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Abstract—As a response to the growing demand for solutions
to improve and manage bicycle utilization in cities, this paper
aims to design and evaluate the features of bike-to-bike (B2B)
communication via Bluetooth Low Energy (BLE). Our proposal is
a system that disseminates relevant data from surrounding bikes
to aid the cyclist in detecting hazardous obstacles and scenarios.
Our system uses bi-directional connectionless communication to
broadcast messages containing position information to nearby
bikes. To determine the possible use cases of our communication
design, we evaluated with practical measurements different sets of
BLE parameters and compared them with the analytical model
from previous research. By doing so, we confirmed that scan
window duration and synchronization are critical factors for
optimal message delivery. Moreover, the number of copies sent
is a relevant option to reduce energy consumption with minimal
effects on message delivery. Our results show that even for time-
critical applications B2B via BLE could be an option.

Index Terms—Smart bikes, B2B communication, BLE, connec-
tionless communication, bi-directional communication

I. INTRODUCTION

With the ascending integration of wireless communication
into transportation, different solutions for safety, management
and sustainability in smart cities have emerged. As bicycles
are one of the most sustainable and efficient means of trans-
portation, many cities worldwide have been expanding and
improving their bike infrastructure by building new bike lanes
and improving cyclists’ safety. Cities like Paris are investing
250 million euros into bike infrastructure aiming to make it a
”100 per cent cycling city” [1]. With the Netherlands already
having a developed cycling infrastructure, resources are being
invested in Internet of Things (IoT) solutions to improve bike
commuting. Ideas such as vehicle communication with traffic
lights and other vehicles, already exist for smart vehicles but
are now being translated to bicycles. One example is the
”Enschede Fiests” App, which tracks the user’s commutes and
rewards rides with redeemable points. In special locations,
it can also communicate with traffic lights to increase the

chance of getting the green light faster. Regarding “smart”
bike technologies, there are different levels of smartness. As
shown in [2], level 0 consists of regular bikes, while at the
highest level (5), there is a full integration between the data
and how traffic authorities change users’ behavior based on
real-time information. This paper explores level 4 technology,
focusing on bike-to-everything (B2X) wireless communica-
tion. This paper expands specifically on the use of BLE for
B2B communication and how efficient this communication
could be.

The research aims to expand on the theoretical model shown
in [3] by having a practical evaluation of the characteristics
presented. In the paper, it is modeled how the selection of BLE
parameters impacts the likelihood of success in transmission
and the latency to discover devices. Based on the model, we
want to evaluate the same parameters in a practical setting
and compare the performance. With practical tests simulating
real scenarios, we intend to examine the performance of our
system and answer the following question:

”RQ1: How can bike-to-bike wireless communication
help improve bicycle commuting safety and efficiency while
providing cyclists with real-time surrounding awareness?”

Additionally, we look more into the technical characteristics
of the system by analyzing the following sub-questions:

• RQ1.a: What are the main BLE parameters to guarantee
a reliable communication, and how do they impact energy
consumption?
Approach: We will test different sets of parameters and
evaluate how they impact the quality of the communica-
tion.

• RQ1.b: What are the effects of medium obstruction and
movement on the quality of the communication?
Approach: Performing field tests with real-life conditions
of propagation.



The next sections will be divided as follows. We will start
presenting what has previously been researched about the
approached topics and the gap filled by our research in the
related works section. Then, in background, we will give a
brief overview of the main BLE aspects studied. Next, a
methods section where we will take a deeper look at the
mathematical model we base ourselves on, present the Key
Performance Indicators (KPIs) for our use case and explain
how we can get the most out of the limited size packet
structure. Further on, in section V, we will present the setup
implementation and the results from our tests, explaining how
they are relevant to our research. Finally, we will end the paper
with recommendations for future work and a conclusion.

II. RELATED WORK

BLE technology and IoT in transportation are not new
topics, but this paper aims to explore scenarios that have not
been studied as much. In the next subsections, we will show
works which topic overlaps with ours while pointing out the
research gaps we want to address. First, we will dive deeper
into our B2B context, showing how smart traffic technologies
are being implemented to improve safety and infrastructure
management. Further, we will explain how our system differs
from the current BLE strategies for the smart cycling context
regarding how nodes interact with each other. Following that,
we examine the importance of discovery latency, presenting
works where this performance has been modeled. Finally, we
look into the energy matters to understand why it is important
for IoT applications and what to expect when using BLE.

A. Smart bikes communication

As IoT technologies become more accessible, solutions
to improve transportation efficiency and civilian safety have
emerged. Initially focused on automotive applications, intel-
ligent transportation systems (ITS) were developed to detect
vehicles and perform real-time actions based on the current
traffic information. Some common applications are: presenting
less busy alternative routes, notifying potential dangers and
displaying status information on public transport. Nonethe-
less, to improve sustainability, smart cities realized that they
should invest in bicycle infrastructure as it is a ”greener” and
efficient option for urban transportation. Consequently, as the
bike market expands, the demand for the translation of ITSs
solutions into bicycle traffic scenarios grew. In [4], a variety
of use cases are presented for the connection between bicycles
and other devices, some of them are: location-based services,
riders and bike status, safety notifications and traffic control.
In [5] and [6], it is shown how data gathered during rides can
be used to improve riders’ well-being, not only for efficient
transportation but also for health factors such as air quality.

