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I. INTRODUCTION
A. Application

The SCC (Smart Cylinder Control) Compact is a product designed by Brunelco Electronic Innovators [1]. It is used as
an industrial controller for hydraulic cylinders in heavy lifting applications. The SCC Compact itself is basically an interface
between the analogue sensors and actuators and a digital control system. The SCC Compact has analogue and digital inputs
and outputs, the specifications and uses of these will be discussed in a later section.

B. SCC Compact 10 extenders (existing solution)

There also exist extenders for the SCC Compact system. These extenders have either 8 analogue or digital inputs or outputs
and can be connected to an SCC Compact via a CAN bus.

C. Problems with 10 extenders

The current extender designs have proven to work in the field since their creation almost 15 years ago. There are however some
improvements possible in the context of robustness and the current solutions also don’t entirely conform to the international
standards that apply, such as [2]. A desirable feature that is lacking in the current designs is software configurability of the
type of analogue input or output (current or voltage). If a redesign is to take place, it is useful to investigate whether this
feature can be added. There are some recently developed integrated circuits, such as the NAFE family from NXP [3], known
as industrial analogue front-ends, which could integrate a lot of the functionality required in an SCC IO extender. Besides
these problems which apply to both analogue input and output extenders, the analogue output extenders also could benefit
from improved performance. Relevant performance metrics are settle time, noise and distortion in this case.

D. Research questions

o What improvements regarding versatility and robustness can be made to an analogue input section for an industrial
controller, with the use of an integrated analogue front-end (AFE)?

« What is the feasibility of alternatives to low-pass filtered PWM as high resolution analogue outputs, optimizing for low
settle time and low noise, in the context of an industrial controller?

E. Solution

An analysis of all types of the existing extenders is presented and preliminary solutions are proposed with a prototype for the
analogue input and output extenders. Measurements and tests will be done with this prototype and the existing SCC Compact
extenders. Comparison between these measurements will yield a recommendation for a possible future redesign cycle.

II. BACKGROUND
A. IEC 61131-2 standard and additional requirements

The IEC 61131-2 standard provides voltage and current ratings of different types of industrial inputs and outputs. For the
SCC Compact extenders it is only relevant to look at sections 76.4.4 Digital inputs (positive logic, current sinking)”, 76.4.6
Digital outputs for direct current (current sourcing)”’, ”’6.5.2 Analog inputs”, ”6.5.3 Analog outputs” and "6.5.6 Verification of
analog 1/0s” in [2].

1) Digital inputs: DC digital inputs on the SCC extenders use a rated voltage of 24V [4] and need to be compatible with
both type 1 (suitable for mechanical contact switching devices) and type 3 (suitable for solid state switching devices). This
means that the upper two rows of Table 24 in [2] are of interest. These two rows can be seen repeated in TABLE 1.

Type 1 Type 3

min max min max
Ur, -3V 5V/15V -3V S5V/11V
Iz, ND 15mA ND 15mA
Ur 5V 15V 5V 11V
Ir 0.5mA 15mA 1.5mA 15mA
Up 15V 30V 11v 30V
Iy 2mA 15mA 2mA 15mA

TABLE I: Digital input types
Source: adapted from [2]

In [2] it is stated that "It is necessary to exceed both U7y min and Iy min to leave the “off region”, and to exceed both
Iy min and Uy min to enter the “on region”.”. This means that if a purely resistive load is connected on a digital input for
type 1 it ideally needs to have resistance R = min (Y28 Uity — mip (7.5.10%,1.0 - 10*) = 7.5k€2 for minimal power

. . . ~ . . . Hmln ijlﬂ . . .- ~
dissipation and 3.3k for type 3. Power dissipation can however be significantly reduced if above some voltage (for example
Ur min) the digital input sinks a constant current that is higher than Iz min.

Since the ranges for U are so large, it is possible and maybe beneficial for interference rejection to have a hysteresis present

on the transition from low to high and visa-versa, which may occupy a part of (or the whole of) the Uy range.



2) Digital outputs: The digital outputs on the SCC extenders are specified for an operating voltage of 24V [4]. There are 5
types of digital outputs standardized in [2]; type 0,1, 0,25, 0,5, 1 and 2 rated for a sourcing current of 100mA, 250mA, 500mA,
1A and 2A respectively. Each type has to be implemented as a high-side switch, which can handle a continuous current of 1.2
times the rated current. Only type 2 outputs are of interest for the SCC extenders [4], which have as additional requirements
that the leakage current shall be less than 1mA and the voltage drop under load less than 3V.

3) Analogue inputs: The only analogue input types of interest are 0V — 10V, which needs to have an input impedance of
> 10k2 and 4mA — 20mA which needs to have a input impedance of < 30012 [2], [5]. The resolution must be at least 16-bit
[4], although the effective number of bits (ENOB) only has to be at least 10-bit. Software configurability of current or voltage
input is a desirable feature.

4) Analogue outputs: The only analogue output types of interest are 0V — 10V, which needs to work as specified with an
impedance of > 1k and 4mA — 20mA which needs to work as specified with an impedance of < 60052 [2], [S]. All analogue
outputs should be able to withstand any resistive load from short circuit to open circuit [2]. The resolution again must be at
least 16-bit [4], and ENOB at least 10-bit.

B. Interface between SCC compact and extenders

An isolation barrier between the CAN bus and inputs/outputs of extenders is required to prevent ground loops. The isolation
voltage must be at least 2.5kVrms.

1) CAN bus: The CAN bus has a bitrate of 1Mbit/s and the SCC compact and extenders use a proprietary higher level
protocol on top of the CAN hardware layer also developed by Brunelco, so this will have to be taken into account to maintain
compatibility.

C. IEC 61000-4-2 and IEC 61000-4-5 standards

The IEC 61000-4 standards provide testing and measurement techniques for electromagnetic compatibility (EMC). Part
4-2 provides standards for testing electrostatic discharge (ESD) immunity [6] and 4-5 provides surge immunity standards
[7]. The product falls under the “industrial” category for CE certification [8]. The European Committee for Electrotechnical
Standardization CLC Guide 34 lists the standards which the product needs to conform to. These include the IEC 61000-
6-2 standard for immunity in industrial environments and IEC 61000-6-4 for emission in industrial environments [8]. The
standard for immunity is the only relevant one when selecting an ADC type of device. Analogue inputs and outputs fall under
signal/control port [9]. In Table 2 in [9] it is stated that a surge according to [7] of £1kV must be survived by the device.
When doing a redesign it is useful to look at whether a chosen integrated circuit has already been tested to withstand certain
standardized surges and ESD.

D. Requirements summary

A summary of the requirements on the analogue section for a new design set by Brunelco (drawn partly from existing
designs) and the international standards that apply can be seen in TABLE II

Analogue inputs | Analogue outputs
Input/output voltage range oV — 10V oV — 10V
Input/output current range 4mA — 20mA 4mA — 20mA
Voltage mode input impedance/output load impedance | > 10k > 1kO
Current mode input impedance/output load impedance | < 30092 < 60092
Resolution 16-bit 16-bit
Maximum noise and distortion (voltage mode) S5mVyruMms 5mVirMs
Configurability of current/voltage mode In software In software
IEC 61000-4-5 surge immunity +1kV +1kV

TABLE II: Requirements summary

III. CURRENT DESIGNS
A. Shared

The existing SCC extender designs are all have a common part, which is the CAN interface and the microcontroller. The
microcontroller is an STM32F103 on all 4 designs. Its most important feature in this case is that it has a CAN interface built-in
[10], which removes the need for an external interface [5], [11]-[13]. The update period of the inputs and outputs on the CAN
bus is 10ms, which means that S0Hz is the theoretical highest frequency which can be generated, or measured without aliasing.



1) Shortcomings of the current design: All CAN transceivers are implemented with the TJA1042T [5], [11]-[13], which
has supply voltage range of 4.5V - 5.5V [14], this means the TX and RX pins connected to the microcontroller are also 5V
logic 10, which is not compatible with the STM32F103 3.3V 10 [10].

Input TX needs to be at least 0.7x the supply for it to be seen as a HIGH level, see Table 7 in [14], which is 3.5V for
nominal 5V, this requirement is not fulfilled with a 3.3V GPIO output from the microcontroller. RX from the CAN interface
IC will be 5V, which can damage the microcontroller input if it is not 5V tolerant.

In practice it does work in the current design because most of the STM32F103 GPIO internal buffers are S5V tolerant [10],
and 3.3V is still close enough to 3.5V for the CAN interface to detect it as a high level most likely (it’s just not within
specifications).

When a redesign is to take place, the microcontroller family of choice is the STM32GO0, which uses an ARM Cortex® MO+
core, since it contains a memory protection unit (MPU) and hardware based encryption (AES) [15]. These are all security
related features, making the STM32GO0 family a good choice for applications where security and reliability are important
aspects. This microcontroller family is also PSA certified [16].

B. Digital inputs

The digital input extender has 8 inputs which conform to all types defined in [2], and are electrically isolated from the rest
of the design. There are also indicator LEDs for each channel which turn on when a high level is detected, and off otherwise.

1) Shortcomings of the current design: On the input side there is basically a constant current sink in series with the LED
of an optocoupler for each channel [12]. This constant current sink is constructed with a BESS6A J-FET with its Vg always
zero, which results in an I, which converges to a constant 4.5mA typically [17]. An additional resistive divider is placed on
the input to prevent the LED in the optocoupler turning on with a small leakage current below I from TABLE 1.

There is nothing intrinsically wrong with this design, and it even has the nice feature of not dissipating an unnecessarily
high amount of power at higher input voltages as would be the case with a purely resistive input. The BFS56A is however no
longer being manufactured and J-FETs are going obsolete left and right, so making a similar redesign with another J-FET is
not very future-proof.

C. Digital outputs

The digital output extender has 8 output channels which conform to type 2 defined in [2]. They are not electrically isolated,
and again there are indicator LEDs for each channel that are on when a high level is outputted, and off otherwise.

1) Shortcomings of the current design: The high-side switches are implemented with an integrated solution; the BTS5210L
[18]. Which already take the IEC61131-2 standard into account. The device contains a protection circuit for inductive loads that
will turn on the built-in MOSFETs slightly when the voltage across the load exceeds a certain threshold effectively damping
the negative inductive spike. This clamping voltage is about 47V [18]. There are however also 30V metal oxide varistors
(MOV) on the output which will break down before the built-in protection has any chance to dampen the spike [13]. Since a
MOV degrades every time a surge occurs, and are really only designed to operate in exceptional cases it is not a very robust
design.

The indicator LEDs are connected directly to the outputs in series with 6.8k resistors, which will yield a maximum power
dissipation in all of these resistors above the rated 0.1W for the 0603 package when the common voltage is the maximum
specified 40V. Besides this technicality which could easily be solved by using larger resistors, it is kind of wasteful to dissipate
around 1.7W when the supply is 40V. Directly powering the LEDs from the output also has as a negative side effect that
when a negative inductive spike occurs, it could easily exceed the reverse breakdown voltage of the LEDs (which is about 5V
typically, so the MOVs and protection built-in to the BTS5210L also don’t help).

The digital outputs are not electrically isolated from the CAN interface, which should be the case in a new design.

2) Specification irregularities: In the specification document it is stated that the digital output is rated for 2.4A, but this is
not one of the standardized types, so it should really state 2A, which also should be able to handle a continuous current of
1.2 - 2A = 2.4A [2]. A maximum load inductance of 30mH is specified. This is probably obtained by looking at the graph
”"Maximum allowable load inductance for a single switch off” in [18] at I;, = 2.4A, but the graph is only valid for Vy, = 12V
which is not clarified in the extender specifications, and one would assume that this 30mH is for the nominal common voltage
of 24V [13]

D. Analogue inputs

1) Shortcomings of the current design: The analog inputs are implemented with a simple voltage divider with a ratio of
about 2.65 : 1 and an LTC1867 SAR ADC with built-in analogue multiplexer and voltage reference [5]. This yields an input
voltage range of OV — 3.77V to the ADC. The internal 2.5V reference is used in combination with the 1.638V/V reference
amplifier, which means the actual reference voltage for the ADC is 4.095V [19], so the design doesn’t use the full dynamic
range of the ADC.



To enable current inputs instead of voltage inputs, mechanical switches are used to wire in an effective shunt resistance of
495€) [5], which is above the upper limit of 300¢2 that the standard requires [2].

The specified resolution is 16-bit, which is also what the ADC specifies, but the signal to noise and distortion ratio (SINAD)
is 88dB meaning an ENOB of 14.3-bit [19]. However, there is an RC low-pass filter on the input with a cut-off frequency of
fe= 27&:50 = 573 452.18_10.10_6 ~ 1.28Hz [5], so a very cheap improvement would be to oversample a lot (since the analogue
bandwidth is extremely low). This way an ENOB of almost 16-bit could be achieved.

The analogue inputs are not electrically isolated from the CAN interface, which should be the case in a new design.

2) Specification irregularities: The specified input current range is OmA — 20mA, which is no longer recommended for new
designs [2], [20]. This is because a 4mA — 20mA input can be used to detect an open circuit (when the current is below 4mA).

E. Analogue outputs

1) Shortcomings of the current design: The analogue output extenders can only implement voltage output, but software
configurable current output may be implemented in a new design. The analogue voltage outputs are essentially 1st order low
pass filtered PWM channels directly from the microcontroller fed into some LM258 operational amplifiers configured with
fixed amplification using negative feedback. These low-pass filters have a time constant of 7 = 0.1, and therefore a cut-off
frequency of around 1.59Hz [11]. This means the analogue outputs have a settle time of around ¢t = —7In 2% ~ 0.7s when
assuming a desired ENOB of 10-bit.

The cut-off frequency was chosen so low because the minimum obtainable PWM period is approximately 1ms. This is limited
by the maximum clock frequency of 64MHz and minimum resolution of 16-bit, yielding 65536 codes. Since a low-pass filter
is used with a —20dB/dec slope, this design will have around —60dB attenuation of the PWM AC component. This will
make it theoretically possible to obtain an ENOB of at least 9.7-bit. The total SNR will depend heavily on the PWM compare
value/analogue output value.

The analogue outputs are not electrically isolated from the CAN interface, which should be the case in a new design.

