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Abstract

Robotic systems require accurate and real-time perception to interact effectively with objects
in diverse and dynamic environments. However, many existing vision pipelines struggle to gen-
eralize and fail to meet real-time constraints. This study shows that segmentation, tracking,
and stereo-based depth estimation can be combined into a generalizable, real-time framework
for object-level robotic interaction. The proposed framework integrates prompt-based segmen-
tation (SAM2), a zero-shot text-based open-set detector (GroundingDINO), and stereo depth
estimation using the ZED Mini stereo camera. It supports segmentation using language or
spatial prompts and tracks segmented objects across frames using a modified memory mecha-
nism. An optional co-planar refinement module, based on hybrid plane fitting using RANSAC
and WLS, enhances object-level depth within segmented masks. The framework is evaluated
through robotic grasping experiments across controlled scenarios, including translucent objects,
low-contrast backgrounds, and cluttered scenes, at both 720p and 1080p resolutions. Quantita-
tive results show accurate segmentation in well-contrasted scenes, reliable object tracking, and
consistent depth estimation, with real-time performance maintained above 10 FPS. Performance
degrades in cluttered scenes and as the number of tracked objects increases. The refinement
module improves depth quality in segmented regions but introduces computational overhead
and may oversimplify curved surfaces. Although generalization was demonstrated across tested
conditions, all experiments were conducted in a controlled lab setting. The results confirm that
the framework enables real-time object-level visual feedback for robotic manipulation under
constrained conditions, demonstrating potential for deployment in dynamic environments.
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Chapter 1

Introduction

1.1 Research introduction
In robotic systems, visual sensing enables robots to perceive their surroundings, recognize and
localize objects, and understand the spatial layout of the environment. A key aspect of this per-
ception is accurate depth estimation, which enables robots to perform fine-grained tasks such
as grasping, navigation, and obstacle avoidance when combined with object detection, shape
recognition, and tracking. To interact effectively with their surroundings, robotic systems must
process this visual information in real-time [1]. Achieving these capabilities requires develop-
ments in electronics, mechanics, and artificial intelligence [2]. These developments enable robots
to operate in dynamic environments and perform tasks that can go beyond traditional predefined
tasks.

Dynamic environments refer to robot surroundings where conditions can often change. These
settings may include moving objects, unstructured layouts, various objects requiring interaction,
or changing deployment locations. The robotic system must be able to adapt to environments
that differ from traditional static scenarios, where conditions remain unchanged after initial
setup. Vision sensors provide rich and detailed information about the environment without
prior knowledge of the deployment environment [3, 4]. Adaptability to changing conditions is
particularly critical in scenarios involving human-robot interaction and collaboration, such as
action and gesture recognition, robot movement in human spaces, object handover and collab-
orative actions, social communication, and learning from demonstration [4].

Depth information can be obtained using a variety of sensors. One of the most popular sensors
is LiDAR, which uses laser technology to measure distances. However, the use of LiDAR as a
depth sensor for robotic systems can be limited. One major limitation is its sparse point density,
which increases with object distance [5,6]. As a result, depth completion techniques are required
to generate the dense depth maps needed for precise robotic tasks [6, 7]. Furthermore, LiDAR
sensors do not provide color information, which can be used as an additional cue to understand
the scene, and reliable sensors remain expensive, restricting their accessibility and adoption.
Like cameras, LiDAR performance also degrades under challenging environmental conditions
such as sunlight, rain, or fog [8].

Advancements in deep learning have led to a growing focus on image-based methods using Convo-
lutional Neural Networks (CNNs), which have demonstrated strong performance in stereovision-
based depth estimation [9–12]. Small cameras offer an affordable and space-saving option for
deployment in (compact) robotic systems. However, these methods are not without challenges.
Matching pixels between stereo images to establish correspondences is computationally inten-
sive, especially in scenes lacking distinctive visual features. Additionally, parts of the objects
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can be occluded in one camera view but not in the other, complicating the matching process.

However, depth information alone is often insufficient for robot interaction with specific objects.
Robots must be able to distinguish target objects from other surrounding elements. Although
object detection techniques provide useful bounding boxes, they often lack the precision required
for accurate robotic interaction tasks, especially in cluttered or complex scenes [13]. A more
detailed representation can be achieved using image segmentation, which divides the scene into
discrete groups of pixels called image segments. These segments provide detailed pixel-level
information about the shape, boundary, and location of objects, which is crucial for precise
robotic manipulation [14–17].

The deployment of segmentation models in robotics poses multiple challenges. First, deep learn-
ing segmentation models typically require more computational resources, limiting their appli-
cability in real-time robotic systems. In addition, segmentation models are often trained for
specific tasks or environments, limiting generalization to dynamic environments. In such en-
vironments, segmentation models must be able to perform zero/few-shot segmentation, which
means they can segment the scene with little to no additional labeled data required [18]. Recent
advances in prompt-based segmentation models offer a solution to the generalization problem.
These types of segmentation models leverage foundation models pre-trained on large and di-
verse datasets, capable of performing a wide range of segmentation tasks without task-specific
retraining [19,20]. Instead of retraining all the model parameters for each new task, the models
are guided by visual or textual prompts to achieve strong zero/few-shot performance without
requiring additional labeled data.

Segmenting entire scenes for every frame is computationally expensive. An alternative ap-
proach involves tracking specific objects over multiple frames without re-segmenting each frame.
This process involves two tasks: Video Object Segmentation (VOS) and Video Object Tracking
(VOT) [21]. The VOS task focuses on extending segmentation across multiple frames and creat-
ing precise object masks. The VOT task aims to follow the location of objects over time without
losing their location. The combination of both tasks enables robust and accurate segmentation
tracking.

Real-time responsiveness ensures that robotic systems can react to their visually observed envi-
ronment while maintaining reliability in depth estimation, segmentation, and tracking tasks. Re-
cent advances in deep learning have increased computational complexity. Nevertheless, robotic
systems must still achieve low-latency visual processing. Therefore, it is essential to balance the
frame rate and the precision of the model to maintain responsibility and reliability.

1.2 Problem formulation
Without robust visual sensing, robotic systems must rely solely on non-visual sensor feedback.
This severely limits their situational awareness and adaptability, especially in dynamic or un-
structured environments. This study explores the feasibility of designing a framework that
integrates stereovision-based depth estimation, pixel-level segmentation, and object tracking
techniques into a real-time visual sensing system designed to generalize to different environ-
ments. Although each component is well established, combining them into a single pipeline
that operates accurately, generalizable, and in real-time on a live camera stream has not, to the
author’s knowledge, been developed. Current approaches either lack real-time performance, fail
to generalize, or rely on specific training data. These limitations prevent robots from interacting
effectively with different environments. To evaluate the feasibility of the framework, this study
uses robotic grasping as a concrete test case. This downstream robotic interaction task requires
precise and timely perception of object shape, location, and depth, especially when interacting
with previously unseen objects. It is a representative challenge to assess whether the frame-
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work can support real-time, generalizable robotic manipulation. The design of the framework is
structured around the following objectives:

1. Stereovision-based depth estimation: Providing the precise distance information re-
quired for object manipulation. The focus is on estimating the depth of relevant objects
within the scene rather than full-scene depth estimation.

2. Pixel-level segmentation: Delivering detailed scene understanding at the pixel level by
providing precise object masks and boundary information.

3. Object tracking during live camera stream: Maintaining object identity and seg-
mentation over time, using only past and current frames.

4. Real-time responsiveness: Achieving frame rates that enable the system to respond
in real-time to the environment. A minimum framerate of at least 10 frames per second
(FPS) is considered sufficient to perform tasks such as robotic grasping.

5. Generalizable performance: Ensuring the framework can generalize to different envi-
ronments and/or objects by achieving zero-shot/few-shot performance. This means the
entire framework can generalize to unseen environments and objects without requiring
additional steps.

1.3 Contributions and research question
This study contributes to the field of robot interaction based on vision by developing and analyz-
ing a framework for real-time generalizable visual feedback using simultaneous depth estimation,
segmentation, and tracking. By designing the method to work in dynamic environments, the
intended goal is to generalize across different objects and environments. This makes the method
suitable for a wide range of robotic applications. Although the method will be tested on the
Franka Emika robotic arm at the Nakama Robotics Lab, University of Twente, the lab serves as a
controlled validation setting. The research output is intended for a broader audience, including
those interested in generalizable vision-based robot interaction, learning from demonstration,
and mobile robot deployment. The work of this study does not attempt to optimize the ar-
chitecture for specific stated design constraints but instead evaluates feasibility under realistic
operational conditions.

This study addresses the following main research question:

• What design and integration strategies are feasible for enabling real-time segmentation,
tracking, and depth estimation in a stereo vision framework that generalizes across envi-
ronments for object-level robotic interaction?

To support this, the following subgoals are defined:

• Assess whether the framework pipeline produces reliable segmentation and depth output
to perform a downstream robotic grasping task, without environment-specific tuning.

• Identify design strategies that enable segmentation-based object tracking using a live cam-
era stream while maintaining real-time performance.

• Explore how image resolution and the number of tracked objects affect the real-time per-
formance of the framework.
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Chapter 2

Background

2.1 Stereo depth estimation

2.1.1 Stereo depth estimation problem

A stereo camera captures two images of the same scene from slightly different viewpoints, en-
abling the estimation of absolute depth, which refers to the actual distance from the camera to
objects in the scene [22, 23]. By matching corresponding points in both images, it is possible
to compute the disparity. Disparity is the difference in the horizontal pixel positions of the
same point across the two stereo images. Triangulation estimates object depth by leveraging the
known geometry of the stereo camera setup and the computed disparity. The general simplified
stereo depth estimation problem is shown in Figure 2.1.

Image plane Image plane

f f

Baseline BOptical Center OL Optical Center OR

pL(xL, yL) pR(xR, yR)

P(X,Y,Z)

Z Depth

LEFT LENS RIGHT LENS

Figure 2.1: Schematic illustration of the stereo depth estimation problem. The diagram
represents two camera viewpoints separated by baseline B, where a scene point P (X,Y, Z)
is projected onto both image planes at PL(xL, yL) and PR(xR, xL). The disparity is defined
as the difference in pixels between projected coordinates, and the depth Z is computed using
the inverse relationship with disparity.

