

ADAPTIVE GOAL-SETTING APPROACHES FOR SLEEP

MANAGEMENT IN DUTCH OLDER ADULTS

By Thijmen Schuurman, s2558963

20-05-2025

Opleiding BSc Biomedische Technologie

Biomedical Signals and Systems (BSS)

Graduation committee:

ir. F. Muijzer (University of Twente, EEMCS-BSS)

dr. N. Sharma (University of Twente, ET-DPM-IxD)

A. van Kraaij, MSc (Extern, OnePlanet Research

Center)

Chair:

dr. A. Witteveen (University of Twente, EEMCS-BSS)

PREFACE

In this report for my bachelor’s thesis, I describe the research I conducted on the implementation
of an adaptive goal-setting feature within a mobile application for older adults. This research
is part of the MOCIA project, which aims to develop a lifestyle-based application to help older
adults practice various domains to maintain and enhance their cognitive health.
Over the past 15 weeks, I have discovered, learned, and enjoyed a lot. I started this project with
little to no prior knowledge of many of the topics and skills involved. It was very meaningful for
me to help lay the foundation for future research in this area.
Throughout this process, I received a lot of support from three people who helped me under-
stand the project and what I was working on, supported me on various challenges, and guided
me to the finish line. I would like to sincerely thank ir. Frodo Muijzer (University of Twente),
dr. Nikita Sharma (University of Twente), and Alex van Kraaij (OnePlanet Research Center).
In addition, I would like to thank Annemieke Witteveen, PhD (University of Twente) for being
the chair of my graduation committee.

Enschede, 20-05-2025
Thijmen Schuurman

1

TABLE OF CONTENTS

Abstract (ENGLISH) 4

Abstract (NEDERLANDS) 5

1 Introduction 6

2 Background 8

3 Framework 10
3.1 Phase I - Identifying goals . 10
3.2 Phase II - Adapting goals by utilizing algorithms 11

3.2.1 Datasets . 11
3.2.2 Algorithm . 12
3.2.3 Rule based guidelines . 15
3.2.4 Reflection . 15

3.3 Phase III - Adjusting and reflecting . 15

4 Methodology 16
4.1 Ethical consideration . 16
4.2 Study design . 16
4.3 Participants . 17
4.4 Materials . 17

4.4.1 Wearable activity trackers . 17
4.4.2 OnePlanet Research mobile application 18
4.4.3 Questionnaires . 18

4.5 Data analysis . 19

5 Results 20
5.1 Demographics and PSQI data . 20
5.2 Adaptive goal-setting: Quantitative results (measurements over 15 days) 21
5.3 Adaptive goal-setting: Qualitative results (results of focus group 26

6 Discussion 31

7 Conclusion 35

References 36

A Daily Questionnaire (ENGLISH) 39

B Daily Questionnaire (NEDERLANDS) 40

C PSQI Questionnaire (ENGLISH) 41

2

D PSQI Questionnaire (NEDERLANDS) 43

E Day 5 Questionnaire (ENGLISH) 45

F Day 5 Questionnaire (NEDERLANDS) 46

G Day 10 Questionnaire (ENGLISH) 47

H Day 10 Questionnaire (NEDERLANDS) 48

I Day 15 Questionnaire (ENGLISH) 49

J Day 15 Questionnaire (NEDERLANDS) 50

K Algorithm - Python Script - Garmin Data and Subjective Data 51

L Algorithm - Python Script - PSQI score 84

3

ABSTRACT (ENGLISH)

This study is conducted to assess the implementation of an adaptive goal-setting feature for sleep
duration and quality within a custom mobile application for older adults. The study is part of
the MOCIA project, which aims to develop a lifestyle-based mobile application to help maintain
and enhance the cognitive health by promoting positive behaviors across multiple domains.
A framework was developed to implement the adaptive goal-setting feature and assess its fea-
sibility for future use. Eleven subjects participated in the study, which lasted 15 days. During
this period, participants wore a Garmin vívosmart® 5 continuously and completed a daily ques-
tionnaire about their perceived sleep quality.
Sleep durations were calculated using a custom algorithm that processed both the objective and
subjective data. Based on this, personalized recommendations were generated and provided to
the participants. These included their personalized sleep goals as well as generic tips to support
behavioral change and improve sleep quality.
At the end of the study, participants attended a focus group session to evaluate the study.
Combined with the collected data, multiple limitations were identified. The custom algorithm
failed to return sleep durations in 31% of the measurements (42 out of 135), and only 40% of the
returned sleep durations matched the self-reported sleep duration within ± 45 minutes. Despite
these limitations, 3 out of 11 participants showed improvements across all measured domains,
e.g. increased consistency in sleep duration, improved perceived sleep quality, fewer toilet visits
during the night, and a higher frequency of falling asleep within 30 minutes. Five additional
participants improved in most of these domains. Furthermore, 70% of the participants preferred
behavior-based recommendations over fixed sleep duration goals, and 78% valued visual feed-
back, emphasizing the potential of personalized, engaging recommendations to support healthy
sleep behavior.
Technical problems with the OnePlanet Research mobile application were also reported, which
led to two dropouts and some frustration among other participants. This application uses the
Garmin Health SDK, which provides access to all health and fitness activity data, such as heart
rate (HR), heart rate variability (HRV) and steps, which is beneficial for the custom algorithm
developed by imec NL. A more stable solution may be switching to the Garmin Health API via
the Garmin Connect application, although this comes with its own downsides.
Overall, this study has the potential to be usable and effective in supporting positive sleep
behavior change to ultimately maintain and enhance the cognitive health of older adults.

4

ABSTRACT (NEDERLANDS)

Deze studie is uitgevoerd om de implementatie te beoordelen van een adaptieve doelstellings-
functie voor slaapduur en -kwaliteit, in een mobiele applicatie voor ouderen. De studie maakt
deel uit van het MOCIA-project, dat als doel heeft om een leefstijlgerichte mobiele applicatie
te ontwikkelen ter ondersteuning van het behoud en de verbetering van cognitieve gezondheid,
door het stimuleren van positief gedrag op meerdere vlakken.
Er is een framework ontwikkeld om de adaptieve doelstellingsfunctie te implementeren, en de
haalbaarheid ervan voor toekomstig gebruik te beoordelen. Elf deelnemers namen deel aan
de studie, welke 15 dagen duurde. Gedurende deze periode droegen de deelnemers continu
een Garmin vívosmart® 5 en vulden zij dagelijks een vragenlijst in over hun subjectieve slaap-
kwaliteit.
Slaapduur werd berekend met behulp van een algoritme dat zowel objectieve als subjectieve
gegevens verwerkte. Op basis hiervan werden gepersonaliseerde aanbevelingen gegenereerd en
aan de deelnemers verstrekt. Deze aanbevelingen bestonden uit persoonlijke slaapdoelen en
algemene tips ter ondersteuning van gedragsverandering en verbetering van de slaapkwaliteit.
Aan het einde van de studie namen de deelnemers deel aan een focusgroup-sessie om de studie
te evalueren. In combinatie met de verzamelde data kwamen hierbij meerdere beperkingen aan
het licht. Het algoritme gaf in 31% van de metingen (42 van de 135) geen slaapduur terug,
en slechts 40% van de gegenereerde slaapduurgegevens kwam binnen ± 45 minuten overeen
met de zelfgerapporteerde slaapduur. Ondanks deze beperkingen lieten 3 van de 11 deelnemers
verbeteringen zien op alle gemeten domeinen, zoals meer consistentie in slaapduur, betere sub-
jectieve slaapkwaliteit, minder nachtelijke toiletbezoeken en vaker binnen 30 minuten in slaap
vallen. Vijf andere deelnemers verbeterden op de meeste van deze domeinen. Daarnaast gaf
70% van de deelnemers de voorkeur aan gedragsgerichte aanbevelingen boven vaste slaapdoelen,
en waardeerde 78% de visuele feedback, wat het potentieel benadrukt van gepersonaliseerde en
motiverende aanbevelingen ter ondersteuning van gezond slaapgedrag.
Er werden ook technische problemen gemeld met de OnePlanet Research mobiele applicatie, wat
leidde tot twee uitvallers en frustratie bij enkele andere deelnemers. Deze applicatie maakt ge-
bruik van de Garmin Health SDK, die toegang geeft tot alle gezondheids- en activiteitsgegevens,
zoals heart rate (HR), heart rate variability (HRV) en stappenteller, wat voordelig is voor het,
door imec NL ontwikkelde, algoritme. Een stabielere oplossing zou het gebruik van de Garmin
Health API via de Garmin Connect-applicatie kunnen zijn, hoewel dit ook nadelen met zich
meebrengt.
Al met al laat deze studie zien dat het concept potentie heeft om positief slaapgedrag te onders-
teunen en daarmee bij te dragen aan het behoud en de verbetering van de cognitieve gezondheid
van oudere volwassenen.

5

1 INTRODUCTION

With a prevalence of one in five, cognitive decline is becoming a larger healthcare issue. The
number of people with neurodegenerative diseases has increased due to aging, with a current
prevalence of 310 thousand patients in the Netherlands. The number is expected to double over
the next 25 years, reaching more than 620 thousand patients with neurodegenerative diseases[1].
Dementia is an umbrella term for a particular set of symptoms characterized by difficulties
with memory, language, problem solving, and other cognitive skills that interfere with daily
activities. It results from changes in the brain, which can occur in various ways and lead to
different forms of the condition[2]. Globally, Alzheimer’s is the leading cause of dementia. As
of 2019, approximately 9.8% of the European population aged 65 and older had been diagnosed
with Alzheimer’s disease.[3, 4]. This is just the tip of the iceberg when talking about cognitive
decline[5].
Many factors play a role in the occurrence of cognitive decline, but many of them can be con-
trolled. There are also some preventive measures for cognitive decline, such as physical activity
and cognitive training[6]. Setting goals is an effective strategy to counter cognitive decline. Un-
derstanding how goal-setting works and why it is effective is crucial for developing interventions.

In the last 50 years, goal-setting theories have made their way into our daily lives. Locke and
Latham developed the goal setting theory over a 25-year period based on 400 laboratory and
field studies. The goal setting theory uses specific quantitative (hard) goals, in a determined
time frame, to obtain higher results than telling a person to do their best[7, 8]. Nowadays,
goal-setting theory is applied in nearly every aspect of life, whether it is receiving a task from
your boss or being advised by your doctor to exercise more. In a society that constantly empha-
sizes self-improvement, setting goals is a vital first step toward changing behavior and making
meaningful progress, such as improving diet and increasing physical activity[9].

It is known that bad sleep habits play an important role in neurodegeneration, and to counter
cognitive decline through goal-setting in the sleep domain, different approaches to formulating
goals can be applied, for example, a gain goal frame, which is used to improve one’s resources.
The goal of increasing one’s physical activity to become healthier is an example of a gain goal
frame[10, 11]. There are many ways to track your goal to become healthier, for example, track-
ing your weight using a scale or nutrition using a mobile application. However, a smartwatch
can also be used to track your goal progress. This is because a smartwatch can measure many
features that can also give indications about your health. All these data can be collected and
defined as personal informatics systems, those that help people collect personally relevant in-
formation for the purpose of self-reflection and gaining self-knowledge. Personal informatics
stands out as an interesting area of study within human-computer interaction. These systems
are designed to help individuals gain deeper insight into their own behavior[12]. And with this
insight, individuals can improve themselves.

Because goal setting and personal informatics both play a key role in encouraging self-awareness
and behavior change, bringing these approaches together can strengthen efforts to support cog-
nitive health in older adults. The MOCIA project (Maintaining Optimal Cognitive function In

6

Ageing) aligns with this objective, as it aims to identify individuals at increased risk of cog-
nitive decline and reduce this risk through personalized interventions. These interventions are
provided via a multi-domain mobile application, with sleep as one of the domains.
Sleep is a critical factor that influences cognitive functioning [10]. Poor sleep quality and insuf-
ficient sleep duration have been associated with decreased cognitive performance and increased
risk of neurodegenerative diseases[13, 14, 15, 16]. Therefore, supporting healthy sleep habits is
one of the main domains in MOCIA’s approach to maintaining cognitive health.
However, motivating older adults to improve sleep behavior and adjust routines can be challeng-
ing. Personalized support and recommendations, based on each individual’s needs, preferences
and progress, can improve engagement. This is where the combination of of goal-setting theory
and personal informatics become useful. Goal setting helps them to establish concrete goals,
while personal informatics helps them to monitor progress, reflect on behavior, and adapt their
goals based on feedback.
In this project, the aim is to combine these two approaches by co-developing a feature that
enables users to set and track personalized sleep goals. Using both wearable data and application-
based questionnaires, this feature will become part of an adaptive sleep management module
within the mobile application. This feature supports MOCIA’s goal of providing personalized
interventions, by helping users make behavior changes that contribute to maintaining cognitive
health as they age. Therefore, this study aims to identify how such an adaptive goal-setting
feature can be developed, evaluated, and implemented using wearable and self-reported data
to improve personalization, user engagement, and support better cognitive health in MOCIA’s
target population.

7

2 BACKGROUND

Bad sleep habits play an important role in neurodegeneration. As people age, their sleep pat-
terns change over time. Their total sleep time, sleep efficiency, number of sleep disturbances, and
sleep latency have deteriorated[10]. Furthermore, sleep is essential for cognitive processing, and
disruptions can affect cognitive performance in all age groups[13, 14]. Meta-analyses have shown
that individuals with sleep disturbances or insomnia have a significantly higher risk of developing
cognitive diseases, including Alzheimer’s disease and other forms of neurodegeneration[15, 16].
Given this strong connection, understanding and accurately measuring sleep is important when
trying to improve cognitive health through behavioral change. Lifestyle-based approaches, such
as physical activity, a healthy diet, cardiovascular health management, cognitive training, social
engagement, stress reduction, and especially sleep management, have been shown to support
cognitive functioning in older adults. Despite the known benefits of these practices, many indi-
viduals struggle to adopt and maintain them, especially in home settings where ongoing support
can be limited.
One reason for this difficulty may be the daily routines that many older adults follow. For exam-
ple, watching the evening news at 20:00, drinking tea at 22:30, and going to bed at 23:00 might
form a consistent rhythm that is hard to break. When sleep improvement requires changes to
this routine, it can be challenging to commit to new behaviors, especially when their are many
options for change, which can be overwhelming. In such cases, prioritizing health goals can be
of great help. Research by Conner et al.[17] suggests that focusing on one or two specific health
goals can significantly increase the likelihood of behavior change. Providing older adults with
concrete, personalized tips allows them to focus their efforts and gradually adjust their routine.

To effectively support behavior change and improve sleep patterns, reliable and accessible meth-
ods for monitoring sleep are essential. Understanding how sleep is measured is essential for offer-
ing useful personalized recommendations. The gold standard for assessing sleep is polysomnog-
raphy (PSG). This method requires individuals to spend the night in a sleep laboratory under
controlled conditions, supervised by a sleep technician. During such studies, multiple surface
electrodes are attached to the body to measure various physiological indicators of sleep. These
include brain activity via electroencephalography (EEG), eye movements, muscle tone, heart
function, and respiratory patterns[18].

While PSG provides detailed and accurate data, it is impractical for daily use due to the complex
setup. To be able to track sleep in everyday life, researchers and consumers increasingly rely on
wrist-worn wearable devices, such as wrist-worn accelerometers. Where periods of minimal arm
movement can be assessed as sleep[19]. Building on this, commercial wearables such as Garmin,
Fitbit, and Apple Watch offer more advanced sleep tracking by combining accelerometer data
with heart rate and other physiological signals. These devices provide users with accessible
insights into their sleep patterns through their own algorithms.
However, a limitation of commercial wearables is that their algorithms are not publicly available,
which results in less insights into how sleep durations are calculated and which factors play a
more significant role than others. These parts would become a ”black box”, making it hard to
understand or validate the outcomes. Besides that, access to data, such as heart rate variability

8

(HRV), is restricted when using their standard mobile applications, like Garmin Connect. To
overcome these limitations in our study, imec NL uses a connection with the Garmin Health
SDK. Through this connection, Garmin provides a JSON-formatted file which contains all data
collected by the wearable device for each individual, including heart rate (HR), HRV, motion
intensity, respiration, steps, stress, wellness, and zero-crossing data[20, 21]. The Garmin Health
SDK connection is established via the OnePlanet Research mobile application, developed by
imec NL. Because this app connects directly to the Garmin vívosmart® 5 (shown in Figure 1),
it enables data transfer through the Garmin Health SDK, allowing us to collect data that can
be processed by an algorithm developed by imec NL.

This access to the physiological data allows us to process the information ourselves and provides
us more insight into the participant’s sleep patterns. A specific valuable metric is HRV, which
shows changes in the time intervals between consecutive heartbeats[22]. HRV and HR could
be useful for future research within the MOCIA program, as both metrics vary across different
sleep stages. Specifically, HR tends to decrease, along with reduced variability, during non-
REM stages, while it increases with greater variability during REM sleep[23]. During non-REM
stages the cardiovascular system is stable and parasympathic cardiac modulation is more active,
resulting in lower HR and higher HRV. During REM sleep, the cardiovascular system is unstable
and sympathetic activity becomes more active, causing HR to increase and HRV to decrease
[24, 25]. These physiological patterns could be useful indicators for assessing sleep quality and
detecting sleep stage transitions.
This combination of wearable devices and personalized recommendations forms the basis for our
approach to sleep management. By integrating these elements into a broader health-focused
framework, we aim to make sleep improvement more accessible for older adults. This approach
aligns with the goals of the MOCIA research program, which supports older adults by addressing
key lifestyle domains associated with cognitive health. All domains, including sleep management,
will be integrated into a mobile application developed by Vivica. This application will help
users set personalized goals, monitor their progress, and take an active role in maintaining their
cognitive health in a practical and user-friendly way.

