the resulting re-
constructions. To keep the architecture search manageable, it will be limited to the
following four architectures:

Branch Trunk
Network 1 FCN FCN
Network 2 FCN SIREN
Network 3 CNN FCN
Network 4 CNN SIREN

The FCN-FCN and CNN-FCN were chosen because good results were obtained

8The whole bowl containing the sensors can rotate off course, but for a standard imaging
protocol, measurements are performed for a fixed set of locations (see again section 2.1.2 for more
details.)
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CHAPTER 5. NEURAL OPERATORS FOR DIRECT INVERSION

with these network by others for solving PDEs [28], [55]. The decision to include
architectures with SIRENs as trunk nets was made, because we know from section
2.2.1 that great results have been obtained with data representation using SIRENs
thanks to their implicit regularization properties, and the fact that DeepOnets could
be considered conditioned neural functions (see section 2.2.2.1) and might benefit
as well from this. Only one other article was found that uses SIRENs for one of the
networks in the DeepOnet architecture. In that article [56], DeepOnets are used for
representing 3D shapes.

For the four different trunk-branch combinations, hyperparameter optimization
was performed. Inspiration for approximately what network parameters should be
considered came from [28]. The ranges of hyperparameters that were considered for
each of the network combinations are given below:

1. FCN-FCN:For both FCNs, between 3 and 8 fully connected are used. All
layers, except for the final layer, have the same number of nodes. The number
of nodes for both the final layer, and the other layers, is taken from the set
{32, 64, 128, 256, 512, 1024}. Note that the architectures for both FCNs can be
different. ReLU activation functions are used.

2. FCN-SIREN: For the FCN and SIREN, the same architectures are used as
in the FCN-FCN case. The frequency parameter of the SIREN, ω, is taken
from the set {20, 40, 70, 100, 200}.

3. CNN-FCN: The FCN has between 3 and 5 layers and has 256, 512 or 1024
nodes for the last layer and a fixed number of 64, 128 or 256 nodes for the rest
of the layers. The CNN has between 3 and 5 layers, a fixed kernel size of 3 or
5 for all layers and a stride of 2. The number of channels for the first layers
is either 8 or 16, and double for each next layer, up to a maximum of 256
channels. ReLU activation functions are used after each convolutional layer.
The output of the CNN is flattened, a small FCN is applied of either 2 or 3
layers. The last layer has 256, 512 or 1024 nodes, and the other layers have
64, 128 or 256 nodes.

4. CNN-SIREN: The same architectures were used as for the combination
CNN-FCN, and the same frequency parameters, ω, were used as for the com-
bination FCN-SIREN.

The number of unique networks that can be generated within the given parameter
constraints is too large to feasibly train them all. For instance, almost 30,000 distinct
CNN-SIREN network configurations are possible based on the defined parameter
ranges. Therefore, for each of the 4 trunk-branch combinations, only 40 unique
random models will be generated. The exact architectures for all the models can be
found in appendix G.

The training data consists of sensor data as an input, and the object to be recon-
structed, p0, as an output. The sensor data was obtained using wave simulations,
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Figure 5.1: In this section, two different data representations are used. For the
bottom figure, the detectors are placed along a circle with equal angular spacing,
and ordered according to their angle. For the top figure, the detectors are placed
approximately along a circle, such that the detector locations can be defined using
integer grid coordinates of the grid on which the wave simulations was run, and the
detector ordering is not perfectly according to the detector angle (note the staircase
effect in the sensor data for the top figure, compared to the smooth appearance for
the bottom figure.).

using the same method as in chapter 4. In chapter 4, the wave simulations were
performed on a regular grid, thus we only have access to the pressures on this equally
spaced grid. This is fine for networks like FCNs and SIRENs, but specifically for
CNNs, additional structure could be helpful. Therefore, the simulated pressures
are interpolated to a half ring consisting of 171 detectors with a constant radius
and equal angular detector spacing (see figure 5.1). This is also closer to the situa-
tion of the PAM3 than making a restriction to have detectors located on a regular
grid, but the difference is that the detectors are much closer, removing any sparsity
in the measurements due to large detector spacings. Now having the correct data
representation, the networks can be trained.

Each model is trained, using the training set, for 10000 epochs by optimizing
the mean squared error loss function an Adam optimizer, an initial learning rate
of 0.0001 and a cosine annealing scheduler that brings the learning rate down to 0.
Based on the validation loss, the optimal network architecture can be chosen, and
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CHAPTER 5. NEURAL OPERATORS FOR DIRECT INVERSION

can be tested on the test set.
The validation losses after the final epoch can be found in appendix G. The

network that performed the best used an FCN for the branch and a SIREN for the
trunk. This output of this network for an image of the test set and an image of the
training set is shown in figure 5.2. The average relative mean squared error for the
complete test set was 0.3290. A lot of low resolution ’noise’ can be observed in both
the prediction for the training set as well as for the test set. For the training set,
the absolute values of the prediction by the DeepOnet are close to the true output.
A difference is that the prediction looks smoother than the ground truth. For the
image of the test set, smoothing is even more pronounced. The average time it took
to do 50 reconstruction was 0.0207 seconds. This is 8 times faster than the wave
simulations of section 4.1, and 100 times faster that k-Wave’s wave simulations.

Generalizability to a completely different input, was again tested using the cam-
era image. The result is shown in figure 5.3. The camera man is not clearly visible
in the reconstruction, but the low resolution features are predicted correctly.

The super resolution capabilities of the DeepOnet were test by evaluating the
DON on a finer grid than the training grid. The result is shown in figure 5.4.