In [2], it is shown that bike smartness aims to achieve the
ability to, in real-time, act upon traffic actors. For that to
happen, the bike needs to communicate with others nearby.
An option is to use cellular connections because it allows the
device to exchange information with a main server that can
transmit data from all parts of the city as a centralized center

of operation. However, it may come with the trade-off of a
larger energy demand. In [7], three potential communication
protocols for short-range communication are evaluated: WiFi,
ESP-Now and BLE. Although BLE does not have the best
performance, the paper points out that the main reason for
using the protocol is its small use of energy and compatibility
with most devices currently available in the market. Another
benefit of BLE is the broadcast mode, which may decrease the
latency of information dissemination by removing the need to
establish connections.

Our research expands on the specific BLE configurations
and parameters that can be tuned to achieve the most out of this
protocol, exploring the trade-offs between message delivery,
latency and energy use. Also conducting practical trials to
evaluate BLE under real cycling scenarios.

B. Connectionless Mode

When working with the communication of moving devices,
a stable channel is not the norm. First, taking into account
the range of BLE (approximately 100 m), devices may not
be in communication range, and even when in range, due
to obstacles in the Line of Sight (LoS), packet delivery does
not always happen. To counteract the challenging environment
factors, solutions like [5] and [6] use a server approach where
data is primarily sent to a smartphone device, then to a main
datacenter over the internet. However, this process may create
latency, becoming inefficient for time-critical applications.
With BLE, we can solve the latency issue by having a peer-
to-peer link. Yet, as connection under moving circumstances
is challenging, the best approach is to use the connectionless
mode. In this mode, the nodes can skip the connection process
and send the data straight away, turning communication faster
and less dependent on channel stability. In [8], an example
of the use of BLE connectionless mode is shown. There, the
beacons transmit status information if the bike is reported as
stolen. In [9], BLE beacons are attached to traffic signs to alert
vehicles once they are in range. The latest resembles the B2B
scenario, but only transmits data in a single direction.

This project explores a gap regarding the bi-directionality of
the connectionless approach, pointing out the new implications
that come with such configuration. Bi-directionality means that
node will act both as advertiser and scanner, which allows
bikes to be equally aware of the surroundings. However, it
comes with the implication that if nodes are transmitting at
the same time, they do not detect each other.

C. Discovery latency

Especially when considering safety warnings and accident
prevention, timing is vital. This implies that information must
be propagated at such a speed that the user is still within the
reaction time and deceleration range. In [10], practical tests
were performed to determine the ”comfort zone” for obstacle
avoidance, or the distance where a cyclist can comfortably
maneuver, for different speeds. The results show the average
cyclist needs 9.65 ± 4.66 m for breaking. Since the first step
in the stopping process is to receive the warning sign, it is



required that nodes should be detected as soon as possible
in the Neighbor Discovery process (NDP). In [11] and [12],
NDP is modeled and optimized to decrease discovery latency
on connectionless BLE. Those works give an insightful view
of which BLE parameters most impact the NDP’s speed and
what their trade-offs are with energy consumption. However,
both analyses only consider unidirectional communication.

As previous works lack instances where nodes advertise at
the same time, this paper evaluates the synchronization aspect.
Further, we conduct practical experiments to see those effects
in message delivery and latency under real conditions.

D. Energy consumption

To make reliable and long-lasting IoT devices, it is also
important to consider energy consumption. Although in some
cases designers can rely on a constant source of energy, in
many cases the devices are powered by a battery. Therefore,
the conscious use of energy resources is essential. With a
deeper analysis of the consumption shown in [13], we can
affirm that communication processes are energy-intensive,
making proper configuration crucial for energy optimization.
In BLE, one of the main configuration parameters is the
duration of each phase of the communication; consequently,
the longer the device remains in a high-consuming phase, the
shorter its battery life will be. By examining the impacts of
each parameter, as done in [14], it is possible to model the
overall energy consumption and estimate the best strategy to
set up the parameters. However, trade-offs between latency and
battery use need to be evaluated and optimized to have reliable
and energy-efficient communication. In [15], the lifetime of the
device is evaluated in comparison with the interval of commu-
nication. The study shows that by reducing the frequency of
packets sent, more energy is saved, but the latency is increased.
And, to find the optimal parameters, designers need to take into
account the requirements of their use case. A similar approach
should be used to determine the specifications of B2B. Once
those specifications are listed, the designers can use different
methods to perform the optimization. In [16], the solution is
to use a back-off scheme based on the success rate of message
delivery, adding or reducing delay in between transmissions to
increase the chances of a successfully delivered packet. The
works mentioned mostly take into account connection-based
or unidirectional approaches.

In this paper, we will present how tuning advertising or
scanning parameters can impact the energy cost of the system.
Then, evaluate the battery life to determine if such a system
would be able to accommodate the needs of our use case.