Figure 1: Garmin vívosmart® 5 [26]

9

3 FRAMEWORK

To effectively integrate adaptive goal setting with personal informatics in the context of sleep
management, a structured framework is necessary. This framework outlines how researchers
and users can effectively utilize health-related data from wearable sensors and questionnaires to
set meaningful goals. These goals are shaped by two key perspectives on well-being: hedonic
and eudaimonic [27, 28]. Hedonic well-being is often related to the concept of happiness and
is characterized by the presence of positive feelings, pleasure, enjoyment, satisfaction, and the
absence of pain and discomfort. On the other hand, eudaimonic well-being focuses on personal
growth, self-fulfillment, and a sense of meaning in life. This can relate to aspects such as
autonomy, ethics, maturity, value, and relevance in an individual’s life [29, 30]. By implementing
both perspectives, the framework enables users to translate personal values and experiences into
clear, manageable goals and to continuously refine these goals using personal data. Through this
structured approach, researchers and users can simplify sleep-related challenges into actionable
goals, facilitating effective behavior change and supporting cognitive health. The framework
would consist of three phases in which various data is processed.

3.1 PHASE I - IDENTIFYING GOALS

In the first phase of the adaptive goal-setting framework (Figure 2), data is collected regarding
the user’s eudaimonic or hedonic needs. These eudaimonic or hedonic needs are often the basis
of the user’s motivation[31]. Users frequently express broad wishes, such as wanting to sleep
more or to improve their sleep quality. However, to be able to use those needs and whishes,
it needs to be transformed so that it is supported by the algorithm. Therefore, eudaimonic or
hedonic needs are transformed into qualitative goals and finally into quantitative goals.
This framework builds on the goal-setting process and a different framework previously made
by Nikita Sharma [32], and the initial structure used in this project was co-developed with the
assistance of Nikita Sharma, who contributed plenty to the framework.

10

Figure 2: Adaptive goal-setting framework

3.2 PHASE II - ADAPTING GOALS BY UTILIZING ALGORITHMS

In the second phase, the algorithm processes all available data to generate a personalized rec-
ommendation. First, the wearable data is preprocessed and assigned a score that is used in the
next steps. Next, the self-report data, containing information such as the participant’s main
goal, motivation, and perceived quality, is also scored. These two scores are weighted equally to
determine which recommendations are the most suitable for the participant to sleep better or
to increase the quality of their night’s sleep. At the end of phase two, participants are asked to
reflect on their previous progress and think more deeply about their sleep goal, including which
aspects they would like to adjust or improve, and what their short- and long-term goals look
like. Their responses are used to refine and adjust the recommendations moving forward.

3.2.1 DATASETS

Dataset 1 (wearable)

Dataset 1 contains the wearable data of the JSON file, used by the algorithm to calculate sleep
duration. The Garmin vívosmart® 5 is connected via Bluetooth to a mobile phone. This phone
has the OnePlanet Research mobile application installed. And this mobile application uses the
Garmin Health API to collect data from the Garmin vívosmart® 5, such as HR, step count, and
HRV. The algorithm uses these three data types to compute a sleep score.

Dataset 2 (self-report)

Dataset 2 consists of self-report data. It includes four questions about participants’ perception
of their sleep quality, as well as one question regarding their main goal. These questionnaires
will be discussed in more detail in Chapter 4.4.3. The algorithm uses these self-report data to
generate a sleep quality score. This score is weighted equally with the score from dataset 1

11

and combined into a total score. Based on this total score, personalized recommendations are
generated to help improve both the duration and the quality of sleep.
Reflections collected from participants are not directly reintegrated into the algorithm but are
used to tailor the recommendations by highlighting specific aspects that the participant wants
to focus on.

3.2.2 ALGORITHM

The algorithm uses both datasets to generate personalized recommendations aimed at improving
sleep and, ultimately, supporting cognitive health. To calculate the sleep score, it first estimates
sleep duration using wearable data, specifically step count, HR and HRV. To enhance the ac-
curacy of this estimate, the algorithm examines the period between the last recorded steps of
the previous day and the first steps of the next morning. It checks whether the HR during this
period is lower and the HRV is higher, compared to the surrounding periods. These physio-
logical markers help validate that the identified window reflects actual rest [19]. To implement
this approach, imec NL developed a script to analyze wearable data and detect sleep episodes.
Below, the main steps of this data processing workflow are described.

Garmin data pre-processing algorithm (imec NL)

The algorithm checks for new Garmin data folders in the imec NL cloud for each active partici-
pant. If new data is available, the folder is unzipped, and relevant features are extracted: HR,
hrvSdnn (standard deviation of all normal to normal R‐R (NN) intervals), hrvRmssd (square
root of the mean of the squares of successive NN interval differences), physicalActivityMets,
physicalActivityClass and stepCount. If a feature is unavailable, it returns an NA value for that
feature. The feature physicalActivityMets is a way to quantify the intensity of physical activ-
ity. It is determined by comparing your working metabolic rate to your resting metabolic rate
[33]. The feature physicalActivityClass is a function in which a user can adjust the amount and
duration of their exercises in a given week. Adjusting this setting leads to improved accuracy of
burnt calories[34].
The script identifies which dates have available data for stepCount, HR, or hrvSdnn and selects
those with consecutive days. For each consecutive day, data between 3 PM on that day and 3
PM on the next day is loaded. If no data is available, no sleep data is returned for that day.
Otherwise, the median of each feature is calculated in intervals of 3 minutes.
If more than 16 hours of HR data are available, a 30-minute smoothed HR signal is created and
interpolated using PCHIP (Piecewise Cubic Hermite Interpolating Polynomial). High-frequency
noise is removed using a low-pass filter (N=1, Wn=1/3600, btype=’lowpass’, fs=1/180), and the
first and last 30 minutes are excluded to avoid edge effects. Peaks in the stepCount signal are
identified using the function scipy.signal.find_peaks. If no peaks are found, the sleep data is
returned empty. If peaks are identified, each is examined:

• If HR data after the peak contains NA values, the peak is shifted to the next valid time
point (max 2 hours).

• If the HR before the next peak contains NA values, the peak is shifted backward similarly.

If possible, a 2-hour HR subset is created after the first peak (subset_start) and before the
last peak (subset_end). If the slope of subset_start is negative, subset_end is positive, and
the interval includes any time between 00:00 and 06:00, the period is labeled as sleep. If this
condition is not met, the algorithm proceeds to the next possibility. If these subsets cannot
be created (e.g., due to mising data), a period is labeled as sleep if the time window includes
00:00-06:00.

12

In all cases, any periods with stepCount higher than zero for longer than 3 minutes are labeled
as awake. The earliest and latest sleep labels define the toBedTime and getUpTime, from which
the inBedDuration is calculated.
If less than 16 hours of HR data is present, the algorithm checks for at least 16 hours of
stepCount data. If this is also missing, the sleep data is returned empty. If enough stepCount
data is present, the same logic is applied. Peaks are identified, and those that occur between
00:00 and 06:00 are labeled as sleep. Awake periods are again defined by stepCount being higher
than zero for over 3 minutes, and sleep duration is determined by the first and last sleep time
points.

Algorithm developed for this study

The algorithm developed for this study is based on a previously implemented algorithm by imec
NL. If no sleep data is returned through this primary method, a fallback procedure is initiated.
This fallback relies on a second algorithm, also developed by imec NL, which reads the daily
questionnaire responses. These responses include the participant’s reported bedtime and wake-
up time, used to calculate in-bed duration, as well as reported sleep quality. Additionally, this
algorithm reads the participant’s reported main sleep duration goals. With these features our
algorithm can gives scores to these various questions.

The measured sleep duration is compared to the participant’s main goal. Points are assigned as
follows:

• Within ±15 minutes → 5 points

• Within ±60 minutes → 4 points

• Within ±120 minutes → 3 points

• Within ±180 minutes → 2 points

• More than ±180 minutes deviation → 1 point

The sleep quality is derived from four questionnaire items, each contributing a different number
of points. Since overall perceived sleep quality was one of the primary goals for improvement, it
was assigned the highest possible scores in the questionnaire. For the questions where points are
subtracted, a maximum total of -2 points is spread across three questions. The yes/no question
contributes up to a 0.4-point reduction, while the other two questions, with five possibilities,
each have a maximum deduction of 0.8 points:

1. Overall perceived sleep quality (rated 0–100):

• 0–19 → 1 point
• 20–39 → 2 points
• 40–59 → 3 points
• 60–79 → 4 points
• 80–100 → 5 points

2. Difficulty falling asleep: If the participant reported taking longer than 30 minutes to fall
asleep, 0.4 points were subtracted.

3. Night-time awakenings (e.g., toilet visits):

• 0 visits → 0 points deducted

13

• 1 visit → −0.2
• 2 visits → −0.4
• 3 visits → −0.6
• More than 3 visits → −0.8

4. Daytime functioning: If the participant reported reduced motivation or enthusiasm during
daily activities:

• No problem → 0 points deducted
• Slight problem → −0.2
• Somewhat of a problem → −0.4
• Quite a problem → −0.6
• Very problematic → −0.8

The final quality score is calculated by subtracting the penalties from the overall perceived
quality score. Since the maximum total deduction is -2 points, the lowest possible final quality
score is -1.
The total score for each night is calculated as the average of the sleep duration and quality
scores:

Final score = Duration score + Quality score
2

Based on this final score, a pre-generated recommendation is selected and subsequently per-
sonalized for each participant. All extracted features and calculated scores per participant are
exported to an Excel file for further analysis.

Case Example: Gijs’ Night of Sleep

Gijs is a 68-year-old participant who set his main sleep goal at 7.5 hours (450 minutes). On one
of the study nights, the measured sleep duration from the Garmin vívosmart® 5 was 6 hours
and 40 minutes (400 minutes), resulting in a deviation of 50 minutes.

Deviation = |400 − 450| = 50 minutes

This falls within the ± 60 minute range, and therefore Gijs receives:

Duration score = 4 points

From the daily questionnaire, Gijs reported:

• Overall perceived sleep quality: 65/100 → 4 points

• Difficulty falling asleep: Yes → −0.4 points

• Toilet visits: 2 → −0.4 points

• Daytime functioning: “Somewhat of a problem” → −0.4 points

Total penalties:

Penalties = −0.4 − 0.4 − 0.4 = −1.2

Quality score = 4 − 1.2 = 2.8

14

Final score = Duration score + Quality score
2

= 4 + 2.8
2

= 3.4

Based on this final score, a pre-generated recommendation is selected and personalized for Gijs,
addressing issues such as difficulty falling asleep and night-time awakenings.

3.2.3 RULE BASED GUIDELINES

The rule-based guidelines are structured as a step-by-step flow diagram that the algorithm
follows to determine appropriate recommendations. It begins by checking whether the total
score has reached its maximum. If it has, the individual is considered to be doing well and
no changes are recommended. If not, the algorithm evaluates the sleep score and assigns a
corresponding recommendation. The self-report score is also assessed, resulting in an additional
recommendation. These two recommendations, one based on the sleep score and one based on
the self-report, are then combined into a single personalized recommendation for the individual.

3.2.4 REFLECTION

The final part of phase two involves the first reflection moment. In this section, the individual
is asked to evaluate their progress so far. They begin by defining their sleep goal using the
SMART framework (Specific, Measurable, Achievable, Relevant, and Time-based). The SMART
principle can be used to create accessible and understandable goals to increase engagement and
performance[35]. Next, they identify which specific aspects of their sleep they want to improve.
Based on the previously calculated scores, they then receive personalized recommendations.
These recommendations help guide the formulation of both short-term and long-term goals.

3.3 PHASE III - ADJUSTING AND REFLECTING

In the third and final phase, individuals have the opportunity to adjust their main goal based on
the reflection of phase two. After some time has passed, they are asked to reflect once again, this
time on their recent progress, their previous reflection, and whether they wish to adjust their
main goal (again). As part of this reflection, they are asked whether they were able to follow
through on the short-term goal they set during the previous phase, and to consider what factors
contributed to their success or made it difficult to achieve. Finally, they are given the option to
adjust their short- and/or long-term goals based on their experience and current needs.

15

4 METHODOLOGY

4.1 ETHICAL CONSIDERATION

This study was approved by the Natural Sciences & Engineering Sciences Ethics Committee of
the University of Twente, reference number 250032, prior to data collection. All participants
received informed consent before participating in the study and the research was conducted
according to the application.

4.2 STUDY DESIGN

This study was a fifteen-day field-based measurement, with all assessments conducted outside
of a laboratory setting. Participants were instructed to wear a Garmin vívosmart® 5 for the
full duration of the study. At the start, they completed several questionnaires, including the
Pittsburgh Sleep Quality Index (PSQI [36], which will be explained in Chapter 4.4.3), and set
a personal sleep duration goal. On a daily basis, the participants had to complete the daily
questionnaire in the OnePlanet Research mobile application. If the participant had an iPhone,
they would have to manually synchronize, twice a day, the phone with the watch by clicking
the manual synchronization button in the application. After five days, the algorithm evaluated
their sleep duration and sleep quality scores and provided personalized recommendations. The
participants were then asked to reflect on their initial goal and the recommendations received.
Sleep tracking continued throughout the study, and on days ten and fifteen, participants were
asked again to reflect on their progress, goals, and the updated recommendations. At the
end of the study, participants took part in a focus group session to evaluate and discuss their
experiences.

16

Figure 3: Study design

4.3 PARTICIPANTS

The inclusion criteria for the study were as follows: (1) male or female adults aged 60 years or
older, (2) no known sleep disorders (e.g., sleep apnea or insomnia), (3) ownership of a mobile
phone, (4) willingness to wear a Garmin watch throughout the study period, and (5) the ability
to read and write in Dutch. Based on these criteria, eleven older adults were enrolled in the
study, six males and five females. Two participants are members of a rowing association, while
seven are members of an ice skating association. The final two members are not part of an
association, but do exercise. Participants were recruited by sending an invitation email to the
boards of these associations, who were asked to forward the invitation to their members. Existing
connections within the associations were also used for recruitment. All participants were invited
to an intake meeting, during which the study procedures, the Garmin device, and the mobile
application were explained. They also received and signed an informed consent form prior to
participation.

4.4 MATERIALS

4.4.1 WEARABLE ACTIVITY TRACKERS

An alternative method for measuring and monitoring sleep patterns is the use of wearable de-
vices, such as smartwatches. In this study, sleep patterns were assessed using data from heart
rate (HR), heart rate variability (HRV), and step count, collected via a wearable device, like
the Garmin vívosmart® 5. A previous study compared HRV measurements derived from pho-
toplethysmographic (PPG) signals of commercially available smartwatches, such as the Garmin
vivoactive® 4, with those obtained from their gold standard electrocardiogram (ECG). The find-
ings indicated that HRV values obtained through PPG closely resembled those measured via
ECG recordings [37]. Given that the Garmin vivoactive® 4 was released three years prior to
the Garmin vívosmart® 5 used in the current study, it is reasonable to assume that the PPG
sensors in the vívosmart® 5 are at least comparable, if not improved. The vívosmart® 5 records

17

HR every 30 seconds and step count every minute. Every 15 minutes, this data is uploaded to
the phone, as long as the phone is nearby and connected to the watch, and then uploaded to
the imec NL cloud.

4.4.2 ONEPLANET RESEARCH MOBILE APPLICATION

Normally, the Garmin vívosmart® 5 connects to the Garmin Connect application, which pro-
cesses the data and presents users with visual insights and graphs. However, for the purpose of
this study, access to raw data was required—something not available through Garmin Connect.
Therefore, the OnePlanet Research mobile application was used instead. This custom appli-
cation connects to the Garmin vívosmart® 5 via Garmin Health SDK and sents the collected
data to a secure server. On Android devices, the watch automatically synchronizes with the
app every fifteen minutes. However, on iOS devices synchronization must be done manually by
the user to ensure the data is sent to the server. Once received, the data can be extracted from
the server and used by the algorithm to generate personalized sleep recommendations for each
participant.

4.4.3 QUESTIONNAIRES

To improve both the quality and the duration of sleep, it is essential to measure and monitor
sleep patterns. An effective method is the PSQI questionnaire. In 1988, Buysse et al. devel-
oped the PSQI questionnaire, a self-rated questionnaire designed to evaluate sleep quality and
disturbances over a one-month period. The PSQI questionnaire includes 19 self-rated questions
along with five questions rated by a bedpartner or roommate. These 19 questions are divided
into seven components, each rated on a scale of 0-3 with equal weighting. The component scores
are then combined to produce a global PSQI score ranging from 0 to 21, where higher scores
reflect poorer sleep quality[36].
The PSQI questionnaire was designed to serve multiple purposes in the analysis of sleep health.
Its primary goal was to establish a standardized, reliable, and valid tool for measuring sleep
quality. In addition, it was designed to distinguish between people who sleep well and those
who sleep worse. The ease of use was also a key consideration, ensuring that both the individu-
als who completed the questionnaire and the clinicians or researchers who interpret the results
could do so without difficulty. Finally, the PSQI questionnaire was structured as a brief yet com-
prehensive tool to help identify various sleep disturbances that can affect overall sleep quality[36].

A daily questionnaire was also included in the study. In this questionnaire, participants rated
the quality of their previous night’s sleep on a scale from 0 to 10, where 0 indicated very poor
sleep quality and 10 indicated very good sleep quality. In addition to this rating, selected items
of the PSQI questionnaire were included to assess aspects such as sleep latency, sleep distur-
bances, and daytime dysfunction.

Two custom reflection questionnaires were developed to support participants in evaluating their
sleep management and goals. These personalized questionnaires were created using Microsoft
Forms and included both open-ended and structured questions focused on goal setting, perceived
progress, and the intention to adjust sleep patterns.
In the first reflection, participants were asked to define a SMART sleep goal and specify which
aspects of their sleep they wanted to improve. Later reflections assessed and reviewed progress
toward the initial short- and long-term goals. These reflections were integrated into the inter-
vention to promote self-awareness and personalized recommendations.

