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Abstract

This thesis investigates the development of a Deep Q-Learning model to support early
design decisions for Shuttle-Based Storage and Retrieval systems for warehousing sys-
tems at Vanderlande. The model aims to automate the configuration process using
simulation feedback on throughput and costs to create an agent that is able to deter-
mine the optimal design for an ADAPTO warehouse. A DQL agent was trained to
interact with the simulation software, which serves as the environment of the agent.
By proposing configurations and adjusting the policy based on the feedback, moving
towards an optimal policy. The model did not yield a policy consistently providing op-
timal configurations and converging reliably. Nevertheless, the research provides key
insights into the reward structure, exploration strategy and DQL variations. Mainly,
the agents benefit from a simple reward structure that punishes states which do not
reach the goal and rewards states that reach the goal based on cost-effectiveness. Ex-
tending the replay memory from uniform random sampling to Prioritised Experience
Replay did not improve performance. While Double DQN resulted in equal perfor-
mance, additional tuning of hyperparameters specifically for the Double DQN could
improve performance. In conclusion, the current modelling approach could not gen-
eralise across a complex reward environment with a shifting throughput goal. Never-
theless, it provides a valuable foundation for future work, offering guidance on hyper-
parameter tuning and architectural extensions to improve convergence and scalability.
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Management Summary

This management summary provides an overview of the research conducted in this
MSc thesis, which focuses on the development of a Deep Q-Learning model to solve
early design choices in Shuttle Based Storage and Retrieval System (SBS/RS) ware-
houses for Vanderlande, using simulation based performance evaluation.

Objective

The primary objective of this research is to develop a Deep Q-Learning model which
can accurately determine early design choices in SBS/RS warehouses based on through-
put performance of the warehouse and the affiliated costs. The model is developed for
the ADAPTO system at Vanderlande.

Key Findings

1. Current Operational Challenges: Vanderlande’s simulation department expe-
riences high demand, often forcing engineers to decline simpler simulation re-
quests. Automating such basic design tasks would significantly enhance opera-
tional efficiency.

2. Available models: An extensive literature review shows the lack of Machine
Learning solutions within the early design choices of SBS/RS warehouses com-
pared to the general trend in ML research and applications, a clear gap in the
literature for research.

Proposed Solution

The research proposes a Deep Q-Learning model to determine the optimal configura-
tions for the ADAPTO systems. The model consists of an agent which learns through
interacting with the environment; the environment in this research is the simulation
software. The agent proposes a configuration based on ADAPTO variables and re-
ceives feedback through the throughput of the configuration and the associated costs.
Based on the feedback, the agent adjusts its policy to approach an optimal design.
Though training the model is computationally intensive, the agent can quickly pro-
pose configurations once trained. Potentially generating viable solutions within an
hour for new requests.
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Results

Unfortunately, the model cannot yet deliver on the expected performance and cannot
efficiently determine optimal configurations for the ADAPTO system. Nevertheless,
this research has contributed in the progress towards such a model. The following
conclusions were drawn from this research:

• Reward Structure: A simple and direct reward structure proved most effective.
Configurations not meeting throughput targets were penalised, while successful
configurations were rewarded based on cost-efficiency.

• ϵ − Greedy strategy: Uniform random sampling from past experiences yielded
better results than prioritised sampling.

• Double DQN: While DDQN aims to reduce overestimation, initial experiments
showed no substantial performance improvement without further tuning.

Challenges

The results show there is development for the creation of a model that can accurately
determine the configurations of ADAPTO warehouses for every client. To advance
towards a deployable tool, the following challenges must be adressed:

• Run time: The extensive run time of the simulations resulted in slow and lim-
ited experimentation. More extensive research is possible by speeding up this
process, potentially through cloud-based computing or computing clusters.

• Additional hyperparameter tuning: An application of additional experimenta-
tion is longer runs for experiments to give the agent more time to learn from
the environment. Additionally, more hyperparameter settings can be tested and
cross-validation can take place.

• More complex models: Additional DQL variants—including further exploration
of DDQN and potentially Dueling DQN or distributional approaches—should
be evaluated for fit and effectiveness.

Conclusion

Overall, the dynamic nature of client-specific throughput requirements remains a key
difficulty for the DQL model to identify an optimal policy for the ADAPTO system ef-
fectively. These findings form a valuable starting point for future development toward
a robust, automated design tool for ADAPTO warehouse systems
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Chapter 1

Introduction

This chapter provides an overview of the research context, introduces Vanderlande,
and outlines the structure of this MSc thesis. Section 1.1 establishes the relevance of
warehouses in modern supply chains and introduces Vanderlande, a market leader in
process automation in the warehousing, parcel and airport sector. Next, Section 1.2
analyses the current process and reduces the main problem to a single core problem.
Section 1.4 provides the main research question (RQ1) and the sub-research questions
(RQ2- RQ7) that structure the research. Section 1.5 emphasizes this research’s real-
world application and importance. This research’s clear scope and limitations are cov-
ered in Section 1.6, ensuring a well-defined research focus. Finally, the structure of the
thesis is shown in Section 1.7, giving an overview of the chapters and their respective
content, including the context, the literature study, model development and model
performance.

1.1 Background and Context

In recent times, e-commerce has moved warehouses to focus on the distribution of
goods rather than solely on storage. The storage system must be able to handle a
large throughput of orders containing few products (Miguel et al., 2020). A higher
throughput in a warehouse results in more storage and retrieval actions, thus more
movement. A significant development in the warehousing sector to increase efficiency
was the introduction of a Shuttle Based Storage and Retrieval System (SBS/RS). The
picking of products accounts for an estimated 55% of the total warehousing costs. By
optimising this process, high operational costs and unsatisfactory service are averted.
An SBS/RS automates and optimises the picking process in warehouses (De Kosten
and Roodbergen, 2007). The warehousing sector has since been optimising the SBS/RS
towards an optimal system.

Vanderlande is a market-leading, global partner for logistic process automation in
the warehousing, airports and parcel sectors. Vanderlande was established in 1949
and acquired by Toyota Industries Corporation (Vanderlande, 2025). Through the ef-
fective collaboration with sister companies like Bastian Solutions and Viastore, a glob-
ally reliable solution is presented to the target markets. The airport solution offered by
Vanderlande is the market-leading baggage handling system along with related pas-
senger solutions, capable of moving over 4 billion pieces of baggage around the world
per year. The Vanderlande baggage handling system is active at more than 600 air-
ports, including 12 of the world’s largest airports. Vanderlande’s process automation
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solutions for the parcel market are installed for the world’s leading parcel-handling
companies, moving over 52 million parcels every day. The warehousing solution is
the ADAPTO system, which is an SBS/RS, used by 9 out of the 15 largest global food
retailers. ADAPTO allows a tailored SBS/RS to serve the customers’ wishes in their
throughput requirements.

1.2 Problem Statement

This research focuses on the ADAPTO system of Vanderlande Industries. The ADAPTO
system is a highly adaptable Shuttle Based Storage and Retrieval System (SBS/RS) that
Vanderlande produces as a part of the full warehousing solution. As part of the sales
process of an ADAPTO system, the simulation engineering team at Vanderlande sim-
ulates different configurations of the ADAPTO system until a configuration is reached
that satisfies the requirements of the customer while delivering a competitive bid. Due
to the high demand for ADAPTO systems and other Vanderlande products, the sim-
ulation engineering department is very busy. It therefore has difficulty delivering on
every simulation request from customers or other Vanderlande departments. The sim-
ulation demand exceeds the capacity of the department. The simulation of stand-alone
ADAPTO models is a time-intensive task with many manual steps and waiting time.
To identify the core problem of the capacity issue, a problem cluster has been created
in Figure 1.1.

Figure 1.1: The problem cluster where the red box shows the main problem and the
green box shows the core problem tackled in this research

The flowchart shows the main problem, shown in the red box, at the simulation
engineering department and the core problem in the green box. The following sections
cover each section of the problem cluster.

• The simulation department having insufficient personnel causes the department
to be unable to handle every simulation request. An initial simple solution is to
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increase the department’s capacity by hiring more simulation engineers. Never-
theless, an expensive solution which only remedies the issue, while the problem
can be permanently solved by handling the workload more efficiently.

Thus, the root of the problem is identified by analysing the department’s workload.
Three ways can be found to balance the requests for simulations and the capacity to
perform these simulations.

• First, ADAPTO is a highly flexible system allowing numerous variations. An
advantage for the customer, but an increased complexity for the simulation en-
gineering department, leading to large and long-running projects. Reducing the
complexity of systems can reduce the workload for the department. However,
where this benefits this department, it is unacceptable for Vanderlande as it re-
duces the company’s competitiveness.

• Secondly, not every simulation request from sales has a clear goal. Scenarios arise
where requests originate from stabs in the dark with configurations that hardly
result in useful configurations. Hence, better alignment between the sales and
simulation engineering departments might benefit the workload. However, this
is not the focus of this research.

• The third option to reduce the workload for the department is to reduce the time
required per simulation request. The run time of a model is relatively high, espe-
cially for large systems. Decreasing this run time could be achieved by looking
at cloud computing options.

The core problem faced by the systems simulation department is the excessive
manual labour in designing ADAPTO systems. A detailed description of the simu-
lation process is provided in Chapter 2, but a brief overview follows in this section
to drill down to the core problem. The process starts with a simulation engineer con-
figuring a first set of parameters for the ADAPTO system based on their experience
and expertise. These parameters are the early design decisions for an ADAPTO and
entail aspects like the number of aisles, number of levels, number of shuttles, etc. The
set of parameters is the input for the simulation software, which returns a set of Key
Performance Indicator (KPI) with throughput being the primary metric. Based on
these KPI’s, the parameters are adjusted based on general guidelines and the expertise
mentioned above. This process is repeated until a configuration is reached that satis-
fies the demand of the customer. This approach is both time-consuming and labour-
intensive, creating an opportunity to optimise the process and reduce the time spent
on ADAPTO projects. The primary inefficiency arises from the repetitiveness of the
process for a simulation engineer inputting ADAPTO configurations and waiting for
the simulation results. The iterative process presents a clear opportunity for automa-
tion using an optimisation model. This allows simulation engineers to spend their
time more efficiently and take on more projects. This research focuses on creating a
model that can accurately manage the simulation process and will reduce the time
required to simulate an ADAPTO model.
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1.3 Problem Approach

The lack of automation significantly impacts the simulation engineering department
at Vanderlande and requires a structured approach to developing an automation and
optimisation model. The model must be able to grasp the link between the require-
ments from the customer and the capabilities of the ADAPTO system. An initial look
at the literature shows the area of modelling that allows for this optimisation and
automation issue. Heuristics, Machine Learning (ML) or a combination of both, is
currently presented in the literature as a viable option for optimisation issues in the
warehousing sector. An in-depth analysis of the available models and methodologies
is provided in Chapter 3.

To ensure the effective development and implementation of the automation and
optimization model, the CRISP-ML methodology, developed by MLOps, has been se-
lected. Cross-Industry Standard Process for Machine Learning (CRISP-ML) offers a
structured framework for guiding ML development, as proposed by Visengeriyeva
et al. (2025). The first step in this methodology is business and data understanding.
This step identifies the scope of the model, the success criteria and the data quality ver-
ification to ensure the project’s feasibility. This step creates the framework in which
the model development takes place. This step applies to both ML and Heuristics ap-
proaches, as setting a clear goal and understanding the system is crucial in developing
the model. The literature is consulted within this framework to find which model type
best suits the problem. When the framework is clear, data engineering is the next step
in the methodology.

Correct and complete data is essential for a ML model and a heuristic (Gudivada
et al., 2017; Han et al., 2014). This step for ML entails data selection, cleaning, fea-
ture engineering, and standardisation. The data quality must be high for the ML to
uncover all relevant patterns and learn effectively. In the case of heuristics, although
data quality is essential, domain expertise and established rules of thumb also play
a critical role in model development. According to Han et al. (2014), clear and well-
structured data are necessary for building an efficient heuristic model.

With a well-defined framework and prepared data, the model can be constructed.
The selected model type from the literature is adapted to the specifics of the problem
and tailored using the prepared data. For ML models, the engineering contains the
model specialisation and model training tasks. As heuristics do not contain any train-
ing steps, this step selects the correct algorithm to use and implements the logic from
the rules of thumb and expert opinion. After the model has been developed, it must
be tested and evaluated. The business and data understanding has created both mod-
elling and business goals, against which the model is tested. This can be done through
test data sets and other validation techniques identified in the literature. The valida-
tion step shows the model functions as intended according to the model and business
goals.
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The fifth step of the CRISP-ML methodology is deployment, which is the final step
included in this thesis. Vanderlande requires a practical solution to enhance its current
simulation process, making a deployment guide essential for smooth model imple-
mentation and a guide on using the model. The last step of the CRISP-ML methodol-
ogy is monitoring and maintenance. While the guide from deployment covers this step
partially, monitoring and maintenance primarily fall under Vanderlande’s responsibil-
ity and are therefore limited to a deployment guide and future recommendations.

1.4 Research Questions

To guide this research, the following research questions are formulated:

1.4.1 Main Research Question

RQ1: What optimization model can accurately predict optimal ADAPTO warehouse
configurations during the early design phase for custom order patterns and varying
throughput requirements?

1.4.2 Sub-Research Questions

Each chapter of this thesis corresponds to a sub-research question addressing specific
aspects of the main research question. These sub-research questions are as follows:

1. Chapter 2: System & Data description

• RQ2: How is the current design process of an ADAPTO system structured
and integrated with the simulation software?

2. Chapter 3: Literature

• RQ3: Which modelling technique is most suitable for automating and opti-
mising the design of ADAPTO systems?

3. Chapter 4: Solution approach

• RQ4: How should the optimisation model be configured to achieve optimal
performance?

4. Chapter 5: Experimental setup

• RQ5: What experiments must be performed to identify the optimal hyper-
parameter settings?

5. Chapter 6: Experimental results

• RQ6: How does the proposed solution perform when applied to real-world
cases from Vanderlande, and how does it compare to relevant benchmarks?

6. Chapter 7: Conclusion, Discussion & Recommendations
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• RQ7: How can the proposed model be integrated into Vanderlande’s infras-
tructure to ensure practical applicability and what aspects of the model can
be improved?

1.5 Significance of the Study

The successful automation and optimisation of the design process of an ADAPTO
warehouse at Vanderlande allows the simulation department to deliver optimised de-
signs for more standard requests and therefore focus their expertise on more complex
issues. This will enable the department and Vanderlande to maximise efficiency and
provide an optimal design to all clients, enhancing customer satisfaction. This solidi-
fies Vanderlande’s position as a market leader in the warehousing sector. In addition,
this research contributes to the broader field of applying modelling techniques in the
process automation sector to add value to the supply chain.

1.6 Scope and Limitations

As the sales process of an ADAPTO system involves many departments, it’s essen-
tial to define the scope of the research clearly. The automation and optimisation of
the configurations of the ADAPTO system is performed at the simulation engineering
department. The study focuses on the variables available for variation by the simula-
tion engineering department. Chapter 2 gives a detailed description of all parameters,
variables and KPI’s available for the department and thus, the research is limited to
these variables. In addition, due to the confidentiality of Vanderlande’s simulation
model, the model is treated as a black box model. A general description of the model’s
functioning is given in Chapter 2, while the exact functioning of the simulation model
remains undisclosed. The research focuses on automating and optimising the config-
uration process of , the simulation model is merely a tool to obtain the KPI’s of each
configuration.

1.7 Thesis Structure

This thesis is structured as follows:

• Chapter 2: System & Data description - In this chapter, the current simulation
process and environment are described in detail.

• Chapter 3: Literature study - This chapter provides an in-depth review of the
existing literature related to optimisation methods for SBS/RS warehouses.

• Chapter 4:Solution approach - This chapter presents the model developed to
address the problem and all relevant hyperparameters.

• Chapter 5: Experimental Evaluation - In this chapter, the performance of the
model is discussed and compared to real-life cases from Vanderlande and com-
pared to a benchmark obtained from literature
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• Chapter 6: Discussion and Implementation - This chapter discusses the impli-
cations and provides practical implementation of the model into the systems of
Vanderlande.

• Chapter 7: Conclusion - The final chapter summarizes the key findings, contri-
butions, and future research directions.

1.8 Summary

This chapter introduces the context, problem statement, research objectives, and re-
search questions of this MSc thesis. Optimising early design choices for warehouse
layouts represents the challenge of optimising systems for individual customers while
maintaining a standardised product. Subsequent chapters will delve into the details
of this problem and the proposed solution.
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Chapter 2

System & Data Description

Vanderlande delivers various warehousing solutions for small warehouses and huge
distribution centres. A clear overview of the current system is required to optimise
the design process of a warehousing system. This section gives an in-depth descrip-
tion of the ADAPTO system and the design process of the ADAPTO system. First,
an overview of the design process is given, followed by a detailed description of the
ADAPTO system, including the parameters, variables and KPI’s. These sections an-
swer the first research question:

2.1 ADAPTO System

The ADAPTO system is the Automatic Storage and Retrieval System (AS/RS) of Van-
derlande, adaptable for usage by both small warehouses and huge distribution cen-
tres. Vanderlande delivers the ADAPTO system, which is tailored to the customer’s
requirements. The ADAPTO system has a basic functionality with adaptable features,
such as the number of lifts, the type of lift, the number of shuttles, etc. The ADAPTO
system uses Transport and Storage Unit (TSU) to store Stock Keeping Unit (SKU) in the
system. A TSU is a tub that contains an SKU; this allows the ADAPTO system to han-
dle all SKU’s the same, improving the efficiency of the system. A single task of storing
a TSU and retrieving a TSU is called a Double Cycles (DC). But first, the basic function-
ality is described in this section and the adaptable features are discussed in Section 2.2.
Figure 2.1a shows an overview of a warehouse containing an ADAPTO system. The
figure shows the shuttles on each level and the lifts transporting the TSU’s to the next
section. Figure 2.1b shows an implementation of an ADAPTO system where the bot-
tom shows an input or output belt, the left shows a lift and a shuttle.
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(a) General overview of a warehouse with
an ADAPTO system.

(b) Real-life example of an ADAPTO sys-
tem.