Two corresponding image points are identified in the left and right camera views, forming equiv-
alent triangles. The relationship between disparity and depth is given by:
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disparity = xL − xR =
Bf

Z
⇒ Z =

Bf

xL − xR
. (2.1)

Where:
xL − xR : Disparity, the pixel shift between the corresponding points in the image plane,
B : Baseline, the distance between the two cameras,
f : Focal length of the camera,
Z : Depth, the distance of the point from the camera.

The depth of a point in a scene is inversely proportional to the disparity between its projections
on the left and right image planes. Points closer to the camera appear farther apart in the two
images, while distant points appear closer together. Using this principle, the depth map can
be calculated for individual pixels in the scene. The stereo depth estimation problem can be
addressed using various methods. Early methods rely on traditional stereo-matching algorithms,
while recent ones use deep learning-based approaches.

2.1.2 Traditional methods

Stereo depth estimation is based on the concept of epipolar geometry. When the optical axes
of both lenses are aligned horizontally, which means that the lenses are at the same height,
the search for corresponding points can be constrained to a single horizontal line, known as
the epipolar line. By restricting the search space to this one-dimensional axis, the algorithm’s
computational complexity is reduced, transforming the multidimensional problem of stereo-
matching into a one-dimensional problem. Traditional stereo matching algorithms are typically
classified into three categories: local matching, global matching, and semi-global matching,
according to the pixel range they process [24,25].

• Local Matching: In local matching, a small neighborhood is compared around each
pixel in one image with the corresponding region in the other. The most similar region
is identified, and its center is used as the matching point. Although local matching is
computationally efficient, it may lack high accuracy, particularly in scenes with ambiguous
data.

• Global matching: Global matching, on the other hand, computes a cost map between a
pair of stereo images and utilizes energy-based optimization techniques to find an optimal
path in the cost map. This optimal point serves as the matching point for each pixel in
the other image. Although global matching offers high accuracy, it often comes with a
higher computational cost.

• Semi-global matching: Semi-global matching provides a balance between efficiency and
accuracy by computing the cost function for each pixel and aggregating matching costs
from multiple directions. This method improves depth estimation by enforcing smooth-
ness constraints across the disparity map while maintaining reasonable computational
complexity. This approach offers a good compromise between computational efficiency
and accuracy.

Although traditional methods can deliver reliable results in well-structured scenes, they suffer
from major limitations in complex environments. Occlusions, featureless surfaces, and reflective
objects can reduce performance, as these methods do not understand object shapes and/or
scene semantics [26]. To overcome these challenges, modern approaches redefine stereo depth
estimation as a learning-based problem. The next section explores deep learning-based methods
for depth estimation.

5



Chapter 2: Background University of Twente

2.1.3 Deep learning-based methods

Deep learning-based methods often depend on large annotated stereo datasets to achieve high
performance and adaptability to different environments. However, the availability of high-quality
stereo datasets is very limited [27]. Most available datasets are designed for specific use cases,
such as autonomous driving. This scarcity limits the training of stereo models and limits their
ability to generalize to dynamic real-world environments. As a result, many learning-based
approaches require extensive dataset-specific fine-tuning.

Deep learning-based methods are divided into two main categories: feature-based disparity
matching and end-to-end disparity matching. The former uses a hybrid approach that inte-
grates learned representations with traditional stereo matching, while the latter directly predicts
disparity maps using fully deep networks.

Feature-Based Disparity Matching

The methods in this class mimic traditional stereo-matching techniques by explicitly learning
how to match pixels in input images by minimizing an energy function formulated as [12]:

E(D) =
∑
x

C(x, dx) +
∑
x

∑
y∈Nx

Es(dx, dy). (2.2)

Where:
D : Disparity map assigning a disparity dx to each pixel x,
x, y : Image pixels,
Nx : Neighborhood of pixel x,
C(x, dx) : Matching cost at pixel x for disparity dx,
Es(dx, dy) : Smoothness term encouraging similar disparities between x and y,
E(D) : Total energy to be minimized.

These correspondences are converted into a disparity map and then into depth at each pixel.
The general outline of a feature learning architecture consists of three main modules [12,28]:

• Feature Extraction Module: Uses CNNs or other architectures to extract features from
input images.

• Feature Matching and Cost Aggregation Module: Matches features from the left and right
images, creating a cost volume that represents disparity likelihoods at each pixel.

• Disparity/Depth Estimation Module: Processes the cost volume to compute a final dis-
parity map, which is then converted to depth using known camera parameters.

In feature-based matching methods, each module is trained independently or in stages. The
training optimizes each component to perform its specific function effectively and requires mul-
tiple passes through the network before minimizing the cost function. This approach ensures
that features are accurately matched and that disparities are estimated with precision.

In addition to the main modules, various extensions and/or refinements have been proposed
to enhance performance. Some methods incorporate refinement modules to iteratively improve
the accuracy of the depth maps [28]. Others extend the approach to multiview setups, taking
advantage of additional perspectives to provide a more robust depth estimation [29]. These
variants offer improved precision and applicability in more complex and dynamic environments.
However, deployment in real-time scenarios is challenging due to higher computational costs.
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End-to-End Disparity Matching

Methods in the second class solve the stereo-matching problem using an end-to-end trainable
pipeline. During training, the entire disparity estimation process is optimized using a loss
function that supervises the predicted disparity map. These models benefit from an architecture
that avoids separate matching and regularization modules, instead relying on joint optimization
using loss functions [12,30]. Unlike feature-based methods that process local patches, end-to-end
methods extract dense feature maps from the entire image pair. These feature maps maintain
or reduce the spatial resolution of the input images, thereby capturing a more global context of
the scene.

A crucial component in end-to-end methods is the use of cost volumes [12, 31]. Cost volumes
represent the similarity between the features of pixels at different disparities by computing the
feature correspondence between the left and right images. Traditional hand-made matching
costs are replaced by learned cost functions, allowing deep networks to optimize the disparity
estimation. End-to-end disparity matching can be approached using supervised, unsupervised,
and weakly supervised learning:

• Supervised Learning: These methods require a large amount of ground truth disparity
data for training. Models learn to predict disparity maps by minimizing the difference be-
tween predicted and ground-truth disparities. Although highly accurate, the requirement
for extensive labeled data can be a limitation.

• Unsupervised Learning: These methods do not require ground-truth disparity data. In-
stead, they rely on the photometric consistency between left and right images to supervise
learning. The model aims to minimize the photometric error between the reconstructed
image and the original image without supervision. This approach reduces the dependency
on labeled data, but may struggle with textureless regions and occlusions.

• Weakly Supervised Learning: These methods combine supervised and unsupervised
learning elements. They may use sparse ground-truth data or weak supervisory signals
(e.g., depth from other sensors, semantic information, edge maps) to guide the learning
process. This approach aims to balance the accuracy of supervised learning with the data
efficiency of unsupervised learning.

End-to-end trained models often produce lower-resolution disparity maps. Instead of upsam-
pling the cost volumes, which is computationally expensive due to the high dimensionality, the
predicted low-resolution disparity maps are upsampled. Lightweight 2D convolutional blocks
perform this refinement by progressively reintroducing high-frequency details [12, 32, 33]. Re-
finement of the global context information using these blocks improves the accuracy of the
disparity, while avoiding high-resolution cost-volume processing, reducing computational cost
and memory usage. This strategy is particularly beneficial for real-time depth estimation.

2.2 Image Segmentation
Image segmentation involves partitioning the image into several meaningful segments. This pro-
vides the image with global information about the scene and its content. With increasing success
using deep learning models in different segmentation tasks, it has been deployed in a wide range
of computer vision tasks such as scene understanding, medical image analysis, robotic perception,
video surveillance, augmented reality, and image compression [34]. This study has three types of
segmentation methods worth mentioning: semantic segmentation, instance segmentation, and
the more recent promptable segmentation.
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2.2.1 Semantic segmentation

Semantic segmentation is the subclass of segmentation that deals with determining the semantic
class to which each pixel of an image belongs [34,35]. It is a pixel-level labeling task within a set
of (possibly different) object classes that provides a dense understanding of objects and classes
in the scene (see Figure 2.2a).

Traditional methods use manually crafted image features for model training. The development
of Fully Convolutional Networks (FCNs) for semantic segmentation enabled end-to-end learning
by using end-to-end trainable convolutional networks [36]. The proposed architecture used an
encoder-decoder structure. The encoder downsamples the input image using convolutions from
a feature map with high resolution to a feature map with a lower resolution representation.
The decoder performs upsampling on the compressed representation to transform the output
with embeddings back to the original size. This encoder-decoder structure has the advantage of
being able to learn high-level and low-level features, which are essential for accurate semantic
segmentation.

Improvements have been made to the structure of FCNs. U-Net introduces skip connections
between the encoder and decoder [37]. This preserves spatial details during upsampling by
directly using the encoder’s high-resolution features in the decoder’s layers. Skip connections
help recover textures lost during downsampling. This design is particularly effective for tasks
that require precise localization.

The most recent development is the usage of Vision Transformers (ViTs) for semantic segmenta-
tion tasks. These architectures have a multi-head self-attention mechanism, allowing the model
to capture long-range dependencies and global context of the image [38,39]. ViT-based segmen-
tation models, such as SETR [39] and Mask2Former [40], have demonstrated the effectiveness
of transformer-based architectures by combining ViTs with CNN-based designs, allowing the
model to handle complex scenes with various object classes. However, a notable drawback of
ViTs is their dependence on large training data [38]. To mitigate this limitation, self-supervised
learning approaches have been explored, enabling ViTs to learn meaningful representations using
unlabeled data [41].

2.2.2 Instance segmentation

Instance segmentation is a subclass of segmentation that determines the semantic instances of
individual objects in the scene. In contrast to semantic segmentation, which assigns a class
label to the pixels in the mask, instance segmentation classifies pixels and distinguishes different
instances [14]. Multiple instances of the same class are segmented into unique segmented masks
(see Figure 2.2b), enabling object separation.

