
MSc Computer Science
Final Project

Practical Probabilistic Program
Verification using Caesar

Franka van Jaarsveld

Committee:
dr.ir. A. Continella
prof.dr.ir. J.P. Katoen
S.M. Nicoletti MSc
P. Schröer, MSc
D. Haase, MSc

May , 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

CONTENTS

Acknowledgements

1 Introduction 1

2 Background 4
2.1 Probabilistic Programs . 4
2.2 Weakest Preexpectations . 6

2.2.1 Weakest Liberal Preexpectations . 9
2.2.2 Reasoning About Loops . 11
2.2.3 Expected Runtimes . 13
2.2.4 Termination . 14

2.3 Caesar . 15
2.3.1 Proof Rules for While Loops . 16

2.4 Bounded Retransmission Protocol . 17
2.4.1 Abstraction for Verification . 18

3 Related Work 20

4 Methodology 22
4.1 BRP Abstraction . 22

4.1.1 pGCL Implementation . 23
4.1.2 Verification Properties . 24

4.2 Manual Calculations . 25
4.3 From WP-Calculus to Caesar . 25

4.3.1 Invariants . 26
4.3.2 pGCL to HeyVL . 26

4.4 Caesar Verification . 28

5 Theoretical Verification 29
5.1 Initial Attempt . 30

5.1.1 Loop-unrolling using Caesar . 31
5.2 SendPacket . 32

5.2.1 Termination . 33
5.2.2 Probability of Success . 34
5.2.3 Expected Number of Failures . 36

5.3 BRP . 37
5.3.1 Termination . 37
5.3.2 Probability of Success . 38
5.3.3 Expected Number of Failures . 39
5.3.4 Expected Number of Sent Packets 40

CONTENTS CONTENTS

5.4 Results . 41
5.5 Geometric Program . 42

5.5.1 Trials . 42
5.5.2 Failures . 43

6 Practical Verification 45
6.1 Invariants . 45
6.2 From pGCL to HeyVL . 46

6.2.1 Exponentials . 47
6.3 Results . 48

7 Discussion 50
7.1 BRP Abstraction . 50
7.2 Theoretical Verification . 51
7.3 Translation Steps . 51

7.3.1 Proof Rules . 52
7.3.2 pGCL to HeyVL . 53

7.4 Translation Observations . 54
7.5 Practical Verification Results . 55
7.6 A Guide to Caesar . 56

7.6.1 Advantages . 56
7.6.2 Limitations . 56
7.6.3 Recommendations . 56

8 Conclusion 59

9 Future Work 60
9.1 Address Existing Issues . 60
9.2 Tool Improvements . 60
9.3 Further Evaluation . 61

A Fixed-Point Iteration 66
A.1 Initial Attempt . 66
A.2 SendPacket . 68

A.2.1 Probability of Success . 68
A.2.2 Expected Failed Transmissions . 69

A.3 BRP . 70
A.3.1 Probability of Success . 70
A.3.2 Expected Failed Transmissions . 71
A.3.3 Expected Sent Packets . 72

B Supremum Simplification 74
B.1 SendPacket Failed . 74
B.2 BRP TotalFailed . 79
B.3 BRP Sent . 83

C Suprema as Invariants 87
C.1 SendPacket . 87

C.1.1 Probability of Success . 87
C.1.2 Expected Number of Failures . 89

C.2 BRP . 91

CONTENTS CONTENTS

C.2.1 Probability of Success . 91
C.2.2 Expected Number of Failures . 92
C.2.3 Expected Number of Sent Packets 94

D Superinvariants 96
D.1 SendPacket . 96

D.1.1 Expected Number of Failures . 96
D.2 BRP . 98

D.2.1 Probability of Success . 98
D.2.2 Expected Number of Failures . 99
D.2.3 Expected Number of Sent Packets 101

E Verification Time 103
E.1 Probability of Success . 103
E.2 Number of Failures . 104
E.3 Number of Sent Packets . 104

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my daily supervisors, Stefano, Philipp, and
Darion, for their expert guidance and unwavering support throughout this project, as well
as for carefully reading and re-reading my thesis. Whenever I encountered obstacles, they
helped me explore alternative approaches, and they consistently encouraged me to ask
questions, even outside our weekly meetings, always responding promptly to my emails.
Their support made this project feel like a shared priority, and I am deeply appreciative
of their commitment.

I am also grateful to my friends and family for their constant support and encourage-
ment throughout this process, and for asking about my thesis even when they had no idea
what I was talking about.

AI DISCLAIMER

This thesis benefited from the use of AI writing tools, including OpenAI’s ChatGPT, which
was used to improve clarity and refine academic language. All content was reviewed and
edited by the author, who takes full responsibility for the final version of the text.

Abstract

This thesis explores the practical verification of probabilistic programs using Caesar, a
weakest preexpectation-based verification tool for reasoning about the expected behaviour
of discrete probabilistic programs. The Bounded Retransmission Protocol (BRP) is studied
as a case study. A key contribution of this work is the abstraction and decomposition of
BRP into two geometric-like programs, enabling more effective reasoning about the proto-
col’s behaviour and facilitating the stepwise verification strategy. Theoretical verification
of key properties (positive almost-sure termination, success probability, and the expecta-
tion of the number of failed and sent transmissions) was largely successful using weakest
preexpectation calculus. Translating these results into verification using Caesar introduced
practical challenges, particularly in invariant discovery. Additionally, even valid invariants
did not always lead to successful verification due to limitations in Caesar’s current im-
plementation, particularly in SMT solver performance and the handling of exponentials.
However, through workarounds including alternative invariants and a ’fueled’ exponential
function, meaningful properties of BRP were verified. This thesis demonstrates how such
techniques support practical verification in Caesar and concludes with a discussion of its
strengths, limitations, and recommendations for effective use.

Keywords: Probabilistic programming, program verification, weakest preexpectation, weak-
est liberal preexpectation, expected runtime, fixed-point iteration, supremum, Caesar,
loop-unrolling, induction, inductive invariants, HeyVL, Bounded Retransmission Proto-
col.

CHAPTER 1

INTRODUCTION

Probabilistic Programs

Probabilistic programs extend traditional programs by incorporating three constructs: the
ability to draw values from distributions, the ability to make probabilistic choices, and the
ability to condition values of variables via observe statements. These constructs enable the
modelling of uncertainty within a program. Many established programming languages have
probabilistic counterparts designed to support these features. Examples include PyMC for
Python [1], WebPPL for Javascript [2], and STAN for C++ [3], among others.

Probabilistic programs are widely employed to represent probabilistic models, which
are fundamental to numerous machine learning applications. These include, but are not
limited to, information extraction, speech recognition, computer vision, coding theory, and
reachability analysis [4]. Two remarkable examples highlight the practical importance of
probabilistic programming. First, the seismic monitoring NET-VISA [5] was developed and
deployed by the United Nations to enhance the International Monitoring System (IMS), a
global sensor network developed for the Comprehensive Nuclear Test Ban Treaty. NET-
VISA significantly improved event detection, reducing missed events by approximately 60%
compared with the previous system, and successfully identified events overlooked by human
analysts. Second, the probabilistic programming language Scenic [6] has been employed to
generate specialised training and test sets for neural networks. In a case study focused on
vehicle detection in road images, Scenic produced data that improved the performance of
a convolutional neural network beyond what was achieved using state-of-the-art synthetic
data generation methods. This application is particularly relevant for the development of
autonomous vehicles, where accurate object detection is critical for safety and reliability.

Driven by such impactful applications, the use of probabilistic programs has grown
significantly in recent years, accompanied by a corresponding increase in research on the
verification of such programs [7].

Probabilistic Program Verification

Ensuring the correctness of software systems is critical is modern society, particularly for
the software controlling transportation and communication infrastructure [8]. The failure
of such systems can have severe consequences, as highlighted by several remarkable in-
cidents. One prominent example is the 1992 failure of the London Ambulance Service’s
computer-aided dispatch system. Following its deployment, the system experienced signif-
icant malfunctions, resulting in significant delays in ambulance dispatching, with reports
of up to 11-hour waits. Media sources at the time claimed that up to 30 people may have
died as a result [9]. A more recent incident occurred in 2008, involving the Gamma Knife,
a high-precision radiation therapy device used to treat brain diseases. A software bug

1

CHAPTER 1. INTRODUCTION

caused the emergency stop button to fail during a procedure, forcing medical personnel to
manually remove the patient from the machine. Fortunately, no injuries occurred, but the
incident highlights the potential dangers of software errors in critical systems [10].

As Dijkstra famously stated, "though testing a program is a very effective way to show
the presence of bugs, it is hopelessly inadequate for showing their absence" [11]. To pro-
vide stronger assurances on the reliability of software, formal program verification aims to
mathematically prove that a program behaves according to its specification. As early as
1949, Alan Turing outlined a method for the systematic verification of software and antic-
ipated the development of calculi for such analysis [12]. In 1975, Dijkstra introduced one
such formalism: the weakest precondition calculus, which allows reasoning about whether
a program satisfies a given postcondition [13]. Building on this foundation, McIver and
Morgan developed the weakest preexpectation calculus, a probabilistic extension of Dijk-
stra’s calculus. This method enables reasoning about expected behaviours in probabilistic
programs and systems [7].

Despite these advances, program verification remains a complex and labour-intensive
task, requiring substantial expertise and manual effort. Verification tools have therefore
become an essential aid, improving the efficiency and reliability of the verification pro-
cess [14]. Reasoning about the expected behaviour of probabilistic programs is known to
be strictly harder than for ordinary programs, but techniques developed to verify such
programs often feature little to no automation. To address this, Schröer et al. introduced
Caesar, a verification infrastructure based on weakest preexpectation theory, which facili-
tates reasoning about the expected behaviour of discrete probabilistic programs [15].

To evaluate the effectiveness of Caesar, its developers have applied it to various ver-
ification problems drawn from the literature [15]. One such case study is the Bounded
Retransmission Protocol (BRP), a protocol that extends the well-known Alternating Bit
Protocol. Unlike its predecessor, BRP does not rely on the fairness of data transmission
channels, and limits the number of retransmissions to prevent non-termination [14]. Al-
though conceptually simple, BRP exhibits non-trivial behaviour due to its combination
of bounded retries and probabilistic failure, which complicates reasoning about expected
outcomes and makes it an interesting candidate for verification studies [16].

Typical questions in probabilistic program analysis concern quantifying aspects of their
expected behaviour, such as expected runtimes, expected values of program variables, and
probabilities of certain outcomes [15]. Currently, Caesar has only been used to verify the
expected number of failed transmissions for BRP under the constraint that the number of
data frames is limited to three.

Research Goal

This study will generalise the existing verification of Caesar using BRP to support an
arbitrary number of packets. In addition, it explores the verification of further properties
concerning the global behaviour of BRP. Through this analysis, this study will address
each of the central questions in probabilistic program analysis and provide deeper insights
into Caesar’s verification capabilities. Based on this assessment, the study aims to provide
concrete recommendations for the effective use of Caesar.

To this end, a simplified representation of BRP is developed to support verification
using the weakest preexpectation calculus. Using this model, a set of properties of BRP is
identified for verification, and these are verified manually, thereby establishing a theoretical
foundation for the Caesar verification.

The manual calculations are then used to generate Caesar programs for the practical
verification of each property. This process is documented in detail, highlighting which

2

CHAPTER 1. INTRODUCTION

properties can be verified with Caesar, what limitations are encountered, and what insights
are gained. Based on this experience, the study formulates a set of recommendations for
using Caesar.

Research Questions

The central research question guiding this study is:

What are the advantages and shortcomings of Caesar’s verification
capabilities when applied to the Bounded Retransmission Protocol
(BRP), and what recommendations for its application can be derived
from this case study?

To address this overarching question, the following sub-questions are examined:

1. How can BRP be modelled to facilitate the verification using Caesar?

2. Which properties of BRP can be verified using Caesar’s underlying weakest preex-
pectation calculus?

3. How can theoretical verification based on weakest preexpectations be translated into
verification using Caesar?

4. What challenges and insights emerge when translating the theoretical verification to
practical verification using Caesar?

5. What are the verification results, and what assumptions, if any, are required to verify
each property?

Thesis Structure

To address the research question outlined above, Chapter 2 introduces the necessary back-
ground on probabilistic programs, weakest preexpectations, Caesar, and the Bounded Re-
transmission Protocol. Chapter 3 presents a review of related literature. The methodology
is described in Chapter 4, which includes the abstraction of BRP to a model that captures
only its external behaviour, its subsequent refinement, and the selection of verification
properties. Chapter 5 details the theoretical verification of the selected properties using
manual weakest preexpectation calculations. These results form the foundation of the
practical verification using Caesar, which is presented in Chapter 6. Chapter 7 discusses
the outcomes of the verification efforts and reflects on the research questions. The thesis is
concluded in Chapter 8, and potential directions for future work are outlined in Chapter 9.

3

CHAPTER 2

BACKGROUND

2.1 Probabilistic Programs

Probabilistic programs offer a few added constructs compared to regular programs: the
ability to draw values from distributions, make a probabilistic choice, and condition values
of variables using observe statements [4]. These features allow probabilistic programs
to model uncertainty and randomness, making them valuable tools in domains such as
statistics and machine learning. Applications include information extraction, computer
vision, speech recognition, coding theory, biology, and reliability analysis.

A simple probabilistic program is illustrated in Listing 2.1:

Listing 2.1: A simple probabilistic program.
1 count := 0;
2 stop := false;
3

4 while (!stop) {
5 count := count + 1;
6 stop := true [0.5] stop := false;
7 }
8

9 return count;

This program computes the number of iterations of the while loop (stored in count).
In each loop iteration, a fair coin flip determines whether the program exits or continues.
Though this example is straightforward, writing probabilistic programs is notoriously chal-
lenging, and reasoning about their expected behaviour is known to be strictly harder than
ordinary programs [17]. Typical questions in probabilistic program analysis concern ex-
pected runtimes, expected values of program variables (e.g. the expected value of count),
and conditional expected values and probabilities (e.g. the probability that count = 1).

The example program above is written in the probabilistic guarded command language
(pGCL), originally introduced by McIver and Morgan [7] as an extension of Dijkstra’s
guarded command language (GCL) [18] to support probabilistic programs. This section
provides a formal definition of pGCL, as presented by Kaminski [12].

4

2.1. PROBABILISTIC PROGRAMS CHAPTER 2. BACKGROUND

Definition 1 (The Probabilistic Guarded Command Language).

(A) The set of program states is defined as

Σ = {σ|σ : Vars→ Vals}

where Vars represents a countable set of program variables, and Vals denotes a
countable set of values. Unless otherwise specified, Vals = Q, where Q represents
the set of rational numbers.

(B) A probability distribution over values is a function π : Vals→ [0, 1] for which∑
v∈Vals

π(v) = 1

The set of all probability distributions over values is denoted by D(Vals). A
distribution expression is a function

µ : Σ→ D(Vals)

that maps every program state to a probability distribution over values. This
probability distribution is discrete, as Vals is countable by definition.

(C) The set of programs in pGCL is defined by the following grammar:

C → skip (effectless program)
| diverge (freeze)
| x := E (assignment)
| x :≈ µ (random assignment)
| C;C (sequential composition)
| if(φ){C}else{C} (conditional choice)
| {C}[p]{C} (probabilistic choice)
| while(φ){C} (while loop)

Where x ∈ Vars denotes a program variable, E represents an arithmetic expres-
sion over program variables, µ a distribution expression, φ a Boolean expression,
and p a probability expression.

(D) A pGCL program containing no diverge statements or while loops is called loop-
free.

(E) For a program state σ and arithmetic expression E, the notation σ(E) denotes
the evaluation of E in σ. This corresponds to substituting every occurrence of a
program variable x in E by σ(x). Similarly, σ(φ) evaluates a Boolean expression
φ in σ, yielding either true or false. For a value v ∈ Vals, the expression σ[x := v]
represents a modified program state in which the variable x is updated to v, while
all other variables remain unchanged.

(F) The final piece of required notation involves Iverson brackets. The Iverson
bracket [φ] of guard φ is defined as the following function:

[φ] : Σ→ {0, 1}, [φ](σ) =
{

1 if σ(φ) = true,
0 if σ(φ) = false.

5

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

Figure 2.1: Graphical representation of weakest preconditions (left) and weakest
liberal preconditions (right), given a program C, precondition G and postcondition
F . Diverging runs, represented by spiralling arrows, indicate instances where the
program fails to terminate.

2.2 Weakest Preexpectations

The analysis of probabilistic programs can be approached using weakest preexpectations,
a formal reasoning framework developed by McIver & Morgan [7]. This framework builds
upon Dijkstra’s weakest precondition calculus for non-probabilistic programs [13], and un-
derstanding the latter is essential in grasping the former. Accordingly, this section begins
with an introduction to the general concept of weakest preconditions, followed by the
presentation and formal definition of weakest preexpectations, along with the necessary
domain theory. Subsequently, bounded expectations and weakest liberal preexpectations
are introduced and formally defined, followed by a section on reasoning about loops. Fi-
nally, two levels of probabilistic termination are defined, and the expected runtime calculus
is introduced and formally defined. This section is primarily based on the work of Kamin-
ski, with notations and definitions adopted from his work [12], unless explicitly stated
otherwise.

Consider a program C whose behaviour needs verification and an accompanying spec-
ification that gives a postcondition F on the final states that C may reach. The aim is
to prove that the program C will only terminate in states that satisfy F , thus meeting its
specification. This can be approached by calculating the largest set of initial states that
guarantee termination in a state satisfying F . This set of states is the weakest precondition
G. Figure 2.1 (left) illustrates weakest precondition reasoning. Diverging runs of C, de-
picted as a spiralling arrow, are excluded from G since they failed to guarantee termination
in a state satisfying F .

When verifying a probabilistic program, the chosen postcondition is usually an expecta-
tion, expressed either in the form of [F] or as a variable x. In the former case, the weakest
preexpectation framework effectively obtains a guarantee on the probability that the pro-
gram terminates in a state satisfying F . In the latter case, the weakest preexpectation
yields the expected value of x when executing the program from an initial state σ.

Before formally defining an expectation, we must first define partial orders and complete
lattices:

6

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

C wp[[C]](f)

skip f

diverge 0

x := E f [x := E]

x :≈ µ λσ.

∫
Vals

(λv.f(σ[x := v]))dµ(σ)

P ;Q wp[[P]](wp[[Q]](f))

if(φ){P}else{Q} [φ] · wp[[P]](f) + [¬φ] · wp[[Q]](f)

{P}[p]{Q} p · wp[[P]](f) + (1− p) · wp[[Q]](f)

while(φ){P} lfp X.([φ] · wp[[P]](X) + [¬φ] · f)

Table 2.1: Weakest preexpectation calculus.

Definition 2 (Partial Orders). [19]

(A) Let D be some universe. Then (D,⊑), where ⊑ is a binary relation ⊑⊆ D ×D,
is a partial order, iff ⊑ is

(a) reflexive, i.e. for all a ∈ D
a ⊑ a,

(b) transitive, i.e. for all a, b, c ∈ D

a ⊑ b and b ⊑ c implies a ⊑ c,

(c) and antisymmetric, i.e. for all a, b ∈ D

a ⊑ b and b ⊑ a implies a = b.

Whenever the universe D is evident from the context, we may omit the D from
(D,⊑) and simply speak of the partial order ⊑.

(B) An element d ∈ D is called an upper bound of S ⊑ D, denoted S ⊑ d, if for
every s ∈ S, s ⊑ d. An upper bound d of S ⊑ D is called a least upper bound,
or supremum of S if

d ⊑ d′ for every upper bound d′ of S.

(C) An element d ∈ D is called a lower bound of S ⊑ D, denoted d ⊑ S, if for
every s ∈ S, d ⊑ s. A lower bound d of S ⊑ D is called a greatest lower bound,
or infimum of S if

d′ ⊑ d for every lower bound d′ of S.

(D) S ⊑ D is called a chain in D if, for every s1, s2 ∈ S,

s ⊑ s2 or s2 ⊑ s1.

7

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

Definition 3 (Complete Lattices). [19]
A partial order (D,⊑) is called a complete lattice if every subset S ⊆ D has a supremum
sup S ∈ D and an infimum inf S ∈ D.
Note that every complete lattice (D,⊑) has a least element ⊥ and dually a greatest
element ⊤ which satisfy

∀a ∈ D : ⊥⊑ a ⊑ ⊤.

Definition 4 (Expectations).
The set of expectations E is defined as

E = {f |f : Σ→ R∞
≥0}

where (E,⊑) forms a complete lattice with the partial order:

g ⊑ h ⇐⇒ ∀σ ∈ Σ.g(σ) ≤ h(σ).

The least element of (E,⊑) is the constant function λs.0, denoted 0. Analogously, its
greatest element is denoted by 1. The supremum of a subset S ⊆ E is constructed
point-wise as:

sup S = λσ. sup
f∈S

f(σ).

Given a postexpectation f ∈ E and a probabilistic program C, the weakest preexpecta-
tion g ∈ E is a function that maps each initial state σ to the expected value of f after the
execution of C on input σ. This function, denoted wp[[C]](f) : E → E, is systematically
derived using the weakest preexpectation calculus outlined in Table 2.1. As shown in the
table, the weakest preexpectation of a while loop is expressed as the least fixed point of
the loop characteristic function Φf (X):

wp[[while(φ){P}]](f) = lfp X. ([φ] · wp[[P]](X) + [¬φ] · f)︸ ︷︷ ︸
Φf (X)

.

To further simplify this expression, Kleene’s Fixed Point Theorem may be applied. The
theorem is presented below, preceded by several preliminary notions necessary for its com-
prehension.

Definition 5 (Continuity). [19]
Let (D,⊑) be a complete lattice and let Φ : D → D. Then Φ is called continuous, iff
for every chain S = {s0 ⊑ s1 ⊑ s2 ⊑ ...} ⊆ D

Φ(sup S) = sup Φ(S),

where Φ(S) is the standard shorthand for the set {Φ(a)|a ∈ S}.

Definition 6 (Monotonicity). [19]
Let (D,⊑) be a complete lattice and let Φ : D → D. Then Φ is called monotonic, iff
for all a, b ∈ D

a ⊑ b implies Φ(a) ⊑ Φ(b).

8

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

Theorem 1 (Continuity implies Monotonicity).
Every continuous function is monotonic. For a formal proof, refer to [12].

Theorem 2 (Kleene Fixed Point Theorem). [19, 20]
Let (D,⊑) be a complete lattice with a least element ⊥ and greatest element ⊤. More-
over, let Φ : D → D be continuous (thus monotonic). Then Φ has a least fixed point
lfp Φ and a greatest fixed point gfp Φ, respectively given by

lfp Φ = supn∈NΦ
n(⊥) and gfp Φ = infn∈NΦn(⊤).

By Kleene’s Fixed Point Theorem, it follows that:

wp[[while(φ){P}]] = lfp X.Φf (X) = supn∈NΦ
n
f (0)

where Φn
f represents the n-fold application of Φf and the supremum (sup) corresponds to

the least upper bound (LUB).

2.2.1 Weakest Liberal Preexpectations

Weakest preconditions consider only initial states that lead to final states satisfying the
postcondition, discarding diverging runs. However, in cases where the postcondition must
hold if the program terminates, reasoning is conducted using weakest liberal preconditions.
This concept is illustrated in the right half of Figure 2.1. Similarly, weakest preexpectations
also exclude diverging runs. However, when the objective is to determine the probability
that a program terminates in a desired state or diverges, reasoning is conducted using weak-
est liberal preexpectations. In contrast to weakest preexpectations, which reason about
total correctness, weakest liberal preexpectations do so about partial correctness. Fur-
thermore, weakest liberal preexpectations specifically address one-bounded expectations:

Definition 7 (Bounded Expectations).
A set of bounded expectations is defined as:

E≤∃b = {f ∈ E|∃b ∈ R≥0 : f ⊑ b}

where the order relation f ⊑ g is given by

f ⊑ g ⇐⇒ ∀σ ∈ Σ : f(σ) ≤ g(σ).

Although (E≤∃b,⊑) forms a lattice with least element 0, it is not complete, as a
supremum may not exist. Consequently, Kleene’s Fixed Point theorem does not
guarantee the existence of least fixed points for bounded expectations.

9

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

C wlp[[C]](f)

skip f

diverge 1

x := E f [x := E]

x :≈ µ λσ.

∫
Vals

(λv.f(σ[x := v]))dµ(σ)

P ;Q wlp[[P]](wlp[[Q]](f))

if(φ){P}else{Q} [φ] · wlp[[P]](f) + [¬φ] · wlp[[Q]](f)

{P}[p]{Q} p · wlp[[P]](f) + (1− p) · wlp[[Q]](f)

while(φ){P} gfp X.([φ] · wlp[[P]](X) + [¬φ] · f)

Table 2.2: Weakest liberal preexpectation calculus. The differences with Table 2.1
are highlighted in blue.

Definition 8 (One-bounded Expectations).
A set of one-bounded expectations, denoted E≤1 is defined as

E≤1 = {f ∈ E|f ⊑ 1}.

(E≤1,⊑) is a complete lattice with least element 0 and greatest element 1. Suprema
and infima are constructed as in E (Definition 4).

For a predicate F and a probabilistic program C, the weakest preexpectation g ∈ E≤1

with respect to the postexpectation [F] ∈ E≤1 is an expectation such that g(σ) represents
the probability that executing C on input σ either terminates or ends in a state τ |= F . This
function is denoted wlp[[C]](f) : E≤1 → E≤1, and the corresponding calculus is provided
in Table 2.2. As shown in the table, the weakest liberal preexpectation of a while loop is
defined as the greatest fixed point of the loop characteristic function Φf (X):

wlp[[while(φ){P}]](f) = gfp X. ([φ] · wlp[[P]](X) + [¬φ] · f)︸ ︷︷ ︸
Φf (X)

.

By Kleene’s Fixed Point Theorem (Theorem 2), it follows that:

gfp X.Φf (X) = infn∈NΦn
f (1)

where Φn
f denotes the n-fold application of Φf and the infimum (inf) corresponds to the

greatest lower bound (GLB).
A comparison of the graphical representations of weakest preexpectations and weakest

liberal preexpectations reveals that wp- and wlp-calculus are equivalent for non-diverging
programs. Formally, the relationship between wp- and wlp-calculus is expressed as:

10

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

Theorem 3 (Relationship wp and wlp).
Let C ∈ pGCL and f ∈ E≤1. Then

wlp[[C]](f) = wp[[C]](f) + 1− wp[[C]](1).

Additionally, let C terminate almost-surely, i.e. let wp[[C]](1) = 1 (see Section 2.2.4).
Then

wlp[[C]](f) = wp[[C]](f).

