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Abstract—We propose and evaluate a hybrid approach to
enhance Retrieval-Augmented Generation (RAG) systems by
leveraging query enrichment through knowledge graphs. RAG
systems, which combine retrieval mechanisms with generative
models, are powerful tools for answering complex queries by
incorporating external knowledge. However, these systems often
face challenges in domain-specific contexts where embedding
models may lack the precision required to retrieve relevant
information. This limitation is particularly significant in special-
ized domains, such as finance and biomedicine, where nuanced
understanding is essential.

Our approach addresses this gap by employing a Large
Language Model (LLM) not only as the engine powering the
RAG system but also as a tool for extracting structured triplets
during both the ingestion and querying phases. These triplets,
stored in a knowledge graph, are injected into queries during
inference to generate enriched and contextually aware inputs,
improving the precision of the retrieval process.

We evaluate the proposed method on three datasets: a general-
domain dataset with question-answer pairs from Wikipedia and
two domain-specific datasets in finance and biomedicine, each
comprising approximately 8,000 document chunks. Experimental
results demonstrate significant improvements in retrieval preci-
sion and recall with an improvement of up 5% for the precision
metric, 19% for the recall and an overall increase of on average
7% in the generative quality of the output, as well as enhanced
relevance and coherence in the system-generated answers. These
findings highlight the potential of knowledge graphs to bridge
gaps in embedding precision and improve overall performance
in both open- and closed-domain settings.

I. INTRODUCTION

The rise of Large Language Models (LLMs) has revo-
lutionized natural language processing, enabling systems to
handle complex queries by integrating external knowledge
into their outputs. Retrieval-Augmented Generation (RAG)
systems, which combine a retrieval mechanism with generative
models, have emerged as a critical innovation in this domain
[1]. These systems excel in tasks such as question answering,
document summarization, and conversational AI by retrieving
relevant external documents to complement their generative
components. However, their effectiveness heavily depends on
the precision of the retrieval process.

One of the key challenges in RAG systems lies in retrieving
the most relevant documents from the database. Retrieval
errors often result in incomplete or inaccurate answers, es-
pecially in domain-specific scenarios where general-purpose

embedding models fail to capture nuanced relationships in the
text [2]. This problem is exacerbated by the increasing com-
plexity of queries and the limitations of large context windows,
which, while capable of processing large text chunks, may still
return irrelevant results [3].

Several approaches have been proposed to enhance retrieval.
For instance, HyDE (Hypothetical Document Embeddings) [4]
improves retrieval by generating synthetic documents based on
a query. While effective in improving retrieval precision, this
method is prone to hallucinations [1], as the generated doc-
uments may not align with real-world content. Additionally,
it requires computationally expensive, large-scale LLMs with
broad general knowledge to function effectively, limiting its
applicability in closed-domain settings.

To address these challenges, we propose a hybrid ap-
proach that incorporates query enrichment through knowledge
graphs to improve the retrieval accuracy of RAG systems.
Our method involves extracting structured triplets (Entity
→ Relation → Entity) from documents during the in-
gestion phase and storing them in a knowledge graph. These
triplets are later injected into queries during inference, enrich-
ing the query with additional context and enabling the retriever
to return more relevant documents.

In our implementation, documents are divided into smaller
chunks, which are embedded using pre-trained models such
as RoBERTa [5]. These embeddings are stored in vector
databases and retrieved using Approximate Nearest Neighbors
(ANN) algorithms to ensure semantic relevance. Simultane-
ously, a knowledge graph is constructed using Named Entity
Recognition (NER) to extract meaningful triplets, which are
used to enhance query retrieval during inference.

This hybrid approach addresses key limitations in RAG sys-
tems by bridging the gap between general-purpose embeddings
and domain-specific requirements. We evaluate our method on
three datasets: a general-domain dataset based on Wikipedia
and two domain-specific datasets in finance and biomedicine.
Experimental results demonstrate substantial improvements in
retrieval precision, recall, and the coherence of generated
answers, highlighting the efficacy of query enrichment through
knowledge graphs. These findings underscore the potential of
this approach to improve both open- and closed-domain RAG
systems.



Fig. 1: Solution Pipeline Representation: When a query is
made, it is first enriched using knowledge in the form of
triplets injected by querying a knowledge graph. The enriched
query is then passed to a vector database to retrieve relevant
documents, which are subsequently provided to the LLM along
with the query to generate a relevant answer.

A. Research questions

The research aims to address some of the fundamental
challenges faced by RAG systems in domain-specific contexts,
where retrieval precision and generative quality are critical.
Through the following research questions, we aim to tackle
these issues by evaluating the overall performance improve-
ments introduced by a hybrid DPR approach.

• How RAG’s retrieval power can be enhanced using a
hybrid DPR model?

• How does the integration of a hybrid DPR improve RAG
output quality on domain-specific knowledge without
need to fine tune model on specific downstream task?

• How effective is the hybrid approach in improving re-
trieval and generation, and what challenges or limitations
does it present?

B. Contributions and Significance

The main contributions of this work are as follows:
• We propose a novel enhancement for RAG systems using

a knowledge graph to improve query enrichment and
document retrieval in closed-domain scenarios.

• Our approach reduces hallucinations and improves the
precision of document retrieval without requiring costly
fine-tuning or retraining.

C. Structure of the report

This report is organized into 5 further sections:
1) Related Work: This section reviews existing research

and approaches in the field, highlighting the state of the
art and identifying gaps that this study aims to address.

2) Methodology: This section describes the methodologies
employed to address the different aspects of the research
problem, detailing the proposed approach and its com-
ponents.

3) Experimental Setup: This section outlines the technical
implementation of the proposed methods, including the
datasets, tools, and configurations used for experimen-
tation.

4) Results: This section presents the outcomes of the exper-
iments, including performance metrics and key findings.

5) Discussion: This section provides an analysis of the
results, discusses the strengths and limitations of the
proposed approach, addresses the research questions,
and suggests directions for future work.

II. RELATED WORKS

Retrieval-Augmented Generation (RAG) systems represent
a critical advancement in natural language processing by inte-
grating information retrieval with generative models. This dual
approach enables the retrieval of relevant external knowledge
to augment generated answers, addressing the limitations of
purely generative models. Current implementations of RAG
typically rely on either standalone knowledge graphs or vector
databases to perform the retrieval step. Both methodologies
require embedding models to encode text into vector represen-
tations that can be used by retrieval and generation modules.

Prominent embedding models used in RAG include Ope-
nAI’s GPT series [6], Google’s T5 [7], and variants of BERT
[8]. These models offer varying levels of adaptability and
domain specificity, making them versatile tools for RAG
systems across different applications.