Figure 2.1: Example of ADAPTO system
source: Vanderlande

The ADAPTO system functions fully autonomously and can integrate seamlessly
with any Warehouse Management Systems present. The system utilises shuttles to
store and retrieve the TSUs. A shuttle is a robotic transporter that moves through the
warehouses to store and retrieve TSU’s. The shuttles are battery-powered and charge
when interacting with the lift. An additional charging tower is required when aisles
are very long and only charging when interacting with the lift is insufficient. However,
this is not often needed.
The shuttle has two variations, it is either equipped with two belts to move the TSU in
and out of the racks. Or the shuttle is equipped with two telescopic hooks to retrieve
or store a TSU, called the piranha. The two shuttle variations are shown in Figure 2.2a
and Figure 2.2b. The two belts are faster but limited to single deep systems, whereas
the Piranha is equipped for double deep storage systems. Double deep storage sys-
tems allow 2 SKUs to be stored in 1 location, improving storage capacity but reducing
throughput capacities. These shuttles can move in multiple aisles on a level due to a
cross-aisle presence. However, the shuttles are level-captive as they cannot move ver-
tically to different levels.

(a) The twinbelt shuttle (b) The piranha shuttle

Figure 2.2: The two shuttle types present in ADAPTO systems
source: Vanderlande

The vertical transportation of TSU ’s is done by lifts at the end of the aisles. The
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lifts are always a combination of an inbound and an outbound lift. Multiple configu-
rations are available for the shuttles, lifts, and cross-aisles. The different variations of
the ADAPTO system are discussed in the following sections of this chapter. A large
advantage of the ADAPTO system is its modular design and, therefore, huge scala-
bility of the system. The process of storing and retrieving the TSU’s is given in the
flowchart in Figure 2.3. The process starts when a SKU arrives in the ADAPTO system
in a TSU. The routing towards the storage location is calculated, after which the TSU
is transported to the correct level and then moved to the correct rack. The TSU awaits
in the ADAPTO until a retrieval request is received. Again, the shuttle and lift move-
ment is calculated, after which the product leaves the ADAPTO system. This figure
does not go in depth into the routing and storage algorithms as this is not within the
scope of the research.

Figure 2.3: Flowchart of the storage and retrieval operations in an ADAPTO ware-
house.
source:Vanderlande

2.2 ADAPTO System Design

The steps taken in the design process of an ADAPTO warehouse must be clear to un-
derstand the requirements for the model presented in this research. Figure 2.4 shows
an overview of the design process within a flowchart on a very high level. The pro-
cess starts with the customer wanting an automated warehouse and considers Van-
derlande’s ADAPTO as one of the options. The process enters the system’s simulation
department whenever the sales engineers determine the requirements and obtain the
required data, such as sizing and order profiles. In some cases, initial designs have
already been made and especially the warehouse sizing has already been explored.
Thus, the system simulation team starts with a basis from which a full design of the
warehousing system is created.
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Figure 2.4: Flowchart of the design process of an ADAPTO system. The process starts
at the green circle and moves through the different departments until it arrives at the
stopping point in the red circle.

Vanderlande has a simulation tool that allows for the team to simulate the perfor-
mance of the warehouse while adapting the design of the warehouse. The parameters
are discussed in more detail in Section 2.3. Through a process of adapting these pa-
rameters based on the results of the simulation, a configuration is reached where the
throughput is achieved, which was set in the requirements. The other KPI’s from
the simulation model are used to grasp where the most additional throughput can be
achieved. For instance, a very high lift utilisation shows that additional throughput
can be obtained by adding more lifts. These KPI’s and their impact are discussed in
detail in Section 2.5. Together with guidelines based on the KPI’s, the simulation en-
gineers use their expertise to determine these configurations. The process stops when
the throughput has been reached and the simulation engineer and the sales engineer
are satisfied with the result and are confident that the configuration leads to a com-
petitive bid to the customer. Nevertheless, there are too many options to try every
configuration. Thus, it is never sure whether the obtained configuration is optimal.

2.3 ADAPTO System Parameters

To deliver a tailored solution to the warehousing problem, specific parameters must be
known to the systems simulation. This section will note these parameters and explain
what they entail and what variations are available. An overview of the parameters can
be found in Table 2.1.
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2.3.1 Facility Specifications

The first aspects that must be clear are the specifications of the customer’s facility
where the AS/RS will be installed. This determines the maximum surface area of
the AS/RS and the maximum height of the racks. However, the warehouse does not
solely consist of AS/RS but is always combined with other warehousing activities
such as palletisers or picking stations. There are two possible scenarios with regard
to the space available. The facility in which the AS/RS must be built can either be a
brownfield, where a warehouse already exists or a greenfield, which is a piece of land
where the building is not yet built. The second option gives more freedom in the size
of the AS/RS. However, in most cases the sales department has already determined
the available space for the AS/RS.

2.3.2 Order Profile

The order patterns of the customer are essential to the AS/RS specifications. These
parameters generate the orders within the simulation system. An accurate set of pa-
rameters significantly impacts the validity of the simulation results. Multiple aspects
of the order pattern serve as input for the ADAPTO model: order size, the sequencing
and the average number of TSU retrievals per order.

Order Size

The order size is the number of different TSU’s per order, so customers like web shops
mostly have a low number of TSU’s per order, as the order consists of just one or two
products. On the other hand, customers like supermarkets have a larger number of
SKU per order.

Picking Seqeuence

Linked to the number of TSU’s per order is the picking sequence of these TSU’s. There
are three options for the picking sequence. The strict policy ensures that each order is
completed before a new order is picked and that the TSU’s in each order are picked in
a specific order. The relaxed sequences ensure that each order is completed before the
next is picked, but the sequence of TSU’s inside an order does not matter, also known
as the pick order. Lastly is the unsequenced policy, where the TSU’s of different or-
ders are picked without sequence. The only important aspect is that the TSU’s picked
belong to orders that end up on the same pallet, also known as batch picking.

Velocity Classes

The order pattern is not only linked to how large orders are and in what order they
must be retrieved, but also how the velocity classes are distributed. There are three ve-
locity classes into which all TSU’s are divided. This division is made according to the
Activity Based Classification (ABC) as described by Fu and Gao (2024). This paper de-
scribes how the products can be divided into three classes based on the velocity of the
products. The model requires the percentage of products and orders they represent.
The three velocity classes each have their own section in the warehouse to improve
throughput. Figure 2.5 shows locations of the TSU’s in the different classes, where
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the bottom shows the cross aisles and the vertical rectangles represent the aisles. The
fast movers are situated at the beginning of each aisle, the medium speed movers are
situated in the middle and the slow movers are at the back of each aisle.

Figure 2.5: Top view of the different storage locations of the different velocity classes
in the warehouse. The orange circles represent the lifts that serve as I/O points.
source:Vanderlande

Number of Locations

The final essential aspect of the SKUs is the number of slots in the warehouse occupied
by a SKU. A SKU can have one or multiple locations in a warehouse. A shuttle will
move to the closest available location where the SKU is stored. The more locations a
SKU has, the more retrieval options are present, resulting in faster storage or retrieval.
The simulation software requires a distribution of the number of locations per TSU.
The distribution is adaptable to reach the desired throughput, where more locations
per TSU result in a higher throughput. However, more locations per TSU result in
higher requirements for the size of the warehouse.

2.3.3 Smart Lift Allocation

Smart lift allocation determines whether a TSU must travel to a specific picking station
and use a specified lift. It is important to note that every TSU travels to the same lift
within an order. The situation mentioned is for a specific TSU that must always be
delivered to a specific lift. Whenever this is not required, a shuttle can deliver the
TSU to a lift which delivers the TSU to a picking station the fastest. Thus, disabling

14



Chapter 2. System & Data Description

smart lift allocation results in a decrease of flexibility of the shuttles and therefore less
throughput. However, this option is hardly ever required by the customer and cases
where smart lift allocation is required are often special cases.

Parameter reference Unit
Velocity classes Section 2.3.2 distribution
Nr of TSU locations Section 2.3.2 distribution
TSU ’s per group Section 2.3.2 distribution
Order sequence Section 2.3.2
Smart lift allocation Section 2.3.3 Yes or No

Table 2.1: Overview of the parameters

2.4 ADAPTO Variables

The following section describes the variables that can be changed in the warehouse
design in this research. The extent to which these variables can be altered and the im-
pact the alteration makes is discussed in this section. An overview of all the variables
mentioned in this section can be found in Table 2.2.

2.4.1 Topology

The first set of variables regards the basic layout of the warehouse. The number of
aisles, the number of levels per aisle and the number of storage locations per level are
determined. The values of these parameters are limited by either the minimum and
maximum size of the ADAPTO system or the maximum size of the client’s location.
In addition, the depth of the location is determined, which can either be single deep
or double deep. Single deep warehouses focus on high throughput, whereas double
deep systems concentrate on storage.

2.4.2 Lifts

The lifts are an essential part of the AS/RS as the shuttles can solely move horizon-
tally throughout the system. Multiple variables determine the efficiency of these lifts.
First is the height at which the lifts are connected to the conveyor belts that further
transport the TSU’s in the warehouse or where new TSU’s arrive for storage. The lift
type can be a single or a double platform lift. The lifts can both deliver the TSU’s to
the same conveyor and therefore have to interact with each other to ensure efficient lift
usage. When the single conveyor point limits the system’s throughput, the system al-
lows for a vertical merge. The vertical merge gives each platform in the lift a conveyor
to deliver or retrieve TSU’s too. These conveyors are then merged at a later point on
the conveyor. While the vertical merge is an option in theory, the practice shows that
a vertical merge is hardly ever proposed to customers. Experts at Vanderlande have
therefore advised to exclude this option from the optimisation. Figure 2.6 schemati-
cally illustrates this vertical merge.
Each lift allows for buffer positions at each level of the warehouse; the system allows
for two or three buffer positions. The last variable related to the lifts is the number of
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lifts and their location. The lifts are situated behind the cross aisle at the start of an
aisle. Hence, the maximum number of lifts is equal to the number of aisles. Standard
practice is to alternate lifts over the aisle, so the number of lifts is equal to half the
number of aisles.

Figure 2.6: Overview of the different lift options available.
source:Vanderlande

Variable reference Unit
Nr of Aisles Section 2.4.1 Integer
Levels Section 2.4.1 Integer
X-positions Section 2.4.1 integer
Location depth Section 2.4.1 1 or 2
Nr of lifts Section 2.4.2 integer
Type of lift Section 2.4.2 single or double
Vertical merge Section 2.4.2 Yes or no
In-rack buffer position Section 2.4.2 2 or 3

Table 2.2: Overview of the variables available in the ADAPTO system

2.5 KPI’s

The following section will highlight the various KPI’s that are presented by the ADAPTO
simulation software that show how the configuration of parameters performs. The
KPI’s are essential in the design process as the KPI’s show where bottlenecks or in-
efficiencies are within the configured system and, therefore which settings could po-
tentially improve the design. The bottleneck analysis is performed after each run to
evaluate the performance of each part of the system. Understanding the impact of the
KPI’s is vital to understanding the design process. This section shows the most essen-
tial KPI’s and how they impact the model. An overview of all the KPI’s can be found
in Table 2.3.
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2.5.1 Throughput

The throughput of the system is the most important KPI for the design of the AS/RS
and it is measured in the number of DC s per hour. The throughput is the combi-
nation of the number of stores and retrievals by the system. As the system aims to
combine a drop off of a TSU at the lift with a storage of a TSU, the number of stores
and retrievals is balanced in the throughput. The customer determines a minimum
throughput, which must be met with the system design.

2.5.2 System Performance

There are seven KPI’s related to the performance of the system, which are shortly
discussed regarding their meaning and usage:

Average Shuttle Cycle: This KPI measures the number of double cycles per hour per
shuttle. A low number shows there are too many shuttles in the system and
they are often idle. However, increasing the shuttles doesn’t necessarily increase
the throughput. At some point, more shuttles are in each other’s way and drop
throughput. Simulating multiple numbers of shuttles shows the sweet spot for
the shuttles. The maximum number of shuttles is determined by the number of
lifts as there cannot be more shuttles than lifts due to the charging requirements
of the system. The number of aisles also represents a restriction as there cannot
be more shuttles per level than the number of aisles minus 1. The last shuttle
constraint is Wi-Fi. Due to Wi-Fi limitations, the maximum number of the whole
system is 250 shuttles.

Average Cross-Aisle Throughput: The Average Cross-Aisle throughput shows the util-
isation of the cross aisle by the shuttles. This indicates whether the system is
halted by the cross-aisle usage. A low average cross-aisle usage indicates the
number of shuttles per level might need to be decreased as the shuttles hinder
each other on the cross-aisle. More lifts might be required to shorten cross-aisle
movements. This KPI is measured in the number of double cycles per hour.

Lift Utilisation: This KPI shows the fraction of time the lift is moving or interacting
with a TSU in a buffer. However, this KPI is discussed in more detail in the lift
cycle KPI.

Relocates: The final KPI of this section shows the percentage of TSU’s which are out-
bound and are relocated in the warehouse. Within a double deep ADAPTO sys-
tem, to reach a TSU located behind another TSU, the first TSU must be relocated
to reach the second TSU. This KPI is measured as the percentage of the total
number of outbounds.

Shuttle Cycle: The Shuttle Cycle section provides insight into the actions of the shut-
tles. The KPI is split into eight different sections that each show how much time
was spent on that action. The various activities are: idle, cross-aisles, aisles, P&D
at rack-buffer, wait for rack-buffer, wait for aisle, wait for cross-aisle and extra
charge time. The waiting times especially show the bottlenecks in the system.
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Lift Cycle: Similar to the Shuttle Cycle, the lifts’ activities are also registered but in
three categories: Busy, Interaction, and Idle. Where interaction is the time spent
interacting with the buffers to place or retrieve a TSU, the other two speak for
themselves. This KPI shows whether to use another lift type as the lift is too
busy and a better option must be selected or the chosen option is too good and
an easier and cheaper option.

Average Lift Throughput: The number of TSU’s that pass through each lift per hour.
This KPI shows the average number of TSU ’s move through the lift. The simu-
lation team does not use this KPI as the picking stations are not their concern.

Operator Efficiency: The operator efficiency shows the percentage of time the oper-
ator is working versus idle. This variable is similar to the Average Lift Through-
put. Again, this is not considered in the simulation aspect of the design of the
AS/RS, as this falls outside the scope of the simulation study.

KPI Unit
Throughput DC/h
Average Shuttle Cycle DC/h
Average Cross-Aisle Throughput DC/h
Lift Utilisation %
Relocates %
Shuttle Cycle s
Lift Cycle s
Average Lift Throughput DC/h
Operator Utilisation %

Table 2.3: Overview of the KPI’s of the system performance

2.6 Conclusion

This section gives an overview of the current design process of an ADAPTO system.
It describes a simulation engineer’s process when the customer requirements are in.
In addition, the simulation software for the ADAPTO system is crucial in this process.
For an overview of all the parameters, variables and KPI’s, Table 2.1, Table 2.2 and
Table 2.3 can be consulted. This chapter gives an overview of the different design
options for the ADAPTO system and shows how to evaluate the performance of the
system using KPI’s.
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Chapter 3

Literature Study

The identification of the problem revealed the lack of an automated optimisation model
for the ADAPTO system. To identify a suitable model to fill this gap, a literature study
is conducted on the current developments on SBS/RS to identify potential optimi-
sation strategies. The goal is to explore and map the optimisation models currently
applied in SBS/RS systems, providing a foundation for developing an optimization
model for this research. Finally, the most relevant optimisation models for the scope
of this research are studied in more detail.

3.1 Definitions

Before moving to the in-depth analysis of the different warehousing systems, it is vital
to clearly define both an AS/RS and an SBS/RS. An Automatic Storage and Retrieval
System (AS/RS) is a major category of material-handling equipment that automati-
cally stores and retrieves goods without manual labor (Roshan et al., 2018; Rajkovic
et al., 2019). An AS/RS is widely used in manufacturing facilities, distribution centres
and warehouses (Li et al., 2022). A SBS/RS is a type of AS/RS where the transportation
of the TSU’s is done by shuttles at a level and a lift at the I/O point does the vertical
transportation. This difference in movement is the main distinction between an AS/RS
and a SBS/RS (Lehrer et al., 2017). An important distinction to be made within the SB-
S/RS is the ability for shuttles to move between the different levels. If shuttles are
confined to a single level, the system is considered tier-captive (Eder, 2020). If shuttles
move between different levels, the system is considered tier-to-tier. The same goes for
aisles; the system is considered aisle-captive if shuttles are confined to a single aisle.

3.2 Warehouse Layout Optimisation

The selection of the ideal warehouse layout is a special optimisation process with a
huge or infinite number of layout alternatives. Therefore, it is not a typical mathemat-
ical optimisation, as evaluating all possible alternatives is impossible (Kovács, 2021).
The design of the ADAPTO system matches these criteria for the warehouse layout
design. Furthermore, an important characteristic of a warehouse layout design is the
inability to define certain relationships within mathematical formulas. The through-
put calculations provided by the simulation software for the ADAPTO systems cannot
be defined with a constraint of a Mixed Integer Problem (MIP). Kovács (2021) presents
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a step-by-step process that is widely used in warehouse layout optimisation. The nine
steps guide the design process from setting goals and initial data collection to creating
viable designs and optimising these towards a final and optimal design. Optimisation
is performed using a model consisting of three different phases. The first phase cre-
ates the initial design of the warehouse that adheres to the limitations and constraints.
The second step is to make the set of alternatives finite by eliminating configurations
through heuristics. The last step is to evaluate the design in the finite set based on
the objective function to select the optimal design. Diaz et al. (2024) takes a different
approach by treating the warehouse layout optimisation as a bin packing problem.
The optimisation is performed with a Variable Neighbourhood search using hill climb
operators. Lyu et al. (2021) proposes the combination of a mathematical model and
a dynamic analysis to solve a Systemic Layout Planning (SLP) to reduce the carbon
emissions of a warehouse. Hu and Chuang (2023) combines a SLP with a Genetic Al-
gorithm (GA) to solve the non-linear optimisation model. Mayadunne (2024) applies
a two-step model to solve a warehouse layout problem; two different models for the
two steps are solved sequentially. The first model generates an optimal configuration
compared to the requirements for the warehouse and the second model fits the desired
layout into the available space. The paper acknowledges the risk of the solution space
becoming too large, resulting in the inapplicability of this model in this situation. The
Warehouse Layout Optimisation is currently solved through heuristics and GA’s, the
application of ML in this optimisation problem has not yet been explored.