2.2.2 Reasoning About Loops

While verifying loop-free programs is relatively straightforward, and weakest preexpecta-
tions can typically be computed in practice, reasoning about while-loops remains one of
the most challenging aspects of program verification [12]. In some cases, the property of
interest may be undecidable using weakest preexpectation reasoning. Fortunately, many
correctness properties can be expressed as either upper or lower bounds on preexpecta-
tions. This section explores how induction and co-induction can be employed to compute
these bounds for programs containing loops.

Invariants

A key concept to understanding the use of induction and co-induction in this context is the
notion of invariants. Additionally, an important prerequisite for comprehending invariants
is the concept of Hoare triples:

Definition 9 (Hoare Triples). [21, 22]
Given two predicated F and G and a program C, a Hoare triple ⟨G⟩C⟨F ⟩ is said to be
valid iff

If the program C started in some initial state σ |= G,
then C terminates in some final state τ |= F .

Broadly, an invariant captures the behaviour of a loop. For a non-probabilistic program
while(φ){C}, any I satisfying the Hoare triple ⟨φ ∧ I⟩C⟨I⟩ is called a loop invariant.
For probabilistic programs, the definition of a loop invariant is more nuanced, requiring a
distinction between superinvariants and subinvariants.

11

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

Definition 10 (Invariants).
Let Φf denote the wp-loop characteristic function of while(φ){C} with respect to
postexpectation f ∈ E, and let I ∈ E. Then:

• I is a wp-superinvariant of while(φ){C} with respect to postexpectation f iff:

Φf (I) ⊑ I,

• I is a wp-subinvariant of while(φ){C} with respect to postexpectation f iff:

I ⊑ Φf (I).

Super- and subinvariants can similarly be defined for wlp-characteristic functions, al-
though these invariants and f belong to the type E≤1 rather than E.

Induction

Induction on natural numbers is a well-established proof principle stating that to prove
that a predicate F holds for all natural numbers, it suffices to prove the following:

1. 0 |= F , and

2. n |= F implies n+ 1 |= F .

This principle can be extended to continuous functions on complete lattices, resulting in
Park’s Lemma:

Lemma 1 (Park’s Lemma). [23]
Let (D,⊑) be a complete lattice, d ∈ D, and Φ : D → D a monotonic function. Then:

Φ(d) ⊑ d =⇒ lfp Φ ⊑ d,

and dually:
d ⊑ Φ(d) =⇒ d ⊑ gfp Φ.

Since weakest preexpectations are defined as least fixed points of continuous functions
on complete lattices, Park’s Lemma enables reasoning about the upper bounds of weakest
preexpectations, and dually, the lower bounds of weakest liberal preexpectations. Specifi-
cally:

Theorem 4 (Induction for Upper Bounds on wp).
If I ∈ E is a wp-superinvariant of while(φ){C} with respect to postexpectation f ,
then:

wp[[while(φ){C}]](f) ⊑ I.

12

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

Theorem 5 (Coinduction for Lower Bounds on wlp).
If I ∈ E≤1 is a wlp-subinvariant of while(φ){C} with respect to postexpectation f ,
then:

I ⊑ wlp[[while(φ){C}]](f).

While induction allows reasoning about an upper bound of the least fixed point and
coinduction enables reasoning about a lower bound of the greatest fixed point, it is not
possible to reason about a lower bound of a least fixed point or an upper bound of a greatest
fixed point using the same approach. Kaminski [12] discusses alternative proof rules for
obtaining such bounds. However, these rules, which involve the use of ω-invariants, are
less elegant and more complex to apply. For these alternative methods, refer to Chapter
5.2.4 of [12].

2.2.3 Expected Runtimes

Reasoning about expected runtimes of probabilistic programs is surprisingly subtle and
full of nuances, which underlines the desire for formal methods suited for reasoning about
expected runtimes [24]. In the context of probabilistic programs, a runtime is defined
as a function that maps initial program states to non–negative real numbers or infinity,
representing the expected execution time. Formally, runtimes are defined as follows:

Definition 11 (Runtimes).
The set of runtimes T is defined to coincide with the set of expectations (see Defini-
tion 4):

T = {t|t : Σ→ R∞
≥0} = E.

Consequently, the complete lattice (T,⊑), its least element, and the construction of
suprema are defined exactly as for expectations, i.e. the order relation is given by:

s ⊑ t ⇐⇒ ∀σ ∈ Σ.s(σ) ⊑ t(σ);

the least element is λσ.0, denoted by 0; and the supremum of a subset S ⊆ T is
constructed point-wise as:

sup S = λσ. sup
f∈S

f(σ).

Given a postruntime t ∈ T and a probabilistic program C, the preruntime s ∈ T is a
function that maps each initial state σ to the expected time required to execute C on σ,
including the additional time t that elapses after C terminates. This function, denoted
ert[[C]](t) : T→ T, is systematically derived using the expected runtime calculus presented
in Table 2.3. Analogous to the weakest preexpectation calculus, the expected runtime of
a while-loop is defined as the least fixed point (or, equivalently, the supremum, as per
Theorem 2) of the loop characteristic function:

ert[[while(φ){P}]](t) = lfp X. (1 + [φ] · ert[[P]](X) + [¬φ] · t)︸ ︷︷ ︸
Φt(X)

= supn∈NΦ
n
t (0).

An intuitive alternative approach to determining a program’s expected runtime involves
using the weakest preexpectation calculus with user-defined reward structures. However,
this approach is not equivalent to the ert-calculus. To illustrate this distinction, consider

13

2.2. WEAKEST PREEXPECTATIONS CHAPTER 2. BACKGROUND

C ert[[C]](t)

skip 1 + t

diverge ∞

x := E 1 + t[x := E]

x :≈ µ 1 + λσ.

∫
Vals

(λv.t(σ[x := v]))dµ(σ)

P ;Q ert[[P]](ert[[Q]](t))

if(φ){P}else{Q} 1 + [φ] · ert[[P]](t) + [¬φ] · ert[[Q]](t)

{P}[p]{Q} 1 + p · ert[[P]](t) + (1− p) · ert[[Q]](t)

while(φ){P} lfp X.(1 + [φ] · ert[[P]](X) + [¬φ] · t)

Table 2.3: Expected runtime calculus.

an extension of the pGCL grammar with the statement reward (r), where r ∈ Q∞
≥0

represents a rational reward or ∞. The corresponding amendment to the wp-calculus
is given by wp[[reward (r)]](f) = r + f . As defined in [25], wp[[C]](X) then represents
the expected reward obtained from executing program C on an initial state σ ∈ Σ and
collecting reward X(τ) upon termination in some state τ . Notably, this formulation assigns
an expected reward of 0 to diverging programs, whereas the actual expected runtime in
such cases is ∞. Therefore, the weakest preexpectation calculus with user-defined rewards
cannot serve as a substitute for the ert-calculus.

2.2.4 Termination

Termination is a fundamental liveness property of probabilistic programs, but it is signifi-
cantly more nuanced and subtle compared to nonprobabilistic programs [12]. Several levels
of termination exist for probabilistic programs, two of which are relevant to this thesis:

Definition 12 (Probabilistic Termination).
Let C be a pGCL program. Then C terminates universally

(a) almost-surely ⇐⇒ wp[[C]](1) = 1,

(b) positively almost-surely ⇐⇒ ∀σ ∈ Σ : ert[[C]](σ) ⊏∞,
where ert represents the expected runtime of the program (see Table 2.3).

These classifications are ordered from weakest to strongest: a program that is positively
almost-surely terminating is, by definition, also almost-surely terminating, although the
inverse does not hold. For a more comprehensive explanation and more termination levels,
refer to [12].

14

2.3. CAESAR CHAPTER 2. BACKGROUND

Figure 2.2: The architecture of the verification infrastructure Caesar [15].

2.3 Caesar

Many techniques exist for verifying probabilistic programs, but these often feature little (or
no) automation [15]. Schröer et al. [15] introduced a novel verification infrastructure based
on weakest preexpectation theory for reasoning about the expected behaviour of discrete
probabilistic programs. Their tool, Caesar, implements this architecture, as shown in
Figure 2.2.

The uppermost section of the figure (shaded in grey) displays complex verification tech-
niques one might want to encode using the infrastructure. The inclusion of the quantitative
intermediate verification language HeyVL (shaded in orange) enables the encoding of these
techniques whilst also separating the back-end for efficient development.

A HeyVL program is a collection of procedures:

Definition 13 (HeyVL procedure). [15]
A HeyVL procedure P is structured as follows:

proc P (in : τ) -> (out : τ)
pre ϕ
post ψ

{S}

Where in and out represent lists of typed read-only inputs and outputs, and ϕ and ψ
specify the preexpectation and postexpectation, respectively. The procedure body S is
a HeyVL statement, whose syntax is given in [26].

A formal syntax of a HeyVL statement is given in [15]. However, as Caesar remains under
active development, this does not fully reflect the current syntax. For the most up-to-date
syntax of HeyVL, see [26]. In the context of this thesis, the relevant HeyVL constructs are
variable declarations, procedure calls, boolean choices (i.e., if-statements), and while-loops.
A procedure call passes parameters to a (co)procedure, executes its body, and assigns the
result to the specified return variables.

A HeyVL procedure P verifies that the inequality ϕ ⊑ wp[[S]](ψ) holds, i.e. the expected
value of ψ after the execution of S is lower-bounded by ϕ. This inequality is also called the
verification condition (VC) of P (shaded in green in Figure 2.2). Upper bounds on expected
values can be verified using coprocedures, which follow the same structure as procedures
but replace proc by coproc in HeyVL, and ⊑ by ⊒ in their verification condition.

15

2.3. CAESAR CHAPTER 2. BACKGROUND

proof rule @wp @wlp @ert

induction overapproximation underapproximation overapproximation
(coproc) (proc) (coproc)

loop underapproximation overapproximation underapproximation
unrolling (proc) (coproc) (proc)

Table 2.4: Soundness of the combinations of relevant proof rules and the supported
calculus annotations in Caesar, taken from [26].

The generated verification conditions can be reduced to checking inequalities between
HeyLo formulae (shaded in blue in Figure 2.2). HeyLo, a syntax for quantitative verifica-
tion of probabilistic programs, aims to take the role that predicate logic has for classical
verification [15]. The HeyLo inequalities are subsequently passed to an SMT (Satisfiability
Modulo Theory) solver, which attempts to solve them.

In summary, Caesar accepts a HeyVL program consisting of procedures and coproce-
dures, generates verification conditions as HeyLo inequalities, and translates them into
SMT queries. The translation to SMT may lead to undecidable theories, in which case
Caesar returns unknown. Otherwise, Caesar verifies the program or provides a counterex-
ample where verification conditions fail. For further details on Caesar, HeyVL and HeyLo,
see [15].

2.3.1 Proof Rules for While Loops

As discussed in Section 2.2.2, reasoning about while-loops is one of the most challenging
aspects of program verification. In Caesar, while-loops must be annotated with appropriate
proof rules to enable verification. Caesar supports multiple proof rules, three of which are
particularly relevant to this thesis and were introduced in the previous sections: induction,
almost-sure termination, and positive almost-sure termination. To facilitate the correct
application of these proof rules, Caesar provides annotations for (co)procedures that specify
the desired calculus. The currently supported annotations are:

• @wp: weakest preexpectation,

• @wlp: weakest liberal preexpectation, and

• @ert: expected runtime.

When these annotations are incorporated, Caesar can automatically verify the soundness
of the selected proof rules with respect to the specified calculus. Table 2.4 summarises the
soundness relationships between calculus annotations and proof rules. Overapproximation
is used when verifying upper bounds, whereas underapproximation is used to verify lower
bounds.

16

2.4. BOUNDED RETRANSMISSION PROTOCOL CHAPTER 2. BACKGROUND

Figure 2.3: Overview of the Bounded Retransmission Protocol without the dis-
connect service, as presented in [14].

2.4 Bounded Retransmission Protocol

The Bounded Retransmission Protocol (BRP) is a communication protocol developed by
Philips Electronics to communicate messages of arbitrary length over unreliable channels.
In this protocol, messages are divided into smaller data frames with the following structure

Definition 14 (BRP data frame structure).

data frame = {
first ∈ {0, 1} : indicates whether this is the first frame,
last ∈ {0, 1} : indicates whether this is the last frame,
toggle ∈ {0, 1} : alternating bit to distinguish between subsequent frames,
datum: data to be transmitted, not included in acknowledgement frames
}

BRP can be seen as an extended version of the Alternating Bit Protocol, using a stop-
and-wait approach known as ‘positive acknowledgement with retransmission’ (the sender
waits for an acknowledgement before sending the next frame) [14]. If no acknowledgement
is received, the sender retransmits the frame. However, the number of retransmissions is
limited, so successful delivery is not guaranteed. Despite its simplicity, the behaviour of
BRP is complex, making it a benchmark example in verification studies [16]. A model of
BRP as presented in [14] is shown in Figure 2.3. The original protocol includes an additional
disconnect service that allows the sender or receiver to disrupt the transmission, however,
this has been omitted for simplicity. The model includes a sender (S), receiver (R), lossy
communication channels (K) and (L) and the communication services, and its services are
defined in Definition 15.

17

2.4. BOUNDED RETRANSMISSION PROTOCOL CHAPTER 2. BACKGROUND

Figure 2.4: A simplified representation of the Bounded Retransmission Protocol,
as presented in [27].

Definition 15 (BRP protocol services). [14]
The services included in the BRP protocol as illustrated in Figure 2.3. A data frame
with index k is represented by dk, and ack is an acknowledgement frame.
REQ: s = [d1, .., dn] for n > 0
CONF: c ∈ {C_OK, C_NOT_OK, C_DONT_KNOW}

C_OK: The request has been dispatched successfully

C_NOT_OK: The request has not been dispatched completely

C_DONT_KNOW: The request may or may not have been handled completely.
This occurs when the last frame is sent but not acknowledged.

IND: (dk, i)
where i ∈ {I_FIRST, I_INCOMPLETE, I_OK, I_NOT_OK}, 0 < k ≤ n

I_FIRST: This packet is the first one

I_INCOMPLETE: This packet is an intermediate one; there is more data to come

I_OK: This was the final packet

I_NOT_OK: Contact with the server has been lost.

F, G: dk where 0 < k ≤ n
A, B: ack

2.4.1 Abstraction for Verification

As mentioned in the previous section, the Bounded Retransmission Protocol (BRP) has
been the subject of numerous verification studies, which will be examined in Section 3.
These studies often employ simplified models of BRP that are tailored to the specific re-
quirements of their verification objectives. Similarly, this study adopts a simplified model
of BRP in which the sender, receiver, and communication channels are treated as a "black
box". Only the inputs and outputs of the protocol are considered, allowing the focus to be
placed on the practical effect of the protocol. This approach is illustrated in Figure 2.4,
adapted from [27], where Sin corresponds to REQ, Sout to CONF, and Rout to IND. Addi-
tionally, the following probabilistic program, taken from [28], provides another simplified

18

2.4. BOUNDED RETRANSMISSION PROTOCOL CHAPTER 2. BACKGROUND

representation of BRP:

Listing 2.2: A simplified model of BRP, as presented in [28].
1 sent := 0;
2 count := 0;
3

4 while count < MAX ∧ sent < N do
5 first := 1 [p] first := 0;
6 if first = 1 then
7 second := 1 [q] second := 0;
8 if second = 1 then
9 sent := sent + 1;

10 count := 0;
11 else
12 count := count + 1;
13 else
14 count := count + 1
15 state := sent = N;
16 return state

In this program, p represents the probability of successful packet transmission, q the prob-
ability of a successful acknowledgement, MAX the maximum number of consecutive failures
without successful transmission, and N the total number of packets to be transmitted. The
variable sent tracks the number of successfully transmitted data frames, while the variable
count counts the number of consecutive failures. Both variables are essential for the loop
condition.

Both models offer a simplified view of BRP, facilitating verification studies that focus
primarily on its external behaviour. Although this abstraction results in the omission of
certain details concerning the program’s internal mechanisms, these details may not be
essential for the verification goals. Furthermore, their exclusion can significantly simplify
the verification process. Consequently, the model shown in Listing 2.2 serves as the baseline
for the verification efforts presented in this thesis.

19

CHAPTER 3

RELATED WORK

This section examines several studies relevant to this thesis.

Batz et al. [29] introduce a novel technique for verifying probabilistic programs by syn-
thesising inductive invariants from source code. This technique is implemented in their tool
cegispro2, which, like Caesar, aims to automate weakest preexpectation-based verification.
A key difference, however, is that Caesar does not automate the derivation of loop invari-
ants. Since determining loop invariants is a central challenge in this thesis, the approach
by Batz et al. is particularly relevant. Their research includes a case study on the Bounded
Retransmission Protocol (BRP), using a model nearly identical to the one in this thesis,
excluding sendPacket. Their tool successfully synthesised an inductive wp-superinvariant
for the configuration with N ≤ 8, 000, 000 and MAX ≥ 5, and they report the ability to
also synthesise wp-subinvariants.

The remainder of this section examines several case studies on the Bounded Retransmis-
sion Protocol (BRP). Similar to this thesis, each of the related studies employs a distinct,
simplified representation of BRP tailored to achieve specific research goals.

Helmink et al. [14] present one of the earliest studies on BRP, in which the protocol
is modelled using Input/Output (I/O) automata theory. Their model is notably more
detailed than the model used in this thesis, excluding only the disconnect feature and sim-
plifying the timers of the original protocol. The correctness of this model is verified using
the Coq proof development system [30]. The authors emphasise the potential of computer-
assisted tools in streamlining and improving the efficiency of protocol verification tasks.

D’Argenio et al. [27] investigate the importance of timing in BRP to ensure reliability
and efficiency. They model BRP as a network of timed automata, explicitly incorporating
the sender, receiver, and communication channels. This model is verified using the model-
checking tools SPIN [31] and UPPAAL [32]. Unlike the current study, which focuses on
assessing the capabilities of a verification tool, their research primarily investigates BRP’s
verification itself, explaining their choice of a more complex BRP model.

In another study, D’Argenio et al. [16] introduce a novel technique to model check
quantitative reachability properties on Markov decision processes. This approach relies on
the iterative abstraction of the model to determine the appropriate level of detail required
to verify a given property. Using this method, BRP is modelled as a probabilistic transi-
tion system and analysed against specific reachability conditions. The level of abstraction
used in this study is consistent with the previously discussed works, including the sender,

20

CHAPTER 3. RELATED WORK

receiver, and both communication channels in the model. While the focus on abstraction
levels is relevant to this research, the primary objective remains the verification of BRP,
which differs from the focus of this thesis.

Building on this research, a case study was conducted on the probabilistic model checker
PRISM [33]. In this study, BRP is modelled as a Markov Decision Process, and reachabil-
ity properties are verified using PRISM. The complexity of the BRP model is comparable
to that used in the earlier study; however, the focus of this research now aligns with the
goal of the current thesis—assessing the capabilities of a verification tool.

Spel [28] provides a formal framework to deduce the monotonicity of Markov Chains.
In this research, BRP serves as a case study and is modelled as both a Markov Chain
and the probabilistic program introduced in Section 2.4.1. In contrast to the previously
discussed studies, this model abstracts away the internal mechanisms of BRP, focusing
instead on the protocol’s global properties, such as transmission success and the number
of failed attempts. This model is closely related to the one used in the first section of the
Stepwise Verification in this thesis (Section 5.1), although it was further abstracted during
the verification process.

Batz et al. [34] developed a fully automated technique for verifying infinite-state pro-
grams, and used BRP as a case study. This study utilises a highly simplified pGCL model
of the protocol, consisting of a single probabilistic choice within a while loop. Their ap-
proach enables the fully automated verification of an upper bound on the expected number
of failed transmissions given an upper bound on the number of packets. Specifically, they
verify that the expected number of failed transmissions is at most 1 if the number of pack-
ets to be sent is at most 3. The model used in this study is the most similar to the one
employed in this thesis, although it is a simpler version. This alignment of research goals
further strengthens the relevance of their work to this study.

Despite the extensive body of research on BRP, Caesar is a relatively new verification
tool that has not yet been widely applied in verification studies. Its developers included
several benchmarks in their work [15], three of which concern BRP. These benchmarks
are based on the same simplified model used in the study by Batz et al. and verify an
upper bound on the expected number of failed transmissions, given a maximum number
of packets to be sent. This thesis aims to generalise these results by lifting the constraint
on the number of packets, considering both lower and upper bounds on expectations, and
verifying additional properties.

21

CHAPTER 4

METHODOLOGY

This chapter outlines the steps taken to address the research questions presented in Sec-
tion 1 (page 3). The approach consists of the following key steps:

1. Abstraction of the Bounded Retransmission Protocol (BRP).

2. Manual weakest preexpectation calculations.

3. Translation from wp-calculus to Caesar procedures.

4. Verification using Caesar.

Each step builds upon its predecessors and is explained in more detail in the corresponding
sections of this chapter. The relationship between these steps and the research questions
is as follows: Step 1, the abstraction of BRP, supports the answer to sub-question 1. Step
2 (documented in Chapter 5) addresses sub-question 2, forms the foundation for Step 3,
and contributes to sub-questions 3 and 4. Step 4, the practical verification using Caesar
(documented in Chapter 6), supports the analysis of sub-questions 3, 4, and 5. The main
Research Question can only be answered after all sub-questions have been addressed, and
all research questions are discussed collectively in Chapter 7.

4.1 BRP Abstraction

The primary objective of this research is to evaluate the verification capabilities of Cae-
sar rather than to verify BRP itself. Consequently, the initial model of BRP is based on
the simplified representation shown in Figure 2.4 (page 18). This abstraction enables the
verification of properties concerning the overall behaviour of BRP, such as the probability
of success and the expected number of failed transmissions. The probabilistic program
presented in Section 2.4.1 (page 18) represents one possible implementation of this sim-
plified model of BRP in pGCL; however, it remains relatively complex, featuring a while
loop with two if-statements and two probabilistic choices. Initial weakest preexpectation
calculations were attempted on this model, but further simplification was needed to facil-
itate the verification process. The results of the calculations using this initial model are
presented in Section 5.1.

The BRP model used in this thesis was derived by decomposing the initial program
into two smaller subprograms, each containing a single while-loop, probabilistic choice
and if-statement. The overarching program, BRP, models the entire protocol, invoking the
sendPacket subprogram to model the transmission of individual packets. The resulting
decomposed model is presented in Algorithm 1.

22

4.1. BRP ABSTRACTION CHAPTER 4. METHODOLOGY

Algorithm 1 Pseudo code model of BRP
1: procedure sendPacket
2: failed ← 0
3: success ← false
4: while failed < MAX and not success do
5: with probability p do success ← true else failed ← failed+ 1
6: end while
7: return (success, failed)
8: end procedure
9: procedure BRP(N)

10: sent ← 0
11: success ← true
12: totalFailed ← 0
13: while sent < N and success do
14: (success, failed)← sendPacket
15: totalFailed ← totalFailed+ failed
16: if success then
17: sent← sent+ 1
18: end if
19: end while
20: end procedure

The sendPacket procedure models the receiver sending a single data packet until
either an acknowledgement is received or the predefined limit on the maximum number of
failed transmissions is reached. The variable failed represents the number of consecutive
failed packet transmission attempts, which is upper-bounded by the variable MAX. The
boolean variable success indicates whether the most recent single transmission attempt
was successful. Finally, the variable p denotes the probability of a successful transmission,
which includes both the probability of the packet being successfully transmitted from the
sender to the receiver and the probability of receiving an acknowledgement in return.

The BRP procedure models the overall behaviour of the protocol when transmitting N
packets. For each packet, it attempts transmission using sendPacket, terminating either
when all packets have been successfully sent or when a packet transmission fails due to
sendPacket exceeding the maximum number of consecutive failed transmissions. The
variable sent tracks the number of successfully transmitted data packets, while success
represents the success of the most recent transmission attempt. Additionally, totalFailed
records the cumulative number of failed transmission attempts across all packets.

4.1.1 pGCL Implementation

The pGCL implementation of sendPacket, derived directly from the algorithmic descrip-
tion, is provided in Listing 4.1.

Listing 4.1: pGCL program sendPacket.
1 failed := 0;
2 success := false;
3 while (failed < MAX ∧ !success) {
4 success := true [p] failed := failed + 1;
5 }

23

4.1. BRP ABSTRACTION CHAPTER 4. METHODOLOGY

In contrast, the BRP procedure in Algorithm 1 requires additional consideration when
translated into pGCL, due to the language’s lack of support for function calls. To address
this, the result of the call to sendPacket in line 14 is modelled using two additional
variables: s and f , which represent the probability of success and the expected number
of failed transmissions, respectively, as returned by sendPacket. While these values are
initially unspecified, this thesis aims to compute them as part of the verification process.
The resulting pGCL implementation is presented in Listing 4.2.

Listing 4.2: pGCL program BRP.
1 sent := 0;
2 success := true;
3 totalFailed := 0;
4

5 while (sent < N ∧ success) {
6 success := true [s] success := false;
7 totalFailed := totalFailed + f;
8

9 if (success) {
10 sent := sent + 1;
11 } else {}
12 }

Notably, both programs resemble the simple probabilistic program presented in Listing 2.1,
commonly referred to as a geometric loop.

4.1.2 Verification Properties

Having established the pGCL model of BRP, relevant properties for verification can now
be identified, thereby addressing RQ1.2. The theoretical verification of the following prop-
erties is documented in Chapter 5, and follows the methodology outlined in Section 4.2 of
this chapter:

• Positive almost-sure termination:
ert[[sendPacket]](0) ⊑ ∞ and ert[[BRP]](0) ⊑ ∞.

• The exact value of the probability of success:
wp[[sendPacket]]([success]) and wp[[BRP]]([success]).

• The exact value of the expected number of failed transmissions:
wp[[sendPacket]](failed) and wp[[BRP]](totalFailed).

• The exact value of the expected number of sent packets:
wp[[BRP]](sent).

The omission of wlp-calculus in these verification goals is justified by the verification of
positive almost-sure termination, which ensures the equivalence of wp- and wlp-calculus
(see Theorem 3, page 11).

24

4.2. MANUAL CALCULATIONS CHAPTER 4. METHODOLOGY

4.2 Manual Calculations

Before employing Caesar for verification, manual weakest preexpectation calculations were
conducted to gain insight into the program and obtain a preexpectation to verify. Since
sendPacket and BRP are similar programs, the steps for computing their weakest preex-
pectation given a postexpectation g are the same:

1. Work out wp[[while-loop]](g) to obtain the loop-characteristic function Φg(X).

2. Apply fixed-point iteration on Φg(X) to derive Φn
g .

3. Evaluate Φn
g for n→∞ to determine the supremum supn∈NΦ

n
g = wp[[while-loop]](g).