BERT (Bidirectional Encoder Representations from Trans-
formers), in particular, has had a transformative impact on
retrieval tasks. By jointly conditioning on both left and right
contexts in all transformer layers, BERT learns nuanced word
representations that capture semantic relationships across en-
tire sentences or passages. This capability has allowed BERT
to achieve state-of-the-art performance in tasks such as ques-
tion answering, language inference, and semantic similarity
[8]. Its evolution into specialized models, such as RoBERTa
[5], further enhances its utility by extending context windows
and improving its adaptability to domain-specific scenarios.

The concept of embeddings underpins many modern re-
trieval systems. Embeddings encode words, sentences, or texts
as continuous vectors in a high-dimensional space, where
semantically similar elements are positioned closer together.
This approach enables efficient semantic searches using tech-
niques like Approximate Nearest Neighbors (ANN) [9]. Unlike
traditional retrieval methods such as BM25 [10], which rely
on term frequency and inverse document frequency (TF-
IDF), embeddings allow RAG systems to retrieve semantically
related text even when the query and documents share limited
lexical overlap. However, to achieve high-quality retrieval,
documents must first be chunked into smaller pieces to
preserve semantic granularity and improve relevance in the
retrieval phase.

Knowledge Graphs (KGs) [11] present an alternative and
complementary approach to enhancing retrieval. As structured
representations of entities and their relationships, KGs model
real-world knowledge through interconnected nodes (entities)



and edges (relationships). KGs enable systems to capture
intricate interrelations and hierarchies, which can be leveraged
to enrich queries with contextual information. This capability
is particularly beneficial in complex or closed-domain tasks
where precise understanding of relationships is crucial.

Several studies have demonstrated the effectiveness of
Knowledge Graphs and Dense Passage Retrieval (DPR) in
improving RAG systems. For example, Siriwardhana et al.
[12] explored the application of DPR in open-domain question
answering, while Wang et al. [13] and Xu et al. [14] examined
the integration of KGs in real-world business scenarios, such
as customer assistance at LinkedIn. These studies highlight
the versatility of hybrid retrieval systems in addressing diverse
use cases. Research on DPR [15], [16] has further emphasized
the importance of improving access to stored knowledge by
enhancing embedding models rather than merely increasing
storage capacity.

Hybrid retrieval approaches, combining semantic (dense)
and keyword-based (sparse) methods, have also been widely
explored. For instance, Sawarkar et al. [17] introduced hy-
brid retrievers to improve retrieval performance on datasets
like Google NQ and HotpotQA, which feature open-domain
question answering tasks. While hybrid methods have shown
promise, their application to more complex RAG systems
remains limited, particularly in scenarios requiring advanced
reasoning capabilities. Challenges such as high computational
cost, increased latency, and difficulty in handling complex
queries persist, as noted in studies by Cuconasu et al. [18]
and Zeng et al. [19].

Despite these advancements, a significant gap exists in fully
integrating Knowledge Graphs with dense retrieval systems for
RAG. While embeddings excel at capturing semantic relation-
ships, their performance can degrade in specialized domains
where precise context is critical. Conversely, KGs offer struc-
tured context but are limited in scalability and generalization
to broader datasets. The intersection of these methodologies
presents a promising avenue for future research, particularly
in enhancing RAG systems to bridge the gap between sparse
and dense retrieval approaches.

In summary, the evolution of RAG systems has been
propelled by innovations in embedding models, Knowledge
Graphs, and hybrid retrieval techniques. However, challenges
such as domain adaptation, computational efficiency, and
query complexity highlight the need for further exploration.
This work builds on these advancements by proposing a
hybrid approach that leverages both dense retrieval and query
enrichment via Knowledge Graphs to improve precision and
relevance in RAG systems.

III. METHODOLOGY

In this section we present the methodology pipeline adopted
to conduct the experiment:

• Data Cleaning: Raw datasets, often containing extra-
neous elements like HTML artifacts, are processed to
remove irrelevant content while preserving semantic in-

tegrity. This ensures that the text remains meaningful and
consistent for downstream tasks.

• Data Chunking: Cleaned data is divided into smaller,
fixed-size chunks to comply with tokenization limits of
embedding models. Overlaps and natural splits ensure
semantic coherence across chunks.

• Text Embedding: Each chunk is embedded using the
RoBERTa-Large model to generate high-dimensional text
representations suitable for efficient semantic retrieval.

• Knowledge Graph Creation: Entity-relation triplets are
extracted via Named Entity Recognition (NER) to con-
struct a knowledge graph.

• Storage and Retrieval: A vector database stores the
embeddings and links them to the knowledge graph.
Queries are enriched with graph triplets, enabling precise
retrieval of relevant chunks.

• Answer Generation: Retrieved chunks and enriched
queries are fed into a language model to produce accurate,
context-aware answers.

A. Data Cleaning

Before processing the datasets, only the first 81 QA pairs
were used, as they provided a sufficiently large number of
chunks to conduct the experiment while remaining compu-
tationally manageable, after which a rigorous data cleaning
pipeline was applied to ensure that all inputs were consistent
and free from irrelevant elements. For example, the Google
Natural Questions dataset contained raw text embedded with
HTML components as a result of web scraping from Wikipedia
pages. These HTML artifacts were removed using the Large
Language Model, which was tasked with preserving meaning-
ful information while eliminating formatting tags and unnec-
essary metadata.

The cleaning pipeline was designed to maintain the semantic
integrity of the text, ensuring that important details such as
key facts, dates, names, and lists were preserved. Below is the
specific prompt used for this cleaning process:

Data Cleaning Prompt

You are a helpful assistant. You will receive a text
extracted from a Wikipedia HTML page. Your task is
to clean the text by only removing HTML characters
and formatting. Preserve all meaningful information
and keep as many words as possible from the orig-
inal page, including dates, names, lists, and other
important details without cutting anything. DO NOT
MODIFY TEXT. Also, remove the footer that contains
Wikipedia’s terms and conditions.
After cleaning, return a JSON object with the fol-
lowing fields: - "document_text" for the cleaned
version of text
Text: {document}

This cleaning workflow was uniformly applied to all
datasets, ensuring consistency in structure and semantics. By



Fig. 2: Methodology Pipeline: Pipeline representing the various stages of the methodology. Each block represent a stage of the
methodology with the relative subsection in methodology. Moreover for each step an example of the real results is given based
on the first entry of the Google NQ Dataset (see experimental setup). The example box in blue represent the enhancement
applied.

eliminating extraneous formatting, the datasets became more
suitable for downstream processing, particularly for embed-
ding and retrieval tasks.

B. Data Chunking

To accommodate the token limits of modern embedding
models and ensure efficient retrieval, the datasets were divided
into smaller, manageable chunks. A fixed window of 196
words (approximately 256 tokens) was used, with a tolerance
of up to 30 additional words to allow natural splits at punc-
tuation marks, such as periods, question marks, and excla-
mation marks. Additionally, an overlap of 20 characters was
introduced between contiguous chunks to maintain semantic
continuity and prevent information loss at chunk boundaries.