IV. LITERATURE REVIEW FOR ANALOGUE OUTPUTS

A. DAC devices

The safest solution to improve the analogue output section would be to use 8 separate DAC devices or one 8 channel DAC
device or anything in between. This would be quite expensive however, if you would set 16-bit resolution as a requirement.
There don’t exist any STM32 microcontrollers with 16-bit DACs, let alone ones with 8 output channels, so selecting a
microcontroller with an internal DAC and using this is not really an option. Using high resolution DACs would also be a little
bit overkill, since the settle time doesn’t have to be very low (< 10ms doesn’t make any sense because the update period is
10ms), and the analogue outputs can be considered closer to a precise voltage/current source than a DAC. There are also no
heavy requirements in frequency domain; the only relevant aspects of the transient response to a step are that there is no over-
and undershoot.

B. Implementation in microcontroller

1) PWM: The current design uses PWM since it is easy and reliable because there are enough built-in peripherals (timers
with compare) for this. This solution does result in a lot of noise after filtering though, because high resolution causes a large
PWM period. It would be possible to use a 2nd order analogue filter. This could increase the cut-off frequency by a factor
104/10, yielding a settle time of around 22ms, which is already more than fast enough.

2) Sigma-Delta modulation: An idea is to implement Sigma-Delta modulation (SDM) in software on the microcontroller,
and Ist order SDM would already be a large improvement, since the noise shaping characteristic results in noise mostly being
shifted towards the high frequencies (with a slope of 20dB/dec), so when applying the same 1st order analogue filter, the noise
power will be much lower. When the input to 1st order SDM is rational number b/a normalized to quantizer step, the period
of the limit cycle will be a regardless of the initial condition [21]. The input is always this rational number b/a for a digital
to digital converter (DDC) or DAC, as b is an integer and a is a power of 2. This can intuitively be understood by observing
that the integrated error (Sigma) will always be equal to 0 again after a time steps. One can therefore concatenate one period
indefinitely yielding exactly the same bitstream (when assuming a constant input, which is valid, as the update period (= 10ms)
is significantly higher than the limit cycle period (=~ 1ms assuming 64MHz clock)). Knowing this, it is possible to implement
the computation in software only when the input value is updated and circularly write out a 2! bit buffer using direct memory
access (DMA). When the input is a constant value, 1st order SDM can also be understood in the time domain as pulses spaced
apart by a period which is inversely proportional to the input. This can be understood intuitively since an SDM essentially
integrates the difference between the input and the output (illustrated in Fig. 1), where this output is a 1-bit signal. As said
before the error A will be 0 when averaged over one limit cycle, so the total number of pulses in one period has to be equal
to the N-bit input. The distance between these pulses will be constant since the output of the integrator X linearly increases
over time until a pulse occurs (so it will have a sawtooth shape).
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Fig. 1: Digital 1st order SDM block diagram

It can be shown that a voltage controlled oscillator ADC (VCO-ADC) not only produces a signal with the same frequency
spectrum on its output, but also generates exactly the same bit pattern (time-domain signal) as a 1st order SDM [22]. This can
also be understood intuitively since in a VCO-ADC, the VCO will output a squarewave whose period is inversely proportional
to the input voltage. This is then 1-bit differentiated in a sense (two inputs of a XOR gate connected to the same signal, but
one via a single timestep delay). The output of this XOR gate will therefore be pulses spaced apart by the inverse of the input
voltage. The fact that the bit pattern has the aforementioned property is even clearer from the core concept of a VCO-ADC
than from an SDM. A block diagram of such a VCO-ADC is shown in Fig. 2.

Voltage input Square wave Sampled square wave \
—————>»  VCO 1-bit output
.

>
z! /

Fig. 2: VCO-ADC block diagram
Source: adapted from [23]

The whole point of this whole elaborate comparison is that there is a major advantage when implementing an algorithm
based on a VCO-ADC in software (and not in real-time) over implementing SDM in software; there is no feedback. This
means that for an SDM, the state (from which the output value follows) of the system has to be calculated at every timestep
of the algorithm sequentially, while for a VCO-ADC based algorithm, the output value of the system can theoretically be
calculated for all times simultaneously.

It may sound a bit strange to implement an ADC in software, but is is mostly just (a slightly modified version of) the core
concept which can be implemented in software. This core concept is also sometimes called pulse frequency modulation (PFM)
or pulse density modulation (PDM), I will use the latter going forward.

3) Alternatives: There are some other methods to generate something close or identical to PDM from a VCO-ADC or SDM.
The first which could be interesting to consider is the method presented in [24], the working principle is very close to that
of PWM, the only difference being that the counter is non-sequential. This essentially distributes the pulses over the entire
counter period. In hardware the easiest way to make a counter non-sequential would be to reverse the bit order. The difference
in operation can be seen in Fig. 3.

The downside of this method is that the pulses are not equally distributed over the period. This means that the frequency
spectrum of the output will also not have the characteristic 20dB/dec slope. A comparison of the frequency spectra for a
resolution of 16-bit and a constant input of 40961 (which is a prime number to prevent a limit cycle shorter than a = 216 =
65536) can be seen in Fig. 4

The same signals were filtered with a Ist order low-pass filter with a cut-off of {2 = 1.561 - 10~ "rad, which corresponds to
a cut-off frequency of 1.59Hz when the sample frequency is 64MHz. Their frequency spectra can be seen in Fig. 5
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Fig. 3: PWM and non-sequential counter PDM comparison. Dashed orange line is compare level (reference input), uninterrupted
orange line is counter level.
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Fig. 4: Frequency spectrum comparison of PWM, PDM generated with a non-sequential counter and PDM generated by a
SDM or VCO-ADC.

This method doesn’t have any advantages when implementing it in software over a method based on a VCO-ADC, and it
may be hard or impossible to find a method for transforming the counter sequence in hardware to a non-sequential one which
has an better shaped frequency spectrum for all compare values, but it could be interesting to see if there are more optimal
transformations than reversing the bit order which could be implemented in software. When this method would be implemented
using digital hardware, it would be an interesting alternative or addition to regular timer/counter peripherals, since it is doesn’t
require more hardware (so less than a 1st order SDM too). Such a hardware peripheral is very uncommon however.

When a simple implementation in hardware is desirable (so that it may be used as a peripheral in a microcontroller for
example), the method presented in [25] may also be more interesting when 1st order noise shaping is a must. This method
uses only adders and is very similar to a 1st order SDM. It uses an integrator where the overflow/carry generates an output
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Fig. 5: Frequency spectrum comparison of filtered PWM, PDM generated with a non-sequential counter and PDM generated
by a SDM or VCO-ADC.

pulse.
Since the microcontroller family which would be used in a redesign is a given, an implementation in software is worked

out in the next section.

V. PDM IMPLEMENTATION

To implement something efficiently on a microcontroller which generates PDM, it is useful to first look at what would
happen if one would just replace the VCO and sampler with a function that generates a square wave (which will be inherently
sampled) with period ¢, where b is the reference input and «a is the number of quantization steps. The output will then have
2D pulses per a samples after it is 1-bit differentiated, since a square wave has 2 edges per period. When this squarewave
would be swapped out to a sawtooth wave, and do regular differentiation, the output will have b negative pulses per a samples,
since a sawtooth wave has 1 falling edge per period. There will also be an offset equal to Ag, since the sawtooth wave has a
constant gradient of % = A%, where A is the amplitude of the sawtooth wave. Let’s set A to 1 for now, so that the output
offset is equal to %, which is exactly the same as the reference input normalized to quantization step. Essentially what has
been constructed now is an SDM inside out (sort of). The sawtooth wave can be seen as the output of the integrator. If we
differentiate this (which is what happens next in the VCO-ADC), we can see this as going in the reverse direction in the SDM
(so the input of the integrator). The input of the integrator in the SDM is indeed the same as the output of the differentiator

in the VCO-ADC. Since they are both equal to the sum of the constant input and b negative pulses per a samples.

A. Implementation in MATLAB

An implementation in MATLAB as close as possible to the description above was tested to have exactly the same bit pattern
for a = 216 and every possible value of b except 0. This implementation can be seen in Listing 1, the SDM implementation
in MATLAB, matched as closely as possible to the one in Fig 1 can be seen in Listing 2.

Listing 1: Algorithm based on VCO-ADC

% Algorithm which is the most directly based on a VCO-ADC.
function y = vco_adc(ref, N)
% Generate sawtooth with period N / ref and amplitude 1.
sawtooth = mod((0:N)', N / ref) = ref / N;
y = —(diff (sawtooth) — ref / N);

end




Listing 2: MATLAB implementation of Fig. 1

% First order classic sigma delta.
function y = sigma_delta(ref, N)

sigma = 0;
y = zeros(N, 1);
for i = 0:N

out = floor(sigma / N);
delta = ref — out * N;
sigma = sigma + delta;

if (i > 0)
y(i, 1) = out;
end
end
end

For the actual implementation on a microcontroller, this algorithm can be simplified a lot still, since instead of doing
differentiation, one can just detect the falling edge by comparing the sawtooth in Listing 1 to - b and emlttmg a pulse every time
the sawtooth is smaller. The comparison involves Z because of the fractional modulo. - (n mod ) <% 5 n mod & T <1
where n is the timestep, is true exactly once per period of the sawtooth because the lowest point of the sawtooth will always
be where modulo is lower than the timestep increment, which is 1 by definition.

An implementation according to this simplification can be seen in Listing 3.

Listing 3: Simplified algorithm based on VCO-ADC

% Stateless pulse density calculation algorithm.
% Theoretically you can calculate all output values simultaneously.
function y = pulse_density (ref, N)

high_pulse_period = N / ref;

y = double(mod((1:N)', high_pulse_period) <= (N - 1)/N);

end

This implementation uses a comparison < % instead of < 1 because of floating point rounding errors in the mod MATLAB
function. The exact same code, but then with the < 1 comparison was tested in GNU Octave, which did yield the expected
results. The output was verified to have exactly the same bit pattern for a = 2'6 and every possible value of b except 0, as
the previous two implementations.

Another approach which is still according to the same principle is possible, but instead of using a fractional modulo which
would be prohibitively expensive to implement on a microcontroller, it just uses a single division to calculate the fractional
period/distance between pulses and only sets bits which need to be set.

We can define a set of indices Y at which a pulse occurs over one period (always with length a). Let’s define N := a for
the period to improve readability:

Y = {nn mod%<1n€{0 —1}}
= b 1 0 N-1
= Nn <lnef{0,...,N -1}
N N N | bN v
:{ e —?{an<lne{0,...7b—l}}
_{ %L rLG{U ,b—l}}

An implementation according to this more efficient definition can be seen in Listing 4

Listing 4: Efficient pulse density algorithm

% Only assign ones. Very efficient for lowest levels. As a possible optimization
% you could transitions to low_pulse_period once you go past the middle level.
% This would also make it very efficient for highest levels.
function y = efficient_pulse_density (ref, N)

high_pulse_period = N / ref;

y = zeros(N, 1);

y(ceil Chigh_pulse_period % (l:ref) — 1/N)) = 1;
end

The output was verified to have exactly the same bit pattern for ¢ = 2'¢ and every possible value of b except 0, as the
previous three implementations.



B. Implementation in C

An implementation in C can be found in Listing 5 under the name NON_OPTIMIZED_ALGORITHM. Some things have
to be taken into account in this low level rewrite. The most important one is that the output bits are packed most significant
bit first, in a buffer with 8- or 16-bit elements. Another is that this buffer has to be written out via DMA continuously, so
asynchronously to what is happening on the main microcontroller core. This means that from the perspective of the DMA
controller, during a change of the analogue output value we can’t make any assumptions about which part of the buffer has
been overwritten, and which part hasn’t. The only assumption we can make is that the buffer will be overwritten contiguously
from start to end.

From this, and only this assumption we can derive that there cannot be any over- or undershoot. This can also be understood
intuitively by the fact that the pulses will be distributed more or less equally over an entire period, regardless of what the
reference input value b is.

C. Derivation of limited under- and overshoot

For input b and period NV, the number of pulses y is:

N-1 N
y:Z[n mod—<1}:b (2)

n=0 b
For some arbitrary transition number (representing the point where we are in overwriting the old buffer with the new buffer)
k between 0 and N and arbitrary inputs b1 and b

k—1 N N-1 N
= n mod — < 1|+ n mod — <1
n= 3 [n med §<afe X oo <

We can use y to obtain a set of indices Y at which a pulse occurs, derivation shown in Equation 1:

-l

Let’s define the set of all possible indices as V = {0,..., N — 1}. Since the pulse indices can only be between 0 and
N — 1 (formally Y C V) we know that Y = Y N V. If we define two partitions of V, split at the same k defined before,
T={0,....,k—1} and W = {k,..., N — 1}, we know from the definition of set partitions that V = 7"U W. Lastly if we
define A=Y NT and B =Y N W, the following will hold:

Y=YNV=YnTUW)=¥nNT)u(YNnW)=AUB (5)

ne{(),...,b—l}} “4)

Next we define Y7 and Y5 which are the sets of indices corresponding to inputs b; and bs.

A =Yin{0,....k—1}

e o )

By =Yy {k,...,N —1}

(et o)

It can easily be seen that A has [b1%L| + 1 elements and B has by — [boEL + €] elements. As a sanity check we can
observe from 2| — [« + €] = —1 that the number of elements of Y = AU B adds up to b again when b; = by = b. We can
also observe that A and B are partitions of Y (AN B = and AU B =Y), since B can be rewritten as:

N kE—1
Bg_{[b—Qn—‘ neﬂbz - JH,...,le}} %

(6)




When instead we don’t assume this equality of b; = by = b, we will obtain:

k—1 k—1
yt—{ln NJ+1+624{Z)2 J*l

N
k—1 k—1
:b2+{b1—J —{bz - J
§ ]\:T[ b 1j\’ (8)
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From this we can see that the number of pulses can never go above or below the weighted average of b; and by with weights
]“N;l and & *]\];H respectively by more than 1 — e.

One extra thing has to be taken into account when we realize that no memory copying implementation does this one bit at
a time, since that would be incredibly inefficient. A real implementation will realistically overwrite any multiple of 8 bits at a
time. If the buffer contains 16-bit elements a problem may arise when we overwrite 8 bits at a time (but not when overwriting
16 bits or more at a time), since we overwrite from start to end, and the 16-bit elements are ordered most significant bit first.

In the context of this subsection this boils down to 2 transitions between the old buffer and the new buffer (instead of the 1
which has been assumed). To make absolutely sure that there will only be 1 transition, the memory copying implementation

will have to copy 16 or 32 bits at a time for example.

D. Emulation in QEMU

To be able to get a feel for how efficient different implementations are, a simulation in an emulator would be nice.