4. Substitute this value into the equation for wp[[program]](g) to obtain the preexpec-
tation.

For the pGCL program sendPacket, as presented in Listing 4.1, the equation wp[[sendPacket]](g)
is formulated as follows:

wp[[sendPacket]](g) = wp[[failed:=0;success:=false]](wp[[whilesp]](g))
= wp[[failed:=0;success:=false]](lfp X.Φg,sp(X))

Φg,sp(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X)

+ [failed ≥ MAX ∨ success] · g
wp[[bodysp]](X) = p ·X[success := true] + (1− p) ·X[failed := failed + 1]

(4.1)

Analogously, the equation wp[[BRP]](g) for the pGCL program BRP, as defined in Listing 4.2,
is given by:

wp[[BRP]](g) = wp[[sent:=0;success:=true;totalFailed:=0]](wp[[whilebrp]](g))
= wp[[sent:=0;success:=true;totalFailed:=0]](lfp X.Φg,brp(X))

Φg,brp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · g
wp[[bodybrp]](X) = s ·X[sent := sent + 1; totalFailed := totalFailed + f ; success := true]

+ (1− s) ·X[totalFailed := totalFailed + f ; success := false]

(4.2)

Though these steps are quite straightforward, the least fixed point may be undecidable
for complex programs. In such cases, super- or subinvariants may be used to establish
upper or lower bounds on the loop preexpectation, as discussed in Section 2.2.2 (page 11).

4.3 From WP-Calculus to Caesar

When verifying programs that contain a while-loop in Caesar, it is necessary to apply
an explicit proof rule. For the verification tasks considered in this thesis, the relevant
proof rule is induction. This entails that, to verify an upper bound on the preexpectation,
one must employ wp-calculus, a wp-superinvariant, and a Caesar coproc. Conversely, to
verify a lower bound, wlp-calculus, a wlp-subinvariant, and a Caesar proc are required
(see Table 2.4, page 16 for reference). Consequently, transitioning from wp-calculations to
verification in Caesar entails two steps:

1. Identification of a suitable loop invariant.

2. Translation of the pGCL program to a HeyVL program.

25

4.3. FROM WP-CALCULUS TO CAESAR CHAPTER 4. METHODOLOGY

4.3.1 Invariants

When reasoning about while-loops, Caesar requires an invariant that is maintained by each
loop iteration [26]. This requirement is met in Listings 4.3 and 4.4 by preceding both while-
loops with @invariant(I). While substituting the calculated pre- and postexpectation into
a HeyVL program is relatively straightforward, identifying an appropriate invariant, I, is
more complex. The process of determining a suitable invariant consists of the following
steps:

1. Propose a candidate invariant I.

2. Compute Φ(I).

3. Compare Φ(I) with I to determine whether it constitutes a superinvariant, subin-
variant, both, or none (see Definition 10, page 12). If I does not satisfy the required
properties, return to step 1 and select a new candidate.

The choice of whether a program requires a superinvariant or subinvariant depends on the
proof rule: overapproximation requires a superinvariant, underapproximation requires a
subinvariant, and exact verification requires both. While no universal procedure exists for
selecting an appropriate candidate invariant, in practice, the equation for the supremum
supn∈NΦ

n often serves as a useful starting point.

4.3.2 pGCL to HeyVL

Although the specific structure of the HeyVL program depends on the verification goal,
the general form of the translated versions of sendPacket and BRP are presented in List-
ings 4.3 and 4.4. These programs incorporate pre- and postexpectations represented by the
variables preexp and postexp, respectively, as well as an @invariant tag. Additionally,
the placeholder @tag indicates the location of the appropriate calculus tag.

Listing 4.3: HeyVL program sendPacket.
1 domain Constants {
2 func p(): UReal
3 axiom pMax p() <= 1
4 func MAX(): UInt
5 axiom max_min MAX() > 0
6 }
7

8 @tag
9 proc sendPacket () -> (success: Bool , failed: UInt)

10 pre preexp
11 post postexp
12 {
13 failed = 0
14 success = false
15

16 @invariant(invar)
17 while (failed < MAX() && !success) {
18 var cont: Bool = flip(p())
19 if(cont) {
20 success = true
21 } else {
22 failed = failed + 1
23 }}}

26

4.3. FROM WP-CALCULUS TO CAESAR CHAPTER 4. METHODOLOGY

In the program described above, the probability of a successful transmission, p, and the
maximum number of consecutive failed transmissions, MAX, are defined as constants using
a domain block and axioms, rather than function parameters. For further details on these
constructs, the reader is referred to the Caesar documentation [26]. This design choice is
justified by the fact that, in practice, these values remain unchanged for each function call.
The constant p is a real number bounded above by 1, as required for a probability, while
MAX is an integer lower-bounded by 1, since a maximum failure count of 0 would render the
protocol inoperative. Additionally, the probabilistic choice on line 4 of the pGCL program
in Listing 4.1 is represented by lines 18-23 in the HeyVL translation.

Listing 4.4: HeyVL program BRP.
1 domain Constants {
2 func s(): UReal
3 axiom sMax s() <= 1
4

5 func f(): UInt
6 }
7

8 @tag
9 proc BRP(N: UInt) -> (totalFailed: UInt , success: Bool)

10 pre preexp
11 post postexp
12 {
13 var sent: UInt = 0
14 success = true
15 totalFailed = 0
16

17 @invariant(invar)
18 while(sent < N && success) {
19 success = flip(s())
20 totalFailed = totalFailed + f()
21

22 if (success) {
23 sent = sent + 1
24 } else {}
25 }
26 }

Analogous to the pGCL representation of BRP in Listing 4.2, the invocation of sendPacket
is abstracted by lines 19 and 20. The real-type constant s represents the probability of
success for sendPacket, and is upper-bounded by 1. Similarly, the integer-type constant
f represents the expected value of failed in sendPacket. Unlike p and MAX, the number
of packets to be sent, N, is defined as a function parameter, as this value may vary across
different function calls.

If sendPacket were explicitly invoked rather than being abstracted using the constants
s and f, lines 19-20 would be replaced by the code presented in Listing 4.5.

Listing 4.5: HeyVL call to function sendPacket.
1 var failed: UInt
2 success , failed = sendPacket ()
3 totalFailed = totalFailed + failed

27

4.4. CAESAR VERIFICATION CHAPTER 4. METHODOLOGY

4.4 Caesar Verification

For this thesis, Caesar was initially installed via the Visual Studio Code extension described
in option A of Caesar’s installation guide [26]. Verification was performed by saving the
file, which proved effective for cases where verification either succeeded or failed with a
counterexample. However, for subsequent verification attempts, executing Caesar via the
command-line interface became advantageous. Therefore, an additional installation was
performed using the pre-built binary (option B.1 in the installation guide). Thereafter,
Caesar was run from the command line with the probe flag enabled and a timeout of 20
seconds:

caesar verify <filename >.heyvl --timeout 20 --probe

The timeout was set to 20 seconds to increase the verification process’s efficiency. This
limit was based on observations that if verification does not complete within this time
frame, it is unlikely to succeed. The probe flag enabled an output of the following form to
the command line interface [26]:

Probe results for test.heyvl ::test:
Has quantifiers: false
Detected theories: NIRA
- complexity: Undecidable
- rejected theories: LRA , LIA , LIRA , NRA , NIA

Number of arithmetic constants: 1
Number of Boolean constants: 4
Number of bit -vector constants: 0
Number of constants: 1
Number of expressions: 71

In general, verification in Caesar was conducted using a stepwise approach. The built-in
error message and probe results provided guidance for subsequent verification steps. The
stepwise verification is discussed in Chapter 6.

28

CHAPTER 5

THEORETICAL VERIFICATION

This chapter presents the theoretical verification approach introduced in the Methodology
of this thesis, using the wp-calculus outlined in Section 2.2. The structure of this chapter
is as follows:

1. Initial: An initial attempt to verify termination for the original BRP model.

2. SendPacket: Verification of the specified properties for the nested sendPacket
program.

3. BRP: Verification of the same properties for the full BRP program, which includes
sendPacket.

4. Results: A summary of the theoretical verification outcomes.

5. Geometric Program: Evaluation of expected values in a geometric loop to support
and validate the manual calculations.

The first subsection addresses the initial verification attempt for termination, based on
the initial BRP model shown in Listing 5.1. To establish termination, it suffices to prove
almost-sure termination or positive almost-sure termination (see Definition 12, page 14 for
reference). Almost-sure termination is the weaker of the two classifications and was initially
expected to be easier to verify. However, these verification attempts were unsuccessful, as
computing the supremum for the loop-characteristic function proved infeasible. Caesar’s
loop-unrolling feature was used to identify potential errors in the manual computations,
but none were found, necessitating an alternative approach.

Consequently, the model was decomposed into two separate programs: sendPacket and
BRP, where the latter invokes the former. These abstractions, introduced in Section 4.1,
allow each verification task to be performed independently on the two programs.

The verification focuses on the following properties:

• Termination.

• Probability of success.

• Expected number of failed transmissions.

• Expected number of sent packets.

Termination is revisited for the simplified model in subsections 5.2.1 and 5.3.1. Rather
than proving almost-sure termination, as was attempted in the first section of this chapter,
the revisited approach establishes positive almost-sure termination using a modified version

29

5.1. INITIAL ATTEMPT CHAPTER 5. THEORETICAL VERIFICATION

of ert-calculus (see Table 2.3 for reference). In this modified calculus, a program’s runtime is
incremented solely for while-loop iterations, effectively counting loop executions rather than
the overall program runtime. The abstracted model and modified ert-calculus significantly
simplified the calculus compared to the initial attempt, enabling the verification of positive
almost-sure termination.

The remaining subsections in Sections 5.2 and 5.3 address the verification of the re-
maining properties: the probability of success, the expected number of failed transmissions,
and the expected number of sent packets. The computed preexpectations and suprema are
summarised in Subsection 5.4.

Finally, when attempting to verify expected number of failed transmissions and sent
packets using Caesar, the computed preexpectation could not be verified as an upper or
lower bound. To validate these manually computed values, the final section of this chapter,
Section 5.5, evaluates the expected number of trials and failures for a simple geometric loop.
These results are then related to sendPacket and BRP, both of which resemble a geometric
loop, thereby providing an additional layer of verification for the manual calculations.

5.1 Initial Attempt

Initial weakest preexpectation calculations were conducted on a relatively complex model,
represented by the pGCL program shown in Listing 5.1.

Listing 5.1: An initial pGCL model of BRP.
1 failed := 0;
2 sent := 0;
3 totalFailed := 0;
4

5 while (sent < N ∧ failed < MAX) {
6 lost_frame := 0 [p] lost_frame := 1;
7 lost_ack := 0 [p] lost_ack := 1;
8 if (lost_frame ∨ lost_ack) {
9 failed := failed + 1;

10 } else {
11 sent := sent + 1;
12 totalFailed := totalFailed + failed
13 failed := 0;
14 }
15 }
16 totalFailed := totalFailed + failed

In this program, N denotes the total number of packets to be transmitted, while the variable
failed tracks the number of consecutive failed transmission attempts, constrained by the
upper bound MAX. The variable sent represents the number of successfully transmitted
packets, and totalFailed records the cumulative number of failed transmissions. The
probability of successful packet transmission over a communication channel is represented
by the variable p, with the boolean variable lost_frame indicating whether a data frame
was lost during transmission, and lost_ack doing so for acknowledgement packets.

To establish the termination of the model P , it suffices to demonstrate that either
wp[[P]](1) = 1 or ert[[P]](0) ⊏ ∞ (see Definition 12, page 14). The former approach
(almost-sure termination) was opted for, as it is the weaker of the two classifications. The
steps listed in Section 4.2 (page 25) were followed, yielding the following equations for the

30

5.1. INITIAL ATTEMPT CHAPTER 5. THEORETICAL VERIFICATION

loop-characteristic function:

Φ(X) = [sent < N ∧ failed < MAX] · wp[[body]](X) + [sent ≥ N ∨ failed ≥ MAX]

wp[[body]](X) = p2 ·X[sent := sent + 1; failed := 0] + (1 + p) · (1− p) ·X[failed := 0]

Using these equations, fixed-point iteration was carried out to compute Φ1 through Φ6.
The results for the first five iterations are provided in Appendix A.1. Given that the
equation Φ6 spans more than a page, it has been omitted from this thesis.

Following an analysis of the equations for Φ1 through Φ3, an equation for Φn was
derived. However, inconsistencies were observed in Φ4, which introduced terms that did
not align with the established pattern. When Φn was updated and compared with Φ5,
further inconsistencies emerged. A subsequent refinement of Φn and comparison against
Φ6 again resulted in the introduction of new terms. Two potential explanations exist for
these discrepancies: (1) the equations for Φ1 − Φ6 contain errors, (2) Φn is too complex
to derive using this method. The first possibility was within our control; thus, Caesar was
utilised to verify Φ1 through Φ5.

5.1.1 Loop-unrolling using Caesar

Caesar’s loop-unrolling feature can be used to refute a candidate upper bound for a while-
loop. This feature enables the replacement of a while-loop with a fixed number of iterations
k. If the candidate upper bound is shown to be invalid for this specific number of loop
iterations, it is guaranteed not to hold for the preexpectation of the while-loop (see Theo-
rem 6). However, if verification succeeds, it does not imply that the given preexpectation
holds for the while-loop.

Theorem 6 (Bounded Model Checking for pGCL). [34]
For probabilistic program Cloop = while(φ){C} and loop-characteristic function Φ:

∃n ∈ N : Φn(0) ̸⊑ f ⇐⇒ wp[[Cloop]](g) ̸⊑ f.

In this thesis, loop unrolling is employed to under-approximate the least fixed-point.
For this purpose, a coproc is used, and the terminator is set to 0. The HeyVL code used in
this analysis is provided in Listing 5.2 and is available for download from the accompanying
repository [35].

Listing 5.2: Loop-unrolling in Caesar.
1 domain Constants {
2 func p(): UReal
3 axiom pMax p() <= 1
4

5 func MAX(): UInt
6 axiom MAXmin MAX() > 0
7

8 func N(): UInt
9 axiom Nmin N() > 0

10 }
11

12 coproc unroll(ghost_sent: UInt , ghost_failed: UInt ,
ghost_totalFailed: UInt) -> (sent: UInt , totalFailed: UInt ,
failed: UInt)

31

5.2. SENDPACKET CHAPTER 5. THEORETICAL VERIFICATION

13 pre Φn

14 post [ghost_sent == sent && ghost_failed == failed]
15 {
16 failed = 0
17 totalFailed = 0
18 sent = 0
19

20 @unroll(k ,0)
21 while (sent < N()) && (failed < MAX()) {
22 var q: UReal = 1-p()
23 var lost_frame: Bool = flip(q)
24 var lost_ack: Bool = flip(q)
25 if lost_frame || lost_ack {
26 failed = failed + 1
27 } else {
28 totalFailed = totalFailed + 1
29 failed = 0
30 sent = sent + 1
31 }
32 }

In this program, ghost variables allow the values of variables initialised in the output
list to be referenced in the preexpectation. These ghost variables are equated to their
corresponding variable in the postexpectation, as illustrated in line 14 of Listing 5.2.

To assess the correctness of the equations for Φn, the variable k in the program was
assigned the corresponding value of n in Φn, and the preexpectation was replaced by the
relevant equation. Listing 5.3 presents the HeyVL translation of Φ2; subsequent iterations
were similarly translated.

Listing 5.3: Φ2 in HeyVL.
1 p()*p()*[ghost_sent +1 == N() && ghost_failed < MAX()] + (1-p())*(1+

p())*[ghost_sent < N() && ghost_failed + 1 == MAX()] + [
ghost_sent >= N() || ghost_failed >= MAX()]

Loop-unrolling verified the absence of errors in the equations for Φ1 through Φ4. No-
tably, when all four procedures were included in a single HeyVL file, verification was
unsuccessful, terminating with the error message "Verification had an error: interrupted".
However, verification succeeded when the procedures were tested separately.

Although the absence of errors in the computed iterations of Φ may initially appear
encouraging, it does not facilitate the computation of the least fixed point. While further
loop unrolling is theoretically possible, computing the least fixed point may require an
infinite number of iterations, rendering the problem undecidable. As a result, an alterna-
tive approach was adopted: the simplification of the BRP model. The simplified model
isolates the process of sending a single packet, sendPacket, which is invoked by BRP. By
decomposing the program in this manner, two simple programs are created, both of which
resemble a geometric loop. This abstraction of BRP was explained in further detail in
Section 4.1 (page 22).

5.2 SendPacket

This section, along with subsequent sections, utilises the simplified BRP model provided
in Listings 4.1 and 4.2 on page 23.

32

5.2. SENDPACKET CHAPTER 5. THEORETICAL VERIFICATION

This section contains the theoretical verification of termination, the probability of suc-
cess, and the expected number of failed transmissions for sendPacket. The expected
number of sent packets is notably absent from this list, as this is a property exclusively of
BRP.

Each subsection approaches a the verification of a property by following the steps
outlined in the methodology of this thesis (Chapter 4.2, page 25):

1. Work out wp[[whilesp]](g) to obtain the loop-characteristic function Φg,sp(X).

2. Apply fixed-point iteration on Φg,sp(X) to derive Φn
g,sp.

3. Evaluate Φn
g,sp for n→∞ to determine the supremum supn∈NΦ

n
g,sp = wp[[whilesp]](g).

4. Substitute this value into the equation for wp[[program]](g) to obtain the preexpec-
tation.

Throughout this section, the notation Φg,sp is abbreviated to Φ to improve readability.
The first subsection presents each verification step in detail. For the subsequent sections,
the corresponding fixed-point iterations are provided in Appendix A to avoid redundancy.
Additionally, extensive supremum simplifications are included in Appendix B.

5.2.1 Termination

The objective of this section is to verify positive almost-sure termination (PAST), expressed
as ert[[sendPacket]](0) ⊏ ∞. To determine the number of while-loop iterations, the ert-
calculus outlined in Table 2.3 (page 14) is modified such that 1 is added to the expected
runtime for C = while (φ){P}, but nowhere else. Calculations for ert[[sendPacket]](0)
using this modified calculus yielded the following equation for the loop-characteristic func-
tion:

Loop-characteristic function

Φ(X) = 1 + [failed < MAX ∧ ¬success] · ert[[bodysp]](X)

Where the equation for ert[[bodysp]](X) is identical to wp[[bodysp]](X) in Equation 4.1
(pg 25).

Fixed-point iteration

Fixed-point iteration was subsequently applied to derive the equations for Φ1 through Φ4.
For better readability, the notation Φn(0) is simplified to Φn:

Φ1 = 1

Φ2 = 1 + [failed < MAX ∧ ¬success]

Φ3 = 1 + [failed < MAX ∧ ¬success]
+ (1− p) · [failed + 1 < MAX ∧ ¬success]

Φ4 = 1 + [failed < MAX ∧ ¬success]
+ (1− p) · [failed + 1 < MAX ∧ ¬success]

+ (1− p)2 · [failed + 2 < MAX ∧ ¬success]

Based on these equations, the equation for Φn is formulated as

Φn = 1 + [¬success] ·
n−2∑
i=0

(1− p)i · [failed + i < MAX].

33

5.2. SENDPACKET CHAPTER 5. THEORETICAL VERIFICATION

Upper bound on the preexpectation

I then evaluated Φn for n → ∞ to compute the supremum supn∈NΦ
n. Since the goal is

to verify positive almost-sure termination, rather than computing the exact supremum, an
upper bound suffices:

supn∈NΦ
n = 1 + [¬success] ·

∞∑
i=0

(1− p)i · [failed + i < MAX]

⊑ 1 + [¬success] ·
∞∑
i=0

(1− p)i

= 1 + [¬success] · 1

1− (1− p)

= 1 + [¬success] · 1
p

Remark 1 . This simplification relies on the assumption that p > 0.

This assumption is justified, as a zero probability of successful transmission would
render the application of BRP unnecessary and impractical in any realistic scenario. To
confirm that this is a valid upper bound, Φ(I) is computed for candidate wp-superinvariant
I:

I = 1 + [¬success] · 1
p

Φ(I) = 1 + [failed < MAX ∧ ¬success] · 1
p

Since Φ(I) ⊑ I, it follows that I is a wp-superinvariant and, consequently, an upper bound
on the preexpectation of the while-loop in sendPacket (c.f. Definition 10 and Theorem 4,
for reference). Thus, the upper bound for ert[[sendPacket]](0) is computed as follows:

ert[[sendPacket]](0) = ert[[failed:=0;success:=false]](ert[[whilesp]](0))

⊑ ert[[failed:=0;success:=false]](1 + [¬success] · 1
p
)

= 1 +
1

p

⊏∞.

5.2.2 Probability of Success

The calculations in this and subsequent sections utilise the wp-calculus framework out-
lined in Table 2.1 on page 7. The aim of these computations is to derive the value of
wp[[sendPacket]]([success]).

Loop-characteristic function

Φ(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X) + [success]

wp[[bodysp]](X) = p ·X[success := true] + (1− p) ·X[failed := failed + 1].

The equation for wp[[bodysp]](X) was given in Equation 4.1 on page 25, and repeated here
as a reminder. In subsequent sections, it will not be written out, as it remains the same.

34

5.2. SENDPACKET CHAPTER 5. THEORETICAL VERIFICATION

Fixed-point iteration

Using these equations, fixed-point iteration was carried out to compute Φ1 through Φ4 (see
Appendix A.2.1). Based on these equations, the expression for Φn is formulated as:

Φn = [failed < MAX ∧ ¬success] ·
n−2∑
i=0

p · (1− p)i · [failed + i < MAX] + [success].

Determine the supremum

The equation for Φn is evaluated for n→∞ to compute the supremum supn∈NΦ
n.

supn∈NΦ
n

= [failed < MAX ∧ ¬success] ·
∞∑
i=0

p · (1− p)i · [failed + i < MAX] + [success]

= [failed < MAX ∧ ¬success] ·
MAX−failed−1∑

i=0

p · (1− p)i + [success]. (Restrict the sum)

To restrict the sum, it must be ensured that the upper bound remains greater than or
equal to the lower bound, i.e. MAX−failed−1 ≥ 0. This condition is satisfied by analysing
the guard preceding the summation:

sent < N ⇐⇒ 0 < N− sent
⇐⇒ 0 ≤ N− sent− 1.

As shown, this inequality holds under the given guard in the equation for S1, justifying
the restriction of the summation.

The resulting summation resembles the well-established geometric sum formula pre-
sented in Equation 7.4.

Sn =

n∑
k=0

a · rk =

{
a · (n+ 1) r = 1,

a · 1−rn+1

1−r |r| < 1.
(5.1)

In this case, however, the coefficient a is defined as (1− r) · b, where b is an arbitrary term.
Substituting this into Equation 7.4 allows the case distinction to be eliminated, yielding a
simplified and unified expression:

n∑
k=0

(1− r) · b · rk = b · (1− rn+1). (5.2)

To justify this simplification, we demonstrate that Equation 5.2 is equivalent to Equa-
tion 7.4, under the substitution a = (1− r) · b, in both cases:

Case 1: r = 1

n∑
k=0

a · rk = a · (n+ 1) (Equation 7.4)

= (1− r) · b · (n+ 1) (Substitute a)
= 0 · b · (n+ 1) (Apply r = 1)
= 0 (Simplify)

35

5.2. SENDPACKET CHAPTER 5. THEORETICAL VERIFICATION

n∑
k=0

(1− r) · b · rk = b · (1− rn+1) (Equation 5.2)

= b · (1− 1n+1) (Apply r = 1)
= 0 (Simplify)

Case 2: |r| < 1

n∑
k=0

a · rk = a · 1− r
n+1

1− r
(Equation 7.4)

= (1− r) · b · 1− r
n+1

1− r
(Substitute a)

= b · (1− rn+1) (Simplify)

=
n∑

k=0

(1− r) · b · rk (Equation 5.2)

Having demonstrated the equivalence of the two formulas, we are justified in applying
Equation 5.2 in our simplification.

supn∈NΦ
n = [failed < MAX ∧ ¬success] ·

MAX−failed−1∑
i=0

p · (1− p)i + [success]

= [failed < MAX ∧ ¬success] · (1− (1− p)MAX−failed) + [success]

Solve for the preexpectation

wp[[sendPacket]]([success]) = wp[[failed:=0;success:=false]](wp[[whilesp]]([success]))
= wp[[failed:=0;success:=false]](supn∈NΦ

n)

= 1− (1− p)MAX

5.2.3 Expected Number of Failures

The aim of these computations is to derive the value of wp[[sendPacket]](failed).

Loop-characteristic function and fixed-point iteration

Φ(X) = [failed < MAX∧¬success] ·wp[[bodysp]](X)+ [failed ≥ MAX∨ success] · failed

The equation wp[[bodysp]](X) is provided in Equation 4.1 on page 25.

Fixed-point iteration

Using these equations, fixed-point iteration was carried out to compute Φ1 through Φ4 (see
Appendix A.2.2). Based on these equations, the expression for Φn is formulated as:

Φn = [failed < MAX ∧ ¬success] ·

(
n−2∑
i=0

[failed + i < MAX] · p · (1− p)i · (failed + i)

+

n−2∑
i=0

[failed + i+ 1 = MAX] · (1− p)i+1 · (failed + i+ 1)

)
+ [failed ≥ MAX ∨ success] · failed

36

5.3. BRP CHAPTER 5. THEORETICAL VERIFICATION

Determine the supremum

The equation for Φn is evaluated for n → ∞ to compute the supremum supn∈NΦ
n. The

simplification of supn∈NΦ
n can be seen in Appendix B.1, the result of which is the following:

supn∈NΦ
n = [failed < MAX ∧ ¬success] ·

(
failed +

(1− p)− (1− p)MAX−failed+1

p

)
+ [failed ≥ MAX ∨ success] · failed

Solve for the preexpectation

wp[[sendPacket]](failed) = wp[[failed:=0;success:=false]](wp[[whilesp]](failed))
= wp[[failed:=0;success:=false]](supn∈NΦ

n)

=
(1− p)− (1− p)MAX+1

p

5.3 BRP

Having completed the verification of each property for sendPacket, we now proceed to
verify the corresponding properties for BRP. The same verification procedure as outlined
in the previous sections is followed. Throughout this section, the notation Φ is used as
shorthand for Φg,brp to improve readability. As before, only the fixed-point iteration and
supremum simplification for the first property are presented here to avoid redundancy.

5.3.1 Termination

The verification process outlined in the previous section was applied to establish an upper
bound on the expected number of loop iterations of BRP.

Loop-characteristic function

Φ(X) = 1 + [sent < N ∧ success] · ert[[bodybrp]](X)

Where the equation for ert[[bodybrp]](X) is identical to wp[[bodybrp]](X) in Equation 4.2
(pg 25).

Fixed-point iteration

For readability, the notation Φn(0) is abbreviated to Φn.

Φ1 = 1

Φ2 = 1 + [sent < N ∧ success]

Φ3 = 1 + [sent < N ∧ success] + q · [sent + 1 < N ∧ success]

Φ4 = 1 + [sent < N ∧ success] + q · [sent + 1 < N ∧ success]

+ q2 · [sent + 2 < N ∧ success]

Based on the equations for Φ1 through Φ4, the equation for Φn is formulated as follows.