III. BACKGROUND

BLE is a communication protocol that uses the 2.4 GHz
band to exchange data. This bandwidth is divided into 40
channels, from which three (37, 38 and 39) are exclusively for
devices to advertise their presence and attempt to connect with
others. In advertising channels, packets have a standard struc-
ture and size so others can receive, authenticate and establish
their request for communication. If a connection is established,

each side will take a role (central or peripheral) and access the
remaining channels to exchange data. However, on instances
where a connection-based approach is not feasible, we can opt
for using the connectionless mode. In connectionless mode,
the available payload bytes from the advertising packets can be
filled with data, which can be accessed by any device listening
to the channels. The main benefit is that the information, for
instance, the telemetry of a sensor, can be sent to multiple
nodes simultaneously (broadcast) and faster since it skips the
connection process.

When using connectionless BLE, a device can be in one
of three states: scan, advertise or idle. When scanning, it
is listening to one of the advertising channels. This state
is bounded by two parameters: scanning window (Sw) and
scanning interval (Si). Si is the period before switching
channels (always from 37 to 38 to 39 then back to 37), while
Sw is when the device is actively listening to the channel. If
Sw < Si, the device will be in an idle state for the remaining
time. During the advertising stage, copies the data will be
sent to all the advertising channels depending on the Network
Transmit Count (N ). The main parameter for this state is
the advertising window (Aw), which is the period in between
copies’ transmissions, being idle until the next transmission.
Other relevant parameters are the advertising delay (DLL),
which is a random value between 0 and 10 ms added between
copies to avoid packet collision, and the Network-to-Link layer
delay (DN2L), which is caused by the data injection between
layers.

IV. METHODS

In this section, we will summarize the mathematical model
our research is based. Next, we will explain the Key Per-
formance Indicators (KPIs) for our use case and how we
structure the transmitted packets. In Table I, we outline the
main parameters of the model and their symbols.

Symbol Description
Sw Scanning window duration
Si Scanning interval duration
Aw Advertising window duration
Tgen Message generation period

DAdvDur Advertising duration
DLL ∼ U{0, 10}ms Link Layer delay
DN2L ∼ U{11, 20}ms Network-to-Link Layer injection delay

DAdvStart Advertising start delay
DTx/Rx Mode switch (advertising/scan) delay
N Number of copies (network count)

Φ1,2 Shift between node 1 and 2 epoch starts
s State representing the advertising period

start

TABLE I: Symbol descriptions used in the analysis.

A. Mathematical model

Although the connectionless mode of BLE has been ex-
plored in different studies, [3] focuses on a gap regarding bi-
directional communication. Studies like [11] and [12] show
a relevant explanation of the importance of BLE parame-
ters in achieving efficient discovery of devices and stable



transmission. However, all cyclists need to be aware of their
surroundings, therefore, B2B communication should go both
ways. To implement such a feature, differently from previous
works, all devices need to act as both an observer and an
advertiser. This behavior creates a period named ”Blind Time”,
which is when devices attempt to transmit at the same time.
As they cannot scan while transmitting, if their advertising
periods overlap, they will not detect each other. [3] proposes
dividing the time into fixed-length time-slots and using a
Discrete-Time Markov Chain (DTMC) to analytically model
the transmission. This allows us to determine the probability
of successful message delivery and latency to discovery.

Following the method proposed in the paper, the modeling
of the system is composed of analyzing three behaviors: the
duration of the advertising state, the start of the advertising
state and the synchronization between different nodes’ ad-
vertising phases. Following the terminology of the paper, we
will call epochs the interval between message generations and
states the time-slot where advertising starts within an epoch.

Starting with the duration (DAdvDur), although within each
epoch the transmission duration and start are not fixed, we can
model it by looking at the estimated duration. To calculate the
duration of advertising, we can use:

DAdvDur = 2×DTx/Rx+DLL,N+ATx+

N−1∑
i=1

(Aw +DLL,i) .

(1)
where Aw is the configured advertising window, ATx is
the time to transmit into all the advertising channels and
DLL,i ∼ U{0, 10} is the random link layer delay (0 to 10
ms) introduced before transmission at each copy. This equation
had a few modifications when compared to the original model.
That is because, after oscilloscope analysis (Section V-E), we
identified different behavior than the original model. First, that
DLL is added before each copy transmission. Then, we found
that the device takes a short delay to switch modes (DTx/Rx).
Finally, the last Aw, which typically includes ATx, could be
cut short after ATx is completed.

For determining the start of advertising, we can use:

s′ ≡ (s+DAdvDur + k∗ · Sw) (mod Tgen) (2)

where k∗ is the minimum value of ℓ that meets the condition
s+DAdvDur + ℓ ·Sw ≥ Tgen+DN2L. Looking into equation
2, we see that the start mainly depends on two factors: the start
of the previous epoch and the length of scan windows (Sw).
That is because, as shown in Figure 1, the start depends on
how many Sw there are before the next message is generated,
the closer the message injection is to the end of a SW the
sooner the message will be sent. Furthermore, we can also
calculate the range of possible start times with:

min{DAdvStart} = min{DN2L}
max{DAdvStart} = max{DN2L}+ Sw. (3)

Since the start is a random variable, this becomes a random
process which meets the Markov property, allowing for it to

be modeled as a DTMC. Added to that, even though the
following epoch is dependent on the previous state, it does
not depend on the epoch’s index. Those characteristics allow
for an irreducible DTMC.