Parameter Value
Word Number 128
Overlap Value 32
End-of-Sentence Characters . ? !
Tolerance Window 30

TABLE I: Chunking Parameters

Smaller chunks offer several advantages for Retrieval-
Augmented Generation (RAG) systems. First, they improve
the granularity of the retrieval process, ensuring that the most
relevant portions of a document are retrieved in response to
a query. Smaller chunks also align with the token limits of
embedding models, preventing truncation and preserving the
quality of the embeddings.

Moreover, this chunking strategy supports our model’s limi-
tations. Since the embedding model used in this study has less
parametric knowledge compared to larger models, it benefits
from processing smaller and more digestible input chunks.
This approach ensures that the system maintains retrieval
relevance without being overwhelmed by excessive context.

By maintaining semantic coherence and breaking down
documents into smaller, self-contained units of meaning, this
chunking strategy significantly enhances the retrieval and
generative capabilities of the system, especially in domain-
specific applications.

C. Embedding

Once chunked, the text segments were embedded using
the RoBERTa-Large model [5]. This model was chosen for



its strong performance in generating robust, domain-agnostic
text representations. Its ability to distinguish nuanced textual
elements, such as case sensitivity, and its large context window
make it well-suited for handling diverse datasets.

Parameter Value
Embedding Dimension 1024

Context Window 512
Number of Parameters 355M

Tensor Type F32, I64

TABLE II: RoBERTa-large [5] model parameters

D. Knowledge Graph and Graph Creation
The graph creation and embedding processes were carried

out in parallel, leveraging a two-step approach. In the first
step, the LLM was utilized to analyze the text and extract
meaningful triplets acting as a Named Entity Recognition
(NER) extractor. These triplets were structured as (entity
-> relation -> entity). This automated extraction
ensured that the relationships and entities within the dataset
were accurately identified and semantically meaningful.

In the second step, each identified entity was transformed
into a corresponding node within the knowledge graph. Si-
multaneously, we generated embeddings for each entity us-
ing all-MiniLM-L6-v2 [20], a compact model distilled from
Microsoft’s MiniLM-L12-H384-uncased [21]. These embed-
dings enabled efficient semantic search capabilities within the
graph database.

This hybrid approach allowed the knowledge graph to serve
as a dynamic context enrichment tool, seamlessly integrating
structured knowledge with semantic representations. Below is
an example of the prompt used to extract entities and relations
from text:

NER Prompt Used for Extraction

Act as a Named Entity Recognition (NER) model to
extract entities and relationships from the provided
text.
Return the output as a list of relations in the JSON
format:
[ {’head’: ’’, ’type’: ’’, ’tail’:
’’} ]
TEXT: {text}

The knowledge graph facilitated query enrichment by pro-
viding structured data in the form of triplets, which were
incorporated into the query embedding process to enhance
retrieval performance and ensure more contextually relevant
results.

To illustrate the structure of the triplets extracted from the
knowledge graph, consider the following example from an
extraction from a BioASQ sample:

• {’head’: ’Pre-exposure prophylaxis
(PrEP)’, ’type’: ’is effective
against’, ’tail’: ’HIV infection’}

KG Entities Relations

BioASQ 52,032 70,267
OpenQA 1,610 1,988
FinQA 1,452 1,010

TABLE III: Knowledge Graph statistics: number of entities
and relations for each Knowledge Graph.

• {’head’: ’tenofovir/emtricitabine’,
’type’: ’is a component of’, ’tail’:
’Pre-exposure prophylaxis (PrEP)’}

These triplets represent structured relationships between
entities, providing rich contextual data that enhances the query
embedding process and improves retrieval performance.

As we can see the biggest Knowledtge Graph is the one
containing BioASQ, very likely because of the very high
number of documents and high-specific terms.

E. Retrieval process

For data storage and retrieval we utilized a vector database.
Each document was segmented into smaller chunks and in-
dexed with unique IDs, linking each chunk to its position in
the original dataset. This indexing scheme enabled the efficient
tracing of embeddings back to their respective text segments,
which were then used as input for the LLM.

As similarity measure we used the L2-distance (Euclidean
distance), was deemed suitable for our requirements as it
provided robust performance without the need for alternate
measures. For every retrieval request, the top five most sim-
ilar embeddings were returned, ensuring an optimal balance
between precision and recall in the retrieval process. This
mechanism improved the likelihood of retrieving the most
contextually relevant chunks while minimizing computational
overhead.

F. Query Enrichment & Answer Generation

The final step involved generating answers through the RAG
system for a given query. This process began with query
enrichment, where the initial query was augmented using
the knowledge stored in the knowledge graph. Named Entity
Recognition (NER) was performed on the query to identify key
entities, which were then used to fetch a predefined number of
relevant triplets (five in this case) from the knowledge graph.
These triplets were appended to the original query, separated
by the [SEP] token to maintain clarity and structure.

The inclusion of [SEP] tokens was particularly effective
in distinguishing triplets within the enriched query, aligning
with the segment-level training paradigm of models such as
BERT. This structural separation enabled the RAG system
to process enriched queries more effectively, improving the
relevance of retrieved chunks and enhancing the quality of
generated answers.

Below is an example of a query from the BioASQ dataset,
illustrating the impact of enrichment:



Query Example

Original Query: Concizumab is used for which dis-
eases?
Enriched Query: Concizumab is used for which dis-
eases? [SEP] Concizumab instance of monoclonal anti-
body [SEP] Concizumab instance of monoclonal [SEP]
Concizumab instance of antibody [SEP] Concizumab
instance of monoclonal monoclonal

After enrichment, the query was embedded and compared
with other embeddings in the vector database to retrieve the
most relevant chunks. These retrieved chunks, along with the
enriched query, were then passed to the LLM for answer
generation.

The final output was generated by the LLM and evaluated
for relevance and correctness. Below is the specific prompt
used for the RAG-based question-answering task:

RAG Prompt for Question Answering

You are a helpful assistant. You will receive a question
and relevant context from a document. If the answer
to the question is present in the document, provide a
direct and precise answer without adding extra details.
If the information is not found in the document,
respond only with ”NO DOCUMENT.”
Question: {user question}
Document Context: {document context}
Answer:

Example of Prompt

You are a helpful assistant. You will receive a question
and relevant context from a document. If the answer
to the question is present in the document, provide a
direct and precise answer without adding extra details.
If the information is not found in the document,
respond only with ”NO DOCUMENT.”
Question: when did nsw last won a state of origin
series
Document Context:
South Wales won the deciding match i...
by winning the 2007 series, as well as the 2008
series...
and 1080i DVB-T and PAL...
Queensland defeated New South...