In this section, a first attempt has been made to use DeepOnets as photoacoustic
reconstruction operators. Several DeepOnet architectures have been trained, result-
ing in the optimal architecture that consists of an FCN for the branch and a SIREN
for the trunk. The average relative mean squared test error amounted to 0.3290.
Compared to the case of iterative time reversal in chapter 4, figure 4.11, this is com-
parable to the image quality after one iteration of iterative time reversal. However,
the FNO-framework for iterative time reversal was able to reach lower errors after
only 4 iterations. The biggest problem with the DeepOnet results, are the smooth-
ing, and low frequency patterns in the background. The reason for the appearance
of these patterns will be further investigated in the next section. Generalizability
of the DeepOnet to the out of distribution image of a camera man was quite poor.
Low resolutions features were correctly predicted, but any fine detail was lost. A big
advantage of DeepOnets is the speed of the reconstructions. For the small domain
of 64 by 128 pixels used in this chapter, the DeepOnet was almost 100 times faster
than a single wave simulation in k-Wave. If this increase in speed would still hold for
larger domains, and assuming that 10 iterations are necessary for classical photoa-
coustic reconstruction, which takes 3 hours and 20 minutes for the PAM3 geometry
[3], the reconstruction time could be reduced to only a few seconds. Of course, this
is just speculation and actual experiment would need to be performed to determine
the actual increase in speed. Maybe for reasons, like the need to use multiple GPU’s
due to the size of the data, or a multi-grid approach, the results of this section do
not hold for very large domains and smaller speed ups will be obtained. At least,
the results are promising. We have also seen that DeepOnets can be queried at a
finer grid than the grid at which the training data was defined. This does not mean
finer features are visible, because only the grid resolution is increased. Due to the
implicit regularization of the trunks, which are just neural functions, this results in
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(a) Training set

(b) Test set

Figure 5.2: Comparison of the DeepONet predictions and ground truth solutions,
given sensor data as input, illustrated for examples from both the training and test
datasets.
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Figure 5.3: The generalizability of the DeepOnet is tested on an image of a camera-
man.

Figure 5.4: Given the same sensor data as in figure 5.2, the DeepOnet was evaluated
on a fine grid of 256 by 512 pixels.
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the same interpolation as was seen in chapter 3.

5.2 A Connection Between DeepOnets and SVD

The photoacoustic reconstructions given by the DeepOnet in section 5.1 are not as
good as was hoped. Especially when compared to the FNOs of chapter 4, whose
results were close to perfect, the results of the DeepOnet showed unwanted low
resolution background patterns, both for prediction on the training data as well as
for the unseen test data.

In this section, a connection will be drawn between DeepOnets and SVD, which
will be used to get a better understanding of DeepOnets. This will also explain why
the previously mentioned artifacts are visible in the photoacoustic reconstructions
and it will become clear that the amount of training data that was used, was the
limiting factor.

Neural networks make use of nonlinear activation functions. This nonlinearity
makes artificial neural networks extremely powerful, but also difficult to analyse. For
DeepOnets, this is a bit different. Even though DeepOnets consist of two nonlinear
networks, the outputs of both networks, which are vectors of the same length, are
combined in a linear way by calculating their dot product, as given by equation 2.6,
repeated here:

D {f} (x) =
R∑

k=1

Bk {u} Tk(x)

When training a DeepOnet, we are trying to find the optimal basis functions,
Tk, and basis coefficients Bk, that best describe the data. After training, the basis
functions are fixed, but the coefficients vary based on the input, which is the sensor
data. Even though both the trunk and the branch network can be highly nonlin-
ear, they are in the end combined in a linear fashion, which is fundamental to the
following argumentation for the maximum accuracy that can be obtained with a
DeepOnet.

In section 5.1 the following optimization problem was solved:

argmin
ξ

1

528

528∑
i=1

∥Dξ {fi} − pi∥22 (5.1)

where Dξ {fi} is the network prediction, ξ are the network parameters and pi is
the true output that needs to be approximated. Define the matrix Π such that each
row is the vectorized form of p. The first row is p1, the second row is p2, and so on
until p528:
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Π =


— p1 —
— p2 —

...
— p528 —

 (5.2)

Similarly, define the matrix ∆ such that each row corresponds to the vectorized
form of D {fi}:

∆ =


— D {f1} —
— D {f2} —

...
— D {f528} —

 (5.3)

Using equation 2.6, we can write ∆ as

∆ =


— D {f1} —
— D {f2} —

...
— D {f528} —

 =


B1 {u1} B2 {u1} · · · BR {u1}
B1 {u2} B2 {u2} · · · BR {u2}

...
...

. . .
...

B1 {u528} B2 {u528} · · · BR {u528}

 ·


T1

T2
...
TR

 , (5.4)

We can now see that the optimization problem in 5.1 is the same as the following
optimization problem:

argmin
ξ

∥∆ξ − Π∥2F , (5.5)

where ∥·∥F denotes the Frobenius norm and the ξ dependence of ∆ is specifically
denoted.

I will now introduce a theorem [57], after which it becomes clear why I have
rewritten equation 5.1 to the form of equation 5.5.

Theorem 5.1 (Eckhart-Young Theorem). Let A ∈m×n be a real matrix with m ≤ n.
The SVD of A is given by A = UΣV T . Let B ∈ Rm×n be another real matrix..
The singular values of A are denoted by σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Assume that
rank(B) ≤ k. Then the solution to the minimization problem

min
B∈Rm×n

∥A−B∥F

subject to rank(B) ≤ k

has as a solution the truncated SVD of A, denoted by Ak, i.e.

Ak =
k∑

i=1

σiuiv
T
i = UkΣkV

T
k ,
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where Uk, Σk, Vk are the matrices formed by taking the first k columns of U and V
and the top-left k × k block of Σ, respectively. The optimal value is given by

∥A− Ak∥2F =
m∑

i=k+1

σ2
i .

Proof. See [57]. ■

Seeing the correspondence between equation 5.5 and theorem 5.1, we can explain
the limited reconstruction quality in section 5.1:

Given the circumstances in section 5.1, so having a training set consisting of 528
images, and having a DeepOnet architecture for which R=128 (see equation 2.6),
and for a moment assuming no limits on B and T , except for the length of the output
vector, then theorem 5.1 can be applied directly. Thus, the optimal performance
of the chosen DeepOnet architecture in section 5.1 on the training set is limited
to the truncated SVD of equation 5.2. There are several reasons why the optimal
accuracy is not reached, like getting stuck in a local minimum and not reaching a
global minimum or using a network that is not expressive enough. So when training
a DeepOnet, the trunks are trying to approximate the principal components, and
the branch is a nonlinear network that is trying to determine the basis coefficients
from the sensor data.