3.3 SBS/RS Configurations

The definition of a SBS/RS shows the variety possible within a SBS/RS system. In
the last decade, SBS/RS’s have become a preferable solution for the automated han-
dling of TSU ’s in the case of extremely high throughput demands. In addition, a
SBS/RS delivers more flexibility and has a higher energy efficiency (Kosanic et al.,
2018). This development calls for the optimisation of the design of the SBS/RS. Thus,
before moving to the modelling behind the design optimisation, different innovations
of the SBS/RS are reviewed in the literature.

The study conducted by Ekren (2017) shows that simulations can be used to make
decisions in the design choices of a SBS/RS warehouse. The study considers several
numbers of bays, tiers, arrival rates and rack designs to show the trade-offs in these
variables via graphs. The study concludes that the approach increases the practition-
ers’ operational efficiency and decreases costs. Nevertheless, due to the aisle-captive
design, the SBS/RS used in the research models the warehouse as one aisle. Hoffman
and Asada (2017) proposes a new configuration of the lifts for a SBS/RS. The current
structure, which is solely vertical transport, can be switched to a design incorporating
diagonal transport options for the lift. This does provide a larger challenge in collision
avoidance. The new elevator path design provides highly adaptive scheduling capa-
bilities.
Ekren et al. (2023) propose an alternative design to a tier-captive SBS/RS with a move-
able lift. The lifts transport the shuttles through the warehouse with a smart anti-
collision algorithm for the lifts. The research shows that for high throughput ware-
houses, the SBS/RS outperforms the proposed solution in terms of performance and
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costs. However, for medium to low throughput warehouses, the SBS/RS can quickly
become too expensive compared to the movable lifts, while both reach the desired
throughput. Lerher et al. (2015) researched the impact of lift movements on the through-
put of the SBS/RS. In these systems, the lifts are often the bottlenecks, and the velocity
of lifting mechanisms is therefore important to optimise. An important relationship
in a tier-captive SBS/RS is the change in lift performance and the actual change in the
throughput. Eder (2023a) states that an increase in throughput due to different stor-
age and retrieval policies requires an increase in lift capacity. However, the increase
to 100% of lift capacity results in a 50% increase in throughput. An important aspect
to note is that the shuttles are aisle-captive in this scenario. A scenario with non-aisle-
captive shuttles does not strictly adhere to this relationship between lift capacity and
throughput. Min and Lim (2023) proposed an alternate approach to the general rack
structure with a bidirectional infinite-loop modular design. This design offers maxi-
mized storage capacity through enhanced space utilisation, faster processing speeds
and improved land usage efficiency.
Ekren et al. (2022) studied and compared the performance of a flexible and non-flexible
design of a SBS/RS, the performance is based on throughput, total investment costs
and energy consumption per transaction. The flexible design is a tier-to-tier shuttle
design, while the non-flexible design is tier-captive as well as aisle-captive. The study
shows that the non-flexible design performs better in terms of energy consumption
per transaction. However, the flexible design performs better in throughput and to-
tal costs. An unique SBS/RS design in the literature is proposed by Wu et al. (2020).
Where the shuttles are aisle-bound, tier-captive with the presence of a cross aisle which
is occupied by a single cross-aisle shuttle. So shuttles are not able to move between
aisles, but the transport of TSU’s between the aisles is done by the cross-aisle shuttle,
allowing for more flexibility for TSU’s than solely having an aisle-captive SBS/RS. The
optimisation model proposed uses a complex queuing network to calculate the travel
time of shuttles. The model applied for the optimisation in the design process of the
warehouse is to first determine the number of aisles required by the system. After this,
the other parameters, such as the number of columns, tiers, lifts, and workstations are
determined. Finally, the configuration with the minimal facility costs is determined
and selected. A comparison was drawn between the SBS/RS and a robotic fulfilment
system. The comparison shows lower costs of the robotic fulfilment system when the
throughput and capacity of the system is quite low. The SBS/RS becomes a superior
system when the throughput and capacity increase.

3.3.1 Shuttle Configurations

In a warehouse, the speed of the shuttles plays an important role in the system’s per-
formance. In an optimisation based on the Pareto front, the conclusion is drawn that a
shuttle which is too slow is harmful to efficiency. Whereas a shuttle which is too fast
harms the energy consumption and CO2 emissions. Hence, a trade-off must be made
in the design process of the shuttles (Borovinsek et al., 2017). Zhao et al. (2020) gives a
detailed approach on using a Semi-Open Queuing Network to coordinate the shuttle
sub-system for a Tier-to-Tier system. This study focuses on the retrieval process as
this is vital in the e-commerce business, where the key takeaway is that an increase in
shuttles does not always lead to higher efficiency. Ha and Chae (2019) shows that the
calculations regarding shuttle requirements differ depending on the type of system,
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either tier-to-tier or tier-captive. Ha and Chae state that the travel time model sup-
ports the decision model to adjust the number of shuttles based on specific through-
put capacity requirements. The papers show that faster shuttles lead to an increase in
throughput up to a certain point. At some point, the increase in throughput will stag-
nate and even lead to a decrease, showing the importance of carefully examining all
aspects of a system to maximise throughput. Another important trade-off in the adap-
tation of the shuttle speed is the travel time of a shuttle versus the energy consumption
of the shuttle, where a decrease in travel time is achieved at the expense of an increase
in energy consumption. Concerning the initial design of the SBS/RS, the study finds
that an increase in the height of a rack leads to a rise in energy consumption for the
completion of the same storage and retrieval requests (Yang et al., 2023).

3.3.2 Class-Based Storage

A paper by Kriehn et al. (2018) shows the importance of class-based storage. The paper
proposes multiple methods for dividing products into classes and determining which
locations in the warehouse the different classes should occupy. Through simulation,
the various configurations of classes in warehouses increase the throughput by reduc-
ing the waiting time of the shuttles. In addition, the zoning leads to lower energy
consumption, which is an essential theme in many papers in warehouse optimisation.
Thus, the class-based zoning of goods in a warehouse is essential when optimising a
warehouse. The combination of the class-based storage with the multi-deep storage
in a warehouse. The correlation of these two concepts is studied by Eder (2022) and
shows an improvement in the current warehousing systems is identified. The study
also proposes how the proposed approach can be used in the design process of a SB-
S/RS to meet the desired requirements. The class-based storage based on the Pareto
principle aids in the optimisation of the throughput in a SBS/RS.

3.4 Existing Optimisation Methods in a SBS/RS

The previous section has provided an overview of the different configurations of an
SBS/RS available in literature. Next, various modelling techniques available within
the design optimisation of an SBS/RS are identified. The research has identified three
main modelling techniques: Queueing, Heuristics and ML models. The following
section provides an overview of the relevant optimisation models within the scope of
the research.

3.4.1 Queueing

The only mention of a SBS/RS which involves tier-captive shuttles but not aisle-captive
by Eder (2023b). In the paper, a continuous-time open-queuing system with limited
capacity is created to determine the performance measures and is validated using a
Monte-Carlo simulation. In addition, the optimal geometric dimensions of the num-
ber of tiers and several slots to achieve the highest throughput were achieved through
a parameter variation. The research has led to interesting improvements through de-
sign choices. An improvement of 5% is gained when the DC s are done in a single aisle
instead of the storage and retrieval locations distributed randomly in a tier. The paper
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shows the potential of design optimisation of a non-aisle-captive, tier-captive SBS/RS
where simple parameters were optimised, leading to a significant performance in-
crease. In the case of a double-deep, a queuing system has been created by Eder (2020)
to aid in the design modelling of a tier-captive SBS/RS. A queuing system shows again
the ability to calculate performance and use the performance to aid in early design de-
cisions. The disadvantage of a queuing system is its specificity for a specific SBS/RS
variation. The ability of a queueing model to calculate the throughput of a system is
very efficient for a SBS/RS. However, it lacks a general model through which the SB-
S/RS can be optimised in the early design process without having to create a different
model for each situation. A very time-consuming operation within an early design
optimisation.

3.4.2 Heuristics

Yang and Ren (2023) states that the selection of the type of system is crucial in the
pre-design stage of the system. Next to the throughput, the costs of a design should
be taken into account in the objective of the system. They propose a custom heuristic
solution algorithm that optimises the model in steps. First, the number of aisles is de-
termined by maximizing the throughput for the available size and with a maximum
number of lifts. Next, the throughput of shuttles and lifts is analysed and the min-
imum number is determined, which reaches the desired throughput. The downside
of this approach is the sequence in which the optimisation is done. First, the number
of aisles is determined and other adaptations are made only after this is set. When
increasing the number of variables involved in the optimisation, the solution space is
very limited by this approach.
Next to optimising the entire model, heuristics are also created to solve more specific
issues in the warehousing optimisation. Chen et al. (2023) have taken the double lift
configuration of Vanderlande and applied an Adaptive Large Neighbourhood Search
(ALNS) to solve the retrieval request scheduling problem. Next to the research into
the destroy operators, repair operators and the operator selection, the research also
presents two practical conclusions. The optimisation of the retrieval process is vital
for good system performance and the velocity profiles of both the shuttles and the
lifts influence the warehousing operations considerably. This approach involves all
variables at once, leading to a huge solution space and, therefore an increase in com-
putational time. Nevertheless, by creating suitable destroy and repair operators and a
smart operator selector, this approach can lead to near-optimal solutions. An advan-
tage of this approach is the explainability and interpretability of the solution and the
optimisation steps taken.

Two approaches often seen in literature are an Ant Colony Optimisation and a
Genetic Algorithm (GA). Nia et al. (2017) applied these algorithms to a sequencing
optimisation for an AS/RS with multiple racks and multiple rack locations while con-
sidering the emission of greenhouse gases. Their research showed that the GA out-
performed the Ant Colony Optimisation in terms of total costs, performance costs and
emission costs. Dong et al. (2019) proposes using a Bacterial Foraging Optimisation
algorithm to solve the picking optimisation of an AS/RS with multiple carriers and ir-
regular goods. Using multiple objective functions for this NP-hard problem, the other
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algorithms found in literature by the authors, such as Simulated Annealing, GA and
Ant Colony Algorithm, were outperformed. Another optimisation model is proposed
by Sui et al. (2019) with a Genetic-based Particle Swarm Optimisation (GPSO). This
algorithm optimises the storage/retrieval scheduling problem in a tier-to-tier SBS/RS.
The model outperforms a GA and a basic Particle Swarm Optimisation (PSO), where
the GPSO has a faster computing speed and higher optimisation efficiency. A GA has
been used in multiple papers as a benchmark for the proposed optimisation method,
where most methods outperformed a GA. He et al. (2024) proposes an improvement
on the GA, a GA with priority selection, adaptive operators, and a decay factor (GA-
DF). The adapted GA-DF shows improved performance over traditional GA’s, Simu-
lated Annealing algorithms and Improved Genetic Algorithms (IOSA), outperforming
these algorithms up to 50%. This shows the power of a GA when carefully constructed
to the scenario.

Another optimisation method is proposed by Di (2024), where a Tabu Search algo-
rithm is proposed in combination with a neural network to optimise storage sequenc-
ing. It must be noted that the model is not equipped to handle varying goods well.
So, further research is required to adapt the model such that it is able to handle more
complex situations. This research shows the ability to combine a heuristic like Tabu
Search with a ML component.

3.4.3 Machine Learning

While ML has seen an enormous rise in mentions in research articles, as Figure A.1
in Chapter A shows the number of articles mentioning ML per year. However, the
application of ML within the optimisation of a SBS/RS warehouse is very limited. In
a paper by Ekren and Arslan (2022), a Reinforcement Learning (RL) method has been
implemented in the picking order optimisation in a SBS/RS. A Q-learning approach
has outperformed FIFO and Short Processing Time (SPT) scheduling rules and the au-
thors suggest that the implementation of more complex RL methods such as deep Q
learning could outperform both original scheduling rules. This research shows the po-
tential of RL in the optimisation of a SBS/RS. A more advanced version of Q-learning
is a variant of Deep Reinforcement Learning called Deep Q-learning (DQL). DQL is
described by Arslan and Ekren (2022) to optimise the transaction selection policy. The
DQL selection policy is tested against FIFO and SPT in a simulation model where the
DQL is applied in real time. When a shuttle becomes available in the system, the
next transaction is selected based on one of these policies if more than one transac-
tion is present in the system. DQL consistently outperforms the FIFO and SPT se-
lection policies when looking at the average cycle time of the model. When taking a
broader approach and looking at ML within AS/RS in general, the papers are limited
and no application within early design optimisation can be found in the literature.
A data-driven approach for dwell point optimisation was proposed by Rizqi et al.
(2024). Where a meta-heuristic is created with a ML aspect in the policy evaluation.
Logistic regression, K-neighbours and decision tree models jointly optimise the hy-
perparameters of individual learners. A more advanced implementation of RL in the
warehousing sector is a Q-learning algorithm to optimise dynamic routing planning
for automated guided vehicles. The study by Zhang et al. (2024) shows that dynamic
routing planning for multi-AGVs operating in a large-scale warehouse is possible with
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the use of RL. Many of the optimisation methods used in the papers are heuristics. A
possible disadvantage of a heuristic is the inability to handle large solution spaces. The
heuristic best equipped to handle the large solution space due to its high efficiency is
the ALNS proposed by Chen et al. (2023).

3.5 Model Selection

The literature highlights the diversity of SBS/RS’s, with multiple design choices avail-
able during the design process, particularly concerning the shuttle movements and
the lift configurations. Various modelling techniques have been applied to address
both design and operational optimisation, such as order picking and shuttle routing.
The three most commonly used model categories are queueing models, heuristic ap-
proaches, and ML-based methods. The literature indicates that queueing does not fit
the scope as the models are too rigid to handle many different design options. Queue-
ing models typically rely on strict assumptions regarding system behaviour and are
less adaptable to dynamic environments like the ADAPTO system.

Heuristics and ML are both suitable for research and are thus examined more
closely. The solution space of the optimisation problem consists of 43,568,504 different
configurations of the model, emphasising the requirement of a model able to handle
such a solution space. In addition, this number is calculated in Section 4.1.2 and only
takes the limited number of variables into account from Chapter 2. Outside of the
scope of this research are more variables that can also be taken into account after fur-
ther development of the model. Given the complexity and size of the solution space,
an Adaptive Large Neighbourhood Search (ALNS) heuristic is proposed as the most
suitable due to its operator versatility. These operators allow domain knowledge from
the experts at Vanderlande to be implemented within the model. Reinforcement learn-
ing is chosen as most suitable for ML as both supervised and unsupervised do not fit
the project’s scope. Q-learning and Deep Q-learning are implemented in warehousing
optimisation in the literature and the characteristics of the models align with the goal
of the research. Table 3.1 gives an overview of the optimisation methods found in the
literature. Since the literature does not yet cover early design optimisation using deep
Q-learning, the reviewed articles are evaluated based on five metrics.

The first criterion for evaluating a paper is the objective of the paper. The paper
must focus on the early layout design of a warehouse to align with the research of this
paper. Within a warehouse, there are numerous different options for a picking system.
The ADAPTO system is a SBS/RS system, and a paper’s methodology should align
with the system optimised. In line with this is the third criterion, the non-aisle cap-
tivity of the system. The aisle captivity results in a single shuttle per aisle, as well as
a lift for each aisle. This leads to a modular design with a single aisle as the module.
This results in different trade-offs and options that impact the optimisation. The op-
timisation goal of an aisle captive system translates to optimising the throughput of
a single aisle. When determining the size of the system for the throughput, only the
number of aisles and the length of the aisles must be determined. This varies signifi-
cantly from the ADAPTO system, where the system’s interaction between shuttles and
routing between aisles is crucial. Aisle captive system optimisations, therefore tackle a
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different optimisation problem. The last critical aspect of this research is the data used
to validate the optimisation model. This research uses real data from Vanderlande to
validate the model, hereby showing the actual real-world application of the optimisa-
tion model. Validation through data is done in every paper, so the criterion is based
on a traceable source of the data within the paper.

Table 3.1: Overview of the applicability of the papers named in the literature review.

Paper Early layout design optimisation SBS\RS Non-aisle-captive Use of ML Use of real-world data
Diaz et al. (2024) ✓ ✓
Lyu et al. (2021) ✓ ✓ ✓
Hu and Chuang (2023) ✓ ✓ ✓
Mayadunne (2024) ✓ ✓ ✓
Dong et al. (2019) ✓ ✓ ✓
Sui et al. (2019) ✓
Eder (2020) ✓
He et al. (2024) ✓ ✓
Ekren and Arslan (2022) ✓ ✓
Arslan and Ekren (2022) ✓ ✓
Chen et al. (2023) ✓ ✓
Di (2024) ✓
Yang and Ren (2023) ✓ ✓ ✓
Proposed method ✓ ✓ ✓ ✓ ✓

Table 3.1 shows the novelty of this paper. To the best of our knowledge, this is
the first paper which deals with the early layout design optimisation of a non-aisle
captive SBS/RS system using a ML algorithm, which is validated using real-world
data. The model is formally defined as Optimisation of Early Layout Design in SBS/RS
Warehouses or OELDSW.

3.6 Optimisation Modelling

The previous section highlights the novelty of this research. This section dives into the
ML models to give a clearer picture of what ML model is used and the functioning of
the model. The papers by Ekren and Arslan (2022) and Arslan and Ekren (2022) give us
Q-Learning and Deep Q-Learning, which are proven methods to apply within ware-
house optimisation. These methods are part of the reinforcement learning methodol-
ogy in ML, which is explored in the following section.

3.6.1 Reinforcement Learning

Reinforcement Learning is one of the three main directions in ML, next to supervised
learning and unsupervised learning. RL consists of an autonomous agent that must
make intuitive decisions and consequently learn from its actions. The key idea is to
learn how the world works to maximize cumulative rewards over time through trial
and error (Sutton and Barto, 2018). Figure 3.1 shows the basic interaction an agent has
with its environment (Naeem et al., 2020). The four most important components that
must be elaborated on are listed below.

State: A state represents a specific condition or configuration of the environment at
a given time as perceived by the agent. The state sets the scene for the agent to
make choices and select actions (Ghasemi et al., 2024).
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Action: The actions are the set of possible moves or decisions by the agent based on
the current state (Ghasemi et al., 2024).

Policy: The policy guides the behaviour of a learning agent by mapping the state into
action. This can be a simple function, a lookup table or a complex computation.
A policy can be both stochastic and deterministic (Ghasemi et al., 2024).

Reward: The rewards show the consequence of the action taken with respect to the
objective of the RL model. Based on the objective, the reward can be both positive
and negative. The reward helps update the policies according to the outcome of
the action (Ghasemi et al., 2024).