Φn = 1 + [success] ·
n−2∑
i=0

qi · [sent + i < N]

37

5.3. BRP CHAPTER 5. THEORETICAL VERIFICATION

Upper bound on the preexpectation

The equation for Φn is evaluated for n→∞ to compute an upper bound to the supremum:

supn∈NΦ
n = 1 + [success] ·

∞∑
i=0

si · [sent + i < N]

⊑ 1 + [success] ·
∞∑
i=0

si

= 1 + [success] · 1

1− s
Remark 2 . This simplification relies on the assumption that s < 1.

For sendPacket to yield a preexpectation of 1 given the postexpectation [success], the
probability of a successful packet transmission must be 1. Analogously to a zero probability
of successful packet transmission, it is unlikely that BRP would be employed in such a
scenario.

To confirm that the computed upper bound to the supremum is a valid upper bound
of the while-loop, Φ(I) is computed for candidate invariant I:

I = 1 + [success] · 1

1− s
Φ(I) = 1 + [sent < N ∧ success] · s

1− s
From these equations, it follows that Φ(I) ⊑ I, thereby verifying that I is a superinvariant
and thus serves as an upper bound for the preexpectation of the while-loop in BRP (c.f.
Definition 10 and Theorem 4, for reference). Finally, the upper bound for ert[[BRP]](0) is
determined as follows:

ert[[BRP]](0) = ert[[sent:=0;success:=true;totalFailed:=0]](ert[[whilebrp]](0))

⊑ ert[[sent:=0;success:=true]](1 + [success] · 1

1− s
)

= 1 +
1

1− s
⊏∞

5.3.2 Probability of Success

The aim of this section is to compute the value of wp[[BRP]]([success]).

Loop-characteristic function

Φ(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∧ success]

The equation for wp[[bodybrp]](X) was given in Equation 4.2 on page 25, and repeated here
as a reminder. In subsequent sections, it will not be written out, as it remains the same.

Fixed-point iteration

Using this equation, I performed fixed-point iteration to determine Φ1 through Φ4 (see
Appendix A.3.1) Based on these equations, the expression for Φn is formulated as:

Φn = [sent < N ∧ success] ·
n−1∑
i=0

si · [sent + i = N] + [sent ≥ N ∧ success]

38

5.3. BRP CHAPTER 5. THEORETICAL VERIFICATION

Determine the supremum

The equation for Φn is evaluated for n→∞ to compute the supremum supn∈NΦ
n:

supn∈NΦ
n = [sent < N ∧ success] ·

∞∑
i=0

si · [sent + i = N] + [sent ≥ N ∧ success]

= [sent < N ∧ success] · sN−sent + [sent ≥ N ∧ success]

Solve for the preexpectation

wp[[BRP]]([success]) = wp[[sent:=0;success:=true;totalFailed:=0]](
wp[[whilebrp]]([success]))

= wp[[sent:=0;success:=true;totalFailed:=0]](supn∈NΦ
n)

= sN

Where s = wp[[sendPacket]]([success]) = 1− (1− p)MAX

5.3.3 Expected Number of Failures

This section aims to obtain the value of wp[[BRP]](totalFailed).

Loop-characteristic function

Φ(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · totalFailed

The equation for wp[[bodybrp]](X) is provided in Equation 4.2 on page 25.

Fixed-point iteration

Using these equations, fixed-point iteration was carried out to compute Φ1 through Φ4 (see
Appendix A.3.2). Based on these equations, the expression for Φn is formulated as:

Φn = [success ∧ sent < N] ·

(
n−2∑
i=0

[sent + i < N] · si · (1− s) · (totalFailed + (i+ 1) · f)

+

n−2∑
i=0

[sent + i+ 1 = N] · si+1 · (totalFailed + (i+ 1) · f)

)
+ [¬success ∨ sent ≥ N] · totalFailed

Determine the supremum

The equation for Φn is evaluated for n → ∞ to compute the supremum supn∈NΦ
n. The

simplification of supn∈NΦ
n can be seen in Appendix B.2, the result of which is the following:

supn∈NΦ
n = [success ∧ sent < N] ·

(
totalFailed + f · 1− s

N−sent

1− s

)
+ [¬success ∨ sent ≥ N] · totalFailed

39

5.3. BRP CHAPTER 5. THEORETICAL VERIFICATION

Solve for the preexpectation

wp[[BRP]](totalFailed) = wp[[sent:=0;success:=true;totalFailed:=0]]
(

wp[[whilebrp]](totalFailed)
)

= wp[[sent:=0;success:=true;totalFailed:=0]](supn∈NΦ
n)

= f · 1− s
N

1− s
Where s = wp[[sendPacket]]([success]) = 1− (1− p)MAX

f = wp[[sendPacket]](failed) =
q − qMAX+1

p

5.3.4 Expected Number of Sent Packets

The aim of these computations is therefore to derive the value of wp[[BRP]](sent).

Loop-characteristic function

Φ(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · sent

The equation for wp[[bodybrp]](X) is provided in Equation 4.2 on page 25.

Fixed-point iteration

Using these equations, fixed-point iteration was carried out to compute Φ1 through Φ4 (see
Appendix A.3.3). Based on these equations, the expression for Φn is formulated as:

Φn = [success ∧ sent < N] ·

(
n−2∑
i=0

[sent + i < N] · si · (1− s) · (sent + i)

+
n−2∑
i=0

[sent + i+ 1 = N] · si+1 · (sent + i+ 1)

)
+ [¬success ∨ sent ≥ N] · sent

Determine the supremum

The equation for Φn is evaluated for n → ∞ to compute the supremum supn∈NΦ
n. The

simplification of supn∈NΦ
n can be seen in Appendix B.3, the result of which is the following

equation:

supn∈NΦ
n = [success ∧ sent < N] ·

(
sent +

s(1− sN−sent)

1− s

)
+ [¬success ∨ sent ≥ N] · sent

Solve for the preexpectation

wp[[BRP]](sent) = wp[[sent:=0;success:=true;totalFailed:=0]](wp[[whilebrp]](sent))
= wp[[sent:=0;success:=true]](supn∈NΦ

n)

=
s · (1− sN)

1− s

Where s = wp[[sendPacket]]([success]) = 1− (1− p)MAX

40

5.4. RESULTS CHAPTER 5. THEORETICAL VERIFICATION

5.4 Results

Termination, the probability of success, and the expected number of failed and sent pack-
ets have all been successfully verified through weakest preexpectation calculations using a
pGCL model of BRP. A summary of the theoretical verification results from the preceding
sections is presented in Tables 5.1 and 5.2. The tables list both the computed preexpec-
tations and the suprema corresponding to their while-loops, as these are necessary for
translation to Caesar-based verification.

supremum preexpectation
calc g calc[[whilesp]](g) calc[[sendPacket]](g)

ert 0 ⊑ 1 + [¬success] · 1p* ⊑ 1 + 1
p*

wp [success] = [failed < MAX ∧ ¬success] ·
(

1− (1− p)MAX−failed
)
+ [success]

= 1− (1− p)MAX

wp failed = [failed < MAX ∧ ¬success] ·
(

failed + (1−p)−(1−p)MAX−failed+1

p

)
+[failed ≥ MAX ∨ success] · failed

= (1−p)−(1−p)MAX+1

p

Table 5.1: Summary of the theoretical verification results for the expected number
of loop iterations, probability of success, and the expected number of failed packets
for sendPacket. The analysis is based on the pGCL model as defined in Listing 4.1.
* Assuming that p > 0.

supremum preexpectation
calc g calc[[whilebrp]](g) calc[[BRP]](g)

ert 0 ⊑ 1 + [success] · 1
1−s* ⊑ 1 + 1

1−s*

wp [success] = [sent < N ∧ success] · sN−sent

+[sent ≥ N ∧ success]

= sN

wp totalFailed = [success ∧ sent < N] ·
(

totalFailed + f · 1−sN−sent

1−s

)
+[¬success ∨ sent ≥ N] · totalFailed

= f · 1−sN

1−s

wp sent = [success ∧ sent < N] ·
(

sent + s(1−sN−sent)
1−s

)
+[¬success ∨ sent ≥ N] · sent

= s·(1−sN)
1−s

Table 5.2: Summary of the theoretical verification results for the expected number
of loop iterations, probability of success, and the expected number of failed and sent
packets for BRP. The analysis is based on the pGCL model as defined in Listing 4.2.
* Assuming that s < 1.

41

5.5. GEOMETRIC PROGRAM CHAPTER 5. THEORETICAL VERIFICATION

5.5 Geometric Program

In subsequent sections of this thesis, it will be demonstrated that none of the computed
preexpectations for the expected number of failed or sent packets could be verified. Al-
though several possible explanations exist for this issue, the computed preexpectations
were re-evaluated using probability theory [36] to verify their correctness.

As previously noted, the pGCL models sendPacket and BRP closely resemble a bounded
geometric loop. Consequently, the expectations of these programs can be analysed sim-
ilarly to the expectations of truncated geometric distributions. This section presents a
probabilistic analysis of the expected number of trials and failures in a simple bounded
geometric loop: a coin flip with success probability p, bounded by a maximum number of
N flips.

5.5.1 Trials

For the number of trials to be less than N , the final trial must result in success. If the
number of trials is exactly N , this implies that the first (N − 1) trials were unsuccessful,
followed by a final trial, the outcome of which is irrelevant, as either it was successful or
the maximum number of trials was reached. This results in the following probability mass
function:

f(x) =

p · (1− p)x−1 1 ≤ x < N
(1− p)x−1 x = N
0 x > N

Thus, the expected number of trials, E(X), is computed as follows:

E(X) =

N∑
x=1

x · f(x))

=

N−1∑
x=1

x · f(x)x<N +N · f(x)x=N

=

N−1∑
x=1

x · p · (1− p)x−1 +N · (1− p)N−1

=

N−1∑
x=1

x · p · (1− p)
x

1− p
+N · (1− p)N−1

=
p

1− p
·
N−1∑
x=1

x · (1− p)x +N · (1− p)N−1

=
p

1− p
· 1− p−N · (1− p)

N + (N − 1) · (1− p)N+1

p2
+N · (1− p)N−1

=
1−N · (1− p)N−1 + (N − 1) · (1− p)N + p ·N · (1− p)N−1

p

=
1−N · (1− p) · (1− p)N−1 + (N − 1) · (1− p)N

p

=
1−N · (1− p)N + (N − 1) · (1− p)N

p

. . . (continues on next page)

42

5.5. GEOMETRIC PROGRAM CHAPTER 5. THEORETICAL VERIFICATION

. . . (continued from previous page)

=
1− (1− p)N

p

When applied to the BRP program, the number of trials corresponds to the number
of additions to totalFailed, as this increment occurs in every loop iteration. However,
rather than being incremented by one, totalFailed increases by f in each iteration. Con-
sequently, the expected value of totalFailed should be the expected number of trials
multiplied by f . Additionally, in BRP, the loop condition contains a negation of success
rather than success. As a result, the probability of success is (1−p) rather than p. Substi-
tuting p with the probabilistic variable s yields the expectation for the number of failures
in BRP:

E(#totalFailed) = f · 1− s
N

1− s
This equation is equivalent to the result obtained from the wp-calculations in Section 5.3.3.
Therefore, the challenges encountered in verifying this property are unlikely to be the result
of a computational error.

5.5.2 Failures

Similar to the expected number of trials, the expected number of failures can be computed
using probability theory rather than wp-calculus. The probability mass function for the
number of failures differs slightly from that of the number of trials, as failures are only
incremented when the success condition is not met:

f(x) =

p · (1− p)x 0 ≤ x < N
(1− p)x x = N
0 x > N

Thus, the expected number of failures for the coin flip is given by:

E(X) =

N∑
x=0

x · f(x)

=
N−1∑
x=0

x · f(x)x<N +N · f(x)x=N

=
N−1∑
x=0

x · p · (1− p)x +N · (1− p)N

= p ·
N−1∑
x=0

x · (1− p)x +N · (1− p)N

= p · 1− p−N · (1− p)
N + (N − 1) · (1− p)N+1

p2
+N · (1− p)N

=
1− p−N · (1− p)N + (N − 1) · (1− p)N+1 + p ·N · (1− p)N

p

=
1− p−N · (1− p)N+1 + (N − 1) · (1− p)N+1

p

. . . (continues on next page)

43

5.5. GEOMETRIC PROGRAM CHAPTER 5. THEORETICAL VERIFICATION

. . . (continued from previous page)

=
1− p− (1− p)N+1

p

When applied to sendPacket, the number of failures corresponds to the number of failed
transmissions. Replacing the maximum number of trials N by the maximum number of
failures MAX, the expected number of failed transmissions is given by:

E(#failed) =
1− p− (1− p)MAX+1

p

which matched the computed preexpectation.
When relating the number of failures in the coin-flip model to BRP, a confusing cor-

respondence emerges: the number of failures in the coin-flip model corresponds to the
number of sent packets in BRP. Replacing the probability of a successful coin-flip ,p, with
the probability of an unsuccessful sent packet, (1−s), the expected number of sent packets
is given by:

E(#sent) =
s− sN+1

1− s

Again, this result is consistent with the computed preexpectation, further indicating that
computational errors are unlikely to be responsible for the verification challenges.

44

CHAPTER 6

PRACTICAL VERIFICATION

This chapter translates the theoretical verification results from the previous chapter into
practical verification using Caesar. It is structured as follows:

1. Invariants: The derivation of the loop invariants required for verification in Caesar.

2. Translation from pGCL to HeyVL: The process of converting the pGCL models
into HeyVL code, incorporating a reward mechanism for the expected runtime and
the implementation of exponentials.

3. Results: A summary of the outcomes of the practical verification using Caesar.

All code developed for this thesis is available for download from the accompanying repos-
itory [35].

6.1 Invariants

When verifying properties of programs containing a while-loop in Caesar, both upper and
lower bounds of the preexpectation must be established separately. In this thesis, these
bounds are verified via induction. To verify that a preexpectation is an upper bound, a
wp-superinvariant is needed. Conversely, to verify a lower bound, a wlp-subinvariant must
be provided.

For verifying PAST, upper bounds for the preexpectations of ert[[sendPacket]](0) and
ert[[BRP]](0) were obtained using wp-superinvariants (see Sections 5.2.1 and 5.3.1). As a
result, the translation of the verification of this property to Caesar required no extra steps.

In contrast, the theoretical verification of the remaining properties yielded exact ex-
pressions for the preexpectations (refer to Tables 5.1 and 5.2). Consequently, a wp-
superinvariant and a wlp-subinvariant are needed to verify the upper and lower bounds,
respectively. However, since it has been established that both BRP and sendPacket are
PAST programs, the wp- and wlp-calculi are equivalent. Therefore, a wp-subinvariant also
serves as a wlp-subinvariant:

45

6.2. FROM PGCL TO HEYVL CHAPTER 6. PRACTICAL VERIFICATION

property program upper bound lower bound

termination sendPacket ✓ N.A.

BRP ✓ N.A.

success sendPacket ✓ timeout

BRP timeout ✓

failures sendPacket timeout timeout

BRP timeout timeout

sent packets BRP timeout timeout

Table 6.1: Caesar verification results for the manually computed preexpectations,
using the computed suprema as wp-superinvariants and wlp-subinvariants. Refer
to Tables 5.1 and 5.2 for the expressions of each preexpectation and supremum.

Theorem 7 (Equivalence wp- and wlp-subinvariants for an AST program).
Let I be a wlp-subinvariant for the loop while(φ){C} of program P with respect to
postexpectation f , and let P be AST (almost-surely terminating). Then:

I ⊑ wlp[[while(φ){C}]](f) (Theorem 5: coinduction)
∧ wp[[while(φ){C}]](f) = wlp[[while(φ){C}]](f) (Theorem 3: wp v. wlp)

=⇒ I ⊑ wp[[while(φ){C}]](f)

This result implies that coinduction can be applied using a wp-subinvariant, provided
the program is AST. An analogous result holds for superinvariants.

This implies that the invariants derived through theoretical wp-analysis can be reused
directly in Caesar to verify both upper and lower bounds. In particular, the suprema
computed exactly for the probability of success, the expected number of failed transmis-
sions, and the expected number of sent packets serve as both wp-superinvariants and wlp-
subinvariants (see Appendix C for proofs). Therefore, they can theoretically be applied to
verify both bounds of the corresponding preexpectations in Caesar.

Despite this theoretical applicability, the practical verification encountered challenges,
as shown in Table 6.1. In response, alternative super- and subinvariants were explored to
either verify the original preexpectations or establish alternative bounds. These alternative
invariants, together with their corresponding properties, are listed in Table 6.2 and proven
to be invariants in Appendix D. Notably, it was not possible to verify a non-trivial upper
and lower bound for all properties across both programs using this approach.

6.2 From pGCL to HeyVL

Having determined the necessary equations for verification in Caesar, the next task involves
translating the pGCL program into HeyVL. The programs provided in Listings 4.3 and 4.4
serve as initial references but must be modified according to the property that is being
verified. Specifically, when verifying an upper bound, the appropriate tag is wp, or in

46

6.2. FROM PGCL TO HEYVL CHAPTER 6. PRACTICAL VERIFICATION

program property invariant pre

sendPacket failed [failed < MAX ∧ ¬success] ·
(

failed + (1− p) · (MAX− failed)
)

+[failed ≥ MAX ∨ success] · failed

(1− p) ·MAX

BRP success [success] · sN−sent + [success] sN

BRP failed [sent < N ∧ success] ·
(

totalFailed + f · (N− sent)
)

+[sent ≥ N ∨ ¬success] · totalFailed

f ·N

BRP sent [sent < N ∧ success] ·
(

sent + s · (N− sent)
)

+[sent ≥ N ∨ ¬success] · sent

s ·N

Table 6.2: Alternative invariants used for Caesar verification and their corre-
sponding preexpectations. “Super” refers to a wp-superinvariant and a “sub” to a
wlp-subinvariant.

the verification of termination, ert, and the proc must be substituted with a coproc. In
contrast, for the verification of a lower bound, the relevant tag is wlp, and the proc remains
unchanged. Moreover, the placeholders preexp, postexp, and invar must be substituted
with the preexpectation, postexpectation, and invariant to be verified.

Further adjustments to the programs are required to ensure compatibility with the mod-
ified ert-calculus. Specifically, the statement reward 1 needs to be incorporated within
the body of each while-loop. Additionally, the assumptions necessary for the verification
of PAST (specifically, p > 0 and s < 1) are introduced as axioms within the Constants
domain.

6.2.1 Exponentials

The computed preexpectations and invariants for the probability of success, as well as for
the expected number of failed transmissions and sent packets, introduce another challenge
in the verification process using Caesar: the handling of exponentials. Since exponentiation
is not natively supported in HeyVL, it must be implemented using a custom domain and
axioms. Caution is required when working with axioms in Caesar, as any unsound axiom
may lead to verification regardless of the correctness of the specified property and proof.

Listing 6.1 presents a recursive implementation of the Exponentials domain. In this
implementation, line 2 specifies the function’s type, line 3 defines the base case, and line 4
defines the inductive case.

Listing 6.1: An recursive HeyVL Exponentials domain.
1 domain Exponentials {
2 func pow(num: UReal , power: UInt): UReal
3 axiom pow_base forall x: UReal. pow(x, 0) == 1

47

6.3. RESULTS CHAPTER 6. PRACTICAL VERIFICATION

4 axiom pow_step forall x: UReal. forall y: UInt. pow(x, y + 1) ==
x * pow(x,y)

5 }

Unfortunately, attempting to verify a program that incorporates this definition leads
to timeout errors in Caesar. This issue can be explained by the work of Amin et al. [37],
which describes how unrestricted recursion in an SMT-solver can result in non-termination
or inefficiency due to matching loops or excessive instantiations. To mitigate this issue, the
exponent is “unfolded”, or “fuelled”, by two steps to assist the SMT-solver. This approach,
as presented in Listing 6.2, leaves pow0 uninterpreted, thereby preventing the solver from
entering infinite recursion, and allows controlled evaluation through single-step unfolding
with pow1.

This two-step unfolding implementation is used for the exponential function pow through-
out this thesis. Although additional unfolding steps were tested during the verification
process, no improvements were observed compared to the two-step approach employed in
Listing 6.2.

Listing 6.2: An fueled HeyVL Exponentials domain.
1 domain Exponentials {
2 func pow0(base: UReal , exponent: UInt): UReal
3 func pow1(base: UReal , exponent: UInt): UReal = ite(exponent ==

0, 1, base * pow0(base , exponent - 1))
4 func pow(base: UReal , exponent: UInt): UReal = ite(exponent ==

0, 1, base * pow1(base , exponent - 1))
5

6 axiom synonym_fuel1 forall b: UReal , e: UInt. pow(b, e) == pow1
(b,e)

7 }

An alternative approach, which establishes a relationship between two exponentials by
comparing their powers, is presented in Listing 6.3. This implementation is applicable ex-
clusively to exponentials where the base is a probability (0 ≤ base ≤ 1), which aligns with
the exponentials considered in this thesis. This approach facilitated faster verification of
the upper bound of wp[[sendPacket]]([success]), demonstrating its potential. Specifically,
it reduced the verification time to an average of 0.05 seconds, a significant improvement
compared to the average of 5 seconds required when using the fuelled exponential do-
main. However, this method resulted in a timeout when verifying the lower bound of
wp[[BRP]]([success]). Consequently, the implementation of pow shown in Listing 6.2 was
adopted for the remainder of this thesis.

Listing 6.3: An alternative HeyVL Exponentials domain.
1 domain Exponentials {
2 func pow(base: UReal , exponent: UInt): UReal
3

4 axiom pow_order forall b: UReal , e1: UInt , e2: UInt.
5 (e1==e2 && pow(b, e1) == pow(b, e2)) || (e1>e2 && pow(b, e1) <
6 pow(b, e2)) || (e1 <e2 && pow(b, e1) > pow(b, e2))
7 }

6.3 Results

The results of the practical verification using Caesar are summarised in Table 6.3.

48

6.3. RESULTS CHAPTER 6. PRACTICAL VERIFICATION

Several additional notable observations were made during the execution of the Caesar
verifications. In instances where two upper bounds were successfully verified, it is theo-
retically possible to implement the function call to sendPacket (as shown in Listing 4.5)
within BRP and verify the upper bound without the use of the representative variables s
and f . However, attempts to do so resulted in timeout errors in Caesar, both under the
shorter timeout of 20 seconds and the standard timeout of 300 seconds.

Another significant observation arose during the Caesar verification process: when
multiple procedures were executed within a single file, certain combinations caused Caesar
to time out. This phenomenon is further discussed in the Discussion chapter of this thesis
(Chapter 7).

computed verified verified
property program preexpectation upper bound lower bound assume

termination sendPacket ⊑ 1 + 1
p 1 + 1

p N.A. p > 0

BRP ⊑ 1 + 1
1−s 1 + 1

1−s N.A. s < 1

success sendPacket 1− (1− p)MAX 1− (1− p)MAX -

BRP sN sN sN

failures sendPacket (1−p)−(1−p)MAX+1

p MAX -

BRP f · 1−sN

1−s f ·N -

sent packets BRP s−sN+1

1−s s ·N -

Table 6.3: An overview of the manually computed preexpectations, the upper
and lower bounds verified using Caesar, and any necessary assumptions for each
property. A dash indicates that only a trivial upper or lower bound was verified.

49

CHAPTER 7

DISCUSSION

This chapter addresses the main research question and its sub-questions, introduced in
Section 1, following the stepwise verification process outlined in Chapters 5 and 6. Each
sub-question is discussed individually, followed by a discussion of the main research ques-
tion.

7.1 BRP Abstraction

How can BRP be modelled to facilitate the verification using Caesar?

Since Caesar is based on the weakest preexpectations calculus, BRP must be represented
in probabilistic Guarded Command Language (pGCL) to enable manual reasoning about
its behaviour.

Two pGCL models of BRP were developed in this study. The first model contains a
single while-loop with two probabilistic choices. The second model decomposes the protocol
into two separate programs, each containing a while-loop and a probabilistic choice.

Applying fixed-point iteration to the loop-characteristic function of the first model did
not yield a supremum. This difficulty does not stem from a flaw in Caesar or in the
BRP model itself, but rather reflects a general limitation of the weakest preexpectation
calculus. Identifying a supremum heavily depends on the ability of the verifier to recognise
useful patterns, once again highlighting the inherent difficulty of the verification process.
The absence of errors in the computed equations for Φ1 through Φ4 was confirmed using
Caesar’s loop-unrolling feature. While this feature was helpful, it has inherent limitations:
it can refute candidate upper bounds for the least fixed point but cannot provide definitive
correctness guarantees.

The construction of the second, decomposed model proved particularly helpful in the
verification process. Its resemblance to a geometric program enabled cross-verification of
manual calculations and theoretical results. I should note, however, that the inversion in
the naming of "failures" between the geometric program and the proposed model initially
led me to second-guess of what turned out to be correct calculations. This experience
underscored the importance of careful translation of program variables. When such trans-
lations are handled with care, abstractions of this kind can serve as highly effective tools
in the verification process.

Although insights gained from verifying the second model could potentially be used to
revisit the first model, doing so would not align with the primary goal of this research,
which is to evaluate the verification capabilities of Caesar rather than verify BRP itself.
The abstraction of BRP into two geometric-like programs aligns well with this objective

50

7.2. THEORETICAL VERIFICATION CHAPTER 7. DISCUSSION

and has already introduced sufficient challenges and insights. A more complex model may
become useful for further testing once these challenges have been addressed.

7.2 Theoretical Verification

Which properties of BRP can be verified using Caesar’s underlying weakest
preexpectation calculus?

Once an appropriate pGCL model of BRP was established, the following properties were
selected for verification:

1. Positive almost-sure termination (PAST)

2. Probability of success

3. Expected number of failed transmissions

4. Expected number of sent packets

Properties 2 through 4 each correspond to a key variable in the BRP model. These proper-
ties also reflect typical goals in probabilistic program analysis: the calculation of expected
runtimes, expected values of program variables, and the probabilities of certain outcomes.

Establishing PAST was a crucial first step, as it permits the interchangeable use of
weakest preexpectation (wp) and weakest liberal preexpectation (wlp) calculus. Further-
more, the complexity of verification was deliberately increased over the course of the study.
Beginning with PAST was therefore a pragmatic and strategic choice.

To verify PAST, two assumptions were introduced: p < 1 and s > 0. These are justified
in Sections 5.2.1 and 5.3.1 by arguing that BRP would not be applicable in scenarios where
these conditions do not hold.

With the experience I have gained through this thesis, I believe it would be feasible to
revisit the verification of PAST without relying on these assumptions. However, as previ-
ously argued, they are reasonable within the context of BRP, and given time constraints,
further refinement was not pursued.

Another property of interest, not verified in this study, is the overall expected runtime.
While the verification of PAST confirms that the number of loop iterations is finite, it does
not establish anything about the overall expected runtime. However, given that ert-calculus
was already employed in the PAST analysis, verifying runtime is unlikely to yield novel
insights into Caesar’s verification capabilities. The selected properties already encapsulate
the key questions in probabilistic program analysis while systematically increasing the
complexity of verification in Caesar.