Finally, multiple focus group sessions were organized to evaluate the study from the participants’
perspective. Small groups of participants came together under the guidance of the researchers to

18

reflect on their experiences. During these sessions, participants discussed various aspects of the
study, including its overall usefulness, how well it fit into their daily routines, and the perceived
impact on their sleep behavior. They also provided feedback on what elements worked well, what
could be improved, and how the intervention might be better integrated into everyday life. In
addition, the sessions explored participants’ acceptance of the technology and their suggestions
for future improvements, offering valuable insights for further development and refinement of the
approach. To conclude the focus group, participants were shown images of various applications
in which the sleep domain is presented, such as Garmin, Fitbit, Apple Health, and others.

4.5 DATA ANALYSIS

Data analyis in this study involves several steps. First, the PSQI scores are analyzed to assess
whether participants can be classified as good sleepers. This classification can be used as a
reference point to validate other outcomes.
In addition to the PSQI, the measurement data contains various variables that must be pro-
cessed. To provide a clear overview, a table is created to summarize trends and averages across
participants. This visual representation can help identify patterns and support further inter-
pretation.
By examining changes in time difference between participants’ average sleep duration and their
individual sleep goals, as well as overall sleep quality across days 1-5, 6-10, and 11-15, we can
begin to identify potential improvements. Furthermore, the number of toilet visits and the
number of nights in which participants took more than 30 minutes to fall asleep may also reflect
sleep-related changes, which ultimately contribute to better cognitive health.
It is important to approach the measurement data with caution. Since the algorithm is newly
developed, it’s accuracy needs to be evaluated. One approach is to compare the sleep durations
generated by the algorithm (based on sensor data) to the reported durations derived from
participants’ bedtimes and wake-up times. To support this comparison, the total number of
recorded nights per participant is examined, along with the number of fallback durations used.
For the nights with actual sensor-based measurements, it is then checked how many match the
reported sleep duration within a range of ±45 minutes and ±60 minutes. This comparison can
be summarized in a table or visualized per participant in a graph to assess reliability and guide
further improvements of the algorithm.
Lastly, data from the focus group will be analyzed using deductive thematic analysis. By
grouping responses into themes, the analysis can highlight shared experiences, key concerns
and their perspectives on several categories. With the help of Nikita Sharma, eight themes
were developed, focusing on sleep goals, recommendations, the OnePlanet Research application
and the watch itself, sleep-related education, behavioral impact, participants’ preferences, and
examples of other applications.

19

5 RESULTS

5.1 DEMOGRAPHICS AND PSQI DATA

Demographic and PSQI data are shown in 1. The participants had a mean age of 66.5 (range:
61 - 83 years) and there was a slight majority of men (54.5%). None of the subjects reported a
diagnosed sleep disorder, as this was one of the inclusion criteria. The sample group included
individuals with various educational levels, which contributed to a good variety. Of the 11
participants, three reported previous experience with measuring sleep and using a corresponding
mobile application. PSQI total scores ranged from 2 to 6 (≤ 5 ’Good sleep quality’, >5 ’Poor
sleep quality’ [36]), with 82% of the participants (9 out of 11) reporting good sleep quality.

Table 1: Participant Demographics, App Experience, and PSQI Score

Participant Age Gender Education Level Prior Sleep App
Experience PSQI Score

p020 62 Male WO Yes 5
p021 68 Female HBO No 2
p022 62 Male MBO No 5
p023 64 Female MBO No 6
p024 67 Male MBO Yes 3
p025 61 Male WO No 4
p026 71 Male WO No 4
p027 63 Female MBO Yes 3
p028 68 Female MBO No 2
p029 65 Female HBO No 2
p030 83 Male HBO No 6

20

5.2 ADAPTIVE GOAL-SETTING: QUANTITATIVE RESULTS (MEASUREMENTS
OVER 15 DAYS)

Table 2: Study Engagement per Participant

Participant Completed
15 Days

Completed Questionnaire
Days 5/10/15 Focus Group

p020 Yes Yes Yes
p021 Yes Yes Yes
p022 Yes Yes Yes
p023 Yes Yes Yes
p024 Yes No (2/3) Yes
p025 Yes Yes Yes
p026 No (5/15) No (1/3) Yes
p027 Yes Yes Yes
p028 Yes Yes Yes
p029 No (9/15) No (2/3) No
p030 Yes No (0/3) Yes

During the 15-day measurement period, a few participants did not complete all 15 days or missed
one or more of the questionnaires provided on days 5, 10, and 15, as shown in Table 2. This
also includes information on the attendance at the focus group sessions.
The participants’ main sleep duration goals were collected during the intake meeting. The first
five days of data serve as a baseline. Throughout the study, changes are expected in various
domains, such as the time difference between the participants’ average sleep duration and their
sleep duration goals, overall sleep quality, number of toilet visits, and number of nights when
the participant did not fall asleep within 30 minutes. These data could give the best overview
of potential improvements in sleep habits, which ultimately leads to better cognitive health.

Table 3: Sleep Metrics Overview Per Participant Across Three Periods

Participant Main Sleep Goal (h) Average Time Diff (min) Average Quality No. of Toilet Visits No. of 30+ min Awake
Day 1-5 Day 6-10 Day 11-15 Day 1-5 Day 6-10 Day 11-15 Day 1-5 Day 6-10 Day 11-15 Day 1-5 Day 6-10 Day 11-15

p020 8 25 21 88 72.2 76.25 80 3 4 2 1 0 0
p021 8 24 45 22 71.4 87 67.5 0 0 1 1 0 1
p022 7.5 84 36 28 46.6 58.4 62.3 7 7 3 2 0 0
p023 8 60 2 15 57.4 44.4 52.2 5 9 5 1 3 2
p024 8 108 111 0 64.7 67.5 84 3 4 0 0 1 0
p025 7.5 28 33 118 69.2 72.6 77.7 0 1 1 1 0 0
p026 8 80 - - 78.2 - - 1 - - 1 - -
p027 8 39 95 66 76.8 79.4 81 5 4 3 1 2 1
p028 8.25 48 21 105 73 74 80.75 11 6 6 0 2 1
p029 8 0 20 - 54.4 75 - 4 3 - 1 0 -
p030 6 99 48 72 81.8 71.6 84 5 6 5 0 0 0
Average 54.1 43.2 48.4 67.8 70.6 74.4 4.0 4.4 2.9 0.82 0.8 0.56

When examining Table 3, it is difficult to identify clear improvements, as the data shows fluc-
tuation across all participants. However, participants p020, p022, and p024 appear to show
improvements across all domains shown in Table 3. Others, such as p023, p025, p027, p028
and p029, show improvements in some, but not all, domains. While these trends are promising
it is hard to directly relate them to participants’ PSQI scores. The PSQI primarily reflects
subjective sleep quality and environmental factors, which may not always align with short-term,
sensor-based changes in sleep behavior.

21

As shown in the time difference values for day 5 in Table 3, there are some outliers. In some
cases, the measured sleep durations were unusually low and did not correspond with the reported
bedtimes and wake-up times. This occurs in participant p024, as illustrated in Figure 4. The
figure displays the metrics of that night’s sleep, raw HR (red, top), filtered HR (blue), step count
(black), and detected sleep (red, bottom).
At approximately 14.5 hours after 3 PM (i.e., 05:30AM) a high step count is recorded, which
causes the sleep measurement to reset.

Figure 4: Misclassified Sleep in p024 Caused by Late Movement

Although some nights showed misclassified sleep, most measurements were reliable. The follow-
ing graphs in Figure 5 show examples where sleep was measured accurately and correspond to
the reported bedtime and wake-up time.

22

(a) p020 (b) p021

(c) p025 (d) p028

Figure 5: Overview of four sleep recordings (p020, p021, p025 & p028)

The subjects were provided with a questionnaire on day 5. In this questionnaire, they were asked
to formulate their SMART sleep goal, and subsequently given their recommendation based on
their data of the first five days.
During the formulation of their SMART goals, multiple subjects expressed similar intentions to
improve their sleep quality, for example by achieving more continuous and uninterrupted sleep
throughout the night.
Participants p020, p022 and p028 aimed to improve sleep continuity, with p020 specifically
mentioning a desire for deeper sleep and eight hours of sleep. To achieve these goals, reducing
fluid intake in the evening to minimize the number of times being awake during the night was
a common strategy mentioned by p020, p023 and p028.
Caffeine reduction in the evening was also an approach mentioned by multiple participants, both
p020 and p023 reported avoiding coffee in the afternoon and evening. In addition, p023 aimed
to limit fluid intake during the evening but compensate by increasing hydration earlier during
the day. P020 stated that maintaining consistent bedtimes was a goal, while p028 expressed the
desire to reduce screen time in the evening and replace it with reading a book, an activity also
planned by p020 as part of their bedtime routine.
While these participants formulated relatively concrete goals, other participants kept their goals
more general, simply expressing a desire to feel more rested or to improve their sleep without
specification.

As mentioned above, changes in various sleep domains can be interpreted as potential improve-
ments in sleep habits. As shown in the time difference values for day 5 and day 10 in Table 3,

23

the average time difference decreased, with 50% of participants (5 out of 10; p026 dropped out
after day 5) showing an improvement in sleep duration. None of these subjects had misclassified
sleep durations resulting in unusually low values. However, p020 did record one unusually high
sleep duration. When using the reported bedtime and wake-up time instead, the resulting time
difference is 27 minutes. This means that 40% of the subjects improved their sleep duration.
An improvement in reported sleep quality was observed in 80% of the subjects (8 out of 10).
On the other hand, the number of average toilet visits increased slightly over time, with only
30% of the subjects (3 out of 10) managing to reduce toilet visits at night. Lastly, 50% of the
subjects (5 out of 10) consistently fell asleep within 30 minutes.

On days 10 and 15, the participants were invited to reflect on their short-term goal. Had they
succeeded, and did the recommendations help motivate them? Or, if they did not succeed, what
were the reasons? On day 10, 90% of the participants (9 out of 10) completed the questionnaire.
Of these, 78% (7 out of 9) reported achieving their short term goal and indicated that the
recommendations had motivated them. The two participants who did not achieve their short-
term goal reported lifestyle-related or undisclosed limitations. At the end of the questionnaire,
participants were given the option to adjust their short- or long-term goal. However, all chose
to continue with their previous set goals.
On day 15, 70% of the participants (7 out of 10) answered the questionnaire. Of these, six
participants managed to successfully achieve their short-term goal. Once again, all participants
whishes to continue with their previous set goals.

As described previously, some of the participants improved their sleep habits after the first five
days. But did this improvement continue, and what do the overall results show?
Five days after receiving the first recommendation, 40% of the participants showed an improve-
ment in sleep duration. By day 15, five days after the second recommendation, this has increased
slightly to 44% (4 out of 9 participants, note p029 unintentionally stopped uploading data due
to being unable to open the application). However, once again, a misclassified sleep duration
affected the results. After correction, the actual number of participants who improved increases
to 55% (5 out of 9). An improvement in reported sleep quality was observed at 88% of the
participants (8 out of 9), with an average total quality score of 74.4. In terms of nighttime
disturbances, 66% of the participants (6 out of 9) reduced their number of toilet visits. Finally,
for 88% of the participants (8 out of 9), the number of nights in which they failed to fall asleep
within 30 minutes either decreased or was already at zero.

Misclassified sleep durations were mentioned on several occasions, but how many of these cases
can truly be considered misclassifications? To analyze this, several categories were defined
per participant: the total number of measurements, the number of times a fallback duration
was used, and the number of measurements where the reported bedtime and wake-up time
correspond to the measured duration within ± 45 minutes and ± 60 minutes. It is important
to note that only nights with actual measurements were considered for the matched categories,
fallback durations were excluded. These results are presented in Table 4.

24

Table 4: Sleep Duration Summary per Participant

Participant Total Nights Recorded Fallback Used Total Actual Measurements Matched ±45 min Matched ±60 min
p020 14 4 10 1 3
p021 14 1 13 5 6
p022 13 9 4 0 0
p023 15 1 14 7 8
p024 11 2 9 2 2
p025 14 3 11 5 7
p026 5 3 2 2 2
p027 13 4 9 5 5
p028 14 4 10 5 6
p029 9 8 1 1 1
p030 13 3 10 4 5
Total 135 42 93 37 45

A total of 135 sleep durations were collected, which is less than the expected 165 (11 participants
over 15 nights). This is because of various reasons: participant p026 voluntarily dropped out,
while p029 involuntary stopped uploading data due to a malfunctioning application. Participants
p022 and p024, both iOS users, experienced synchronization issues between their watch and the
application, resulting in missing nights. Finally, for participants with 13 or 14 nights, the last
night’s data was not uploaded successfully because access to the application was prematurely
revoked on the final day.
Of the 135 total sleep measurements, 42 were calculated via the fallback method. This occurred
when the Garmin JSON files lacked sufficient data for the algorithm to compute the sleep
duration. Either due to incomplete sensor input or no data at all, as was the case for p022’s
first 9 days. In such cases, the fallback method used the reported bedtime and wake-up time
instead.
This leaves 93 sleep durations based on actual measurements. Of these, only 39.8% (37 out of
93) matched the reported sleep duration within ± 45 minutes. When the threshold is extended
to ± 60 minutes, 48.4% (45 out of 93) can be considered accurate.

Figure 6: Sleep Measurements (Matched ±45 and ±45-60 min)

25

5.3 ADAPTIVE GOAL-SETTING: QUALITATIVE RESULTS (RESULTS OF
FOCUS GROUP

This analysis will be grouped into several themes. This way, shared experiences, perspectives on
specific categories and key concerns can be highlighted. A total of 10 participants (91%) partic-
ipated in the focus group sessions. There were three sessions, with two times four participants
and one session where there were two participants present.

Theme 1: Opinion on sleep goals

At the beginning of the focus group, participants were asked about their opinion on sleep goals.
70% of the participants mentioned that they did not have a specific goal, since they felt they
were already sleeping well or had other reasons. For example for p021 and p030:

I don’t think I need the tools. I don’t need someone telling me: you didn’t reach your
goals, or you have to do this or that. No, that’s not for me.

[p021]

Well, look. The question is whether you have a goal. I didn’t have a goal at all. I
had no goal to sleep longer or shorter, I just didn’t have a goal.
Look, I’m just participating because I want to help determine whether sleep is or
isn’t related to dementia or Parkinson’s. That’s what it’s about. That was my goal.
That’s why I joined.

[p030]

The other 30% did report to be working on their goals. This varied from drinking less in the
evenings, to reading books before bed, all to optimize the sleep conditions.
In addition to this theme, participants were asked which they found more reliable, the watch and
its data, or their own perception on sleep quality. For 40%, this question remained unanswered,
for 20% the watch is a significant improvement in tracking their sleep, since it knows way more
then they do. But 30% classified the watch not trustworthy. Their own opinion is best, regardless
of what the watch or application says.

If I feel that I’ve been lying awake for a long time and the watch says otherwise, then
I don’t trust the watch. My own sense of having slept poorly is more reliable.

[p028]

Theme 2: What kind of sleep goal is desired?

In the next question, participants were asked how they would prefer to set sleep related goals,
whether in terms of quality, duration, long-term or short-term objectives or another domain.
60% of participants were unable to provide a specific response. The other 40% varies from
setting a fixed bedtime, to avoiding the urge to fall asleep in a chair during the day, or simply
improving sleep quality.
One participant made a valuable note about the use of the word ’goal’, questioning whether it
was the appropriate term in this context:

Maybe it’s also a little bit semantics, because the word goal implies that you’re able
to organize yourself around it with the resources and to put the effort in. Sleeping
in itself is not something that I can force. The timing is about pretty much what I
can force. Preparation before, so, no screen time, no exciting things before bed, is
something that helps me fall asleep quickly. But the sleep itself... I go down on my

26

pillow and I wake up when I wake up. Pretty much. Which is normally around the
same time. There’s nothing I can organize, I’m sleeping. So, setting a sleep goal of
6 or 6 and a half or 7 or 7 and a half or eight, it’s pretty much out of my control.
Unless you’ve set an alarm clock that cuts off your sleep at 7:00 in the morning.
But that’s not really what I think you entice with setting goals. It would be better to
do something about conditions instead of goals. Because this is all conditions. The
condition to have a good sleep is to be healthy and not eat too late, to not do screen
time before. So all those conditions you can manage. Goals, however...

[p025]

In addition, over half of the participants (70%) agreed with the statement that setting specific
goals for sleep is nearly impossible. Unlike exercise, where progress can be trained, sleep is less
directly controllable. Participants found it more useful to focus on aspects they can influence,
such as bedtime routines, bedroom conditions, and sleep-related habits, rather than setting
strict performance goals for sleep itself.

Theme 3: Recommendations

In the next section participants were asked for their opinion on the recommendations provided
on days 5, 10 and 15. 60% of participants were expecting more numeric values and graphs. This
would have encouraged them more to work their goals:

For me, it’s important to understand what the recommendations and results are based
on. And if I feel that I understand myself better than the app does, then I’m less
likely to accept its advice.

[p026]

In addition, 30% had the idea that the recommendations were common formulated, it was all
very logical:

Sometimes I felt that the feedback I received was just based on what I had filled in.
Like, okay, great. For example, if I said that I had something to drink, then the
feedback would be: you shouldn’t drink so much.

[p020]

Lastly, participant p022 described the recommendations as too gentle. P022 expressed a pref-
erence for more direct and firm advice, clearly stating what should be changed, rather than
beating around the bush.

The follow-up question on the recommendations focused on 5-day feedback interval. Half of the
participants did not provide a specific or useful response. Among the remaining participants,
opinions varied, one found the 5-day interval sufficient, two preferred a weekly interval, another
would have liked daily feedback, and finally:

Well, I’d like a combination of daily feedback on your sleep, so you can see how
things are going, and then, every two weeks, higher-level feedback that summarizes
everything and gives advice. I’m a data person, so I enjoy seeing the details, but I’d
also want to see trends and get feedback on that. Let’s say a biweekly update that
includes progress on your goals and how your sleep behavior over the past fourteen
days has contributed, or not contributed, to achieving those goals. And maybe that
feedback could even suggest whether your current goal is suitable, or whether you
should consider a different one.