Figure 3.1: Basic interaction between a RL agent and the environment.
source:Naeem et al. (2020)

As stated, in each state, the agent must take an action, and the choice of action is
based on the expected reward of taking an action at time step t, which is calculated
through the expected reward function. After taking an action a, the expected reward
function is updated based on the difference between the received reward and the ex-
pected reward, shown in the formula below (Ghasemi et al., 2024).

NewEstimate = Oldestimate + StepSize ∗ [Target−OldEstimate]

The step size determines the extent to which new information overrides old infor-
mation. How a RL model selects the action is crucial to the model’s functioning. The
model can have a greedy selection, where the maximal immediate reward is selected
based on the current information. But to know all rewards, it requires all actions,
which is problematic. A solution could be to select randomly from all actions with a
small probability. This method, called ϵ-greedy, balances exploration and exploitation
much more (Ghasemi et al., 2024). Exploitation in RL is exploiting the current knowl-
edge and taking the action which results in the highest expected reward of the envi-
ronment to maximise the cumulative reward. Exploration is improving the knowledge
of the environment (Zangirolami and Borrotti, 2024). Due to the uncertainty associ-
ated with the estimation of action values, exploration is essential before exploitation.
Where the exploration usually decreases over time (Ghasemi et al., 2024).
Value functions create a partial ordering over policies, allowing comparison and rank-
ing based on expected cumulative rewards. The selection of a value function to esti-
mate the return of an agent in a certain state or performing an action in a particular
state depends on the agent’s environment. Using a state-value function is beneficial
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when there are many actions, as these methods reduce complexity. Action-value func-
tions are used to evaluate and compare the potential for different actions when they
take place in the same state. These functions are crucial if the goal is to determine the
most appropriate action for each situation. More complex RL models use a combina-
tion of these types of functions (Ghasemi et al., 2024; Feng and Zhong, 2023).

3.6.2 Reinforcement Learning Methods

Sutton and Barto (2018) describes Q-Learning, Dynamic Programming, Monte Carlo
methods, Actor Critic and Policy Gradient methods. Q-Learning is the most com-
mon RL technique with the main advantage of not requiring a model (Manju and
Punithavalli, 2011). Furthermore, in the case of a complex state and action space, the
model can be extended to a Deep Q-Learning model, which is capable of handling
the larger state and action space (Jang et al., 2019). Dynamic Programming (DP) and
Monte Carlo methods require a model of the environment, including transition prob-
abilities. The ADAPTO simulation model is too complex to map these probabilities
in this research, therefore, these modelling types are unsuitable. The Policy Gradient
Method is known to face convergence issues within a large state space (Xiao, 2022).
The state space for the simulation model is considered large, where 4.1.2 goes into
the size of the state space more extensively. Hence, Policy Gradient methods are not a
good fit for this research. Lastly, Actor-critic models do not require a model such as DP
and Monte Carlo and it can also be extended to a deep reinforcement learning model
(Abdalla et al., 2023). However, the approach benefits from a model environment
with stochastic rewards and not deterministic. Based on these models, Q-Learning
and Actor-Critic models are most suitable for this research. Due to the preference for
stochastic actions of Actor-Critic models, where the simulation model has determinis-
tic actions, Q-Learning is selected as most suitable for this research. This is based on
the model-free approach, the ability for deep reinforcement learning and the ease of
implementation.

3.6.3 Q-Learning

Q-Learning is a form of Reinforcement Learning algorithm which does not need a
model of its environment (Manju and Punithavalli, 2011). The main goal of the Q-
learning algorithm is to learn an optimal control policy from the data collected from
the interaction between the agent and the environment. To derive the optimal control
policy, Q-learning is based on a value iteration algorithm aiming to find the optimal
state-action value function, also known as the Q-function (Perrusquı́a et al., 2024).
Q-Learning can be classified into single-agent and multi-agent algorithms. Single-
agent algorithms or basic Q-learning use an off-policy method to separate the acting
and learning policies. As a result, even if the action selected in the next state was
mediocre, the information was not included in the updating of the Q-function of the
current state, and the dilemma is that of a wrong choice (Jang et al., 2019). The equa-
tion of Q-learning is the following:

Qnew(st, at) = Q(st, at) + α ∗ [rt+1 + γ ∗max
a∈A

Q(st+1, a)−Q(st, at)]
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Where α is the learning rate of the model, the Q value Q(st, at) of the action for the
current state S is updated with the sum of the existing value Q(st, at) and the equa-
tion which determines the best action in the current state. The Q-values are stored
in a Q-table. Q-learning is continued by updating the Q-value for each state contin-
uously using the formula above. This process is repeated so that the overall Q-value
converges to a specific value, where the table of Q values can be used to solve a given
problem (Zhong and Wang, 2025). Due to the required Q-table for the model, a consid-
erable amount of storage memory is required. Hence, in a multi-agent environment
with two or more agents, a large state-action space memory is needed, which causes
issues and limits effective learning (Jang et al., 2019). In cases with multiple agents,
Deep Q-learning provides an algorithm that is able to handle multiple agents.

3.6.4 Deep Q-Learning

A Deep Q Network (DQN) is an extension of Q learning, which is a typical deep rein-
forcement learning method (Ohnishi et al., 2019). Deep Q-learning combines basic Q-
learning with Convolution Neural Networks (CNN), originally developed by Google
Deep Mind. Q-learning employs an approximation function using a CNN when ex-
pressing the value function for every state becomes difficult (Jang et al., 2019). At
each iteration of a DQN, a mini-batch of states, actions, rewards and next states are
sampled from the replay memory as observations to train the Q-network. In addition,
DQN uses another neural network named the target network to obtain an unbiased
estimator of the mean-squared Bellman error used in training the Q-network. The
target network is synchronised with the Q-network after each period of iterations to
ensure coupling between the two networks (Fan et al., 2020). To avoid a low in an un-
usual direction due to a correlation between samples, a DQN collects many samples,
which are stored in memory. However, using too much memory negatively impacts
the learning speed of a DQN (Jang et al., 2019). In addition, the research by Fu et al.
(2019). emphasises the advantages of a large neural network with regard to the learn-
ing stability of the model. Large neural networks also offer practical compensations
for over-fitting and compensate for function approximation error. DQNs do have the
drawback of requiring much more data for training compared to basic Q-learning due
to the use of a neural network. If a DQN is selected as the optimal approach, the avail-
ability of the data must be ensured. Jang et al. (2019) shows the many applications of
both Q-learning and deep Q-learning for operations research as well as an overview
of additional applications of more in-depth Q-learning and DQN algorithms.

3.7 Summary

This section has given an overview of the current optimisation methods within early
layout design optimisation and optimisation methods within SBS/RS warehouses. Ta-
ble 3.1 shows the novelty of the research in both these areas. The optimisation area is
therefore formally defined as Early Layout Design of SBS/RS Warehouses Optimi-
sation or OELDSW, which is solved using ML and validated using real-world data.
Lastly, the literature is consulted on applicable ML methods and Deep Q-learning is
selected as most appropriate. The next chapter covers the development of the Deep
Q-learning method and the integration with the ADAPTO simulation software.
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Solution Approach

This chapter covers the third phase of the CRISP-ML framework: the ML model en-
gineering. This chapter combines the Deep Q-learning approach for the automation
and optimisation of the simulation of the early design of the ADAPTO system. This
model is split into the Q-learning structure through the state, agent and constraints.
The second part of the chapter dives into the Deep Learning features of the model,
going into the Neural Network architecture. Lastly, the pseudocode of the main algo-
rithms is given. This chapter delivers the framework for the model such that different
hyperparameter setups can be evaluated in the experimentation phase of the research.

4.1 General Structure

This section gives a general overview of the Q-Learning structure of the model, its
input and output structure and its integration with the simulation software. Deep Q-
learning combines Q-learning, a reinforcement learning technique, with deep neural
networks to approximate the optimal action-value function. The Q-learning frame-
work gives the structure to the model with the state, actions and rewards and describes
the interaction with the environment. The neural network component approximates
the Q-values used for decision-making. The architecture of the neural network and
the setup for the initial and terminal states are described in Section 4.2.

Figure 4.1 illustrates the iterative learning process of the Deep Q-Network. In the
figure, the agent’s architecture consists of the Deep Q-Learning model and the Epsilon
Greedy structure. The environment of the model consists of the simulation model
of the ADAPTO system. The process starts with an initial configuration loaded into
the simulation environment. The simulation provides the reward based on the cur-
rent state and action. This experience is stored in replay memory, and the Q-value
is updated using a loss function. The model then selects the next action using the
ϵ-greedy policy, updates the simulation, and repeats this cycle until the stopping cri-
teria are met. Section 4.1.1 describes the different states the agent can find itself in,
where Section 4.1.2 goes into the actions it can take in each state. Section 4.1.3 presents
the constraints that the environment is limited by, where Section 4.1.4 goes into the
environment itself.
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Figure 4.1: Flowchart showing the training process of the Deep Q-learning network.
The environment consists of the ADAPTO simulation software and the agent consists
of the Deep Q-Learning model and Epsilon Greedy structure.

4.1.1 State

The state of the DQL represents the agent’s perception of the environment, providing
the necessary information to decide on the following action. The agent uses this state
representation to determine the best action toward achieving the optimal result. The
state vector in this model consists of a set of variables from Section 2.4, parameters
from Section 2.3, the throughput goal and the throughput of the current state. The
model aims to find the optimal configuration of variables such that the configuration
reaches the throughput goal of the model for the order profile parameters. Table 2.2
gives an overview of the data type and the minimum and maximum values of the
variables.

Variable Symbol Variable Type Minimum Value Maximum Value
Number of levels lv Z 17 41
Number of aisles ais Z 4 25
Number of x positions p Z 20 150
Depth d Z 1 2
Lift type lt Z 1 2
Number of rack buffers r Z 2 3
Number of shuttles per level sl Z 1 14
Number of lifts ln Z 2 24

Table 4.1: Overview of the variables in the state, their symbol, variable type and mini-
mum and maximum value.

The variables have a clear range in which they lie, easily limited by a minimum
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and maximum. The parameters in the state that describe the order pattern of the cus-
tomer are more complex. In order to train the model, the state requires values for the
parameters that describe the system. To address this, each parameter has been discre-
tised into a set of representative cases that capture the majority of real-world scenarios.
These cases were defined based on historical data and insights from experienced sim-
ulation engineers. These cases serve as the input for the simulation model to create
the environment in which the agent can interact to train its policy. It is important to
note that a Deep Q-Learning algorithm does not require a training dataset as it learns
through interaction with the environment. The model can effectively represent a wide
range of sales scenarios by combining these parameter cases. The parameter goal rep-
resents the minimal throughput the customer requires from the ADAPTO system. An
overview of the parameters is given in Table 4.2. The values for the velocity classes are
placed in Table 4.3 so that both tables remain clear.

Parameter Symbol Variable type Values Numerical representation
Velocity classes V Z general, custom, single {0,1,2}
TSU distribution TsuD Z normal, uniform, bathtub {0,1,2}
TSU range TsuR Z {1,5,10}
Sequencing Seq Z strict, relaxed, unsequenced {0,1,2}
TSU group distribution TsuG Z uniform
Smart lift allocation sla Binary {0, 1}
Goal G Z [500,6000]
Current throughput T Z [0,9200]

Table 4.2: Overview of the parameters and their symbols, variable type and values.

General Custom Single

Locations {20%, 30%, 50%} {5%, 9%, 86%} {100%, 0%, 0%}

Movement {80%, 15%, 5%} {41%, 45%, 14%} {100%, 0%, 0%}

Table 4.3: Overview of the velocity classes

The definition of these variables and parameters leads to the following mathemat-
ical formulation of st, the state at time t:

st = {lvt, aist, pt, dt, ltt, rt, slt, lnt, Vt, TsuDt, TsuRt, Seqt, TsuGt, slat, Gt, Tt} (4.1)

Each variable and parameter takes a value limited by the minimum and maximum
value given in 4.1 and 4.2. By taking an action, the model varies one of the variables
of the state to move towards the next state. The parameters are always determined at
the start of an episode and remain constant for the entire episode. The interaction of
the state with the neural network is described in 4.2.

4.1.2 Action Space

The action space in the DQL model defines the set of possible actions an agent can take
within the environment, at ⊂ A. The action space A consists of the actions the agent
can take in each state. Each variable in Table 4.1 can either be increased or decreased
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with step size 1, except ais, where the step size is 5. The action space is equal to:

A = {lv−, lv+, ais−, ais+, p−, p+, d−, d+, lt−, lt+, r−, r+,

sl−, sl+, ln−, ln+} (4.2)

The model selects one of these actions every step, selecting the correct action more
often as the model is trained. It is important to note that the action space is always
limited by the constraints of Section 4.1.3. The agent selects one of these options at
each step to either increase, denoted by +, or decrease the variable, denoted by −. The
model can navigate through the solution space, which consists of 43,568,504 unique
configurations. The neural network will estimate the best action to take based on
the variables, parameters and the goal by predicting the Q value of each action. Each
variable is limited by a range given in Table 4.1 where the configuration cannot exceed
these limits. If the agent selects an action that leads to an invalid configuration by
exceeding a limit, the agent will remain in the old state. The agent is punished for the
wrong move by receiving a negative reward while the throughput remains constant.
The reward function is given in Section 5.1 to elaborate on this structure.

4.1.3 Constraints

The actions described in Section 4.1.2 are limited by a set of constraints. These con-
straints limit the variables to a configuration that is possible in a real ADAPTO system.
The first set of constraints, Equation (4.3) to Equation (4.10), limits the actions to the
minimum and maximum value of the variable. The maximum value is determined by
the maximum capacity of the system or specific customer requirements, such as space
limitations.

lvmin ≤ lvt ≤ lvmax (4.3)

aismin ≤ aist ≤ aismax (4.4)

pmin ≤ pt ≤ pmax (4.5)

dmin ≤ dt ≤ dmax (4.6)

ltmin ≤ ltt ≤ ltmax (4.7)

rmin ≤ rt ≤ rmax (4.8)

smin ≤ slt ≤ smax (4.9)

lnmin ≤ lnt ≤ lnmax (4.10)

The minimum and maximum values are set as equal to the values in Table 4.1.
However, if the size constraints are more limited due to the available size of the client,
these maximum values can be limited to these custom maximum values.

aist ≤ lvt (4.11)

lvt ∗ slt ≤ 250 (4.12)

slt ≤ lnt (4.13)
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lnt < aist (4.14)

Equation (4.11) ensures the number of levels is equal to or higher than the number
of aisles. The ADAPTO is designed for optimal performance for high systems (more
levels) compared to broad systems (more aisles). Equation (4.12) limits the total num-
ber of shuttles to be less than or equal to 250. This limit is set in Section 2.5.2 because
of the Wi-Fi connection limitations. Equation (4.13) ensures the number of shuttles is
not more than the number of aisles in a system. Due to the charging requirements of
the shuttles, each shuttle requires at least one lift. Lastly, Equation (4.14) limits the
number of lifts to 1 less than the number of aisles. The number of lifts not exceeding
the number of aisles speaks for itself. However, as the ADAPTO system does not want
an aisle captive system, the number of lifts can not equal the number of aisles.

4.1.4 Environment

This section covers the environment with which the agent interacts, the ADAPTO sim-
ulation model. 3.6.1 covers the basic functionality of the environment in RL, this sec-
tion goes into the functioning of the simulation model. As previously stated, the ex-
act functioning of the model cannot be shown due to confidentiality. Nevertheless, a
global description of the most important aspects is given below.

Order Generation

The simulation model creates a digital twin of the ADAPTO model where the layout
is based on the variables determined by the simulation engineer and the orders are
based on the order pattern of the customer. Based on the parameters V, TsuD, TsuR,
Seq and TsuG, the model generates orders for TSU’s that are retrieved from the system
and TSU’s that are stored in the system. This allows Vanderlande to accurately sim-
ulate the performance of the ADAPTO configuration. While there is a random aspect
in the order generation in the model, the seed used is constant, removing the random-
ness from the model. Therefore, the model results in an identical throughput if the
same state is simulated multiple times. Thus, the results of the simulation model are
deterministic. The model has been extensively tested and validated by Vanderlande,
thus, using a single seed does not lead to a discrepancy between the simulation and a
real ADAPTO system.

Runtime

The ADAPTO simulation model takes a heavy toll on the computational performance
of the RL model. However, the model must also be able to run for a sufficient amount
of time to produce accurate results. Therefore, the aim is to run the simulation for the
minimum amount of time where the results are reliable. According to expert opin-
ion at Vanderlande, this is 1 hour of simulation time. In real time, this results in a
simulation time of 30 seconds to 1 minute, depending on the size of the simulation.
The runtime of the simulation increases if the simulated system becomes larger. Every
simulation requires the model to be built from scratch. Therefore, one change to the
configuration requires a new model.
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Impact of the Variables

The variables given in Table 4.1 each have their positive or negative impact on the
throughput of the model. This section gives an overview of the impact the variables
have on the throughput. The exact impact on throughput cannot be given as this
differs per order pattern. A high-level overview of the general impact is given below:

• Aisles, Levels & X positions: These variables determine the size of the system.
Increasing these variables without increasing the number of lifts or shuttles gen-
erally results in lower throughput as the same number of shuttles have to travel
larger distances per order.

• Depth: Increasing the depth of a system from 1 to 2 results in a lower through-
put. If an order requires the second TSU, the shuttle must first move the TSU in
front, resulting in additional handling time.

• Lift type: Changing the lift type from a single platform lift to a double platform
lift always increases the throughput.

• Number of rack buffers: By changing the number of buffers at each lift from
two to three, the shuttles are more likely to deliver a TSU and move to the next
storage or retrieval. Hence, always increases the throughput of the system.

• Number of Lifts: Increasing the number of lifts always results in a higher through-
put as the shuttles have to travel less far to a lift and the waiting time on an
available lift also decreases.

• Number of shuttles: Increasing the number of shuttles generally increases the
throughput of the system as more orders can be handled simultaneously.

It must be noted that this is a very general description and the impact differs per
order profile. For example, consider a system with a low number of aisles and a large
number of x positions. If the order profile has many SKU’s per order, adding shuttles
can result in long waiting times when an aisle is occupied and even congestion of the
system. Therefore, adding shuttles would decrease throughput. This shows that the
impact of these variables has a general trend but is always influenced by the order
profile of the customer.