IV. EXPERIMENTAL SETUP

A. Datasets

The experiments conducted in this study utilized three
distinct datasets: one open-domain dataset and two domain-
specific datasets. The open-domain dataset, Google Natural

Fig. 3: Ingestion Pipeline Representation: When a document is
ingested into the system, it follows two pathways: the classical
approach, where the document is first chunked, embedded, and
stored; and a new approach, where the document is processed
by an LLM functioning as a Named Entity Recognizer (NER),
extracting knowledge in the form of triplets and storing them
in a knowledge graph.

Questions (Google NQ) [22], is a widely recognized bench-
mark designed to evaluate retrieval and reasoning capabilities
across diverse general knowledge topics. For the domain-
specific datasets, we selected FinQA [23], which emphasizes
financial reasoning tasks, and BioASQ [24], a challenging
biomedical dataset that focuses on expert-level question an-
swering.

To further illustrate the nature of the datasets used in this
study, we provide representative examples from Google NQ,
FinQA, and BioASQ, showcasing their distinct characteristics
and formats:

• Google NQ:
– Question: Where does ”jinx, you owe me a coke”

come from?
– Short Answer: Jinx is a children’s game where

penalties occur if two people say the same word
simultaneously.

– Document (Excerpt): Jinx is a children’s game with
varying rules and penalties. In America, one person



Task Dataset Description

Google NQ [22] Domain: General Knowledge
Purpose: Evaluates the ability to answer ques-
tions based on long documents, including rea-
soning beyond sentence boundaries.
Data Source: Wikipedia articles and Google
search queries.
Question Types: Fact-based questions, answers
often found verbatim or paraphrased.
Number of Examples: 307,373 questions.
Answer Format: Short answers or spans from
the document.

FinQA [23] Domain: Finance
Purpose: Evaluates the ability to answer com-
plex questions requiring numerical reasoning
and the integration of textual and tabular data.
Data Source: Financial reports, tables, and doc-
uments.
Question Types: Complex, multi-step reasoning
questions involving calculations and financial
data interpretation.
Number of Examples: 8,000 questions.
Answer Format: Numeric answers, sometimes
with textual explanations.

BioASQ-QA [24] Domain: Biomedical
Purpose: Evaluates expert question answering
in the biomedical field with challenging datasets.
Data Source: Questions generated by biomedi-
cal experts, with reference answers and support-
ing material.
Question Types: Expert-generated, requiring
deep domain knowledge.
Number of Examples: 4,721 questions.
Answer Format: Golden standard reference an-
swers and supporting material.

TABLE IV: Details of Google NQ, FinQA, and BioASQ-QA
datasets

can say, ”Jinx, you owe me a coke,” to get a free
coke from the other person.

• FinQA:
– Document: Historical invoice from Tabacalera

Cubana, S.A. (1941).
– Question: What is the total amount charged for the

shipment?
Answer:$3.51 (including postage, registration, and
war risk insurance).

– Details (Excerpt): The shipment includes 960
cigarettes priced at $3.00, with additional charges
such as postage ($0.50) and insurance ($0.01).

• BioASQ:
– Question: Concizumab is used for which diseases?
– Answer: Hemophilia A and B.
– Documents (Excerpts):

∗ PubMedID 37341887: Concizumab, a monoclonal
antibody, prevents bleeding episodes in patients
with hemophilia A and B.

∗ PubMedID 35869698: Discusses non-factor prod-
ucts like concizumab targeting coagulation path-
ways.

For readability purposes, the full text of the ground truths
has been truncated.

For the Google Natural Questions dataset, we utilized a
subset of the training set, consisting of 158 unique Wikipedia
pages. This approach allowed us to reduce computational
requirements while retaining the diversity of the dataset’s
queries. Similarly, for the domain-specific datasets FinQA
and BioASQ, only the most relevant document chunks were
retained to focus on the evaluation of system performance in
specialized contexts.

The selection of these datasets was designed to strike a
balance between evaluating general-purpose retrieval capabili-
ties and testing the precision and relevance of domain-specific
performance. This combination ensures that our system can be
assessed for its generalizability across open-domain tasks and
its ability to deliver accurate and contextually appropriate re-
sults in closed-domain scenarios such as finance and medicine.

B. Baseline

The baseline is represented by the RAG system without any
query enhancement techniques. It consists of the embedder, the
vector database, and the DPR, which work together to retrieve
the context to pass along with the query to the LLM for
response generation. More specifically, the baseline skips the
process of triplet injection from the knowledge graph, instead
passing the retrieved context directly to the model to generate
and evaluate the output.

C. Evaluation Process

The evaluation process involved the following steps:
1) Two versions of the experiment were conducted for each

dataset: one using a simple RAG model and the other
incorporating triplets as a context enhancer. Specifically,
the retrieval process was divided into two scenarios:
(1) embedding the question without adding triplets to
enhance the context, and (2) embedding the question
after adding context through triplets to improve retrieval.

2) For each version of the sub-experiment, the first phase
focused on evaluating the retrieval process, and the
second phase evaluated the generated answers.

3) Results were then compared metric-wise to assess
whether the introduction of the Knowledge Graph im-
proved the relevance of the retrieved context as well as
the quality of the answers.

1) of K: information retrieval, k represents the number
of top-ranked results considered during evaluation. Selecting
k = 3, 5, 10 provides a balanced assessment of system per-
formance, capturing both precision at lower ranks and overall
retrieval effectiveness. These values were chosen based on the
following considerations:

• Consistency: evaluation practices in information retrieval
commonly use these k values, ensuring comparability
with prior research.

• Across Depths: multiple k levels helps understand
precision-recall trade-offs as more results are considered.



, evaluating at k = 3, 5, 10 offers a practical and well-
rounded measure of retrieval quality.

D. Validation Metrics

This subsection describes the methodology used to evaluate
the performance of our approach.

For the retrieval module, we evaluate performance using
Precision and Recall, which measure the system’s ability to
extract relevant documents per query. For the generative mod-
ule, we rely on the Ragas LLM-Based Context Recall metric,
which assesses the relevance of generated answers by checking
alignment with ground-truth answers. Given the brevity of
most answers, this single metric was deemed sufficient, as
it effectively captures the presence of correct answers within
the generated text.

When evaluating a Retrieval-Augmented Generation (RAG)
system, it is important to consider two distinct components.
First, the retrieval module, which determines how effec-
tively the system retrieves relevant documents that ground
the generative component’s answers. Second, the generative
module, which assesses the quality of the answers generated
based on the retrieved documents. The evaluation of these
components provides a comprehensive understanding of the
system’s overall performance [25].