This would of course also be possible by just measuring time on the real microcontroller between breakpoints set in a
debugger, but this will not be very accurate because there is no cycle count register [15] (there is only a program counter
sampling register as required by the ARMv6-M specifications, see section D3.7 in [26] and section 40.8.2 in reference manual
RMO0444 [15]). Therefore the timing is required to be measured on the computer which hosts the debugger, which will introduce
a lot of jitter and latency.

Another possibility would be to toggle a GPIO pin before and after the execution of the algorithm and measure the on-time
with an oscilloscope, this will involve a lot of manual data processing however.

A third option would be to use a hardware timer to keep track of elapsed time between two points and print this out via
UART for example, so that the data processing can be automated more easily. The downside of this is that when you still want
sufficient time resolution at cycle counts in the order of magnitude 10 or 103, while also being able to measure cycle counts
in the order of magnitude 10°, the timer interrupt has to fire very often and this may significantly reduce the amount of clock
cycles left for the algorithm itself. This will skew the time at least to some degree.

Profiling the different implementations in an emulator will also make it faster to iterate and test modifications. There are a
few different cycle-accurate emulators for Cortex® M cores, but they are all very expensive [27], [28]. Some non-cycle-accurate
emulators are freely available or even open source [29], [30]. Renode has some coarse profiling features which require you to
specify how many instructions per second the microcontroller typically can execute (MIPS) [31]. QEMU allows you to keep
track of the number of instructions executed [32], which is also a good indication of how long something would take on the
real core. It is also deterministic and reproducible (down to the single instruction) contrary to if one would just measure the
time the emulation takes.

Counting the instructions instead of counting clock-cycles is good enough in this case, since most instructions are single-
cycle on a Cortex® MO+ core, branches take two cycles (and one if not-taken for a conditional branch), loads and stores are
two-cycle if to/from the main bus matrix and single-cycle if to GPIO. All six three-cycle instructions will not be used in a
simple algorithm (they are all hardware (memory barrier and special register) related instructions, and a branch with link) [33].

The multiplier is single-cycle in the STM32GO0 family according to datasheet DS13560 [15].

This means that the absolute maximum error range will be x2 to x0.5 if one algorithm would purely consist of two-cycle
instructions and the other purely of single-cycle instructions.

Four different implementations were profiled in QEMU:

1) A naive implementation of a 1st order SDM under the name SIGMA_DELTA_ALGORITHM in Listing 5.

2) The non-optimized efficient algorithm from Listing 4 under the name NON_OPTIMIZED_ALGORITHM.

3) An optimized algorithm that outputs the same bit pattern, but works in reverse (clearing bits instead of setting them)

when the input is more than half of the total range, under the name OPTIMIZED_ALGORITHM.

4) An algorithm with the principle from implementation 3 taken further to 8 different base levels under the name

TRADEOFF_ALGORITHM.

Implementation 4 is a lot faster since there is no longer the need to set or clear individual bits in integer elements of the
buffer, because the number of base levels is 8, so it is easier to just alternate between base level patterns for each element in
the buffer. The downside is that the bit pattern will not be exactly equal to that of a 1st order SDM.



Essentially how this can be understood is a kind of a hard-coded 3-bit PDM within a 13-bit PDM algorithm, which are both
according to what a 1st order SDM of those two resolutions would generate.

The target machine in QEMU was chosen to be the LM3S6965EVB, since this target could be configured in QEMU to
have a Cortex® MO core, which is binary compatible with the Cortex® MO+ core, the only difference between the CPUs in
these cores is that some instructions take less clock cycles in the Cortex® MO+ core [34], but this is not relevant when only
counting instructions. The Luminary Micro Stellaris LM3S6965EVB has 64KiB of SRAM [35]. This cannot be changed with
QEMU command-line options, but it is enough in this case.

The instruction count differences in QEMU were measured by setting breakpoints in GDB before and after the algorithm
and reading out the absolute instruction counts at these points. These can be seen in Figure 6 plotted for all possible reference
input values.
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Fig. 6: Instruction count

The scripts used for profiling in QEMU with the help of GDB can be seen in Listing 6, Listing 7 and Listing 8.

VI. DEVICES SURVEY

Since there is an enormous selection of devices with some of the features of an industrial AFE available it would be silly
to compare all of these, so a pre-selection has to be made. There are only a few manufacturers of ADCs (which seems to be
a superset of manufacturers of AFEs for industrial applications). These are:

o Texas Instruments/National Semiconductor/Burr Brown

« Renesas/Intersil

o« NXP

+ Microchip



« Analog Devices/Maxim Integrated/Linear Technology

To minimize the amount of devices needed, a requirement on the amount of multiplexed channels is set to 4 or § for the
ADC. This still leaves a lot of options to select one from, so a limitation of the price is set to below $25 at 100 units. The
device is required to have at least 16-bit resolution, and input voltage span above 10V to eliminate the need for an external
voltage divider which needs to be calibrated. Some devices which have one or more DACs are included in the selection too
even if they have a resolution of less than 16-bit, or have less than 4 channels, since they are not very common, and it might
be interesting to compare these devices still if later during a redesign cycle it is decided that the price may be higher or that
it is okay if more than 2 devices are required to bring the total to 8 channels. First a comparison will be presented of devices
with built-in DACs.

For the sake of increasing robustness, the EMC ratings will have a high priority in the selection of a suitable device.

A. MAX22000

The MAX22000 is a relatively new device created by Analog Devices [36]. It is designed to be used (with a few external
components) as an industrial input/output with 3 regular analogue inputs and 1 analogue input which can also be configured
as an output. A summary of the most relevant features can be seen listed below:

o $28.70 at 1k units.

¢ 18-bit DAC and 24-bit ADC.

o 3 regular analogue inputs can be used as voltage inputs only, without significant external hardware (current shunts and

analogue switches).

« 1 analogue input/output can be configured for current/voltage input/output.

o 1 extra input for thermocouple sensing is available.

o The gain on 2 out of 3 regular inputs can be programmed.

« No automatic channel sequencing.

o Automatic application of one input calibration offset/gain pair and output offset/gain pair.

« No factory calibration.

o 8-bit CRC on SPI bus.

o Up to 36V over-voltage protection on analogue input/output pins.

o 1kV human body model (HBM) protection on all pins.

o IEC 61000-4-5, 1.2/50us 1kV pulse protection with 4.75k€2 series MELF resistor on all analogue input/output pins.

[36]
A design using 2 of these devices can be made which would result in an input extender with 8 inputs, 2 of which can also
be configured as outputs. There are some drawbacks however. This device is quite expensive, which would mean at least a
contribution of $57.40 by this device to the total bill of materials price for an SCC Compact extender. Another drawback is
that the only regular analogue input that is not connected to a programmable gain amplifier (PGA) will not utilize the full
range of the ADC when connected to a current shunt and used as a current input, since at the maximum current of 20mA and
maximum current shunt resistance of 300¢2, the input voltage will be 6V, while the input voltage range is +£12.5V.

The HBM (standardized in Method 3015.9 Electrostatic discharge sensitivity classification in [37]) defines an ESD pulse
generated by a charged 100pF capacitor through a 150012 resistor, which yields a peak current of 0.67A when the capacitor
is charged to 1kV.

The protection on all analogue input/output pins is more resilient than on the other pins, since additionally it is able to
withstand a surge standardized by IEC 61000-4-5. Even though such a surge has a longer rise time (= 720ns) due to the added
inductor [7] (which will give the protection semiconductors more time to turn on) and the 4.75k(} series resistance is also
higher than the 150012 for the HBM, the total surge duration will also be orders of magnitude longer (= 50us), than in case
of an ESD pulse. This means that the protection semiconductors are tested more for their energy absorbing capabilities than
for fast response by this specification.

No mention is made of compliance with the IEC 61000-4-2 standard, which defines an ESD pulse generated by a charged
150pF capacitor through a 3302 resistor [6]. This results in a much faster rise time 0.8ns vs < 10ns (and a higher peak
current) [37].

B. NAFE33352

The NAFE33352 is a similar device developed by NXP [38]. A summary of the most relevant features can be seen listed
below:
o $6.85 at 100 units.
o 18-bit DAC and 24-bit ADC.
« 2 regular analogue inputs can be used as voltage inputs only, without significant external hardware (current shunts and
analogue switches).



« 1 analogue input/output can be configured for current/voltage input/output.

o A PGA is connected on the 2 regular analogue input channels.

« An automatic channel sequencer is built-in to allow for per-channel configuration.

« Automatic application of corresponding offset/gain calibration pairs.

o Offset/gain calibration pairs loaded with factory calibration on reset.

o 8-bit CRC on SPI bus.

o Up to 36V over-voltage protection on analogue input/output pins.

« Analogue input pins are connected via protection diodes to the high voltage supplies to limit power dissipation compared

to zener diode/TVS protection to ground.

¢ 7.5kV HBM protection on all pins.

o IEC61004-2 ESD protected on analogue input pins with the condition that they have a > 3k(Q resistor connected in series.

o IEC61004-5, 1.2/50us 2kV protected on analogue input pins with the condition that they have a > 3k{2 resistor connected

in series.
(38]
A design using 3 of these devices can be made which would result in an input extender with 9 inputs, 3 of which can also be
configured as outputs.

This device focuses a lot on robustness, evident from the fact that it specifies that it has been tested with the procedures
defined in [6], [7], [37]. It is also relatively cheap, but a downside is that 3 of these devices would be required to fulfil the
amount of analogue inputs needed. External analogue switches and current shunts are also still required. The PGA also only has
two different gain settings: 1 and 16, so either a very low resistance current shunt has to be used (putting heavy requirements
on the analogue switch on resistance) or a part of the ADC dynamic range is wasted.

Next, a comparison is made between some interesting devices which only incorporate an ADC. They all have 8§ input
channels.

C. AD7606

A summary of the most relevant features can be seen listed below:

o $20.16 at 1k units.

« 16-bit ADC.

o Only bipolar input ranges 10V and +5V (for each pin configurable), so effectively resolution is reduced to 15 bit.

o Only one 5V supply is needed (no high voltage bipolar supplies).

« Protection of input using zener diodes +16.5V (so only one external resistor is needed to implement protection against

a wrongly connected 24V line).

« Anti-aliasing filters built-in (15kHz or 23kHz cut-off depending on range).

« Single-ended inputs only.

o Contains an optional digital first-order SINC filter.

o 2kV ESD protected (all pins except analogue inputs).

e 7kV ESD protected on the analogue input pins.
[39]
This device doesn’t have any CRC implementation for the SPI bus, it also doesn’t state according to what standard the 7kV
and 2kV ESD ratings were obtained [39], so presumably with the HBM from [37]. The fact that it has simultaneous sampling
ADCs (as opposed to one ADC with some kind of multiplexer in front of it) also makes it relatively expensive.

D. ADS9815
A summary of the most relevant features can be seen listed below:
o $23.80 at 100 units.
o Dual 18-bit ADC.
o Simultaneous sampling: 4 channels per ADC.
o Only one 5V supply is needed (no high voltage bipolar supplies).
o Programmable anti-aliasing filters built-in (> 100kHz or > 21kHz cut-off).
¢ Protection of input using zener diodes £18V (so only one external resistor is needed).
« No digital filter built-in.
o One PGA per channel.
« 2kV HBM protection on all pins.
[40]
This device doesn’t have any CRC implementation for the SPI bus. It also doesn’t have any additional ESD or surge protection
on the analogue input pins.



E. MAX1300

A summary of the most relevant features can be seen listed below:

o $10.21 at 1k units.

« 16-bit ADC.

« Also has unipolar ranges (configurable for each pin).

o Only one 5V supply is needed (no high voltage bipolar supplies).

« Protection of input using zener diodes £16.5V.

+ No analogue or digital filters built in.

+ No ESD or surge rating.
(41]
This device has a very low input impedance (typically a purely resistive part of 17k(2), so adding external resistors to allow for
24V tolerant inputs will significantly effect the gain error [41]. Adding external 150€2 series resistors would limit the current
through the clamping zener diodes to the rated 50mA at 24V, but it would also create a voltage divider with a ratio of 1.0088:1.
It also doesn’t have CRC hardware for the SPI communication.

F. NAFEI3388

A summary of the most relevant features can be seen listed below:

o $20.07 at 100 units.
« 24-bit ADC.
« Eight single-ended or four differential inputs.
o PGA with range 0.2 to 16 (only placed after a multiplexer, but a sequencer is built-in to automatically change gain to the
configured value for each channel).
o Automatic application of corresponding offset/gain calibration pairs.
o Offset/gain calibration pairs loaded with factory calibration on reset.
« 8-bit CRC on SPI bus.
+ Up to +36V over-voltage protection on analogue input/output pins.
« Input clamp is connected directly on input pins with diodes to differential high voltage supplies.
« High voltage supplies are clamped w.r.t. ground to +29V and -29V (probably with zener diodes).
o 7.5kV HBM protection on all pins.
« IEC61004-5, 1.2/50us 2kV protected on analogue input pins with the condition that they have a > 2.5k(2 resistor connected
in series.
[42]
The NAFE13388 also has quite a unique feature in that it has an excitation source built in (a low resolution, but high precision
DAC), that can be multiplexed to any of the analogue input pins, which can be used to measure resistances. This may be
useful if a Wheatstone bridge or thermistor is connected as a sensor for example.

G. Isolation

Since the existing designs for both the analogue input extender and the analogue output extender don’t have any electrical
isolation, it is good to consider where one might place the isolation barrier in a redesign. All devices in the AFE selection
presented in the above subsections need at least one low voltage supply (3.3V or 5V for example), so a power supply is
needed to convert the input supply of 24V nominal to this lower voltage. It is therefore not convenient to place a digital
isolator between the microcontroller and the AFE, since the microcontroller will also need a low voltage supply (so you would
need two power supplies when placing it here). If one would place the isolator between the microcontroller and the CAN
transceiver, you would only need one power supply. Another benefit of placing the isolation barrier between the microcontroller
and CAN bus is that only 2 digital lines need to be isolated instead of at least 3 when isolating a SPI bus. We also know
the CAN bus to have a speed of 1Mbit/s already, while the SPI bus might operate at higher speeds depending on the chosen
sample rate.

There are isolated CAN transceivers (physical layer), which have integrated isolated DC-DC converters so that no power
supply is needed on the bus-side [43].

Even if it’s too expensive to use an isolated CAN transceiver (with integrated power supply), it is still possible to have a
digital isolator in combination with a CAN transceiver, which will both need less power than either the AFE or microcontroller,
so it can have a smaller power supply. Which will result in the design requiring one higher power power supply and one low
power (smaller) power supply instead of two higher power power supplies if the isolation lies between the microcontroller and
the AFE.