4.2 Neural Network Architecture

A neural network predicts the Q-function; the neural network is built using the Keras
library. Keras, a high-level API built on TensorFlow, simplifies developing and train-
ing deep learning models. Tensorflow is an end-to-end platform for ML (Tensorflow,
2024). Keras provides an approachable, highly-productive interface for solving ML
problems, focusing on modern deep learning Tensorslow (2023). The Keras library is
used in this research to create and train the neural network responsible for the predic-
tion of Q-values. The following section details the architecture of the neural network,
including the prediction & target networks, their layers, loss function, optimiser, and
the implementation of experience replay in the DQL model.
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4.2.1 Prediction & Target Network

The DQL model consists of two neural networks: the prediction and target networks.
Mnih et al. (2015) states that reinforcement learning is known to be unstable or even
to diverge. To address these instabilities, both a prediction and a target network are
created. The prediction network is updated at every iteration, while the target network
is only updated every 10 iterations, as suggested by Rafael1s (2020).

4.2.2 Layers of the Model

A layer in a neural network is a collection of neurons within an artificial neural net-
work that simultaneously receive the same type of information (López et al., 2022).
This section covers all the layers in the artificial neural network in the Deep Q-learning
model.

Input Layer

The first layer of the neural network is the input layer; the input layer transfers data
via synapses to the second layer of the model (Shan et al., 2018). The input layer
contains the input data for the neural network and the input data describes the current
state according to Wan and Hwang (2018). Thus, the neural network’s input layer
contains 14 neurons, the number of elements in st. The description of the elements
in the state can be found in Section 4.1.1. The model continuously checks whether a
configuration is viable and whether all variables are correct before they are input into
the neural network. Therefore, any incorrect input into the input layer is impossible.
The activation function of the input layer is the Rectified Linear Unit (ReLU). The
ReLU is a simple function that is the identity function for positive input and zero for
negative input, as shown in Equation (4.15) (Dubey et al., 2022).

ReLU(x) = max(0, x) =

{
x, i f x ≥ 0
0, i f otherwise

(4.15)

Hidden Layer

A layer in a model is a hidden layer if it only interacts with other layers in the model
and not with the ’outside world’ (López et al., 2022). There is currently no standard
method to determine the number of hidden layers the model requires and what size
these layers should be. The main approach is through testing; nevertheless, there are
general guidelines that aid in determining these parameters. During the evaluation
of performance, underfitting indicates there are too few hidden layers, so the model
cannot grasp the patterns in the data. According to Raut and Dani (2020), if the model
overfits heavily, there are generally too many hidden layers and the number of layers
must be reduced. For this model, three hidden layers have been selected. The rela-
tionship between the variables and parameters is not linear; more than one layer is
required. The model is estimated to require deeper learning as it replaces a complex
simulation model. Thus, three layers have been selected. According to Lawrence et al.
(1996), a neural network benefits from a larger number of neurons in the hidden layers
compared to a smaller number of neurons in the input layer, taking a number of neu-
rons for the hidden layers larger than the number of input neurons. Berry and Linoff
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(1997) states that the number of neurons in a hidden layer should not exceed twice the
number of input neurons. Based on these two rules of thumb, the first and third layer
have 24 neurons and the second layer has 32 neurons. The activation function is the
ReLU function from Section 4.2.2.

Output Layer

The output layer is the layer that presents a pattern to the external environment (Kar-
soliya, 2012). The goal of the network is to estimate these Q-values so that the model
can select the optimal action by choosing the one with the highest predicted Q-value.
Hence, the output layer has neurons equal to the number of actions from Section 4.1.2.
While the input and hidden layers of the network use the ReLU activation function
to introduce non-linearity and prevent vanishing gradients, the output layer uses a
linear activation function. This choice ensures that Q-values remain unbounded, al-
lowing the network to learn accurate value approximations without imposing artificial
constraints.

4.2.3 Loss Function

In Deep Q-learning, the loss function optimises the model’s parameters by minimizing
the error between the predicted and target Q-values (Terven et al., 2024). The goal is to
adjust the network weights so that the estimated Q-value Q(s, a, θt) becomes more ac-
curate over time. The difference between the estimated and actual value is calculated
using the loss formula in Equation (4.16) from Tensorflow (2023). The formula uses
the Mean Squared Error approach, a commonly used approach to determine the loss
of the prediction, with the advantage that estimated values that lie further away from
the actual value are punished more. The variable yi is the Temporal Difference (TD),
which is calculated by the current reward and the maximum reward given the state
and action from the previous iteration, calculated in Equation (4.17). Q(s, a, θt) is the
approximation of the Q function by the model. By minimising Lt(θt), the model will
accurately predict the Q-values and converge to the true optimal Q-function Q∗(s, a).

Lt(θt) = Es,a,r,s′∼p(.)[(yt −Q(s, a, θt))
2] (4.16)

Where

yt = r + γ max
a′

Q(s′, a′, θt−1) (4.17)

4.2.4 Optimiser

The optimiser of a DQL model updates the network’s weights to improve learning sta-
bility and convergence. Optimizers are algorithms that update the network’s weights
in response to the computed loss (KDnuggets, 2025). Keras (2025) provides several
optimizers, with the most commonly used being Stochastic Gradient Descent (SGD),
RMSprop, and Adam. SGD is the simplest approach, but can be slow in convergence.
RMSprop improves on SGD by adapting the learning rate, making it more effective
for non-stationary problems.
The Adam optimiser, introduced by Kingma and Ba (2019), combines the benefits of
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momentum and adaptive learning rates, making it computationally efficient and well-
suited for large-scale ML tasks. It is particularly effective for stochastic objective func-
tions and non-convex optimisation problems, common in deep learning. The Adam
optimiser is therefore selected as the optimiser used in the DQL model.

4.2.5 Initial & Terminal State

During the training phase, the model requires a starting point s0 from which it moves
towards the goal. To encourage broad exploration and avoid premature convergence
to local optima, initial states are sampled uniformly within each variable’s minimum
and maximum ranges, as outlined in Table 4.1. Each starting state s0 must satisfy two
conditions: it must comply with all constraints of Section 4.1.3 and cannot already
meet the throughput goal, as this would prevent meaningful learning.

A DQN requires a state considered terminal as an end point of an episode. A
natural terminal state is a state where the configuration satisfies the throughput goal
set at the start of the episode. Nevertheless, it is not guaranteed that a model finds a
state where the throughput demand is satisfied, especially when the agent has not had
many interactions with the environment to tune the Q-values. A cap on the number of
iterations within one episode is required to ensure the model does not get stuck in sub-
optimal states, thereby improving the learning efficiency and ensuring convergence.
The cap must ensure the model is able to reach each state in the state space within a
single episode. To allow the agent to reach any state it requires, the maximum number
of actions required is 113. This is the number of actions the agent requires to move
from the minimum of each variable to the maximum of each variable. This allows the
agent to reach the state with maximal throughput each episode. However, the goal of
the model is to configure the simple requests to relieve sales engineers such that they
are able to focus on special cases. Simulation requests that involve throughput goals
of more than 2/3 of the capacity of the system are always considered special cases and
outside the scope of this research. This is represented in the range of the goal of the
model in Table 4.2 as the goal cannot be more than 6000. Hereby excluding these cases
from training. To ensure that the model does not attempt to optimize for throughput
beyond the 2/3 system capacity, a conservative cap of 75 iterations per episode is set.
This number is roughly two-thirds of the 113-step maximum and is intended to align
with the typical throughput range for the system in this research. The agent tracks
the number of iterations per episode and receives a True on the Terminal State if the
number of iterations reaches 75.

4.2.6 Framework of the Method

The DQL developed in this research is focused on the implementation of a basic ver-
sion of a DQL, which is implemented in a novel area, not the development of the most
advanced version of a DQL. To be sure that a functioning model is used as the basis for
this research. A framework for the Deep Q-learning part of the model is taken from
Rafael1s (2020). The model was developed on a very common RL problem, the cart
pole balancing problem provided by Foundation (2025). Taking the basic functioning
from this already tested agent ensures that the basic functioning of the model is cor-
rect. This ensures the research is not limited by the agent’s fundamental performance
issues.
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4.2.7 Training & Testing Data

This section describes the data used for the training process of the agent and the data
used to evaluate the performance of the agent. An important characteristic of DQL
is the training of the agent is done through interaction between the agent and the en-
vironment. The variables and parameters are limited by the ranges given in Table 4.1
and Table 4.2 and Section 4.1.3. These ranges and constraints are data used for training
the agent. The ranges for the parameter of the order data are scenarios that summarise
common cases that the agent must be able to handle. To evaluate the performance of
the agent, the agent is tested against actual sales requests from customers of Vander-
lande.

4.3 Pseudocode of the Main Algorithms

This section presents the pseudocode for the key algorithms driving the DQL model.
As stated in Section 4.2.6, the basic structure is taken from Rafael1s (2020), adapted
to be able to train on the ADAPTO environment. The full implementation can be
found in Chapter B. First, Algorithm 1 is the main driver of the model, structuring the
training process. In each episode, the model first generates a viable initial solution.
Afterwards, the model enters a loop that runs until a configuration is found, which is
a terminal state. Within the loop, the process of Figure 4.1 is followed.

Algorithm 1: The Deep Q-Learning optimisation model for the ADAPTO con-
figurations using simulation tools

Data: Range of ADAPTO variables & parameters, actions at ⊂ A & model
hyperparameters

Result: Trained Deep Q-Network
1 Initialize Prediction Network, Target Network, ADAPTO simulation

environment & t;
2 for i← 1 to NrEpisodes do
3 InitialiseState();
4 while not TerminalState do
5 at, st+1 ← SelectAction(st, ϵ);
6 rt, st+1 ← CalculateReward(st+1);
7 TerminalState← IsTerminal(st+1);
8 StoreExperienceReplay(st, at, rt, st+1, TerminalState);
9 TrainNetwork();

10 st ← st+1 #Update state;
11 t← t + 1 #Update Iteration Nr;

12 ϵ← ϵ ∗ ϵdecay #Decay exploration rate

The first step of the algorithm is to configure a starting state from which the agent
must change to a state that meets the throughput goal. The initial state is checked
whether it does not breach any constraints. The initial state is described in more detail
in Section 4.2.5. The SelectAction method is explained in more detail in Algorithm 2.
The CalculateReward method is responsible for running the ADAPTO simulation with
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the new state and returning the reward of the new state, as well as the state that is up-
dated with the throughput of that state. The next step is to check whether the state
has reached a terminal state; if so, it is the last iteration in the episode. States which
are considered terminal are states which have reached the throughput goal or if the
while loop has reached 75 iterations. The 75 iterations ensure the while loop does not
get stuck indefinitely. The next step of the algorithm is to store the current iteration
in the replay buffer and train the neural network, the training process is shown in Al-
gorithm 3. The loop ends by updating the state for the next iteration and updating
the iteration number. If the episode ends, the exploration rate is updated based on
the ϵdecay scheme. Algorithm 2 is used for the action selection. First, a random num-
ber is sampled, which determines whether the agent will explore or exploit. This is
done through the epsilon decay scheme, variations for this scheme are possible so the
variation tested within this research are given in Section 5.2. Based on the choice, the
model selects either a feasible random option or the action it expects to yield the high-
est reward. After the action selection, the new state is calculated based on the step size
given in Table 4.2 after which the method returns the action selected and the updated
state.

Algorithm 2: SelectAction method from Algorithm 1, the action selection of
the agent using an ϵ-greedy approach

Data: Current state st, exploration rate ϵ
Result: Selected action at, next state st+1

1 Initialize Rnd = Random number in [0,1];
2 if Rnd < ϵ then
3 at ← SelectRandomAction(st);

4 else
5 at ← SelectBestAction(st);

6 st+1 = GetNextConfiguration(st, at);
7 return at, st+1

The last algorithm that is explained is the training of the network in Algorithm 3.
This algorithm ensures the policy of the agent is updated after each iteration, such
that the variables responsible for the estimation of the Q-values converge to the op-
timal values. First, a batch of B = 32 samples is taken from the replay buffer. The
Tensorflow environment takes the Q-values predicted by the prediction network for
these samples and compares them to the actual values obtained from the reward func-
tion. The loss between the predicted Q-values and actual Q-values is taken using the
Bellman equation in Equation (4.17). Based on the loss, the variables of the neural net-
work are updated through back propagation. Every N = steps, the target network is
also updated using the weights of the prediction network.
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4.3. Pseudocode of the Main Algorithms

Algorithm 3: Training of the neural network
Data: ReplayBuffer, UpdateInterval N, BatchSize B, TargetNetwork,

PredictionNetwork, StepCounter
Result: Updated PredictionNetwork & TargetNetwork

1 Sample B experiences from ReplayBuffer;
2 Predict Q-values using PredictionNetwork;
3 Compute loss using Bellman Equation(Equation (4.17));
4 Update weights PredictionNetwork;
5 if StepCounter mod N == 0 then
6 Update weights TargetNetwork;

7 StepCounter← StepCounter + 1;
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Chapter 5

Experimental Setup

The previous chapter has given the basis of the Deep Q-Learning model by developing
the agent and the interaction with the environment. As well as the design for the neu-
ral network used to predict the Q-values. This chapter goes into the variable aspects
of the model, such as the reward function,ϵ decay strategy and variations on the DQL
model. The hyperparameters tested to find the optimal setup for the agent are defined
in this chapter.

5.1 Reward Function

The reward function is a fundamental component of a DQL and its importance cannot
be overstated. The reward function directly impacts the agent’s ability to understand
the environment and guides the agent to an optimal policy Sutton and Barto (2018).
The reward function must be defined to align with the desired behaviour and goals of
the agent. This process is split into two primary areas, reward engineering and reward
shaping Ibrahim et al. (2024).

Reward engineering involves the creation of the reward function itself. A reward
function must provide informative feedback to the agent and incentivise the agent to
show good behaviour Ibrahim et al. (2024). The first distinction in the reward func-
tion is whether to use a sparse or dense reward function. A dense reward structure
has a state-to-state difference, where sparse rewards only provide rewards for a few
select states (Memarian et al., 2021; Vasan et al., 2024). The agent’s objective in this
model is to identify a system configuration that satisfies a predefined throughput goal
at the lowest possible cost. Therefore, throughput itself is not the reward, but the cost
of the configuration is. Not every state reaches the goal and has a positive reward,
so a dense reward structure is inappropriate. Hence, the model uses a sparse reward
structure where states where the throughput goal is satisfied receive a positive reward.

However, except for thresholds that lie very close to the maximum throughput ca-
pacity of the system, most cases have multiple configurations that reach the through-
put threshold. The goal of the model is to find the cheapest configuration that satisfy
the throughput threshold, so a distinction must be made between these configurations
based on the costs of the configuration. Such that the configurations that reach the
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5.1. Reward Function

threshold for the lowest costs are rewarded more than more expensive configurations.
Klar et al. (2021) has a similar reward structure within their facility layout planning
and uses a similar reward structure. The key difference is the ratio between the nega-
tive and positive reward. This leads to the following initial reward function.

reward =

{
−β, if throughput < goal
α ∗ (1− costs−costsmin

costsmax−costsmin ), if throughput ≥ goal
(5.1)

Here, costs are normalised to a [0, 1] scale using costsmin and costsmax, which are
domain-specific values representing the minimal and maximal configuration costs.
The reward function incentivises the agent to minimise configuration costs while still
meeting the throughput constraint. The parameters α and β control the relative strength
of positive and negative feedback: α scales the reward for achieving the goal efficiently,
and β penalises configurations that fail to meet the throughput requirement. Different
values for α and β are tested in the model to find the balance; the different variations
are shown in Table 5.1. The values for α must be assigned a value such that the agent
can identify the point at which the goal is reached by ensuring the action that leads to
the best action is assigned the highest Q-value. The value for β must be configured so
that the agent is incentivised to take the fewest number of actions to move towards the
optimal configuration. The ratio between α and β is configured through trial and error,
which is standard practice in RL, where the values for the variables are based on pre-
vious cases obtained from literature. The initial experiment runs with the values that
are derived from Mnih et al. (2015), negative results receive a value of -1 and reaching
the goal is rewarded with the value 1, so α=1 and β=-1. Furthermore, Klar et al. (2021)
has also used a balance of -1 for β and a range of [0,1] for α. Nevertheless, the ratio
has been identified through testing. Due to the sparsity of the reward, a higher reward
for reaching the goal could be applicable, so the reward gained for reaching the goal
impacts Q-values enough that the agents’ actions move towards the goal. Therefore,
experiments are performed with α =100 and α =1000.

Another method is proposed by Vasan et al. (2024), a contact reward formulation.
This method rewards 1 if the target is met and 0 otherwise, translating to α=1 and β=0.
This does require a discount factor, denoted by γ, such that a model is incentivised to
take the shortest path towards the optimal configuration. Vasan et al. (2024) proposes
a value of 0.99 and this is implemented in the model. This experiment is performed
with the value for α that has resulted in the best policy.

Experiment α β γ
1 1 -1 1
2 100 -1 1
3 10,000 -1 1
4 α∗ 0 0.99

Table 5.1: The varying values for experimentation of α, β and γ to identify the optimal
reward structure, where α∗ is the value for alpha with the best policy. The full set of
hyperparameters are presented in Table 5.3.

Theoretically, a general reward function should be able to deal with a sparse reward
setting through sufficient training (Eschmann, 2021). Sutton and Barto (2018) states
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that the reward signal is not the place to impart prior knowledge to the agent about
achieving the goal. In practice, finding a solution in a sparse environment might be
infeasible (Eschmann, 2021). Hence, tuning the reward function after inconclusive
results from the base reward function is required. Reward shaping comes into play to
fine-tune the reward function and enhance reward signals (Ibrahim et al., 2024). Laud
(2004) has developed a theoretical foundation for tuning the reward function. The
following section covers several possibilities for tuning the basic reward function. But
crucially, the reward function must only be modified to guide the agents’ behaviour
without changing the optimal policy. Laud proposes the following formula.