[p020]

27

Theme 4: Experience using the watch and the application

The OnePlanet Research mobile application, as well as the use of Garmin vívosmart® 5, are
relatively new. Since this is a feasibility study prior to a follow-up study, it is important to
identify any limitations, irritations, or possibilities for improvement in either the application or
the watch.
In this study, 4 out of 11 participants used an iPhone to connect the Garmin device to the
application. Manual synchronization was required for these users, which proved to be the hardest
part. For 3 out of 4 iPhone users, this manual synchronization process became an obstacle, which
led to one participant dropping out. The other two participants continued with the study,
but had their irritations. Specifically, the app does not provide a progress bar during manual
synchronizations. A pop-up appears and disappears when the synchronization is finished, but
because this synchronization could take up to an hour, or just fail, this lack of feedback was
undesired.
Additionally, the application’s home screen displayed the time of the last synchronization, but
this was often outdated, even immediately after manual syncing. This caused confusion and
stress among participants, who were unsure whether the issue was due to user error and what
actions, if any, they should take.
Besides that, two participants reported skin irritation of the wristband, which also occurred
to some researchers prior to the start of the study. In both cases, the irritation resolved after
switching the watch to the other wrist.
Additionally, it was not clear whether the questionnaires were completed or still had to be
answered, as completed questionnaires did not change color, show a timestamp when finished,
or disappear from the list. Furthermore, a few remarks were made on certain questions, being
poorly formulated.
Finally, one participant reported that the watch screen would light up during the middle of
the night due to movement, which disrupted their sleep. They resolved this by wearing a wrist
sweatband over the device to block the light.

Theme 5: Provided education on sleep

During the intake meeting, participants received educational information about how sleep works
and on factors influence it. However, three participants reported that they did not recall this
information and had not read it. One participant found the information sufficient, and another
reported it to be very useful and would have liked more detailed information. Those who did
not recall the provided education suggested that it should be provided (again) as part of the
first recommendation.

Theme 6: Impact on behavior

In this next section the participants are asked whether the recommendations and measurements
had impact on their behavior, did it alter their sleep habits or not? Two participants were
convinced the recommendations could alter someones habits, if you put the work in it:

For me, I think I have to answer this more hypothetically. I didn’t really have any
specific goals, so setting goals wasn’t really a result of receiving feedback. But hypo-
thetically, I do see the potential: when you combine actual measurements with your
own perception, you can receive quite personalized advice. Like, “This is what you
think, and this is what we observe.” Then you can try adjusting things—conditions
like stress, light, noise, or other factors—and see how that affects your sleep. That’s
the kind of insight you could get from an individual Garmin device, but also through
the collective app. The idea is that personal sleep outcomes might improve by making
small changes. Like going to bed a bit earlier, for example.

28

[p025]

On the other hand, one participant expressed doubts about the effectiveness of the recommen-
dations, noting that sleep habits have developed over many years. Finally, two participants
showed their interest in changing their behavior if necessary for their health, but noted that
they currently do not feel the urgency to do so.

Theme 7: Preference in sort of app

In this section, participants were asked wether they would prefer an application that automati-
cally adjusts their sleep goals, one that allows them to set their own goals based on suggestions
from the application, or one that lets them set goals based on their own experiences.
Two participants indicated a preference for an application that automatically adapts sleep goals.
However, these were not the same participants who trusted the application and watch to de-
termine their sleep quality. But p022, who previously described the recommendations as too
gentle, stated a preference for the app to take full control, as this would result in more direct
and firm advice.

I’d be interested in an app that tells me what’s best for me, based on both the data
it collects and my own perception. For example, it could suggest, “It’s best for you
to go to bed at this time.” Whether I follow that advice or not is up to me, the
app doesn’t control me. Maybe it says I should go to bed by midnight, but I stay up
until 2:00 AM because the movie was interesting. I’ll feel the consequences of that
choice the next day by being more tired. For me, optimal sleep might mean going
to bed around 11:30 or 12:00 and waking up around 7:00 or 7:30. But maybe that
changes, maybe it shifts by two hours depending on the season, like winter versus
summer. I don’t know, it could depend on sunlight. What I’d really like is an app
that combines personal data with general knowledge about healthy sleep, and tailors
recommendations to me.

[p025]

More than half of the participants (70%) preferred to set their own sleep goals, based on their
own experience and the recommendations of the application. While most of the participants
gave similar reasons for this preference, participant p020 provided a unique motivation:

In my own research, my motto is: “Machine control, human command.” That’s why
I believe in setting goals myself, based on suggestions from the app. The machine
measures everything, it knows much more than I do, it can detect things I can’t. And
based on that, it gives suggestions. But in the end, I’m the one who decides what to
do.

[p020]

Theme 8: Examples of other applications

In the final part of the focus group, participants reviewed example screenshots from various
health applications, showing different ways sleep data can be visualized. They commented
on features such as graphs of sleep stages and duration, sleep scores and long-term overviews
(weekly, monthly or yearly). Based on these examples, participants were then asked to name
three features they would most like to see implemented in the future versions of the application.
This section is answered by 9 participants, since one participant was unable to attend the full
focus group. Of these, participant p030 stated that he had no idea or preference in either one
of the features.

29

It’s really hard to answer. I don’t know what I find important in the different apps. I
don’t want to brush it off by saying I don’t want anything or something like that—but
I’m just not sure.

[p030]

Of the remaining eight participants, seven participants expressed their preference for graphs
showing the different sleep stages (REM, light, deep, and awake), along with a textual summary
of this information, such as shown in Figure 7 from the Garmin Connect App.

Figure 7: Example of Sleep Domain in Garmin Connect App [20]

Additionally, five participants expressed their preference for a white interface layout, similar to
that of the Fitbit application. Some participants also mentioned preferences in features such
as HR, (continuity in) breathing, and sleep scores, especially when combined with self-reported
sleep quality, as in this study.

30

6 DISCUSSION

This feasibility study aimed to assess the practical implementation of an adaptive goal-setting
feature for sleep in a mobile application designed for older adults. The study investigated both
technical and user-experience aspects of the application, as well as the implementation of the
adaptive goal-setting feature in the sleep domain. Overall, the findings suggest that the study
procedures were mostly feasible, and that the adaptive goal-setting feature holds promise for
promoting healthier sleep behavior. However, the results also revealed several challenges that
must be resolved before proceeding to a follow-up study. The focus group sessions made clear
that the majority preferred behavior-based recommendations over rigid sleep duration goals.
But only a minority of the participants actively engaged with the recommendations, likely due
to limited motivation to change their sleep habits, which highlights the need for more targeted
inclusion criteria.
Additionally, multiple usability issues emerged, such as synchronization fails and interface confu-
sion, which negatively influenced the user experience. Finally, algorithmic limitations and data
mismatches led to potential benefits of switching from Garmin Health SDK to a possibly more
reliable system like the Garmin Health API, although this would entail trade-offs regarding data
transparency and the benefit of custom algorithms. Taken together, these insights offer valuable
input to refine both the technological implementation and the adaptive goal-setting feature in
future work.

To start, recruitment went relatively well. We aimed to recruit 15 participants and initially
succeeded in doing so. However, due to the postponement of the study, four participants with-
drew because of holiday plans. Recruitment through local sports associations with large adult
memberships proved the most effective strategy, as all 15 participants were recruited through
this method, no other methods were used. Therefore, it is unknown whether alternative recruit-
ment strategies can be effective. Furthermore, the inclusion criteria required the participants
to be healthy, in terms of quality, duration, or habits. As a result, 70% of the participants
(7 out of 10) mentioned during the focus group that they did not have a specific sleep-related
goal or intrinsic motivation to change their habits. This lack of engagement may had impact
on the effectiveness and relevance of the study. Therefore, adding a criterion that participants
should show willingness or intention to improve their sleep could help the overall impact of the
follow-up study.
Retention during the study was acceptable, with 82% of enrolled participants (9 out of 11,
excluding the four who withdrew before the start) completing the study. This suggests an
acceptable level of engagement and acceptability. The two dropouts were due to technical diffi-
culties with the application. In addition to these two, two others also reported frustration when
using the application on multiple domains, which highlights the importance of improving the
application for the follow-up study.

The purpose of this study was to evaluate the practical implementation of the adaptive goal-
setting feature within the sleep domain, focusing on both the functioning of the algorithm and
the user experience with the application. As discussed in Chapter 5.3, 70% of the participants (7
out of 10) expressed their preference for receiving recommendations to adjust their sleep-related

31

habits and conditions, rather than being given direct goals such as a specific sleep duration. This
suggests that implementing the adaptive goal-setting feature to directly increase sleep duration
may be less effective. Instead, a more feasible approach may be to use the feature to slowly
adapt sleep-related behavior to improve sleep quality over time.
Although the recommendations provided to the participants did include sleep duration as a
goal, they also provided generic advice to improve sleep-related habits and conditions as well.
For some participants (27%, 3 out of 11), the recommendations helped, as they actively made
changes to their routines and habits to improve their sleep. This indicates that behavior-based
recommendations could be helpful for sleep improvement.
On the other hand, the ultimate aim of the MOCIA project is to maintain or enhance cognitive
health, which is linked to sleep duration. Adjusting your sleep conditions and habits may result
in falling asleep more easily and have fewer nightly awakenings, but the overall improvement in
total sleep duration may be limited (e.g. around 30 minutes). This could be a first step, but to
effectively support cognitive health, an increase in overall sleep duration may still be necessary,
assuming it is not already at an acceptable level. Therefore, it may be important to keep sleep
duration as part of the recommendations.

During this study, multiple unforeseen usability issues became clear, that provide important
insights for improving. One participant, for example, reported multiple disturbances during
their first night wearing the watch due to the screen lighting up during movement. This issue
was resolved by covering the watch with a wrist sweatband, a simple but effective solution.
Therefore, wrist sweatbands could be given to participants during intake meetings in the follow-
up study.
It was already known that iPhone users were required to manually synchronize the watch.
However, an unexpected issues presented itself. In some cases, synchronizing took several hours,
as mentioned in Chapter 5.3. This needs to be resolved, and an additional improvement would
be to add a progress bar to the synchronization pop-up.
The application’s home screen also displayed the time of the last synchronization. This was often
outdated, and caused stress and confusion among participants. Therefore, it is recommended to
resolve this issue or remove this feature.
Another usability issue problem involed the questionnaire overview. As discussed in Chapter
5.3, completed questionnaires remained visible and unchanged in the list. This caused confusion
among participants, and should be resolved.
All together, these issues highlight a significant number of required improvements for the ap-
plication. The OnePlanet Research mobile application connects to the Garmin vívosmart® 5
via Garmin Health SDK, allowing the use of a custom made algorithm developed by imec NL
and providing access to sensor data. However, as mentioned above, this application and its
algorithm still have some flaws that need to be resolved before continuing with the follow-up
study.
A different approach would be to replace the Garmin Health SDK with the Garmin Health
API. This way the participants connect their Garmin vívosmart® 5 to the Garmin Connect
application. The data would then become accessible through the Health API, removing the
need for the OnePlanet Research application for synchronization. This would enhance the user
experience and reduce technical issues.
With this alternative, the algorithm developed by imec NL for this study would no longer be
strictly necessary, but it could still be useful. When using the Garmin Health API, HRV data
is no longer included in the JSON files extracted from the watch. Since the algorithm relies
on HRV as one of its inputs, this would be a limitation. However, the algorithm is designed to
function even without HRV, using HR ad step data instead. Therefore, it could still be used,
but with less detailed input.
Alternatively, sleep data collected via Garmin Connect could also be processed by a new or mod-

32

ified custom algorithm, which combines sleep metrics with reported sleep quality and provides
recommendations through a separate application developed by Vivica. The questionnaires used
to collect perceived sleep quality could be implemented into this same application, making the
use of the OnePlanet Research mobile application unnecessary.
An additional benefit of using Garmin Connect is its interface and features. As mentioned in
group, Chapter 5.3, 78% of the participants (7 out of 9) expressed their preference for graphs
and interfaces, such as shown in Figure 7.
However, there are potential downsides to this solution. Participants might have to install
and manage three different mobile applications, which could negatively impact user experience
and engagement. Besides that, fully using the Garmin Health API and their algorithms for the
Garmin Connect application would result in less insights into how sleep durations are calculated.
These parts would become a ”black box”, making it hard to understand or validate the outcomes.
Issues regarding the accuracy of the custom algorithm also became clear. In this study, whilst
using the Garmin Health SDK and the custom algorithm, only 39.8% of the algorithm-generated
sleep durations matched participants’ self-reported durations within ±45 minutes. Several fac-
tors may explain this low correspondence, including false answers in self-reports and flaws in the
algorithm. Additionally, the algorithm failed to return sleep data in 31.1% of the measurements
(42 out of 135), which is most likely due to insufficient data in the JSON files. However, at this
point, it is unknown what causes the absence of required data in the JSON files, and whether
this solely affects the Garmin Health SDK, or the Garmin Health API as well. Additionally, for
the 56 sensor-based measurements that fell outside the ± 45 minutes margin, the exact reasons
for these mismatches remain unclear. Understanding these mismatches would require a detailed
analysis of each individual night, as well as the use of a more reliable validation method than
self-reported bedtimes and wake-up times. This would allow for a proper validation of the al-
gorithm’s performance and help determine whether it remains suitable when using the Garmin
Health API, or if switching to Garmin’s own algorithm would be more beneficial despite the
potential disadvantages.
If the current setup with the custom algorithm and Garmin Health SDK is maintained and its
technical issues resolved, future work could also focus on enhancing the algorithm by implement-
ing machine learning. This could improve both the accuracy of sleep detection and personalized
recommendations [38].

Finally, the final sample size of 11 participants was sufficient for the initial feasibility study,
but smaller than the intended 15. A larger sample would have reduced the relative impact of
dropouts on the overall results. On the other hand, they did report useful insights for further
improvements. Additionally, the study duration was shortened from the originally planned four
weeks to 15 days. This limited time frame may have limited the participants’ ability to adjust
their behavior or to observe trends in the data. Several participants reported during the focus
group sessions that a longer period, and a weekly interval for receiving recommendations, would
have been better for the study.

For future work, it is important to distinguish between short-term improvements that can be
implemented immediately and long-term tasks that require more extensive improvements. One
immediate improvement is to refine the inclusion criteria to better target participants who are
motivated to change their sleep habits. Additionally, several factors of the intake meeting can
be improved. For example, participants could be provided with wrist sweatbands to block
light emitted by the watch at night whilst moving, and the introduction to the provided sleep
education could be improved. This education could also be provided multiple times throughout
the study.
The duration of a feasibility study should be extended to at least four weeks, with eight weeks
being preferable, with a weekly recommendation and daily insights in their progress. For a larger

33

follow-up study, an even longer duration is recommended to allow enough time for behavioral
changes to occur and trends to emerge.
In short term, the application could be improved by integrating more visual and numerical
elements, such as graphs and data visualizations, which are highly recommended by participants.
Moreover, the recommendations provided by the algorithm should be made more personalized
and less repetitive to maintain user engagement.
If the OnePlanet Research mobile application continues to be used, it may be advisable to
exclude iPhone users or provide them with Android devices, since this is presumably a difficult
issue to resolve. This would help reduce technical issues and allow participants to focus on the
study rather than on technical difficulties.
In the longer term, further investigation is needed to validate the algorithm developed by imec
NL if it continues to be used. Additionally, the potential of using the Garmin Health API
and Garmin’s algorithm should be evaluated with a similar feasibility study. It is important to
assess whether the potential benefits of switching to the Garmin Health API and their algorithm
outweigh the limitations or whether continued use of the imec NL algorithm in combination with
the Garmin Health API represents the optimal solution.

34

7 CONCLUSION

This feasibility study assessed the practical implementation of an adaptive goal-setting feature
for sleep improvement within a mobile application for older adults. Overall, the results suggest
that it is feasible, but various improvements are necessary before continuing with a follow-up
study. Recruitment was initially successful, although the reduced sample size and study duration
limited the ability to observe behavioral change. Participants reported a preference for sleep
recommendations focused on habits and conditions, rather than fixed goals like sleep duration.
This highlights the importance of personalized feedback to what users can actually control.
Analysis of the Garmin vívosmart® 5 data and the custom algorithm developed by imec NL
showed that 69% of the nights (93 out of 135) were based on actual sensor-based measurements.
However, only 40% of these measurements matched the individual sleep duration goals within a
± 45 minute margin, emphasizing the need for further validation of the algorithm. On a more
positive note, three participants showed improvement across all assessed domains, including
increased sleep consistency, better perceived sleep quality, fewer nightly awakenings, and a higher
rate of falling asleep within 30 minutes. An additional five participants showed improvements
in most, but not all, domains.
Qualitative feedback from the focus group also provided valuable insights into participant pref-
erences, particularly regarding desired sleep duration, user experience with the application, data
visualizations, and the effectiveness of the recommendations.
Future work should focus on several main domains. First, inclusion criteria should better target
participants who are motivated to improve their sleep. Second, usability can be improved by
offering wrist sweatbands, improving sleep education and extending the study duration to at
least four to eight weeks. Short-term improvements include adding more personalized recom-
mendations and integrating visualizations in the application. Finally, further validation of the
imec NL algorithm is needed, as well as a evaluation of the Garmin Health API to determine
the most effective and user-friendly setup.

35

REFERENCES

[1] Alzheimer Nederland. Feiten en cijfers over dementie, 3 2025.

[2] 2024 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 20(5):3708–3821, 5
2024.

[3] Christophe’ ’Bintener, Owen’ ’Miller, and Jean’ ’Georges. Dementia in Europe Yearbook
2019. Technical report, Alzheimer Europe, Luxembourg, 2019.

[4] Eurostat. Ageing Europe, 4 2025.

[5] Liesi E. Hebert, Jennifer Weuve, Paul A. Scherr, and Denis A. Evans. Alzheimer disease in
the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19):1778–
1783, 5 2013.

[6] David B. Reuben, Sarah Kremen, and Donovan T. Maust. Dementia Prevention and Treat-
ment. JAMA Internal Medicine, 184(5):563, 5 2024.