The most optimal solution is then to have the isolation barrier between CAN bus and microcontroller.



An example of an isolated CAN transceiver without integrated power supply is the ISO1042, which is designed for use with
24V buses [44]. A similar device already used in other designs by Brunelco is the ISO1050, which would also be usable in
this case even though it is designed for use with 12V buses, meaning that it allows a maximum voltage range on the bus of
—27V to 40V [45].

VII. METHODOLOGY
A. Device selection

A prototype is made with which measurements and tests can be performed. For this a final selection is made for the
microcontroller and industrial AFE.

1) Microcontroller: A microcontroller in the STM32G0 family has to be chosen. The choice is not very difficult since the
STM32GOB1 and STM32GOC1 microcontrollers are the only two which incorporate a CAN interface [15]. All variants have
144KiB of SRAM which will turn out to be useful later. The only difference between the STM32GOB1 and STM32G0C1
microcontroller variants is that the former doesn’t have AES hardware encryption while the latter does [15]. This is not relevant
for the SCC Compact (extender).

A NUCLEO-GOB1RE development board [46] is used in the prototype to speed up development.

2) Industrial AFE: The NAFE13388 is chosen partly because of built-in channel sequencer, high voltage clamped inputs,
digital filters and factory calibrated offsets and gains. Another important reason for choosing this device is its robustness with
regard to ESD and surge protection.

For the prototype, the NAFE13388-UIM development board was chosen [47], since it can easily be plugged in to the
NUCLEO-GOBIRE with the Arduino® Uno V3 connectivity. This development board also has isolated analogue switches and
25012 current shunts for 4 out of 8 channels on board [47].

Since the NAFE13388 doesn’t enable a design which includes some additional analogue outputs, an extender with 8 analogue
outputs is all the more relevant. Such an extender can use (one of) the methods described in section V to generate 8 analogue
signals with the microcontroller. These analogue signals still have to be converted to the required type by additional analogue
circuitry.

3) Analogue output driver: An example of devices which are specifically designed to do this are the XTR300 [48] and its
(lower cost and precision) pin compatible sibling; the XTR305 [49]. These devices are drivers which on their high-impedance
input accept a low voltage analogue signal, and convert this to an analogue output which complies with the standard described
in [2]. The XTR305 is also used in other designs by Brunelco already.

The thing that makes such a device special compared to just an operational amplifier with some external components is that
these drivers allow selecting if the output is a current source/sink or voltage source/sink without changing the output circuitry.

They are also able to detect output over-range, over-temperature and fault conditions in the load and pass this on to the
microcontroller [48], [49]. All pins are also able to withstand an HBM ESD pulse of 2kV.

The XTR300EVM was chosen as a development board for the prototype [50], since it has a voltage reference on board,
which allows for setting the input offset [48], [49].

The NAFE13388-UIM has a built-in charge pump on board to generate the negative supply it needs, which can also be used
to supply the XTR300EVM with power.

4) CAN transceiver: It is outside the scope of this project to implement and test a CAN transceiver according to the
recommendations made in section VI-G and isolation is not a requirement for the prototype, so a prototyping board is made
with the TJA1042 [14], which is also used in the existing extender designs. This prototyping board can be seen in Fig. 8.
A low forward voltage diode is placed in series with the 5V supply to bring it down to approximately 4.7V, fulfilling the
requirement that a logic high level needs to be at least 0.7x the supply as mentioned in section III-A. Other than this, the
application diagram from Figure 7 in section 12 in [14] is followed.

B. Prototype setup

A block diagram of how the development boards were connected can be seen in Fig. 7.

1) Development board modifications: On the NAFE13388-UIM development board, R236, R237, R239 and R241 are 3.3k{2
[47], which yields a current through the LEDs in the VO1400AEFTR isolated analogue switches of around [ = Yee=¥r —
23-L3 ~ 600pA [51] when they are driven by the NAFE13388 GPIO, which is the only option on the NAFE13388-UIM.
The LED forward current at which the switch typically turns on is 800uA [51]. These resistor values may therefore result in
the switch having a very high on-resistance, or not turning on at all. The former was observed while testing. For the final test
setup, R236, R237, R239 and R241 were replaced with 100€ resistors, resulting in a theoretical LED current of 18mA. A
typical R,, of 2.3() is specified for a forward current of 10mA [51].

On the XTR300 development board, a resistance of 2.7k{2 was chosen for Rg g (in parallel with the 2.49K resistor already
on the evaluation board) and 15k{2 chosen for Rpg. Rg was kept as is. This results in the following driver output ranges with
a 0V — 3.3V input range:
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Fig. 9: Photo of prototype setup

(48]

This means that the output voltage range will be approximately —1.67V — 12.17V. The current range is the same scaled by
a factor 2%, which is —3.33mA — 24.35mA.

a’

C. Software implementation

1) CAN interface: An implementation of the SCC protocol is ported to the STM32GOB1 to allow the prototype to
communicate with an SCC Compact. Both analogue output extender and analogue input extender functionality is implemented.
A more elaborate description of how the prototype and existing extenders are connected to an SCC Compact can be found in
section Appendix-B.

2) Analog inputs: The NAFE13388 is connected to the microcontroller via SPI. On the microcontroller it is configured for
a speed of 1Mbit/s. The hardware CRC peripheral on the STM32GOB]1 is used to validate the received data and to calculate the
CRC accompanying the transmitted data. The NAFE13388 channel sequencer is configured in multichannel, continuous reading
mode (MCCR). There are 16 built-in logical channels. 8 of these are configured with 0.2 gain, and the other with 0.4x gain.
These gains are chosen because the 2502 current shunts will generate a voltage range of 0 — 5V with a 0 — 20mA current
range. The voltage range corresponding to 0.2x gain is +12.5V and the range corresponding to 0.4 gain is then +6.25V of
course [42]. Setting up the logical channels like this allows easily changing the type for physical channels dynamically by just
enabling or disabling logical channels for the sequencer. The analogue switches can be turned on and off via the same SPI bus
since they are controlled via GPIO integrated into the NAFE13388. Because the shunts are controlled by the STM32G0BI1,
it is possible to disconnect them when an overload situation is detected. On the NAFE13388 it is possible to set over- and
under-range thresholds. When these thresholds are exceeded, a bit in a status byte prepended to each conversion transmission
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gets set. Other bits in this same status byte indicate whether the PGA or ADC is overloaded. It can therefore be quite reliably
be detected if the current shunts are overloaded.
A flow diagram of the software interacting with the NAFE13388 can be seen in Fig. 10.

Start
p
Configure 8 logical channels for 0-10V input and 8 logical
\ channels for 0-20mA
C:?E?AZ;’;‘;%?’ « Voltage channels have 0.2x gain
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rejection by setting channel delay
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voltage/current mode changed)

Yes Set/clear GPIO in ADC to connect or disconnect current shunts and
Has current/voltage mode changed? enable/disable logical channels based on current/voltage mode,
lastly send multichannel continuous reading (MCCR) command

Return from interrupt

Fig. 10: Flow chart for software interacting with the ADC

The NAFE13388 has factory calibration gain and offset coefficients for all possible gain settings. The correct pairs are
applied automatically by the channel sequencer to the logical channels configured for 0.2x and 0.4x gain. Table 12 in [42]

shows which calibration registers belong to which gain settings, pointers 0 and 1 (CH_CAL_GAIN_OFFSET) are the relevant

ones here.

Normally when measuring external signals TCC_OFF should be O for a logical channel configuration, when using the
excitation source it should be set to 1. This is because it turns off temperature compensation for the built-in voltage reference.
This temperature dependence is cancelled out when resistance is measured because the excitation source uses the same voltage

reference [42].
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For 50/60Hz rejection, the built-in SINC filters can be configured to have a frequency response that can be seen in Fig. 11.
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Fig. 11: SINC filter transfer function
Source: [42]

The SINC filter is a moving average filter which has a number of passes equal to the number n in SINCn. Such a filter
is mostly useful for smoothing a time domain encoded signal, but not so much to filter specific frequency bands like a low
pass filter [52]. There is however one frequency domain property of a SINC filter which is very useful in this case: it has
transmission zeros (infinite attenuation) at points "Af[ ,1<n< %, where M is the number of samples averaged in the SINC
filter [52]. The transfer function of this filter can be seen in Equation 10.

sin (%QM)

)= M sin (1)

(10)

[52]

It is not stated clearly in [42], but from Figure 7, Figure 8 and Table 7 in [42] one can deduce that each pass/order averages
16 samples. The signal is subsequently down-sampled by a factor 16, so that the first transmission zero is at the sample
frequency, as can be seen in Figure 7 in [42]. This means that aliasing will occur in the pass band of the SINC filter, so the
only use for the digital filters is to reject noise of a very specific frequency.

For a multichannel measurement, single-cycle settling mode has to be used to avoid settling error, which essentially down-
samples by a factor equal to the filter order plus one to allow the SINC filter to settle between channel switching. The
transmission zeros stay at the same frequencies then of course, so one has to look at the normal settling data rate column
in Table 7 in [42] to determine the frequency which is rejected for a specific DRO code. So for example DRO code 21 for
60Hz rejection always (independent of SINC filter order) and DRO code 22 for S50Hz rejection [42]. This yields maximum
single-cycle data rates of 30Sps for 60Hz rejection and 25Sps for S0Hz rejection.

The effective resolution for the desirable ranges is 22-bit, because the ADC itself needs to be able to handle a 50V full
scale range in differential bipolar mode at 0.2x gain, but if you use a channel in unipolar single-ended mode for the same
gain, it will only be a 12.5V range [42]. Luckily the ENOB is always above 18-bit (subtract 2 to compensate for only using
ith of the total range) for data rates < 48kSps [42], which is nowhere near as high as we need.

3) Analog outputs: As mentioned before in section V, the internal DACs of the STM32G0B1 can’t be used: it only has
two converters each having a resolution of 12 bits, which is not enough.

A version of the method described in section V has to be implemented taking the hardware constraints of the STM32G0B1
into account. If 8 outputs are needed, at least 64KiB of memory has to be available, since the buffer for each channel will be
216 bits long.

The most elegant solution would be to use DMA to write out the buffer to a single GPIO port, in which each bit represents
one GPIO pin, although this would mean that updating one channel while leaving the others unmodified would be a lot less
efficient. However, the GPIO peripheral is not connected to bus matrix on the STM32GOB1. It is connected directly to the
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MO+ core to enable single cycle GPIO access [15]. This makes it impossible to write out with DMA. An architecture block
diagram can be seen in Fig. 12.
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Fig. 12: STM32GOB1 architecture
Source: [15]

Instead it is possible to use timer channels in forced output mode, however this is not very memory efficient since the CCxP
(where x is the channel number) bits to force the output high or low are in registers together with other bits (1 CCxP bit per
4 bits), so it is not possible to have 1:1 memory to peripheral output [15].

It is also possible to use the MOSI line of an SPI peripheral or the TX line of a UART peripheral. There are 3 SPI peripherals
and 8 UART peripherals in the STM32GOB1 [15], so it is technically possible to have 8 outputs while still having UART2
left for debugging.

SPI is perfect for this application, but UART has start and stop bits, which essentially means the full range is between %
and }—g when using 0.5 stop bits, since the start bit always goes low and the stop bit always goes high. The full range is
between % and % when using 1 stop bit. The extra margin both in the positive and negative direction chosen for the XTR300
driver, is enough for both the limited range of the LPUART peripherals, which only allow 1 stop bit (and not 0.5 stop bits)
and the UART peripherals which allow 0.5 stop bits [15]. The theoretical ranges are —0.28V — 10.79V for LPUART and
—0.94V — 10.71V for UART.

An estimation of the maximum used DMA bandwidth is useful to have. Both SPI peripherals are configured with a 32Mbit/s
bitrate, both LPUART peripherals with a bitrate of 21.33Mbit/s and 4 UART peripherals with a bitrate of 8Mbit/s. These all
are the maximum speeds at which the peripherals can operate with a 64MHz clock frequency. The data size for SPI can be
configured to a maximum of 16-bit, which will reduce the amount of transfers per second required. These configurations will
bring the total required bandwidth to 13.33 - 105 transfers per second.

The DMA controller uses a round-robin arbitration mechanism to allow for equal bus access times granted to each DMA
channel, if the priorities are the same [53]. The bus access time is 3 AHB clock cycles (so not including request arbitration,
address computation and acknowledgment) in case of a AHB to AHB transfer. The SPI and UART peripherals are connected
to the APB bus, which means that one extra AHB cycle gets added to the bus access time for bridge synchronization if the
APB frequency is lower than the AHB frequency [53]. This is however not the case when maximum SPI and UART speeds
are desirable; then the APB clock frequency has to be 64MHz too.

We know now that each transfer will keep the bus occupied for 3 clock cycles, which means DMA can do a theoretical
maximum of 21.33-10° transfers per second. Application note AN2548 recommends leaving one-third of the total bus capacity
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in reserve [53]. The configurations listed above comply with this.

The DMA controller in the STM32GO0B1 can do circular transfers. This allows the output generation without any intervention
from the CPU. It would also be possible to use double buffering and swap out the buffer when a buffer with an updated output
value has been constructed, but this would have a higher chance of going wrong than just setting up the DMA buffer after the
microcontroller is reset and never swapping it, but just overwriting in place.

It was proven in section V that any combination of the old buffer contents and the new buffer contents (with only one
transition) will not be more than one code off compared to the weighted average of the old and the new reference. So we will
even have a nice linear transition from the old to the new level as the old buffer ”slowly” gets overwritten with the new buffer.

D. Analogue input measurements and tests

A measurement will be done to determine factory calibrated accuracy for both voltage and current input for both the prototype
and the existing design. The frequency response of the digital filter in the prototype with the NAFE13388 will be measured
and compared to the theoretical response from Fig. 10. The SNR and distortion will be determined for different input signals
on both the existing design and the prototype. Measurements will be done to determine excitation source performance when
measured with the ADC but also with a calibrated multimeter. The switching between current/voltage mode and current shunt
overload protection on each physical channel will have to be tested.

E. Analogue output measurements and tests

The SNR is measured on the existing design and on the prototype with different 1st order analogue low-pass filters and
different implementations on the microcontroller. Two SPI peripherals, two LPUART peripherals and four UART peripherals
are used for outputting the desired digital signal. Additionally, distortion is measured on the prototype. Emulation of optimized
algorithm and trade-off algorithm in QEMU will be verified by toggling a GPIO pin before and after algorithm execution
on the physical microcontroller. This is done for five strategically chosen reference values and 8 bit elements only. It is very
important here to verify that peripherals don’t stall intermittently due to DMA controller bus arbitration. This would be the
case when the bus bandwidth is too low. This can be verified very easily by measuring if the period of the circular transfer is
never higher than expected on all SPI, LPUART and UART peripherals.