With the adaptation of FCNs for instance segmentation tasks the Mask R-CNN network was
proposed [42]. This network builds upon the Faster-RCNN object detection network by adding
a segmentation network. A Region Proposal Network is used to generate candidate regions that
are likely to contain objects, which are then refined and classified, before predicting the pixel-
level masks. Since instance segmentation requires more complex output predictions compared
to semantic segmentation and object detection, real-time applications have been limited. The
first major model that addresses this limitation is YOLOACT [43]. It adopted a fully convolu-
tional topology that ran two tasks in parallel: mask prototype generation and mask coefficient
estimation, increasing inference speed while maintaining accuracy for the segmentation tasks.

Another different approach to instance segmentation has been made in SOLO (Segmenting
Objects by Locations) [44]. SOLO reformulates instance segmentation as a category-aware pixel
localization problem, diverging from the region proposal-based method first used in Mask R-
CNN. The model decouples the instance segmentation task into two parallel branches: a category
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branch and a mask branch. The category branch predicts the semantic class in each grid cell,
while the mask branch generates the corresponding instance mask. Since SOLO has location-
aware information, complex post-processing steps such as Non-Maximum suppression (NMS)
are eliminated, increasing computational efficiency.

Instance segmentation also adopted the usage of ViTs. Transformer-based object detection
models, such as DETR, have been extended with an additional mask prediction head attached
to the output of the decoder, enabling instance-level mask generation [40,45]. The self-attention
mechanism of ViTs can capture global context and long-range dependencies. By formulating
the problem as a set prediction problem, the need for hand-designed components such as anchor
boxes and NMS is eliminated. This allows for an end-to-end training approach, first introduced
in the ISTR model [46]. This training method enables the model to predict low-dimensional
masks and match them with ground truth mask embeddings, resulting in a set-based loss.

More recent advances in instance segmentation focus on multi-task learning objectives by devel-
oping hybrid structures. Swin Transformer [47] combines FCNs and ViTs with shifted windows,
achieving dense global and local features. This information maintains versatility, making it us-
able for a broader range of vision tasks, including instance segmentation, image classification,
and object detection. In addition to fully supervised end-to-end trainable methods, recent tech-
niques use self-supervised and semi-supervised learning to address the issues of requiring large
datasets for training vision transformers. Adopting these training techniques allows for better
generalization outside of the training dataset.

(a) Semantic segmentation (b) Instance segmentation

Figure 2.2: Example distinction: Semantic segmentation (a) and Instance segmentation
(b) [48].

2.2.3 Promptable segmentation

Promptable segmentation builds on the concept of prompt-based learning and tuning, originally
developed in natural language processing (Natural Language Processing (NLP)). This technique
has recently been extended to ViTs [19, 20]. It enables large foundation models to adapt their
pre-trained knowledge to downstream segmentation tasks using prompts as guidance. The idea
behind prompt-based learning in foundation models is that the pre-trained visual backbone
remains frozen, while only a small set of tunable parameters is optimized. By keeping the
visual foundation model frozen during training, segmentation can be dynamically guided by
task-specific prompts, allowing flexibility without retraining the entire model. This approach
improves generalization for diverse tasks and datasets. Prompts can take on various forms, such
as points, boxes, text, or even other images, to guide the segmentation process.
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Key breakthroughs in promptable segmentation are the Segment Anything Model (SAM) [49]
and its successor Segment Anything Model 2 (SAM2) [50]. The following two sections outline
these two segmentation models in greater detail.

Segment Anything Model (SAM)

SAM [49] is a foundation model for zero-shot segmentation that generates output masks based
on user-defined prompts. It supports four types of input prompts: points, bounding boxes,
masks, or free-form text. There are three main components in the SAM model, as illustrated in
Figure 2.3: a large image encoder, a flexible prompt encoder, and a fast mask decoder.

Unlike semantic segmentation or instance segmentation, SAM is designed to be class-agnostic.
This means that it does not associate segmentation masks with predefined object categories.
Instead, it produces binary masks that segment objects based solely on the provided prompts,
such as points, boxes, or masks. Although it is possible to use free-form text prompts through
CLIP (Contrastive Language-Image Pretraining) [51], this introduces only a limited form of
semantic understanding. As noted by the authors, the text-to-mask capability is exploratory
and not robust in most cases. Although users can describe objects using natural language, the
model output remains a binary mask without an attached semantic label.

Figure 2.3: Overview of Segment Anything Model (SAM). The larger image encoder
produces lower-resolution image embeddings. The image embedding can be directly com-
bined with the mask points box or text prompts by the mask decoder to output predicted
segmentation masks [49].

Image Encoder: A Masked Autoencoder (MAE) [52] pre-trained ViT serves as the back-
bone for processing images into a generalized feature representation. Specifically, SAM uses the
ViT-Huge model using 16x16 patch embeddings, which provides a strong balance between com-
putational efficiency and detailed feature extraction. The MAE pretraining allows the encoder
to learn robust feature representations by reconstructing missing image patches during training.
A larger ViT has been selected as an image encoder to extract a higher-dimensional feature
representation, capturing both fine-grained details and global context. The higher number of
Floating Point Operations per second (FLOPs) associated with larger image encoders increases
the computational load. Since the image encoder runs once per image, some of the load is shifted
to the lightweight mask decoder.

Prompt Encoder: For the three available spatial prompts (points, boxes, and masks), SAM
employs a learnable embedding approach, where the input coordinates are projected into a high-
dimensional space. These embeddings act as query representations, guiding the model to focus
on the relevant image features extracted by the encoder. For free-form text prompts, SAM uses
CLIP [51] to connect text descriptions with visual features. The trained CLIP text encoder
understands the meaning of words and can match them with objects in the image. This allows
SAM to process text-based queries and generate object masks using user-input text in natural
language.
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Mask Decoder: The mask decoder is responsible for generating the final segmentation masks
by combining image features from the encoder with embedded prompts from the prompt en-
coder. These inputs are processed alongside an output token, leveraging self-attention and
cross-attention mechanisms to refine the output. The attention mechanisms operate in both the
image-to-prompt and prompt-to-image directions, ensuring that all embeddings interact and are
updated correctly. The final prediction is made using a multilayer perceptron as a dynamic
linear classifier. This results in a total of three possible predictions, of which the most confident
is chosen.

SAM was trained on the SA-1B dataset1, one of the largest segmentation datasets to date,
containing 11 million images and 1.1 billion segmentation masks. This large-scale data set was
designed to improve generalization between various objects, scenes, and lighting conditions,
allowing zero-shot performance in segmentation tasks.

Although SAM can process the prompts in real time, the overall performance of the model does
not meet the real-time requirements when using large image encoders, as stated as an important
limitation in the paper. The ViT-Huge backbone in SAM is highly effective in extracting de-
tailed feature representations, but this comes at the cost of high GPU memory usage, increased
inference latency, and increased number of floating-point operations. Several adaptations have
been made to the original model that focus on reducing computational costs while maintain-
ing accuracy to address these limitations. These include EfficientSAM [53], MobileSAM [54],
TinySAM [55], EdgeSAM [56] and FastSAM [57].

In addition to computational constraints, SAM lacks tracking capabilities in its design, making it
unsuitable for VOS and VOT without requiring additional models. SAM generates independent
segmentation masks per frame without tracking the masks across multiple frames. External
tracking mechanisms have been used in combination with SAM to make tracking tasks possible:

• XMem [58] maintains a memory bank with past features, allowing for consistent segmen-
tation between multiple frames. However, using XMEM introduces additional latency as
a result of feature conversion, storage, and retrieval overhead.

• Cutie [59] uses feature aggregation and efficient memory updates. However, it still relies
on an external memory network, which increases computational costs.

Segment Anything Model 2 (SAM2)

SAM2 [50] is the improved foundation model for prompt-based segmentation, building on the
original SAM while introducing major improvements in efficiency and implementing video track-
ing using memory integration. Using a memory bank and the memory attention mechanism
enables the tracking of objects across frames and reduces the required computational costs,
making it ideal for real-time tasks VOS and VOT. The updated architecture of SAM2 is shown
in Figure 2.4. SAM2 introduces several key architectural components: a refined image encoder,
an enhanced prompt encoder, a memory-aware mask decoder, a memory bank, and a memory-
attention mechanism.

1SA-1B dataset Information: https://ai.meta.com/datasets/segment-anything/

11

https://ai.meta.com/datasets/segment-anything/


Chapter 2: Background University of Twente

Figure 2.4: Overview of Segment Anything Model 2 (SAM2): prompt-based segmenta-
tion using boxes, points, or masks (left), the SAM2 foundation model with image encoder,
prompt encoder, mask decoder, and memory bank (middle), and the SA-V training dataset
(right) [50].

Image Encoder: The image encoder has been upgraded to Hiera ViT [60]. The Hiera encoder
is pre-trained using the strong visual pretext MAE. This architecture simplifies multi-stage vi-
sion transformers by organizing them hierarchically. The approach suggests that spatial biases
required for vision tasks can be learned through proper pertaining instead of requiring architec-
tural complexity.

Prompt Encoder: The prompt encoder in SAM2 follows the same design as in SAM. The
integrated vision model, CLIP, has been removed to allow better optimization and compilation
of spatial prompts (box, point(s), mask), resulting in more efficient inference. Additionally, the
text-to-mask functionality provided by CLIP in SAM was reported to be exploratory and not
robust in most cases.

Memory encoder: The memory encoder processes the segmentation mask from the mask
decoder and encodes it in a small memory embedding. This is achieved by downsampling the
mask by using a lightweight convolutional module and fusing it with the frame embedding from
the image encoder. These embeddings are passed through additional convolutional layers before
being stored in the memory bank.