In my experience, the most technically challenging aspect of the theoretical verifica-
tion was handling summations where the guard depended on the summation index. This
initially proved difficult, but with practice, I was able to develop effective simplification
strategies. These techniques are outlined in the recommendations provided in Subsec-
tion 7.6.

7.3 Translation Steps

How can theoretical verification based on weakest preexpectations be translated
into verification using Caesar?

51

7.3. TRANSLATION STEPS CHAPTER 7. DISCUSSION

The most significant differences between theoretical verification using weakest preexpec-
tations and practical verification using Caesar in this case study pertain to the handling
of loops. In particular, Caesar requires the application of a proof rule, something that is
not necessary in theoretical verification. Moreover, when applying Caesar’s proof rules,
such as induction, loop unrolling, and ω-invariants, one must separately verify both upper
and lower bounds for the desired preexpectation. In contrast, theoretical wp-calculus often
yields an exact value directly.

Although this study primarily focuses on the induction proof rule, the following two
steps are broadly applicable in translating any theoretical wp-based verification into a
Caesar-based approach and are further elaborated in this section:

1. Selection of an appropriate proof rule.

2. Translation of the pGCL program into a HeyVL program.

7.3.1 Proof Rules

Two proof rules were applied in this study: induction and loop unrolling. Loop unrolling
was used in a specific context: to validate the correctness of fixed-point iterations. This
particular application is described in Section 5.1.1, which also provides a reusable template
for this technique.

Induction was applied more extensively throughout the study. It requires specifying a
loop invariant, and determining the appropriate combination of procedure structure and
invariant can be quite challenging, even with the help of Table 2.4. To support this process,
Figure 7.1 presents a flowchart designed to guide users in applying the induction rule in
Caesar, given a program, preexpectation, and postexpectation. The resulting structure
can then be applied using the HeyVL procedure format specified in Definition 16.

Definition 16 (HeyVL procedure using induction).
proc P (in : τ) -> (out : τ)

pre ϕ
post ψ

{
S1
@invariant(I)
while (φ) {

Sbody
}
S2

}

Where in and out denote lists of typed read-only inputs and outputs. S1 and S2
represent HeyVL statements preceding and following the loop, respectively, while Sbody
defines the loop body. The loop invariant is denoted by I, the loop guard by φ, the
preexpectation by ϕ, and the postexpectation by ψ.

By definition, the supremum obtained from theoretical wp-calculus serves as both a
superinvariant and subinvariant within the same calculus, as demonstrated by the com-
putations in Appendix C. Furthermore, if a program satisfies almost-sure termination

52

7.3. TRANSLATION STEPS CHAPTER 7. DISCUSSION

Figure 7.1: A flowchart describing the process of determining the appropriate
HeyVL procedure and loop invariant, assuming the use of the induction proof rule.

(AST), wp- and wlp-calculus become equivalent, meaning that wp-subinvariants and wlp-
subinvariants (as well as superinvariants) are interchangeable. This equivalence is formally
proven in Section 6.1.

In this study, theoretical verification employed wp-calculus, and the program satisfies
positive almost-sure termination (PAST), which implies AST. Thus, in theory, the supre-
mum derived from the while-loop should serve as a valid loop invariant when verifying
upper and lower bounds using induction in Caesar. However, in practice, this approach
did not always succeed, a point discussed further in Section 7.5.

If, as was the case in this study, Caesar is unable to verify a preexpectation using the
computed supremum as an invariant, it may be necessary to identify an alternative loop
invariant. This process is outlined in Figure 7.2. Once a new invariant is established, a
corresponding preexpectation must be computed. This is likely to yield a weaker preex-
pectation, although in favourable cases, one may find an alternative invariant that still
supports verification of the original preexpectation.

7.3.2 pGCL to HeyVL

This part of the translation process was relatively straightforward. In my experience,
translating a pGCL program into HeyVL is intuitive, largely due to the structural and
syntactic similarities between the two languages. In cases where the translation was not

53

7.4. TRANSLATION OBSERVATIONS CHAPTER 7. DISCUSSION

Figure 7.2: A flowchart describing the process of determining a loop invariant.

immediately clear, or when I needed a refresher on the notation, the examples provided
on the Caesar website and the linked GitHub repository [26] were helpful. However, these
resources are somewhat scattered, and locating the most relevant example can be time-
consuming.

A suggestion for future work that emerged from this experience is the completion
of the "A Zoo of HeyVL Examples" page on the Caesar website. A well-structured and
comprehensive collection of examples would significantly streamline the translation process
for future users.

7.4 Translation Observations

What challenges and insights emerge when translating the theoretical verifica-
tion to practical verification using Caesar?

The two translation steps outlined in the previous section are conceptually clear: selecting
a suitable proof rule depends on the verification method, and the structural resemblance
between pGCL and HeyVL makes program translation relatively straightforward. However,
a major challenge arose in encoding exponentials using axioms in HeyVL.

An important pitfall is that unsound axioms can cause Caesar to report successful
verification regardless of a procedure’s content, preexpectation, and postexpectation. At
one point during this project, I unintentionally introduced such an unsound axiom while
attempting to encode exponentials. This led me to falsely conclude that a property had
been successfully verified. The issue became apparent only when, after accidentally saving
a version of the program with an incorrect preexpectation, the verification still succeeded.
To avoid this problem going forward, I adopted a strategy of sanity-checking each axiom

54

7.5. PRACTICAL VERIFICATION RESULTS CHAPTER 7. DISCUSSION

by attempting to verify an intentionally incorrect bound. If Caesar accepted this bound,
the axiom was deemed unsound. This difficulty lies not in Caesar itself, but in the human
process of correctly formulating sound axioms.

The initial sound recursive definition of exponentials, shown in Listing 6.1, posed a
different challenge. Although it was semantically correct, it caused the SMT-solver under-
lying Caesar to get stuck. Unlike the previous issue, this limitation originates from Caesar’s
current implementation. Ongoing parallel research is addressing this limitation, but for
the purposes of this thesis, a fuelled definition of exponentials was used to support partial
verification. While this workaround alleviated the problem in some cases, it did not resolve
all verification challenges. Further discussion on this topic is provided in Section 7.5.

Another strategy for mitigating the challenges posed by exponentials involved identi-
fying simplified invariants that still enabled verification. This approach was successfully
applied, for example, in verifying a lower bound for the probability of success in BRP. How-
ever, this workaround introduced a new difficulty: identifying a suitable invariant in the
first place. Whilst verifying whether a candidate invariant is a superinvariant or subin-
variant is relatively straightforward, determining a candidate invariant lacks a systematic
methodology and relies heavily on insight and experimentation.

Interestingly, recent work by Batz et al. [29] introduces a tool, cegispro2, which supports
the synthesis of sub- and superinvariants for probabilistic programs. This tool may offer a
promising solution to the problem of invariant discovery and is discussed in more detail in
Section 9.

7.5 Practical Verification Results

What are the verification results, and what assumptions, if any, are required to
verify each property?

The verification results are summarised in Table 6.3 on page 49.
The first notable observation concerns the verification of the probability of success.

Initially, the loop invariant was set to the supremum derived from the theoretical analysis,
as shown in Tables 5.1 and 5.2. This approach successfully verified the upper bound for
both programs, but the same expression could not be verified as a lower bound.

For the expected number of failed and sent transmissions, verification proved even more
challenging: the computed preexpectations could not be verified as either upper or lower
bounds. These difficulties are attributable not to modelling or human error, but to limita-
tions within Caesar itself. In each case, verification failed due to SMT-solver timeouts, not
counterexamples, suggesting that the solver struggled with the exponentials involved. The
additional presence of exponentials within fractions may have exacerbated the problem.
This could explain why verification success decreased with increasing complexity of the
expectations, though this remains speculative.

To circumvent these issues, alternative loop invariants were explored. For the upper
bound of the probability of success in BRP, a simpler invariant was found that allowed
successful verification. However, no such alternative was identified for sendPacket. For
the last two properties, only non-trivial superinvariants could be found, enabling the ver-
ification of non-trivial upper bounds. Unfortunately, no suitable non-trivial subinvariants
could be determined, leaving the lower bounds unverified.

Another unexpected issue emerged with function calls: versions of BRP containing calls
to sendPacket consistently failed to verify. Replacing placeholder variables with function
calls, even with properly adjusted preexpectations and invariants, resulted in timeouts.
The cause of this behaviour remains unclear.

55

7.6. A GUIDE TO CAESAR CHAPTER 7. DISCUSSION

Finally, verification outcomes appeared to depend on the grouping of procedures within
a file. The non-trivial upper bound for BRP’s probability of success and expected number
of failures failed to verify in isolation, resulting in a timeout, but successfully verified when
included alongside any procedure for sendPacket. Similarly, verifying only the non-trivial
upper bound of the expected number of sent packets took 0.39 seconds, whereas adding a
trivial lower bound procedure reduced the verification time to 0.11 seconds. The reason
for these variations remains unknown.

7.6 A Guide to Caesar

What are the advantages and shortcomings of Caesar’s verification capabili-
ties when applied to the Bounded Retransmission Protocol (BRP), and what
recommendations for its application can be derived from this case study?

7.6.1 Advantages

In my opinion, the primary advantage of Caesar lies in its potential to reduce human
error in the verification process. It facilitates rapid testing of theoretical preexpectations,
enabling users to explore their hypotheses through tool support rather than relying entirely
on manual computations. Ideally, Caesar would allow non-experts to carry out weakest
preexpectation-style verification. For simple programs without loops, I believe this is
already achievable. However, as long as inductive proofs require the manual formulation
of loop invariants, a certain level of expertise remains necessary.

I also see value in Caesar as a tool to support, rather than replace, theoretical verifi-
cation. For example, I used loop unrolling to check my fixed-point iteration calculations.
With more testing and case studies, I expect additional applications of Caesar to emerge.

7.6.2 Limitations

That said, several limitations became apparent during my work. Caesar struggles with ver-
ifying preexpectations involving exponentials, especially when they occur inside fractions,
which frequently leads to SMT-solver timeouts. Function calls in programs also posed
a challenge: replacing a verified procedure with a function call to the same code caused
verification to fail.

Even more puzzling was Caesar’s unpredictable behaviour depending on how procedures
are grouped. In some cases, verification failed when procedures were isolated, but succeeded
when unrelated ones were included in the same file. While I was able to work around this,
it undermines the reliability of results and complicates the workflow.

Finally, limitations from the theoretical approach carry over. The need for inductive
invariants is a substantial hurdle. Ideally, a verification tool like Caesar would relieve the
user of this burden, but at present, that is not the case. Ongoing research on probabilistic
invariant synthesis, such as the work by Batz et al. [29], may help address this challenge
in the future (see Section 9).

7.6.3 Recommendations

Based on my experience, I offer the following practical recommendations for working with
Caesar.

56

7.6. A GUIDE TO CAESAR CHAPTER 7. DISCUSSION

Rewrite programs to resemble geometric loops

Where possible, I recommend rewriting programs to resemble geometric loops, as was done
throughout this thesis. Even if this results in an abstraction of the original program, it often
simplifies reasoning about preexpectations and provides a solid foundation for inductive
verification.

Use placeholder variables for function calls

When abstracting programs, function calls may arise, which can complicate reasoning
about expected behaviour. I found it helpful to replace these calls with placeholder vari-
ables that represent their outcomes. This simplifies both the theoretical reasoning and the
Caesar specification. If necessary, these placeholders can later be substituted with concrete
expressions, assuming Caesar’s handling of function calls improves in the future.

Use loop-unrolling to check fixed-point iteration

If you’re stuck on a fixed-point iteration, it can be helpful to use Caesar to check your
work rather than repeatedly reworking the equations by hand. This can be done through
loop unrolling, as described in detail in Section 5.1.1.

Simplify guarded summations

When simplifying guarded summations, I found the following simplifications especially
helpful:

Definition 17 (Equations for the simplification of sums).
Let k, n ∈ N, and suppose x and a are expressions not involving i, while f(i) contains
i. Then:

∞∑
i=k

[i = x] · f(i) = f(x). (7.1)

∞∑
i=k

[i < x] · f(i) =
x−1∑
i=k

f(i) iff k ≤ x− 1. (7.2)

If k = 0, one of the following geometric sum formulas may apply:

n−1∑
i=0

i · ri = r − n · rn + (n− 1) · rn+1

(1− r)2
iff |r| < 1. (7.3)

n∑
i=0

a · ri =

{
a · (n+ 1) r = 1,

a · 1−rn+1

1−r |r| < 1.
(7.4)

n∑
i=0

(1− r) · a · ri = a · (1− rn+1) iff |r| ≤ 1. (7.5)

57

7.6. A GUIDE TO CAESAR CHAPTER 7. DISCUSSION

Verify PAST instead of AST using a modified ert-calculus

Although the verification of AST (Almost-Sure Termination) can simplify the overall ver-
ification process (see Figure 7.1), I recommend starting with the verification of PAST
(Positive Almost-Sure Termination), particularly using a modified ert-calculus, as was
done in this thesis. Since PAST implies AST and is significantly easier to prove with this
approach, it provides a more accessible entry point into the verification process.

Lower the timeout limit

Finally, during exploratory work, I found it helpful to lower the SMT-solver timeout from
the default to 20 seconds. This significantly reduced idle time and allowed me to test more
variants quickly: a small but effective improvement to the workflow.

58

CHAPTER 8

CONCLUSION

This thesis set out to evaluate the verification capabilities of Caesar by applying it to the
Bounded Retransmission Protocol (BRP). A stepwise verification strategy was adopted,
beginning with a theoretical analysis using the weakest preexpectation calculus, followed
by practical verification using Caesar. Throughout this process, several challenges were
encountered and addressed, offering insights into both the strengths and weaknesses of
Caesar and informing recommendations for its effective use.

A key contribution of this thesis is the abstraction and decomposition of BRP into
two geometric-like programs, which enabled more effective reasoning about the protocol’s
behaviour and facilitated the stepwise verification process. The theoretical verification of
key properties (positive almost-sure termination, success probability, and the expectation of
the number of failed and sent transmissions) was largely successful. These properties reflect
the central questions in probabilistic program analysis while systematically increasing the
complexity of verification.

Translating the results of the theoretical analysis into formal verification using Caesar
introduced new challenges. In contrast to the manual wp-calculus, Caesar requires explicit
application of proof rules and inductive reasoning, introducing a new layer of complexity.
Specifically, this highlighted the challenge of invariant discovery, a process that remains
largely manual and experimental. Although supremum expressions derived theoretically
often constitute valid invariants, these did not always yield successful verification in practice
due to limitations in Caesar’s current implementation, particularly regarding SMT-solver
performance and the handling of exponentials.

Despite these hurdles, the case study revealed several strengths of the tool. Loop
unrolling proved useful for validating manually computed fixed-point iterations, and Caesar
allowed for rapid testing through trial and error. With certain workarounds, meaningful
properties of BRP were successfully verified. Still, the study identified several areas in need
of improvement, including support for recursive axiom definitions, improving handling of
function calls, and the unexplained impact of procedure groupings on verification outcomes.

In conclusion, Caesar demonstrated considerable potential as a tool for the verification
of probabilistic protocols such as BRP. To fully realise this potential, however, several
technical and usability issues must be addressed. The recommendations and observations
presented throughout this thesis, including proposed flowcharts and verification templates,
aim to support future users in navigating Caesar-based verification more effectively. Con-
tinued development of Caesar will be essential in broadening its capabilities, and directions
for future work are outlined in Chapter 9.

59

CHAPTER 9

FUTURE WORK

The future work stemming from this study includes addressing existing issues in Caesar,
exploring potential improvements to the tool, and conducting further evaluation through
additional case studies.

9.1 Address Existing Issues

Several limitations identified in Section 7.6 this study point to important directions for
future work. Specifically, three unresolved issues merit attention: the SMT-solver getting
stuck when handling recursive axioms, the use of function calls resulting in failed veri-
fication, and the unexplained influence of procedure groupings on verification outcomes.
While the first issue is currently being explored in a parallel study, the latter two prob-
lems remain unaddressed. These fundamental problems should be resolved before pursuing
other suggestions outlined in this chapter.

Addressing these issues will likely require further investigation and testing to isolate and
understand their causes. Given my limited insight into Caesar’s internal implementation,
the solution to these issues remains unclear.

9.2 Tool Improvements

Once the aforementioned issues have been resolved, several improvements may be made to
enhance Caesar’s usability. These suggestions aim to support both new and experienced
users.

First, the Caesar documentation would benefit from the addition of structured HeyVL
examples. The inclusion of such examples would support users in encoding common pat-
terns and applying verification strategies, eliminating the need to construct these from
scratch each time. This would be especially valuable for those unfamiliar with Caesar and
HeyVL.

Second, Caesar’s error messaging could be improved. In early use of the tool, it was
often difficult to distinguish between errors caused by invariants and those due to mistakes
in the preexpectation. A clearer classification of error messages, perhaps accompanied by
documentation or examples, would make debugging much easier.

A further, more ambitious improvement would be the automation of inductive invari-
ant generation. Tools such as cegispro2 [29] suggest that this may be possible. If Caesar
could automatically synthesise inductive invariants, the tool would become far more acces-
sible to users without expertise in weakest preexpectation-style verification. While likely

60

9.3. FURTHER EVALUATION CHAPTER 9. FUTURE WORK

challenging to implement, this represents an exciting long-term goal, though it is not an
immediate priority.

9.3 Further Evaluation

In addition to addressing existing issues and improving usability, further empirical evalu-
ation of Caesar constitutes an important avenue of future work. Once support for limited
function has been fully implemented, the present study may be revisited, particularly to
make use of the recursive definition of exponentials given in Section 6.2.1, which was not
usable in the present research.

Moreover, it may be valuable to verify increasingly complex and realistic models of
the Bounded Retransmission Protocol. This would test Caesar’s practical capabilities and
may also allow for the application of advanced proof rules not used in this study, such as
ω-Invariants, Almost-Sure Termination, and the Optional Stopping Theorem.

Finally, further case studies could be explored to test Caesar’s applicability across a
broader range of probabilistic programs. However, given the substantial scope of identified
future work, I consider this a lower priority at present.

61

BIBLIOGRAPHY

[1] O. Abril-Pla et al. “PyMC: a modern, and comprehensive probabilistic programming
framework in Python”. In: PeerJ Computer Science 9 (Sept. 2023), e1516. issn: 2376-
5992. doi: 10.7717/peerj-cs.1516. url: https://peerj.com/articles/cs-1516.

[2] E. Bingham et al. “webppl-oed: A practical optimal experiment design system”. In:
escholarship.org 20 (2019), pp. 1–6. url: https://escholarship.org/uc/item/
1tq428hv.

[3] B. Carpenter et al. “Stan: A Probabilistic Programming Language”. In: Journal of
Statistical Software 76.1 (Jan. 2017), pp. 1–32. issn: 1548-7660. doi: 10.18637/jss.
v076.i01. url: http://www.jstatsoft.org/v76/i01/.

[4] A. D. Gordon et al. “Probabilistic programming”. In: Future of Software Engineering
Proceedings. New York, NY, USA: ACM, May 2014, pp. 167–181. isbn: 9781450328654.
doi: 10.1145/2593882.2593900. url: https://dl.acm.org/doi/10.1145/
2593882.2593900.

[5] N. Arora, S. Russell, and E. Sudderth. “NET-VISA: Network Processing Vertically
Integrated Seismic Analysis”. In: Bulletin of the Seismological Society of America
103.2A (Apr. 2013), pp. 709–729. issn: 0037-1106. doi: 10.1785/0120120107.

[6] D. J. Fremont et al. “Scenic: a language for scenario specification and scene genera-
tion”. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. New York, NY, USA: ACM, June 2019, pp. 63–
78. isbn: 9781450367127. doi: 10.1145/3314221.3314633. url: https://dl.acm.
org/doi/10.1145/3314221.3314633.

[7] A. McIver and C. Morgen. Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. New York: Springer-Verlag, 2005. isbn:
0-387-40115-6. doi: 10.1007/b138392. url: http://link.springer.com/10.1007/
b138392.

[8] V. D’Silva, D. Kroening, and G. Weissenbacher. “A Survey of Automated Techniques
for Formal Software Verification”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 27.7 (July 2008), pp. 1165–1178. issn: 0278-0070.
doi: 10.1109/TCAD.2008.923410. url: http://ieeexplore.ieee.org/document/
4544862/.

[9] P. Beynon-Davies. “Information systems ‘failure’: the case of the London Ambulance
Service’s Computer Aided Despatch project”. In: European Journal of Information
Systems 4.3 (Aug. 1995), pp. 171–184. issn: 0960-085X. doi: 10.1057/ejis.1995.
20. url: https://www.tandfonline.com/doi/full/10.1057/ejis.1995.20.

[10] A. Y. Xu et al. “Failure modes and effects analysis (FMEA) for Gamma Knife
radiosurgery”. In: Journal of Applied Clinical Medical Physics 18.6 (Nov. 2017),
pp. 152–168. issn: 1526-9914. doi: 10.1002/acm2.12205. url: https://aapm.
onlinelibrary.wiley.com/doi/10.1002/acm2.12205.

62

https://doi.org/10.7717/peerj-cs.1516
https://peerj.com/articles/cs-1516
https://escholarship.org/uc/item/1tq428hv
https://escholarship.org/uc/item/1tq428hv
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
http://www.jstatsoft.org/v76/i01/
https://doi.org/10.1145/2593882.2593900
https://dl.acm.org/doi/10.1145/2593882.2593900
https://dl.acm.org/doi/10.1145/2593882.2593900
https://doi.org/10.1785/0120120107
https://doi.org/10.1145/3314221.3314633
https://dl.acm.org/doi/10.1145/3314221.3314633
https://dl.acm.org/doi/10.1145/3314221.3314633
https://doi.org/10.1007/b138392
http://link.springer.com/10.1007/b138392
http://link.springer.com/10.1007/b138392
https://doi.org/10.1109/TCAD.2008.923410
http://ieeexplore.ieee.org/document/4544862/
http://ieeexplore.ieee.org/document/4544862/
https://doi.org/10.1057/ejis.1995.20
https://doi.org/10.1057/ejis.1995.20
https://www.tandfonline.com/doi/full/10.1057/ejis.1995.20
https://doi.org/10.1002/acm2.12205
https://aapm.onlinelibrary.wiley.com/doi/10.1002/acm2.12205
https://aapm.onlinelibrary.wiley.com/doi/10.1002/acm2.12205

BIBLIOGRAPHY BIBLIOGRAPHY

[11] E. W. Dijkstra. “The humble programmer”. In: Communications of the ACM 15.10
(Oct. 1972), pp. 859–866. issn: 0001-0782. doi: 10.1145/355604.361591. url:
https://dl.acm.org/doi/10.1145/355604.361591.

[12] B. L. Kaminski. “Advanced Weakest Precondition Calculi for Probabilistic Pro-
grams”. PhD thesis. RWTH Aachen University, Feb. 2019. doi: 10.18154/RWTH-
2019- 01829. url: https://publications.rwth- aachen.de/record/755408/
files/755408.pdf.

[13] E. W. Dijkstra. “Guarded commands, nondeterminacy and formal derivation of pro-
grams”. In: Communications of the ACM 18.8 (Aug. 1975), pp. 453–457. issn: 0001-
0782. doi: 10.1145/360933.360975. url: https://dl.acm.org/doi/10.1145/
360933.360975.

[14] L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. “Proof-checking a data link pro-
tocol”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 806 LNCS. Springer,
Berlin, Heidelberg, 1994, pp. 127–165. doi: 10.1007/3- 540- 58085- 9_75. url:
http://link.springer.com/10.1007/3-540-58085-9_75.

[15] P. Schröer et al. “A Deductive Verification Infrastructure for Probabilistic Programs”.
In: Proceedings of the ACM on Programming Languages 7.OOPSLA2 (Oct. 2023),
pp. 2052–2082. issn: 2475-1421. doi: 10.1145/3622870. url: https://dl.acm.
org/doi/10.1145/3622870.

[16] P. R. D’Argenio et al. “Reachability Analysis of Probabilistic Systems by Succes-
sive Refinements”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 2165.
Springer, Berlin, Heidelberg, 2001, pp. 39–56. doi: 10.1007/3-540-44804-7_3.
url: http://link.springer.com/10.1007/3-540-44804-7_3.

[17] B. L. Kaminski, J.-P. Katoen, and C. Matheja. “On the hardness of analyzing prob-
abilistic programs”. In: Acta Informatica 56.3 (Apr. 2019), pp. 255–285. issn: 0001-
5903. doi: 10.1007/s00236-018-0321-1. url: http://link.springer.com/10.
1007/s00236-018-0321-1.

[18] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall series in automatic com-
putation. Prentice-Hall, 1976. isbn: 9780132158718.

[19] S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum. Handbook of Logic in Com-
puter Science: Volume 3: Semantic Structures. Clarendon Press, 1995, p. 512. isbn:
9780198537625.

[20] J.-L. Lassez, V. Nguyen, and E. Sonenberg. “Fixed point theorems and semantics:
a folk tale”. In: Information Processing Letters 14.3 (May 1982), pp. 112–116. issn:
00200190. doi: 10.1016/0020- 0190(82)90065- 5. url: https://linkinghub.
elsevier.com/retrieve/pii/0020019082900655.

[21] R. W. Floyd. “Assigning Meanings to Programs”. In: Mathematical Aspects of Com-
puter Science. Springer, Dordrecht, 1993, pp. 65–81. doi: 10.1007/978-94-011-
1793-7_4. url: http://link.springer.com/10.1007/978-94-011-1793-7_4.

[22] C. A. R. Hoare. “An axiomatic basis for computer programming”. In: Communica-
tions of the ACM 12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782. doi: 10.1145/
363235.363259. url: https://dl.acm.org/doi/10.1145/363235.363259.

[23] D. Park. “Fixpoint Induction and Proofs of Program Properties”. In: Machine Intel-
ligence 5 (1969). url: https://cir.nii.ac.jp/crid/1573950399497019904.