R′ = R + F (5.2)

Where R is the base reward function from Equation (5.1) and F is a shaping func-
tion. The shaping function should assist the agent with prior knowledge to guide the
agent towards the goal. Two cases of prior knowledge were evaluated, denoted as F1
and F2. The first shaping function F1 focuses on throughput, as throughput directly
reflects the progress towards the goal and is therefore an ideal candidate to shape the
reward function. Guidance of the reward is required when the throughput goal is not
met, and is not required when the throughput is sufficient. So the function F1 replaces
the negative reward β and will be scaled according to the optimal value for β through
γ, leading to formula Equation (5.3):

reward =

{
γ ∗ throughput, if throughput < goal
α ∗ (1− costs−costsmin

costsmax−costsmin ), if throughput ≥ goal
(5.3)

The second shaping function F2 focuses on the boundaries of the solution space.
Currently, the punishment for selecting an unfeasible action is an additional punish-
ment β without moving closer to the goal, leading to a lower Q-value. However, this
punishment is only small and the model could benefit from a higher punishment for
an illegal move, a state where a variable falls outside the predetermined ranges of Ta-
ble 4.1. Therefore, the shaping function adds a punishment of the value α such that
an illegal action always receives a reward lower than any other action. This leads to
Equation (5.4).

reward =


−β− α, if the action is illegal
−β, if throughput < goal
α ∗ (1− costs−costsmin

costsmax−costsmin ), if throughput ≥ goal
(5.4)

5.2 Epsilon Decay Scheme

Figure 4.1 shows the flowchart on the action selected using the ϵ-greedy approach
from Sutton and Barto (2018). The ϵ-greedy balances the exploration and exploitation
of the model. In the model, exploration is taking a random action to explore the action
space and escape local optima. Exploitation always selects the action that has the
highest Q-value prediction to converge towards an optimum. The model starts with
a high degree of exploration as the agent has no sense of the environment yet. As the
episodes progress, the model starts exploring less and exploiting more. This is done
through a linear cooling scheme presented by Mnih et al. (2015) in Equation (5.5).

45



5.3. Experience Replay

ϵ = max(ϵ ∗ ϵdecay, ϵboundary) (5.5)

The value of ϵ is updated at the end of each episode with the variables ϵ where the
initial value is ϵstart = 1 and ϵdecay. This is done until the ϵboundary = 0.1 is reached, as
the model should not explore less than 10% of the time (Mnih et al., 2015). The value of
ϵdecay determines after how many episodes the ϵboundary is reached and therefore what
percentage of time the model explores more than the minimum of 10%. Sutton and
Barto (2018) propose using values of 0.9 and 0.99 as values for the ϵdecay, but Sutton
and Barto do state that more exploration is required with noisier rewards. Hence, a
ϵdecay of 0.999 is also tested. An overview can be found in Table 5.2.

Experiment ϵstart ϵdecay ϵboundary
6 1 0.9 0.1
7 1 0.99 0.1
8 1 0.999 0.1

Table 5.2: The varying values for ϵstart, ϵdecay and ϵboundary for the evaluation of differ-
ent schemes for the ϵ-greedy approach. The full set of parameters for the experiments
are shown in Table 5.3

.

5.3 Experience Replay

To improve learning stability and efficiency of the neural network, the experiences of
the agent are stored in a replay buffer through a tuple et = (st, at, rt, st+1, TerminalState)
at each time step. During the learning process, samples of experience are drawn from
the buffer (Mnih et al., 2015). As reinforcement learning is a trial-and-error-based
model, the learning is improved by storing past experiences and repeatedly present-
ing its past experience to the learning algorithm. Experiencing the past results in faster
convergence of the model (Lin, 1992). The key advantage of drawing samples from the
experience replay instead of learning from consecutive samples is that strong correla-
tions between samples are decreased (Mnih et al., 2015). There are three important
aspects of a replay buffer: the size of the buffer, the sample size and the sample selec-
tion method.

The size of the replay buffer partially determines the delay on important transitions
of the model (Fedus et al., 2020). Mnih et al. (2015) proposes a replay buffer size of
1.000.000 samples on a total of 50.000.000 samples and this sizing is also used by Hes-
sel et al. (2018) in the comparison of many DQN’s. Initial testing shows the model
only reaches 10,000 in the designated training time, so 1.000.000 is unrealistic. The ra-
tio can be scaled proportionally, resulting in a replay buffer size of 200 experiences. If
the buffer is full and a new sample is entered, the oldest sample is removed from the
replay buffer.
Mnih et al. (2015) also proposes a size for the replay buffer; each iteration, 32 expe-
riences are sampled from the replay buffer to train the neural network. A sample
size of 32 is also used in the Deep Q-Learning code from OpenAI by Kaufmann and
Pzhokhov (2019).
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Lastly, the method for selecting 32 samples from the 200 stored samples in the replay
buffer. A common approach is sampling uniformly from the experience replay, such
that (st, at, rt, st+1, TerminalState) ∼ U(D) from replay buffer D (Hessel et al., 2018;
Mnih et al., 2015). According to Schaul et al. (2016), prioritising which transitions are
replayed can make experience replay more efficient and effective than if all transitions
are replayed uniformly. Schaul et al. (2016) proposed Prioritised Experience Replay
(PER), where each sample receives a probability based on the expected learning im-
pact on the model. The most promising experiences receive a higher probability. Both
uniform sampling and prioritised sampling are evaluated in the DQN through exper-
imentation.

5.4 Double DQN

A common problem in reinforcement learning, including in Q-Learning, is the system-
atic overestimation of action values (Thrun and Schwartz, 1994). To battle the overes-
timation of Q-Learning networks, Hasselt (2010) has proposed a double Q-Learning
model. The model stores two Q-networks, QA and QB. At each iteration, one of the
two Q-networks is used to select the next action by identifying the action with the
highest Q-value, while the other network is used to evaluate the value of that selected
action. The research of Hasselt (2010) shows increased performance of the double Q-
Learning over the original Q-Learning model, as demonstrated in the experimental
results. This concept was implemented into DQL by van Hasselt et al. (2015), lead-
ing to a Double Deep Q-Network (DDQN). The paper shows that overestimations of
a DQN lead to poorer policies and shows the benefits of reducing overestimations. A
DDQN does not require an additional prediction network because the target network
functions as the second network. The model selects the action by taking the highest
predicted Q-value from the prediction network. The episode’s reward is calculated by
inserting the Q-value predicted by the target network of the selected action and insert-
ing the Q-value into Equation (5.6). The new Bellman equation still uses the temporal
difference formula in Equation (4.16) to calculate the expected value.

yt = r + γ ∗Qtarget(s′, argmaxQprediction(s′, a, θt−1), θt−1) (5.6)

5.5 Conclusion

This chapter has proposed a set of hyperparameter settings for the DQN. The val-
ues for the cooling scheme of the ϵ-greedy method and the size and sampling size of
the replay buffer have been determined through the literature. The different reward
functions, ϵ-decays, sampling methods and a different Bellman equation have been
proposed. The optimal values for these hyperparameters are determined through ex-
perimentation in the next chapter. An overview of the various experiments and the
corresponding hyperparameters is given in Table 5.3.
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5.5. Conclusion

Experiment α β Discount factor Tuning Function F ϵ− start ϵdecay ϵ− boundary Sampling method Model Type
1 1 -1 1 - 1 0.99 0.1 Uniform DQN
2 100 -1 1 - 1 0.99 0.1 Uniform DQN
3 10,000 -1 1 - 1 0.99 0.1 Uniform DQN
4 α∗ 0 0.99 - 1 0.99 0.1 Uniform DQN
5 α∗ [-1,0] 1 Throughput 1 0.99 0.1 Uniform DQN
6 α∗ [-1,0] 1 Variable Limits 1 0.99 0.1 Uniform DQN
7 α∗ β∗ 1 - 1 0.9 0.1 Uniform DQN
8 α∗ β∗ 1 - 1 0.99 0.1 Uniform DQN
9 α∗ β∗ 1 - 1 0.999 0.1 Uniform DQN
10 α∗ β∗ 1 - 1 0.99 0.1 PER DQN
11 α∗ β∗ 1 - 1 0.99 0.1 Uniform DDQN

Table 5.3: The different values of the hyperparameters used in the experiments con-
ducted.
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Chapter 6

Model Performance

In this chapter, the performance of the Deep Q model is tested and evaluated to find
the optimal configurations of the model to accurately predict warehouse configura-
tions. The goal is to identify optimal hyperparameter settings that enable the model
to learn effective policies. Multiple models are trained with varying configurations,
including different learning rates, reward scales, and exploration strategies. Each con-
figuration is assessed based on key performance metrics such as the loss function be-
haviour and Q-value estimates. The results are presented in sections that outline the
hyperparameters used, analyse model performance over time, and highlight observ-
able patterns in the learning process.

6.1 General Results

The first section of the results covers the performance of the base model. The base
model serves as a baseline to compare to the performance of the models generated by
the different hyperparameters, as described in Table 5.3. Through the base model’s
performance, the impact of the variation of hyperparameters becomes visible and the
optimal hyperparameter setup for the most stable learning and best policies for the
agent. The base model is evaluated based on two criteria: the progression of the loss
function to gain insight into the training process of the agent and on previous sales
projects of Vanderlande, and comparing the configuration from the agent to the con-
figuration of the assigned simulation engineer. The configurations are evaluated based
on the costs and the ability to meet the throughput. Based on the performance on mul-
tiple old sales projects, the agent could have outperformed, matched performance or
underperformed compared to the sales engineer.

Unfortunately, the base model did not demonstrate satisfactory performance. In
practical tests, the agent repeatedly selected actions that decreased warehouse at-
tributes, often getting stuck in loops by continuously selecting a decrease and then
an increase of the same variable. This leaves the model unable to get a configuration
that satisfies the requirements and even a viable policy, which leads to configurations
that satisfy the goal. Due to the inability of the agent to move the starting configura-
tion to a configuration that meets the goal, it is difficult to know how far the agent is
from a policy that does produce a result. It failed to recognise the necessity of meet-
ing predefined throughput targets based on input parameters. It does not grasp the
necessity of reaching a predefined throughput when presented with input data. There-
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fore, the base model is not eligible for a comparison against previous sales projects of
Vanderlande. Therefore, there is no final model for this research and leaving the con-
clusion that the current approach was not satisfactory to achieve a functioning model.
Nevertheless, the benefit of a functioning model remains clear and thus, this section
covers the different experiments conducted to aid further research in the development
of a functioning model.

To better understand the model’s training dynamics, this section compares the ex-
periments based on the loss function. The data of the loss function is volatile, limiting
the ability to spot trends in the data and reach conclusions. Hence, a moving aver-
age of the data is taken to smooth the curve. Figure 6.1a shows the different number
of samples of the MA, together with a zoomed version without the original loss func-
tion, as this line severely stretches the graph and limits the ability to draw conclusions.
Figure 6.1b shows the moving average with 5 samples, which shows quite volatile be-
haviour and large peaks. A moving average of 21 samples removes most of the peaks
and parts of the trend. Hence, the middle value of 11 samples is selected as the optimal
value for the moving average, as the volatility is smoothened and trends are clearly
visible. Other results presented in this chapter are also portrayed through the moving
average of 11 values to make a fair comparison.
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(a) Impact of different ranges of the moving average compared to the original data,
showing the iterations on the x-axis and loss on the y-axis.

(b) Different ranges of the moving average, excluding the base graph, showing the
iterations on the x-axis and loss on the y-axis.

Figure 6.1: Comparison of the size of moving average ranges to select an optimal range
to portray results, showing the iterations on the x-axis and loss on the y-axis.

Taking a closer look at the performance of the training of the agent in Figure 6.2, the
model does not stabilize and improve in the learning process. The model starts with
an initial peak, which is to be expected as the agent does not have any experience with
the environment yet. After the initial decrease in loss, it hit the best loss in the train-
ing process after 200 training steps. From this point, the loss increases consistently
and fluctuates constantly, both indicators that the training of the agent is suboptimal.
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Stopping after only 200 iterations in the training process is not advised, as the agent
has such little experience with the environment that a deeper understanding and an
optimal policy is not yet possible. To prove this, experimentation was performed sim-
ilar to a full training run and it ran into identical issues as the agents that completed
a full training run. The rectangular peaks in the graph are the values influenced by
the huge peaks of loss visible in Figure 6.1a. The following sections cover the different
hyperparameter settings to potentially improve the performance of the agent.

Figure 6.2: Moving average of the training loss of the agent during the training pro-
cess, showing the iterations on the x-axis and loss on the y-axis.

6.1.1 Runtime

A hindering factor in the research was the run time of the model. The model has been
run on a single NVIDIA RTX™ 3000 Ada Generation Laptop GPU on a HP ZBook
Power 16 inch G11 Mobile Workstation PC. Due to the necessity of each iteration to
run a simulation that required at least 1 hour of simulation time. Luckily, this is sped
up to 40 seconds in real-time. Still, this severely limited the training length of the
agent. As 1 episode can take up to 75 iterations, running a training loop of 75 iterations
took 16.2 hours on average. Out of this time, 95% of the time was spent running
the simulation to obtain the throughput for the new configuration. Therefore, the
experiments performed are restricted by the time available for experimentation. The
discussion reflects upon this fact and the limitations it has had on this research.

6.2 Reward Function

Section 5.1 covers multiple variations of the reward function found in the literature.
This section covers each variation, where the best-performing reward function is utilised
in the remaining experiments.

52



Chapter 6. Model Performance

6.2.1 Experiments for α

The first variations of the reward functions have a set value of the negative incentive
β=-1 and different variations of the positive reward when reaching the goal at α=1,
α=100, α=10,000 to evaluate the height of the reward, such that the model can handle
the sparse reward structure. Figure 6.3 shows the performance of the loss function
during the training process. It becomes clear that the reward structure where α=10,000
performs extremely poorly. An important aspect to note is that when the rewards are
increased, the Q-values also increase. So, a difference of 10 is much more impactful
in the other scenarios than α=10,000. Nevertheless, the performance does not nearly
equal the performance of the other values for α. This value can therefore be disre-
garded for further experimentation.

Figure 6.3: The moving average of the training loss for the different values of α in the
reward function, showing the iterations on the x-axis and loss on the y-axis.

To better understand the performance of α=1 and α=100, a zoomed version of the
graph is presented in Figure 6.4. This figure clearly shows the better performance of
a value function with α=10 is more impactful. The evaluation of the loss for α=100
is continuously lower except for a few peaks and shows less volatile behaviour. This
indicates a more stable and better learning process. Hence, for the remaining exper-
iments, a value of α=100 is used. Therefore, the loss graph of α=100 is from here on
used as the baseline for comparisons with different hyperparameters; this is therefore
the value of α∗.
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Figure 6.4: The moving average of the training loss of the two most promising values
for α, showing the iterations on the x-axis and loss on the y-axis.

6.2.2 Experiments for β

The next experiment is setting the value of the negative reward for not reaching the
goal β=0 instead of the -1 which was previously used. The -1 ensured that the agent
takes the shortest path towards the optimal value. The discount factor (γ of the Bell-
man equation) is set to 0.99 to encourage this behaviour without the negative incen-
tive.
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Figure 6.5: Comparison of the moving average of the training loss of base model with
β=-1 and γ=1 with the training loss of the new reward function where β=0 and γ=0.99,
showing the iterations on the x-axis and loss on the y-axis.

.

Figure 6.5 shows the performance of the new reward structure. The performance
of the two reward structures do not differ significantly, but the β=-1 reward structure
has a slight edge. The first 600 iterations, β=0 has equal or higher loss with a large
peak at the end of this section. After which β=-1 also spikes, performing worse than
β=0 up until 800 iterations, where the performance switches again. Overall, there is no
clear argument for either to have the upper hand in performance. However, the agent
with β=-1 has slightly better performance and lower peaks. Hence, the model with
β=-1 and a discount factor of 1 is selected for further experimentation; this is therefore
the value of β∗.

6.2.3 Reward Shaping

The final experiment involving the reward function is the addition of the reward shap-
ing formula F1 and F2 from Section 5.1. The first shaping function F1 gives an incentive
to move towards the optimal value by giving a reward for an increase in throughput
is added. Figure 6.6 shows the performance of the model with the intermediate re-
ward function. The loss of the new model is massive compared to the base model.
This shows that the current F function implementation is unsuitable for the agent. The
base function shown in Figure 6.2 is no longer recognised as the difference is so vast,
the base model appears as a flat line. The ratio between α and β determined in ear-
lier experimentation does not translate to the ratio that determines the range of the
intermediate reward. Additional experimentation is required to find a range for the
intermediate reward such that it properly guides the agent’s policy towards an opti-
mal policy.

55



6.2. Reward Function

Figure 6.6: Comparison of the moving average of the training loss of the base model
without an intermediate reward function F1 and the model with an intermediate re-
ward shaping function F1, showing the iterations on the x-axis and loss on the y-axis.

The second reward shaping function F2 punishes the agent more if the action taken
leads to an illegal state, a state where a variables falls outside the predetermined
ranges. Figure 6.7 shows the performance of the agent with the reward shaping func-
tion compared to the base agent, both lines are the moving average of 11 values. The
figure shows that the loss of the two agents does not differ greatly. Nevertheless, the
agent with the shaping function shows a higher loss than the base agent. Three dif-
ferent possibilities in the reward structure add additional complexity for the agent to
grasp the prediction of Q-values. This could be an explanation for the higher loss dur-
ing training. Therefore, no definite conclusion can be drawn regarding better training
performance. As the base agent shows lower loss during training, the shaping func-
tion F2 is not used in further experimentation. Nevertheless, the shaping function
should not be disregarded as a viable extension of the model in the case of further
experimentation.
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Figure 6.7: Comparison of the moving average of the training loss of the base model
without an intermediate reward function F2 and the model with an intermediate re-
ward shaping function F2, showing the iterations on the x-axis and loss on the y-axis.

6.3 ϵ-Greedy Strategies

The trade-off between the exploration of new options and the exploration of the most
promising actions is determined by the ϵ-decay strategy. The ϵdecay determines the
rate at which the model moves from primarily exploring to primarily exploiting. To
investigate the impact of different ϵdecay rates on the learning stability of the agent,
three ϵdecay factors are evaluated, being 0.9, 0.99 and 0.999 as described in Section 5.2.
Figure 6.8 presents the moving average of the loss for all three decay values. Figure 6.9
shows only the loss of 0.9 and 0.99 decay, as this offers a more precise comparison by
excluding the more volatile 0.999 curve.
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Figure 6.8: Comparison of the moving average of the training loss for the different
values for ϵdecay, showing the iterations on the x-axis and loss on the y-axis.

.

Figure 6.8 shows the loss graph of the ϵdecay = 0.999 shows notably unstable loss
with multiple large spikes and a generally higher loss with higher variance during
the full training run. The prolonged exploration and therefore delayed convergence
cause learning instability. The curves of ϵdecay = 0.9 and ϵdecay = 0.99 are considerably
smoother and result in lower loss. The figure is stretched due to extreme initial val-
ues and peaks for ϵdecay = 0.999. Hence, Figure 6.9 shows the same data, excluding
ϵdecay = 0.999, to better analyse the behaviour of the more promising ϵdecay values.
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Figure 6.9: Zoomed version of the training loss comparison in Figure 6.8 comparing
the two most promising values for ϵdecay.