Memory bank: The memory bank is one of the key innovations implemented in SAM2. It
uses a FIFO queue that retains segmentation information from already segmented frames, which
enables more efficient segmentation and tracking. Feature maps from the last N unprompted
frames are stored along with segmentation information from M prompted frames. This ensures
that the model has both information on recent tracking history and reference prompt(s). Addi-
tionally, the memory bank integrates lightweight object pointers derived from the mask decoder’s
output to capture high-level semantic information about the segmented object(s).

Memory attention: The memory attention mechanism allows SAM2 to associate objects
between frames by attending stored representations in the memory bank. This mechanism
refines the predictions by taking advantage of the temporal context. For video tracking, the
mask prediction from the previous frame is used as a reference in conjunction with memory
attention. Self-attention is used for the current frame, while cross-attention is used between the
previous frame’s information stored in the memory bank.

Mask Decoder: The memory-aware mask decoder refines the segmentation output by com-
bining spatial and temporal information. The mask decoder in SAM2 is optimized to integrate
prompt information with memory-based attention.
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SAM2 is trained on the Segment Anything Video (SA-V) dataset2. The dataset provides high-
quality segmentation annotations created in video sequences and images. This ensures that
models can learn and handle temporal variations, occlusions, and complex object interactions.
As a result, SAM2 supports zero-shot segmentation capabilities, which is essential for general-
izing across different environments without requiring task-specific retraining [50].

SAM2 effectively isolates objects in simple scenes where salient objects stand out clearly from
the background [61]. The model achieves high segmentation accuracy in diverse environments,
and it generalizes well to unseen object categories. However, in more challenging environments,
such as cluttered scenes, occlusions, or instances where objects blend into their surroundings, the
ability to generalize becomes less reliable. In these cases, the model struggles to define precise
boundaries, which is particularly limiting for tasks that require high-resolution fine-grained
segmentation.

The integrated SAM2 tracking mechanism eliminates the need for external tracking models.
Unlike SAM, which relied on secondary models such as Cutie or XMEM, to enable object
tracking. In addition, the integrated memory mechanism of SAM2 outperforms Cutie and
XMEM [50]. This makes SAM2 the preferred choice for real-time applications.

2.3 Evaluation metrics
Several quantifiable metrics can be used to evaluate segmentation accuracy, depth estimation
accuracy, and performance.

Depth Accuracy

When ground truth depth information is unavailable or difficult to obtain, the reliability of
a depth estimation method can be assessed using 3D geometric references. One of these ap-
proaches involves using fiducial markers with known sizes and easily detectable patterns, such
as ArUco markers [62], as reference points. AruCo markers allow for 6 Degree of Freedom (DoF)
pose estimation, providing position (X,Y,Z) and orientation (θx, θy, θz) relative to the camera
lens, following the standard camera projection model between camera coordinates and world
coordinates [63] (see Figure 2.5).

This relation is mathematically described by the Perspective-n-Point (PnP) projection model,
which requires at least n ≥ 3 projected points to be solvable [64]. This model is expressed as:

uv
1

 = K[R | t]


X
Y
Z
1

 . (2.3)

Where:
(u, v) : 2D pixel coordinates in the image,
K : Camera intrinsic matrix,
R : 3x3 rotation matrix (extrinsic parameters)
t : 3x1 translation vector (extrinsic parameters),
(X,Y, Z) : 3D world coordinates of the marker (with Z as the depth).

Calibrating the camera incorporates intrinsic parameters like focal length and distortion coeffi-
cients into the markers 3D pose estimation.

2SA-V dataset information: https://ai.meta.com/datasets/segment-anything-video/
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Figure 2.5: Illustration of the camera projection model for depth estimation. The figure
shows the relationship between the 3D world coordinates of a marker and its projected 2D
coordinates in the camera frame [63].

Instead of evaluating the error only along the estimated depth axis (Z-axis) in the image coor-
dinate frame, the evaluation projects the estimated points into 3D positions within the camera
coordinate frame to form point clouds. The estimated sensor depth values and the ArUco-
derived ground truth values are projected. The error is then evaluated in all three directions
(X,Y,Z), which is a more complete error metric. The Euclidean error between the estimated 3D
points and derived ArUco 3D points is computed as:

e2i =
∥∥∥Pi − P̂i

∥∥∥2 = (
Xi − X̂i

)2
+
(
Yi − Ŷi

)2
+
(
Zi − Ẑi

)2
. (2.4)

Where:
Pi : 3D position estimated by the depth model in the camera coordinate frame,
P̂i : 3D position derived from ArUco markers in the camera coordinate frame,
(Xi, Yi, Zi) : Estimated coordinates of the point,
(X̂i, Ŷi, Ẑi) : Ground truth coordinates of the same point,
ei : Euclidean error between the estimated and ground truth 3D positions.

To analyze depth error behavior, the evaluation groups 3D errors into depth distance bins based
on the derived distance Zj between the ArUco marker and the camera. For each bin centered
around Zj , the evaluation computes the RMSE using Nj points assigned to that bin, where Nj

denotes the number of samples in bin j.

RMSE
(
Zj

)
=

√√√√ 1

Nj

Nj∑
i=1

e2i . (2.5)

Following [63], the evaluation models the Root Mean Square Error (RMSE) values using curve
fitting to describe the depth error characteristics. It applies both a second-order polynomial and
an exponential function to approximate how the error increases with distance.
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Epoly(Z) = aZ2 + bZ + c (2.6a)
Eexp(Z) = aebZ . (2.6b)

The exponential model includes two parameters, a and b, while the polynomial model includes
three: a, b, and c.

Segmentation accuracy

The segmentation evaluation compares the predicted segmentation masks to ground truth an-
notations using two commonly used metrics: Intersection Over Union (IoU) and Boundary
Intersection over Union (BIoU).

IoU: A widely used segmentation metric that measures the overlap between a predicted mask
and its corresponding ground truth. It is defined as the ratio of the intersection area to the
union area:

IoU =
|(G ∩ P )|
|(G ∪ P )|

. (2.7)

Where:
G : Ground truth mask,
P : Predicted mask.

BIoU: Although IoU is a reliable metric for evaluating overall segmentation accuracy, it tends
to introduce a bias towards larger objects. This is because larger objects contribute more to the
total union area, making errors in smaller objects less significant on the overall IoU score [65].
BIoU combines the evaluation of the overall mask and the boundary regions. It is more sensitive
to errors near the edges of the object while considering the rest of the mask (see Figure 2.6).
BIoU can be calculated using the following equation:

Boundary IoU =
|(Gd ∩G) ∩ (Pd ∩ P )|
|(Gd ∩G) ∪ (Pd ∩ P )|

. (2.8)

Where:
G : Ground truth mask,
P : Predicted mask,
Gd : Boundary region of the ground truth mask, dilated by d,
Pd : Boundary region of the predicted mask, dilated by d.
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Figure 2.6: Illustration of Boundary IoU computation. (Numerator) The intersection
between the boundary regions of the ground truth and predicted masks, obtained by dilating
both masks by a distance d. (Denominator) The corresponding union of these boundary
regions. The ratio of these areas is the BIoU [65].

Real-time performance

The performance of a workflow can be evaluated by measuring the speed of execution. This can
be expressed as the amount of FPS the system can process.
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Chapter 3

Methods

3.1 Design considerations
The development of the proposed visual perception framework follows a feasibility-driven de-
sign process. The aim is to integrate well-performing components into a modular pipeline
that satisfies the design objectives stated in Section 1.2. These objectives include: provid-
ing stereovision-based depth estimation for objects, delivering pixel-level segmentation masks
for scene understanding, object tracking to maintain identity and segmentation on live camera
streams, achieving a real-time processing rate of at least 10 FPS, and enabling generalization to
new objects and environments without environment-specific tuning or retraining. This section
discusses the considerations for framework components. The technical implementation details
are discussed in the next section.

Depth estimation using ZED Mini

The internal depth sensing module of the ZED Mini stereo camera was selected to provide dense,
real-time depth maps. This module uses a deep stereo-matching network trained specifically on
stereo image pairs captured with ZED cameras. As discussed in Section 2.1.3, the availability
of high-quality stereo vision datasets is limited, and most are tailored to specific use cases such
as autonomous driving. These limitations make it difficult to train stereo models that gener-
alize well across diverse, dynamic environments. In contrast, the ZED depth model performs
reliably across a range of settings without any retraining, offering zero-shot stereo depth esti-
mation. Since the model runs natively as a compiled, CUDA-accelerated implementation, it
does not introduce additional latency beyond image acquisition. However, because the model is
closed-source, only the final depth map is accessible. Intermediate calculations, such as feature
extraction and disparity, are not exposed. Still, this combination of strong generalization and
real-time performance addresses both the latency and generalization challenges identified in this
study.

Segmentation and tracking with SAM2

Prompt-based segmentation is selected for its strong generalization capabilities. Foundation
models are pre-trained on large and diverse datasets, allowing segmentation for a wide range of
tasks without specific retraining [19,20]. SAM2 extends promptable segmentation by embedding
object memory directly in its architecture, allowing tracking between frames without relying
on separate tracking models. This architectural design simplifies integration and avoids the
latency overhead introduced by adding external tracking models. While the current release
supports both single-image and video-based segmentation, the architecture must be converted
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to work with live camera streams, where future frames are not available. The strong zero-shot
performance and tracking capabilities make SAM2 well-suited to meet the design objectives of
this study.

Text-based detection with Grounding DINO

GroundingDINO [66] is used to reintroduce text-based control while remaining compatible with
the spatial prompt encoder of SAM2. Instead of relying on fixed class labels, the model enables
open-set zero-shot detection through natural language. Using language as prompts aligns well
with the prompt-based design of SAM2. Although alternative open-set detectors were consid-
ered, GroundingDINO was ultimately selected because of its strong zero-shot performance and
its ability to generate precise bounding boxes.

3.2 Framework design
This section provides an overview of the proposed method, which integrates segmentation based
on SAM2 and depth estimation using the Stereolabs ZED-Mini stereo camera. The workflow
consists of multiple interconnected components that process stereo image data to generate object
segmentation masks and the corresponding depth information (see Figure 3.1).

Figure 3.1: Illustrative overview of the designed framework.