The evaluation employs three key metrics: Precision, Re-
call, and LLM-Based Context Recall, derived from the Regas
[26] framework.

• Precision: Precision measures the proportion of true
positive predictions among all positive predictions made
by the system. It reflects the accuracy of the model in
identifying relevant results.

Precision =
True Positives

True Positives + False Positives

• Recall: Recall evaluates the ability of the system to re-
trieve all relevant instances in the dataset. It is calculated
as:

Recall =
True Positives

True Positives + False Negatives

• LLM-Based Context Recall: This metric measures how
well the retrieved contexts support the claims in the ref-
erence answer. It works by breaking down the reference
into individual claims and checking if each claim can be
attributed to the retrieved contexts. The metric simplifies
the process by using the reference as a proxy for context,
avoiding the need for manual annotation of reference
contexts. Scores range from 0 to 1, with higher scores
indicating better alignment between the retrieved contexts
and reference claims. An LLM is used as the scorer
(LLM-as-a-Judge [27]) .

Context Recall =
|GT Claims Attributable to Context|

|Total Claims in GT|

For each iteration of the RAG system, the retrieved context,
the answer, the question, and the ground-truth answer are

passed to an LLM (in this case, the same LLM that powers
the RAG system) to generate the evaluation result.

Example of High Context Recall:
• Question: What is the capital of France?
• Response: The capital of France is Paris.
• Reference: The capital of France is Paris.
• Retrieved Contexts:

1) Paris is the capital city of France.
2) France is a country in Europe.

In this case, all claims in the reference are fully supported by
the retrieved contexts. Hence, the context recall score would
be high (close to 1.0).

Example of Low Context Recall:
• Question: What is the capital of France?
• Response: The capital of France is Paris.
• Reference: The capital of France is Paris.
• Retrieved Contexts:

1) The Eiffel Tower is in Paris.
2) France is a popular tourist destination.

Here, the retrieved contexts fail to directly support the claim
that Paris is the capital of France. Consequently, the context
recall score would be low (close to 0.0).

E. Implementation Details
1) Language and Framework: We used Python 3.12.8 as

the programming language to implement the entire experiment.
2) Models Used: We used OpenAI’s GPT-4o [28] for data

cleaning tasks due to its superior ability to preserve the text’s
fidelity to the original content. Additionally, GPT-4o-mini
[29] was used as the generative model for answering questions.

3) Knowledge Graph Framework: Neo4j [30], an open-
source graph database, was employed to represent our knowl-
edge graph. It autonomously handled the creation and struc-
turing of relationships between nodes, streamlining the graph-
building process.

4) Vector Database: For the vector database, we relied on
the open-source database Chroma-DB [31], which natively
implements the L2 distance as the similarity measure.

5) Embedding parameters: The embedding process was
implemented locally using PyTorch [32] and the HuggingFace
[33] library to deploy the models used, ensuring computational
efficiency. Each chunk was tokenized with the following
configuration:

Listing 1: Tokenization Parameters
e n c o d e d i n p u t = t o k e n i z e r ( input ,

r e t u r n t e n s o r s = ’ p t ’ ,
padd ing = ’ max leng th ’ ,
t r u n c a t i o n =True ,
max leng th =512 ,
p a d t o m u l t i p l e o f =512

)

This configuration ensured compatibility with variable-
length chunks and avoided the need for manual adjustments,
making the process seamless and scalable.



V. RESULTS

This section presents the evaluation results of the Retrieval-
Augmented Generation (RAG) system, comparing the baseline
model with the enhanced version incorporating triplets as
context. The results are grouped by dataset—Google Natural
Questions, BioASQ, and FinanceQA—and analyzed across
three metrics: Precision, Recall, and LLM-Based Context
Recall.

For each dataset, the performance of the retrieval module
is evaluated using Precision and Recall, while the generative
module is assessed using the LLM-Based Context Recall
metric. Visualizations and comparisons are provided to high-
light the impact of the triplet-enhanced approach on both the
retrieval and generative components of the system. The results
demonstrate how the inclusion of triplets as a context enhancer
affects the relevance of retrieved documents and the quality of
generated answers.

A. BioASQ

The evaluation of our proposed hybrid RAG system on the
BioASQ dataset highlights significant improvements in both
retrieval and generative performance when compared to the
baseline system. The enhancements achieved through query
enrichment with knowledge graphs are evident in the retrieval
metrics precision, recall, and F1 score, as well as in the quality
of the system-generated answers.

As observed in Figure 4 (a,b,c), we achieved an improve-
ment across all three key metrics at all values of K, indicating
that the number of relevant documents retrieved increased.
This demonstrates that, on average, a larger quantity of rele-
vant documents was retrieved across all runs.

Furthermore, Table V demonstrates that the Enhanced sys-
tem retrieves more relevant context on average, as shown
by the increase in LLM context recall in BioASQ (Table V
first column). This improvement directly translates to better
generative performance and a notable reduction in the number
of queries with missing context, where no documents are
retrieved (TAble V secondo column). Specifically, the number
of queries with missing context is reduced by over 30%,
confirming the Enhanced system’s improved ability to provide
sufficient context for generative tasks. These results emphasize
the system’s capability to address gaps in information retrieval,
leading to more reliable and accurate responses.

To highlight the differences in question answering between
the baseline and enhanced systems, we provide three illustra-
tive examples. These examples demonstrate how the enhanced
system successfully retrieves and utilizes relevant context to
generate accurate and complete answers, whereas the baseline
system struggles in certain scenarios.

Example 1: Response vs. No Response

Query: What type of extracolonic tumors does the
PMS2 germline mutation cause?

textbfEnhanced Query: What type of extracolonic
tumors does the PMS2 germline mutation cause?

Ground Truth: Heterozygous PMS2 mutation
carriers were at small increased risk for colorectal
and endometrial cancer

Enhanced System Response: Endometrial cancer.

Baseline System Response: NO DOCUMENT

Example 2: Precise and direct asnwer

Query: Can valproate be used during pregnancy?

Enhanced Query: Can valproate be used during
pregnancy? [SEP] valproate causes neurocognitive
delay and deficits [SEP] valproate causes
teratogenicity [SEP] valproate absence from list
of drugs [SEP] valproate prescribed to treat migraine
[SEP] pregnancy followed by in utero [SEP]
pregnancy followed by postpartum [SEP] pregnancy
followed by childbearing [SEP] pregnancy followed
by childbearing age

Ground truth: No. Valproate is associated with high
risk of malformations and should no be used during
pregnancy.

Enhanced System Response: No, valproate
is contraindicated during pregnancy due to its
teratogenicity and potential for neurocognitive delays
and deficits.

Baseline System Response: Valproate is a teratogen
and should be approached with caution during preg-
nancy. Women of childbearing age taking valproate
should be warned of its teratogenicity and advised to
discuss treatment options with their physician.