VIII. RESULTS
A. Analog inputs

In Fig. 13, the frequency response of the digital filter built-in to the NAFE13388 can be seen with DRO code 21 and SINCI
configuration, to obtain 60Hz normal mode rejection (NMR) [42]. This was obtained by sweeping a Wave Factory WF1974
function generator from 0.01Hz to 100Hz logarithmically with constant amplitude 2.5V and offset 5V in 9999s. A MATLAB
script to plot the frequency response using the ADC output data can be seen in Listing 11. This MATLAB script uses the RMS
voltage only for the frequency range which can be expected in the filter output. This is always the same as the input frequency
range for an LTI system, which the FIR filter is. This eliminates some noise and distortion introduced by the ADC, especially
if the frequency range in the sweep slice over which the FFT is calculated is very small. Even though some non-linear effects
introduced by the ADC can be eliminated in Fig. 13a, it still seems to have a less smooth frequency response than the one
you can visually observe from the envelope in Fig. 13b. The 60Hz rejection should be —60dB according to Fig. 11, but the
measured attenuation was only —35dB. This is because the sweep slice for 60Hz contains a range of frequencies, and not only
the one specific frequency. From the envelope an amplitude of approximately 6mV can be seen, which is an attenuation of
201og 0.006 — 2010g 2.5 ~ —52.4dB.

The exact same measurement was repeated for DRO code 21, resulting in 50Hz (and 100Hz) rejection. This can be seen in
Fig. 14.

The SINCI filter was the only filter chosen to be characterized because in single-cycle settling mode, this filter has the
highest data rate. Although the data rate is still only 25Sps for S0Hz and 30Sps for 60Hz rejection, meaning an update rate
for all 8 channels of 3.125Hz and 3.75Hz respectively. This is also why the frequency sweep was chosen to be so long.

All additional measurements with the prototype were done with a data rate of 900Sps (with the SINC4 filter enabled, now
having 4.5kHz rejection, so as to influence the frequency range of interest (mostly up to 50Hz) as little as possible). This
results in an update rate for all channels of 112.5Hz.

The noise and distortion of the NAFE13388 and SCC Compact were measured when presented with a sinewave generated
by the same function generator. The low pass behaviour of the SCC Compact extender can be seen clearly in Fig. 15b and
Fig. 15c.

Noise was also measured with different DC input voltages generated by the same function generator. These can be seen in
TABLE III.

The fact that the measured noise was exactly OmVgyg for the prototype when supplied with OV input from the function
generator is because it is slightly below 0V, so it is clamped digitally. Other than this, it can be seen that the noise is about
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Fig. 13: Built-in digital SINCI1 filter 60Hz NMR.
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Fig. 14: Built-in digital SINC1 filter 50Hz NMR.

equal for both the SCC Compact and the prototype with NAFE13388. Not much can be said about the ADCs itself though,
because...

A measurement to determine the precision of the SCC Compact and the prototype was done with a calibrated Fluke 175
multimeter and 5V low noise power supply. This time two channels of the NAFE13388 were tested.

For the voltage measurement, the multimeter displayed 5.039V, the prototype read out code 26397 out of 65535 (where
65535 is 12.5V), so 5.035V, meaning -0.08% error, which is within specification for the NAFE13388 (maximum +1526pV
offset and +0.15% gain error after factory calibration), see Table 41 in [42]. This measurement was performed on channel 1
of the prototype. For the current measurement, the tolerance and on-resistance of the analogue switch will play a large role.
The multimeter displayed a current of 19.80mA, the prototype read out code 52321 out of 65535 (where 65535 is 25mA), so
19.98mA, meaning 0.9% error. This is not within specification, but when we factor in the typical on-resistance of the analogue
switches of 2.3Q) and rated resistance for the current shunts of 250€2, this would come out to almost exactly this measured
error: % = 0.92%. Another measurement on channel 2 was done to be more sure of this hypothesis. The voltage measured
with the prototype is exactly the same, and the ADC code in current mode was read out to be 52319.

For the measurements with the SCC Compact extender, it is only useful to do current measurements, since the SCC Compact
can only be calibrated for current and it uses these same calibration pairs in voltage mode, which means that the inverse of
errors caused by current shunt tolerances get applied in voltage mode. The multimeter displayed 10.15mA, while the SCC
Compact extender read out 10.17mA, which is an error of 0.20%.

The turn-off time for the analogue switches in case of an over- or under-range situation in current mode was not measured

1

with an oscilloscope, since it can never be more than {75=s, but with indicator LEDs connected to each analogue switch input,

no noticeable delay between applying 15V or —15V to the input and the respective LED for that channel turning off could be
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Fig. 15: SCC Compact ADC output spectrum for 3 different sinewave input frequencies.
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Fig. 16: Prototype ADC output spectrum for 3 different sinewave input frequencies.

seen. Toggling the current/voltage mode selection pin twice for that channel, while the channel was still over- or under-range
resulted in the LED turning on very briefly.

1) Excitation sources: The excitation source and its multiplexer are tested to see if they can be used in a future redesign
when resistive (passive) sensors may be supported. Only the current mode is tested because this is the most interesting. Because
the excitation sources and the ADC can be connected to a physical channel simultaneously, this is the most interesting to test
because it reduces the amount of pins taken up by such a resistive measurement. To maintain conformity to the EMC standards
specified in section VI-F, the 2.5k resistors have to be kept in series with the pins, meaning a resistive offset of this 2.5k(2
when using the excitation source in current mode, and a high impedance output when using it in voltage mode.

To determine the precision of a resistive measurement with the NAFE13388, a measurement of a potentiometer was first
done with the same Fluke 175 also used before: R,.r, and then with the excitation sources configured for two different currents
I.;: IlmA and 62.5uA. The former can be seen in TABLE 1V, the latter can be seen in TABLE V. The third column is the
calculated resistance from the known excitation current and measured voltage. The fourth column is the resistance with the
2.5k(} offset removed. The last column is the calculated error.

There is a large error of around 2% to 3%, while the specified precision of the excitation source is a lot better, see for
example Table 52 in [42]. The error with 62.5uA excitation also goes down to negative values as the resistance increases.
This is because 1nF capacitors are placed on all channels, and multiplexing the channels at the chosen sample rate of 900Hz
would indeed cause a charge voltage about 86% the final value.

With the Thevenin equivalent we can see that the series resistance would be equal to Rpj =~ 90.3k(2 and the supply voltage
equal to Vi, =~ 5.64V. With the capacitance, we get a time constant of 7 = 90.3 - 107°, and a charge time to reach 86% of
178us. The time it takes for the ADC to start a conversion after switching channels with the excitation source enabled isn’t
stated in [42], but when the sampling time for each channel is approximately 1.1ms, 178us sounds quite reasonable.

To trace back the cause for the large 2% to 3% error, a measurement with the excitation source always multiplexed to a
single channel was done (to eliminate dynamic behaviour from capacitances and make measurements with a multimeter easy).
The measured currents were 780uA instead of 750 A according to the multimeter, 1.03mA instead of specified lmA, 1.55mA
instead of 1.5mA and 2.07mA instead of 2mA. The multimeter current measurement mode was verified to still be within
calibration by measuring the voltage (at least in respect to the voltage mode) of the 5V low noise supply with a 0.1% 10k(2
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Input DC voltage | Measured noise SCC Compact | Measured noise Prototype

short 0.090mVrms 0.035mVrms
ov OmVrms 0.041mVrms
2V 0.152mVrms 0.081mVrms
5V 0.212mVrms 0.192mVrms
10V 0.234mVrms 0.384mVrms

TABLE III: Noise measurements with DC input from function generator.

Reer | code | R=g28ect | p_p,,, %
Short | 12961 | 2472k ND ND

928 | 13460 | 2.567k 95 2.4%

2846 | 14492 | 2764k 202 2.6%

3742 | 14957 | 2.853k 381 1.8%

813 17321 3.304k 832 2.3%

2920k | 28546 | 5445k 2,973k 1.8%

5.067k 39920 7.614k 5.142k 1.5%

TABLE IV: Resistive measurements with 1mA excitation.

resistor across it, and subsequently measuring the current through it with the same multimeter.

B. Analogue outputs

1) Optimized algorithm: First a measurement was done to verify that the serial peripherals weren’t stalling occasionally
due to memory bandwidth limitations. The period is measured with an Analog Discovery 2 oscilloscope for all maximum data
rates by setting half of buffer with all ones and other half with all zeros, so that a square wave (aside from start and stop bits)
with period equal to the circular DMA period can be easily observed. This measurement can be seen in TABLE VL

Emulation of optimized algorithm in QEMU is verified by toggling a GPIO pin before and after executing the algorithm.
This is done for five strategically chosen reference values and 8 bit elements only. This measurement can be seen in TABLE
VII. The times correspond quite well (well within the 2x maximum error), apart from a 1ms offset, which is discussed later.

Measurements were done to determine the integral non-linearity (INL) by sweeping the analogue outputs from code 0 to
65535 (a sawtooth shape). The RC filter was chosen with R = 10k2 and C' = 10uF to keep to the values in the SCC Compact
for now. This measurement can be seen in Fig. 17. An additional measurement with PWM to compare can be seen in Fig.
21b.

Aside from the non-linear shape which is ridiculously large at the highest speed for SPI, there is also a squarewave fluctuation
visible on each plot. This is because there was an LED connected on the prototype blinking with a frequency of 1Hz. Going
forward, the speeds chosen for SPI, LPUART and UART are 4Mbit/s, 8Mbit/s and 8Mbit/s respectively. This also drastically
reduces the load put on the memory bus. It is now 6.5 - 10° transfers per second, which is less than one third of the available
bandwidth.

Measurements of noise with the input of the Analog Discovery 2 set to AC coupling can be seen for different output codes
in Fig. 18. Both the SCC Compact and the prototype are measured. AC coupling was used to be able to use a very low voltage
range, reducing the amount of noise introduced by the measuring equipment drastically.

The noise is however still only less than 1mVgyg for all output codes on the prototype. This is why another measurement
was done with UART1 at 4kbit/s, which should cause 60dB more noise (compared to SPI at 4Mbit/s). We can see in Fig. 19
that the noise is now approximately what it is on the SCC Compact. We could therefore increase the cut-off frequency of the
RC-filter by a factor 500 before going above the desired 5mVygys noise/below the 10-bit ENOB.

2) Trade-off algorithm: The same measurements done in the previous section VIII-B1 are repeated with the trade-off
algorithm mentioned in section V. Emulation of optimized algorithm in QEMU is again verified by toggling a GPIO pin
before and after executing the algorithm. This is done for five strategically chosen reference values and 8 bit elements only.
This measurement can be seen in TABLE VIII.

The same 1ms offset can be seen here. It is caused by the memset function which fills the buffer with the correct value
beforehand. When compiling for the emulation, a version of newlib is used which was configured for optimization focusing
on speed instead of size, while the toolchain used for the STM32GO0 has newlib configured for size. In [54], the C source code
can be seen which is optimized for speed. It writes 16 bytes per loop iteration if the alignment allows for it (which it does in
this case). The size “optimized” version writes out only 1 byte per loop iteration. The disassembly from the actual build for
the STM32G0 with optimization -O2 enabled can be seen in Listing 15.

After execution of the algorithm, the temporary buffer has to be copied over the DMA buffer. This is done by the memcpy
function, which is also optimized for size instead of speed (Listing 16), which means that it copies 8-bits at a time, which it
shouldn’t do to fulfil the condition mentioned in section V-C.

Measurements were done to determine the noise with the trade-off algorithm. The RC filter was chosen with R = 10k{} and
C = 100nF this time, so that a cut-off frequency of 159Hz is obtained. Measurements with SPI2 can be seen in TABLE IX.
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Ryey code R = —615255;312 R — Rshort (BRehore) " Rres Rs}}f:f) Bre
short 820 2.502k ND ND

2.660k | 1720 5.249k 2.747k 3.3%

5.70k 2740 8.362k 5.860k 2.8%

11.63k | 4691 14.32k 11.82k 1.6%

20.02k | 7385 22.537k 20.04k 0.1%

50.32k | 16345 | 49.88k 47.38k -5.8%

87.8k 25630 | 78.22k 75.72k -14%

TABLE V: Resistive measurements with 62.5uA excitation.

Peripheral | Measured period | Calculated bitrate
SPI2 2.045ms 32.047Mbit/s
SPI3 2.045ms 32.047Mbit/s
LPUART! | 3.835ms 21.361Mbit/s
LPUART2 | 3.835ms 21.361Mbit/s
UARTI 9.726ms 8.001Mbit/s
UART3 9.721ms 8.005Mbit/s
UART4 9.724ms 8.003Mbit/s
UARTS 9.712ms 8.013Mbit/s

TABLE VI: DMA period measurements.

Another measurement was done to determine the INL can be seen in Fig. 21a, which is expected to be about the same as
before (Fig. 17c).

IX. CONCLUSIONS

With the NAFE13388 it is possible to redesign the SCC Compact analogue input extenders with robustness in mind. It allows
the omission of expensive external protection components because it has robust input protection built-in. This input protection is
made to survive standardized input surges and spikes which the final controller will need to conform to. With the programmable
gain amplifier it requires minimal external hardware to make an input which can be configured (by a microcontroller) to measure
either current or voltage: only a current shunt and analogue switch need to be added. The analogue switch can be turned on or
off in software as well, making a fully configurable industrial analogue input. The performance in terms of noise and distortion
is better with a prototype containing the NAFE13388 compared to the existing design. Factory calibration of the device also
allows for its use in the SCC Compact without additional calibration, on the condition that current shunts are chosen with
0.1% tolerance and analogue switches with suitably low on-resistance. To protect the current shunts, the user-programmable
over- and under-range detection can be used to let the microcontroller know that it should turn off the analogue switches. The
built-in digital filters are not of much use when used in multichannel reading mode and simultaneously a relatively high data
output rate and S0Hz/60Hz rejection are desired.