The proposed method begins by capturing a stereo image pair using the ZED Mini camera. The
left image is used as input for segmentation, while the right image is used solely for computing
depth. Segmentation is initialized through user-defined prompts, which can be spatial (bounding
boxes or points) or textual. Spatial prompts are passed directly to SAM2, while textual prompts
are first processed by GroundingDINO [66], a language-guided open-set object detector that
returns bounding boxes corresponding to the described objects. These bounding boxes are then
used to initialize segmentation in SAM2. During tracking, segmentation masks from the previous
frame are reused as prompts in subsequent frames. The predicted segmentation masks are passed
to a memory management module, which handles the tracking between frames by selectively
updating the memory based on the valid segmentation masks. In parallel, the ZED’s NEURAL
depth sensing module extracts depth information from the stereo image pair. Optionally, the
resulting raw depth map can be refined by combining it with the segmentation output in a co-
planar depth recovery module. This module aims to improve depth quality within object mask
regions.
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3.2.1 SAM2 adaptations

Since the SAM2 model has already been discussed in Section 2.2.3 with its most important
components highlighted, it will not be repeated here. Instead, only important adaptations made
to the model architecture are discussed. In addition, a highly detailed workflow of the SAM2
model has been created and is provided in Appendix B. This workflow is directly derived from
the original SAM2 paper [50] and the associated source code. It is included in the Appendix
rather than in this section to maintain focus on adaptations made to the model instead of
repeating the official paper.

Memory management

The framework introduces a dynamic memory management method to adapt the memory net-
work of SAM2 for a real-time camera stream. The framework initializes segmentation in the
first frame and is dynamically updated as new frames arrive. Memory is only updated when a
valid segmentation result is available. The system avoids storing empty or low-confidence masks
when an object is occluded or absent, preventing past valid states from being overwritten with
irrelevant data. As a result, even after long occlusions, the memory of that object can be used
as a reference to re-identify the objects based on similarity to the last valid memory entries. The
original memory selection mechanism used a fixed window that slides over embedded memory
frames in the memory bank, relying on cross-attention across both past and future frames. The
redesigned mechanism removes the dependency on future frames, enabling compatibility with
streaming input. It performs cross-attention only between the current frame and valid past
frames. The difference between original memory selection and new memory selection is shown
in Figure 3.2.

Figure 3.2: Schematic overview of the original memory selection (upper part) compared
to the new memory selection (lower part). Older frames are removed to keep memory
efficient for better real-time capabilities. Frames with no valid information (low-affinity
score or occluded) are not used in the new memory selection mechanism.

Text prompt integration

GroundingDINO enables text-based input support, which is not handled by the prompt en-
coder of SAM2. This transformer-based object detector performs open-set object detection by
combining visual and textual information. The model extracts dense image features using a
Swin Transformer [47] as its visual backbone, while a BERT-based encoder [67] processes the
user-provided text prompt to produce a contextual text representation. These two modalities
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are combined in a cross-modality decoder. This decoder performs self-attention on the image
features, self-attention on the text features, and cross-attention between image and text. This
fusion allows the model to localize regions in the image that correspond semantically to the input
text. GroundingDINO does not predict semantic class labels or segmentation masks. Instead,
it predicts bounding boxes for regions that match the text description. These boxes are used
as prompt(s) to SAM2, which predicts segmentation masks for the object(s) defined by the text
prompt.

Tracking

Object tracking is initialized in one of two ways:

1. Using predefined spatial prompts, such as bounding boxes or points provided in the first
frame.

2. Using detections from GroundingDINO, where tracking begins automatically once an ob-
ject matching the text prompt is detected.

The tracking relies on the dynamic memory management approach described in Figure 3.2 to
maintain object associations over time. The per-frame processing time Tframe can be approxi-
mated based on the computational costs of image encoding, mask decoding, memory encoding,
and memory attention, according to:

Tframe = Tie + (Tmd + Tme + Tma) · n. (3.1)

Where:
Tie : Image encoding time,
Tmd : Mask decoding time,
Tme : Memory encoding time,
Tma : Memory attention time,
n : Number of tracked objects.

The performance of the model depends on the number of objects that are tracked, the image
resolution, and the choice of encoders/decoders.

3.2.2 Depth estimation

The internal depth sensing module of the ZED Mini stereo camera provides pixel-wise depth
estimation in real-time. This module generates a depth map at the same frequency as the
captured stereo image stream, ensuring no added latency relative to image acquisition (see
Appendix C.1 for technical specifications). The depth estimation process follows three steps.
First, the camera extracts visual features from the left and right images and performs stereo
matching. Next, it calculates disparity using a low-resolution cost volume. Finally, it estimates
the depth at each pixel using the known stereo geometry and camera intrinsics, as described in
Chapter 2.1. The system then upsamples this lower-resolution depth map to match the input
image resolution, using upsampling functions that recover high-frequency details.

Depth recovery module

The ZED Mini stereo camera provides real-time depth estimation, but raw depth maps often
contain missing or unreliable values that can occur due to the failure of feature matching, tex-
tureless regions, or occlusions. These gaps in the depth map appear as holes with undefined
values. Since object segmentation is performed using the modified SAM2 architecture, informa-
tion on the boundaries of the segmented objects is available. A depth recovery module is used to
refine depth estimates in segmented object regions based on co-planar hybrid plane fitting [68].
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The implemented method assumes that the segmented objects in the scene can be approximated
as piecewise-planar surfaces, meaning that pixels belonging to the same object or region often
share a common co-planar geometric relationship. The depth recovery module fits local planes to
the segmented regions and interpolates missing values. Given a set of valid depth points (x, y, Z)
presented within the segmented object region, the objective is to estimate the best-fitting plane
that interpolates the missing depth values. A 3D plane is defined as:

Z = ax+ by + c. (3.2)

Where a, b, and c are the plane coefficients that describe the plane’s orientation. Different
mathematical approaches can be used to solve and find these plane coefficients. The chosen
method is selected based on the ratio of missing depth values to the total amount of depth
values present in the segmentation mask of a single object (rholes). The choice of plane-fitting
method is determined based on this ratio:

rholes =
Nholes
Ntotal

. (3.3)

If the ratio is within the range 0.7 ≤ rholes ≤ 0.9, the plane coefficients are estimated using
Random Sample Consensus (RANSAC) [69]. RANSAC is effective in rejecting outliers by it-
eratively selecting the best set of plane coefficients. However, it is important to note that the
RANSAC method is demanding in computational time, and in some cases can converge to a
local maximum of a cost function instead of the global maximum. The plane coefficients are
found by maximizing the following function:

[â, b̂, ĉ] = arg max
[a,b,c]

∑
i

fi(a, b, c). (3.4)

Where fi(a, b, c) is defined as:

fi(a, b, c) =

{
1, if |Zi − (axi + byi + c)| < Tresidual

0, otherwise

In this research, a residual threshold (Tresidual) of 2 mm is used.

If rholes < 0.7, a Weighted Least Squares Estimation (WSLE) method is used instead. This is
a more computationally efficient alternative to RANSAC but is more sensitive to noise. Since
the associated confidence levels of the depth values are not available, a less complex weighting
approach is used that relies on predefined weights. Since the ZED stereo model already filters
out the unreliable depth values, they can be assigned a smaller weight. Valid points are assigned
a value of 1, and non-valid values are given a weight of 0.1, ensuring that they contribute
minimally to the plane estimation. The plane coefficients are estimated by minimizing the
following weighted least-squares function:

[â, b̂, ĉ] = arg min
[a,b,c]

∑
i

wi (Zi − axi − byi − c)2 (3.5)

Where wi represents the weight assigned to each pixel according to its reliability.

Depth estimates are first normalized before interpolation to stabilize the plane fitting ap-
proach [70]. Variations in depth values or the distribution of depth values can lead to poor
plane estimations without normalization. The depth map is denormalized after interpolation to
match the original absolute scale of the original depth map.
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When multiple object masks appear in a frame, performing the refinement (either WLS or
RANSAC) sequentially becomes inefficient. Therefore, the framework implements a multi-
threaded processing scheme that refines each object mask in parallel. This allows the refinement
step to scale better when there are multiple tracked objects.
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Chapter 4

Framework evaluation

4.1 Experimental setup
This study evaluates the frameworks ability to produce reliable segmentation and depth outputs
by conducting a series of grasping experiments with a physical robotic setup. The experimental
setup in the lab consists of a Franka Research 31 robotic arm equipped with a ZED Mini stereo
camera, mounted using a custom-designed 3D printed camera bracket. Figure 4.1 presents a
view of the robotic arm in the experimental setup.

Figure 4.1: Franka Research 3 robotic arm with a ZED Mini stereo camera mounted via
a 3D-printed bracket. This setup was used to evaluate the framework in robotic grasping
scenarios.

Since the evaluation focuses on feasibility through design decisions rather than motion planning,
the robot was manually guided to perform a range of grasping actions. The experiments were
conducted on a workstation with an NVIDIA GeForce RTX 3070 GPU and an AMD Ryzen 9
CPU.

Detailed specifications of the ZED Mini can be found in Appendix C.1, full hardware specs in
Appendix C.2, and a schematic of the camera bracket in Appendix C.3.

1https://franka.de/
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The bracket maintains a fixed camera pose relative to the gripper. The camera can be positioned
so that either the left lens, the right lens, or the midpoint between the two aligns with the gripper
center. This study used the left lens, as the framework computes disparity and depth relative to
it. Data were collected at 720p and 1080p resolutions, with the ZED Mini configured to record
at 30 FPS.

4.1.1 Evaluation scenarios

Since the framework uses GroundingDINO for object detection, it supports evaluation on a wide
range of objects. However, this study does not aim to test every possible object. Instead, it
defines a set of controlled scenarios that reflect challenges relevant to object detection, segmen-
tation, and depth estimation.

1. Simple Object Grasping: A scenario with a clearly defined, easily detectable object
used to evaluate baseline performance in object detection and grasping.

2. Translucent Object Detection: A scenario involving a translucent object used to assess
how well the segmentation and depth estimation modules handle transparent materials.