(a) BioASQ Precision (b) BioASQ Recall (c) BioASQ F1-Score

(d) FinQA Precision (e) FinQA Recall (f) FinQA F1-Score

(g) Google NQ Precision (h) Google NQ Recall (i) Google NQ F1-Score

Fig. 4: Retrieval metrics across datasets: BioASQ, FinQA, and Google NQ. Rows correspond to datasets; columns represent
Precision, Recall, and F1-Score, respectively. y-axis is scaled to highlight detailed variations. Error bars denote the standard
error of the mean, calculated as SE = σ√

n
, where σ is the standard deviation and n is the sample size. Notably, F1 consistently

improves at K = 5, the parameter used for passing documents to the RAG model for answer generation.

Example 3: Failed Expansion - Irrelevant context in-
jected

Query: What should you do if you find an individual
that you suspect has overdosed?

Enhanced Query: What should you do if you find
an individual that you suspect has overdosed? [SEP]
individuals at risk of witnessing or experiencing
opioid overdose [SEP] individuals carry mutant
(GCN)(13) allele [SEP] individuals with varying
levels of disease activity

Ground truth: Call emergency services. Try to wake
the person up. Administer naloxone if you have it.
Cardiopulmonary resuscitation.

Enhanced System Response: NO DOCUMENT

Discussion: These examples clearly illustrate the improve-
ments achieved by the enhanced system. In Examples 1, the
baseline system failed to retrieve any relevant documents,
leading to no response. In contrast, the enhanced system
successfully retrieved and leveraged the necessary context to
provide concise and accurate answers. In Example 2, both
systems provided responses, but the enhanced system demon-
strated superior clarity and relevance by focusing directly on
the core of the question, while the baseline system included
excessive and less focused details. These results underline the
enhanced system’s ability to retrieve and utilize more relevant
context, improving the overall quality of responses.

B. FinQA

The evaluation of the proposed Enhanced system demon-
strates substantial improvements across precision, recall, and



TABLE V: Generative Metrics Across All Datasets. For each measure we can observe the difference in scores between the
enhanced system and the baseline sysmte (Not Enhanced)

Dataset LLM Context Recall n. of Missing Context
Not Enhanced Enhanced Not Enhanced Enhanced

BioASQ 0.71 0.79 12 5
FinQA 0.66 0.73 42 33
Google NQ 0.39 0.40 60 61

F1-score metrics compared to the Not Enhanced baseline.
These improvements are particularly evident in the retrieval
performance as K increases, where the Enhanced system
consistently outperforms the baseline. The enhanced perfor-
mance highlights the effectiveness of the proposed method in
achieving better precision, ensuring more accurate retrieval of
relevant items, while simultaneously improving recall, thereby
increasing coverage. Furthermore, the higher F1-scores un-
derscore the system’s ability to maintain a balanced trade-off
between precision and recall, showcasing the robustness of the
enhancement approach across varying retrieval complexities.
The evaluation has been performed over 130 question-answer
pairs.

As observed in Figure 4 (d,c,f), we achieved an improve-
ment across all three key metrics at all values of K, indicating
that the number of relevant documents retrieved increased.
This demonstrates that, on average, a larger quantity of rele-
vant documents was retrieved across all runs.

To highlight the differences in question answering between
the baseline and enhanced systems, we provide three illustra-
tive examples. These examples demonstrate how the enhanced
system successfully retrieves and utilizes relevant context to
generate accurate and complete answers, whereas the baseline
system struggles in certain scenarios.

Example 1: Response vs. No Response

Query: How does the insurance value of the shipment
compare to its total value?

textbfEnhanced Query: How does the insurance value
of the shipment compare to its total value? [SEP]
Shipment needed by June 28 [SEP] Total Transaction
Value Labeled Under $926,888.00 marked under
’Cash Receipts Income 1001-0102’ [SEP] Total
Transaction Value Amount $926,888.00

Ground truth: The insurance value of $100.00
is significantly higher than the total value of the
shipment, which is $3.51.

Enhanced System Response: The insurance value of
the shipment is $100.00, which is significantly higher
than its total value of $3.51.

Baseline System Response: NO DOCUMENT

Example 2: Answer v no Answer

Query: What is the address of the payee?

textbfEnhanced Query: What is the address of the
payee? [SEP] Payee based in New York, NY [SEP]
Payee receives payment from R.J. Reynolds Tobacco
Company [SEP] Payee receives payment Hugh
Benson Carter [SEP] Payee location New York, NY

Ground truth: The address of the payee is 930
Dakota Ave South, Huron, SD 57350.

Enhanced System Response: 930 Dakota Ave South,
Huron, SD 57350

Baseline System Response: NO DOCUMENT

Example 3: Failed Expansion - No Triplet Injected

Query: What is the percentage of VAT applied to
each charge on the invoice?

Ground truth: 20
Enhanced System Response: NO DOCUMENT

Discussion: In this case, due to the nature of the dataset,
which contains responses in the form of precise numbers
and/or pieces of text, the metrics that we primarily improved
pertain to the ability to retrieve a piece of text, rather than
enhancing the quality of the question itself, as in the case of
the dataset above (BioASQ). This indicates that, overall, the
number of hits in retrieving significant pieces of documents
has increased.

C. Google NQ

The evaluation of our proposed hybrid RAG system on
the Google Natural Questions dataset shows no improvement,
except for a single question. The performance remains identi-
cal, likely because the provided context is shallow and lacks
specificity, rendering further context enhancement ineffective
as it is already saturated

As we can observe from the figures (Figure 4 g,h,i),
there is a perfectly overlapping performance between the two
techniques used.



Similarly, as shown in Table V, the generative metrics are
nearly identical, with only one notable difference observed in
a specific question.

To highlight the differences in question-answering perfor-
mance between the baseline and enhanced systems, we provide
three illustrative examples. These examples demonstrate how
the enhanced system successfully retrieves and utilizes relevant
context to generate accurate and complete answers, whereas
the baseline system struggles in certain scenarios. However,
when the context is already saturated, further enrichment can
introduce noise, potentially degrading the performance of the
retrieval system, as shown in [34] and [35]. general, when
query expansion does not have a strong similarity with a chunk
containing the correct response (as in Example 1, where an
element of the answer is directly present in the expansion),
the augmented context does not provide any advantage, as
it fails to add meaningful information that would help the
retriever prioritize one chunk over another. Since the chunks
already share a common topic, the additional context does not
improve retrieval. Another factor that may have degraded the
performance of the enhanced system is the triplet injection
step, which failed to provide additional useful context to
the query. This issue likely arises due to the poor Named
Entity Recognition (NER) performance of the LLM on the
dataset corpus, which consists of much longer texts compared
to the shorter documents in other datasets. The degradation
in LLM performance over long contexts has been noted in
several studies [36] [37]. Additionally, many missing-context
questions showed no signs of enhancement, indicating that
no entity extraction or entity matching occurred within the
knowledge graph, a problem also confirmed in [38] paper
presenting evaluation of GraphRAG system.