63

https://doi.org/10.1145/355604.361591
https://dl.acm.org/doi/10.1145/355604.361591
https://doi.org/10.18154/RWTH-2019-01829
https://doi.org/10.18154/RWTH-2019-01829
https://publications.rwth-aachen.de/record/755408/files/755408.pdf
https://publications.rwth-aachen.de/record/755408/files/755408.pdf
https://doi.org/10.1145/360933.360975
https://dl.acm.org/doi/10.1145/360933.360975
https://dl.acm.org/doi/10.1145/360933.360975
https://doi.org/10.1007/3-540-58085-9_75
http://link.springer.com/10.1007/3-540-58085-9_75
https://doi.org/10.1145/3622870
https://dl.acm.org/doi/10.1145/3622870
https://dl.acm.org/doi/10.1145/3622870
https://doi.org/10.1007/3-540-44804-7_3
http://link.springer.com/10.1007/3-540-44804-7_3
https://doi.org/10.1007/s00236-018-0321-1
http://link.springer.com/10.1007/s00236-018-0321-1
http://link.springer.com/10.1007/s00236-018-0321-1
https://doi.org/10.1016/0020-0190(82)90065-5
https://linkinghub.elsevier.com/retrieve/pii/0020019082900655
https://linkinghub.elsevier.com/retrieve/pii/0020019082900655
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
http://link.springer.com/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://dl.acm.org/doi/10.1145/363235.363259
https://cir.nii.ac.jp/crid/1573950399497019904

BIBLIOGRAPHY BIBLIOGRAPHY

[24] B. L. Kaminski et al. “Weakest Precondition Reasoning for Expected Run–Times
of Probabilistic Programs”. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 9632. Springer Verlag, 2016, pp. 364–389. doi: 10.1007/978-3-662-49498-
1_15. url: http://link.springer.com/10.1007/978-3-662-49498-1_15.

[25] K. Batz et al. “J-P: MDP. FP. PP”. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). Vol. 15260 LNCS. Springer Science and Business Media Deutschland
GmbH, 2025, pp. 255–302. doi: 10.1007/978-3-031-75783-9_11. url: https:
//link.springer.com/10.1007/978-3-031-75783-9_11.

[26] Docs | Caesar. url: https://www.caesarverifier.org/docs (visited on 02/19/2025).

[27] P. R. D’Argenio et al. “The bounded retransmission protocol must be on time!” In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 1217. Springer, Berlin, Heidel-
berg, 1997, pp. 416–431. doi: 10.1007/BFb0035403. url: http://link.springer.
com/10.1007/BFb0035403.

[28] J. Spel. Monotonicity in Markov chains. May 2018. url: http://essay.utwente.
nl/74981/.

[29] K. Batz et al. “Probabilistic Program Verification via Inductive Synthesis of Inductive
Invariants”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 13994 LNCS.
Springer Science and Business Media Deutschland GmbH, 2023, pp. 410–429. doi:
10.1007/978-3-031-30820-8_25. url: https://link.springer.com/10.1007/
978-3-031-30820-8_25.

[30] C. Paulin-Mohring. “Introduction to the Coq Proof-Assistant for Practical Soft-
ware Verification”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7682
LNCS. Springer, Berlin, Heidelberg, 2012, pp. 45–95. doi: 10.1007/978-3-642-
35746-6_3. url: http://link.springer.com/10.1007/978-3-642-35746-6_3.

[31] G. Holzmann. Design and validation of computer protocols.(1991). Prentice-Hall,
1991. isbn: 0-13-539834-7.

[32] J. Bengtsson et al. “UPPAAL — a tool suite for automatic verification of real-time
systems”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 1066. Springer,
Berlin, Heidelberg, 1996, pp. 232–243. doi: 10.1007/BFb0020949. url: http://
link.springer.com/10.1007/BFb0020949.

[33] D’Argenio et al. PRISM - Case Studies - Bounded Retransmission Protocol. url:
https://www.prismmodelchecker.org/casestudies/brp.php (visited on 10/25/2024).

[34] K. Batz et al. “Latticed k-Induction with an Application to Probabilistic Programs”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Ed. by A. Silva and K. R. M.
Leino. Vol. 12760. Lecture Notes in Computer Science. Cham: Springer International
Publishing, May 2021, pp. 524–549. doi: 10.1007/978-3-030-81688-9_25. url:
https://link.springer.com/10.1007/978-3-030-81688-9_25.

64

https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
http://link.springer.com/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-031-75783-9_11
https://link.springer.com/10.1007/978-3-031-75783-9_11
https://link.springer.com/10.1007/978-3-031-75783-9_11
https://www.caesarverifier.org/docs
https://doi.org/10.1007/BFb0035403
http://link.springer.com/10.1007/BFb0035403
http://link.springer.com/10.1007/BFb0035403
http://essay.utwente.nl/74981/
http://essay.utwente.nl/74981/
https://doi.org/10.1007/978-3-031-30820-8_25
https://link.springer.com/10.1007/978-3-031-30820-8_25
https://link.springer.com/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1007/978-3-642-35746-6_3
http://link.springer.com/10.1007/978-3-642-35746-6_3
https://doi.org/10.1007/BFb0020949
http://link.springer.com/10.1007/BFb0020949
http://link.springer.com/10.1007/BFb0020949
https://www.prismmodelchecker.org/casestudies/brp.php
https://doi.org/10.1007/978-3-030-81688-9_25
https://link.springer.com/10.1007/978-3-030-81688-9_25

BIBLIOGRAPHY BIBLIOGRAPHY

[35] F. van Jaarsveld. Code Accompanying Master’s Thesis on Practical Probabilistic Pro-
gram Verification using Caesar. doi: 10 . 5281 / zenodo . 15408742. url: https :
//zenodo.org/records/15408743.

[36] D. Bertsekas and J. Tsitsiklis. Introduction to probability. Athena Scientific, 2008.
isbn: 978-1-886529-23-6. url: http://athenasc.com/probbook.html.

[37] N. Amin, K. R. M. Leino, and T. Rompf. “Computing with an SMT Solver”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 8570 LNCS. Springer, Cham,
2014, pp. 20–35. doi: 10.1007/978- 3- 319- 09099- 3_2. url: http://link.
springer.com/10.1007/978-3-319-09099-3_2.

65

https://doi.org/10.5281/zenodo.15408742
https://zenodo.org/records/15408743
https://zenodo.org/records/15408743
http://athenasc.com/probbook.html
https://doi.org/10.1007/978-3-319-09099-3_2
http://link.springer.com/10.1007/978-3-319-09099-3_2
http://link.springer.com/10.1007/978-3-319-09099-3_2

APPENDIX A

FIXED-POINT ITERATION

This appendix presents the fixed-point iteration equations corresponding to the loop-
characteristic functions in Chapter 5. For better readability, the notation Φn(0) is simpli-
fied to Φn.

A.1 Initial Attempt

This section shows the fixed-point iteration for the while-loop of wp[[P]](1), where P denotes
the initial pGCL model of BRP as shown in Listing 5.1 on page 30. The corresponding
verification attempt is discussed in detail in Section 5.1.

Loop-characteristic function

Φ(X) = [sent < N ∧ failed < MAX] · wp[[body]](X) + [sent ≥ N ∨ failed ≥ MAX]

wp[[body]](X) = p2 ·X[sent := sent + 1; failed := 0] + (1 + p) · (1− p) ·X[failed := 0]

Fixed-point iteration

Φ1 = [sent ≥ N ∨ failed ≥ MAX]

Φ2 = p2 · [sent + 1 = N ∧ failed < MAX]

+ (1 + p) · (1− p) · [sent < N ∧ failed + 1 = MAX]

+ [sent ≥ N ∨ failed ≥ MAX]

Φ3 = p4 · [sent + 2 = N ∧ failed < MAX]

+ p2 · [sent + 1 = N ∧ failed < MAX]

+ p2 · (1 + p) · (1− p) · [sent + 1 < N ∧ failed < MAX ∧MAX = 1]

+ p2 · (1 + p) · (1− p) · [sent + 1 = N ∧ failed + 1 < MAX]

+ (1 + p) · (1− p) · [sent < N ∧ failed + 1 = MAX]

+ (1 + p)2 · (1− p)2 · [sent < N ∧ failed + 2 = MAX]

+ [sent ≥ N ∨ failed ≥ MAX]

66

A.1. INITIAL ATTEMPT APPENDIX A. FIXED-POINT ITERATION

Φ4 = p6 · [sent + 3 = N ∧ failed < MAX]

+ p4 · [sent + 2 = N ∧ failed < MAX]

+ p2 · [sent + 1 = N ∧ failed < MAX]

+ p4 · (1 + p) · (1− p) · [sent + 2 < N ∧ failed < MAX ∧MAX = 1]

+ p2 · (1 + p) · (1− p) · [sent + 1 < N ∧ failed < MAX ∧MAX = 1]

+ p2 · (1 + p)2 · (1− p)2 · [sent + 1 < N ∧ failed < MAX ∧MAX = 2]

+ p4 · (1 + p) · (1− p) · [sent + 2 = N ∧ failed + 1 < MAX]

+ p2 · (1 + p) · (1− p) · [sent + 1 = N ∧ failed + 1 < MAX]

+ p2 · (1 + p)2 · (1− p)2 · [sent + 1 = N ∧ failed + 2 < MAX]

+ p4 · (1 + p) · (1− p) · [sent + 2 = N ∧ failed < MAX ∧MAX > 1]

+ (1 + p) · (1− p) · [sent < N ∧ failed + 1 = MAX]

+ (1 + p)2 · (1− p)2 · [sent < N ∧ failed + 2 = MAX]

+ (1 + p)3 · (1− p)3 · [sent < N ∧ failed + 3 = MAX]

+ [sent ≥ N ∨ failed ≥ MAX]

Φ5 = p8 · [sent + 4 = N ∧ failed < MAX]

+ p6 · [sent + 3 = N ∧ failed < MAX]

+ p4 · [sent + 2 = N ∧ failed < MAX]

+ p2 · [sent + 1 = N ∧ failed < MAX]

+ p6 · (1 + p) · (1− p) · [sent + 3 < N ∧ failed < MAX ∧MAX = 1]

+ p4 · (1 + p) · (1− p) · [sent + 2 < N ∧ failed < MAX ∧MAX = 1]

+ p2 · (1 + p) · (1− p) · [sent + 1 < N ∧ failed < MAX ∧MAX = 1]

+ p2 · (1 + p)3 · (1− p)3 · [sent + 1 < N ∧ failed < MAX ∧MAX = 3]

+ p4 · (1 + p)2 · (1− p)2 · [sent + 2 < N ∧ failed < MAX ∧MAX = 2]

+ p2 · (1 + p)2 · (1− p)2 · [sent + 1 < N ∧ failed < MAX ∧MAX = 2]

+ p4 · (1 + p)2 · (1− p)2 · [sent + 2 < N ∧ failed + 1 < MAX ∧MAX = 1]

+ p2 · (1 + p)2 · (1− p)2 · [sent + 1 < N ∧ failed + 1 < MAX ∧MAX = 1]

+ p2 · (1 + p)3 · (1− p)3 · [sent + 1 < N ∧ failed + 1 < MAX ∧MAX = 2]

+ p6 · (1 + p) · (1− p) · [sent + 3 = N ∧ failed + 1 < MAX]

+ p4 · (1 + p) · (1− p) · [sent + 2 = N ∧ failed + 1 < MAX]

+ p4 · (1 + p)2 · (1− p)2 · [sent + 2 = N ∧ failed + 2 < MAX]

+ p2 · (1 + p) · (1− p) · [sent + 1 = N ∧ failed + 1 < MAX]

+ p2 · (1 + p)2 · (1− p)2 · [sent + 1 = N ∧ failed + 2 < MAX]

+ p2 · (1 + p)2 · (1− p)2 · [sent + 1 = N ∧ failed + 3 < MAX]

+ p6 · (1 + p) · (1− p) · [sent + 3 = N ∧ failed < MAX ∧MAX > 1]

+ p6 · (1 + p) · (1− p) · [sent + 3 = N ∧ failed < MAX ∧MAX > 1]

+ p4 · (1 + p) · (1− p) · [sent + 2 = N ∧ failed < MAX ∧MAX > 1]

+ p4 · (1 + p)2 · (1− p)2 · [sent + 2 = N ∧ failed < MAX ∧MAX > 2]

. . . (continues on next page)

67

A.2. SENDPACKET APPENDIX A. FIXED-POINT ITERATION

. . . (continued from previous page)

+ p4 · (1 + p)2 · (1− p)2 · [sent + 2 = N ∧ failed + 1 < MAX ∧MAX > 1]

+ (1 + p) · (1− p) · [sent < N ∧ failed + 1 = MAX]

+ (1 + p)2 · (1− p)2 · [sent < N ∧ failed + 2 = MAX]

+ (1 + p)3 · (1− p)3 · [sent < N ∧ failed + 3 = MAX]

+ (1 + p)4 · (1− p)4 · [sent < N ∧ failed + 4 = MAX]

+ [sent ≥ N ∨ failed ≥ MAX]

A.2 SendPacket

This section presents the fixed-point iteration for the while-loop of wp[[sendPacket]](g),
where g is the postexpectation, which differs between subsections. The pGCL program
sendPacket is provided in Listing 4.1 on page 23. For each of the following subsections,
the loop-characteristic function is the following:

Φg,sp(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X)

+ [failed ≥ MAX ∨ success] · g
wp[[bodysp]](X) = p ·X[success := true] + (1− p) ·X[failed := failed + 1]

Throughout this section, the notation Φg,sp is abbreviated to Φ to improve readability.

A.2.1 Probability of Success

This subsection considers the fixed-point iteration for wp[[sendPacket]]([success]). The
corresponding verification procedure is discussed in detail in Section 5.2.2. For this post-
expectation, the loop-characteristic function simplifies as follows:

Φ(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X) + [success]

Fixed-point iteration

Φ1 = [success]

Φ2 = p · [failed < MAX ∧ ¬success] + [success]
+ p · (1− p) · [failed + 1 < MAX ∧ ¬success]
+ [success]

Φ4 = p · [failed < MAX ∧ ¬success]
+ p · (1− p) · [failed + 1 < MAX ∧ ¬success]

+ p · (1− p)2 · [failed + 2 < MAX ∧ ¬success]
+ [success]

Based on these equations, the expression for Φn is formulated as:

Φn = [failed < MAX ∧ ¬success] ·
n−2∑
i=0

p · (1− p)i · [failed + i < MAX] + [success]

68

A.2. SENDPACKET APPENDIX A. FIXED-POINT ITERATION

A.2.2 Expected Failed Transmissions

This subsection considers the fixed-point iteration for wp[[sendPacket]](failed). The cor-
responding verification procedure is discussed in detail in Section 5.2.3. For this postex-
pectation, the loop-characteristic function simplifies as follows:

Φ(X) = [failed < MAX∧¬success] ·wp[[bodysp]](X)+ [failed ≥ MAX∨ success] · failed

Fixed-point iteration

Φ1 = [failed ≥ MAX ∨ success] · failed

Φ2 = [failed < MAX ∧ ¬success] · p · failed
+ [failed < MAX ∧ failed + 1 ≥ MAX ∧ ¬success] · (1− p) · (failed + 1)

+ [failed ≥ MAX ∨ success] · failed

Φ3 = [failed < MAX ∧ ¬success] · p · failed
+ [failed < MAX ∧ failed + 1 ≥ MAX ∧ ¬success] · (1− p) · (failed + 1)

+ [failed + 1 < MAX ∧ ¬success] · p · (1− p) · (failed + 1)

+ [failed + 1 < MAX ∧ failed + 2 ≥ MAX ∧ ¬success] · (1− p)2 · (failed + 2)

+ [failed ≥ MAX ∨ success] · failed

Φ4 = [failed < MAX ∧ ¬success] · p · failed
+ [failed < MAX ∧ failed + 1 ≥ MAX ∧ ¬success] · (1− p) · (failed + 1)

+ [failed + 1 < MAX ∧ ¬success] · p · (1− p) · (failed + 1)

+ [failed + 1 < MAX ∧ failed + 2 ≥ MAX ∧ ¬success] · (1− p)2 · (failed + 2)

+ [failed + 2 < MAX ∧ ¬success] · p · (1− p)2 · (failed + 2)

+ [failed + 2 < MAX ∧ failed + 3 ≥ MAX ∧ ¬success] · (1− p)3 · (failed + 3)

+ [failed ≥ MAX ∨ success] · failed

Based on the above equations, the expression for Φn is formulated as:

Φn = [failed < MAX ∧ ¬success] ·

(
n−2∑
i=0

[failed + i < MAX] · p · (1− p)i · (failed + i)

+

n−2∑
i=0

[failed + i+ 1 = MAX] · (1− p)i+1 · (failed + i+ 1)

)
+ [failed ≥ MAX ∨ success] · failed

69

A.3. BRP APPENDIX A. FIXED-POINT ITERATION

A.3 BRP

This section provides the fixed-point iteration for the while-loop of wp[[BRP]](g), where g
denotes the postexpectation, which differs between subsections. The pGCL program BRP is
given in Listing 4.2 on page 24. For each of the following subsections, the loop-characteristic
function is the following:

Φg,brp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · g
wp[[bodybrp]](X) = s ·X[sent := sent + 1; totalFailed := totalFailed + f ; success := true]

+ (1− s) ·X[totalFailed := totalFailed + f ; success := false]

Throughout this section, the notation Φg,brp is abbreviated to Φ to improve readability.

A.3.1 Probability of Success

This subsection considers the fixed-point iteration for wp[[BRP]]([success]). The corre-
sponding verification procedure is discussed in detail in Section 5.3.2. For this postexpec-
tation, the loop-characteristic function simplifies as follows:

Φ(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∧ success]

Fixed-point iteration

Φ1 = [sent ≥ N ∧ success]

Φ2 = s · [sent < N ∧ sent + 1 ≥ N ∧ success] + [sent ≥ N ∧ success]

Φ3 = s2 · [sent + 1 < N ∧ sent + 2 ≥ N ∧ success]
+ s · [sent < N ∧ sent + 1 ≥ N ∧ success]
+ [sent ≥ N ∧ success]

Φ4 = s3 · [sent + 2 < N ∧ sent + 3 ≥ N ∧ success]

+ s2 · [sent + 1 < N ∧ sent + 2 ≥ N ∧ success]
+ s · [sent < N ∧ sent + 1 ≥ N ∧ success]
+ [sent ≥ N ∧ success]

Based on these equations, the expression for Φn is formulated and simplified as:

Φn =

n−1∑
i=0

si · [sent + i− 1 < N ∧ success ∧ sent + i ≥ N] + [sent ≥ N ∧ success]

= [sent < N ∧ success] ·
n−1∑
i=0

si · [sent + i− 1 < N ∧ sent + i ≥ N] + [sent ≥ N ∧ success]

= [sent < N ∧ success] ·
n−1∑
i=0

si · [sent + i = N] + [sent ≥ N ∧ success]

70

A.3. BRP APPENDIX A. FIXED-POINT ITERATION

A.3.2 Expected Failed Transmissions

This subsection considers the fixed-point iteration for wp[[BRP]](totalFailed). The corre-
sponding verification procedure is discussed in detail in Section 5.3.3. For this postexpec-
tation, the loop-characteristic function simplifies as follows:

Φ(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · totalFailed

Fixed-point iteration

Φ1 = [sent ≥ N ∨ ¬success] · totalFailed

Φ2 = [success ∧ sent < N ∧ sent + 1 ≥ N] · s · (totalFailed + f)

+ [success ∧ sent < N] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed

Φ3 = [success ∧ sent + 1 < N ∧ sent + 2 ≥ N] · s2 · (totalFailed + 2 · f)
+ [success ∧ sent + 1 < N] · s · (1− s) · (totalFailed + 2 · f)
+ [success ∧ sent < N ∧ sent + 1 ≥ N] · s · (totalFailed + f)

+ [success ∧ sent < N] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed

Φ4 = [success ∧ sent + 2 < N ∧ sent + 3 ≥ N] · s3 · (totalFailed + 3 · f)
+ [success ∧ sent + 2 < N] · s2 · (1− s) · (totalFailed + 3 · f)
+ [success ∧ sent + 1 < N ∧ sent + 2 ≥ N] · s2 · (totalFailed + 2 · f)
+ [success ∧ sent + 1 < N] · s · (1− s) · (totalFailed + 2 · f)
+ [success ∧ sent < N ∧ sent + 1 ≥ N] · s · (totalFailed + f)

+ [success ∧ sent < N] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed

71

A.3. BRP APPENDIX A. FIXED-POINT ITERATION

Based on these equations, the expression for Φn is formulated and simplified as follows.
The changes made in each simplification step are colour-coded for easy reference.

Φn = [success] ·

(
n−2∑
i=0

[sent + i < N] · si · (1− s) · (totalFailed + (i+ 1) · f)

+
n−2∑
i=0

[sent + i < N ∧ sent + i+ 1 ≥ N] · si+1 · (totalFailed + (i+ 1) · f)

)
+ [¬success ∨ sent ≥ N] · totalFailed

= [success ∧ sent < N] ·

(
n−2∑
i=0

[sent + i < N] · si · (1− s) · (totalFailed + (i+ 1) · f)

+

n−2∑
i=0

[sent + i < N ∧ sent + i+ 1 ≥ N] · si+1 · (totalFailed + (i+ 1) · f)

)
+ [¬success ∨ sent ≥ N] · totalFailed

= [success ∧ sent < N] ·

(
n−2∑
i=0

[sent + i < N] · si · (1− s) · (totalFailed + (i+ 1) · f)

+
n−2∑
i=0

[sent + i+ 1 = N] · si+1 · (totalFailed + (i+ 1) · f)

)
+ [¬success ∨ sent ≥ N] · totalFailed

A.3.3 Expected Sent Packets

This subsection considers the fixed-point iteration for wp[[BRP]](sent). The corresponding
verification procedure is discussed in detail in Section 5.3.4. For this postexpectation, the
loop-characteristic function simplifies as follows:

Φ(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · sent

Fixed-point iteration

Φ1 = [sent ≥ N ∨ ¬success] · sent

Φ2 = [success ∧ sent < N ∧ sent + 1 ≥ N] · s · (sent + 1)

+ [success ∧ sent < N] · (1− s) · sent
+ [sent ≥ N ∨ ¬success] · sent

Φ3 = [success ∧ sent + 1 < N ∧ sent + 2 ≥ N] · s2 · (sent + 2)

+ [success ∧ sent + 1 < N] · s · (1− s) · (sent + 1)

+ [success ∧ sent < N ∧ sent + 1 ≥ N] · s · (sent + 1)

+ [success ∧ sent < N] · (1− s) · sent
+ [sent ≥ N ∨ ¬success] · sent

72

A.3. BRP APPENDIX A. FIXED-POINT ITERATION

Φ4 = [success ∧ sent + 2 < N ∧ sent + 3 ≥ N] · s3 · (sent + 3)

+ [success ∧ sent + 2 < N] · s2 · (1− s) · (sent + 2)

+ [success ∧ sent + 1 < N ∧ sent + 2 ≥ N] · s2 · (sent + 2)

+ [success ∧ sent + 1 < N] · s · (1− s) · (sent + 1)

+ [success ∧ sent < N ∧ sent + 1 ≥ N] · s · (sent + 1)

+ [success ∧ sent < N] · (1− s) · sent
+ [sent ≥ N ∨ ¬success] · sent

Based on these equations, the expression for Φn is derived and subsequently simplified in a
step-by-step manner. For clarity, each simplification step is colour-coded to highlight the
modifications.

Φn = [success] ·
(n−2∑

i=0

[sent + i < N] · si · (1− s) · (sent + i)

+
n−2∑
i=0

[sent + i < N ∧ sent + i+ 1 ≥ N] · si+1 · (sent + i+ 1)
)

+ [¬success ∨ sent ≥ N] · sent

= [success ∧ sent < N] ·
(n−2∑

i=0

[sent + i < N] · si · (1− s) · (sent + i)

+
n−2∑
i=0

[sent + i < N ∧ sent + i+ 1 ≥ N] · si+1 · (sent + i+ 1)
)

+ [¬success ∨ sent ≥ N] · sent

= [success ∧ sent < N] ·
(n−2∑

i=0

[sent + i < N] · si · (1− s) · (sent + i)

+

n−2∑
i=0

[sent + i+ 1 = N] · si+1 · (sent + i+ 1)
)

+ [¬success ∨ sent ≥ N] · sent

73

APPENDIX B

SUPREMUM SIMPLIFICATION

This chapter presents the step-by-step simplification of supremum expressions arising from
the while-loops in the following weakest preexpectation computations: wp[[sendPacket]](failed),
wp[[BRP]](totalFailed), and wp[[BRP]](sent). Each step is accompanied by a brief explana-
tion. Whenever expressions are particularly long or changes are not immediately clear, the
relevant parts are highlighted for clarity.

Throughout this chapter, the geometric sum Equation 5.2 is applied repeatedly and is
therefore included below for reference:

n∑
k=0

(1− r) · b · rk = b · (1− rn+1) (B.1)

Its equivalence to the well-known geometric sum function (Equation 7.4) is established on
page 35. A second geometric sum, also used in the following sections, is given below:

n−1∑
i=0

i · ri = r − n · rn + (n− 1) · rn+1

(1− r)2
if |r| < 1 (B.2)

B.1 SendPacket Failed

This section provides the detailed simplification of the supremum of the while-loop of
wp[[sendPacket]](failed), which is omitted in Section 5.2.3.

supn∈NΦ
n

= [failed < MAX ∧ ¬success] ·

(∞∑
i=0

[failed + i < MAX] · p · (1− p)i · (failed + i)

+

∞∑
i=0

[failed + i+ 1 = MAX] · (1− p)i+1 · (failed + i+ 1)

)
+ [failed ≥ MAX ∨ success] · failed

= [failed < MAX ∧ ¬success] ·
∞∑
i=0

[failed + i < MAX] · p · (1− p)i · (failed + i)︸ ︷︷ ︸
S1

+ [failed < MAX ∧ ¬success] ·
∞∑
i=0

[failed + i+ 1 = MAX] · (1− p)i+1 · (failed + i+ 1)︸ ︷︷ ︸
S2

+ [failed ≥ MAX ∨ success] · failed

74

B.1. SENDPACKET FAILED APPENDIX B. SUPREMUM SIMPLIFICATION

Due to the complexity of the expression, the supremum is divided into two parts,
denoted S1 and S2, which are simplified independently before being substituted back into
the main equation.

S1 = [failed < MAX ∧ ¬success] ·
∞∑
i=0

[failed + i < MAX] · p · (1− p)i · (failed + i)

= [failed < MAX ∧ ¬success] ·
MAX−failed−1∑

i=0

p · (1− p)i · (failed + i) (Restrict the sum)

= [failed < MAX ∧ ¬success] ·
(

MAX−failed−1∑
i=0

p · failed · (1− p)i︸ ︷︷ ︸
S1a

+

MAX−failed−1∑
i=0

p · i · (1− p)i︸ ︷︷ ︸
S1b

)
(Expand the sum)

To restrict the sum, it must be ensured that the upper bound remains greater than or
equal to the lower bound, i.e. MAX−failed−1 ≥ 0. This condition is satisfied by analysing
the guard preceding the summation:

failed < MAX ⇐⇒ 0 < MAX− failed
⇐⇒ 0 ≤ MAX− failed− 1

As shown, this inequality holds under the given guard in the equation for S1, justifying
the restriction of the summation.

The term S1 is further decomposed into S1a and S1b which are simplified individually
and then recombined to yield the simplified form of S1.