3. Challenging Background Contrast: A scenario in which the object blends into the
background, designed to test the ability to detect objects with low visual contrast.

4. Crowded Scene with Multiple Objects: A scenario containing multiple objects used
to evaluate the systems multi-object tracking and segmentation performance in cluttered
environments.

Each of these scenarios is evaluated at 720p and 1080p to analyze the impact of resolution on
segmentation quality, depth estimation quality, and real-time performance (see Appendix C.1
for resolution specifications).

4.2 Segmentation accuracy evaluation
This evaluation measures segmentation accuracy using the IoU and BIoU metrics defined in
Section 2.3. Annotations were created at both 720p and 1080p resolutions. Rather than labeling
all the frames present in each evaluation scenario, a subset of 10 representative key frames was
selected. These frames were manually chosen to reflect relevant moments, such as occlusions
or close object interactions. The key frames should provide a representative measure of overall
performance without requiring annotations for every frame in the evaluation scenarios, which is
not feasible to obtain in this study.

4.3 Depth accuracy evaluation
ArUco markers can be used to estimate 3D positions and evaluate the accuracy of depth es-
timation methods in 3D space. The previously described depth accuracy evaluation method
described in Section 2.3 is adopted here and is repeated briefly. The depth estimates of the
ZED mini and the ArUco-derived depth values are projected into 3D point clouds within the
camera coordinate frame. The Euclidean distance between each pair of corresponding 3D points
is computed to quantify the error. The Euclidean errors are binned by derived ArUco depth
distances and summarized using the RMSE per depth bin. A second-order polynomial and an
exponential model are fitted to the resulting RMSE curve to capture the relationship between
depth error and distance.

Directly evaluating depth accuracy on curved objects such as apples or water bottles produced
unreliable results. Variations in surface geometry caused large differences in absolute depth that
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made meaningful comparison impossible. To ensure consistent and interpretable measurements,
the evaluation instead used ArUco markers placed on a flat tabletop surface (see Figure 4.2 for
a schematic presentation of the setup). Flat surfaces support stable geometry during capture,
which improves marker detection and ensures more accurate corner point estimation. This setup
enabled precise computation of each markers 3D position in the camera frame, which was then
compared to the corresponding 3D coordinates derived from the ZED depth map. Note that
this is a separate depth evaluation experiment and is not part of the four scenarios described in
Section 4.1.1.

Two separate measurements are performed at both 720p and 1080p resolutions. Measurement 1
uses 6×6 ArUco markers with a size of 60mm. Measurement 2 uses 7×7 ArUco markers with a
size of 150 mm. Since the experiments are captured with the Franka Emika Research 3 robotic
arm, the maximum allowed depth range is limited to ±855 mm, as specified in the Franka
Research 3 datasheet [71]. A depth bin spacing of 20 mm was used in both measurements.

The depth refinement module was not applied because ArUco markers did not produce closed,
consistent shapes suitable for segmentation using SAM2. As the module depends on valid object
masks, it could not process these scenes. As a result, the refined depth map was excluded from
quantitative evaluation. Instead, refinement results are presented qualitatively through visual
examples.

Flat black table surface

AruCo marker (printed on A4)

Stereo Camera

Left lens Right lens

ZED Depth
(stereo)

Estimated
ArUco Depth

ArUco marker (front view)
Camera FOVC

am
er

a
m

ov
em

en
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Figure 4.2: Schematic of the stereo camera setup used for depth accuracy evaluation.
The stereo camera looks downward toward an ArUco marker placed on a flat table surface.
The camera can move vertically relative to the table. The ZED depth (green arrow) is
obtained from the stereo estimation model, while the ArUco depth (red arrow) is derived
from pose estimation. Both depth values are later projected into 3D points in the camera
coordinate frame (not shown), where their difference is used to compute depth estimation
error per bin.

4.4 Performance evaluation
To assess the real-time capabilities of the framework, the average frame processing time was
measured in FPS under various design configurations. Performance is calculated for the three
different depth refinement methods integrated in the framework (None, RANSAC, and WLS),
as described in Section 3.2.2. Tests were conducted at two input resolutions (720p and 1080p)
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and with one, two, and three simultaneously tracked objects. This allows for evaluation of how
the depth refinement method, resolution, and tracking affect the performance of the complete
framework.
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Chapter 5

Results

5.1 Qualitative Evaluation
This section presents the qualitative evaluation of the proposed method across multiple repre-
sentative test scenarios. The goal is to provide a visual comparison of segmentation and depth
estimation under varying conditions.

5.1.1 Overview of Visual Results

An overview of the visual results for the four evaluation scenarios is presented in Figure 5.1.
The challenging background contrast scenario includes two test cases: a black controller and a
black cup, both placed on the black operating table. The crowded scene scenario includes three
separate object compositions, referred to as Fruit Set 1, Fruit Set 2, and Fruit Set 3. A test
case label is used to distinguish between different measurements within each scenario. These
are indicated in parentheses next to each scenario label along the y-axis in Figure 5.1, and are
also listed in the second column of Table 5.1.

5.1.2 Observations per Scenario

Simple object grasping (apple)

This scenario features two brightly colored apples, having high contrast with the background. For
both apples, ground truth masks are created. The SAM2 tracking model successfully identifies
both apples with a predicted mask that closely aligns with the manually annotated ground truth
throughout. The raw depth map from the ZED camera demonstrates clear object-background
separation with no missing values due to occlusions or failed feature matching. As a result, the
refined depth shows minimal changes. The surface of the objects in the refined depth map is
more coplanar because of the depth refinement method.

Translucent object (plastic bottle)

This scenario involves a partially transparent plastic bottle placed on a white table to reduce
the contrast between the object and the background. Ground truth masks were created for the
bottle. The segmentation model accurately outlines the bottle, although minor deviations are
visible near the bottom of the bottle, which was harder to capture because of the shadow. The
raw depth map shows many missing values in the outline of the bottle, caused by failed feature
matching. This is due to the matching with translucent material and its proximity to the camera.
The latter violates the minimum depth range of the ZED, resulting in additional geometric
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Figure 5.1: Segmentation, depth estimation, and refinement results across a range of
test cases. Each row represents a single test scenario. Columns show, from left to right:
the original input frame, the manually created ground truth mask(s), the predicted mask
from SAM2, the raw depth map from the ZED camera, and the refined depth map after
applying depth post-processing.

constraints. The refined depth map is capable of filling in the missing values, demonstrating the
added value of the refinement step for frames with incomplete raw depth data.

Challenging background contrast (controller)

A black game controller is placed on a black operating table, resulting in minimal contrast
between the object and the background. For this test case, the camera must be very close to be
able to detect the object using GroundingDINO. This means that for earlier frames where the
camera is further away, the object is not detected. Consequently, the tracking is not started,
and those frames have missing segmentation masks. In the Figure, the first frame where the
controller is detected is shown. From this point onward, the segmentation model can track the
object across subsequent frames. The predicted masks are reasonably good estimations, but
some parts of the operating table are incorrectly misclassified as part of the controller, as can
be seen in the lower-left region in the image. The raw depth map does not suffer from missing
values, providing a good estimation. The refined depth map converts the depth values of the
object to a co-planar representation, losing finer details around curved surfaces. This can be
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seen near the joysticks of the controller.

Challenging background contrast (coffee cup)

Similar to the previous case, this test places a black coffee cup on the black operating table,
resulting in minimal contrast. The coffee cup is detected earlier than in the case with the
controller, but in some of the initial frames, the coffee cup is not detected. Once the object
is recognized, the segmentation masks are generally accurate. However, some misclassifications
occur when the object is being grasped by the gripper and when it overlaps with the black parts
of the Franka. The black gripper pads are misclassified as part of the cup, and the logo of the
Franka is misclassified as well. This can be seen in the figure around the left gripper. The raw
depth map contains missing values when the camera is near the object, similar to the previous
case. The refined depth map is again capable of estimating some of the missing values by the
co-planar depth refinement step.

Crowded scene (fruit set 1)

This scenario features a composition of three apples and one banana placed close, though not in
direct contact. Using GroundingDINO, the focus is placed on segmenting only the three apples,
while the banana is intentionally excluded. The predicted object masks were highly accurate
around the object boundaries of the apples and correctly ignored the banana. The raw depth
map was able to capture most of the surfaces of the apples, missing only a few values near
the edges. The refined depth map could estimate some of the missing values by the co-planar
refinement step.

Crowded scene (fruit set 2)

The second crowded fruit scene includes a more densely packed composition of fruits. Four ap-
ples, one single banana, and a banana bunch are placed together. In this case, GroundingDINO
is prompted specifically with the text prompt single banana to evaluate its ability to distinguish
the target object from similar objects. The predicted mask accurately captures the single ba-
nana, even in frames where it overlaps with the banana bunch. The raw depth map appears to
capture the scene reasonably well. Since in this test case the gripper never moves close to the
object in the scene but hovers above it, no difference can be seen visually between the raw and
refined depth maps.

Crowded scene (fruit set 3)

This third crowded fruit scene includes a composition of three overlapping apples with the
banana bunch. The goal in this case is to track the three apples. In the initial frames, only
the two red apples are visible, the green apple is not yet in the frame. As a result, tracking is
initiated based on the detection of the two red apples, and the green apple is never included
since the system does not add new objects to the tracking once it has started. The raw depth
map presents an accurate representation of the depth surfaces of the objects. By performing
refinement, the estimated depth surfaces are more co-planar than the original raw depth map.

5.2 Quantitative Evaluation
This section presents quantitative results to complement the qualitative results. The segmen-
tation accuracy, depth estimation accuracy, and runtime performance are reported to asses the
proposed framework.
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5.2.1 Segmentation Metrics (IoU, BIoU)

Segmentation accuracy is evaluated for each of the test cases shown in Figure 5.1. Each test case
includes a representative keyframe showing both the predicted and manually annotated ground
truth masks of the tracked object(s). For the quantitative evaluation, 10 keyframes per test
case were manually annotated at both 720p and 1080p resolutions. The IoU and BIoU scores
reported in Table 5.1 are the average values across these annotated frames for each test case.