Example 1: Response vs. No Response

Query: ”Where did The Beatles’ final live
performance take place?”

textbfEnhanced Query:where did the beatles final live
performance take place [SEP] The Beatles recorded
one more album Abbey Road [SEP] The Beatles
historical context marked the end of an era [SEP] The
Beatles lampshade on the roof of Apple Corps [SEP]
The Beatles last song performed ’Get Back’

Ground truth: the roof of the headquarters of the
band ’s multimedia corporation Apple Corps at 3
Savile Row

Enhanced System Response: ”The Beatles’ final live
performance took place on the rooftop of 3 Savile
Row, London.”

Baseline System Response: NO DOCUMENT

Example 2: Correct v Uncorrect answer

Query: ”who holds the most women’s wimbledon
titles”

textbfEnhanced Query:who holds the most women’s
wimbledon titles [SEP] Wimbledon Ladies’ Singles
prize money £2,000,000 (2016) [SEP] Wimbledon
Ladies’ Singles surface Grass [SEP] Wimbledon
Ladies’ Singles established 1884 [SEP] Wimbledon
Ladies’ Singles venue AELTC

Ground truth: Martina Navratilova

Enhanced System Response: ”Martina Navratilova
holds the record.”

Baseline System Response: ”Helen Wills Moody
holds the most titles.”

Example 3: Failed expansion - Irrelevant context

Query: ”when does life is strange before the storm
part 2”

Enhanced Query:when does life is strange before
the storm part 2 [SEP] Life Is Strange: Before the
Storm platform Microsoft Windows, PlayStation 4,
Xbox One [SEP] Life Is Strange: Before the Storm
engine Unity [SEP] Life Is Strange: Before the Storm
composed by Daughter [SEP] Life Is Strange: Before
the Storm written by Zak Garriss [SEP] Episode 2
released on 19 October 2017

Ground truth: October 2017

Enhanced System Response: NO DOCUMENT

We can still observe two examples where the document
chunks retrieved by the enhanced query were more effective
in locating the correct part of the text compared to a generic
chunk. This justifies the slightly higher metrics observed in
the generative component.

D. State Of the Art Comparison

this section, we will compare the results we obtained
with those from comparable SOTA systems that are publicly
available. For each dataset, we will compare a different system,
highlighting the pros and cons of the system proposed in
this work with the other available approaches. Results are
presentend in table VI

1) Natural Questions: the Google NQ dataset, we will
analyze the paper from [38], which proposes a comparison
between RAG and GraphRAG using several techniques. In
particular, we will focus on the results they obtained with the



Dataset Google NQ BioASQ FinQA
Recall Precision F1 Recall Precision F1 Recall Precision F1

Our Model 0.34 0.51 0.40 0.31 0.74 0.45 0.66 0.16 0.25
GraphRAG (triplet) 0.31 0.22 0.37
Medical RAG 0.78 0.82 0.80
FinQA 0.60 0.59 0.60

TABLE VI: Performance comparison of different models across datasets.

GraphRAG method using triplets, which relies solely on the
triplets context for the LLM to respond. We will compare our
model (GPT-4o-mini) with their experiment using LLaMA-3.1
70B, as it is a model with similar performance (benchmarks
from [39] and [40]). The main difference lies in the fact that
they use only triplets as the basis of their context, exposing
them to issues such as missing relations and the absence of
textual context. In contrast, we rely on triplets to enhance
text retrieval, thereby reducing this risk. In our evaluation, our
model achieves an F1-score of 0.40, outperforming GraphRAG
(0.37). A notable improvement is observed in precision, where
our model achieves 0.51 compared to GraphRAG’s 0.22. This
confirms that our approach retrieves more relevant documents
while reducing noise, mitigating the primary weakness of
GraphRAG, which lacks contextual textual information. How-
ever, recall remains comparable (0.34 vs. 0.31), indicating
that both methods retrieve a similar breadth of information.
These results suggest that our triplet-enhanced retrieval strat-
egy provides a more accurate yet similarly comprehensive
contextualization for the LLM.

2) : the BioASQ dataset, we will compare another RAG
system from [41], which proposes a specific model called
Medical RAG. This model is tailored for medical databases
to enhance performance on medical QA tasks, including
BioASQ. Their method, compared to ours, is highly domain-
specific and utilizes extensive knowledge from a large medical
corpus that extends far beyond the BioASQ document col-
lection, seamlessly integrating different sources. This model
outperforms ours, suggesting that access to a larger amount of
information can effectively improve results in domain-related
tasks. This insight indicates that, to enhance performance, a
viable strategy could be integrating more information into
the knowledge graph or enabling online research to further
enrich the context. Our model achieves an F1-score of 0.45,
significantly lower than Medical RAG’s 0.80. The primary gap
lies in recall (0.31 vs. 0.78), indicating that our retrieval system
does not capture as much relevant information as Medical
RAG, which benefits from extensive external medical knowl-
edge. However, our model demonstrates a strong precision
of 0.74, suggesting that while it retrieves fewer documents,
they are highly relevant. These results indicate that retrieval in
domain-specific settings requires broader external knowledge
integration, as evidenced by Medical RAG’s superior recall.

3) : FinQA, there is no publicly available paper that specif-
ically evaluates retrieval performance; rather, most papers
focus on the accuracy of the dataset’s answers. However, we
can consider the findings presented by [42], which evaluate
the effectiveness of general-purpose LLMs, such as GPT-

4, in analyzing financial documents and providing valid re-
sponses. Their study does not focus on a RAG system but
instead examines a set of different tasks, including response
generation, Named Entity Recognition (NER), Information
Extraction (IE), and Relation Extraction (RE). Our model
achieves an F1-score of 0.25, with a high recall (0.66) but
low precision (0.16). This indicates that our system retrieves
a broad set of financial documents but struggles with filtering
out irrelevant information. In contrast, FinQA reports an F1-
score of approximately 0.60, suggesting that models fine-tuned
specifically for financial document retrieval are more effective
at narrowing down relevant contexts. The observed high recall
in our model suggests that it has strong retrieval breadth, but
the lack of precision implies that improvements in relevance
filtering, such as entity linking and relation extraction, could
significantly enhance performance.