The theoretical insight gained, will now be used to see how good or bad the
results in section 5.1 actually were. The result of projecting an instance of the
training set and an instance of the test set onto the first 128 principal components
is shown in figure 5.5. When compared, this figure looks very similar to the output
of the DeepOnet in figure 5.2. The theoretical arguments given above thus tell us
that the DeepOnet performed really well, and that a better result, given the network
architecture, was not possible, and the low resolution background patterns cannot
be removed without changing the network architecture. The theoretical discussion
tells us exactly how the results can be improved, namely by increasing the number of
nodes in the final layer of both networks of the DeepOnet, which means increasing
the rank of the matrix to be approximated in theorem 5.1. If all 528 principal
components of the training set are used, and an image of the test set is projected
onto the space spanned by these vectors, the best possible result that could be
obtained is the result shown in figure 5.6. The results do not say that this accuracy
will actually be reached. Maybe the branch cannot predict the basis coefficients
correctly because there is not enough information in the input data for example.
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Figure 5.5: Shown here are an image from the training set and an image from the
test set that are both projected onto the space spanned by the first 128 principal
components of the training set. Also shown, is the difference between the projection
and the full image.
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Figure 5.6: The same images as in figure 5.5 are now projected onto the space
spanned by the images in the training set. Off course, the error of the image in the
training set is equal to zero, up to floating point noise. There is still an error in the
image of the test set, since it is not in the span formed by the images in the training
set.
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5.3 Discussion and Conclusion

In this section, we have seen how DeepOnets can be used for direct inversion. After
hyperparameter optimization for 4 different combinations of trunk-branch networks,
a DeepOnet architecture made from an FCN and a SIREN was found to perform
the best as a photoacoustic reconstruction operator. The speed up compared to a
single wave simulation in k-Wave of a factor 100 was obtained. A downside was the
relatively large error. Especially when compared to the iterative results of chapter
4, where a better result was obtained after only 2 iterations.

A theoretical argument has been given to predict the optimal network output.
This insight of a connection between DeepOnets and SVD also shows us how, in
theory, a better result can be obtained. Increasing the number of trunk and branch
outputs, corresponding to an increase in the rank of the matrix to be approximated,
can improve the results but more data might be required to do this to reach an
acceptable accuracy. From the connection with SVD, it is clear that DeepOnets
are best suited for approximating sparse operators, which is also reported in the
literature [25]. The photoacoustic reconstruction operator is not sparse, as is also
suggested by the experimental results in this section, which means that DeepOnets
are probably not the most suitable type of networks for direct inversion.

DeepOnets can be evaluated at any grid coordinate after training. This is simi-
lar to the neural functions from 3. True super resolution, in the sense of being able
to see finer details, is not obtained, only the same interpolation resulting from the
implicit regularization of the SIREN architecture. Maybe, there is an alternative
use for DeepOnets in the context of photoacoustic imaging though. Just like neu-
ral functions, of which PINNs are one example, derivatives with respect to input
coordinates can be easily calculated. Maybe, DeepOnets can be used for the task
of solving the wave equation, as was done in chapter 4, followed by optimizing the
resulting coordinate based network like a PINN. The physics based loss term that
is then added, and can give information for non-integer grid coordinates, can be a
first step to true super resolution outputs.
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Chapter6
Discussion

Many different results have been obtained in this thesis. Most of the results were
already discussed at the end of each chapter. Here I will only discuss the most
significant results.

First of all, the use of NFs for data interpolation has been investigated. The
use of NFs did not improve the reconstruction quality significantly. Self-supervised
techniques do not ’know’ what the usual data looks like, and cannot use any in-
formation to base its interpolation properties on, other than using some smooth
interpolation. The use of NFs for data inpainting in the context of photoacoustic
imaging is therefore very limited. Learned techniques are probably a better alter-
native for data inpainting, although these learned methods are difficult to realize in
practice for the computational volumes considered for the PAM3.

The use of FNOs showed some impressive speed ups for wave simulations com-
pared to k-Wave and the quality and generalizability were excellent. Unfortunately,
only small domains of 64 by 128 pixels were considered in this thesis. Even these
small domains required the use of large 48 GB GPUs for training. This has to
do with the data inefficient representation that is required for FNOs. This makes
FNOs, as used in the report, unsuitable for larger PAM3 geometries. Perhaps multi-
grid approaches [51] could offer a solution and might be worth investigating. It is
not known wether the results regarding speed ups are still true for larger geome-
tries, methods like the multigrid approach work very differently than the methods
explored in this thesis.

For the first time, FNOs were used to simulate waves on domains with an inho-
mogeneous speed of sound. Good results were obtained, but there is still room for
improvement. Increasing the complexity of the FNO will probably provide excellent
results. Iterative reconstruction using FNOs also showed some good results, but
again, there is room for improvement. Error build up after a few iterations, made
results unusable. Methods like algorithm unrolling [50], can probably solve these
problems.

It was disappointing to see that FNOs are not actually discretization invariant,
since this is the reason why FNOs would be special and belong to the class of
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neural operators. The FNO architecture is not very different from a standard CNN
architecture, but with skip connections. It would be interesting to compare the
two in future work. The claims that FNOs are very different from CNNs [13] are
therefore not fair. Maybe, instead of using the term ’neural operator’ it is better to
classify networks in the future based on whether they are ’representation equivalent’
a term introduced by Bartolucci et al. [52], meaning that operations performed on
discrete data have the same effect as on continuous data.

Approximating the photoacoustic reconstruction operator with DeepOnets gave
results of poor quality on first sight. A theoretical analysis showed that the results
were close to being as good as possible, given the network architecture. DeepOnets
are known to perform well for sparse problems, and photoacoustic inversion is defi-
nitely not sparse, as was seen by the low quality reconstruction results. Thanks to
the theoretical results, it is known how to improve the results, namely increasing
the network size, and using more data. For the PAM3 system, this might mean
that huge amounts of data are necessary, making the usability of DeepOnets lim-
ited. Even though the quality was not great, the speed up of a factor 100 was very
impressive. Perhaps even lower quality results are useful as a better initialize for
iterative algorithms, so that they require fewer iterations. So, the use of DeepOnets
as photoacoustic reconstruction operators seems limited, but there might be some
applications for which they are useful.
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Chapter7
Conclusion and Outlook

The central question of this thesis was whether continuous neural representations can
be used to accelerate photoacoustic image reconstruction and improve reconstruction
quality in the case of sparse measurements. DeepONets and FNOs have been shown
to be significantly faster than k-Wave; however, these methods currently have several
limitations. In their present form, they are not yet suitable for practical use in
photoacoustic image reconstruction. Further research into applying deep learning
techniques to large computational domains may lead to meaningful advancements, as
the current results for small domains, while promising, have limited practical value.
Moreover, despite claims that these techniques provide continuous representations
of objects rather than relying on discretization, this thesis finds that such continuity
does not hold under the conditions investigated.
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AppendixA
AI Statement

During the preparation of this work, I used ChatGPT-3.5 and ChatGPT-4 to write
and improve Python and Matlab code and to rewrite parts of this thesis. After
using this tool, I thoroughly reviewed and edited the content as needed, taking full
responsibility for the final outcome.
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AppendixB
Reducing Data Sparsity by a Factor of 2

Theorem B.1 (Projection-Slice Theorem). The 1-dimensional Fourier transform
of the projection data for a certain angle θ, with respect to the variable l, is equal
to the 2-dimensional Fourier transform of the image along the line with that same
angle θ, i.e.