[7] Edwin A. Locke. Toward a theory of task motivation and incentives. Organizational Be-
havior and Human Performance, 3(2):157–189, 5 1968.

[8] Edwin A. Locke and Gary P. Latham. Building a practically useful theory of goal setting
and task motivation: A 35-year odyssey. American Psychologist, 57(9):705–717, 9 2002.

[9] Edwin A Locke and Gary P Latham. A theory of goal setting & task performance. Prentice-
Hall, Inc, Englewood Cliffs, NJ, US, 1990.

[10] Maurice M. Ohayon, Mary A. Carskadon, Christian Guilleminault, and Michael V. Vi-
tiello. Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in
Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan. Sleep,
27(7):1255–1273, 10 2004.

[11] Siegwart Lindenberg and Linda Steg. Normative, Gain and Hedonic Goal Frames Guiding
Environmental Behavior. Journal of Social Issues, 63(1):117–137, 3 2007.

[12] Ian Li, Anind Dey, and Jodi Forlizzi. A stage-based model of personal informatics systems.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
557–566, New York, NY, USA, 4 2010. ACM.

[13] Julia F Dewald, Anne M Meijer, Frans J Oort, Gerard A Kerkhof, and Susan M Bögels. The
influence of sleep quality, sleep duration and sleepiness on school performance in children
and adolescents: A meta-analytic review. Sleep Medicine Reviews, 14(3):179–189, 2010.

[14] Émilie Fortier-Brochu, Simon Beaulieu-Bonneau, Hans Ivers, and Charles M Morin. In-
somnia and daytime cognitive performance: A meta-analysis. Sleep Medicine Reviews,
16(1):83–94, 2012.

36

[15] Omonigho M. Bubu, Michael Brannick, James Mortimer, Ogie Umasabor-Bubu, Yuri V.
Sebastião, Yi Wen, Skai Schwartz, Amy R. Borenstein, Yougui Wu, David Morgan, and
William M. Anderson. Sleep, Cognitive impairment, and Alzheimer’s disease: A Systematic
Review and Meta-Analysis. Sleep, 40(1), 1 2017.

[16] Katie Moraes de Almondes, Mônica Vieira Costa, Leandro Fernandes Malloy-Diniz, and
Breno Satler Diniz. Insomnia and risk of dementia in older adults: Systematic review and
meta-analysis. Journal of Psychiatric Research, 77:109–115, 2016.

[17] Mark Conner, Sarah Wilding, Andrew Prestwich, Russell Hutter, Robert Hurling, Frenk van
Harreveld, Charles Abraham, and Paschal Sheeran. Goal prioritization and behavior
change: Evaluation of an intervention for multiple health behaviors. Health Psychology,
41(5):356–365, 5 2022.

[18] Miguel Marino, Yi Li, Michael N. Rueschman, J. W. Winkelman, J. M. Ellenbogen, J. M.
Solet, Hilary Dulin, Lisa F. Berkman, and Orfeu M. Buxton. Measuring Sleep: Accuracy,
Sensitivity, and Specificity of Wrist Actigraphy Compared to Polysomnography. Sleep,
36(11):1747–1755, 11 2013.

[19] Vincent T. van Hees, Séverine Sabia, Kirstie N. Anderson, Sarah J. Denton, James Oliver,
Michael Catt, Jessica G. Abell, Mika Kivimäki, Michael I. Trenell, and Archana Singh-
Manoux. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn
Accelerometer. PLOS ONE, 10(11):e0142533, 11 2015.

[20] Garmin. Garmin Health Science Advanced Sleep Monitoring.

[21] Garmin. Garmin Connect Developer Program.

[22] Rollin Mccraty and Fred Shaffer. Heart Rate Variability: New Perspectives on Physiological
Mechanisms, Assessment of Self-regulatory Capacity, and Health Risk. Global Advances in
Health and Medicine, 4(1):46–61, 1 2015.

[23] Phyllis K. Stein and Yachuan Pu. Heart rate variability, sleep and sleep disorders. Sleep
Medicine Reviews, 16(1):47–66, 2 2012.

[24] Philippe Boudreau, Wei-Hsien Yeh, Guy A. Dumont, and Diane B. Boivin. Circadian
Variation of Heart Rate Variability Across Sleep Stages. Sleep, 36(12):1919–1928, 12 2013.

[25] Danguolė ŽEmaitytė, Giedrius Varoneckas, and Eugene Sokolov. Heart Rhythm Control
During Sleep. Psychophysiology, 21(3):279–289, 5 1984.

[26] Garmin. Garmin vívosmart 5.

[27] Richard M. Ryan and Edward L. Deci. On Happiness and Human Potentials: A Review of
Research on Hedonic and Eudaimonic Well-Being. Annual Review of Psychology, 52(1):141–
166, 2 2001.

[28] Alan S. Waterman. Two conceptions of happiness: Contrasts of personal expressiveness (eu-
daimonia) and hedonic enjoyment. Journal of Personality and Social Psychology, 64(4):678–
691, 4 1993.

[29] Antonella Delle Fave, Ingrid Brdar, Teresa Freire, Dianne Vella-Brodrick, and Marié P.
Wissing. The Eudaimonic and Hedonic Components of Happiness: Qualitative and Quan-
titative Findings. Social Indicators Research, 100(2):185–207, 1 2011.

[30] Veronika Huta. An overview of hedonic and eudaimonic well-being concepts. 4 2015.

37

[31] Jasmin Niess and Paweł W. Woźniak. Supporting Meaningful Personal Fitness. In Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–12,
New York, NY, USA, 4 2018. ACM.

[32] Nikita Sharma. Sensing the care: advancing unobtrusive sensing solutions to support infor-
mal caregivers of older adults with cognitive impairment. PhD thesis, University of Twente,
Enschede, The Netherlands, 2 2024.

[33] Sang-Woo Jeong, Sun-Hwa Kim, Si-Hyuck Kang, Hee-Jun Kim, Chang-Hwan Yoon, Tae-
Jin Youn, and In-Ho Chae. Mortality reduction with physical activity in patients with and
without cardiovascular disease. European Heart Journal, 40(43):3547–3555, 11 2019.

[34] Garmin. Garmin Support.

[35] Jared Weintraub, David Cassell, and Thomas P. DePatie. Nudging flow through ‘SMART’
goal setting to decrease stress, increase engagement, and increase performance at work.
Journal of Occupational and Organizational Psychology, 94(2):230–258, 6 2021.

[36] Daniel J. Buysse, Charles F. Reynolds, Timothy H. Monk, Susan R. Berman, and David J.
Kupfer. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and
research. Psychiatry Research, 28(2):193–213, 5 1989.

[37] Fabian Theurl, Michael Schreinlechner, Nikolay Sappler, Michael Toifl, Theresa Dolejsi, Flo-
rian Hofer, Celine Massmann, Christian Steinbring, Silvia Komarek, Kurt Mölgg, Benjamin
Dejakum, Christian Böhme, Rudolf Kirchmair, Sebastian Reinstadler, and Axel Bauer.
Smartwatch-derived heart rate variability: a head-to-head comparison with the gold stan-
dard in cardiovascular disease. European Heart Journal - Digital Health, 4(3):155–164, 6
2023.

[38] Elliot G. Mitchell, Elizabeth M. Heitkemper, Marissa Burgermaster, Matthew E. Levine,
Yishen Miao, Maria L. Hwang, Pooja M. Desai, Andrea Cassells, Jonathan N. Tobin,
Esteban G. Tabak, David J. Albers, Arlene M. Smaldone, and Lena Mamykina. From
Reflection to Action: Combining Machine Learning with Expert Knowledge for Nutrition
Goal Recommendations. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing
Machinery.

38

A DAILY QUESTIONNAIRE (ENGLISH)

1. How would you rate the quality of your sleep during the past 24 hours? Consider how
many hours you slept, how easily you fell asleep, how often you woke up during the night,
whether you woke up too early, and how refreshing your sleep was.
(Visual Analog Scale: 0–10, where 0 = very poor, 10 = very good)

2. Did you have trouble falling asleep because you were awake for more than 30 minutes
before falling asleep?
(Options: Yes / No)

3. How much trouble did you have today with having enough motivation or enthusiasm to
do things?
(Options: No problem at all / A little problem / Somewhat of a problem / Quite a problem
/ A major problem)

4. What time did you go to bed?
(Time input)

5. What time did you get out of bed?
(Time input, between 03:00 and 15:00)

6. Did you have trouble sleeping last night because you woke up during the night or early
morning (e.g., to use the bathroom)? If yes, how many times?
(Options: Not at all / Once / Twice / Three times / More than three times)

7. How much time were you awake in total after waking up during the night (e.g., to use the
bathroom)?
(Numeric input in minutes)

39

B DAILY QUESTIONNAIRE (NEDERLANDS)

1. Hoe zou u de kwaliteit van uw slaap in de afgelopen 24 uur beoordelen?
(VAS 0–10, 0 = zeer slecht, 10 = zeer goed)

2. Had u afgelopen nacht moeite met slapen omdat u langer dan 30 minuten wakker lag
voordat u in slaap viel?
(Keuze: Ja / Nee)

3. Hoeveel problemen ervaarde u de afgelopen dag met genoeg zin / enthousiasme te hebben
om dingen te doen?
(Keuze: Helemaal geen probleem / Een klein beetje een probleem / Enigszins een probleem
/ Behoorlijk een probleem / Een groot probleem)

4. Hoe laat bent u in bed gaan liggen?
(Tijdsinvoer)

5. Hoe laat bent u uit bed gegaan?
(Tijdsinvoer tussen 03:00 en 15:00)

6. Had u afgelopen nacht moeite met slapen omdat u ’s nachts of in de vroege ochtend wakker
werd (bijvoorbeeld om naar het toilet te gaan)? Zo ja, hoe vaak?
(Keuze: Niet / Een keer / Twee keer / Drie keer / Meer dan drie keer)

7. Hoe lang bent u in totaal ’s nachts wakker geweest nadat u wakker bent geworden, bi-
jvoorbeeld om naar de wc te gaan?
(Numerieke invoer in minuten)

40

C PSQI QUESTIONNAIRE (ENGLISH)

1. During the past month, what time have you usually gone to bed?
(Time input)

2. How long (in minutes) has it usually taken you to fall asleep?
(Numeric input)

3. What time have you usually gotten up in the morning?
(Time input between 03:00 and 15:00)

4. How many hours of actual sleep did you get at night? (This may differ from the number
of hours spent in bed.)
(Numeric input)

a–j) How often during the past month have you had trouble sleeping because of the following
reasons?
(Options: Not during the past month / Less than once a week / Once or twice a week /
Three or more times a week)

a) Could not fall asleep within 30 minutes
b) Woke up in the middle of the night or early morning
c) Had to get up to use the bathroom
d) Could not breathe comfortably
e) Coughed or snored loudly
f) Felt too cold
g) Felt too hot
h) Had bad dreams
i) Had pain
j) Other reason (optional: specify)

5. During the past month, how would you rate your overall sleep quality?
(Options: Very good / Fairly good / Fairly bad / Very bad)

6. How often did you take medicine (prescribed or over-the-counter) to help you sleep?
(Same frequency options as above)

7. How often have you had trouble staying awake while driving, eating meals, or engaging in
social activity?
(Same frequency options as above)

8. How much trouble did you have with enthusiasm or motivation to get things done?
(Options: No problem / A little problem / Somewhat of a problem / A big problem)

41

9. Do you have a bed partner or roommate?
(Options: No / Partner in another room / Partner in same room, different bed / Partner
in same bed)

10a–10e) If yes: Ask your partner or roommate how often you have...

a) Snored loudly
b) Had long pauses between breaths while sleeping
c) Had leg movements or jerking during sleep
d) Appeared confused or disoriented during sleep
e) Shown other types of restlessness (optional: describe)

42

D PSQI QUESTIONNAIRE (NEDERLANDS)

1. Hoe laat bent u gewoonlijk naar bed gegaan in de afgelopen maand?
(Tijdsinvoer)

2. Hoe lang (in minuten) duurde het meestal voordat u in slaap viel?
(Numerieke invoer)

3. Hoe laat bent u gemiddeld opgestaan in de ochtend?
(Tijdsinvoer tussen 03:00 en 15:00)

4. Hoeveel uur heeft u gemiddeld daadwerkelijk geslapen per nacht? (Dit kan verschillen van
het aantal uren dat u in bed lag.)
(Numerieke invoer)

a–j) Hoe vaak had u in de afgelopen maand moeite met slapen vanwege de volgende redenen?
(Opties: Niet gedurende deze maand / Minder dan 1 keer per week / 1–2 keer per week /
3 of meer keren per week)

a) Kon niet binnen 30 minuten in slaap vallen
b) Werd wakker midden in de nacht of te vroeg in de ochtend
c) Moest naar het toilet
d) Kon niet goed ademhalen
e) Hoestte of snurkte luid
f) Had het te koud
g) Had het te warm
h) Had nare dromen
i) Had pijn
j) Andere reden (optioneel: specificeren)

5. Hoe zou u uw algemene slaapkwaliteit beoordelen over de afgelopen maand?
(Opties: Heel goed / Redelijk goed / Redelijk slecht / Heel slecht)

6. Hoe vaak heeft u slaapmedicatie genomen om in slaap te komen? (Voorgeschreven of zelf
gekocht bij apotheek/drogist)
(Zelfde antwoordopties als hierboven)

7. Hoe vaak had u moeite om wakker te blijven tijdens autorijden, eten of sociale activiteiten?
(Zelfde antwoordopties als hierboven)

8. Hoeveel moeite had u met enthousiasme of motivatie om dingen te doen gedurende de
dag?
(Opties: Helemaal geen probleem / Klein probleem / Enigszins een probleem / Groot
probleem)

43

9. Heeft u een bedpartner of kamergenoot?
(Opties: Geen / Partner in andere kamer / Partner in zelfde kamer, ander bed / Partner
in zelfde bed)

10a–10e) Indien ja: Vraag uw partner of kamergenoot hoe vaak u...

a) Luid snurkte
b) Pauzes tussen ademhalingen had tijdens het slapen
c) Bewegingen of schokken met de benen had tijdens het slapen
d) Gedesoriënteerd of verward leek tijdens het slapen
e) Andere vormen van onrust vertoonde tijdens het slapen (optioneel: beschrijven)

44

E DAY 5 QUESTIONNAIRE (ENGLISH)

1. Do you use digital lifestyle apps? Think of apps that help with exercise, mindfulness,
nutrition, sleep, etc.
(Open-ended)

2. Have you previously set goals using such an app? If so, in which domains?
(Open-ended)

3. Specify: What would you like to improve about your sleep?
(Open-ended)

4. Measurable: How will you track your progress?
(Open-ended)

5. Achievable: What small steps will help you reach this goal?
(Open-ended)

6. Realistic: Why is this goal important to you?
(Open-ended)

7. Time-bound: When do you want to achieve this goal?
(Open-ended)

8. Which specific aspects of your sleep quality would you like to improve?
(Open-ended)

9. Write down your own short-term sleep goal(s).
(Open-ended)

10. Write down your own long-term sleep goal(s).
(Open-ended)

45

F DAY 5 QUESTIONNAIRE (NEDERLANDS)

1. Gebruikt u digitale leefstijlapps? Denk hierbij aan apps die u helpen om te sporten,
mindfulness, voeding, slaap, etc.
(Open vraag)

2. Heeft u eerder doelen gesteld met zo’n app? Zo ja, in welke gebieden?
(Open vraag)

3. Specificeer: Wat wilt u verbeteren aan uw slaap?
(Open vraag)

4. Meetbaar: Hoe houdt u uw voortgang bij?
(Open vraag)

5. Acceptabel: Welke kleine stappen gaan u helpen dit doel te behalen?
(Open vraag)

6. Realistisch: Waarom is dit doel belangrijk voor u?
(Open vraag)

7. Tijdgebonden: Wanneer wilt u dit doel bereiken?
(Open vraag)

8. Welke specifieke aspecten van uw slaapkwaliteit wilt u verbeteren?
(Open vraag)

9. Schrijf uw eigen korte termijn doel(en) op.
(Open vraag)

10. Schrijf uw eigen lange termijn doel(en) op.
(Open vraag)

46

G DAY 10 QUESTIONNAIRE (ENGLISH)

1. Were you able to maintain your short-term sleep goal?
(Open-ended)

2. Did tracking your progress help you stay motivated?
(Open-ended)

3. What prevented you from maintaining your goal?
(Open-ended)

4. Would you like to adjust your short- and/or long-term sleep goals?
(Open-ended)

5. Write your new short-term sleep goal(s). (Leave blank if no changes)
(Open-ended)

6. Write your new long-term sleep goal(s). (Leave blank if no changes)
(Open-ended)

47

H DAY 10 QUESTIONNAIRE (NEDERLANDS)

1. Is het u gelukt om uw korte termijn slaapdoel vol te houden?
(Open vraag)

2. Heeft het bijhouden van uw voortgang u geholpen om gemotiveerd te blijven?
(Open vraag)

3. Wat heeft u ervan weerhouden om uw doel vol te houden?
(Open vraag)

4. Wilt u uw korte en/of lange termijn slaapdoel aanpassen?
(Open vraag)

5. Schrijf uw nieuwe korte termijn doel(en) op. (Indien u uw korte termijn doel niet wilt
aanpassen, hoeft u niets in te vullen)
(Open vraag)

6. Schrijf uw nieuwe lange termijn doel(en) op. (Indien u uw lange termijn doel niet wilt
aanpassen, hoeft u niets in te vullen)
(Open vraag)

48

I DAY 15 QUESTIONNAIRE (ENGLISH)

1. Were you able to reach your short-term sleep goal?
(Open-ended)

2. Would you be interested in continuing to practice sleep goals after the study?
(Open-ended)

3. Would you like to set a new or updated goal?
(Open-ended)

4. Write your new short-term sleep goal(s). (Leave blank if no changes)
(Open-ended)

5. Write your new long-term sleep goal(s). (Leave blank if no changes)
(Open-ended)

49

J DAY 15 QUESTIONNAIRE (NEDERLANDS)