From Figure 6.9, it becomes evident that ϵdecay = 0.99 yields a more stable training
process. Showing consistently lower loss values and a less volatile training process.
Where ϵdecay = 0.9 shows more spikes in loss, especially between iterations 400-700.
These results indicate the agents benefit from a ϵdecay factor of 0.99 for the best train-
ing process compared to an overly aggressive strategy with ϵdecay = 0.9 or an overly
conservative strategy with ϵdecay = 0.999.

6.4 Prioritised Experience Replay

The last hyperparameter evaluated in this research is the sampling method from the
experience replay. The previous experiments used a uniform sampling method where
each experience is equally likely to be sampled. The other method presented in Sec-
tion 5.3 is Prioritised Experience Replay (PER), where the probability of selecting a
sample is based on the learning potential of the sample. Figure 6.10 shows the per-
formance compared to the base model. PER shows a considerably higher loss and
volatile behaviour. In the first period of training, the model starts with a higher loss
but appears to converge towards the policy of the base model. Nevertheless, after 500
iterations, the loss explodes and does not show signs of a stable policy, continuously
spiking high losses. The model selects samples to calculate the loss based on sam-
ples from which the agent can learn a lot. By taking samples that have a high loss,
the loss of following iterations is higher, but this should start converging towards a
more optimal policy at some point. The graph does not show this, so in the current
implementation of the model, PER does show improved performance.
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Figure 6.10: Comparison of the evaluation of the training loss between uniform sam-
ples from the replay buffer and Prioritised Experienced Replay (PER), showing the
iterations on the x-axis and loss on the y-axis.

6.5 DDQN

The DDQN modifies the standard DQN by decoupling action selection and Q-value
estimation using separate networks, thereby reducing overestimation bias. The train-
ing loss progression for both the DQN and DDQN is shown in Figure 6.11, where each
curve represents a moving average to highlight general trends while smoothing local
noise.

60



Chapter 6. Model Performance

Figure 6.11: Comparison of the moving average of training loss between the base ver-
sion of the DQN and a DDQN with identical hyperparameters, showing the iterations
on the x-axis and loss on the y-axis.

Initially, the DDQN exhibits a notably higher loss than the DQN. However, this
difference diminishes rapidly, and within approximately 10 iterations, the DDQN loss
stabilises to a level comparable with the DQN. Beyond 450 iterations, both models
start showing volatile spikes in the loss pattern. From this point, the DDQN shows
a lower average loss than the DQN and has fewer spikes, suggesting relatively more
stable training behaviour. Around 900 iterations, the DDQN briefly shows more loss
than the DQN, but it dips below the DQN again at the end. While the DDQN shows
modest improvements in loss stability over the DQN, the difference is not substantial
enough to conclude a definitive performance advantage based on the loss metric.

6.6 Conclusion

This chapter evaluated various Deep Q-learning (DQL) configurations to identify the
optimal hyperparameter settings, leading to an optimal policy of the agent. The agent
did not reach a satisfactory policy to evaluate real sales cases of Vanderlande to test
performance compared to experts. Nevertheless, the experimentation with the hyper-
parameters has led to meaningful insight into the hyperparameters used. A set of the
best performing hyperparameters is shown in Table 6.1 that can be used for further
research into the automation and optimisation of ADAPTO designs. The following
chapter dives into the conclusions drawn from this research and the opportunities to
move towards an optimal policy.

α β Discount factor Tuning Function F ϵ-start ϵdecay ϵ-boundary Sampling method Model Type
100 -1 1 - 1 0.99 0.1 Uniform DQN

Table 6.1: Table showing the optimal hyperparameters identified in this research.
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Chapter 7

Conclusion, Discussion & Further
research

7.1 Conclusion

This research is focused on developing an automation model for the design of ware-
housing solutions for Vanderlande. The order data from the customer serves as in-
put for the simulation model of the ADAPTO system to determine a configuration
of the ADAPTO system that satisfies the throughput requirements from the customer
against minimal costs. A comprehensive literature review was performed to analyse
the current best practices in warehouse optimisation tools, identifying a gap in solu-
tions using ML for warehouse layout optimisation. A gap in the literature is identified
to develop an optimisation tool capable of handling a diverse range of warehouse lay-
outs compared to a tool that solely focuses on a single warehouse layout. In addition,
this research has developed a Deep Q-Learning tool to optimise a diverse range of
warehouse layouts to automate the design of ADAPTO systems.
Given the complexity of varying ADAPTO layouts and throughput requirements, DQL
is selected as the most promising ML method, as literature shows the agent in a DQL is
capable of handling diverse environments. An agent has been trained through interac-
tion with the environment with different order patterns and throughput requirements,
such that the agent has a good understanding of the ADAPTO configuration for dif-
ferent customer requirements.

Unfortunately, the model was unable to consistently generate an ADAPTO config-
uration that meets customer requirements and failed to converge to an optimal pol-
icy. However, significant research was conducted to optimise hyperparameters, and
progress was made in identifying key factors that influence model performance. The
optimal hyperparameter values evaluated in this research are shown in Table 6.1.

The results reveal that the reward function substantially impacted the agent’s per-
formance during training. The difference in loss between the best and suboptimal
reward functions was significant, underscoring the importance of fine-tuning the re-
ward function. Experimentation shows that the training performance increases when
adding a negative incentive to states that do not satisfy the throughput goal, instead
of giving them a value of 0 or an intermediate incentive in the form of throughput.
Furthermore, as the model has a sparse reward structure, the height of the reward
is very influential on the performance. A reward between 0 and 1 limits the ability
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of the agent to find states that yield a positive reward, as it is disproportional to the
negative incentive. A reward in the range [0, 10000] causes an imbalance, resulting in
even higher loss. The best performance was achieved with a reward in the range [0,
100]. Additionally, the ϵ-decay strategy with ϵdecay = 0.99 outperformed other values
of ϵdecay, resulting in lower loss. Adding Priority Experience Replay and a DDQN did
not lead to improved performance in training.
In conclusion, this research contributes to developing a machine learning-based tool
for warehouse layout optimisation, though the model’s suboptimal performance sug-
gests that additional refinements are needed. The hyperparameter tuning insights and
the challenges encountered provide valuable directions for future work, focusing on
refining the reward function and exploring advanced strategies for achieving better
convergence.

7.2 Discussion

The Deep Q-Learning model developed in this research did not reach a policy that was
able to handle the optimization and automation problem proposed. The complexity
of a non-functional Deep Reinforcement learning model is the black box characteris-
tic of the Deep Learning aspect. The neural network responsible for the prediction of
Q-values and therefore action selection is difficult to analyse. Identifying the exact rea-
son why the model does not perform as expected is very complex due to its black box
nature. The constant shift in the throughput level where the reward shifts from a neg-
ative to a positive reward in combination with the many different order patterns could
be impossible for a standard DQL to predict accurately. This section dives into the as-
pects of the model that could have been developed differently, potentially resulting in
improved agent performance.

Runtime

The performance of the Deep Q-Learning model was significantly impacted by the
limited runtime. Due to the extensive time required for each simulation, the number
of training episodes was constrained. One experiment of 50 episodes, resulting in 1100
iterations on average, took over 16 hours. In general, a DQN benefits from additional
runtime, giving it more iterations to interact with the environment and improve its
strategy. Take the research of Mnih et al. (2015) for example, the DQN was trained
on 50.000.000 different frames. Far more than the agents in this research. Running
the model for a longer period of time could improve the performance significantly.
Unfortunately, the time was not there within this research and there is no definitive
answer regarding this improvement. The loss of the training does show the trou-
ble the DQN has with converging to minimal loss and there is no steady downward
trend in the loss, which usually indicates performance increases with more training
episodes. Nevertheless, it is a clear downside that the training time was limited for
each experiment.

Variable Goal

A large concern during the development of the model is the variable goal of the model.
A known obstacle for a neural network with a sparse reward structure is the difficulty
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of the agent finding the goal, as a positive reward is only obtained upon reaching this
goal. The number of iterations with a positive immediate reward is very low compared
to a negative immediate reward. However, this model adds additional complexity by
varying the goal for each episode. Resulting in a different point at which the immedi-
ate reward is positive. The neural network is fed the current throughput and the goal
as input values and the hypothesis was that the agent uses this information to adapt
its Q-values based on this input. The reality is that the model has not done this. A
cause of this could be the limited training time of each model, and the agent has been
trained too little to understand the importance of the goal input. However, it could
also be the case that the modelling approach is not complex enough to handle this or
the structure of the neural network should be different, such that more focus lies on
the goal. All potential causes of the model not converging towards an optimal strat-
egy. A potential improvement could be the addition of more KPI’s that give feedback
on performance.
Chapter 2 shows KPI’s that are used by sales engineers to gain insight into which ar-
eas perform well and which areas have room for improvement. For example, a very
high lift utilisation indicates more lifts are required, or a high waiting time for shuttles
indicates a crowded setup, so some shuttles should be removed. These numbers only
indicate performance and do not translate to a clear goal. Adding these variables to
the neural network could give the agent more information. Another option is to add
these variables into the intermediate reward function such that good performance is
not only based on throughput but also on other performance indicators. The addition
of the KPI’s into the model might aid the agent in a better understanding of the cur-
rent state and the goal, helping with the ability to find the dynamic goal. Furthermore,
reducing the runtime would enlarge the number of experiments and the size of the ex-
periments. So, running the simulations in the cloud or using other computationally
powerful options reduces the simulation time of the model.

Additional Hyperparameter tuning

The experimentation of the model has tested many different values for the model’s
hyperparameters. However, there are two ways in which this process could have been
improved. First, more values for the numeric variations can be tested. Currently, the
experiments use several values extracted from literature that are scaled in such a way
that they give a clear view of what range the optimal value should be in. However,
with more experiments, an exact optimal value could have been identified. For exam-
ple, the value of α has been set at 100 as it performed better than 1 and 100. However,
a value of 80 or 150 could have resulted in even better performance. Especially for the
intermediate reward function. This resulted in poor performance on the loss function.
While more guidance in the performance should result in better results. So more ex-
perimentation on the ratio in ranges where the values for α and β lie, as well as a more
advanced intermediate reward function.

Furthermore, more runs of the same experiments with different seed values would
have given a better estimate of the performance, as it removes a bit of randomness
from the runs. However, the run time limited this option for this research. If 5-fold ex-
perimentation was used, each run would have taken 80 hours. This was not an option
with 10 different experiments, as this did not fit within the time frame available.
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The second aspect was that each experiment was tested separately. The model
performance was compared to the base model to independently evaluate each hyper-
parameter. However, hyperparameters also impact each other, so individual testing is
sub-optimal. For example, the DDQN could have benefited from a higher value for α
as it does not have the overestimation which was shown for the DQN. So testing each
value of each hyperparameter against each other would have resulted in the optimal
collaboration of hyperparameters for model performance. However, this would have
resulted in 60 experiments compared to the current 10. And again, this is limited by
the run time of the model. Overall, more in-depth research on the specific hyperpa-
rameter setup for this Deep Learning problem could have improved the performance
of the model, but was limited by the large run time.

Increased Solution Space

Chapter 2 describes the ADAPTO system and the variables of the system which are
used within this research. Furthermore, the scope of the research has focused on the
simple cases for the simulation department and leaving the special cases to the sales
engineers. Removing these constraints from the research will result in an even larger
solution space as new variables are added and the ranges of the variables and param-
eters are increased. If this increased solution space were included in the research, the
complexity of the problem at hand would increase even more. Since the current model
is not able to accurately predict ADAPTO configuration, increasing the solution space
will most likely not result in a functioning model. Therefore, the research should first
focus on creating a DQL model which can handle the simple simulation cases with
the limited set of variables. However, if the model has been configured in a way that
is able to predict these configurations, the model should be able to handle a larger
solution space. The current complexity most likely lies in consistently identifying the
point at which the throughput goal is reached, which requires changes in the model.
If a model is able to consistently identify this point, it could also do this for an in-
creased solution space. Nevertheless, this will result in increased training time and if
more KPI’s are involved in the reward function of the model, KPI’s related to the new
variables must also be added. In conclusion, if a functioning model is presented with
the current solution space, it should be possible to increase the solution space without
drastic changes to the model.

7.3 Further Research

The adaptations of the model proposed in Section 7.2 can improve the performance
of the model developed in this research. It is, however, not a guarantee that these
improvements can result in a model that reaches the desired performance. It could
be the case that the dynamic goal is too difficult for the model to handle, and a more
complex model is required to solve this problem. This section proposes a couple of
models that can result in improved performance and potentially an agent that can
handle dynamic goals. The development of these models serves as further research.
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DDQN

As stated in Section 5.4, the DDQN is a common approach to improve a DQN by
limiting the overestimation that a DQN is prone to. However, only a simple adapta-
tion of the DDQN was implemented. The results showed that no significant improve-
ment was obtained by the implementation. Nevertheless, hyperparameters were not
optimised and different variations of the DDQN could have improved performance.
Wang et al. (2016) proposes a DDQN with a new duelling neural network architecture
leading to dramatic improvements over existing methods in DQL. Hessel et al. (2017)
evaluates many of the most common DQL methods and combines all the extensions
to one model, a rainbow model. Clearly outperformed each individual model in the
experimentation. Fortunato et al. (2019) proposes a new exploration strategy by intro-
ducing noise into the weights of the neural network. This concept is promising and
explained in Section 7.3 in more detail.

NoisyNet

The ϵ − greedy exploration strategy is the most common strategy in deep reinforce-
ment learning to determine the trade-off between exploration and exploitation. Fortu-
nato et al. (2019) proposes a different approach called NoisyNet. NoisyNet introduces
noise into the neural network’s weights, encouraging more effective exploration of
the environment. This allows the agent to explore more diverse strategies and reduces
the risk of getting stuck in local optima. Since the agent was prone to continuously
suggesting the same strategy. Fortunato et al. (2019) suggests the NoisyNet performs
better in complex environments where ϵ− greedy might fall short. Hence, this mod-
elling type might be suitable to explore in further research.

Supervised ML

A final suggestion for further research is to switch the Machine Learning approach
from Reinforcement Learning to supervised learning. The most promising method to
automate the design process is RL due to the agent forming an optimal policy. How-
ever, as the optimal policy was not achieved in this research, it could be achieved by
switching to a completely different approach. Instead of taking an action at each iter-
ation, a neural network could be trained to estimate a value for each variable directly.
So the neural network could directly predict a number of aisles, a number of levels,
etc. As the throughput is always known through the simulation software, supervised
learning should be explored and not unsupervised learning. However, the other im-
provements suggested in the discussion and further research should first be explored,
as the literature suggests this is the more suitable approach.

7.4 Recommendations

The discussion and further research have identified aspects of the model that can be
improved such that a functioning model could be achieved. This section goes into the
practical recommendations for Vanderlande and what steps could be taken such that
Vanderlande benefits from this research. First, the implementation of a functioning au-
tomation and optimisation model for early design choices is still a development that
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can greatly benefit Vanderlande by automating the design of less complex ADAPTO
systems. To achieve a functioning model, the first step is to test versions of the more
complex models suggested in Section 7.3 to identify whether they result in increased
performance compared to the basic Deep Q-learning (DQL) model. In addition, the
training time was a concern during this research, so the training of the models that
are developed further must be increased to ensure the performance is not limited by
the runtime. If these experiments are succesful, the best performing models should
be evaluated further through hyperparameter optimisation. This is the next step Van-
derlande should take and based on the results, further steps can be identified based
on the performance. Potentially leading to a functioning DQL model that lowers the
workload for the simulation department at Vanderlande, allowing the department to
focus on complex simulation requests.
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Appendix A

Nr mentions of Machine Learning on
Sciencedirect

This figure shows the number of mentions of Machine Learning on Sciencedirect, to
illustrate the rise in research in this area.

Figure A.1: Number of mentions of ML on ScienceDirect
source:ScienceDirect
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Appendix B

Full code

This appendix contains the publishable parts of the code

B.1 Class DeepLearning

The following snippets of code compile the class DeepLearning together. Which is
called by Listing B.11 and returns the trained model. The following sections describe
each funtion of the model

B.1.1 Init

Listing B.1: Function which initialises all variables used throughout the DeepLearning
Class
def __init__(self , gamma , epsilon , epsilonDecay , numberEpisodes ,

states , actions , MinMax , directory , velocity_classes ,

tsu_distribution , tsu_range ,tsu_group_distribution ,

smart_lift_allocation ,sequencing):

#create an environment here with parameters & variables

#parameters from input

self.gamma = gamma

self.epsilon = epsilon

self.NumberEpisodes = numberEpisodes

self.states = states

self.nr_states = len(states)

self.actions = actions

self.nr_actions = len(actions)

self.MinMax = MinMax

self.epsilonDecay = epsilonDecay

self.smartliftallocation = 0

self.goal = states [14]

self.throughput =1

self.nrOfIterations =0

#basic Deep Q-Learning parameters

self.sizeReplayBuffer = 100
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self.sizeBatchReplayBuffer = 50

self.updateTargetNetwork = 10

self.counterUpdateTargetNetwork = 0

self.replayBuffer = []

self.predictionNetwork = self.createNetwork ()

self.targetNetwork = self.createNetwork ()

# Explicitly build the model to initialize weights

self.predictionNetwork.build(input_shape =(None , self.

nr_states))

self.targetNetwork.build(input_shape =(None , self.

nr_states))

self.targetNetwork.set_weights(self.predictionNetwork.

get_weights ())

self.actionsAppend = []

self.EpsilonBoundary =0.1

self.counter = 0

self.sumRewardsEpisode = []

#SETUP WRITING AND READING FILES

# Parameters

self.velocity_classes = velocity_classes

# normal , uniform

self.tsu_distribution = tsu_distribution

# normal , uniform , bathtub

self.tsu_range = tsu_range

self.tsu_group_distribution = tsu_group_distribution

# normal , uniform , negexp

self.smart_lift_allocation = smart_lift_allocation

#false , true

self.sequencing = sequencing

self.starting_input_location = os.path.join(directory ,"

input_default")

self.new_input_location = os.path.join(directory ,"

input_new")

self.new_output_location = os.path.join(directory ,"Output

")

self.bat_file_path = -

self.inbound_location = os.path.join(directory ,"Output\

InboundThroughput.txt")

self.outbound_location = os.path.join(directory , "Output\

OutboundThroughput.txt")

self.write_files = write_input(self.new_input_location)

self.read_output = read_output(self.new_output_location)

self.CalculateCosts = calculateCosts ()

#Additional variables

self.count = 0

self.begin_counter =0

self.startTime= time.time()
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self.timeSum = 0

self.timeAvg = 0

self.nrSimulations = 0

self.losses = [] # Store loss values

self.WrongConfiguration = pd.DataFrame(columns =[f’Column_

{i+1}’ for i in range(len(states))])

self.indexEpisode =0

B.1.2 Call Java

Listing B.2: This function ensures the correct directories are set, writes the new state
in the directory such that the Java model can call upon them. Then the Java model is
called to run the simulation and finally the throughput is calculated of the simulation
def call_java(self ,states):

try:

# update variables

feasible = False

count = 0

# create maps & files from default

while feasible == False:

#setup files based on the state

shutil.rmtree(self.new_input_location ,

ignore_errors=True)

shutil.rmtree(self.new_output_location ,

ignore_errors=True)

shutil.copytree(self.default_input_location , self

.new_input_location)

os.makedirs(self.new_output_location , exist_ok=

False)

# update files

self.write_files.Call_writing(states , self.

smartliftallocation)

#call java

env = os.environ.copy()

env["ADAPTO_INPUT_FOLDER"] = self.

new_input_location

env["ADAPTO_OUTPUT_FOLDER"] = self.

new_output_location

env["DISABLE_VISUALISATION"] = "true"

#run java and store simulation time

startSim = time.time()

subprocess.run(self.bat_file_path ,env = env)

endSim = time.time()

#calculate averages
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self.nrSimulations += 1

self.timeSum += (endSim -startSim)

self.timeAvg = self.timeSum/self.nrSimulations

#read output

read = read_output(self.inbound_location)

output = 0.95* read.read_files(self.

inbound_location , self.outbound_location)

if count == 10:

feasible = True

elif self.throughput == 0:

states_df = pd.DataFrame ([ states], columns=

self.WrongConfiguration.columns)

# Use pd.concat to add the new row to the

DataFrame

self.WrongConfiguration = pd.concat ([self.