Using pulse density modulation (PDM) it is possible to obtain orders of magnitude lower settle time than with PWM, while
also having lower noise, when used as analogue outputs for an industrial controller. The desired maximum noise RMS voltage
is currently exceeded by the existing SCC Compact analogue output extender design. It is possible to obtain noise amplitudes at
least 10 times lower than in the existing design, while also having a settle time 100 times lower than what it is currently. A first
order analogue filter is kept from the existing design. Drawbacks of PDM compared to PWM on the chosen microcontroller are
increased INL and increased CPU usage. Two simple but efficient algorithms are tested on the microcontroller, which shows
that even without hardware related optimization, it is possible to obtain reasonable computation times.

A. Discussion

Measurements with the NAFE13388 analogue inputs revealed that the excitation source had a larger error than expected.
No explanation was found for why this is the case. It may be that something was configured wrong in one of the hardware
registers, such as the applied factory calibration pairs, but the error should not come anywhere near 2% to 3%, even without
factory calibration. The following things were made sure however:

1) The measurement equipment produced accurate measurements (see section VIII-Al).

2) Temperature coefficient compensation was turned off because the excitation source and ADC use the same voltage

reference.

3) The excitation source had an insignificant AC component when multiplexed to a single pin.

4) The power supply was +15V, which leaves enough headroom as long as the voltage out of the excitation source doesn’t

exceed £12V, which it can’t and didn’t [42].

The excitation source is also less useful in a 2 wire measurement setup, because of the required 2.5k{2 series resistors.

If these resistors are chosen with 0.1% tolerance, the resulting measurements may be accurate enough. When a 3 or 4 wire
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Reference input | QEMU instruction count | Real STM32 time

1 3638 (=~ 57us) 1.09ms
16384 364495 (= 5.7ms) 9.06ms
32767 724912 (=~ 11ms) 17.11ms
32768 692163 (= 11ms) 16.07ms
65535 4193 (=~ 66us) 1.07ms

TABLE VII: Verification of emulation in QEMU.

Sweep from code 0 to 65535 with 32Mblt's on SPI2 Sweep from code 0 to 65535 with 8Mbit/s on SPI2 Sweep from code 0 to 65535 with 4Mbit/s on SPI2
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Fig. 17: INL obtained with sawtooth of full range.

measurement setup is made, the resistance of the series resistors doesn’t matter in current excitation mode. The hardware for
these different setups is the same, only the software configuration of the NAFE13388 needs to be different in each case.

Besides the aforementioned points, the device performed as specified by its datasheet.

Regarding the measurements done to characterize the analogue outputs, no analysis for the frequency spectrum of the trade-
off algorithm is done, like for the other algorithms. Even though this is the only algorithm which produces a different bit
pattern. This could have been done for completeness, but since the byte pattern in case of only 2 base levels C11111111° and
00000000’y would be the same as when the other algorithms only have 13-bit resolution, it can be assumed that it is at least
lower noise than a 13-bit 1st order SDM. From the measurements in section VIII-B2 it can be seen that the amount of noise
is low enough for application in an industrial controller.

During the INL measurements it could be seen that the blinking of an LED on the same supply rail as the microcontroller
caused the analogue output voltage to fluctuate. This can be explained by the fact that the voltage regulator didn’t provide a
super stable 3.3V. This effect was a lot less noticeable on the SCC Compact extenders, even though it also directly drives a
low-pass filter from a GPIO pin, so it probably has a more stable supply. This observation does bring a major downside of
driving the RC filter directly with a GPIO pin: it transfers all the power supply low frequency noise and drift over time and
temperature directly to the analogue output, so calibration cannot solve everything in this case.

The fact that the INL is so much higher for PDM than for PWM is probably because the PMOS devices in the GPIO
push-pull driver have higher capacitance than the NMOS devices, which causes the PMOS to conduct more current when
outputting a zero, than the NMOS conducts when outputting a one, when switching at very high frequencies. This causes the
average output level to be slightly higher than the time-average of all the ones and zeroes.
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Fig. 18: Noise for different DAC codes.

Reference input | QEMU instruction count | Real STM32 time

1 3652 (= 57us) 1.05ms
2048 14014 (= 0.22ms) 1.35ms
4095 24251 (= 0.38ms) 1.57ms
4096 24257 (= 0.38ms) 1.55ms
65535 3836 (= 60us) 1.02ms

TABLE VIII: Verification of the trade-off algorithm emulation in QEMU.

B. Recommendation

In the prototype, the status byte prepended to each conversion was used by the microcontroller to check if there was an
over- or under-range situation, but it is possible to use the hardware interrupt pin of the NAFE13388 to switch off the current
shunts directly in hardware, by using some logical and-gates so that the microcontroller can turn the shunts on individually via
one input per and-gate, and that the other input of each and-gate is connected together to the interrupt output INTB (which is
active low). The interrupt output is asserted as long as the global alarm is not cleared by the microcontroller [42]. The global
alarm can be configured to include a selection of the available alarms, among which are the over- and under-range alarms, but
also over- and under-load, over-voltage, supply voltage and over-temperature alarms. See Table 31 in [42]. Implementing the
protection in hardware makes it more reliable, since it will still work when the SPI communication fails for some reason, or
the microcontroller locks up. Other than this, and electrical isolation, the way in which the NAFE13388 is connected on the
NAFE13388-UIM development board [47] is also what would be the best when included in a redesign.

The NAFE13388 was chosen as a result of a comparison made between different devices, but when an extender has to be
made which combines analogue inputs and outputs on the same software configurable pins, it may be a better choice to go
for the NAFE33352, since it has one software configurable analogue input/output, which saves external circuitry which has to
switch between modes. It is a lot cheaper than the MAX22000, and also better protected. The only downside is that it has 2
regular inputs instead of 3.

For the analogue outputs, PDM seems to be a good alternative, or a higher order analogue filter as suggested in section
IV-B1. With the trade-off algorithm implementation, the maximum time the chosen microcontroller has to spend on updating
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Fig. 20: TABLE IX: Measured noise at different output codes on SPI2.

0.06

the output value is 1.57ms (excluding the time copying the buffer over to the DMA buffer using memcpy takes, which is also
approximately 1ms). It is however possible without much effort, to get the total time well under 1ms, simply by using the
newlib memset and memcpy implementations which are optimized for speed instead of size. This can be done for example
by copying these functions over under different names and compiling them in a project. Doing this may be preferable over
writing custom optimized memory copying and setting functions as they then need to be thoroughly tested additionally to the
used algorithm. Using optimized memset and memcpy functions has as an added benefit that the limited under- and overshoot
derivation in section V-C applies as is. From measurements it could be seen that there is still no measurable amount of over-
and undershoot even when copying 8 bits at a time when the element size in the buffer is 16-bit, so even though it would be
nice to copy more than 8 bits at a time, which the speed optimized version for memcpy does do [55], for this aspect it doesn’t
matter that much.

APPENDIX
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A. Code

Listing 5: pdm.c: Different PDM algorithms in C

#include <stdio .h>

#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>

#define LOW_PULSE LOOP(buff, elem_size_shift, elem_size_mask, low_pulse_period) \

do { \
for (uint64_t i = 0; i <= (uint64_t)UINTI6_MAX << 16; i += low_pulse_period) { \
uint32_t floor_i = i >> 16; \
buff[floor_i >> elem_size_shift] &= “(1 << (elem_size_mask - (floor_i & elem_size_mask))); \

A
} while (false)

#define HIGH_PULSE_LOOP(buff, elem_size_shift, elem_size_mask, high_pulse_period) \

do { \
for (uint64_t i = 0; i <= (uint64_t)UINTI6_MAX << 16; i += high_pulse_period) { \
uint32_t floor_i = i >> 16; \
buff[floor_i >> elem_size_shift] |= 1 << (elem_size_mask — (floor_i & elem_size_mask)); \

A
} while (false)

#define SIGMA_DELTA_LOOP(buff, elem_size_shift, elem_size_mask, ref, sigma) \
do { \
for (uwint32_t i = 0; i <= UINT32_C(1l) << 16; i++) { \
bool out = sigma >> 16; \
uint32_t delta = ref — ((uint32_t)out << 16); \
sigma += delta; \

\
if (i>0) {\
if (out) \
buff[(i — 1) >> elem_size_shift] |= 1 << (elem_size_mask — ((i — 1) & elem_size_mask)); \
else \
buff[(i — 1) >> elem_size_shift] &= “(1 << (elem_size_mask — ((i — 1) & elem_size_mask))); \
FA
A
} while (false)
union {
uint8_t buffer8[(1 << 16) / 8];
uintl6_t bufferl6[(l << 16) / 16];
} buff;
void __attribute__ ((noinline)) breakpoint_before() {
asm volatile (””);
}

void __attribute__ ((noinline)) breakpoint_after () {
asm volatile (””);

}
int reverse_bits (int val, int size) {
int r = 0;
for (int i = 0; i < size; i++) {
r=(r<< 1) | (val & 1);
val >>= 1;
}
return r;
}

int main(void) {
int elem_size = ELEM_SIZE;
for (int ref = 0; ref <= UINTI6_MAX; ref++) {
breakpoint_before ();
#ifdef TRADEOFF_ALGORITHM

uint8_t base_levels[] = {
0x00, // 0 out of 8 bits: 00000000.
0x80, // 1 out of 8 bits: 10000000.
0x88, // 2 out of 8 bits: 10001000.
0x94, // 3 out of 8 bits: 10010100.
Oxaa, // 4 out of 8 bits: 10101010.
0xb6, // 5 out of 8 bits: 10110110.
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Oxee, // 6 out of 8 bits: 11101110.

Oxfe, // 7 out of 8 bits: 11111110.

Oxff, // 8 out of 8 bits: 11111111.
}s
int base_on_bits = (ref + (1 << 12)) & (0x0f << 13); // Round to nearest base level by adding 0.5 to ref.
memset( buff.buffer8 , base_levels[base_on_bits >> 13], sizeof (buff.buffer8));

int rel_ref = ref > base_on_bits ? ref — base_on_bits : base_on_bits — ref; // Turn on/off extra bits.
if (rel_ref != 0) {
uint32_t period = (UINT32_C(1) << 29) / rel_ref; // 13.16 fixed point.
if (ref > base_on_bits)
for (uint32_t i = 0; i <= ((1 << 13) - 1) << 16; i += period)

buff.buffer8[(i >> 16) "~ (elem_size == 16)] = base_levels[(base_on_bits >> 13) + 1];
else
for (uint32_t i = 0; i <= ((1 << 13) = 1) << 16; i += period)
buff.buffer8[(i >> 16) "~ (elem_size == 16)] = base_levels[(base_on_bits >> 13) — 11];

}
#elif defined (OPTIMIZED_ALGORITHM)
if (ref > UINTI6_MAX / 2) {
memset ( buff.buffer8, 0xff, sizeof(buff.buffer8));
uint64_t low_pulse_period = (UINT64_C(1) << 32) / ((UINT32_C(1) << 16) — ref); // 16.16 fixed point.

if (elem_size == 16)
LOW_PULSE_LOOP( buff . bufferl6 , 4, 15, low_pulse_period);
else
LOW_PULSE_LOOP( buff.buffer8 , 3, 7, low_pulse_period);
} else {

memset (buff.buffer8, 0, sizeof(buff.buffer8));
if (ref != 0) {
uint64_t high_pulse_period = (UINT64_C(1) << 32) / ref; // 16.16 fixed point.
if (elem_size == 16)
HIGH_PULSE_LOOP( buff.bufferl6, 4, 15, high_pulse_period);
else
HIGH_PULSE_LOOP( buff.buffer8 , 3, 7, high_pulse_period);
}

}
#elif defined (NON_OPTIMIZED_ALGORITHM)
memset( buff.buffer8, 0, sizeof(buff.buffer8));
if (ref != 0) {
uint64_t high_pulse_period = (UINT64_C(1) << 32) / ref; // 16.16 fixed point.
if (elem_size == 16)
HIGH_PULSE_LOOP( buff.buffer1l6, 4, 15, high_pulse_period);
else
HIGH_PULSE_LOOP( buff.buffer8 , 3, 7, high_pulse_period);
}

#elif defined (SIGMA_DELTA_ALGORITHM)
uint32_t sigma = 0;
if (elem_size == 16)
SIGMA_DELTA_LOOP( buff . bufferl6, 4, 15, ref, sigma);
else
SIGMA_DELTA_LOOP( buff . buffer8 , 3, 7, ref, sigma);
#endif
breakpoint_after ();

#define CONCATENATE(x, y) x##y
#define EVALUATE(x, y) CONCATENATE(x, y)
#define BUFFER EVALUATE( buffer , ELEM_SIZE)
int pulse_pos = 0, last_pulse_pos = 0, sum = 0, max_pulse_dist = 0, min_pulse_dist = UINTI6_MAX;
// FILE =f = fopen("tmp”, "w”);
for (int i = 0; i < (int)(sizeof(buff .BUFFER) / sizeof (+buff .BUFFER)); i++) {
for (int j = 0; j < ELEM_SIZE; j++, pulse_pos++) {
if (reverse_bits (buff .BUFFER[i], ELEM_SIZE) & (1 << j)) {
/1 fprintf(f, "%d\n”, pulse_pos — last_pulse_pos);
if (pulse_pos — last_pulse_pos != 0) {
if (pulse_pos — last_pulse_pos > max_pulse_dist)

max_pulse_dist = pulse_pos — last_pulse_pos;

if (pulse_pos — last_pulse_pos < min_pulse_dist)

min_pulse_dist = pulse_pos — last_pulse_pos;
last_pulse_pos = pulse_pos;

sum++;

}

}

/l fclose (f);

printf(”sum = %d, ref = %d, min = %d, max = %d\n”, sum, ref, min_pulse_dist, max_pulse_dist);
assert(max_pulse_dist — min_pulse_dist <=



#ifdef TRADEOFF_ALGORITHM

8
#else
1
#endif
)
assert(sum == ref);
}
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Listing 6: pdm.sh: Shell script to automatically generate CSV file with profiling results

elem_size=16
algorithm=0OPTIMIZED_ALGORITHM

arm—none—eabi—-gcc —Wall —Wextra —Wpedantic —02 —ffreestanding —mcpu=cortex —mOplus \
—mfloat—abi=soft —mthumb —-D__NO_SYSTEM_INIT -DELEM_SIZE=$elem_size —D$algorithm \
—ICMSIS_4/Device /ARM/ ARMCMOplus/ Include / CMSIS_4/ Device /ARM/ ARMCMOplus/ Source /GCC/ startup_ARMCMOplus. ¢ \
pdm.c -T CMSIS_4/Device /ARM/ ARMCMOplus/ Source /GCC/gcc_arm.ld ——specs=rdimon.specs —o pdm.elf
arm—none—eabi—objdump -D pdm.elf > pdm. list

gemu—system —arm —s —S —machine 1Im3s6965evb —cpu cortex -m0 —semihosting \
——semihosting —config enable=on, target=native —nographic —serial mon:stdio \
—monitor tcp:127.0.0.1:55555,server ,nowait —kernel pdm.elf \
—icount shift=auto ,rr=record,rrfile=replay.bin &