1. Is het u gelukt om uw korte termijn slaapdoel te bereiken?
(Open vraag)

2. Zou u geïnteresseerd zijn om na het onderzoek door te gaan met het oefenen van slaap-
doelen?
(Open vraag)

3. Wilt u een nieuw of aangepast doel stellen?
(Open vraag)

4. Schrijf uw nieuwe korte termijn doel(en) op. (Indien u uw korte termijn doel niet wilt
aanpassen, hoeft u niets in te vullen)
(Open vraag)

5. Schrijf uw nieuwe lange termijn doel(en) op. (Indien u uw lange termijn doel niet wilt
aanpassen, hoeft u niets in te vullen)
(Open vraag)

50

K ALGORITHM - PYTHON SCRIPT - GARMIN
DATA AND SUBJECTIVE DATA

Listing K.1: HRV analysis code
1 #Copyright (c), 2025, OnePlanet Research Center & University of Twente
2

3 # Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

4

5 # The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

6

7 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8

9

10 import json
11 import math
12 import os
13 import shutil
14 from datetime import datetime, timedelta
15 from io import BytesIO
16 from zipfile import ZipFile
17 import numpy as np
18 import pandas as pd
19 import pytz
20 import matplotlib.pyplot as plt
21 import matplotlib.dates as mdates
22 import scipy.signal
23 from azure.storage.blob import BlobServiceClient
24 from scipy.signal import butter, filtfilt
25

26

27 class Garmin:
28 def __init__(self, account_url, sas_token):
29 self.blob_service_client = BlobServiceClient(account_url=account_url,

credential=sas_token)
30

31 def getAllBlobNames(self, containerSubject="participants"):

51

32 container_client = self.blob_service_client.get_container_client(container=
containerSubject)

33 blob_names_list = list(container_client.list_blob_names())
34 sensordata_blob_names = [i for i in blob_names_list if "sensordata" in i]
35 garmin_blob_names = [i for i in blob_names_list if "garmindata" in i]
36 return sensordata_blob_names, garmin_blob_names
37

38 def getNewBlobNames(self, sensordata_blob_list, garmin_blob_list):
39 sensordata_folders = list(set([i.split("/")[-1].split(".")[0] for i in

sensordata_blob_list]))
40 garmindata_folders = list(set([i.split("/")[-2] for i in garmin_blob_list]))
41 newFolders = list(set(sensordata_folders) - set(garmindata_folders))
42 newBlobs = [i for i in sensordata_blob_list if i.split("/")[-1].split(".")[0]

in newFolders]
43 return newBlobs
44

45 def unzipGarminFiles(self, blob_names_list, subjectID, containerSubject="
participants"):

46 # This gets all the blob names from Azure
47 container_client = self.blob_service_client.get_container_client(container=

containerSubject)
48 # temporary_local_path = os.getcwd() + "/zips"
49 # os.makedirs(temporary_local_path)
50 for blob_name in blob_names_list:
51 blob_client = self.blob_service_client.get_blob_client(container=

containerSubject,
52 blob=blob_name)
53 with BytesIO() as input_blob: # Writes data to a temporary file
54 blob_client.download_blob().readinto(input_blob)
55 input_blob.seek(0) # This can, I think, be removed...
56 with ZipFile(input_blob, 'r') as zipObj:
57 zip_names = zipObj.namelist()
58 zip_names = [i for i in zip_names if ".json" in i]
59 print(zip_names)
60 for zipname in zip_names:
61 data = zipObj.read(zipname)
62 filename = subjectID + "/garmindata/" + zipname
63 blob_client = self.blob_service_client.get_blob_client(container=

containerSubject,
64 blob=filename)
65 blob_client.upload_blob(data, overwrite=True)
66

67 # zipObj.extractall(temporary_local_path)
68 # datafolder = os.listdir(temporary_local_path)[0]
69 # folder_path = temporary_local_path + "/" + datafolder
70 # datafile_list = os.listdir(folder_path)
71 # for datafile in datafile_list:
72 # file_path = folder_path + "/" + datafile
73 # datafile_name = "/" + datafile
74 # new_blob_name = blob_name.replace("sensordata", "garmindata")
75 # new_blob_name = new_blob_name.replace(".zip", datafile_name)
76 # with open(file=file_path, mode="rb") as data:
77 # container_client.upload_blob(name=new_blob_name, data=data,

overwrite=True)
78 # shutil.rmtree(folder_path)
79 # shutil.rmtree(temporary_local_path)
80 garmin_blob_names = []
81 for folder in [i.split("/")[-1].split(".")[0] for i in blob_names_list]:

52

82 start_string = subjectID + "/garmindata/" + folder
83 garmin_blob_names = (garmin_blob_names +
84 list(container_client.list_blob_names(name_starts_with=

start_string)))
85 return garmin_blob_names
86

87 def getOperatingSystem(self, blobName):
88 filename = blobName.split('/')[-1]
89 if filename[0].isnumeric():
90 return "android"
91 elif not filename[0].isnumeric():
92 return "ios"
93 else:
94 return "unknown_os"
95

96 def getMetsIos(self, activityList):
97 METS_dict = {"sedentary": 1.4,
98 "standing": 1.6,
99 "generic": 1.6,

100 "walking": 3.5,
101 "cycling": 7.0,
102 "running": 9.0}
103

104 metsList = [METS_dict[i] for i in activityList]
105 return metsList
106

107 def getMetsAndroid(self, activityList):
108 METS_dict = {"SEDENTARY": 1.4,
109 "GENERIC": 1.6,
110 "WALKING": 3.5,
111 "CYCLING": 7.0,
112 "RUNNING": 9.0}
113

114 metsList = [METS_dict[i] for i in activityList]
115 return metsList
116

117 def readWellnessIos(self, inputBlob):
118 wellnessData = json.load(inputBlob)
119 checks = ['heartRate', 'steps', 'distance', 'ascent', 'descent', '

moderateActivityMinutes',
120 'vigorousActivityMinutes', 'intensity', 'totalCalories', '

activeCalories']
121 tsList = [i['startTime'] for i in wellnessData if all([x in i for x in checks])

]
122 hrList = [i['heartRate'] for i in wellnessData if all([x in i for x in checks])

]
123 stepsList = [i['steps'] for i in wellnessData if all([x in i for x in checks])]
124 descriptionList = [i['description'] for i in wellnessData if all([x in i for x

in checks])]
125 activityListRaw = [i.split("activityType: ")[-1] for i in descriptionList]
126 activityListRaw = [i.split(" ")[0] for i in activityListRaw]
127 if any(["\n" in i for i in activityListRaw]):
128 activityList = [i.replace("\n", "") for i in activityListRaw if "\n" in i]
129 else:
130 activityList = activityListRaw
131 cumStepsList = np.cumsum(np.array(stepsList)).tolist()
132 physicalActivityMetsList = self.getMetsIos(activityList)
133 heartRate = dict(map(lambda i, j: (str(i), j), tsList, hrList))

53

134 physicalActivityClass = dict(map(lambda i, j: (str(i), j), tsList, activityList
))

135 physicalActivityMets = dict(map(lambda i, j: (str(i), j), tsList,
physicalActivityMetsList))

136 stepCount = dict(map(lambda i, j: (str(i), j), tsList, stepsList))
137 cumulativeSteps = dict(map(lambda i, j: (str(i), j), tsList, cumStepsList))
138

139 return heartRate, physicalActivityClass, physicalActivityMets, stepCount,
cumulativeSteps

140

141 def readSleepIos(self, inputBlob):
142 sleepData = json.load(inputBlob)
143 checks = ['startTimestamp', 'endTimestamp']
144 toSleepList = [i['startTimestamp'] for i in sleepData if all([x in i for x in

checks])]
145 getUpList = [i['endTimestamp'] for i in sleepData if all([x in i for x in

checks])]
146 sleep_dict = {"sleepDuration": getUpList[0] - toSleepList[0],
147 "toBedTime": toSleepList[0],
148 "getUpTime": getUpList[0]}
149 return sleep_dict
150

151 def computeHrvFeatures(self, tsList, bbiList):
152 hrvDf = pd.DataFrame({"ts": tsList, "bbi": bbiList})
153 hrvDf["bbi_diff_squared"] = hrvDf["bbi"].diff() ** 2
154 hrvDf.insert(0, "minutes_unix", [math.floor(i / 60) for i in hrvDf['ts']])
155 hrvDf = hrvDf.groupby("minutes_unix").agg(timestamp=('ts', 'min'),
156 hrv_sdnn=('bbi', 'std'),
157 hrv_mssd=('bbi_diff_squared', 'mean'),
158 ibi_mean=('bbi', 'mean'))
159 hrvDf = hrvDf.reset_index(drop=True)
160 hrvDf['hrv_rmssd'] = np.sqrt(hrvDf['hrv_mssd'])
161 hrvDf['heart_rate'] = [60000 / x for x in hrvDf['ibi_mean']]
162

163 hrvSdnn = dict(map(lambda i, j: (str(int(i)), j), hrvDf['timestamp'].tolist(),
hrvDf['hrv_sdnn'].tolist()))

164 hrvRmssd = dict(map(lambda i, j: (str(int(i)), j), hrvDf['timestamp'].tolist(),
hrvDf['hrv_rmssd'].tolist()))

165 hrvHr = dict(map(lambda i, j: (str(int(i)), j), hrvDf['timestamp'].tolist(),
hrvDf['heart_rate'].tolist()))

166 return hrvSdnn, hrvRmssd, hrvHr
167

168 def readHrIos(self, inputBlob):
169 hrData = json.load(inputBlob)
170 checks = ['heartRate', 'timestamp']
171 hrList = [i['heartRate'] for i in hrData if all([x in i for x in checks])]
172 tsList = [i['timestamp'] for i in hrData if all([x in i for x in checks])]
173 heartrate = dict(map(lambda i, j: (str(int(i)), j), tsList, hrList))
174 return heartrate
175

176 def readStepsIos(self, inputBlob):
177 stepData = json.load(inputBlob)
178 checks = ['stepCount', 'startTimestamp']
179 stepsList = [i['stepCount'] for i in stepData if all([x in i for x in checks])]
180 cumStepsList = [i['totalSteps'] for i in stepData if all([x in i for x in

checks])]
181 tsList = [i['startTimestamp'] for i in stepData if all([x in i for x in checks

])]

54

182 stepCount = dict(map(lambda i, j: (str(int(i)), j), tsList, stepsList))
183 cumStepsCount = dict(map(lambda i, j: (str(int(i)), j), tsList, cumStepsList))
184 return stepCount, cumStepsCount
185

186 def readHrvIos(self, inputBlob):
187 hrvData = json.load(inputBlob)
188 checks = ['interval', 'timestamp']
189 bbiList = [i['interval'] for i in hrvData if all([x in i for x in checks])]
190 tsList = [i['timestamp'] for i in hrvData if all([x in i for x in checks])]
191 hrvSdnn, hrvRmssd, hrvHr = self.computeHrvFeatures(tsList, bbiList)
192 return hrvSdnn, hrvRmssd, hrvHr
193

194 def readAllJsonIos(self, blobNamesList, containerSubject="participants"):
195 folderList = list(set([i.split("/")[-2] for i in blobNamesList]))
196 folder_dict_list = []
197 for folder in folderList:
198 blobNames = [i for i in blobNamesList if folder in i]
199 wellnessBlobNames = [i for i in blobNames if "welness" in i]
200 if len(wellnessBlobNames) > 0:
201 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
202 blob=wellnessBlobNames[0])
203 with (BytesIO() as inputBlob):
204 blobClient.download_blob().readinto(inputBlob)
205 inputBlob.seek(0)
206 heartRate, physicalActivityClass, physicalActivityMets, stepCount,

cumulativeSteps = self.readWellnessIos(
207 inputBlob)
208 if len(list(heartRate.keys())) > 0:
209 startTimeInSeconds = int(list(heartRate.keys())[0])
210 endTimeInSeconds = int(list(heartRate.keys())[-1]) + 60
211 else:
212 heartRate = {}
213 physicalActivityClass = {}
214 physicalActivityMets = {}
215 stepCount = {}
216 cumulativeSteps = {}
217 startTimeInSeconds = 0
218 endTimeInSeconds = 0
219 else:
220 heartRate = {}
221 physicalActivityClass = {}
222 physicalActivityMets = {}
223 stepCount = {}
224 cumulativeSteps = {}
225 startTimeInSeconds = 0
226 endTimeInSeconds = 0
227

228 print('startTimeInSeconds:')
229 print(startTimeInSeconds)
230 print('endTimeInSeconds:')
231 print(endTimeInSeconds)
232 print('physicalActivityClass:')
233 print(physicalActivityClass)
234 print('physicalActivityMets:')
235 print(physicalActivityMets)
236

237 heartrateBlobNames = [i for i in blobNames if "loggedHeartRate" in i]

55

238 if len(heartrateBlobNames) > 0:
239 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
240 blob=heartrateBlobNames

[0])
241 with BytesIO() as inputBlob:
242 blobClient.download_blob().readinto(inputBlob)
243 inputBlob.seek(0)
244 heartRate = self.readHrIos(inputBlob)
245

246 print('heartRate:')
247 print(heartRate)
248

249 stepBlobNames = [i for i in blobNames if "loggedStep" in i]
250 if len(stepBlobNames) > 0:
251 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
252 blob=stepBlobNames[0])
253 with BytesIO() as inputBlob:
254 blobClient.download_blob().readinto(inputBlob)
255 inputBlob.seek(0)
256 stepCount, cumulativeSteps = self.readStepsIos(inputBlob)
257

258 print('stepCount:')
259 print(stepCount)
260

261 sleepBlobNames = [i for i in blobNames if "sleep" in i]
262 if len(sleepBlobNames) > 0:
263 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
264 blob=sleepBlobNames[0])
265 with BytesIO() as inputBlob:
266 blobClient.download_blob().readinto(inputBlob)
267 inputBlob.seek(0)
268 sleepData = self.readSleepIos(inputBlob)
269 hasSleep = 1
270 else:
271 sleepData = {"sleepDuration": 0, "toBedTime": 0, "getUpTime": 0}
272 hasSleep = 0
273

274 print('hasSleep:')
275 print(hasSleep)
276 print('sleepData:')
277 print(sleepData)
278

279 hrvBlobNames = [i for i in blobNames if "loggedBBI" in i]
280 if len(hrvBlobNames) > 0:
281 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
282 blob=hrvBlobNames[0])
283 with BytesIO() as inputBlob:
284 blobClient.download_blob().readinto(inputBlob)
285 inputBlob.seek(0)
286 hrvSdnn, hrvRmssd, hrvHr = self.readHrvIos(inputBlob)
287 if startTimeInSeconds == 0:
288 startTimeInSeconds = int(list(hrvSdnn.keys())[0])
289 endTimeInSeconds = int(list(hrvSdnn.keys())[-1]) + 60
290 else:

56

291 hrvSdnn = {}
292 hrvRmssd = {}
293 hrvHr = {}
294

295 print('hrvSdnn:')
296 print(hrvSdnn)
297 print('hrvRmssd:')
298 print(hrvRmssd)
299

300 if hrvHr != {}:
301 if heartRate == {}:
302 heartRate = hrvHr
303 elif len(heartRate.keys()) < len(hrvHr.keys()):
304 heartRate = hrvHr
305

306 folder_dict = {"startTimeInSeconds": startTimeInSeconds,
307 "endTimeInSeconds": endTimeInSeconds,
308 "heartRate": heartRate,
309 "hrvSdnn": hrvSdnn,
310 "hrvRmssd": hrvRmssd,
311 "physicalActivityMets": physicalActivityMets,
312 "physicalActivityClass": physicalActivityClass,
313 "stepCount": stepCount}
314

315 folder_dict_list = folder_dict_list + [folder_dict]
316 print('number of new dicts:')
317 print(len(folder_dict_list))
318 print('folder_dict_list:')
319 print(folder_dict_list)
320

321 return folder_dict_list
322

323 def readHrAndroid(self, inputBlob):
324 heartrateData = json.load(inputBlob)
325 heartrateList = [i['heartRate'] for i in heartrateData if 'heartRate' in i]
326 # statusList = [i['status'] for i in heartrateData if 'heartRate' in i]
327 localTimeList = [datetime(i['timestamp']['date']['year'],
328 i['timestamp']['date']['month'],
329 i['timestamp']['date']['day'],
330 i['timestamp']['time']['hour'],
331 i['timestamp']['time']['minute'],
332 i['timestamp']['time']['second'],
333 tzinfo=pytz.utc) for i in heartrateData if 'heartRate' in

i]
334 localTimeList = [i.astimezone(pytz.timezone('Europe/Amsterdam'))
335 for i in localTimeList]
336 tsList = [int(datetime.timestamp(i)) for i in localTimeList]
337 heartRate = dict(map(lambda i, j: (str(i), j), tsList, heartrateList))
338 return heartRate
339

340 def readHrvAndroid(self, inputBlob):
341 hrvData = json.load(inputBlob)
342 bbiList = [i['bbi'] for i in hrvData if 'bbi' in i]
343 localTimeList = [datetime(i['timestamp']['date']['year'],
344 i['timestamp']['date']['month'],
345 i['timestamp']['date']['day'],
346 i['timestamp']['time']['hour'],
347 i['timestamp']['time']['minute'],

57

348 i['timestamp']['time']['second'],
349 tzinfo=pytz.utc) for i in hrvData if 'bbi' in i]
350 localTimeList = [i.astimezone(pytz.timezone('Europe/Amsterdam'))
351 for i in localTimeList]
352 tsList = [int(datetime.timestamp(i)) for i in localTimeList]
353 hrvSdnn, hrvRmssd, hrvHr = self.computeHrvFeatures(tsList, bbiList)
354 return hrvSdnn, hrvRmssd, hrvHr
355