WrongConfiguration , states_df],

ignore_index=True)

count +=1

states = self.new_states(states)

else:

feasible = True

states [15]= output

print(f"The output is {output}")

return output ,states

except:

return 0,states

B.1.3 New States

Listing B.3: This section is responsible for configuring a new state when called upon
def new_states(self ,states):

#In case of an incorrect simulation , a new configuration

is presented. No trouble shooting in the java file is

possibl during training so we must provide a new

configuration

self.goal = random.randint (1500, 6000)

states [14] = self.goal

#reset throughput for a new run

self.throughput = 1

terminal_state = True

while terminal_state:

states [1] =np.random.randint(self.MinMax [1,0],self.

MinMax [1 ,1]+1)
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states [0] =np.random.randint(max(self.MinMax [0,0],

states [1]),self.MinMax [0 ,1]+1)

states [2] =np.random.randint(self.MinMax [2,0],self.

MinMax [2 ,1]+1)

states [3] =np.random.randint(self.MinMax [3,0],self.

MinMax [3 ,1]+1)

states [4] =np.random.randint(self.MinMax [4,0],self.

MinMax [4 ,1]+1)

states [5] =np.random.randint(self.MinMax [5,0],self.

MinMax [5 ,1]+1)

states [7] =np.random.randint(self.MinMax [7,0], states

[1])

states [6] = min((math.floor (250/ states [0])),(states

[1]-1) ,(np.random.randint(self.MinMax [6,0], states

[7]+1)))

if self.is_possible(states) == True and self.

is_terminal_state(states)==False:

terminal_state = False

return states

B.1.4 Costs & Reward

Listing B.4: These functions are called to calculate the costs of the configuration and
thereby the reward as well as the calling the java function to obtain a throughput to
see which reward function should be used
def calculate_costs(self ,states):

#costs are calculated in a seperate file , as this

calculation contains sensitive data

costs = self.CalculateCosts.calculate(states)

return costs

def get_reward(self ,states):

#obtain the throughput of the new state

throughput ,states = self.call_java(states)

#obtain costs of new state

costs = self.calculate_costs(states)

#get the minimum and maximum costs , due to

confidentiality this is not included in this file

min_costs , max_costs = self.CalculateCosts.GetMinMax ()

#calculate reward

if throughput >= self.goal:

reward = 100 *(1- (costs -min_costs)/(max_costs -

min_costs))

else:

reward = -1

return reward ,states
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B.1.5 IsTerminal & IsPossible

Listing B.5: These two functions are called to check the state and action of the model.
The IsTerminal function results whether a state is terminal and IsPossible check the
state against the constraints
def is_terminal_state(self ,states):

#check whether the model has reached a terminal state

if states [15] >= self.goal:

#state is terminal if the goal is reached

print("Terminal stage is reached through the goal ,

new configuration is prepared")

return True

if self.nrOfIterations == 75:

#state is terminal if max number of iterations is

reached

return True

else:

#if no terminal state is reached , number of

iterations is increased

self.nrOfIterations +=1

return False

def is_possible(self ,states):

#The research states several constraints , this function

serves as a double check that no constraints are

breached

if states [1] < states [6]: #number of shuttles cannot be

more than the number of aisles

return False

elif states [0]* states [6] >250: #total number of shuttles

cannot exceed 250

return False

elif states [1]<= states [7]: #number of lifts cannot be

more than the number of aisles

return False

elif states [7] <= states [6]: #number of shuttles cannot

be more than the number of lifts (probably makes #1

redundant but is there for certainty)

return False

else:

return True

B.1.6 Get Starting Configuration

Listing B.6: This function is called to obtain a starting configuration for the model
which does not violate any constraints or is already a terminal state
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def get_starting_configuration(self , states):

#First a new set of parameters is determined at the start

of an episode

states [8] =int(self.velocity_classes[np.random.randint(

len(self.velocity_classes))])

states [9] =int(self.tsu_distribution[np.random.randint(

len(self.tsu_distribution))] )

states [10]= int(self.tsu_range[np.random.randint(len(self.

tsu_range))])

states [13]= int(self.sequencing[np.random.randint(len(self

.sequencing))])

self.default_input_location = os.path.join(self.

starting_input_location , f"default_{int(states [8])}_{

int(states [9])}_{int(states [10])}_0_0_{int(states [13])

}")

#determine a goal , can adjust parameters

self.goal = random.randint (500, 6000)

self.nrOfIterations = 0

states [14] = self.goal

#change this to propper variables

self.begin_counter += 1

print(f"Start of configuration {self.begin_counter} with

the goal {self.goal} with an average simulation time

of {self.timeAvg}")

#store model every 10 iterations

if (self.begin_counter) % 10 == 0:

self.predictionNetwork.save(-)

self.targetNetwork.save(-)

print("Models are saved")

terminal_state = True

while terminal_state:

#initial values for the variables is taken , according

to the constraints

states [1] =np.random.randint(self.MinMax [1,0],self.

MinMax [1 ,1]+1)

states [0] =np.random.randint(max(self.MinMax [0,0],

states [1]),self.MinMax [0 ,1]+1)

states [2] =np.random.randint(self.MinMax [2,0],self.

MinMax [2 ,1]+1)

states [3] =np.random.randint(self.MinMax [3,0],self.

MinMax [3 ,1]+1)

states [4] =np.random.randint(self.MinMax [4,0],self.

MinMax [4 ,1]+1)

states [5] =np.random.randint(self.MinMax [5,0],self.

MinMax [5 ,1]+1)

states [7] =np.random.randint(self.MinMax [7,0], states

[1])

states [6] = min((math.floor (250/ states [0])),(states

[1]-1) ,(np.random.randint(self.MinMax [6,0], states
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[7]+1)))

self.throughput ,states= self.call_java(states)

states [15]=0

#additional check is performed

if self.is_possible(states) == True and self.

is_terminal_state(states)==False:

terminal_state = False

return states [:]

B.1.7 Get Next Configuration

Listing B.7: This function is called when the agent has selected an action and the state
must be updated according to the step size of the selected variable
def get_next_configuration(self ,states , action_index):

#change the correct state based on the action taken by

the agent

state_index = math.floor(action_index // 2) # Determine

which state to change

#these are states with only 2 options ,

if state_index == 3 or state_index == 4 or state_index ==

5:

if action_index % 2 ==0:

if states[state_index ]== self.MinMax[state_index

,0]:

states[state_index] += 1

if states[state_index ]== self.MinMax[state_index

,1]:

states[state_index ]-=1

#The number of x positions are changed by 5

elif state_index ==2:

if action_index % 2 == 0 and states[state_index] >

self.MinMax[state_index , 0]:

states[state_index] -= 5

elif action_index % 2 == 1 and states[state_index] <

self.MinMax[state_index , 1]:

states[state_index] += 5

else:

if action_index % 2 == 0 and states[state_index] >

self.MinMax[state_index , 0]:

states[state_index] -= 1

elif action_index % 2 == 1 and states[state_index] <

self.MinMax[state_index , 1]:

states[state_index] += 1

return states

B.1.8 Create Neural Network
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Listing B.8: This function is responsible for the creation of the Neural Network used to
predict QValues, it is only called at the start by the init and does not change throughout
the run
def createNetwork(self):

#the neural network is created through tensorflow

model = Sequential ([

Dense(self.nr_states , activation=’relu’, input_shape

=(self.nr_states ,)), # Input layer

Dense (64, activation=’relu’), # More neurons for

deeper learning

Dense (128, activation=’relu’), # More neurons for

deeper learning

Dense (64, activation=’relu’),

Dense(self.nr_actions , activation=’linear ’) # Linear

activation for Q-values

])

model.compile(optimizer=’adam’, loss=’mse’) # Mean

Squared Error for Q-learning

return model

B.1.9 Training

Listing B.9: This function is the main driver of the model and must be called after the
init of the class to activate training. It runs through all the training episodes calling the
other functions each time to obtain a trained model. After an action has been selected
and a throughput and reward is calculated, the agent calculates the loss and updates
the variables of the prediction network and target network accordingly. It also stores
the loss and creates graphs for the loss function
def trainingEpisodes(self):

#main driver of the model , which must be called in order

to train the model

for self.indexEpisode in range(self.NumberEpisodes): #

run over all episodes

#initialise at start of each episodes

rewardsEpisode =[]

currentState= self.get_starting_configuration(self.

states)

terminalState = False

while not terminalState: #run an episode until

terminal state is reached

action , nextState = self.SelectAction(

currentState , self.indexEpisode) #retrieve

action an new state s_t+1

reward ,nextStates = self.get_reward(nextState)

#calculate rewards of the new state

terminalState = self.is_terminal_state(nextState)

#check if terminal state has been reached

print(f"The reward of this episode is {reward}")
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rewardsEpisode.append(reward) #update

experience replay

self.replayBuffer.append (( currentState , action ,

reward ,nextState ,terminalState))

if len(self.replayBuffer) > self.sizeReplayBuffer

: #check if size of replay buffer is not

exceeded , if so , remove oldest value

self.replayBuffer.pop (0)

if (len(self.replayBuffer)>self.

sizeBatchReplayBuffer): #training is done if

a batch can be retrieved from the experience

replay

randomSampleBatch = random.sample(self.

replayBuffer , self.sizeBatchReplayBuffer)

#select sample based on uniform sampling

#initialise the arrays for the values of the

samples

currentStateBatch = np.zeros(shape =(self.

sizeBatchReplayBuffer ,self.nr_states))

nextStateBatch = np.zeros(shape=(self.

sizeBatchReplayBuffer ,self.nr_states))

for index , tupleS in enumerate(

randomSampleBatch): #store the required

values of the samples in the arrays

currentStateBatch[index ,:]= tupleS [0]

nextStateBatch[index ,:]= tupleS [3]

#predict Q-values using the deep Q-model

QnextStateTargetNetwork = self.targetNetwork.

predict(nextStateBatch)

QcurrentStatePredictionNetwork = self.

predictionNetwork.predict(

currentStateBatch)

#store the networks based on the current

states

inputNetwork = currentStateBatch

outputNetwork = np.zeros(shape =(self.

sizeBatchReplayBuffer ,self.nr_actions))

self.actionsAppend = []

#calculate reward with bellman equation

for index , (currentState ,action ,reward ,

nextState ,terminated) in enumerate(

randomSampleBatch):

if terminated:

y=reward

else:

y=reward+self.gamma*np.max(

QnextStateTargetNetwork[index])
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self.actionsAppend.append(action)

outputNetwork[index ]=

QcurrentStatePredictionNetwork[index]

outputNetwork[index ,action ]=y

# Train model and get loss history

history = self.predictionNetwork.fit(

inputNetwork , outputNetwork , batch_size =

self.sizeBatchReplayBuffer , verbose=0,

epochs =5)

#Store the loss of the last iteration

loss = history.history[’loss’][-1]

self.losses.append(loss)

""" Plot loss function over time """

plt.plot(self.losses)

plt.xlabel("Training Steps")

plt.ylabel("Loss")

plt.title(f"Loss Function over time at step {

self.counter}")

plt.grid(True)

plt.show()

#store loss

df = pd.DataFrame(self.losses)

df.to_csv(-)

currentState=nextState

self.sumRewardsEpisode.append(np.sum(rewardsEpisode))

if self.epsilon > self.EpsilonBoundary:

self.epsilon = self.epsilonDecay*self.epsilon

else:

self.epsilon = 0.1

return self.timeSum

B.1.10 Select Action

Listing B.10: This function is the epsilon greedy aspects of the model and selects either
a random action or the action which is expected to yield the best result
def SelectAction(self , state ,index):

#method to let the agent select an action based on the

current state

if index <1:

#for the first iterations , take a random action as

the model is not trained yet

possible = False

while possible == False:

index=np.random.randint(self.nr_actions)

NextState = self.get_next_configuration(state ,

index)
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possible = self.is_possible(NextState)

return index ,NextState [:]

#epsilon greedy selection method

randomNumber = np.random.random ()

#model explores the solution space by taking a random

action

if randomNumber < self.epsilon:

possible = False

while possible == False:

index=np.random.randint(self.nr_actions)

NextState = self.get_next_configuration(state ,

index)

possible = self.is_possible(NextState)

return index ,NextState [:]

else:

#model exploits the current knowledge of the

environment and select the action which has the

highest Q-value

Qvalues = self.predictionNetwork.predict(state.

reshape(1, self.nr_states))

index=np.random.choice(np.where(Qvalues [0,:] ==np.max

(Qvalues [0,:]))[0])

NextState = self.get_next_configuration(state , index)

return index ,NextState [:]

B.2 Starting the Model

Listing B.11: This section is the part of the code where every module required is im-
ported, the variables and parameter ranges are set and the class Deep Q Learning is
called

import numpy as np

import random

import os

import shutil

import subprocess

import math

from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Sequential

from Write_input_files import write_input

from Read_output_files import read_output

import time

from costs import calculateCosts

import pandas as pd

import matplotlib.pyplot as plt

#Parameters which are not changed within the model
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# Parameters

velocity_classes = [0,1,2] # normal ,

uniform

tsu_distribution = [0,1,2] # normal ,

uniform , bathtub

tsu_range = [1,5,10]

tsu_group_distribution = [0] # normal , uniform ,

negexp

smart_lift_allocation = [0,1] #false , true

sequencing = [0,1,2] #strict , relaxed ,

unsequenced

#Max_values of all variables for Q-tables

len_variables = [len(velocity_classes), len(tsu_distribution),len

(tsu_range), len(tsu_group_distribution), len(

smart_lift_allocation), len(sequencing)]

#values in this iteration

value_velocity_classes = 1

value_tsu_distribution = 1

value_tsu_range =1

value_tsu_group_distribution = 0

value_smart_lift_allocation =0

value_sequencing = 1

#storage of parameters for this run

states_parameters = [value_velocity_classes ,

value_tsu_distribution ,value_tsu_range ,

value_tsu_group_distribution , value_smart_lift_allocation ,

value_sequencing]

######################################################

#variables which can be changed within the model

#variables

min_warehouse_levels = 17

max_warehouse_levels = 41

min_warehouse_aisles = 4

max_warehouse_aisles = 25

min_warehouse_positions = 20

max_warehouse_positions = 150

min_warehouse_depth = 1

max_warehouse_depth = 2

min_lift_type = 1 #single platform

max_lift_type = 2 #double platform
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min_in_rack_buffers = 2 #stands for 2 buffers

max_in_rack_buffers = 3 #stands for 3 buffers

min_nr_shuttles_per_level = 1

max_nr_shuttles_per_level = 30

min_nr_lifts = 2

max_nr_lifts = 30

#array creation

#add all min and max of the parameters

MinMax = np.array([

[min_warehouse_levels ,max_warehouse_levels],

[min_warehouse_aisles , max_warehouse_aisles],

[min_warehouse_positions , max_warehouse_positions],

[min_warehouse_depth , max_warehouse_depth],

[min_lift_type , max_lift_type ],

[min_in_rack_buffers , max_in_rack_buffers],

[min_nr_shuttles_per_level , max_nr_shuttles_per_level],

[min_nr_lifts , max_nr_lifts]

]) # Adjusted to be within bounds (0 to max -1 for each axis)

states_variables = np.zeros((len(MinMax)))

################################################################

#parameters for Deep Q-learningl

# Parameters

gamma = 1

epsilon = 1

epsilon_decay = 0.99

numberEpisodes = 50

num_parallel_runs = 1 #number of cores I want to use

directory = -

#the different states of all variables , usually half of the

number of actions

actions = [-1, 1] * len(states_variables)

goal = [0]

througput = [0]

states_temp = np.concatenate (( states_variables , states_parameters

,goal))

states = np.concatenate (( states_temp ,througput))

######################################

start_sim_time = time.time()

deep_q_learning = Deep_Q_Learning(gamma , epsilon , epsilon_decay ,

numberEpisodes , states , actions , MinMax ,directory ,

velocity_classes , tsu_distribution , tsu_range ,

tsu_group_distribution , smart_lift_allocation ,sequencing)
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training_time = deep_q_learning.trainingEpisodes ()

end_sim_time = time.time()

print(f"The total training time is {training_time} where the

simulation time was {end_sim_time - start_sim_time}")
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Han, M., Håkansson, J., and Rebreyend, P. (2014). How does data quality in a network
affect heuristic solutions? Working papers in transport, tourism, information technology
and microdata analysis. Retrieved from Högskolan Dalarna website.
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