F1D {g} (ρ, θ) = F2D {f} (ρ cos(θ), ρ sin(θ))

Proof. See [35]. ■

With the help of theorem B.1, we can proof the following proposition:

Proposition B.2. Let’s say that we have used filtered back projection using the
sinogram data, g(l, θ), for l ∈ R, and discrete angles θ ∈ [0,∆θ, 2∆θ, . . . , π −∆θ],
where the angular spacing is given by ∆θ = π

Nθ
, with Nθ ∈ N being the number of

detector angles for which a measurement is performed, to obtain an approximation
f ∗(x, y), of the object f(x, y). A reconstruction that is obtained after artificially
increasing the number of measurements by a factor of 2, using linear interpolation
as given by equation 3.2, denoted by fintp,2 is given by:

fintp,2(x, y) =
1

2
f ∗(x, y) +

1

4
R∆θ

2
{f ∗(x, y)}+ 1

4
R−∆θ

2
{f ∗(x, y)} (B.1)

Proof. Using equation 3.2 and the linearity of the Fourier transform and theorem
B.1, we know that
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F1D {gintp}
(
ρ,

2n− 1

2
∆θ

)
=

1

2
F1D {g} (ρ, (n− 1)∆θ) +

1

2
F1D {g} (ρ, n∆θ) ,

for n = 1, . . . , Nθ

F2D {fintp}
(
ρ cos

(
2n− 1

2
∆θ

)
, ρ sin

(
2n− 1

2
∆θ

))
=

1

2
F2D {f} (ρ cos ((n− 1)∆θ) , ρ sin ((n− 1)∆θ))

+
1

2
F2D {f} (ρ cos (n∆θ) , ρ sin (n∆θ))

=
1

2
R−∆θ

2
{F2D {f}}

(
ρ cos

(
2n− 1

2
∆θ

)
, ρ sin

(
2n− 1

2
∆θ

))
+

1

2
R∆θ

2
{F2D {f}}

(
ρ cos

(
2n− 1

2
∆θ

)
, ρ sin

(
2n− 1

2
∆θ

))
Applying the frequency domain filter as given in definition 3.4 and then applying

the inverse Fourier transform and using proposition 3.10 gives, in polar coordinates,

fintp(r, θ) =
1

2
R−∆θ

2
{f ∗} (r, θ) + 1

2
R∆θ

2
{f ∗} (r, θ)

The last step to get to the final result is, knowing that have obtained a sinogram
with twice the number of samples according to equation 3.2, and realizing that

F {fintp,2} (ρ, θ) =
1

2
F {f ∗} (ρ, θ) + 1

2
F {fintp} (ρ, θ),

which directly gives us the desired result.
■

A quick experiment is performed to show the effect of linear interpolation as
predicted by proposition B.2. The radon transform for 30 equally spaced angles
from 0 to 180 degrees is applied to a phantom consisting of points placed along
circles of different radii. The phantom, the filtered back-projected reconstruction
and the filtered back-projected results with interpolated measurements are shown
in figure B.1.
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Figure B.1: This figure shows, from left to right, a phantom consisting of multiple
points, its reconstruction obtained with filtered backprojection and the reconstruc-
tion obtained with filtered backprojection after increasing the number of measure-
ments by a factor of 2 using linear interpolation.

Figure B.1 shows us how interpolation gives a reconstruction that contains two
copies of the reconstruction without interpolation, but then rotated by a small
amount clockwise and counter-clockwise.
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Generation of Training Data

GIGO: Garbage In, Garbage Out

Attributed to George Fuechsel, an
American IBM technical instructor.

The use of high-quality training data is of utmost importance when training a neural
network to achieve accurate predictions on unseen data. In this appendix I will
explain how the data, used for training the neural networks that act as surrogate
models for classical wave propagation solvers, was generated.

C.1 Initial Pressure Distribution

The first thing we need if we want to solve the acoustic part of the photoacoustic
forward problem, as depicted in figure 2.1, is an initial pressure distribution. To stay
close to the application of interest, i.e. PAM, pressure distributions with a blood
vessel-like shape will be used. The Retinal Vascular Tree Analsysis (RETA) database
[58] will be used for this. The RETA database contains 54 segmentations of retinal
blood vessels with a size of 1024 by 1024 pixels. One of the images in the dataset
is shown in figure C.1. These images are too large for the experiments performed,
therefore patches with a size of 128 by 128 pixels were extracted randomly from the
images, where the outer 100 pixels of the original images were removed, because
they contained no blood vessels. For the first 44 images, 12 patches were extracted
per image, resulting in a total of 540 images in the training set. Another 3 patches
were extracted per image to generate a validation set containing 132 images. For
each of the 10 remaining images, 12 patches were also extracted to generate a test
set containing 120 images. The patches were later reduced in size to 64 by 64 pixels
using nearest-neighbor interpolation. Some of the patches are shown in figure C.2.
The generated patches can be used as initial pressure distributions and propagated
using an acoustic solver as will be explained in the next section.
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Figure C.1: An example of one of the images in the RETA dataset, showing a mask
of retinal blood vessels.