356 def readStepsAndroid(self, inputBlob):
357 stepsData = json.load(inputBlob)
358 stepCountList = [i['stepCount'] for i in stepsData if 'stepCount' in i]
359 totalStepsList = [i['totalSteps'] for i in stepsData if 'stepCount' in i]
360 localTimeList = [datetime(i['startTimestamp']['date']['year'],
361 i['startTimestamp']['date']['month'],
362 i['startTimestamp']['date']['day'],
363 i['startTimestamp']['time']['hour'],
364 i['startTimestamp']['time']['minute'],
365 i['startTimestamp']['time']['second'],
366 tzinfo=pytz.utc) for i in stepsData if 'stepCount' in i]
367 localTimeList = [i.astimezone(pytz.timezone('Europe/Amsterdam'))
368 for i in localTimeList]
369 tsList = [int(datetime.timestamp(i)) for i in localTimeList]
370 cumStepsList = np.cumsum(np.array(stepCountList)).tolist()
371 stepCount = dict(map(lambda i, j: (str(i), j), tsList, stepCountList))
372 cumulativeSteps = dict(map(lambda i, j: (str(i), j), tsList, cumStepsList))
373 return stepCount, cumulativeSteps
374

375 def readMotionAndroid(self, inputBlob):
376 motionData = json.load(inputBlob)
377 activityList = [i['activityType'] for i in motionData if 'activityType' in i]
378 tsList = [i['timestamp']['begin_timestamp'] for i in motionData if 'timestamp'

in i]
379 physicalActivityMetsList = self.getMetsAndroid(activityList)
380 physicalActivityClass = dict(map(lambda i, j: (str(i), j), tsList, activityList

))
381 physicalActivityMets = dict(map(lambda i, j: (str(i), j), tsList,

physicalActivityMetsList))
382 return physicalActivityClass, physicalActivityMets
383

384 def readAllJsonAndroid(self, blobNamesList, containerSubject="participants"):
385 folderList = list(set([i.split("/")[-2] for i in blobNamesList]))
386 folder_dict_list = []
387 for folder in folderList:
388 blobNames = [i for i in blobNamesList if folder in i]
389 heartrateBlobNames = [i for i in blobNames if "heartrate" in i]
390 if len(heartrateBlobNames) > 0:
391 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
392 blob=heartrateBlobNames

[0])
393 with BytesIO() as inputBlob:
394 blobClient.download_blob().readinto(inputBlob)
395 inputBlob.seek(0)
396 heartRate = self.readHrAndroid(inputBlob)
397 startTimeInSeconds = int(list(heartRate.keys())[0])
398 endTimeInSeconds = int(list(heartRate.keys())[-1]) + 60
399 else:
400 heartRate = {}

58

401 startTimeInSeconds = 0
402 endTimeInSeconds = 0
403

404 hrvBlobNames = [i for i in blobNames if "hrv" in i]
405 if len(hrvBlobNames) > 0:
406 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
407 blob=hrvBlobNames[0])
408 with BytesIO() as inputBlob:
409 blobClient.download_blob().readinto(inputBlob)
410 inputBlob.seek(0)
411 hrvSdnn, hrvRmssd, hrvHr = self.readHrvAndroid(inputBlob)
412 if startTimeInSeconds == 0:
413 startTimeInSeconds = int(list(hrvSdnn.keys())[0])
414 endTimeInSeconds = int(list(hrvSdnn.keys())[-1]) + 60
415 else:
416 hrvSdnn = {}
417 hrvRmssd = {}
418 hrvHr = {}
419

420 stepsBlobNames = [i for i in blobNames if "steps" in i]
421 if len(stepsBlobNames) > 0:
422 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
423 blob=stepsBlobNames[0])
424 with BytesIO() as inputBlob:
425 blobClient.download_blob().readinto(inputBlob)
426 inputBlob.seek(0)
427 stepCount, cumulativeSteps = self.readStepsAndroid(inputBlob)
428 if startTimeInSeconds == 0:
429 startTimeInSeconds = int(list(stepCount.keys())[0])
430 endTimeInSeconds = int(list(stepCount.keys())[-1]) + 60
431 else:
432 stepCount = {}
433 cumulativeSteps = {}
434

435 motionBlobNames = [i for i in blobNames if "motion" in i]
436 if len(motionBlobNames) > 0:
437 blobClient = self.blob_service_client.get_blob_client(container=

containerSubject,
438 blob=motionBlobNames[0])
439 with BytesIO() as inputBlob:
440 blobClient.download_blob().readinto(inputBlob)
441 inputBlob.seek(0)
442 physicalActivityClass, physicalActivityMets = self.readMotionAndroid(

inputBlob)
443 if startTimeInSeconds == 0:
444 startTimeInSeconds = int(list(physicalActivityClass.keys())[0])
445 endTimeInSeconds = int(list(physicalActivityClass.keys())[-1]) + 60
446 else:
447 physicalActivityClass = {}
448 physicalActivityMets = {}
449

450 print('startTimeInSeconds:')
451 print(startTimeInSeconds)
452 print('endTimeInSeconds:')
453 print(endTimeInSeconds)
454 print('heartRate:')

59

455 print(heartRate)
456 print('physicalActivityClass:')
457 print(physicalActivityClass)
458 print('physicalActivityMets:')
459 print(physicalActivityMets)
460 print('stepCount:')
461 print(stepCount)
462 print('hrvSdnn:')
463 print(hrvSdnn)
464 print('hrvRmssd:')
465 print(hrvRmssd)
466

467 hasSleep = 0
468 sleepData = {"sleepDuration": 0, "toBedTime": 0, "getUpTime": 0}
469

470 if hrvHr != {}:
471 if heartRate == {}:
472 heartRate = hrvHr
473 elif len(heartRate.keys()) < len(hrvHr.keys()):
474 heartRate = hrvHr
475

476 folder_dict = {"startTimeInSeconds": startTimeInSeconds,
477 "endTimeInSeconds": endTimeInSeconds,
478 "heartRate": heartRate,
479 "hrvSdnn": hrvSdnn,
480 "hrvRmssd": hrvRmssd,
481 "physicalActivityMets": physicalActivityMets,
482 "physicalActivityClass": physicalActivityClass,
483 "stepCount": stepCount}
484

485 folder_dict_list = folder_dict_list + [folder_dict]
486 print('number of new dicts:')
487 print(len(folder_dict_list))
488 print('folder_dict_list:')
489 print(folder_dict_list)
490

491 return folder_dict_list
492

493 def readExistingData(self, subject, containerOutput="vivicadata"):
494 container_client = self.blob_service_client.get_container_client(container=

containerOutput)
495 blob_names_list = list(container_client.list_blob_names())
496 blob_names_subject_list = [i for i in blob_names_list if subject in i]
497 if len(blob_names_subject_list) > 0:
498 print(blob_names_subject_list[0])
499 blobClient = self.blob_service_client.get_blob_client(container=

containerOutput,
500 blob=blob_names_subject_list

[0])
501 with BytesIO() as inputBlob:
502 blobClient.download_blob().readinto(inputBlob)
503 inputBlob.seek(0)
504 existingDataAll = json.load(inputBlob)
505 existingData = existingDataAll['garminData']
506 else:
507 existingData = {}
508 return existingData
509

60

510 def addNewData(self, existing_data, garmin_dict_list, new_zip_blobs):
511 dict_keys = [i.split("/")[-1].split(".")[0] for i in new_zip_blobs]
512 newData = dict(map(lambda i, j: (i, j), dict_keys, garmin_dict_list))
513 existing_data.update(newData)
514 return existing_data
515

516 def computeSleep(self, dates, data, subject):
517 sleepData = {}
518 start_offset = 15 * 60 * 60
519 print("available dates:")
520 print(dates)
521 if len(dates) > 1:
522 timestamps = [datetime.strptime(x, "%Y-%m-%d").timestamp() for x in dates]
523 print("timestamps derived from available dates:")
524 print(timestamps)
525 ts_diff = list(np.diff(timestamps))
526 ts_diff.insert(len(ts_diff), 0)
527 if any([x == 24 * 60 * 60 for x in ts_diff]):
528 timestamps = [timestamps[i] for i in range(len(ts_diff)) if ts_diff[i]

== 24 * 60 * 60]
529 print("timestamps derived from available dates that have a consecutive

day after it:")
530 print(timestamps)
531 folders = list(data.keys())
532 print("all garmin data folders available:")
533 print(folders)
534 folders_ts = [x.split('_')[1] for x in folders]
535 # This starts a for loop over nights that we can compute features of.
536 # All features can best be computed within this for-loop
537 for ts in timestamps:
538 ts_start = ts + start_offset
539 ts_end = ts + 24 * 60 * 60 + start_offset
540 folders_oi = [folders[x] for x in range(len(folders_ts)) if
541 ts_start < float(folders_ts[x])]
542 print("garmin data folders available that could have date of this

night:")
543 print(folders_oi)
544 data_hr = pd.DataFrame(columns=["ts", "heartRate"])
545 data_hrv = pd.DataFrame(columns=["ts", "hrvSdnn"])
546 data_stepcount = pd.DataFrame(columns=["ts", "stepCount"])
547 if len(folders_oi) > 0:
548 for folder in folders_oi:
549 print("active folder:")
550 print(folder)
551 ts_hr_oi = [x for x in list(data[folder]['heartRate'].keys())

if ts_start < int(x) < ts_end]
552 if len(ts_hr_oi) > 0:
553 datapart_hr = pd.DataFrame.from_dict(
554 {'ts': [int(x) for x in ts_hr_oi if x in list(data[

folder]['heartRate'].keys())],
555 'heartRate': [data[folder]['heartRate'][x] for x in

ts_hr_oi]})
556 else:
557 datapart_hr = pd.DataFrame(columns=["ts", "heartRate"])
558

559 ts_hrv_oi = [x for x in list(data[folder]['hrvSdnn'].keys())
if ts_start < int(x) < ts_end]

560 if len(ts_hrv_oi) > 0:

61

561 datapart_hrv = pd.DataFrame.from_dict(
562 {'ts': [int(x) for x in ts_hrv_oi if x in list(data[

folder]['hrvSdnn'].keys())],
563 'hrvSdnn': [data[folder]['hrvSdnn'][x] for x in

ts_hrv_oi]})
564 else:
565 datapart_hrv = pd.DataFrame(columns=["ts", "hrvSdnn"])
566

567 ts_sc_oi = [x for x in list(data[folder]['stepCount'].keys())
if

568 ts_start < int(x) < ts_end]
569 if len(ts_sc_oi) > 0:
570 datapart_stepcount = pd.DataFrame.from_dict(
571 {'ts': [int(x) for x in ts_sc_oi if x in list(data[

folder]['stepCount'].keys())],
572 'stepCount': [data[folder]['stepCount'][x] for x in

ts_sc_oi]})
573 else:
574 datapart_stepcount = pd.DataFrame(columns=["ts", "stepCount

"])
575

576 data_hr = pd.concat([data_hr, datapart_hr])
577 data_hrv = pd.concat([data_hrv, datapart_hrv])
578 data_stepcount = pd.concat([data_stepcount, datapart_stepcount

])
579

580 df = pd.merge(data_hr, data_hrv, how="outer", on="ts")
581 df = pd.merge(df, data_stepcount, how="outer", on="ts")
582 df = df.drop_duplicates(subset="ts")
583 df = df.sort_values("ts").reset_index(drop=True)
584 df['timegroup'] = [math.floor((x - min(df['ts'])) / (3 * 60)) for

x in df['ts']]
585

586 # df = df.set_index('datetime')
587 print("df:")
588 print(df)
589 df_sum = pd.DataFrame(df.groupby('timegroup').median()).

reset_index()
590 df_sum['ts'] = [math.floor(x) for x in df_sum['ts']]
591 df_sum['datetime'] = [datetime.utcfromtimestamp(x).strftime('%Y-%m

-%d %H:%M:%S') for x in
592 df_sum["ts"]]
593 df_sum['plot_time'] = [(x - ts_start) / 3600 for x in df_sum['ts'

]]
594 print("df_sum:")
595 print(df_sum)
596

597 if (len(df_sum.loc[df_sum['heartRate'].notna(), 'heartRate']) *
60) > 16:

598 df_sum['HR_smoothed'] = df_sum['heartRate'].rolling(window=10)
.mean()

599 df_sum['HR_smoothed_ip'] = df_sum['HR_smoothed'].interpolate('
pchip',

600 limit_direction
="both")

601 x = np.asarray(df_sum['HR_smoothed_ip'])
602 b, a = butter(N=1, Wn=1 / 3600, btype='lowpass', fs=1 / 180)
603 x = filtfilt(b, a, x)

62

604 df_sum['HR_filt'] = x.tolist()
605 df_sum = df_sum.iloc[10:-10]
606 df_sum = df_sum.reset_index(drop=True)
607 df_sum['sleep'] = 0
608

609 peaks_original, _ = scipy.signal.find_peaks(np.asarray(df_sum[
'stepCount']))

610 if len(peaks_original) > 0:
611 for i_p in range(0, len(peaks_original) - 1, 1):
612 peaks = peaks_original
613 if any(df_sum.loc[peaks[i_p]:peaks[i_p] + 40, "

heartRate"].isna()):
614 peaks[i_p] = df_sum.loc[peaks[i_p]:peaks[i_p] + 40,

"heartRate"].isna()[
615 ::-1].idxmax()
616 if any(df_sum.loc[peaks[i_p + 1]:peaks[i_p + 1] - 40, "

heartRate"].isna()):
617 peaks[i_p + 1] = df_sum.loc[peaks[i_p + 1]:peaks[i_p

+ 1] - 40,
618 "heartRate"].isna()[
619 ::-1].idxmin()
620 subset_start = df_sum.iloc[
621 max([peaks[i_p] - 40, 0]):min([peaks[i_p]

+ 40, peaks[i_p + 1],
622 len(df_sum['

heartRate'])])]
623 subset_end = df_sum.iloc[
624 max([peaks[i_p + 1] - 40, peaks[i_p]]):min([

peaks[i_p + 1] + 40,
625 len(

df_sum['heartRate'])])]
626 if all(v > 2 for v in [subset_start['HR_filt'].count(),
627 subset_end['HR_filt'].count()]):
628 try:
629 HR_start_slope, _ = np.polyfit(np.arange(len(

subset_start["HR_filt"])),
630 np.asarray(

subset_start["HR_filt"]), 1)
631 HR_end_slope, _ = np.polyfit(np.arange(len(

subset_end["HR_filt"])),
632 np.asarray(subset_end["

HR_filt"]), 1)
633 # if HR_start_slope < 0 < HRV_start_slope and

HR_end_slope > 0 > HRV_end_slope:
634 if HR_start_slope < 0 < HR_end_slope:
635 if any([0 < df_sum.loc[peaks[i_p + 1], "

plot_time"] - x < df_sum.loc[
636 peaks[i_p + 1], "plot_time"] - df_sum.loc[

peaks[i_p], "plot_time"] for x in
637 [9, 10, 11, 12, 13, 14, 15]]):
638 df_sum.loc[peaks_original[i_p] + 15: peaks

[i_p + 1], 'sleep'] = 1
639 except:
640 print("defining slopes in HR at start and end of

sleep failed, " +
641 "so we will only use the stepcount data for

the night of " +

63

642 str(datetime.utcfromtimestamp(ts).strftime(
'%Y-%m-%d')))

643 if any([0 < df_sum.loc[peaks[i_p + 1], "
plot_time"] - x < df_sum.loc[

644 peaks[i_p + 1], "plot_time"] - df_sum.loc[
peaks[i_p], "plot_time"] for x

645 in
646 [9, 10, 11, 12, 13, 14, 15]]):
647 df_sum.loc[peaks_original[i_p] + 15: peaks[

i_p + 1], 'sleep'] = 1
648 else:
649 print("not sufficient HR data around start and end

of sleep, " +
650 "so we will only use the stepcount data for the

night of " +
651 str(datetime.utcfromtimestamp(ts).strftime('%Y

-%m-%d')))
652 if any([0 < df_sum.loc[peaks[i_p + 1], "plot_time"]

- x < df_sum.loc[
653 peaks[i_p + 1], "plot_time"] - df_sum.loc[peaks[

i_p], "plot_time"] for x in
654 [9, 10, 11, 12, 13, 14, 15]]):
655 df_sum.loc[peaks_original[i_p] + 15: peaks[i_p +

1], 'sleep'] = 1
656

657 df_sum.loc[df_sum['stepCount'] > 0, 'sleep'] = 0
658 df_sum.loc[df_sum['heartRate'].isna(), 'sleep'] = 0
659 sleepdiff = list(np.diff(df_sum['sleep']))
660 sleepdiff_min = [0] + sleepdiff
661 sleepdiff_plus = sleepdiff + [0]
662 sleepdiff_result = [abs(x) + abs(y) for x, y in zip(

sleepdiff_min, sleepdiff_plus)]
663 df_sum['sleep_corr'] = sleepdiff_result
664 # sleepdiff_min.insert(len(sleepdiff_min), 0)
665 # sleepdiff_plus.insert(0, 0)
666 # sleepdiff_result2 = [abs(x) + abs(y) for x, y in zip(

sleepdiff_min, sleepdiff_plus)]
667

668 df_sum.loc[df_sum['sleep_corr'] > 1, 'sleep'] = 1 - df_sum.
loc[

669 df_sum['sleep_corr'] > 1, 'sleep']
670 # df_sum.loc[sleepdiff_result2 > 1, 'sleep'] = 1 - df_sum.

loc[sleepdiff_result2 > 1, 'sleep']
671

672 if len(df_sum.loc[df_sum['sleep'] == 1, 'sleep']) > 1:
673 sleepDataInstance = {str(max(df_sum.loc[df_sum['sleep']

== 1, 'ts'])): {
674 "toBed": min(df_sum.loc[df_sum['sleep'] == 1, 'ts'])

,
675 "getUp": max(df_sum.loc[df_sum['sleep'] == 1, 'ts'])

,
676 "inBedDuration": (max(df_sum.loc[df_sum['sleep'] ==

1, 'ts']) -
677 min(df_sum.loc[df_sum['sleep'] == 1,

'ts'])) / 60}}
678 sleepData.update(sleepDataInstance)
679 else:
680 print("no sleep detected for night of " +