The summation S1a can be simplified using Equation B.1. In contrast, the summation
S1b includes an additional factor of i, necessitating the use of Equation B.2. For this
equation to be applicable, the absolute value of the common ratio must be strictly less
than 1, i.e. |r| < 1.

In the case of S1b, the common ratio r is given by (1−p), which represents a probability.
Hence, it satisfies 0 ≤ (1 − p) ≤ 1. To ensure that |r| < 1, it suffices to assume that
(1− p) ̸= 1, i.e. p > 0. This assumption is also made and justified in Section 5.2.3.

Under this assumption, the summations S1a, and S1b can be evaluated using the ap-
propriate geometric sum formulas, which the condition p > 0 explicitly applied in the
simplification of S1b.

S1a =

MAX−failed−1∑
i=0

p · failed · (1− p)i

= failed · (1− (1− p)MAX−failed) (Apply B.1)

= failed− failed · (1− p)MAX−failed (Distribute)

75

B.1. SENDPACKET FAILED APPENDIX B. SUPREMUM SIMPLIFICATION

S1b =
MAX−failed−1∑

i=0

p · i · (1− p)i

= p ·
MAX−failed−1∑

i=0

i · (1− p)i (Factor out p)

= p · 1
p2
·
(
(1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1
)

(Apply B.2, p > 0)

=
1

p
·
(
(1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1
)

(Simplify)

S1 = [failed < MAX ∧ ¬success] · (S1a + S1b)

= [failed < MAX ∧ ¬success] ·

(
failed− failed · (1− p)MAX−failed

+
1

p
·
(
(1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

))
(Substitute)

= [failed < MAX ∧ ¬success] ·

(
p

p
· (failed− failed · (1− p)MAX−failed)

+
1

p
·
(
(1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

))
(Multiply by 1)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed− p · failed · (1− p)MAX−failed

+ (1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

)
(Distribute)

After completing the simplification of S1, attention shifts to S2, which is treated anal-
ogously:

S2 = [failed < MAX ∧ ¬success] ·
∞∑
i=0

[failed + i+ 1 = MAX] · (1− p)i+1

· (failed + i+ 1)

= [failed < MAX ∧ ¬success] · (1− p)MAX−failed−1+1

· (failed + MAX− failed− 1 + 1) (Restrict sum)

= [failed < MAX ∧ ¬success] · (1− p)MAX−failed ·MAX (Simplify)

76

B.1. SENDPACKET FAILED APPENDIX B. SUPREMUM SIMPLIFICATION

Finally, having simplified both S1 and S2, their results are combined to complete the
simplification of the original supremum expression.

S1 + S2 = [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed− p · failed · (1− p)MAX−failed

+ (1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

)
+ [failed < MAX ∧ ¬success] · (1− p)MAX−failed ·MAX (Substitute)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed− p · failed · (1− p)MAX−failed

+ (1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

)
+ [failed < MAX ∧ ¬success] · p

p
· (1− p)MAX−failed ·MAX (Multiply S2 by 1)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed− p · failed · (1− p)MAX−failed

+ (1− p)− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

+ p · (1− p)MAX−failed ·MAX

)
(Distribute)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed + (1− p)

− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

+ p ·MAX · (1− p)MAX−failed − p · failed · (1− p)MAX−failed

)
(Reorder)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed + (1− p)

− (MAX− failed) · (1− p)MAX−failed

+ (MAX− failed− 1) · (1− p)MAX−failed+1

+ p · (MAX− failed) · (1− p)MAX−failed

)
(Distribute)

. . . (continues on next page)

77

B.1. SENDPACKET FAILED APPENDIX B. SUPREMUM SIMPLIFICATION

. . . (continued from previous page)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed + (1− p)

+ (MAX− failed− 1) · (1− p)MAX−failed+1

− (MAX− failed) · (1− p)MAX−failed

+ p · (MAX− failed) · (1− p)MAX−failed

)
(Reorder)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed + (1− p)

+ (MAX− failed− 1) · (1− p)MAX−failed+1

− (1− p) · (MAX− failed) · (1− p)MAX−failed

)
(Distribute)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed + (1− p)

+ (MAX− failed− 1) · (1− p)MAX−failed+1

− (MAX− failed) · (1− p)MAX−failed+1

)
(Simplify)

= [failed < MAX ∧ ¬success] · 1
p
·

(
p · failed + (1− p)

+ (MAX− failed− 1−MAX + failed) · (1− p)MAX−failed+1

)
(Distribute)

= [failed < MAX ∧ ¬success] · 1
p
·
(
p · failed + (1− p)

−(1− p)MAX−failed+1

)
(Simplify)

= [failed < MAX ∧ ¬success] ·
(

failed +
(1− p)− (1− p)MAX−failed+1

p

)
(Simplify)

We now revisit the assumption made during the application of Equation B.2, which was
introduced to avoid division by 0. However, upon examining the simplified expression, it
becomes evident that when p = 0, the numerator of the fraction also evaluates to zero. As
a result, the assumption p > 0 is no longer required.

We thus arrive at the simplified from of the supremum of wp[[sendPacket]](failed):

supn∈NΦ
n = (S1 + S2) + [failed ≥ MAX ∨ success] · failed

= [failed < MAX ∧ ¬success] ·
(

failed +
(1− p)− (1− p)MAX−failed+1

p

)
+ [failed ≥ MAX ∨ success] · failed

78

B.2. BRP TOTALFAILED APPENDIX B. SUPREMUM SIMPLIFICATION

B.2 BRP TotalFailed

This section provides the detailed simplification of the supremum of the while-loop of
wp[[BRP]](totalFailed), which is omitted in Section 5.3.3.

supn∈NΦ
n

= [success ∧ sent < N] ·

(∞∑
i=0

[sent + i < N] · si · (1− s) · (totalFailed + (i+ 1) · f)

+
∞∑
i=0

[sent + i+ 1 = N] · si+1 · (totalFailed + (i+ 1) · f)

)
+ [¬success ∨ sent ≥ N] · totalFailed

= [success ∧ sent < N] ·
∞∑
i=0

[sent + i < N] · si · (1− s) · (totalFailed + (i+ 1) · f)︸ ︷︷ ︸
S1

+ [success ∧ sent < N] ·
∞∑
i=0

[sent + i+ 1 = N] · si+1 · (totalFailed + (i+ 1) · f)︸ ︷︷ ︸
S2

+ [¬success ∨ sent ≥ N] · totalFailed

Due to the complexity of the expression, the supremum is divided into two parts,
denoted S1 and S2, which are simplified independently before being substituted back into
the main equation.

S1 = [success ∧ sent < N] ·
∞∑
i=0

[sent + i < N] · si · (1− s) · (totalFailed + (i+ 1) · f)

= [success ∧ sent < N] ·
N−sent−1∑

i=0

si · (1− s) · (totalFailed + (i+ 1) · f)

(Restrict the sum)

= [success ∧ sent < N] ·

(
N−sent−1∑

i=0

si · (1− s) · totalFailed

+
N−sent−1∑

i=0

si · (1− s) · (i+ 1) · f

)
(Expand the sum)

= [success ∧ sent < N] ·

(
N−sent−1∑

i=0

si · (1− s) · totalFailed

+
N−sent−1∑

i=0

si · (1− s) · i · f +
N−sent−1∑

i=0

si · (1− s) · 1 · f

)
(Expand the sum)

. . . (continues on next page)

79

B.2. BRP TOTALFAILED APPENDIX B. SUPREMUM SIMPLIFICATION

. . . (continued from previous page)

= [success ∧ sent < N] ·

(
N−sent−1∑

i=0

(1− s) · totalFailed · si︸ ︷︷ ︸
S1a

+ (1− s) · f ·
N−sent−1∑

i=0

i · si︸ ︷︷ ︸
S1b

+
N−sent−1∑

i=0

(1− s) · f · si︸ ︷︷ ︸
S1c

)
(Reorder)

To restrict the sum, it must be ensured that the upper bound remains greater than or
equal to the lower bound, i.e. N − sent − 1 ≥ 0. This condition is satisfied by analysing
the guard preceding the summation:

sent < N ⇐⇒ 0 < N− sent
⇐⇒ 0 ≤ N− sent− 1

As shown, this inequality holds under the given guard in the equation for S1, justifying
the restriction of the summation.

The term S1 is further decomposed into three components, S1a, S1b, and S1c, each of
which is simplified individually before being recombined to obtain the simplified form of
S1.

The summations S1a and S1c can be simplified using Equation B.1. In contrast, the
summation S1b includes an additional factor of i, necessitating the use of Equation B.2.
For this equation to be applicable, the absolute value of the common ratio must be strictly
less than 1, i.e. |r| < 1.

In the case of S1b, the common ratio r is given by s, which represents a probability.
Hence, it satisfies 0 ≤ s ≤ 1. To ensure that |r| < 1, it suffices to assume that s ̸= 1, i.e.
s < 1. This assumption is also made and justified in Section 5.3.3.

Under this assumption, the summations S1a, S1b, and S1c can all be evaluated using
the appropriate geometric sum formulas, with the condition s < 1 explicitly applied in the
simplification of S1b.

S1a = totalFailed · (1− sN−sent) (Apply B.1)

S1b =
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

(1− s)2
(Apply B.2, s < 1)

S1c = f · (1− sN−sent) (Apply B.1)

S1 = [success ∧ sent < N] · (S1a + (1− s) · f · S1b + S1c)

= [success ∧ sent < N] · (S1a + S1c + (1− s) · f · S1b) (Reorder)

= [success ∧ sent < N] ·

(
totalFailed · (1− sN−sent) + f · (1− sN−sent)

+ (1− s) · f · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

(1− s)2

)
(Substitute)

80

B.2. BRP TOTALFAILED APPENDIX B. SUPREMUM SIMPLIFICATION

After completing the simplification of S1, attention shifts to S2, which is treated anal-
ogously:

S2 = [success ∧ sent < N] ·
∞∑
i=0

[sent + i+ 1 = N] · si+1 · (totalFailed + (i+ 1) · f)

= [success ∧ sent < N] · sN−sent−1+1 · (totalFailed + (N− sent− 1 + 1) · f)
(Restrict the sum)

= [success ∧ sent < N] · sN−sent · (totalFailed + (N− sent) · f) (Simplify)

Finally, having simplified both S1 and S2, their results are combined to complete the
simplification of the original supremum expression.

S1 + S2 = [success ∧ sent < N] ·

(
totalFailed · (1− sN−sent) + f · (1− sN−sent)

+ (1− s) · f · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

(1− s)2

)
+ [success ∧ sent < N] · sN−sent · (totalFailed + (N− sent) · f)

= [success ∧ sent < N] ·

(
totalFailed · (1− sN−sent) + f · (1− sN−sent)

+ f · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

)
+ [success ∧ sent < N] · sN−sent · (totalFailed + (N− sent) · f) (Simplify)

= [success ∧ sent < N] ·

(
totalFailed · (1− sN−sent) + f · (1− sN−sent)

+ f · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

+ sN−sent · (totalFailed + (N− sent) · f)

)
(Distribute)

= [success ∧ sent < N] ·

(
totalFailed− totalFailed · sN−sent + f − f · sN−sent

+ f · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

+ totalFailed · sN−sent + (N− sent) · f · sN−sent

)
(Distribute)

= [success ∧ sent < N] ·

(
totalFailed− totalFailed · sN−sent + totalFailed · sN−sent

+ f − f · sN−sent + (N− sent) · f · sN−sent

+ f · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

)
(Reorder)

. . . (continues on next page)

81

B.2. BRP TOTALFAILED APPENDIX B. SUPREMUM SIMPLIFICATION

. . . (continued from previous page)

= [success ∧ sent < N] ·

(
totalFailed

+ f − f · sN−sent + (N− sent) · f · sN−sent

+ f · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

)
(Simplify)

= [success ∧ sent < N] ·

(
totalFailed + f ·

(
1− sN−sent + (N− sent) · sN−sent

+
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

))
(Distribute)

= [success ∧ sent < N] ·

(
totalFailed + f ·

(1− s
1− s

·
(
1− sN−sent + (N− sent) · sN−sent)

+
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

))
(Multiply by 1)

= [success ∧ sent < N] ·
(

totalFailed + f · A

1− s

)
(Distribute)

Where A = (1− s) ·
(
1− sN−sent + (N− sent) · sN−sent

)
+ s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

= (1− s)− (1− s) · sN−sent + (1− s) · (N− sent) · sN−sent

+ s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1 (Distribute)

= 1− s+ s− (1− s) · sN−sent + (1− s) · (N− sent) · sN−sent

− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1 (Reorder)

= 1 + (−(1− s) + (1− s) · (N− sent)− (N− sent)) · sN−sent

+ (N− sent− 1) · sN−sent+1 (Simplify, Distribute)

= 1 + (−1 + s+ (N− sent)− s · (N− sent)− (N− sent)) · sN−sent

+ (N− sent− 1) · sN−sent+1 (Distribute)

= 1 + (−1 + s− s · (N− sent)) · sN−sent

+ (N− sent− 1) · sN−sent+1 (Simplify)

= 1 − sN−sent + s · sN−sent − s · (N− sent) · sN−sent

+ (N− sent− 1) · sN−sent+1 (Distribute)

= 1− sN−sent + sN−sent+1 − (N− sent) · sN−sent+1

+ (N− sent− 1) · sN−sent+1 (Simplify)

= 1− sN−sent + (1− (N− sent) + (N− sent− 1)) · sN−sent+1 (Distribute)

= 1− sN−sent + (1−N + sent + N− sent− 1) · sN−sent+1 (Distribute)

= 1− sN−sent (Simplify)

82

B.3. BRP SENT APPENDIX B. SUPREMUM SIMPLIFICATION

We thus arrive at the simplified from of the supremum of wp[[BRP]](totalFailed):

supn∈NΦ
n = (S1 + S2) + [¬success ∨ sent ≥ N] · totalFailed

= [success ∧ sent < N] ·
(
totalFailed + f · 1− s

N−sent

1− s

)
+ [¬success ∨ sent ≥ N] · totalFailed

We now revisit the assumption made during the application of Equation B.2, which was
introduced to avoid division by 0. However, upon examining the simplified expression, it
becomes evident that when s = 1, the numerator of the fraction also evaluates to zero. As
a result, the assumption s < 1 is no longer required.

B.3 BRP Sent

This section provides the detailed simplification of the supremum of the while-loop of
wp[[BRP]](sent), which is omitted in Section 5.3.4.

supn∈NΦ
n = [success ∧ sent < N] ·

(∞∑
i=0

[sent + i < N] · si · (1− s) · (sent + i)

+

∞∑
i=0

[sent + i+ 1 = N] · si+1 · (sent + i+ 1)

)
+ [¬success ∨ sent ≥ N] · sent

= [success ∧ sent < N] ·
∞∑
i=0

[sent + i < N] · si · (1− s) · (sent + i)︸ ︷︷ ︸
S1

+ [success ∧ sent < N] ·
∞∑
i=0

[sent + i+ 1 = N] · si+1 · (sent + i+ 1)︸ ︷︷ ︸
S2

+ [¬success ∨ sent ≥ N] · sent

Due to the complexity of the expression, the supremum is divided into two parts,
denoted S1 and S2, which are simplified independently before being substituted back into
the main equation.

S1 = [success ∧ sent < N] ·
∞∑
i=0

[sent + i < N] · si · (1− s) · (sent + i)

= [success ∧ sent < N] ·
N−sent−1∑

i=0

si · (1− s) · (sent + i) (Restrict the sum)

= [success ∧ sent < N] ·
(N−sent−1∑

i=0

si · (1− s) · sent +
N−sent−1∑

i=0

si · (1− s) · i
)

(Expand the sum)

= [success ∧ sent < N] ·
(N−sent−1∑

i=0

(1− s) · sent · si︸ ︷︷ ︸
S1a

+(1− s) ·
N−sent−1∑

i=0

i · si︸ ︷︷ ︸
S1b

)
(Reorder)

83

B.3. BRP SENT APPENDIX B. SUPREMUM SIMPLIFICATION

To restrict the sum, it must be ensured that the upper bound remains greater than or
equal to the lower bound, i.e. N − sent − 1 ≥ 0. This condition is satisfied by analysing
the guard preceding the summation:

sent < N ⇐⇒ 0 < N− sent
⇐⇒ 0 ≤ N− sent− 1

As shown, this inequality holds under the given guard in the equation for S1, justifying
the restriction of the summation.

The term S1 is further decomposed into S1a and S1b, which are simplified individually
before being recombined to obtain the simplified form of S1.

The summation S1a can be simplified using Equation B.1. In contrast, S1b includes
an additional factor of i, necessitating the use of Equation B.2. For this equation to be
applicable, the absolute value of the common ratio must be strictly less than 1, i.e. |r| < 1.

In the case of S1b, the common ratio r is given by s, which represents a probability.
Hence, it satisfies 0 ≤ s ≤ 1. To ensure that |r| < 1, it suffices to assume that s ̸= 1, i.e.
s < 1. This assumption is also made and justified in Section 5.3.3.

Under this assumption, the summations S1a and S1b can be evaluated using the ap-
propriate geometric sum formulas, with the condition s < 1 explicitly applied in the
simplification of S1b.

S1a = sent · (1− sN−sent) (Apply B.1)

S1b =
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

(1− s)2
(Apply B.2, s < 1)

S1 = [success ∧ sent < N] ·
(
S1a + (1− s) · S1b

)
= [success ∧ sent < N] ·

(
sent · (1− sN−sent)

+ (1− s) · s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

(1− s)2

)
(Substitute)

= [success ∧ sent < N] ·

(
sent · (1− sN−sent)

+
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

)
(Simplify)

After completing the simplification of S1, attention shifts to S2, which is treated anal-
ogously:

S2 = [success ∧ sent < N] ·
∞∑
i=0

[sent + i+ 1 = N] · si+1 · (sent + i+ 1)

= [success ∧ sent < N] ·
∞∑
i=0

[i = N− sent− 1] · si+1 · (sent + i+ 1) (Reorder)

= [success ∧ sent < N] · sN−sent−1+1 · (sent + N− sent− 1 + 1) (Restrict the sum)

= [success ∧ sent < N] · sN−sent ·N (Simplify)

84

B.3. BRP SENT APPENDIX B. SUPREMUM SIMPLIFICATION

Finally, having simplified both S1 and S2, their results are combined to complete the
simplification of the original supremum expression.

S1 + S2 = [success ∧ sent < N] ·

(
sent · (1− sN−sent)

+
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

)
+ [success ∧ sent < N] · sN−sent ·N

= [success ∧ sent < N] ·

(
sent · (1− sN−sent)

+
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

+ sN−sent ·N

)
(Distribute)

= [success ∧ sent < N] ·

(
sent− sent · sN−sent + N · sN−sent

+
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

)
(Distribute, Reorder)

= [success ∧ sent < N] ·

(
1− s
1− s

· (sent− sent · sN−sent + N · sN−sent)

+
s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

1− s

)
(Multiply by 1)

= [success ∧ sent < N] · 1

1− s
·

(
(1− s) · (sent− sent · sN−sent + N · sN−sent)

+ s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

)
(Distribute)

= [success ∧ sent < N] · A

1− s

Where A = (1− s) · (sent− sent · sN−sent + N · sN−sent)

+ s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1

= sent− sent · sN−sent + N · sN−sent

−s · sent + s · sent · sN−sent − s ·N · sN−sent

+ s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1 (Distribute)

= sent− sent · sN−sent + N · sN−sent

− s · sent + sent · sN−sent+1 −N · sN−sent+1

+ s− (N− sent) · sN−sent + (N− sent− 1) · sN−sent+1 (Simplify)
. . . (continues on next page)

85

B.3. BRP SENT APPENDIX B. SUPREMUM SIMPLIFICATION

. . . (continued from previous page)

= sent + (N− sent) · sN−sent−(N− sent) · sN−sent

− s · sent + sent · sN−sent+1

−N · sN−sent+1 + s+ (N− sent− 1) · sN−sent+1 (Distribute, Reorder)

= sent− s · sent + sent · sN−sent+1

−N · sN−sent+1 + s+ (N− sent− 1) · sN−sent+1 (Simplify)

= sent− s · sent + s+ (sent−N + N− sent− 1) · sN−sent+1 (Distribute)

= (1− s) · sent + s− sN−sent+1 (Distribute, Simplify)

S1 + S2 = [success ∧ sent < N] · A

1− s

= [success ∧ sent < N] · (1− s) · sent + s− sN−sent+1

1− s
(Substitute A)

= [success ∧ sent < N] ·
(
sent +

s− sN−sent+1

1− s

)
(Split the fraction)

= [success ∧ sent < N] ·
(
sent +

s(1− sN−sent)

1− s

)
(Distribute)

We now revisit the assumption made during the application of Equation B.2, which was
introduced to avoid division by 0. However, upon examining the simplified expression, it
becomes evident that when s = 1, the numerator of the fraction also evaluates to zero. As
a result, the assumption s < 1 is no longer required.

We thus arrive at the simplified from of the supremum of wp[[BRP]](sent):

supn∈NΦ
n = (S1 + S2) + [¬success ∨ sent ≥ N] · sent

= [success ∧ sent < N] ·
(
sent +

s(1− sN−sent)

1− s

)
+ [¬success ∨ sent ≥ N] · sent

86

APPENDIX C

SUPREMA AS INVARIANTS

This chapter presents the proofs demonstrating that each supremum qualifies as both a wp-
superinvariant and a wp-subinvariant. The methodological steps followed in the individual
sections of this chapter are introduced in Section 4.3.1 and are repeated below for reference:

1. Propose a candidate invariant I (in this context, the supremum)

2. Compute Φ(I).

3. Verify that Φ(I) = I holds, to determine whether I constitutes a wp-superinvariant
and a wp-subinvariant, i.e. whether Φ(I) = I holds (see Definition 10, page 12).

C.1 SendPacket

In the subsections below, the loop-characteristic function corresponding to the probabilistic
program fragment is defined as follows, where g denotes the postexpectation.

Φsp(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X)

+ [failed ≥ MAX ∨ success] · g
wp[[bodysp]](X) = p ·X[success := true] + (1− p) ·X[failed := failed + 1]

C.1.1 Probability of Success

The loop-characteristic function of the while-loop of wp[[sendPacket]]([success]) is the fol-
lowing:

Φsp(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X) + [success]

Step 1: Propose candidate invariant I

I = supn∈NΦ
n = [failed < MAX ∧ ¬success] · (1− (1− p)MAX−failed) + [success]

Step 2: Compute Φsp(I)

wp[[bodysp]](I) = p

+ [failed + 1 < MAX ∧ ¬success] · ((1− p)− (1− p)MAX−failed)

+ (1− p) · [success]

87

C.1. SENDPACKET APPENDIX C. SUPREMA AS INVARIANTS

Φsp(I) = [failed < MAX ∧ ¬success] · p
+ [failed + 1 < MAX ∧ ¬success] · (1− p− (1− p)MAX−failed)

+ [success]

Step 3: Compare Φsp(I) and I

By performing a case analysis on the inequality between the variables MAX and failed,
it is shown that I satisfies both the wp-superinvariant and wp-subinvariant conditions, as
Φsp(I) = I in all cases.

• Case 1: failed ≥ MAX.

I = [false ∧ ¬success] · (1− (1− p)MAX−failed) + [success] (Apply case)
= [success] (Simplify)

Φsp(I) = [false ∧ ¬success] · p
+ [false ∧ ¬success] · (1− p− (1− p)MAX−failed)

+ [success] (Apply case)
= [success] (Simplify)
= I

• Case 2: failed < MAX ∧ failed + 1 ≥ MAX =⇒ failed + 1 = MAX

I = [failed < failed + 1 ∧ ¬success] · (1− (1− p)failed+1−failed)

+ [success] (Apply case)
= [true ∧ ¬success] · (1− 1 + p) + [success] (Simplify)
= [¬success] · p+ [success] (Simplify)

Φsp(I) = [failed < failed + 1 ∧ ¬success] · p
+ [failed + 1 < failed + 1 ∧ ¬success] · (1− p− (1− p)failed+1−failed)

+ [success] (Apply case)
= [true ∧ ¬success] · p
+ [false ∧ ¬success] · (1− p− (1− p)
+ [success] (Simplify)

= [¬success] · p+ [success] (Simplify)
= I

• Case 3: failed < MAX ∧ failed + 1 < MAX.

I = [true ∧ ¬success] · (1− (1− p)MAX−failed) + [success] (Apply case)

= [¬success] · (1− (1− p)MAX−failed) + [success] (Simplify)

88

C.1. SENDPACKET APPENDIX C. SUPREMA AS INVARIANTS

Φsp(I) = [true ∧ ¬success] · p
+ [true ∧ ¬success] · (1− p− (1− p)MAX−failed)

+ [success] (Apply case)

= [¬success] · p+ [¬success] · (1− p− (1− p)MAX−failed)

+ [success] (Simplify)

= [¬success] · (p+ 1− p− (1− p)MAX−failed) + [success] (Distribute)

= [¬success] · (1− (1− p)MAX−failed) + [success] (Simplify)
= I

Therefore, the supremum qualifies as both a wp-superinvariant and a wp-subinvariant.

C.1.2 Expected Number of Failures

The loop-characteristic function of the while-loop of wp[[sendPacket]](failed) is the follow-
ing:

Φsp(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X)

+ [failed ≥ MAX ∨ success] · failed

Step 1: Propose candidate invariant I

I = supn∈NΦ
n

= [failed < MAX ∧ ¬success] ·
(

failed +
(1− p)− (1− p)MAX−failed+1

p

)
+ [failed ≥ MAX ∨ success] · failed

Step 2: Compute Φsp(I)

wp[[bodysp]](I) = p · failed

+ [failed + 1 < MAX ∧ ¬success] · (1− p) ·
(

failed + 1

+
1− p− (1− p)MAX−failed

p

)
+ [failed + 1 ≥ MAX ∨ success] · (1− p) · (failed + 1)

Φsp(I) = [failed < MAX ∧ ¬success] · p · failed

+ [failed + 1 < MAX ∧ ¬success] · (1− p) ·
(

failed + 1

+
1− p− (1− p)MAX−failed

p

)
+ [failed + 1 = MAX ∧ ¬success] · (1− p) · (failed + 1)

+ [failed ≥ MAX ∨ success] · failed
. . . (continues on next page)

89

C.1. SENDPACKET APPENDIX C. SUPREMA AS INVARIANTS

. . . (continued from previous page)
= [failed < MAX ∧ ¬success] · p · failed

+ [failed + 1 ≤ MAX ∧ ¬success] · (1− p) ·
(

failed + 1

+
1− p− (1− p)MAX−failed

p

)
+ [failed ≥ MAX ∨ success] · failed (Simplify)

= [failed < MAX ∧ ¬success] · p · failed

+ [failed < MAX ∧ ¬success] · (1− p) ·
(

failed + 1

+
1− p− (1− p)MAX−failed

p

)
+ [failed ≥ MAX ∨ success] · failed (Simplify)

= [failed < MAX ∧ ¬success] ·

(
p · failed + (1− p) ·

(
failed + 1

+
1− p− (1− p)MAX−failed

p

))
+ [failed ≥ MAX ∨ success] · failed (Distribute)

= [failed < MAX ∧ ¬success] ·

(
p · failed + (1− p) · failed + (1− p)

+ (1− p) · 1− p− (1− p)MAX−failed

p

)
+ [failed ≥ MAX ∨ success] · failed (Distribute)

= [failed < MAX ∧ ¬success] ·

(
p · failed + (1− p) · failed + 1− p

+ (1− p) · −p
p

+ (1− p) · 1− (1− p)MAX−failed

p

)
+ [failed ≥ MAX ∨ success] · failed (Factor out p)

= [failed < MAX ∧ ¬success] ·

(
p · failed + (1− p) · failed + 1− p

− (1− p) + (1− p) · 1− (1− p)MAX−failed

p

)
+ [failed ≥ MAX ∨ success] · failed (Simplify)

= [failed < MAX ∧ ¬success] ·

(
p · failed + failed− p · failed + 1− p

−1 + p+
(1− p)− (1− p) · (1− p)MAX−failed

p

)
+ [failed ≥ MAX ∨ success] · failed (Distribute)

. . . (continues on next page)

90

C.2. BRP APPENDIX C. SUPREMA AS INVARIANTS

. . . (continued from previous page)

= [failed < MAX ∧ ¬success] ·

(
failed +

1− p− (1− p)MAX−failed+1

p

)
+ [failed ≥ MAX ∨ success] · failed (Simplify)

Step 3: Compare Φsp(I) and I

The fully simplified expression for Φsp(I) is identical to the proposed invariant I. Therefore,
Φsp(I) = I holds, and the supremum qualifies as both a wp-superinvariant and a wp-
subinvariant.