Figure C.2: Eight examples of patches with a size of 64 by 64 pixels, which will be
used as initial pressure distributions for the wave propagation simulations.
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C.2 Wave Propagation

In order to simulate the acoustic part of the photoacoustic forward problem, we
need to be able to solve the wave equation. A popular toolbox for acoustic wave
simulations is k-wave [38], an open source Matlab wave propagation tool. It takes
too much space in this report to explain exactly how this toolbox works, and what
the advantages and disadvantages are, but the interested reader can find detailed
explanations in the k-wave user manual [59]. There are a few things written in the
user manual which are important to mention though.

The first thing is that that the solutions given by the discrete k-space pseu-
dospectral method implemented in k-wave converges to the analytical continuous
solutions as the grid spacings go to zero. An easy way to test the accuracy of the
solution is therefore to test how the solution changes for finer discretizations.

Secondly, k-wave assumes that solutions are periodic, i.e. the domain is a hyper-
torus, Tn = S1 × · · · × S1︸ ︷︷ ︸

n

, with n being the dimension of the domain. The result is

that waves that leave the bottom of the domain will reappear at the top, if no action
is taken to compensate for this effect. One way of solving this problem is expanding
the domain, and limiting the time of the simulations to prevent this wrap-around
artifact. A downside is the increased computational effort. Another method, imple-
mented by k-wave, is adding a perfectly matched layer (PML) layer to the boundary
of the domain. The PML layer is an absorbing layer whose properties are described
by a set of non physical equations, and has as a goal absorbing all the incident waves
and preventing reflections. It is important to note that PML layers are not perfect
and they are a major course of limiting the accuracy to approximately 10−4 or 10−5

at best.
The third and last thing to consider is the maximum spatial frequency that can

be represented on the computational grid and how this relates to the continuous
function represented in a discretized manner. According to the Nyquist sampling
theorem, the sampling frequency needs to be at least twice the maximum frequency
present in the signal. K-wave makes the assumption that the continuous function,
p̂(x), that gave rise to the discretized values, is given by the band-limited interpolant,
given by

p̂(x) =
1

Nx

Nx/2−1∑
m=−Nx/2

P (km)e
− 2πi

Nx
mx
∆x (C.1)

where P (km) are the discrete Fourier coefficients. A result of assuming that the
continuous function is given by equation C.1 is that unexpected oscillations can
appear in the numerical solution (think of convolution with a sinc function)9. It is
preferred to have smooth solutions without the oscillations, therefore a Blackman

9It is important to realize that these oscillations do not mean that the results of the wave
simulations are wrong or unstable!
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APPENDIX C. GENERATION OF TRAINING DATA

window is used to filter the initial pressure distribution in the spatial frequency
domain. This prevents the oscillations from appearing.

I have just summarized the most important properties of k-wave and the chal-
lenges it comes with. Having this knowledge in the back of our mind, we can now
generate the training data necessary to train a neural network that acts as a wave
solver. In summary, the following steps are taken to generate the training data10:

1. A computational domain is created.

2. A 64 by 64 sized patch, filled with blood vessels, is placed in the computational
domain and will act as the initial pressure distribution.

3. The initial pressure distribution is smoothened using a Blackman window.

4. Either a PML layer is placed outside the computational domain or the com-
putational domain is expanded to twice the original size by expanding it in
all directions followed by placing an PML layer outside the boundary of the
domain.

5. K-wave is used to solve the wave-propagation problem until a time equal to
the maximum time it takes to travel across the original computational domain.

The figure below shows a graphical depiction of the 5 steps:

Figure C.3: The data used for training is generated by (1) creating a computational
domain, (2) inserting an initial pressure distribution in the shape of blood vessels,
(3) smoothing using a Blackman window, (4) expanding the domain/adding a PML
layer and (5) solving the wave propagation problem using k-wave.

Before the pipeline was used to generate all the training data, the accuracy of
the solution was tested on one instance by increasing the size of the computational
domain by a factor of 2 and 4 and using Fourier interpolation to increase the size

10For some experiments in this report, the steps may vary slightly, and any differences will be
noted in the relevant sections.
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of the initial pressure distribution and running k-wave. The difference between the
original results and the results using a factor 2 increase of domain size were less then
the floating point accuracy. The same result was obtained by comparing the results
for the factor 2 increase with the results for the factor 4 increase, and the results for
the factor 4 increase with the results for the factor 8 increase, allowing us to assume
that the results are accurate.
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AppendixD
Extra iterations for figure 4.11

Figure D.1: This figure shows that the error build up of the FNO produces results
that are unusable for the 5th iteration and beyond.

81



AppendixE
Full output of figure 4.14

The full resolution output related to figure 4.14 is shown below:

Figure E.1: This figure shows the output of an 128 by 256 input image for an FNO
trained on 64 by 128 sized images
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AppendixF
FNO as a Direct Inversion Operator

Several experiments were performed for the use of FNOs as direct inversion oper-
ators. None of the experiments resulted in good outcomes. Shown below is one of
the results, which is a good example, and all other results were very similar. An
FNO was trained using sensor-data as an input, and a stack of initial pressures as
an output. The trained network would give the same output, no matter the input.
The output is shown below. It was almost as if the network was not sensitive to the
input data, even though tiny variations based on sensor data were present. For a
training set of just 4 images and a network with millions of parameters, the result
was similar. The network would always get stuck in a local minimum. It is known
that FNOs work well for problems that can be described easily in k-space, and this
is probably not the case for photoacoustic inversion, which could explain the poor
results

Figure F.1: The output of the FNO trained for direct inversion gave the average of
all inputs, shown as the white square within which all the blood vessel images were
defined.
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AppendixG
DeepOnet Architectures

In section G.1, G.2, G.3, and G.4, the hyperparameters are given that define the
DeepOnet architectures. Note that to each DeepOnet, a single trainable bias term is
added after the dot product. The best performing network architectures for each of
the four trunk-branch combinations, is made bold. The validations losses are given
in section G.5.