By modeling the start time of two nodes, we can determine
the Message Delivery Ratio (MDR). As successful reception
depends on whether transmission and reception are in match-
ing channels, the model calculates MDR by measuring the
shift between two nodes’ advertising start times. The model
considers all possible instances where a packet is received,
including when a transmission is only partially affected by
blind time (first and third packet in Figure 1). Determining if
each packet is received or not, then filtering the copies, we find
the message delivery ratio. In [3], an equation to derive MDR
is given, but it does not consider DTx/Rx and that DLL is
added before each transmission. Further, the paper states that,
having each start time as a state, ”we can reach any other state
in a finite number of epochs”. Therefore, they can also model
the reception for any later epoch by examining the sets of state
pairs and calculating if they are sufficiently apart.

It is stated that the worst-case scenarios for communication
are when nodes advertise simultaneously, leading to a signif-
icant blind time effect. To consider all factors impacting the
shift, besides determining the start time of advertising at each
epoch, we also need to evaluate the time difference between
each node’s message generation (Φ1,2). That is a random value
that depends on when the node has initiated operation. Larger
Φ1,2 can be beneficial when it makes nodes de-synchronized
to the point where no advertising periods overlap, allowing for
optimum reception, but if Φ1,2 is closer to zero, the reception
becomes more dependent on the random selection of link to
network layer delay, and scan window size.

To demonstrate the theory, [3] performs simulations to
evaluate the probability of delivery over different Φ1,2. The
results show that with zero shift or any multiple of Tgen(fully
synchronized), we have the worst probability. In addition, it
is shown that a solution to improve worst-case occasions is to
increase the scanning window. For example, by increasing Sw

from 50 ms to 80 ms, we modeled the probability of reception
at Φ1,2 = 0 to increase from 70% to 80%. The reason is the
distribution of start times since, with shorter Sw, the starts
of the advertising state are closer to the start of the epoch,
increasing the chance of blind time.

In addition, the paper also estimates the discovery latency by
modeling the number of epochs needed until the first reception.
The model is based on a DTMC with an absorbing state, where
the absorbing state is the first successful transmission. Since,
when in communication range, each node is in a different state,
simulating all possible initial states, they could calculate the
average discovery delay for all Φ1,2. Compared with the MDR
simulations, we can see that with a higher delivery probability,
there is a shorter average discovery latency.

Finally, as pointed out in their conclusion, the simulation
focuses on demonstrating the effects of delivery probability
and latency, but it requires more analysis to consider factors
as propagation and Age of Information (AoI). In their model,



Fig. 1: Communication diagram showing two nodes communicating under different scenarios. In case 1, all packets are received,
although there is a small overlap on the first and third transmissions. In case 2, due to blind time, they cannot detect each
other (N = 2).

they assume the best channel quality, neglecting the impacts of
path loss, shadowing and multipath. That is useful to correlate
the changes in performance to the tuning of the parameter,
but it does not reflect practical scenarios. On top of that,
evaluating AoI, the interval between successful receptions,
helps determine the relevance of the data received.

B. KPIs

To evaluate the different parameter choices, we choose four
KPIs: Message Delivery Ratio (MDR), Discovery Latency,
AoI and Energy consumption. Those were selected based on
the metrics simulated in [3], recommendations and practical
matters, such as battery life. By evaluating these KPIs, we
can determine the efficiency of our system and its ability to
perform under real cycling conditions. In this section, we will
go over each indicator, explain how it is reflected in B2B

applications, and give some context on what the expected
results would be.

1) Message Delivery Ratio: MDR represents how many
unique packets are received successfully. This is the base
probability to determine whether another bike will receive
the transmitted message. The main natural factors that impact
MDR are medium quality, radio propagation and blind time.
As those conditions are independent of the system’s design, the
best approach to counteract them is to increase transmission
strength or add redundancy by transmitting more packets.
Since the nodes run the same code and BLE schedule, the
other limiting factor is synchronization. As mentioned in
the previous section, if the node’s epochs are fully in sync,
reception chances are drastically decreased due to blind time.
However, with the added random delays, the node can still
receive messages even when in sync. Theory shows that by



having longer scan windows, we can reduce the impact of
synchronization.

Keeping a high percentage for this indicator means that
more bikes are likely to detect the signal and, consequently,
will be able to react to the information. As a side effect, higher
probabilities will also result in faster detection.

2) Discovery Latency: This metric represents how fast
nodes detect each other. It is a crucial parameter to determine
the range of applications such communication could have. In
transportation use cases, there can be different requirements
for discovery latency. For instance, time-critical applications
like collision avoidance require a latency lower than cyclists’
reaction and maneuvering, while for non-time-critical cases,
slower discovery is more acceptable. Similarly to the MDR,
we are dependent on the propagation limitations of the envi-
ronment, but by improving MDR, we are also going to see
similar improvements to the discovery latency.

We aim to detect the communicating node within the
comfort zone of maneuvering. We chose a zone within 1 to
4 seconds based on [10]. In their trials, the highest speed
evaluated was 22 km/h, as we will perform ours at 25 km/h,
we chose a similar range to their highest speed.