Table 5.1: Segmentation performance metrics (IoU and BIoU) at 720p and 1080p res-
olution for each test case. Results are averaged over 10 manually annotated keyframes
per test case.

Scenario Test Case IoU
720p

IoU
1080p

BIoU
720p

BIoU
1080p

Simple Object Grasping Apple 0.91 0.95 0.88 0.91

Translucent Object De-
tection

Plastic Bottle 0.90 0.92 0.85 0.88

Challenging Back-
ground Contrast

Controller 0.55 0.60 0.45 0.48

Coffee Cup 0.78 0.81 0.64 0.69

Crowded Scene with
Multiple Objects

Fruit Set 1 0.90 0.94 0.86 0.88

Fruit Set 2 0.85 0.88 0.76 0.78
Fruit set 3 0.60 0.64 0.54 0.56

The calculated segmentation metrics complement the qualitative observations discussed in the
previous section. Overall, the results show high segmentation accuracy in scenarios with clear
contrast between objects and the background, and in less visually complex compositions. For
example, the test case with clear contrast (Simple Object Grasping) achieves the highest metric
scores across both resolutions. This aligns well with visual observations, where the segmentation
predictions for both apples are consistently accurate. Similarly, the translucent object case with
the plastic bottle shows high accuracy for both resolutions, despite the challenges introduced by
translucency.

In contrast, accuracy drops substantially in the Controller case, where low background contrast
reduces detection reliability. The IoU of 0.55 at 720p and 0.66 at 1080p confirms the visual ob-
servation that object detection fails in early frames. Additionally, the predicted mask includes
misclassified background regions, which further reduces the BIoU due to poor boundary preci-
sion. The Coffee Cup case performs better due to earlier detection and fewer misclassifications
between the cup and the table. However, misclassification of gripper pads and the Franka still
lowers the boundary accuracy, which is reflected in the reduced values of BIoU.

In crowded scenes, the Fruit Set 1 test case maintains high segmentation quality, indicating
that the model effectively handles cases where objects are in close proximity but are not touch-
ing. Performance slightly drops in Fruit Set 2, where a denser composition and object overlap
introduce more challenging segmentation conditions. The lower BIoU values suggest that the
primary source of error is the accuracy of the boundaries. The lowest scores are observed in
Fruit Set 3. In this test case, the third apple is never included in the tracking due to being
outside the view when the tracking is started. This limitation is reflected in the lower scores,
even when the two other apples are segmented correctly.
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Overall, the quantitative results complement the qualitative findings: segmentation accuracy is
highest when contrast is strong and object compositions are uncluttered, and it decreases in
scenes with poor visibility, overlapping objects, or missed detections.

5.2.2 Depth Accuracy Evaluation

Figure 5.2 presents the depth estimation error for the separate experimental setup using two
different ArUco markers, as described in Section 4.3. The results show RMSE Euclidean distance
of depth estimates as a function of the derived ArUco depth distance. Each subplot compares
the values of RMSE (red scatter) with a polynomial fit (blue line) and an exponential fit (green
dashed line) to model the trend of the error. As expected, the depth error increases non-linearly
with distance from the camera. Both fitted models capture this trend well across the tested
depth range.

Experiment 1: 6×6 ArUco markers (60 mm)

(a) 720p resolution (b) 1080p resolution

Experiment 2: 7×7 ArUco markers (150 mm)

(c) 720p resolution (d) 1080p resolution

Figure 5.2: Comparison of depth error behavior across two experimental setups using
different ArUco marker types and sizes. Experiment 1 uses 6×6 ArUco markers with a
size of 60 mm, while Experiment 2 uses 7×7 ArUco markers with a size of 150 mm. Each
setup is evaluated for 720p and 1080p. RMSE data points are shown as red scatter points
per depth bin. Data points are fitted using a polynomial (blue) and exponential (green
dashed) model, estimating the error trend.
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In Experiment 1 (6×6 markers, 60 mm), the error increases more steeply with distance. The
difference between 720p and 1080p resolutions is small, but the 1080p resolution shows slightly
lower errors and variance. The polynomial and exponential fits closely follow the RMSE trend,
with minimal difference between the two.

In Experiment 2 (7×7 markers, 150 mm), the overall error is lower throughout the depth range
compared to the results of Experiment 1. The larger marker size improves detection stability,
contributing to more accurate depth estimation. As in experiment 1, the 1080p resolution also
shows lower errors and variance. Both the polynomial and exponential models again approximate
the error distribution well, with small deviations at the lowest and highest depth values.

The results confirm that increasing both image resolution and marker size improves depth accu-
racy. The fitted models reliably capture the observed error trend and provide insight into how
accuracy degrades with distance.

5.2.3 Performance Evaluation

The real-time performance of the framework was evaluated by measuring the FPS under different
conditions. In Table 5.2, the results are shown for scenarios with 1, 2, or 3 tracked objects, in both
720p and 1080p resolutions. Three refinement configurations were tested: no depth refinement,
RANSAC-based refinement, and WLS-based refinement.

Table 5.2: Performance of the full framework measured in FPS, using no refinement,
RANSAC refinement, and WLS refinement. Results are captured for 720p and 1080p
resolutions, with 1, 2, or 3 tracked objects.

Resolution Refinement
Method

1 Object
(FPS)

2 Objects
(FPS)

3 Objects
(FPS)

720p None 24-27 19-21 14-16
RANSAC 6-8 5-7 3-5
WLS 10-12 8-11 6-7

1080p None 21-23 16-21 12-14
RANSAC 5-6 3-6 2-4
WLS 8-11 7-10 5-7

As expected, the highest performance is achieved when no refinement is applied. This is because
no extra steps are applied to the original depth map extracted by the ZED Mini. As discussed in
Section 3.2.2, the raw depth map is retrieved at the same frequency as the stereo image stream,
introducing no additional latency. As a result, it is possible to maintain high frame rates, even
when tracking multiple objects.

When applying depth refinement, the additional computational cost increases. The RANSAC-
based refinement method introduces the largest drop in performance. This result is as expected,
as the RANSAC-based plane fitting performs iterative optimization to achieve the best plane
estimate. Performing this for multiple objects in the scene increases computational costs, even
when processing using multi-threading.

The performance of the WLS-based refinement is twice as fast as that of the RANSAC method.
However, the frame rates remain less than half of those achieved without any refinement, indi-
cating the trade-off between depth quality and performance speed.

A decrease in FPS is observed as the number of tracked objects increases. This is partially
due to the increased computational costs for the per-frame processing time introduced by the
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SAM2 memory module (see equation 3.1). The other factor influencing performance is the image
resolution: 720p consistently outperforms 1080p. The lower resolution reduces the number of
pixels per mask, reducing both processing time and refinement time per frame.
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Chapter 6

Discussion

6.1 General Discussion
This study evaluated the feasibility of integrating segmentation, object tracking, and stereo-
based depth estimation into a modular real-time vision framework for object-level robotic inter-
action. The framework successfully processed live camera input while generalizing to previously
unseen environments and objects. Prompt-based segmentation using SAM2 enabled zero-shot
performance, while the ZED stereo-vision depth estimation model provided absolute depth es-
timation without requiring scene-specific retraining. The integrated co-planar depth refinement
module is implemented as an optional post-processing step to improve object-level depth esti-
mations. The modular design of the framework supports flexible integration by allowing depth
estimation, segmentation, and refinement components to be substituted independently with
minimal adjustments.

The first subgoal assessed whether the framework could produce reliable segmentation and depth
output for a downstream robotic grasping task without requiring environment-specific tuning. A
set of robotic grasping test scenarios was used to evaluate the framework. These scenarios allowed
feasibility assessment of the framework for these robotic interaction tasks, without relying on
task-specific training.

The framework achieved consistently high segmentation accuracy in clean, high-contrast scenes,
achieving average IoU scores of up to 0.95 and BIoU of up to 0.91, indicating good boundary
precision. It also performed well in the Translucent Object test case, with average IoU and BIoU
scores of up to 0.92 and 0.88, respectively, despite the challenges introduced by the translucency
of the object. In more challenging settings, such as cluttered backgrounds or crowded scenes,
segmentation performance declined. For example, in the Controller test case with poor back-
ground contrast, the average IoU dropped to 0.60 and the average BIoU to 0.48. Similar declines
were seen in the Fruit Set 3 test case, where tracking failed for one object because it was not
detected at the moment of tracking initialization. The system maintained reasonable accuracy
in moderately complex environments with good contrast.

The translucent object scenario revealed missing depth values caused by weak stereo feature
matching. The depth refinement module recovered some of these missing values, but the co-
planar assumption oversimplified curved surfaces. Refinement also introduced additional com-
putational overhead.

A separate experiment was conducted using ArUco markers placed on a flat tabletop to quantify
the ZED depth estimation. Two marker sizes were tested at both 720p and 1080p resolution. Re-
sults showed that depth error increased non-linearly with distance. 1080p resolution consistently
reduced both error and variance. Additionally, using larger markers improved detection accu-
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racy by increasing the number of observable pixels. These findings confirm that the raw ZED
depth output is reliable within the working range of the robot and does not require additional
tuning.

Although the framework demonstrated generalization across the tested scenarios, all experiments
were conducted in a controlled lab environment. Its ability to generalize to more different settings
and conditions remains unverified in this study. The evaluation did not include a quantitative
accuracy assessment of the refined depth map, since the refinement module depends on valid
segmentation masks that could not be obtained for ArUco markers because they did not have
closed, consistent shapes. As a result, depth accuracy measurements focused solely on the ZED
depth output. Depth refinement was therefore only evaluated qualitatively.

The second subgoal focused on identifying design strategies for segmentation-based tracking
on a live camera stream while preserving real-time performance. SAM2 was selected for its
integrated tracking capabilities, avoiding the need for external tracking models such as XMEM
or Cutie, which increase latency. To support frame-by-frame prediction on live camera streams,
the memory module was adapted. The modified version removed the dependency on future
frames and updated memory only when valid segmentation results were available. This selective
update strategy prevented empty states from overwriting reliable past states. As a result, the
tracker successfully re-identified objects after occlusion, provided they retained similar. The
design changes made to SAM2 enabled real-time segmentation-based tracking using live camera
streams.