G.1 FCN-FCN

Net
#

Branch
Layers

Branch
Hidden
Nodes

Branch
Nodes
Last
Layer

Trunk
Layers

Trunk
Hidden
Nodes

Trunk
Nodes
Last
Layer

1 2 256 128 7 1024 128
2 2 32 128 2 256 128
3 5 128 64 7 1024 64
4 6 64 512 4 256 512
5 3 256 128 2 1024 128
6 5 512 64 6 256 64
7 3 1024 64 3 512 64
8 5 128 64 3 32 64
9 3 128 128 2 512 128
10 5 32 128 5 1024 128
11 6 512 512 7 1024 512
12 7 256 32 4 256 32
13 5 256 32 3 512 32
14 4 1024 512 3 512 512
15 6 1024 64 5 1024 64
16 6 128 512 3 32 512
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Net
#

Branch
Layers

Branch
Hidden
Nodes

Branch
Nodes
Last
Layer

Trunk
Layers

Trunk
Hidden
Nodes

Trunk
Nodes
Last
Layer

17 6 512 128 7 64 128
18 2 512 256 2 1024 256
19 5 512 128 3 1024 128
20 4 128 32 5 1024 32
21 2 32 128 4 256 128
22 3 32 32 3 32 32
23 4 512 256 7 64 256
24 5 32 512 3 32 512
25 5 1024 256 6 256 256
26 5 32 32 6 256 32
27 4 128 1024 3 1024 1024
28 7 64 64 4 512 64
29 7 1024 32 5 32 32
30 3 512 64 7 512 64
31 4 32 1024 6 64 1024
32 7 32 32 7 128 32
33 2 64 512 2 64 512
34 6 512 32 6 256 32
35 4 1024 512 4 32 512
36 4 128 64 7 128 64
37 2 1024 32 6 64 32
38 5 64 128 2 64 128
39 7 64 1024 2 256 1024
40 6 32 32 6 64 32

G.2 FCN-SIREN

Net
#

Branch
Layers

Branch
Hidden
Nodes

Branch
Nodes
Last
Layer

Trunk
Layers

Trunk
Hidden
Nodes

Trunk
Nodes
Last
Layer Omega

1 5 1024 32 4 64 32 200
2 6 1024 128 7 32 128 40
3 4 64 256 7 256 256 40
4 3 1024 128 5 1024 128 20
5 7 128 32 2 128 32 70
6 5 128 128 5 1024 128 70
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G.3. CNN-FCN

Net
#

Branch
Layers

Branch
Hidden
Nodes

Branch
Nodes
Last
Layer

Trunk
Layers

Trunk
Hidden
Nodes

Trunk
Nodes
Last
Layer Omega

7 5 128 32 7 128 32 100
8 5 256 512 6 32 512 200
9 5 128 512 1 512 512 100
10 4 512 256 2 128 256 70
11 4 128 128 7 256 128 70
12 4 128 1024 3 1024 1024 100
13 6 256 128 6 32 128 20
14 2 64 512 7 1024 512 70
15 4 128 256 6 256 256 200
16 6 1024 512 2 128 512 70
17 3 32 32 3 1024 32 200
18 2 1024 64 7 32 64 200
19 7 64 256 2 32 256 200
20 7 32 32 3 128 32 40
21 6 256 32 4 128 32 70
22 3 1024 64 4 512 64 100
23 6 1024 128 3 512 128 20
24 3 256 64 5 1024 64 70
25 6 128 128 4 128 128 70
26 3 256 128 2 1024 128 40
27 4 512 64 2 32 64 20
28 7 32 1024 7 128 1024 40
29 2 128 512 4 1024 512 20
30 6 1024 128 3 64 128 70
31 7 1024 64 3 256 64 200
32 2 32 512 7 32 512 200
33 2 512 1024 2 32 1024 100
34 7 64 64 5 64 64 70
35 5 128 32 5 256 32 40
36 5 1024 512 6 32 512 200
37 3 1024 32 2 512 32 100
38 2 64 256 4 512 256 20
39 7 64 1024 4 128 1024 40
40 7 512 256 5 1024 256 40

G.3 CNN-FCN

Branch:

86



APPENDIX G. DEEPONET ARCHITECTURES

Net
#

CNN
Layers

Kernel
Size

Channels
8/16

Linear
Layers Nodes

Nodes Last
Layer

1 5 3x3 16 2 64 256
2 3 5x5 8 3 128 256
3 3 3x3 8 2 128 256
4 4 3x3 8 2 256 1024
5 3 5x5 8 3 64 1024
6 4 3x3 8 2 256 256
7 5 5x5 16 2 128 1024
8 5 5x5 8 2 64 512
9 4 5x5 16 3 64 512
10 5 5x5 8 2 128 512
11 5 3x3 16 3 128 512
12 3 3x3 16 2 64 512
13 3 3x3 16 3 128 256
14 4 3x3 16 2 256 1024
15 5 3x3 8 2 64 1024
16 5 5x5 8 2 64 512
17 5 3x3 16 3 256 1024
18 3 3x3 16 3 256 1024
19 3 5x5 8 2 256 512
20 3 3x3 16 2 128 512
21 4 5x5 8 3 64 1024
22 5 3x3 8 3 64 1024
23 4 5x5 16 3 256 512
24 3 3x3 8 2 128 256
25 3 5x5 8 3 256 1024
26 4 3x3 8 3 128 256
27 4 3x3 16 2 128 256
28 3 5x5 8 3 128 256
29 4 3x3 8 2 128 256
30 3 5x5 8 2 256 512
31 4 3x3 8 3 256 512
32 3 3x3 8 2 64 512
33 5 3x3 16 3 256 1024
34 4 3x3 16 3 64 512
35 3 3x3 16 3 64 512
36 4 3x3 16 3 128 1024
37 3 5x5 8 2 128 256
38 4 5x5 8 3 128 1024
39 4 3x3 16 2 64 256
40 3 3x3 16 2 256 1024

87



G.3. CNN-FCN

Trunk:

Net
#

Number
Layers

Nodes
Hidden Layers

Nodes
Last Layer

1 3 256 256
2 3 128 256
3 2 128 256
4 3 64 1024
5 4 64 1024
6 2 64 256
7 3 256 1024
8 3 256 512
9 3 256 512
10 2 128 512
11 3 128 512
12 2 128 512
13 2 64 256
14 2 128 1024
15 4 64 1024
16 4 128 512
17 4 256 1024
18 4 256 1024
19 4 64 512
20 4 128 512
21 3 128 1024
22 4 64 1024
23 2 256 512
24 4 128 256
25 3 64 1024
26 3 64 256
27 4 64 256
28 2 256 256
29 3 64 256
30 3 64 512
31 3 128 512
32 3 256 512
33 4 128 1024
34 4 64 512
35 2 128 512
36 2 128 1024
37 2 256 256
38 3 128 1024
39 3 256 256
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Net
#