3) Age of Information: AoI is a representation of how up-
to-date the data (location on our use case) received are. If too
old, it may not be useful as the bike might have moved a
considerable distance from the sent location, while if recent,
the cyclist could use the information to determine how they
cycle. Similarly to discovery latency, this indicator relates to
MDR and message generation frequency. It relates to MDR
because, if packets are frequently lost, AoI will grow due to
longer waiting times between receptions. And, it is dependent
on the generation period because it impacts the frequency of
”fresh” data. The longer the period, the older the information
will be, independent of MDR.

In our experiments, we evaluate the peak AoI, which repre-
sents the maximum AoI achieved before the newest reception
[17]. We can find this value by comparing the timestamp of
the latest reception with the generation time from the previous
message received. Under perfect conditions, when MDR is
100%, the peak AoI will be close to the generation period,
but with poorer medium quality, it will increase. Peak AoI is
a relevant indicator because it can also assist in determining
whether a piece of information is still relevant or not. For
applications that require a fast response from the cyclist, the
peak AoI should not be longer than the reaction time. On
the other hand, non-time-critical use cases can have a more
flexible performance.

Although it seems beneficial to decrease the generation
period to reduce the average peak AoI, there are practical im-
plications. Faster generation means more packets per second,
which could overload the radio spectrum and possibly cause
interference and increase packet collision probability.

4) Energy cost: The energy consumption is important to
calculate the battery life of the devices. As shown in [14],
the power needed to scan is similar to the power required
to transmit packets. However, considering the duration of

each phase, their difference become more noticeable. That is
because scanning is a longer and continuous process, while
advertising phases are short peaks of energy followed by idle
states where consumption is minimal. One way to reduce its
cost is by reducing the overall scanning duty cycles (period of
active scanning within an epoch divided by the epoch length).
Some methods to change the overall duty cycle are: changing
the number of copies sent, the more copies the longer the
device will be in advertising mode; or changing the message
generation frequency, as it will modify the epoch length.

Optimizing consumption comes with a trade-off in the qual-
ity of the communication. Minimizing consumption can have
a negative impact on the probability of packets being received
because reducing the duty cycle may give the system fewer
opportunities for detection. Therefore, choosing the scanning
durations should be a balance between efficient reception and
viable energy cost.

C. Packet structure

Unlike connection-based applications, we cannot transmit
parts of the data over multiple packets. When using connec-
tionless mode, we have two options: include all data in the
packet or send additional data in a scan response packet. As
scan responses require additional packet transmissions and a
more stable transmission medium, our aim is to send all data
in a single packet. The main benefit of this strategy is that
the observer node does not need to acknowledge the sender to
receive the data. Considering the conditions of a moving bike,
this strategy avoids cases where not all packets are successfully
received. However, there is a trade-off with packet size. An
advertisement payload is restricted to 37 bytes (including flags
and identifiers), as seen in Figure 2. From those bytes, we have
the flexibility to set the Manufacturer’s Specific Data Field
with a custom structure where we can send the necessary data.
Our payload data structure consists of: a packer ID (2 bytes),
timestamp (4 bytes), advertising start (1 byte), latitude (4
bytes) and longitude (4 bytes). Because location finding is not
part of our scope, the latitude and longitude were implemented
as placeholders for future implementations. The remaining
data fields were selected to support the test measurements.
This structure is flexible to modifications as long as the size
is within the boundaries allowed.

V. RESULTS & DISCUSSION

In this section, the results of our tests will be presented.
First, we will give an overview of how the BLE and the test
setup were implemented. Further, we will go over each test
performed, explaining how it was done, what we wanted to
determine, and what our system’s performance was.

A. Implementation

To implement the communication setup on a bicycle, we
opt for two nRF5340 Development Kit (DK) from Nordic
Semiconductors. The DK was chosen because it embeds the
nRF5340 System-on-Chip (SoC), which is a popular option for
IoT applications using BLE. Besides that, as a development



Fig. 2: Packet structure and custom-made structure of the
Manufacturer Specific Field for the B2B use case.

board, it offers multiple GPIOs to connect the necessary
modules for our measurements, while still leaving empty IOs
for future implementations. Regarding hardware (Figure 3a),
we also used a microSD module (Adafruit’s MicroSD card
breakout board+) to record packet receptions and LED for
visualization purposes. To synchronize the nodes, we also use
IOs for UART communication.

(a) Hardware

(b) Software

Fig. 3: Block diagrams of the hardware used and how the
software modules interact with each other.

On the software side (Figure 3b), the code is divided into
C scripts representing each module of the system. The scan
module and the beacon module are responsible for the BLE-
related functions, settings, and for simulating the Application
Layer, generating messages. The SD card module contains
the read and write functions for the microSD. The UART
module has the UART setup for synchronization, which will

Fig. 4: State machine diagram for the main file loop.

be required to evaluate the epoch shifts. Each module file has
its own header file exposing its functions, and we have an
additional header file with all BLE parameter values for con-
venience when tuning. The functions in the files are used in a
main script, which initiates modules and loops through a state
machine. As shown in Figure 4, after initializing the modules,
the system mainly switches between advertising and scanning.
However, after a set timer, we create new tests by adding shifts
and placing row markers in the saved CSV file. The markers
are simply zero rows, but they allow us to automatically
distinguish tests in the pre-processing stage. Moreover, it is
important to note that scanning is disabled before entering the
advertising phase. That is done to avoid unpredictable behavior
of scanning delays in between transmissions.