The third subgoal explored how image resolution and the number of tracked objects affect the
real-time performance of the framework. Increasing the number of tracked objects reduced frame
rates due to the added computational cost of memory operations and mask predictions. This
study stated a lower threshold of 10 FPS as sufficient for the real-time robotic grasping task. At
720p resolution, the system maintained real-time performance above 10 FPS, reaching 24 to 27
FPS with one tracked object and 14 to 16 FPS with three objects. At 1080p, the system achieved
21 to 23 FPS for one object and 12 to 14 FPS for three objects. By enabling the optional depth
refinement module, performance declined. RANSAC-based refinement introduced the highest
latency, dropping frame rates as low as 3 to 5 FPS at 720p and 2 to 4 FPS at 1080p when
tracking three objects. WLS-based refinement was faster, reaching 10-12 FPS at 720p and 8 to
11 FPS at 1080p with one object. However, WLS also fell below the 10 FPS threshold when
processing more than two tracked objects.

6.2 Limitations
Several limitations of the designed framework are important to highlight. First, as the number of
tracked objects increases, the processing time increases due to the extra memory and prediction
operations required by SAM2. Latency increases even more when depth refinement is enabled,
especially with the RANSAC-based method. Although multithreading helps mitigate latency to
some extent, real-time performance quickly degrades as more objects are added.

Second, the framework relies on accurate prompt-based initialization. If an object is not correctly
segmented or detected at the start, it will not be included in the memory bank and cannot be
tracked or recovered later. This limitation can be critical in cluttered scenes where objects can
be occluded during the initialization or when objects come into the frame after tracking has
already started. Since initialization often depends on GroundingDINO detections, any missed
detections directly prevent the tracking of those missed objects. This limitation is somewhat
mitigated as the framework allows tracker re-initialization during runtime. The user is allowed
to reset the memory and restart prompt initialization without restarting the camera stream or
rebuilding models.
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Third, the depth refinement module assumes a co-planar structure for segmented objects. This
assumption works well for flat surfaces, but does not generalize well to curved shapes. In such
cases, the estimated planes can lead to oversimplified or inaccurate depth estimations. It is
recommended to use refinement selectively. Enable it only for frames where missing depth
values occur in important objects or frames. In addition, refinement can be toggled on and off
during runtime, allowing selective usage during streaming.

Finally, all experiments took place in a controlled indoor lab setting. Although the evaluation
included a range of test objects and the selected models support zero-shot estimation, this study
did not confirm whether the framework generalizes to more different environments. Further
validation in more diverse and dynamic settings is needed to support stronger claims about its
generalization capability.
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Chapter 7

Conclusion

This study developed a modular, real-time vision framework that integrates segmentation, object
tracking, and stereo-based depth estimation for object-level robotic interaction. The framework
adapts the prompt-driven SAM2 segmentation model to operate on live camera streams without
access to future frames, enabling real-time tracking. The ZED Mini stereo camera provides
dense depth estimates with zero-shot generalization, and an optional depth refinement module
enhances depth completeness in segmented regions through co-planar hybrid plane fitting.

Experimental evaluation across a range of robotic grasping scenarios demonstrated that the
framework delivers reliable object segmentation and depth estimation without environment-
specific tuning. Segmentation accuracy remained high in clean, high-contrast scenes and mod-
erately complex environments. The depth module produced stable estimates across the working
range of the robot, with higher accuracy at increased resolution. However, performance declined
in cluttered scenes, and the refinement step introduced substantial computational overhead, par-
ticularly when tracking multiple objects.

The framework maintained real-time performance under constrained configurations, achieving
frame rates above the 10 FPS threshold with one to three tracked objects at 720p and 1080p.
Its modular structure allows components to be replaced or extended independently, making
it adaptable to new use cases and hardware setups. Although the framework generalized well
across the different objects and settings in the test scenarios, its generalization capability remains
unverified in more diverse settings.

7.1 Recommendations and future work
Future work can expand in several directions:

• Conversion to object-level point clouds: The next step combines the dense depth
maps with the predicted segmentation masks to generate point clouds for individual ob-
jects. This enables 3D visual feedback derived from 2D promptable segmentation using
SAM2 as a foundation model. The resulting object-level point clouds provide structured
input for robotic systems to perceive and interact with objects in dynamic scenes.

• Improving depth refinement: The refinement module currently poses the largest com-
putational bottleneck. Replacing plane-fitting with more efficient post-processing methods
could reduce the computational overhead introduced by the methods.

• Component replacement: The modular design of the framework enables easy substitu-
tion of components. For example, GroundingDINO can be replaced with a more accurate
vision-language model that produces bounding boxes to initialize SAM2 tracking. Stronger
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detectors may improve performance in low-contrast or crowded scenes. Since detection is
only performed during tracking initialization, using a more precise model enhances tracking
quality without significantly increasing the computational cost during runtime

• Generalization testing: Further validation in unstructured or real-world robotic settings
is needed to confirm the generalization performance of the framework under more varying
conditions.
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Appendix A University of Twente

A Statement about usage of AI tools in scientific writing

Statement about the usage of AI tools for writing as required by the official ’Use of AI in Edu-
cation at the University of Twente1’ page.

During the preparation of this work, the author used the following tools for the following reasons:

• Writefull: Used to refine the language, check grammar, and improve academic writing.
The used model is the official Writefull Language model for scientific writing.

• ChatGPT/Deepseek: In some cases, ChatGPT or Deepseek is used to check and improve
scientific writing. It is also used to assist in structuring sections to improve the overall
flow of this thesis.

After using these tools, the author reviewed and edited the content as needed and takes full
responsibility for the content of the work.

1Utwente information available at: https://www.utwente.nl/en/learning-teaching/Expertise/
ai-in-education/use-of-ai-in-education-at-the-university-of-twente.pdf
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B Extra detailed information on SAM2

B.1 SAM2 detailed overview
A detailed overview of the SAM2 workflow is presented in Figure B. This diagram is constructed
based on the SAM2 source code and the information presented in the official paper [50]. The
components of the model are discussed in this section.

Figure B.1: Full diagram detailed workflow of SAM2.

B.1.1 Input Image Processing

The workflow begins with an input image of shape [3,H,W ], which is resized to match the
input size of the image encoder. The image encoder extracts vision features, producing an
output tensor of shape N ×C ×H ×W . These features are then processed further by a feature
pyramid network backbone and positional encoding module, generating:

• Current vision features: Vision features at multiple resolutions (high, medium, and
low). The medium and high-resolution vision features are used in the mask decoder.

• Current vision positional embeddings: The vision positional embeddings used retain
spatial information at multiple resolutions (high, medium, and low). They essentially
help the model understand where the detected features are located relative to the entire
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image. Only low-resolution position embeddings are used for memory attention to keep
the process efficient.

B.1.2 Memory Encoding and Attention Mechanism

The memory mechanism enables the ability to take advantage of past information to refine cur-
rent segmentation. The extracted vision features from the image encoder are transformed into
pixel features before being processed by the memory encoder. This allows the same features from
the image encoder to be reused, eliminating the need for additional memory models. The pixel
features are combined with memory positional encodings before being used in memory attention,
where they interact with previously stored memory representations through cross-attention to
improve segmentation consistency over time.

Object pointers are used to associate existing and newly detected masks. This association is
based on the calculated IoU score and the object score logits, which account for similarity and
occlusions in a quantifiable metric for association. If the number of available object pointers
is less than the maximum allowed memory size, empty pointers (obj_ptr_fill) are added to
maintain a constant input size required by the memory attention.

B.1.3 Prompt Encoding

Allowed input prompts can be point coordinates, bounding box coordinates, or mask inputs.
Note that mask outputs are used as new inputs in subsequent frames as the output of SAM2
is segmentation masks. Prompts are encoded by and passed to the mask decoder, where they
interact with image embeddings and/or memory features.

B.1.4 Mask Decoding and Prediction

The mask decoder combines information from multiple sources (vision features, memory features,
and encoded prompts) to predict segmentation masks. The outputs of the mask decoder are:

• Object pointer scores, used in object association

• IoU, estimating the precision of the detected masks.

• Predicted masks, based on multi-scale features and memory.

The predicted masks can be of different sizes than needed relative to the original input image
size. This depends on the chosen model architecture parameters that influence the final output
size. As a final step, the predicted masks are interpolated to match the input image size.

47



Appendix C University of Twente

C Experimental Setup and Specifications

C.1 ZED-Mini specifications

Table C.1: ZED Mini Camera Specifications [72].

Technical Specifications Values

Output Resolution 2x (2208Œ1242) @15fps
2x (1920x1080) @30fps
2x (1280x720) @60fps
2x (672x376) @100fps

Field of View Max. 102(H) x 57(V) x 118(D)
RGB Sensor 1/3 4MP CMOS
Focal Length 3.06 mm

Depth Sensing Information

Baseline Distance 63 mm
Depth Range 0.15m to 15m
Depth Map Resolution Equal to image resolution

C.2 Hardware specifications
The hardware used in the experimental setup includes the following components:

Table C.2: Hardware Specifications
Component Specification

GPU NVIDIA GeForce RTX 3070
CUDA Cores 5888
VRAM 8 GB GDDR6
CPU AMD Ryzen 9 6950x 16-core
RAM 24
Operating System Ubuntu 22.04 LTS
Stereo Camera ZED Mini (See Table C.1 for full specs)
Robotic Arm Franka Emika Research 3

C.3 3D printed camera bracket
Figure C.1 contains a schematic side view with distances of the 3D printed camera bracket used
for the ZED Mini. It can be seen that the distance between the gripper and camera mount
is greater than the minimum distance of 15 mm (Table C.1). Special thanks to Gert Jan for
designing the camera bracket.
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Figure C.1: Schematic side view of the 3D-printed camera bracket mounted on the
gripper. The design ensures that the camera remains above the minimum depth range of
150 mm.
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