Number
Layers

Nodes
Hidden Layers

Nodes
Last Layer

40 4 64 1024

G.4 CNN-SIREN

Branch:

Net
#

CNN
Layers

Kernel
Size

Channels
8/16

Linear
Layers Nodes

Nodes Last
Layer

1 4 5x5 8 2 64 512
2 4 5x5 16 3 128 1024
3 3 3x3 16 3 256 512
4 5 3x3 8 3 128 256
5 4 5x5 16 3 64 512
6 4 5x5 16 2 256 512
7 5 5x5 16 3 256 1024
8 5 5x5 8 3 64 1024
9 5 3x3 8 2 64 256
10 4 5x5 16 3 256 256
11 5 5x5 8 3 64 1024
12 3 3x3 16 3 64 256
13 4 5x5 16 2 128 512
14 3 3x3 16 3 128 512
15 5 3x3 8 2 128 256
16 4 5x5 8 3 256 512
17 5 5x5 16 2 256 1024
18 5 3x3 16 2 64 1024
19 4 5x5 16 3 256 512
20 4 5x5 8 3 64 512
21 5 3x3 16 3 64 256
22 5 3x3 16 2 128 256
23 5 3x3 16 2 256 512
24 3 3x3 8 3 256 512
25 5 5x5 16 3 256 1024
26 3 5x5 16 2 128 1024
27 4 5x5 8 3 256 256
28 5 5x5 16 2 128 1024
29 3 3x3 8 3 256 256
30 4 3x3 16 3 256 256
31 4 3x3 8 2 256 256
32 3 3x3 8 2 256 256
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G.4. CNN-SIREN

Net
#

CNN
Layers

Kernel
Size

Channels
8/16

Linear
Layers Nodes

Nodes Last
Layer

33 3 5x5 8 3 64 512
34 5 3x3 8 2 256 1024
35 5 3x3 8 3 256 1024
36 4 5x5 8 2 64 512
37 5 3x3 8 3 128 1024
38 4 3x3 8 2 64 512
39 4 5x5 8 2 64 512
40 4 5x5 16 2 128 1024

Trunk:

Net
#

Number
Layers

Nodes
Hidden Layers

Nodes
Last Layer Omega

1 2 128 512 40
2 3 128 1024 200
3 3 256 512 100
4 4 64 256 70
5 4 64 512 100
6 4 256 512 100
7 4 256 1024 40
8 4 128 1024 40
9 4 128 256 40
10 4 256 256 70
11 4 256 1024 20
12 4 64 256 70
13 2 128 512 20
14 3 64 512 200
15 4 256 256 70
16 4 64 512 200
17 4 256 1024 70
18 4 64 1024 70
19 2 128 512 20
20 4 256 512 70
21 2 64 256 40
22 2 256 256 40
23 4 64 512 40
24 3 128 512 20
25 2 128 1024 200
26 2 64 1024 20
27 4 64 256 200
28 3 128 1024 40
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Net
#

Number
Layers

Nodes
Hidden Layers

Nodes
Last Layer Omega

29 4 256 256 70
30 2 256 256 20
31 2 64 256 20
32 2 128 256 20
33 3 64 512 70
34 3 256 1024 70
35 2 256 1024 70
36 4 128 512 200
37 2 256 1024 70
38 4 64 512 200
39 4 256 512 100
40 3 64 1024 100

G.5 Validation Losses

Below, the validation losses for all network architectures are presented. The best
performing network (in bold and with an underscore) is network 4 for the FCN-
SIREN combination. For the other branch-trunk combinations, the best validation
losses are highlighted in bold.

#Net FCN-FCN FCN-SIREN CNN-FCN CNN-SIREN

1 0.00466 0.00867 0.00858 0.00780
2 0.01024 0.00613 0.00784 0.00994
3 0.00725 0.01512 0.00957 0.01428
4 0.00733 0.00418 0.00690 0.00553
5 0.00876 0.00800 0.00848 0.00868
6 0.00502 0.01051 0.00898 0.00525
7 0.00551 0.00821 0.00641 0.01105
8 0.01125 0.01029 0.00781 0.00901
9 0.00881 0.01024 0.00746 0.00766
10 0.01007 0.00872 0.00821 0.01012
11 0.01564 0.01100 0.00797 0.00828
12 0.00712 0.01798 0.00962 0.00854
13 0.00706 0.00846 0.00974 0.00611
14 0.00555 0.01006 0.00848 0.00872
15 0.00841 0.01153 0.00950 0.00616
16 0.00907 0.01453 0.00776 0.00498
17 0.00683 0.01043 0.00521 0.00593
18 0.00781 0.01084 0.00556 0.00925
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#Net FCN-FCN FCN-SIREN CNN-FCN CNN-SIREN

19 0.00480 0.01140 0.00688 0.00586
20 0.00736 0.01073 0.00910 0.01037
21 0.00934 0.00856 0.00743 0.00875
22 0.01024 0.00570 0.00795 0.00634
23 0.00723 0.00676 0.01647 0.00430
24 0.00977 0.00766 0.00851 0.00925
25 0.00444 0.00821 0.00682 0.00944
26 0.00884 0.00846 0.00878 0.00776
27 0.00561 0.01018 0.00779 0.00503
28 0.00785 0.01505 0.00874 0.00564
29 0.00932 0.00764 0.00917 0.01188
30 0.00524 0.00483 0.00817 0.00526
31 0.01132 0.00709 0.00728 0.00666
32 0.01015 0.06069 0.00995 0.00847
33 0.00976 0.00705 0.00600 0.01188
34 0.00730 0.00852 0.00852 0.00440
35 0.00828 0.00827 0.00936 0.00487
36 0.00773 0.00756 0.00793 0.00964
37 0.00739 0.00758 0.00930 0.00689
38 0.01057 0.00944 0.00731 0.00879
39 0.00832 0.01323 0.00864 0.00756
40 0.01149 0.01286 0.00882 0.00595
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Abbreviations

CNN Convolutional Neural Netwok
DeepOnet Deep Operator Network
FCN Fully Connected Network
FNO Fourier Neural Operator
FOV Field of View
INR Implicit neural representation
NF Neural Function
PA Photoacoustic
PAI Photoacoustic Imaging
PAM Photoacoustic mammography
PAM3 3rd generation photoacoustic mammoscope
PAT Photoacoustic Tomography
SIREN Sinusoidal Representation Networks
SOS Speed of sound
US Ultrasound