As we want to evaluate the impact of the scan window
length and the number of copies sent, we selected the param-
eter sets in Table II.

Parameter Set Sw(ms) N(copies) Tgen(ms)
1 50 3 200
2 80 3 200
3 50 5 200

TABLE II: Parameter sets used in the tests.

In addition to the nRF5340 DKs, we also used an nRF52
DK flashed with Nordic’s nRF Sniffer, allowing us to use that
board as a BLE sniffer. That means its only function is to
constantly scan BLE channels with 100% duty cycle. This
is a useful tool, firstly, to debug communication as we can
inspect the content of packets, but also to be the ground truth
of measurements by excluding the blind time component.

Pre-processing and processing of the saved CSV files were
done using Jupyter Notebooks. As mentioned in section IV-C,
the packets contain a timestamp of transmission, advertising
start (delta time from message generation to transmission)
and an ID for the messages generated. Along with those, the
receiving node appends its own timestamp and RSSI. These
metrics are saved per packet in each row of the CSV file and



can be used to determine the KPIs after processing. MDR can
be found by dividing the number of unique packets received
(without counting copies) by the expected number of packets
(in our case, one packet per 200 ms). AoI can be measured,
accounting for the transmission timestamp and the advertising
start, to find when the message was generated. And, discovery
latency can be found by observing the reception timestamp.

B. Side by side Test

The side-by-side test is relevant to understanding the impact
of blind time (epoch synchronization) on the MDR, removing
the effects of imperfect channel conditions (due to pathloss
and channel fading). The test was done indoors with the two
nRF5340 DKs next to each other (to minimize propagation
effects) and the sniffer. Once a test is started, the node will
follow the state machine (Figure 4), starting a new test every
five minutes (1500 unique packets). To simulate different
synchronization, after each test, a 10 ms shift is added to
the generation time of one of the nodes. The evaluation of
a parameter setting is done after we measure all shifts with
the generation period, considering we have Tgen = 200 ms,
then 200/10 = 20 shifts.

Fig. 5: MDR comparison between Sw = 50ms and Sw =
80ms during side by side test.

Fig. 6: MDR comparison between N = 3 and N = 5 during
side by side test.

As we can see in Figure 5, a longer scan window gives
better performance with closer synchronization as predicted
in the model. This difference is explained by the range of
time an advertisement can start. In Figure 7, we can see how
that range differs between the two sets by making a histogram
of their advertising start. That is because, following Equation
3, the maximum start time is increased as we increase Sw. In
Figure 6, we also show that modifying the number of copies
sent does not influence the trend per shift. Yet, as the duty
cycle is reduced, the average MDR tends to be lower with
fewer copies.

(a) Sw = 50ms

(b) Sw = 80ms

Fig. 7: Advertising start (delay between the start of the epoch
and the first transmission).

For each measurement, we also observe the peak AoI per
shift. As shown in Figure 8, the peak AoI follows a similar
trend to its respective MDR measurement, achieving the best
performance at around 100 ms shift. We also show in Figure 9
the probability of each peak AoI during a worst-case scenario
(Φ1,2 = 0), we can see that the longer scanning window from
set 2 increases the probability of a lower peak AoI.

Further, we compared the results with the analytical model
(Figure 10). As we see, the model results are similar to the
experimental results, having a mean absolute error of 2%. Both
achieve the best performance with 100 ms shift as the epochs
are the most de-synchronized, eliminating the impact of blind
time. The model also displays the advantage of the longer scan
window for closer shifts, having a similar behavior throughout
the shifts.

The overall results from the side by side tests show that
the model is right in estimating the impacts of blind time



Fig. 8: Average Peak AoI per shift for all parameter sets.

Fig. 9: CDF of peak AoI for each duration showing the
probability of a received message having a certain peak AoI
(Φ1,2 = 0).

and parameter selection. As shown, synchronization between
nodes has a significant impact on MDR, with Φ1,2 = 100ms
being the best scenario among all parameters tested. The center
values of Φ1,2, which are the furthest from the generation
times, result in the best performance because the advertising
start range got from Equation 3 is sufficiently shifted so
that, in any combination of starts, the nodes do not overlap
transmissions. Yet, as we cannot determine the initial shift,
modifying the scan window is an alternative direction to
counteract those effects. Looking into sub-question RQ1.a, we
see in the tuning of the scan window a viable direction to
maintain reliable communication under non-ideal scenarios.

C. Line of Sight range tests

In this section, we want to evaluate the impact of distance
on communication. We used a similar setup to the side
by side test, evaluating different shifts. However, instead of
being indoors and with the nodes next to each other, the
measurements were done outside and with the nodes separated
by different distances (10, 20, 30, 40, 60, 80 and 100 meters),
and we reduced the test duration to one minute per shift. To
simulate bicycle conditions, we placed one node in a handlebar
bag (one meter from the floor) attached to a bike and the

Fig. 10: Comparison between analytical model and experimen-
tal data for each parameter set.

other one at the same height. To achieve Line of Sight(LoS)
conditions, the location of the test was Hogekampplein (Figure
11a), and all tests were carried out in dry weather.