> qemu_output_before. txt

> gemu_output_after. txt

arm—-none—eabi—-gdb —-x commands.gdb ——batch ——args pdm.elf

while IFS= read -r before && IFS= read -r after <&3; do
echo "$((${after#instruction count = } — ${before#instruction count = })),”
done < qemu_output_before. txt 3< gqemu_output_after.txt > instruction_count.csv

rm gemu_output_before.txt gemu_output_after.txt

Listing 7: get_icount.sh: Shell script called from GDB script

( echo ”info replay” | nc -N 127.0.0.1 55555 & ) | grep —-Fom 1 “instruction count = [0-9]+” >> gqemu_output_$1.txt
# kill 0

Listing 8: commands.gdb: GDB script to automate break point handling and getting the instruction count

set pagination off
set logging file gdb_output.txt
set logging enabled on

target remote localhost:1234

break breakpoint_before
command 1
shell bash get_icount.sh before
continue

end

break breakpoint_after
command 2
shell bash get_icount.sh after
continue

end

continue

set logging enabled off
quit



Listing 9: Script to plot AC measurements with analog input
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freqs = [ 0.1, 1, 10 ];

for dir = { 'Prototype', 'SCC Compact' }

% x_offset = dlmread(sprintf ("%s/5V.csv', dir{1}));

% x_offset = mean(x_offset(:, 1));

if stremp(dir{l}, 'Prototype ')
x_offset = 2723 / 25 % 5;
x_amplitude = 2723 / 25 = 5;
fs = 900 / 8 % 1.002; % Correct for clock frequency being slightly off.

elseif stremp(dir{1}, 'SCC Compact')
x_offset = 2°16 / (4.096 = (20e3 + 33e3) / 20e3) = 5;
x_amplitude = 2°16 / (4.096 =+ (20e3 + 33e3) / 20e3) = 5;
fs = 100;

end

for f = freqs
x = dlmread(sprintf ( '%s/%gHz.csv ', dir{1}, f));
X = x(:, 1) — mean(x(:, 1));

% figure ()

% plot ([x(end—100:end); x(1:100)1);

y = fft(x);
% y_sig = or(y == max(y(l:floor(end/2))), y == max(y((floor(end/2)+1):end)));
% k = find(y_sig == 1);

% y_sig(k(1l) — 5:k(l) + 5)
% y_sig(k(2) — 5:k(2) + 5)
% y_sig(l) = 1;

% y_sig = y_sig .x y:
y_data = 20xloglO(abs(y) / (length(x)/2) / x_amplitude);

1,
l;

figure ();

semilogx (0: fs/length(y_data):(fs/2 — fs/length(y_data)), y_data(l:end/2));
xlabel ('f [Hz]');

ylabel ("Amplitude [dB]");

ylim ([-140, 0]);

title (sprintf ("%s ADC output spectrum with %gHz sinewave input”, dir{l}, f));

func
cost

@(x, p) p(l) = sin(p(2) = x + p(3));
@(p) sum((func ((0:(length(x) — 1))', p) — x)."2);

theta = asin(x(1) / x_amplitude);
if x(1) > x(2)
theta = pi — theta;
end
pO = [ x_amplitude, 2 % pi = f / fs, theta ];
p = fminsearch(cost, pO, optimset( ' MaxFunEvals', 1000, 'MaxlIter', 1000));

x_sig = func ((0:(length(x) — 1))', p);

% x_sig = real (ifft(y_sig));
X_noise = X — Xx_sig;
sndr = 20xloglO(rms(x_sig)/rms(Xx_noise));
legend ( sprintf ( 'SINAD = %gdB ', sndr));
end
end




Listing 10: Script to plot DC measurements with analog input
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voltages = [ 0, 2, 5, 10 1;

for dir = { 'Prototype', 'SCC Compact' }
if stremp(dir{l}, 'Prototype')
x_codes_per_v = 2723 [/ 25;
fs = 900 / 8;
elseif stremp(dir{l}, 'SCC Compact')
x_codes_per_v = 2716 / (4.096 = (20e3 + 33e3) / 20e3);

fs = 100;
end
for v = [ nan, voltages ] % NaN is short.

if isnan(v)
x = dlmread(sprintf ('%s/short.csv', dir{1}));

else
x = dlmread(sprintf ( '%s/%gV.csv', dir{l}, v));
end

x =x(:, 1);

figure ();

plot (0:1/fs:(length(x) — 1)/fs, x / x_codes_per_v);

xlabel ('t [s]");

ylabel ( 'ADC output code normalized to voltage [V]');

title (sprintf ("%s ADC output with %gV input”, dir{l}, v));

printf( '%s %gV noise Vrms = %mV\n', dir{1}, v, rms(x — mean(x)) / x_codes_per_v = 1000);

end
end
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DRO = 21;
x = dlmread(sprintf( ' Prototype /DRO%d.csv ', DRO));

x_codes_per_v = 2°23 /[ 25;

x_offset = x_codes_per_v = 5;
x_amplitude = x_codes_per_v * 2.5;
X =x(:, 1);
if DRO == 22
fs =25/ 8;
elseif DRO == 21
fs = 30 / 8;
end
slice_length = 225; % Not so small that FFT will be very small but not so large that frequency step
too large.
sweep_duration = 9999; % In seconds.
sweep_decades = 4; % From 0.01Hz to 100Hz.
sweep_start_decade = -2; % From 0.01Hz.

y = zeros(l, ceil(length(x) / slice_length));
for i = l:slice_length:length(x)

x_slice = x(i:min((i + slice_length), end)) — x_offset;
y_slice = abs(fft(x_slice)) / (length(x_slice) / 2) / x_amplitude;
f =10 ."(((i:(i + length(x_slice))) / fs / sweep_duration) % sweep_decades + sweep_start_decade);

alias_f = fs/2 — abs(((floor(f / fs) x 2) + 1) = fs/2 — f);

x_alias_f = alias_f / fs = length(x_slice);

%figure () ;

J%hold ('on") ;

x_plot_data 0:(fs / length(x_slice)):(fs/2 — fs / length(x_slice));
y_plot_data 20+loglO(y_slice(l:end/2));

Jplot (y_plot_data);

J%plot (x_alias_f , zeros(l, length(x_alias_f)), 'r=x");

y_slice_indices = unique(round(x_alias_f) + 1);
y((i — 1) / slice_length + 1) = sum(y_slice(y_slice_indices)) / sqrt(length(y_slice_indices));
end

x_data = 10 ."(((1:length(y)) / length(y)) % sweep_decades + sweep_start_decade);
figure ();
semilogx (x_data, 20xloglO(y));
xlabel ('f [Hz]');
ylabel ("Amplitude [dB]");
if DRO == 22
title ('SINCI NMR at 50Hz");
elseif DRO == 21
title ('SINCI NMR at 60Hz');
end

figure () ;
semilogx (10 ."(((2:1length(x)) / (length(x)—-1)) * sweep_decades + sweep_start_decade), x(2:end) /
x_codes_per_v);
xlabel ('f [Hz]|");
ylabel ("Amplitude [V]");
if DRO == 22
title ('SINCI NMR at 50Hz envelope ");
elseif DRO == 21
title ("SINCI NMR at 60Hz envelope ");
end

becomes
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%% Plot INL obtained with sweeps.
v_sweep_starts = [ 1900, 1100, 900, 1400, 400, 1500 ];

titles = { '32Mbit/s on SPI2', '8Mbit/s on SPI2', '4Mbit/s on SPI2', '21.33Mbit/s on LPUARTIL',

LPUARTI ', '8Mbit/s on UARTL' };

for i = 1:6
v_sweep = dlmread(sprintf('acq%04d.csv', 100 + i), ",");
v_sweep_t = v_sweep(:, 1);
v_sweep = v_sweep(:, 2);

v_sweep_start = v_sweep_starts(i);
v_sweep_length = 5300;
v_sweep = v_sweep(v_sweep_start:v_sweep_start + v_sweep_length) ';
v_sweep_t = v_sweep_t(v_sweep_start:v_sweep_start + v_sweep_length) ';
figure () ;
plot(v_sweep_t, v_sweep — (v_sweep(l):((v_sweep(end) — v_sweep(l)) / 5300):v_sweep(end)));
title_ = titles(i);
xlabel ('t [s]');
ylabel ('INL [V]');
title (sprintf( 'Sweep from code 0 to 65535 with %s ', title_{1}));
end

v_sweep = dlmread( 'acq0402.csv', ',");
v_sweep_t = v_sweep(:, 1);
v_sweep = v_sweep(:, 2);

v_sweep_start = 1500;

v_sweep = v_sweep(v_sweep_start: v_sweep_start + v_sweep_length) ';
v_sweep_t = v_sweep_t(v_sweep_start: v_sweep_start + v_sweep_length) ';
figure ();

plot(v_sweep_t, v_sweep — (v_sweep(l):((v_sweep(end) — v_sweep(l)) / 5300):v_sweep(end)));
xlabel ('t [s]");

ylabel ("INL [V]");

title ('Sweep from code 0 to 65535 with 976Hz PWM');

%% Plot noise.
dac_codes = [ 0, 1000, 30000, 65035, 65535 1;

for i = 1:5
v_spi2 = dlmread(sprintf( 'acq%04d.csv', i), ',");
v_lpuartl = dlmread(sprintf('acq%04d.csv', i + 5), ".");
v_uartl = dlmread(sprintf( acq%04d.csv', i + 10), ',");
v_scc = dlmread(sprintf ('acq%04d.csv', i + 15), '.,");

v_spi2 = v_spi2(ll:end, :);
v_lpuartl = v_Ilpuartl (ll:end, :);

v_uartl = v_uartl (ll:end, :);
v_scc = v_scc(ll:end, :);
figure () ;

hold( 'on ");

plot(v_spi2 (:, 1), v_spi2(:, 2));

plot(v_lpuartl (:, 1), v_lpuartl (:, 2));

plot(v_uvartl (:, 1), v_uartl(:, 2));

plot(v_scc(:, 1), v_scc(:, 2));

mv_spi2_rms = 1000 * rms(v_spi2 (:, 2) — mean(v_spi2(:, 2)));

mv_lpuartl_rms = 1000 % rms(v_Ilpuartl (:, 2) — mean(v_Ilpuartl (:, 2)));

mv_uartl_rms = 1000 % rms(v_uartl (:, 2) — mean(v_uartl (:, 2)));

mv_scc_rms = 1000 % rms(v_scc(:, 2) — mean(v_scc(:, 2)));

legend (sprintf ( 'Noise with SPI2, is %.2fmVrms', mv_spi2_rms), sprintf( 'Noise with LPUARTI,
mv_lpuartl _rms), ..

sprintf ( 'Noise with UARTI, is %.2fmVrms', mv_uartl_rms), sprintf( 'Noise with SCC Compact,

, mv_scc_rms));

xlabel ('t [s]"');

ylabel ('AC coupled voltage [V]');

title (sprintf( 'Noise for DAC code %d', dac_codes(i)));

v_uvartl_4k = dlmread(sprintf( 'acq%04d.csv', 200 + i), ',");
v_uartl_4k = v_uartl_4k(l1:end, :);
figure () ;

plot(v_uvartl_4k (:, 1), v_uartl_4k(:, 2));

xlabel ('t [s]');

ylabel ('AC coupled voltage [V]');

mv_uartl_4k_rms = 1000 = rms(v_uartl_4k(:, 2) — mean(v_uartl_4k(:, 2)));

is

is

'8Mbit/s on

% .2fmVrms ',

%.2fmVrms '

title (sprintf( 'Noise for DAC with UARTI at 4kbit/s code %d, is %.2fmVrms', dac_codes(i), mv_uartl_4k_rms)

B




end

%% Plot sinewave and its FFT.
v_uartl = dlmread( 'acq0301.csv', ",");
v_uartl = v_uartl(1l:end, :);

v_sine_start = 1500;
v_sine_length = 4224,

t_sine = v_uartl (v_sine_start:v_sine_start + v_sine_length, 1);
v_sine = v_uartl (v_sine_start:v_sine_start + v_sine_length, 2);
figure () ;

plot(t_sine , v_sine);

xlabel ('t [s]');

ylabel('v [V]');

title ('Full range sinewave with 8Mbit/s on UARTL'");

figure ();

y_sine = fft((v_sine — mean(v_sine)));

y_data = 20xloglO(abs(y_sine / (length(y_sine)/2)));

semilogx (0:(1/(t_sine(end) — t_sine(1))):((length(y_sine) — 1)/(mean(diff(t_sine)) = length(y_sine))/2),
y_data(l:end/2));

ylim([-140 20]);

% Set fundamental to 0.

y_sine(2) = 0;

y_sine(end) = 0;

v_noise = real (ifft(y_sine));

sndr = 20xloglO(rms(v_sine — v_noise) / rms(v_noise));
legend (sprintf ( 'SINAD = %gdB "', sndr));

title ('Full range sinewave spectrum with 8Mbit/s on UARTI');
xlabel ('f [Hz]");

ylabel ("Amplitude [dB]');

40




Listing 13: Script to plot measurements with analog output and tradeoff algorithm
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%% Plot INL obtained with sweep.
v_sweep = dlmread( 'acq0603.csv’', ",");
v_sweep_t = v_sweep(:, 1);

v_sweep = v_sweep(:, 2);

v_sweep_start = 2200;
v_sweep_length = 5300;

v_sweep = v_sweep(v_sweep_start:v_sweep_start + v_sweep_length) ';
v_sweep_t = v_sweep_t(v_sweep_start: v_sweep_start + v_sweep_length) ';
figure () ;

plot(v_sweep_t, v_sweep — (v_sweep(l):((v_sweep(end) — v_sweep(l)) / 5300):v_sweep(end)));
xlabel ('t [s]');

ylabel ("INL [V]");

title (sprintf ( 'Sweep from code 0 to 65535 with 4Mbit/s on SPI2'));

%% Plot noise.
dac_codes = [ 0:100:4500, 30000, 65035, 65535 1;
for i = 1:49
continue
v_spi2
v_spi2

dlmread (sprintf( "acq%04d.csv', 500 + i), ',');
v_spi2(ll:end, :);

figure () ;

hold('on");

plot(v_spi2 (:, 1), v_spi2(:, 2));

xlabel ('t [s]");

ylabel ('AC coupled voltage [V]');

mv_spi2_rms = 1000 = rms(v_spi2 (:, 2) — mean(v_spi2(:, 2)));

title (sprintf( 'Noise for DAC code %d with 4Mbit/s on SPI2, is %.2fmVrms', dac_codes(i), mv_spi2_rms));
end

%% Plot sinewave and its FFT.
v_uartl = dlmread( "acq0801.csv', ",");
v_uartl = v_uartl(ll:end, :);

v_sine_start = 1500;
v_sine_length = 4219;

t_sine = v_uartl (v_sine_start:v_sine_start + v_sine_length, 1);
v_sine = v_uartl (v_sine_start:v_sine_start + v_sine_length, 2);
figure ();

plot(t_sine , v_sine);

xlabel ('t [s]");

ylabel('v [V]');

title ('Full range sinewave with 4Mbit/s on SPI2');

figure () ;

y_sine = fft((v_sine — mean(v_sine)));

y_data = 20xloglO(abs(y_sine / (length(y_sine)/2)));

semilogx (0:(1/(t_sine(end) — t_sine(l))):((length(y_sine) — 1)/(mean(diff(t_sine)) = length(y_sine))/2),
y_data(l:end/2));

ylim ([-140 20]);

% Set fundamental to 0.

y_sine(2) = 0;

y_sine(end) = 0;

v_noise = real (ifft(y_sine));

sndr = 20xloglO(rms(v_sine — v_noise) / rms(v_noise));
legend (sprintf ( 'SINAD = %gdB ', sndr));

title ('Full range sinewave spectrum with 4Mbit/s on SPI2");
xlabel ('f [Hz]');

ylabel ("Amplitude [dB]");
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% Test for different methods to generate PDM when assuming that the reference
% is constant over time.