93



Symbols and Units

|·| Absolute value or magnitude
∥·∥ Standard l2-norm
∗ Convolution operator
C Space of continuous functions
δ(·) Dirac delta function
F {·} Fourier transform operator
F−1 {·} Inverse Fourier transform operator
Γ Grüneisen coefficient [unitless]
H(·) Heating function [J/m3]
N Natural numbers/Non-negative integers
p(·) Pressure [Pa]
p0(·) Initial Pressure [Pa]
R Real numbers
R+ Non-negative real numbers
R{·} Rotation Operator
S1 [0, 2π]/0 ∼ 2π
θ Angle
Tn n-dimensional torus (Tn = S1 × · · · × S1︸ ︷︷ ︸

n

)

Z Integers
Z+ Non-negative integers
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[32] F. Natterer and F. Wübbeling, “The radon transform,” inMathematical Meth-
ods in Image Reconstruction, Society for Industrial and Applied Mathematics
(SIAM), 2001, isbn: 9780898716221.

[33] B. Rubin, Introduction to Radon Transforms (With Elements of Fractional
Calculus and Harmonic Analysis), 1st ed., B. Rubin, Ed. New York: Cam-
bridge University Press, 2015, isbn: 9780521854597.

97

https://doi.org/10.1016/j.jcp.2018.10.045
https://arxiv.org/abs/2010.08895
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1016/bs.hna.2024.05.003
https://doi.org/10.59275/j.melba.2024-d61g
https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1609.09106
https://doi.org/10.1016/j.cma.2022.114778
http://jmlr.org/papers/v24/21-1524.html
http://jmlr.org/papers/v24/21-1524.html
https://doi.org/10.3390/s24092670
https://arxiv.org/abs/2001.06434 [eess]


BIBLIOGRAPHY

[34] E. M. Stein and R. Shakarchi, “The Radon transform and some of its appli-
cations,” in Fourier Analysis: An Introduction, 1st ed., Princeton University
Press, 2003, ch. 6.5, pp. 198–207, isbn: 9780691113845.

[35] J. L. Prince and J. M. Links, “Computed Tomography,” in Medical imaging
signals and systems, 2nd ed., Upper Saddle River, NJ: Pearson Education,
2015, ch. 6, pp. 186–234, isbn: 9780132145183.

[36] E. M. Stein and R. Shakarchi, “The Radon transform and some of its appli-
cations,” in Fourier Analysis: An Introduction, 1st ed., Princeton University
Press, 2003, ch. 6.2, pp. 180–184, isbn: 9780691113845.

[37] A. Wirgin, The inverse crime, 2004. arXiv: math-ph/0401050 [math-ph].

[38] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation
and reconstruction of photoacoustic wave fields,” Journal of Biomedical Op-
tics, vol. 15, no. 2, p. 021 314, 2010. doi: 10.1117/1.3360308.

[39] C. Tian, K. Shen, W. Dong, et al., “Image reconstruction from photoacoustic
projections,” Photonics Insights, vol. 3, no. 3, R06, Sep. 2024, Publisher: SPIE.
doi: 10.3788/PI.2024.R06.

[40] Y. Shen, J. Zhang, D. Jiang, et al., “S-wave accelerates optimization-based
photoacoustic image reconstruction in vivo,” Ultrasound in Medicine & Biol-
ogy, vol. 50, no. 1, pp. 18–27, Jan. 1, 2024. doi: 10.1016/j.ultrasmedbio.
2023.07.014.

[41] G. Osnabrugge, S. Leedumrongwatthanakun, and I. M. Vellekoop, “A conver-
gent born series for solving the inhomogeneous helmholtz equation in arbi-
trarily large media,” Journal of Computational Physics, vol. 322, pp. 113–124,
Oct. 1, 2016. doi: 10.1016/j.jcp.2016.06.034.

[42] Z. Tian, Y. Jing, and A. Han, “An open-source GPU-based acoustic simulator
for fast and accurate modeling of acoustic scattering,” in 2024 IEEE Ultrason-
ics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Sep.
2024, pp. 1–4. doi: 10.1109/UFFC-JS60046.2024.10793878.

[43] S. Guan, K.-T. Hsu, and P. V. Chitnis, “Fourier neural operator network for
fast photoacoustic wave simulations,” Algorithms, vol. 16, no. 2, 2023. doi:
10.3390/a16020124.

[44] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 3rd edition.
Hoboken, NJ: John Wiley & Sons, 2019, isbn: 9781119506874.

[45] Z. Li, M. Liu-Schiaffini, N. Kovachki, et al., Learning dissipative dynamics in
chaotic systems, 2022. arXiv: 2106.06898 [cs.LG].

[46] “Cameraman,” 1978. [Online]. Available: https://dome.mit.edu/handle/
1721.3/195767.

[47] A. Javaherian, F. Lucka, and B. T. Cox, “Refraction-corrected ray-based inver-
sion for three-dimensional ultrasound tomography of the breast,” Inverse Prob-
lems, vol. 36, no. 12, p. 125 010, Dec. 2020. doi: 10.1088/1361-6420/abc0fc.

98

https://arxiv.org/abs/math-ph/0401050
https://doi.org/10.1117/1.3360308
https://doi.org/10.3788/PI.2024.R06
https://doi.org/10.1016/j.ultrasmedbio.2023.07.014
https://doi.org/10.1016/j.ultrasmedbio.2023.07.014
https://doi.org/10.1016/j.jcp.2016.06.034
https://doi.org/10.1109/UFFC-JS60046.2024.10793878
https://doi.org/10.3390/a16020124
https://arxiv.org/abs/2106.06898
https://dome.mit.edu/handle/1721.3/195767
https://dome.mit.edu/handle/1721.3/195767
https://doi.org/10.1088/1361-6420/abc0fc


BIBLIOGRAPHY

[48] A. Petschke and P. J. L. Rivière, “Photoacoustic image reconstruction using
the pseudoinverse of the system matrix with the potential for real time imag-
ing,” in Photons Plus Ultrasound: Imaging and Sensing 2012, vol. 8223, SPIE,
Feb. 23, 2012, pp. 676–681. doi: 10.1117/12.909145.
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