Figure 12 shows the mean and variance of MDR when
combining all distance measurements. We observed that the
distance between nodes does not have a meaningful impact
on MDR. Although the RSSI varies (Figure 13), it does not
change a significant amount to impact the reception, resulting
in a pattern per shift similar to the side by side.

To verify the performance, we compared the results with a
sniffer. There we saw that with a 100% duty cycle, we have the
majority (around 99%) of packets are successfully received,
which means the change in MDR remains due to blind time.



(a) Los

(b) Non-LoS

Fig. 11: Satellite view of the test locations. The bike and
computer icons represent where the nodes were positioned.

Moreover, the measurements during the range test give us a
ground truth reference to analyses the Non-LoS tests. These
comparisons lead us to understand the effects of the medium
on the quality of the communication (sub-question RQ1.b).

D. Non-LoS tests

In this batch of tests, our goal was to evaluate MDR and
Discovery latency under more realistic settings. The measure-

Fig. 12: MDR variance during range test. Solid line represents
the mean MDR throughout all distances while the filled-in
space shows the range of MDR values per distance.

Fig. 13: Average RSSI per Distance during LoS range test.

ment strategy was then to have a moving bike approaching
an intersection and a static bike at a (visually) blind spot.
The tests were done in two locations, in Figure 11b, where
the main difference is that LoS was blocked by vegetation
or buildings. We considered the receptions within a 100 m
range as it gives the rider enough time to react, but it is not
too far, so the information becomes unnecessary. Additionally,
because we do not have the instant location of the bicycle in
the packet, we use an action camera to record both an LED
that blinked whenever a packet was received, and the floor,
where we marked the distance from the intersection. Later,
we analyze the footage to identify the position of the bike
when the first message was received within the 100 m range.

Regarding the code, we made small modifications to the
implementation. Since we wanted to focus on a worst-case
shift, we tested only when the message generations happen at
the same time without any shift. And, because we wanted
to measure specific moments, the new test state was now
triggered by a button instead of a timer. By doing so, we
could disable the recording as the bike was going to the start
position and enable it again when the test started.

After 20 repetitions for each location and set, we plotted a
Complementary Cumulative Distribution Function (CCDF) to



(a) Location A (vegetation)

(b) Location B (building)

Fig. 14: CCDF of the distance from the intersection for the
first received message.

determine the probability of a packet being received at each
distance. The CCDF F (x) is found using:

F (x) = 1− P (X > x) (4)

where P (X > x) is the probability of the distance X , from
the first received message, being higher than the distance
x. As expected from earlier results, the configuration with
Sw = 80ms showed better probabilities, as seen in Figure 14.
That is explained by the minimum epoch shift of the nodes,
which is advantageous for longer Sw values. We also observed
that vegetation had a greater impact on reception than the
building, as the large number of leaves on the path reduces
signal strength.

Later, we analyzed the packet arrivals saved in the SD cards.
From the CSVs, we plotted the average AoI and the number
of packets received per second. In Figure 16, we can see that
AoI remained relatively low with values mostly between 400
ms and 1 second, with set 2 having the lowest due to its
better reception. The second graph (Figure 15) gives a more in-
depth view of reception as the bikes approximate each other by
showing the average number of messages per window duration

of one second from the intersection. There, we can see that
set 2 tends to receive messages earlier and in larger amounts
than the other sets, and that all sets receive messages even
before the comfort zone. Also, we observe that the number
of detected messages increases as the nodes get closer, as a
result of having a better signal strength. Keep in mind that, as
Tgen = 200ms, the maximum number of packets that can be
sent per second is 5, not including copies. It is also relevant
to point out that set 2 showed a detection range further than
100 m in some tests, but since we chose a range of 100 m,
only packets received in this range were considered.

(a) Location A (vegetation)

(b) Location B (building)

Fig. 15: Average packets per window of one second to the
intersection and comfort zone for maneuvering (in green)
based on [10].

In summary, the Non-LoS tests helped us identify two
key behaviors. First, larger scan windows show a significant
advantage over shorter windows on worse-case conditions
(Φ1,2 = 0). Second, sets 1 and 3 showed very similar results,
meaning that we could increase the number of copies on some
occasions to decrease the scanning duty cycle and power con-
sumption without having a major impact on communication ef-
ficiency, under similar conditions. Furthermore, as we simulate
real conditions (obstructed propagation and bike movement),
the results demonstrate that B2B wireless communication,
under the tested conditions, could allow real-time surrounding
awareness. Observing the discovery range and the number of
messages per one-second window, most trials demonstrate that
the cyclist would receive a warning within and earlier than



Fig. 16: Distribution of the average Peak AoI during Non-LoS
tests.

their comfort zone. Moreover, comparing test locations, we
see that the type of obstruction (vegetation or buildings) also
impacts the performance of the system.