VI. DISCUSSION

The results of our study underscore the effectiveness of in-
tegrating knowledge graphs into RAG systems to address chal-
lenges inherent in domain-specific retrieval tasks as we can see
in table VI. For instance, in the BioASQ and FinQA datasets,
the incorporation of enriched context significantly increased
retrieval metrics and reduced the number of queries with miss-
ing context. Furthermore, the enhanced system consistently
generated more accurate and contextually relevant answers,
as illustrated by the examples provided. These improvements
highlight the potential of query enrichment using knowledge
graphs to tackle limitations in embedding precision, especially
in scenarios requiring nuanced understanding.

However, the results on the Google NQ dataset indicate
that the benefits of query enrichment may diminish when the
provided context is already saturated, as further enrichment
could introduce noise. This highlights an important limitation
of the proposed approach and suggests that its applicability
may vary depending on the dataset characteristics and the
depth of the initial context.

The strengths and limitations of the hybrid approach provide
a roadmap for future optimizations. While query enrichment
effectively addresses gaps in domain-specific tasks, balancing
its trade-offs and understanding the scope of its application
remain crucial for further development.

Hereafter a summarizing table, showing the average im-
provements in the considered metrics for each dataset

A. Answer to Research Questions

1) How can RAG’s retrieval power be enhanced using
a hybrid DPR model?: In this work, we proposed a hybrid



TABLE VII: Summary of metrics across all datasets. For ease of comparison, the Mean Precision and Mean Recall at k
considered (3,5,10)

have been reported. across all k provides a single representative value, smoothing out variations and offering a more stable measure of retrieval effectiveness.

Dataset LLM Context Recall n. of Missing Context Mean Recall@K (MR@K) Mean Precision@K (MP@K)
Baseline Enhanced Baseline Enhanced Baseline Enhanced Baseline Enhanced

BioASQ 0.71 0.79 12 5 0.27 0.31 0.71 0.74
FinQA 0.66 0.73 42 33 0.63 0.66 0.13 0.16
Google NQ 0.39 0.40 60 61 0.34 0.34 0.51 0.51

approach to enhance Retrieval-Augmented Generation (RAG)
systems by leveraging query enrichment through knowledge
graphs. By integrating structured knowledge in the form of
triplets, the system bridges the gap between general-purpose
embeddings and the specific requirements of domain-specific
contexts. The approach improved retrieval metrics such as
precision and recall, as demonstrated across datasets like
BioASQ and FinQA, with significant increases in retrieval per-
formance and the relevance of retrieved context. This hybrid
model effectively enhances the retrieval power of RAG by
enriching queries with domain-specific knowledge, enabling
better alignment with the intended tasks.

2) How does the integration of a hybrid DPR improve
RAG output quality on domain-specific knowledge without
needing to fine-tune the model on specific downstream
tasks?: The integration of a hybrid DPR improves RAG
output quality by enhancing context relevance without the
need for extensive fine-tuning. The enriched context provided
by knowledge graphs ensures more accurate and domain-
relevant retrievals, which directly impacts the quality of gen-
erated answers. This is particularly evident in domain-specific
datasets like BioASQ and FinQA, where the enhanced system
demonstrated a reduction in queries with missing context and
generated more precise and contextually aligned answers. By
avoiding the need for model fine-tuning on specific down-
stream tasks, this approach provides a scalable and adaptable
solution for improving RAG systems in diverse scenarios.

3) How can we identify the strengths and limitations
of this hybrid approach?: The strengths and limitations of
this hybrid approach were identified through evaluation across
datasets with varying domain specificity. For datasets like
BioASQ and FinQA, the method demonstrated clear improve-
ments in retrieval and generative performance, as reflected
in metrics like precision, recall, and LLM Context Recall.
However, the Google NQ dataset highlighted a key limitation:
when the initial context is already saturated, further enrichment
can introduce noise, potentially degrading performance. This
emphasizes the importance of balancing query enrichment and
retrieval noise and suggests that the approach’s effectiveness
depends on the characteristics of the dataset and the depth
of the initial context. These insights provide a roadmap for
optimizing the methodology in future research.

B. Limitations

As we can see, the method is fundamentally robust, but its
practicality can sometimes be questioned due to its expense

and complexity, both in monetary and computational terms.
This includes the increased cost of leveraging a large language
model (LLM) for Named Entity Recognition (NER) extraction
and the effort required to set up and maintain a knowledge
graph. These factors become especially problematic when
dealing with corpora that lack deep domain specificity. In
such cases, the process of query enrichment may fail to
improve performance and could even degrade it by introducing
additional noise into the context, thereby reducing the overall
effectiveness of the system.

Another notable limitation of this methodology lies in the
selection of the LLM itself. More advanced or powerful LLMs
could potentially yield better results in both data cleaning
and NER extraction, enabling the generation of clearer and
more consistent outputs. The choice of a less capable model
may hinder the process, limiting its ability to fully capture
and utilize the nuances of the data. As a result, the overall
effectiveness and reliability of the approach could suffer,
especially in scenarios where high precision and domain-
specific expertise are required.
Also, only a small yet significant fraction of the available
datasets has been used, simplifying the evaluation of perfor-
mance. While this ensures a manageable scope for testing, it
limits the generalizability of the results across a broader range
of datasets and real-world scenarios.

C. Future Work

Future research could explore replacing transformer-based
models with newer technologies like modern BERT [43],
which enhances text and code embeddings, expands context
windows, and reduces the need for excessive text chunking.
Compact, high-performing LLMs could also be leveraged
to improve scalability and cost efficiency, particularly for
resource-constrained applications.

Additionally, further investigation is needed to optimize
query enrichment techniques to minimize noise and improve
retrieval performance, especially in contexts where excessive
enrichment leads to saturation. Exploring advanced model
architectures, such as more efficient text embedding methods
and adaptable language models, could further enhance the
robustness of hybrid RAG systems.

By addressing these challenges, future research can improve
the balance between enrichment and retrieval quality, extend
applicability to diverse datasets, and continue advancing the
state of the art in information retrieval and generation.



VII. CONCLUSION

In this work, we proposed a hybrid approach to enhance
Retrieval-Augmented Generation (RAG) systems by lever-
aging query enrichment through knowledge graphs. By in-
tegrating structured knowledge in the form of triplets, our
system bridges the gap between general-purpose embeddings
and the specific requirements of domain-specific contexts. The
approach was evaluated across three datasets—Google NQ,
FinQA, and BioASQ—spanning open- and closed-domain
tasks, and demonstrated significant improvements in retrieval
precision, recall, and the coherence of system-generated an-
swers, particularly in specialized domains like finance and
biomedicine.

The results underscore the scalability of this approach
to other domain-specific tasks, such as legal and scientific
document retrieval, and highlight its adaptability without re-
quiring fine-tuning on specific downstream tasks. However, we
also identified that query enrichment may introduce noise in
scenarios where the context is already saturated, limiting the
applicability of this approach in certain cases.
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