N = 2°16;

% First order classic sigma delta.
x_sdm = sigma_delta(ref, N);
p_sdm = diff ([0; find(x_sdm == 1)]);

% Pulse density modulation .
x_pdm = pulse_density(ref, N);
p_pdm = diff ([0; find(x_pdm == 1)]);

% Second order classic sigma delta.

sigma = 0;

sigma2 = 0;

x_sdm2 = zeros(N, 1);
for i = 0:N

out = (ref + 2 % sigma + sigma2) > N / 2;
delta = ref — out * N;

sigma = sigma + delta;

sigma2 = sigma2 + sigma;

if (i > 0)
x_sdm2(i, 1) = out;
end
end

p_sdm2 = diff ([0; find(x_sdm2 == 1)]);

idx_incs_sdm2 = diff ([0; find(p_sdm2 == ceil (N / ref))]);
idcs_sdm2 = cumsum(idx_incs_sdm2);

% Stateless pulse density calculation algorithm.

% Theoretically you can calculate all output values simultaneously.
order = 2;

Yox_pdm2 = diff ((mod(1:N + order, N/ref) = ref/N«2 — 1)."order, order);

p_pdm2 = zeros(ref, 1);
characteristic_pulse = diff ([ones(order, 1); zeros(order, 1)], order);

closest = N / floor(N / ref);

remainder = closest — ref;

idx_incs = abs(mod(1l:ref, ref / (remainder % 2)) — ref / (remainder x 4)) / (ref / (remainder x 2));
clear ( "idcs ") ;

ides (ceil (cumsum(idx_incs))) = l:length(idx_incs);

pulse_flips = mod(idcs, ref / (remainder = 2)) > ref / (remainder * 4);

idx_ranges = (0O:length(characteristic_pulse) — 1)' + idcs — “pulse_flips;

pulses = characteristic_pulse % (1 — 2 % pulse_flips);

p_pdm2(idx_ranges) = pulses;
p_pdm2 = p_pdm2 + N / closest;

x_pdm2 = zeros (N, 1);
x_pdm2 (cumsum(p_pdm2)) = ones(length(p_pdm2), 1);

%% Assert stuff

assert (all (x_pdm == x_sdm));
assert (sum(x_pdm) == ref);

assert(length(x_sdm2) == N);
assert (sum(x_sdm2) == ref);
assert (length(x_pdm2) == N);
assert (sum(x_pdm2) == ref);

%% Plot stuff

figure () ;

hold( 'on');

plot(idcs_sdm2);

plot(idcs);

legend( '2nd order SDM', sprintf('%dth order PDM', order));

figure () ;




hold( 'on");

semilogx (max(20*logl0(abs (fft(x_pdm))), —-180));
semilogx (max(20«loglO(abs (fft(x_pdm2))), —180));
semilogx (max(20xlogl0(abs ( fft(x_sdm2))), —-180));
xlim([1, N / 2]);

legend ( 'PDM', sprintf( '%dth order PDM', order), '2nd order SDM');

title (sprintf ( 'Frequency spectra of 1-bit outputs
xlabel ( 'Frequency bin [n]");
ylabel ("Amplitude [dB]');

figure () ;

hold( 'on");

semilogx (max(20=1logl0(abs (fft(p_sdm))), —-180));
semilogx (max(20«loglO(abs (fft(p_pdm2))), —180));
semilogx (max(20xlogl0(abs ( fft(p_sdm2))), —-180));
xlim ([1, ref / 2]);

legend('1st order SDM', sprintf( '%dth order PDM',
title ( 'Frequency spectra of p');

for reference input = %', ref));

order), '2nd order SDM');
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Listing 15: Dissassembly of memset function, it can be clearly seen that 1 byte gets set at a time (using the strb instruction).

08009930 <memset>:
8009930: 0003
8009932: 1882
8009934: 4293
8009936: d100
8009938: 4770
800993a: 7019
800993c¢: 3301
800993e¢: e7f9

movs
adds
cmp
bne.n
bx
strb
adds
b.n

r3, r0
r2, r0, r2
r3, r2

800993a <memset+0xa>
Ir

rl, [r3, #0]

r3, #l1

8009934 <memset+0x4>

Listing 16: Dissassembly of memcpy function, it can be clearly seen that 1 byte gets copied at a time (using the 1drb and strb

instructions).

08009a36 <memcpy >:
8009a36: 2300
8009a38: b510
8009a3a: 429a
8009a3c: d100
8009a3e: bd10
8009 a40: Scce
8009a42: 54c4
8009 ad4 : 3301
8009246 : e7f8

movs
push
cmp
bne.n
pop
1drb
strb
adds
b.n

r3, #0

{r4, Ir}

r2, r3

8009240 <memcpy+0xa>
{r4. pe}

4, [rl, r3]

4, [rO, r3]

r3, #1

8009a3a <memcpy+0x4>
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All MATLAB code was tested for compatibility with GNU Octave.

B. Prototype and SCC Compact setup

For most measurements, data was extracted from the prototype via the CAN bus using the SCC protocol. The SCC protocol, as
it is used normally, is mostly documented internally, but when it is connected to a PC application called SCC Afregeltool (used
for calibrating and testing the SCC Compact and extenders), there were some things not entirely clear from the documentation,
so they are explained here.

There is a special calibration setup made by Brunelco used for calibrating and testing. This test setup contains a prototyping
board based on a STM32 (OLIMEXINO-STM32). This prototyping board is programmed with a slight modification (SCC
Emulator) of the code that normally runs on the SCC Compact. This modification allows for passing through RS485 commands
from the SCC Afregeltool to the CAN bus on which the SCC extenders are connected. The main differences between the
SCC Emulator code and the SCC Compact are that the SCC Emulator always has fixed address 1, while in the SCC Compact
the address depends on a unique hardware register and that the SCC Emulator supports extra RS485 commands for passing
through data directly to and from the SCC Compact extenders so that they can be calibrated, the software version read out and
the dip switches tested. The SCC Emulator also supports a maximum of 5 connected extenders on the CAN bus instead of a
maximum of 3 supported by the SCC Compact. This is purely a software configured limit, and there are no software/hardware
differences to accommodate for more devices on the same bus.

To allow for direct communication between the SCC Afregeltool and the prototype (which presents itself on the CAN bus
as a regular analogue input or output extender), a device had to be made similar to the SCC Emulator. It was possible to use a
prototyping board and flash the SCC Emulator code on it, but it was easier to modify the regular SCC Compact code to also
support the extra RS485 commands and have address 1, essentially merging the SCC Emulator and SCC Compact code, and
flashing it on a regular SCC Compact. This special SCC Compact will be called SCC Compact with Extender Pass-through
going forward.

On the calibration setup, there are two “golden” extenders, which are used as a reference to calibrate the extender under test
with. These extenders have to have addresses 0 and 1, but their type doesn’t matter for SCC Afregeltool, and since it is not
supported by the SCC Compact to attach extenders with non-contiguous addresses, two kind of dummy “golden” extenders
are present in the prototype setup to let the prototype have address 2. The prototype is then seen as an extender under test by
SCC Afregeltool because it has address 2 (or higher).

For demonstration purposes, the prototype was also set up to be able to do measurements with thermocouple. For this the
highest gain setting of 16x was used. It was shown to have low enough noise to be able to measure temperature with around
0.5°C precision.

The full prototype setup including the SCC Compact, SCC Compact with Extender Pass-through and three extenders (two
of which golden) can be seen in Fig. 22.

On the analogue outputs, a low frequency sinewave was generated to be able to do a more proper distortion measurement.
This sinewave was measured on the output of the XTR300EVM development board with the Analog Discovery 2. This can
be seen for both the optimized algorithm and the trade-off algorithm in Fig. 23 and Fig. 24 respectively. Large peaks can
be seen at 1Hz, 3Hz, SHz etc. caused by the LED flashing. In these measurements an ENOB of 10-bit is not yet obtained,
but this could be obtained, when the effects of the LED flashing are gone. The ENOB can also be increased even further
by reducing the INL, which could be done by reducing the bitrates even more. Although at some point the noise level will
become significant.

In Fig. 25, the fluctuation of the output voltage when it is approximately ith of the maximum (code 16384 in both cases)
can be seen more clearly (than in section VIII-B1) for both the SCC Compact extender (where the effect is minimal) and
the prototype. Like mentioned in section IX-A, the amplitude of the fluctuation is much larger for the prototype because the
supply has better load regulation in the SCC Compact.

C. Higher order noise shaping

It might be interesting to see if higher order noise shaping can be obtained in a similar way as in section V (so basically
without feedback like in a SDM). Like shown in [23], the Ist order noise shaping of a VCO-ADC is a result of the sampling
(time discretization) of the pulses generated by the VCO. If the pulses would be continuous time, the frequency spectrum up
until the lowest frequency component (which is the pulse frequency) would be completely empty (this knowledge will come
in useful later). The equivalent operation in the algorithm shown in section V is the differentiation of the sawtooth generated
with a modulo operation. If we would apply differentiation with arbitrary order to this sawtooth wave, the resulting frequency
spectrum will have the noise shaping characteristic of that same order. This is illustrated in Fig. 26. This results in a completely
useless time domain output however, since we want the output to be 1-bit, and as soon as you differentiate more than once,
there will be more than 2 possible output values. This is not the biggest problem yet though, as the shape of the 1st order
pulses in the time domain are asymmetrical in the y-direction, while pulses resulting from higher order differentiation are
symmetrical, thus preventing us from building up an offset to some constant level with them.
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Fig. 22: Prototype setup with SCC Compact and extenders.

Extended noise shaping can be obtained in an ADC using a pulse shaping filter after the VCO (so still in continuous time)
[56]. This is not very useful in our case, since a pulse shaping filter would not have a 1-bit output.

For the next part, it is useful to define p as the pulse period over time (so not the average pulse period). By plotting it for
the algorithms from section V, we can see that p consists of 1st order pulses so that the mean of p is equal to the average
pulse period (such as in Fig. 27.

If we would make p so that it is purely constructed from “higher order pulses”, the final output = might also have noise
shaping of this same order, because if p would not contain any pulses, and would be able to take on some fractional value,
the frequency spectrum would be completely empty up until the pulse frequency (this is kind of a rephrasing of the first
paragraph of this section). These higher order pulses are essentially the result of differentiating a discrete unit step function.
For illustration purposes, higher order pulses can be seen in Fig. 28

The mean of all higher order pulses is 0, since they are derivatives (removing any constant offset) of a 1st order pulse,
which has a mean of 1. This means that no offset can be built up with them, like with 1st order pulses (as mentioned before,
see Fig. 27 for example).

Looking at p for a 2nd order SDM, we can see that (at least for reference values very close to % = 32768) the offset is
built up by shifting the phase of the pulses in p and ”snooping” away half a pulse exactly as often as is required. This can
best be seen in Fig. 29.

This idea can be applied to a kind of 2nd order PDM generation without feedback. An implementation in MATLAB used
for testing can be seen in Listing 14.

In Fig. 30, it is clearly visible that 2nd order noise shaping (with 40dB/dec) can be obtained, but only for reference input
values slightly below powers of 2. This algorithm without feedback even has the advantage of working well at the lower limits,
when a higher order SDM would become unstable (such as in Fig. 30i. Its performance degrades quickly when going too far
below a power of 2 though (such as in Fig. 30j, Fig. 30k and Fig. 301). When going even further below a power of 2 (or going
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Fig. 23: Low frequency sinewave output when using the optimized algorithm on the UART1 peripheral.

Full range sinewave with 4Mbit/s on SPI2
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Fig. 24: Low frequency sinewave output when using the trade-off algorithm on the SPI2 peripheral.

slightly above powers of 2), the algorithm doesn’t work at all; the output bit pattern sum doesn’t equal the reference input. It
would also be quite a computationally heavy algorithm for a microcontroller, and not in any way more efficient than just a
2nd order SDM. Because of all these downsides, no further tests were done. This section is not omitted and still placed here,
in the appendix, because I found it kind of interesting to see how the behaviour of a 2nd order SDM with very limited input
range(s) and constant input could be described in the time domain.
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Fig. 25: Analogue output voltage fluctuation due to LED flashing.

Frequency spectrum of differentiation orders with reference input 32767
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Fig. 26: Frequency spectra of unhelpful outputs to show noise shaping due to differentiation.

During the preparation of this work the author(s) used no artificial intelligence tools.
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1st order pulse period pulses for reference input = 32767
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Fig. 28: Time domain plot of higher order pulses, where the number of samples of the pulse is always equal to the derivative

order.
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Fig. 29: Time domain plot of 2nd order SDM pulse period p



Frequency spectra of 1-bit outputs for reference input = 32767
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Fig. 30: Comparison of the frequency spectra of the outputs of a 2nd order SDM, 1st order PDM and 2nd order PDM
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