E. Energy consumption

To determine the energy cost of communication, we mea-
sured the current in different stages with an oscilloscope. To
perform the measurement, we used the ”energy measurement”
pins from the nRF5340 DK. By connecting each to both ends
of a 10 ohm resistor, we could then use the oscilloscope to
see the voltage drop across and calculate the current in each
stage. To focus solely on the communication, we modified the
code to remove unrelated modules such as the SD card and
the LEDs. Since the difference between the parameter sets is
only the duration of each phase, we measured the currents for
set 1 and calculated battery life for the other sets based on the
currents found.

Fig. 17: Oscilloscope screenshot from a packet transmission
on the 3 advertising channels.

From the oscilloscope, we identified that the current in-
creases in 3 sections: during scanning, during packet transmis-

sion, and during mode switch. Those sections have an average
current of 7 mA while the idle sections have an average of 2.5
mA. Furthermore, we observed that the transmission duration
in all channels (in Figure 17) takes approximately 1.3 ms while
the mode switch takes 4 ms. Considering the epoch period
of 200 ms and 150 mAh coin battery, we can calculate the
number of epochs and battery life per charge by multiplying
the current by the duration of each section.

Fig. 18: Oscilloscope screenshot from a full advertising dura-
tion (Sw = 50, N = 3).

Using Equation 1, we estimate that the average DAdvDur

of each set, which matched approximately to the duration
observed on the oscilloscope (Figure 18). By subtracting
DAdvDur from Tgen, we find the scanning time per epoch.
Table IIIa shows the calculated durations and costs per epoch.

Phase Duration (ms) Energy cost (10−6 mAh)
Mode switch (high phase) 3.4 6.6
Mode switch (low phase) 0.6 0.4

Copy transmission 1.3 2.5
Idle (N = 3) 52.3 36.3
Idle (N = 5) 99.7 69.2

Scanning (N = 3) 137 266.3
Scanning (N = 5) 87 169.1
TOTAL (N = 3) 324.1
TOTAL (N = 5) 264.8

(a) Average energy cost in a single epoch

N Epochs Battery life
3 462,820 25.7h
5 566,465 31.5h

(b) Overall battery life estimation based on energy consumption

TABLE III: Energy cost and battery life analysis for different
N values.

From the Table IIIa values, we can determine the overall
battery life for a coin battery. Table III shows we would
be able to do 462,820 epochs when N = 3 and 566,465
epochs with N = 5. Multiplying by the duration of the epoch
we get 25.7 hours and 31.5 hours, respectively. The battery
life shows that with any of the parameter sets tested, the
system would comfortably have a full day of continuous use
before requiring to be charged, or multiple days if disabled



when the bike is not in use. Besides that, we see from the
oscilloscope measurements the impact of parameter tuning
on energy consumption (sub-question RQ1.a). We see that
increasing the advertising phase via the number of transmitted
copies is a viable way to change energy use. On the other hand,
changing the scan window has no impact on the consumption
per epoch.

VI. FUTURE WORK

Although the test performed already shows a positive behav-
ior of our design, there are still some aspects that need to be
studied before having a final system. Initially, due to limited
resources, we were not able to significantly increase the
number of B2B nodes to evaluate the impact of multiple nodes
communicating simultaneously. For a final implementation, we
should know how to adjust parameters to reduce the impact of
medium load, since in a real scenario, there would be multiple
bicycles using our system.

Furthermore, as pointed out in our implementation, we
did not implement real-time locational data on the packet.
Although we reserved a space in the packet to transmit location
coordinates, such a feature was not implemented. For future
development, GNSS and IMU data could be added to fill
the packet and allow the receiving node to estimate where
the signal is coming from. Additionally, pre-loaded location
information and medium sensing could be used to adapt
communication parameters to optimize medium use, message
delivery, or energy consumption at runtime.

Finally, despite the energy measurements made, further
work could be done on optimizing energy consumption in-
volving all modules of the system. Knowing the energy cost
of external sensors and being able to estimate the position,
we could reduce or modify the frequency of scanning and
transmission. Besides that, based on researching the impact
of medium load, we should find alternatives to reduce energy
use without increasing the number of packets sent by having a
scan window smaller than the scan interval, or increasing the
advertising window.

VII. CONCLUSION

In summary, the paper gives a practical overview of the
performance of B2B communication, evaluating characteristics
such as node synchronization and transmission propagation.
We base ourselves on previous work done with the analytical
modeling of this use case, expanding on their discoveries
by conducting practical trials. And, by comparing sets of
parameters, we analyze how tuning the system can change
the MDR, latency, and battery life.

To conclude, the current system achieves significant perfor-
mance for use on bicycle commuting scenarios. Communica-
tion efficiency, latency and range show considerable reduction
as conditions become more complex with less LoS or non-
optimal synchronization. Yet, the results demonstrates that
the minimum requirements for time-critical applications are
still met, and packets are able to carry useful information
to improve bike rides in a city environment. Moreover, test

outcomes present the scan window and the number of copies
as important tunable parameters that affect delivery success
and energy consumption. Increased scan window showed sig-
nificant improvement in MDR under worst-case synchroniza-
tion. While, under our test, increasing the number of copies
increased in 6 hours the battery life without major effects on
reception. With further work on implementing location finding
and parameter optimization, our design has the potential to be
a beneficial addition to smart city infrastructure.
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