C.2 BRP

In the subsections below, the loop-characteristic function corresponding to the probabilistic
program fragment is defined as follows, where g denotes the postexpectation.

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · g
wp[[bodybrp]](X) = s ·X[sent := sent + 1; totalFailed := totalFailed + f ; success := true]

+ (1− s) ·X[totalFailed := totalFailed + f ; success := false]

C.2.1 Probability of Success

The loop-characteristic function of the while-loop of wp[[BRP]]([success]) is the following:

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∧ success]

Step 1: Propose candidate invariant I

I = supn∈NΦ
n = [sent < N ∧ success] · sN−sent + [sent ≥ N ∧ success]

Step 2: Compute Φbrp(I)

wp[[bodybrp]](I) = [sent + 1 < N ∧ success] · s · sN−sent−1

+ [sent + 1 ≥ N ∧ success] · s
= [sent + 1 < N ∧ success] · sN−sent

+ [sent + 1 ≥ N ∧ success] · s

Φbrp(I) = [sent + 1 < N ∧ success] · sN−sent

+ [sent + 1 = N ∧ success] · s
+ [sent ≥ N ∧ success]

= [sent + 1 ≤ N ∧ success] · sN−sent + [sent ≥ N ∧ success] (Simplify)

= [sent < N ∧ success] · sN−sent + [sent ≥ N ∧ success] (Simplify)

91

C.2. BRP APPENDIX C. SUPREMA AS INVARIANTS

Step 3: Compare Φbrp(I) and I

The fully simplified expression for Φbrp(I) is identical to the proposed invariant I. There-
fore, Φbrp(I) = I holds, and the supremum qualifies as both a wp-superinvariant and a
wp-subinvariant.

C.2.2 Expected Number of Failures

The loop-characteristic function of the while-loop of wp[[BRP]](totalFailed) is the following:

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X)

+ [sent ≥ N ∨ ¬success] · totalFailed

Step 1: Propose candidate invariant I

I = supn∈NΦ
n = [success ∧ sent < N] ·

(
totalFailed + f · 1− s

N−sent

1− s

)
+ [¬success ∨ sent ≥ N] · totalFailed

Step 2: Compute Φbrp(I)

wp[[bodybrp]](I) = [sent + 1 < N] · s ·

(
totalFailed + f + f · 1− s

N−sent−1

1− s

)
+ [sent + 1 ≥ N] · s · (totalFailed + f)

+ (1− s) · (totalFailed + f)

Φbrp(I) = [sent + 1 < N ∧ success] · s ·

(
totalFailed + f + f · 1− s

N−sent−1

1− s

)
+ [sent + 1 = N ∧ success] · s · (totalFailed + f)

+ [sent < N ∧ success] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed

= [sent + 1 ≤ N ∧ success] · s ·

(
totalFailed + f + f · 1− s

N−sent−1

1− s

)
+ [sent < N ∧ success] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)

= [sent < N ∧ success] · s ·

(
totalFailed + f + f · 1− s

N−sent−1

1− s

)
+ [sent < N ∧ success] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)
. . . (continues on next page)

92

C.2. BRP APPENDIX C. SUPREMA AS INVARIANTS

. . . (continued from previous page)

= [sent < N ∧ success] ·

(
s ·
(
totalFailed + f + f · 1− s

N−sent−1

1− s

)
+ (1− s) · (totalFailed + f)

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)

= [sent < N ∧ success] ·

(
s · totalFailed + s · f + s · f · 1− s

N−sent−1

1− s

+ (1− s) · totalFailed + (1− s) · f

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Distribute)

= [sent < N ∧ success] ·

(
s · totalFailed + s · f + s · f · 1− s

N−sent−1

1− s

+ totalFailed− s · totalFailed + f − s · f

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Distribute)

= [sent < N ∧ success] ·

(
s · totalFailed− s · totalFailed + s · f − s · f

+ totalFailed + f + s · f · 1− s
N−sent−1

1− s

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Reorder)

= [sent < N ∧ success] ·

(
totalFailed + f + s · f · 1− s

N−sent−1

1− s

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)

= [sent < N ∧ success] ·

(
totalFailed + f + f · s− s

N−sent

1− s

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)

= [sent < N ∧ success] ·

(
totalFailed + f · 1− s

1− s
+ f · s− s

N−sent

1− s

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Multiply by 1)

= [sent < N ∧ success] ·

(
totalFailed + f · 1− s+ s− sN−sent

1− s

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Distribute)

= [sent < N ∧ success] ·

(
totalFailed + f · 1− s

N−sent

1− s

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)

93

C.2. BRP APPENDIX C. SUPREMA AS INVARIANTS

Step 3: Compare Φbrp(I) and I

The fully simplified expression for Φbrp(I) is identical to the proposed invariant I. There-
fore, Φbrp(I) = I holds, and the supremum qualifies as both a wp-superinvariant and a
wp-subinvariant.

C.2.3 Expected Number of Sent Packets

The loop-characteristic function of the while-loop of wp[[BRP]](sent) is the following:

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · sent

Step 1: Propose candidate invariant I

I = supn∈NΦ
n = [success ∧ sent < N] ·

(
sent +

s(1− sN−sent)

1− s

)
+ [¬success ∨ sent ≥ N] · sent

Step 2: Compute Φbrp(I)

wp[[bodybrp]](I) = [sent + 1 < N] · s ·
(
sent + 1 +

s(1− sN−sent−1)

1− s

)
+ [sent + 1 ≥ N] · s · (sent + 1)

+ (1− s) · sent

Φbrp(I) = [sent + 1 < N ∧ success] · s ·
(
sent + 1 +

s(1− sN−sent−1)

1− s

)
+ [sent + 1 = N ∧ success] · s · (sent + 1)

+ [sent < N ∧ success] · (1− s) · sent
+ [¬success ∨ sent ≥ N] · sent

= [sent + 1 ≤ N ∧ success] · s ·
(
sent + 1 +

s(1− sN−sent−1)

1− s

)
+ [sent < N ∧ success] · (1− s) · sent
+ [¬success ∨ sent ≥ N] · sent (Simplify)

= [sent < N ∧ success] · s ·
(
sent + 1 +

s(1− sN−sent−1)

1− s

)
+ [sent < N ∧ success] · (1− s) · sent
+ [¬success ∨ sent ≥ N] · sent (Simplify)

= [sent < N ∧ success] ·
(
s ·
(
sent + 1 +

s(1− sN−sent−1)

1− s

)
+ (1− s) · sent

)
+ [¬success ∨ sent ≥ N] · sent (Distribute)

. . . (continues on next page)

94

C.2. BRP APPENDIX C. SUPREMA AS INVARIANTS

. . . (continued from previous page)

= [sent < N ∧ success] ·

(
s ·
(
sent + 1 +

s− sN−sent

1− s

)
+ sent− s · sent

)
+ [¬success ∨ sent ≥ N] · sent (Distribute)

= [sent < N ∧ success] ·

(
s · sent + s+ s · s− s

N−sent

1− s
+ sent− s · sent

)
+ [¬success ∨ sent ≥ N] · sent (Distribute)

= [sent < N ∧ success] ·

(
sent + s+ s · s− s

N−sent

1− s
− s · sent + s · sent

)
+ [¬success ∨ sent ≥ N] · sent (Reorder)

= [sent < N ∧ success] ·

(
sent + s · 1− s

1− s
+ s · s− s

N−sent

1− s

)
+ [¬success ∨ sent ≥ N] · sent (Multiply by 1, Simplify)

= [sent < N ∧ success] ·

(
sent + s · 1− s+ s− sN−sent

1− s

)
+ [¬success ∨ sent ≥ N] · sent (Distribute)

= [sent < N ∧ success] ·

(
sent + s · 1− s

N−sent

1− s

)
+ [¬success ∨ sent ≥ N] · sent (Simplify)

Step 3: Compare Φbrp(I) and I

The fully simplified expression for Φbrp(I) is identical to the proposed invariant I. There-
fore, Φbrp(I) = I holds, and the supremum qualifies as both a wp-superinvariant and a
wp-subinvariant.

95

APPENDIX D

SUPERINVARIANTS

This chapter presents the proofs demonstrating that the proposed invariants constitute
wp-superinvariants. The methodology applied in the subsequent sections follows the steps
outlined in Section 4.3.1, and is reiterated below for clarity:

1. Propose a candidate superinvariant I

2. Compute Φ(I).

3. Compare Φ(I) with I to determine whether it qualifies as a wp-superinvariant, i.e.
whether Φ(I) ⊑ I holds (see Definition 10, page 12).

D.1 SendPacket

The equation for the loop-characteristic function in this section is provided below, where
g denotes the postexpectation:

Φsp(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X)

+ [failed ≥ MAX ∨ success] · g
wp[[bodysp]](X) = p ·X[success := true] + (1− p) ·X[failed := failed + 1]

D.1.1 Expected Number of Failures

The loop-characteristic function of the while-loop of wp[[sendPacket]](failed) is as follows:

Φsp(X) = [failed < MAX ∧ ¬success] · wp[[bodysp]](X)

+ [failed ≥ MAX ∨ success] · failed

Step 1: Propose candidate superinvariant I

I = [failed < MAX ∧ ¬success] · (failed + (1− p) · (MAX− failed))
+ [failed ≥ MAX ∨ success] · failed

96

D.1. SENDPACKET APPENDIX D. SUPERINVARIANTS

Step 2: Compute Φsp(I)

wp[[bodysp]](I) = p · failed

+ [failed + 1 < MAX ∧ ¬success] · (1− p) ·
(
failed + 1

+ (1− p) · (MAX− failed− 1)
)

+ [failed + 1 ≥ MAX ∨ success] · (1− p) · (failed + 1)

Φsp(I) = [failed < MAX ∧ ¬success] · p · failed

+ [failed + 1 < MAX ∧ ¬success] · (1− p) ·
(
failed + 1

+ (1− p) · (MAX− failed− 1)
)

+ [failed + 1 = MAX ∧ ¬success] · (1− p) · (failed + 1)

+ [failed ≥ MAX ∨ success] · failed
= [failed < MAX ∧ ¬success] · p · failed

+ [failed + 1 ≤ MAX ∧ ¬success] · (1− p) ·
(
failed + 1

+ (1− p) · (MAX− failed− 1)
)

+ [failed ≥ MAX ∨ success] · failed (Simplify)
= [failed < MAX ∧ ¬success] · p · failed

+ [failed < MAX ∧ ¬success] · (1− p) ·
(
failed + 1

+ (1− p) · (MAX− failed− 1)
)

+ [failed ≥ MAX ∨ success] · failed (Simplify)

= [failed < MAX ∧ ¬success] ·

(
p · failed + (1− p) ·

(
failed + 1

+ (1− p) · (MAX− failed− 1)
))

+ [failed ≥ MAX ∨ success] · failed (Distribute)

= [failed < MAX ∧ ¬success] ·
(
p · failed + (1− p) · failed + (1− p)

+ (1− p) · (1− p) · (MAX− failed− 1)
)

+ [failed ≥ MAX ∨ success] · failed (Distribute)

= [failed < MAX ∧ ¬success] ·
(
p · failed + failed− p · failed + (1− p)

+ (1− p) · (1− p) · (MAX− failed− 1)
)

+ [failed ≥ MAX ∨ success] · failed (Distribute)

= [failed < MAX ∧ ¬success] ·
(
failed + (1− p)

+ (1− p) · (1− p) · (MAX− failed− 1)
)

+ [failed ≥ MAX ∨ success] · failed (Simplify)

97

D.2. BRP APPENDIX D. SUPERINVARIANTS

= [failed < MAX ∧ ¬success] ·
(

failed

+ (1− p) ·
(
1 + (1− p) · (MAX− failed− 1)

))
+ [failed ≥ MAX ∨ success] · failed (Distribute)

Step 3: Compare Φsp(I) and I

The simplified expression of Φsp(I) closely resembles the candidate invariant I:

I = [failed < MAX ∧ ¬success] · (failed + (1− p) · (MAX− failed))
+ [failed ≥ MAX ∨ success] · failed

Φsp(I) = [failed < MAX ∧ ¬success] ·
(

failed

+ (1− p) ·
(
1 + (1− p) · (MAX− failed− 1)

))
+ [failed ≥ MAX ∨ success] · failed

To assess the relationship between Φsp(I) and I, we compare the corresponding highlighted
components:

MAX− failed > MAX− failed− 1

=⇒ MAX− failed > (1− p) · (MAX− failed− 1) (0 ≤ (1− p) ≤ 1)
=⇒ MAX− failed ≥ (1− p) · (MAX− failed− 1) + 1

=⇒ (1− p) · (MAX− failed) ≥ (1− p) · ((1− p) · (MAX− failed− 1) + 1) ((1− p) ≥ 0)
=⇒ I ≥ Φsp(I)

Based on this comparison, we conclude that Φsp(I) ⊑ I holds, and therefore I is indeed
a wp-superinvariant.

D.2 BRP

The equation for the loop-characteristic function in this section is provided below, where
g denotes the postexpectation:

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · g
wp[[bodybrp]](X) = s ·X[sent := sent + 1; totalFailed := totalFailed + f ; success := true]

+ (1− s) ·X[totalFailed := totalFailed + f ; success := false]

D.2.1 Probability of Success

The loop-characteristic function of the while-loop of wp[[BRP]]([success]) is as follows:

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∧ success]

Step 1: Propose candidate superinvariant I

I = [success] · sN−sent + [success]

98

D.2. BRP APPENDIX D. SUPERINVARIANTS

Step 2: Compute Φbrp(I)

wp[[bodybrp]](I) = s · sN−sent−1 + s

= sN−sent + s

Φbrp(I) = [sent < N ∧ success] · (sN−sent + s)

+ [sent ≥ N ∧ success]

Step 3: Compare Φbrp(I) and I

By performing a case analysis on the inequality between the variables N and sent, it is
shown that I satisfies the wp-superinvariant conditions, as Φbrp(I) ≤ I in all cases.

• Case 1: sent ≥ N.

Φbrp(I) = [false ∧ success] · (sN−sent + s)

+ [true ∧ success] (Apply case)
= [success] (Simplify)
⊑ I

• Case 2: sent < N.

Φbrp(I) = [true ∧ success] · (sN−sent + s)

+ [false ∧ success] (Apply case)

= [success] · (sN−sent + s) (Simplify)

= [success] · sN−sent + [success] · s (Distribute)
⊑ I (s ≤ 1)

Therefore, the candidate invariant qualifies as a wp-superinvariant.

D.2.2 Expected Number of Failures

The loop-characteristic function of the while-loop of wp[[BRP]](totalFailed) is as follows:

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X)

+ [sent ≥ N ∨ ¬success] · totalFailed

Step 1: Propose candidate superinvariant I

I = [sent < N ∧ success] · (totalFailed + f · (N− sent))
+ [sent ≥ N ∨ ¬success] · totalFailed

99

D.2. BRP APPENDIX D. SUPERINVARIANTS

Step 2: Compute Φbrp(I)

wp[[bodybrp]](I) = [sent + 1 < N] · s · (totalFailed + f + f · (N− sent− 1))

+ [sent + 1 ≥ N] · s · (totalFailed + f)

+ (1− s) · (totalFailed + f)

Φbrp(I) = [sent + 1 < N ∧ success] · s · (totalFailed + f + f · (N− sent− 1))

+ [sent + 1 = N ∧ success] · s · (totalFailed + f)

+ [sent < N ∧ success] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed
= [sent + 1 ≤ N ∧ success] · s · (totalFailed + f + f · (N− sent− 1))

+ [sent < N ∧ success] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)
= [sent < N ∧ success] · s · (totalFailed + f + f · (N− sent− 1))

+ [sent < N ∧ success] · (1− s) · (totalFailed + f)

+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)

= [sent < N ∧ success] ·
(
s · (totalFailed + f + f · (N− sent− 1))

+ (1− s) · (totalFailed + f)
)

+ [sent ≥ N ∨ ¬success] · totalFailed (Distribute)

= [sent < N ∧ success] ·
(
s · totalFailed + s · f + s · f · (N− sent− 1)

+ totalFailed + f − s · totalFailed− s · f
)

+ [sent ≥ N ∨ ¬success] · totalFailed (Distribute)

= [sent < N ∧ success] ·
(
s · totalFailed− s · totalFailed + s · f − s · f

+ totalFailed + s · f · (N− sent− 1) + f
)

+ [sent ≥ N ∨ ¬success] · totalFailed (Reorder)

= [sent < N ∧ success] ·
(
totalFailed + s · f · (N− sent− 1) + f

)
+ [sent ≥ N ∨ ¬success] · totalFailed (Simplify)

= [sent < N ∧ success] ·
(

totalFailed + f ·
(
s · (N− sent− 1) + 1

))
+ [sent ≥ N ∨ ¬success] · totalFailed (Distribute)

Step 3: Compare Φbrp(I) and I

The simplified expression of Φbrp(I) closely resembles the candidate invariant I:

I = [sent < N ∧ success] · (totalFailed + f · (N− sent))
+ [sent ≥ N ∨ ¬success] · totalFailed

Φbrp(I) = [sent < N ∧ success] ·
(

totalFailed + f ·
(
s · (N− sent− 1) + 1

))
+ [sent ≥ N ∨ ¬success] · totalFailed

100

D.2. BRP APPENDIX D. SUPERINVARIANTS

To assess the relationship between Φbrp(I) and I, we compare the corresponding highlighted
components:

N− sent > N− sent− 1

=⇒ N− sent > s · (N− sent− 1) (0 ≤ s ≤ 1)
=⇒ N− sent ≥ s · (N− sent− 1) + 1

=⇒ f · (N− sent) ≥ f · (s · (N− sent− 1) + 1) (f ≥ 0)
=⇒ I ≥ Φbrp(I)

Based on this comparison, we conclude that Φbrp(I) ⊑ I holds, and therefore I is indeed
a wp-superinvariant.

D.2.3 Expected Number of Sent Packets

The loop-characteristic function of the while-loop of wp[[BRP]](sent) is as follows:

Φbrp(X) = [sent < N ∧ success] · wp[[bodybrp]](X) + [sent ≥ N ∨ ¬success] · sent

Step 1: Propose candidate superinvariant I

I = [sent < N ∧ success] · (sent + s · (N− sent)) + [sent ≥ N ∨ ¬success] · sent

Step 2: Compute Φbrp(I)

wp[[bodybrp]](I) = [sent + 1 < N] · s · (sent + 1 + s · (N− sent− 1))

+ [sent + 1 ≥ N] · s · (sent + 1)

+ (1− s) · sent

Φbrp(I) = [sent + 1 < N ∧ success] · s · (sent + 1 + s · (N− sent− 1))

+ [sent + 1 = N ∧ success] · s · (sent + 1)

+ [sent < N ∧ success] · (1− s) · sent
+ [sent ≥ N ∨ ¬success] · sent

= [sent + 1 ≤ N ∧ success] · s · (sent + 1 + s · (N− sent− 1))

+ [sent < N ∧ success] · (1− s) · sent
+ [sent ≥ N ∨ ¬success] · sent (Simplify)

= [sent < N ∧ success] · s · (sent + 1 + s · (N− sent− 1))

+ [sent < N ∧ success] · (1− s) · sent
+ [sent ≥ N ∨ ¬success] · sent (Simplify)

= [sent < N ∧ success] ·
(
s · (sent + 1 + s · (N− sent− 1))

+ (1− s) · sent
)

+ [sent ≥ N ∨ ¬success] · sent (Distribute)
. . . (continues on next page)

101

D.2. BRP APPENDIX D. SUPERINVARIANTS

. . . (continued from previous page)

= [sent < N ∧ success] ·
(
s · sent + s · (1 + s · (N− sent− 1))

+ sent− s · sent
)

+ [sent ≥ N ∨ ¬success] · sent (Distribute)

= [sent < N ∧ success] ·
(
sent− s · sent + s · sent

+ s · (s · (N− sent− 1) + 1)
)

+ [sent ≥ N ∨ ¬success] · sent (Reorder)

= [sent < N ∧ success] ·
(
sent + s · (s · (N− sent− 1) + 1)

)
+ [sent ≥ N ∨ ¬success] · sent (Simplify)

Step 3: Compare Φbrp(I) and I

The simplified expression of Φbrp(I) closely resembles the candidate invariant I:

I = [sent < N ∧ success] · (sent + s · (N− sent))
+ [sent ≥ N ∨ ¬success] · sent

Φbrp(I) = [sent < N ∧ success] ·
(
sent + s · (s · (N− sent− 1) + 1)

)
+ [sent ≥ N ∨ ¬success] · sent

To assess the relationship between Φbrp(I) and I, we compare the corresponding highlighted
components:

N− sent > N− sent− 1

=⇒ N− sent > s · (N− sent− 1) (0 ≤ s ≤ 1)
=⇒ N− sent ≥ s · (N− sent− 1) + 1

=⇒ s · (N− sent) ≥ s · (s · (N− sent− 1) + 1) (s ≥ 0)
=⇒ I ≥ Φbrp(I)

Based on this comparison, we conclude that Φbrp(I) ⊑ I holds, and therefore I is indeed
a wp-superinvariant.

102

APPENDIX E

VERIFICATION TIME

E.1 Probability of Success

sendPacket sendPacket BRP BRP
upper bound lower bound upper bound lower bound verified? time (s)

x ✓ 5.12

x ✓ 0.01

x timeout

x ✓ 0.03

x x ✓ 5.16

x x ✓ 5.14

x x ✓ 5.11

x x ✓ 0.03

x x ✓ 0.04

x x timeout

x x x ✓ 5.15

x x x ✓ 5.15

x x x ✓ 5.12

x x x ✓ 0.06

x x x x ✓ 5.21

Table E.1: The verification results and time when verifying the upper and lower
bounds of the probability of success of sendPacket and BRP. An ‘x’ indicates that
the procedure is included, and all verification times are an average of 5 trial runs.
Note that the procedure verifying the trivial lower bound of sendPacket is included.

103

E.2. NUMBER OF FAILURES APPENDIX E. VERIFICATION TIME

E.2 Number of Failures

sendPacket sendPacket BRP BRP
upper bound lower bound upper bound lower bound verified? time (s)

x ✓ 0.20

x ✓ 0.01

x timeout

x ✓ 0.01

x x ✓ 0.21

x x ✓ 0.30

x x ✓ 0.21

x x ✓ 0.11

x x ✓ 0.02

x x timeout

x x x ✓ 0.31

x x x ✓ 0.22

x x x ✓ 0.31

x x x ✓ 0.12

x x x x ✓ 5.32

Table E.2: The verification results and time when verifying the upper and lower
bounds of the expected number of failed transmissions of sendPacket and BRP. An
‘x’ indicates that the procedure is included, and all verification times are an average
of 5 trial runs. Note that the procedures verifying the trivial lower bounds of both
programs are included.

E.3 Number of Sent Packets

BRP BRP
upper bound lower bound verified? time (s)

x ✓ 0.39

x ✓ 0.01

x x ✓ 0.11

Table E.3: The verification results and time when verifying the upper and lower
bounds of the expected number of sent packets of BRP. An ‘x’ indicates that the
procedure is included, and all verification times are an average of 5 trial runs. Note
that the procedure verifying the trivial lower bounds is included.

104

	Acknowledgements
	Introduction
	Background
	Probabilistic Programs
	Weakest Preexpectations
	Weakest Liberal Preexpectations
	Reasoning About Loops
	Expected Runtimes
	Termination

	Caesar
	Proof Rules for While Loops

	Bounded Retransmission Protocol
	Abstraction for Verification

	Related Work
	Methodology
	BRP Abstraction
	pGCL Implementation
	Verification Properties

	Manual Calculations
	From WP-Calculus to Caesar
	Invariants
	pGCL to HeyVL

	Caesar Verification

	Theoretical Verification
	Initial Attempt
	Loop-unrolling using Caesar

	SendPacket
	Termination
	Probability of Success
	Expected Number of Failures

	BRP
	Termination
	Probability of Success
	Expected Number of Failures
	Expected Number of Sent Packets

	Results
	Geometric Program
	Trials
	Failures

	Practical Verification
	Invariants
	From pGCL to HeyVL
	Exponentials

	Results

	Discussion
	BRP Abstraction
	Theoretical Verification
	Translation Steps
	Proof Rules
	pGCL to HeyVL

	Translation Observations
	Practical Verification Results
	A Guide to Caesar
	Advantages
	Limitations
	Recommendations

	Conclusion
	Future Work
	Address Existing Issues
	Tool Improvements
	Further Evaluation

	Fixed-Point Iteration
	Initial Attempt
	SendPacket
	Probability of Success
	Expected Failed Transmissions

	BRP
	Probability of Success
	Expected Failed Transmissions
	Expected Sent Packets

	Supremum Simplification
	SendPacket Failed
	BRP TotalFailed
	BRP Sent

	Suprema as Invariants
	SendPacket
	Probability of Success
	Expected Number of Failures

	BRP
	Probability of Success
	Expected Number of Failures
	Expected Number of Sent Packets

	Superinvariants
	SendPacket
	Expected Number of Failures

	BRP
	Probability of Success
	Expected Number of Failures
	Expected Number of Sent Packets

	Verification Time
	Probability of Success
	Number of Failures
	Number of Sent Packets