64

681 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m
-%d')))

682 # sleepDataInstance = {str(ts): {
683 # "to_bed": np.nan,
684 # "get_up": np.nan,
685 # "sleep_duration": np.nan}}
686

687 else:
688 print("no step count peaks detected around night of " +
689 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d')

))
690 # sleepDataInstance = {str(ts): {
691 # "to_bed": np.nan,
692 # "get_up": np.nan,
693 # "sleep_duration": np.nan}}
694

695 plt.figure()
696 plt.plot(df_sum['plot_time'], df_sum['heartRate'], 'r', alpha

=0.5)
697 plt.plot(df_sum['plot_time'], df_sum['HR_filt'], 'b', alpha

=0.5)
698 #plt.plot(df_sum['plot_time'], df_sum['HR_smoothed_ip'], 'k',

alpha=0.5)
699 plt.plot(df_sum['plot_time'], df_sum['stepCount'], 'k', alpha

=0.5)
700 plt.plot(df_sum['plot_time'], df_sum['sleep'].multiply(-1), 'r

', alpha=0.5)
701 plt.xlabel('hours since 3PM')
702 plt.xticks(np.arange(0, 24, 1))
703 plt.ylabel('HR_raw (red) - HR_filt (blue) - stepcount (black)

- sleep (red)')
704 plt.savefig(
705 subject + "_HR_" + str(datetime.utcfromtimestamp(ts).

strftime('%Y-%m-%d')) + ".png")
706 plt.close()
707

708 elif (len(df_sum.loc[df_sum['hrvSdnn'].notna(), 'hrvSdnn']) * 60)
> 16:

709 peaks, _ = scipy.signal.find_peaks(np.asarray(df_sum['hrvSdnn'
]))

710 valleys, _ = scipy.signal.find_peaks(np.asarray(df_sum['
hrvSdnn'].multiply(-1)))

711 df_sum['AC'] = np.nan
712 df_sum.loc[peaks, 'AC'] = df_sum.loc[peaks, 'hrvSdnn']
713 df_sum['DC'] = np.nan
714 df_sum.loc[valleys, 'DC'] = df_sum.loc[valleys, 'hrvSdnn']
715 df_sum['AC'] = df_sum['AC'].interpolate('pchip',

limit_direction="both")
716 df_sum['DC'] = df_sum['DC'].interpolate('pchip',

limit_direction="both")
717 df_sum['AC_smoothed'] = df_sum['AC'].rolling(window=20).mean()
718 df_sum['DC_smoothed'] = df_sum['DC'].rolling(window=20).mean()
719 df_sum['HRV_spread'] = df_sum['AC_smoothed'] - df_sum['

DC_smoothed']
720 df_sum['HRV_smoothed'] = df_sum['hrvSdnn'].rolling(window=10).

mean()
721 df_sum['HRV_smoothed_ip'] = df_sum['HRV_smoothed'].interpolate

('pchip',

65

722 limit_direction
="both")

723 x = np.asarray(df_sum['HRV_smoothed_ip'])
724 b, a = butter(N=1, Wn=1 / 3600, btype='lowpass', fs=1 / 180)
725 x = filtfilt(b, a, x)
726 df_sum['HRV_filt'] = x.tolist()
727

728 df_sum = df_sum.iloc[10:-10]
729 df_sum = df_sum.reset_index(drop=True)
730 df_sum['sleep'] = 0
731

732 peaks_original, _ = scipy.signal.find_peaks(np.asarray(df_sum[
'stepCount']))

733 if len(peaks_original) > 0:
734 for i_p in range(0, len(peaks_original) - 1, 1):
735 peaks = peaks_original
736 if any(df_sum.loc[peaks[i_p]:peaks[i_p] + 40, "hrvSdnn"

].isna()):
737 peaks[i_p] = df_sum.loc[peaks[i_p]:peaks[i_p] + 40,

"hrvSdnn"].isna()[
738 ::-1].idxmax()
739 if any(df_sum.loc[peaks[i_p + 1]:peaks[i_p + 1] - 40, "

hrvSdnn"].isna()):
740 peaks[i_p + 1] = df_sum.loc[peaks[i_p + 1]:peaks[i_p

+ 1] - 40,
741 "hrvSdnn"].isna()[
742 ::-1].idxmin()
743 subset_start = df_sum.iloc[
744 max([peaks[i_p] - 40, 0]):min([peaks[i_p]

+ 40, peaks[i_p + 1],
745 len(df_sum['

hrvSdnn'])])]
746 subset_end = df_sum.iloc[
747 max([peaks[i_p + 1] - 40, peaks[i_p]]):min([

peaks[i_p + 1] + 40,
748 len(

df_sum['hrvSdnn'])])]
749 if all(v > 2 for v in [subset_start['HRV_filt'].count()

,
750 subset_end['HRV_filt'].count()]):
751 try:
752 HRV_start_slope, _ = np.polyfit(np.arange(len(

subset_start["HRV_filt"])),
753 np.asarray(

subset_start["HRV_filt"]), 1)
754 HRV_spread_start_slope, _ = np.polyfit(
755 np.arange(len(subset_start["HRV_spread"])),
756 np.asarray(subset_start["HRV_spread"]), 1)
757 HRV_end_slope, _ = np.polyfit(np.arange(len(

subset_end["HRV_filt"])),
758 np.asarray(subset_end["

HRV_filt"]), 1)
759 HRV_spread_end_slope, _ = np.polyfit(
760 np.arange(len(subset_end["HRV_spread"])),
761 np.asarray(subset_end["HRV_spread"]), 1)
762 # if HRV_end_slope < 0 < HRV_start_slope:
763 if any([0 < df_sum.loc[peaks[i_p + 1], "

plot_time"] - x < df_sum.loc[

66

764 peaks[i_p + 1], "plot_time"] - df_sum.loc[
peaks[i_p], "plot_time"] for x in

765 [9, 10, 11, 12, 13, 14, 15]]):
766 df_sum.loc[peaks_original[i_p] + 15: peaks[

i_p + 1], 'sleep'] = 1
767 except:
768 print("defining slopes in HRV at start and end

of sleep failed, " +
769 "so we will only use the stepcount data for

the night of " +
770 str(datetime.utcfromtimestamp(ts).strftime(

'%Y-%m-%d')))
771 if any([0 < df_sum.loc[peaks[i_p + 1], "

plot_time"] - x < df_sum.loc[
772 peaks[i_p + 1], "plot_time"] - df_sum.loc[

peaks[i_p], "plot_time"] for x
773 in
774 [9, 10, 11, 12, 13, 14, 15]]):
775 df_sum.loc[peaks_original[i_p] + 15: peaks[

i_p + 1], 'sleep'] = 1
776 else:
777 print("not sufficient HRV data around start and end

of sleep, " +
778 "so we will only use the stepcount data for the

night of " +
779 str(datetime.utcfromtimestamp(ts).strftime('%Y

-%m-%d')))
780 if any([0 < df_sum.loc[peaks[i_p + 1], "plot_time"]

- x < df_sum.loc[
781 peaks[i_p + 1], "plot_time"] - df_sum.loc[peaks[

i_p], "plot_time"] for x in
782 [9, 10, 11, 12, 13, 14, 15]]):
783 df_sum.loc[peaks_original[i_p] + 15: peaks[i_p +

1], 'sleep'] = 1
784

785 df_sum.loc[df_sum['stepCount'] > 0, 'sleep'] = 0
786 df_sum.loc[df_sum['hrvSdnn'].isna(), 'sleep'] = 0
787 sleepdiff = list(np.diff(df_sum['sleep']))
788 sleepdiff_min = [0] + sleepdiff
789 sleepdiff_plus = sleepdiff + [0]
790 sleepdiff_result = [abs(x) + abs(y) for x, y in zip(

sleepdiff_min, sleepdiff_plus)]
791 df_sum['sleep_corr'] = sleepdiff_result
792 # sleepdiff_min.insert(len(sleepdiff_min), 0)
793 # sleepdiff_plus.insert(0, 0)
794 # sleepdiff_result2 = [abs(x) + abs(y) for x, y in zip(

sleepdiff_min, sleepdiff_plus)]
795

796 df_sum.loc[df_sum['sleep_corr'] > 1, 'sleep'] = 1 - df_sum.
loc[

797 df_sum['sleep_corr'] > 1, 'sleep']
798 # df_sum.loc[sleepdiff_result2 > 1, 'sleep'] = 1 - df_sum.

loc[sleepdiff_result2 > 1, 'sleep']
799

800 if len(df_sum.loc[df_sum['sleep'] == 1, 'sleep']) > 1:
801 sleepDataInstance = {str(max(df_sum.loc[df_sum['sleep']

== 1, 'ts'])): {

67

802 "toBed": min(df_sum.loc[df_sum['sleep'] == 1, 'ts'])
,

803 "getUp": max(df_sum.loc[df_sum['sleep'] == 1, 'ts'])
,

804 "inBedDuration": (max(df_sum.loc[df_sum['sleep'] ==
1, 'ts']) -

805 min(df_sum.loc[df_sum['sleep'] == 1,
'ts'])) / 60}}

806 sleepData.update(sleepDataInstance)
807 else:
808 print("no sleep detected for night of " +
809 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m

-%d')))
810 # sleepDataInstance = {str(ts): {
811 # "to_bed": np.nan,
812 # "get_up": np.nan,
813 # "sleep_duration": np.nan}}
814

815 else:
816 print("no step count peaks detected around night of " +
817 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d')

))
818 # sleepDataInstance = {str(ts): {
819 # "to_bed": np.nan,
820 # "get_up": np.nan,
821 # "sleep_duration": np.nan}}
822

823 plt.figure()
824 plt.plot(df_sum['plot_time'], df_sum['hrvSdnn'], 'r', alpha

=0.5)
825 plt.plot(df_sum['plot_time'], df_sum['HRV_filt'], 'b', alpha

=0.5)
826 #plt.plot(df_sum['plot_time'], df_sum['AC_smoothed'], 'm',

alpha=0.5)
827 #plt.plot(df_sum['plot_time'], df_sum['DC_smoothed'], 'y',

alpha=0.5)
828 #plt.plot(df_sum['plot_time'], df_sum['HRV_smoothed_ip'], 'k',

alpha=0.5)
829 #plt.plot(df_sum['plot_time'], df_sum['HRV_spread'], 'b',

alpha=0.5)
830 plt.plot(df_sum['plot_time'], df_sum['stepCount'], 'k', alpha

=0.5)
831 plt.plot(df_sum['plot_time'], df_sum['sleep'].multiply(-1), 'r

', alpha=0.5)
832 plt.xlabel('hours since 3PM')
833 plt.xticks(np.arange(0, 24, 1))
834 plt.ylabel('SDNN_raw (red) - SDNN_filt (blue) - stepcount (

black) - sleep (red)')
835 plt.savefig(
836 subject + "_HRV_" + str(datetime.utcfromtimestamp(ts).

strftime('%Y-%m-%d')) + ".png")
837 plt.close()
838

839 else:
840 print("there are less than 16 hours of hrv / hr data available

for the night of " +
841 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d')))
842 df_sum = df_sum.iloc[10:-10]

68

843 df_sum = df_sum.reset_index(drop=True)
844 df_sum['sleep'] = 0
845

846 if (len(df_sum.loc[df_sum['stepCount'].notna(), 'stepCount'])
* 60) > 16:

847 peaks_original, _ = scipy.signal.find_peaks(np.asarray(
df_sum['stepCount']))

848 if len(peaks_original) > 0:
849 activity_times = df_sum.loc[peaks_original, "plot_time"

]
850 max_rest_duration = np.max(np.diff(activity_times))
851 for i_p in range(0, len(peaks_original) - 1, 1):
852 peaks = peaks_original
853 if df_sum.loc[peaks[i_p + 1], "plot_time"] - df_sum.

loc[
854 peaks[i_p], "plot_time"] == max_rest_duration:
855 if any([0 < df_sum.loc[peaks[i_p + 1], "

plot_time"] - x < df_sum.loc[
856 peaks[i_p + 1], "plot_time"] - df_sum.loc[

peaks[i_p], "plot_time"] for x in
857 [9, 10, 11, 12, 13, 14, 15]]):
858 df_sum.loc[peaks_original[i_p] + 15: peaks[

i_p + 1], 'sleep'] = 1
859

860 df_sum.loc[df_sum['stepCount'] > 0, 'sleep'] = 0
861 if len(df_sum.loc[df_sum['sleep'] == 1, 'sleep']) > 1:
862 sleepDataInstance = {str(max(df_sum.loc[df_sum['

sleep'] == 1, 'ts'])): {
863 "toBed": min(df_sum.loc[df_sum['sleep'] == 1, '

ts']),
864 "getUp": max(df_sum.loc[df_sum['sleep'] == 1, '

ts']),
865 "inBedDuration": (max(df_sum.loc[df_sum['sleep']

== 1, 'ts']) -
866 min(df_sum.loc[df_sum['sleep'] ==

1, 'ts'])) / 60}}
867 sleepData.update(sleepDataInstance)
868 else:
869 print("no sleep detected for night of " +
870 str(datetime.utcfromtimestamp(ts).strftime('%Y

-%m-%d')))
871 else:
872 print("no step count peaks detected around night of " +
873 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m

-%d')))
874 else:
875 print("there are less than 16 hours of stepcount data

available for the night of " +
876 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d')

))
877

878 plt.figure()
879 plt.plot(df_sum['plot_time'], df_sum['stepCount'], 'k', alpha

=0.5)
880 plt.plot(df_sum['plot_time'], df_sum['sleep'].multiply(-1), 'r

', alpha=0.5)
881 plt.xlabel('hours since 3PM')
882 plt.xticks(np.arange(0, 24, 1))

69

883 plt.ylabel('stepcount (black) - sleep (red)')
884 plt.savefig(
885 subject + "_steps_" + str(datetime.utcfromtimestamp(ts).

strftime('%Y-%m-%d')) + ".png")
886 plt.close()
887

888 df_sum.to_csv(subject + "_" + str(datetime.utcfromtimestamp(ts).
strftime('%Y-%m-%d')) + ".csv")

889

890 else:
891 print("there are no related datafolders detected for the night of

" +
892 str(datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d')))
893 # sleepDataInstance = {str(ts): {
894 # "to_bed": np.nan,
895 # "get_up": np.nan,
896 # "sleep_duration": np.nan}}
897

898 print("sleepData")
899 print(sleepData)
900

901 # TODO: add sleep quality estimation code based on heartRate, hrvSdnn
, stepCount:

902 # TODO: - Look for 15-min periods with very high sd in heartRate /
stable drop in hrvSDnn and/or stepCount>0 -> awake periods

903 # TODO: - Compute following features to link to reported sleep
quality:

904 # TODO: - Ratio awake (sum of awake periods / Sleep Duration)
905 # TODO: - Average / Median / sd of 1-min SDNN from periods

asleep
906 # TODO: - total power of (ultradian) frequency spectrum in 1-

min HR and SDNN from periods asleep (stretch goal)
907 # TODO: - write away features to a dict and make sure that the dicts

in else statements match
908

909 else:
910 print("There are no consecutive dates")
911 else:
912 print("There are no 2 dates or more")
913

914 return sleepData
915

916 def getSleepData(self, data, subject):
917 keys = list(data.keys())
918 ts = []
919 for key in keys:
920 new_hr_ts = list(data[key]['heartRate'].keys())
921 new_hrv_ts = list(data[key]['hrvSdnn'].keys())
922 new_steps_ts = list(data[key]['stepCount'].keys())
923 ts = ts + new_hr_ts + new_hrv_ts + new_steps_ts
924 ts = [int(x) for x in ts]
925 ts.sort()
926 dates = [datetime.utcfromtimestamp(x).strftime('%Y-%m-%d') for x in ts]
927 dates_set = list(set(dates))
928 dates_set.sort()
929 print("dates:")
930 print(dates_set)
931 sleepDf = self.computeSleep(dates_set, data, subject)

70

932 return sleepDf
933

934

935 def process_blob():
936 # The script is based on generating a SAS token to use for data access.
937 # first "get shared access signature", then select the options you desire for

permissions and other parameters and click "create".
938 # In the connection string field, you will find a part that says "BlobEndpoint=

https....". Everything from the "https:" till ".net/" is put below as account_url.
939 # For filling in the sas_token variable below you should use the copy button below

the "SAS token" field.
940 # Check if your account_url indeed starts with "https://" and ends with ".net/"
941 # Check if your sas_token starts with a ?.
942 # You are good to go and use this script.
943 # STUDY ENVIRONMENT PARAMETERS
944

945

946 # Om de account_url en de sas_token te krijgen moet je Alex van Kraaij (imec) <Alex.
vanKraaij@imec.nl> mailen

947 account_url = "" # Mail Alex
948 sas_token = "" # Mail Alex
949 garmin = Garmin(account_url, sas_token)
950

951

952 # list all blobs per specific folder "garmindata" and "sensordata"
953 sensordata_blob_list_all, garmin_blob_list_all = garmin.getAllBlobNames()
954 # Check which subjects are in the azure container "participants" and have

sensordata
955 subject_list = list(set([i.split("/")[0] for i in sensordata_blob_list_all]))
956 in_bed_by_subject={}
957 for subject in subject_list:
958 sensordata_blob_list = [i for i in sensordata_blob_list_all if subject in i]
959 garmin_blob_list = [i for i in garmin_blob_list_all if subject in i]
960 # Check which blobs are in sensordata_blob_list and not in garmindata_blob_list
961 new_zip_blobs = garmin.getNewBlobNames(sensordata_blob_list, garmin_blob_list)
962 print("subject:")
963 print(subject)
964 print("new_zip_blobs:")
965 print(new_zip_blobs)
966 if len(new_zip_blobs) > 0:
967 new_blobs = garmin.unzipGarminFiles(new_zip_blobs, subject)
968 operating_system = garmin.getOperatingSystem(new_blobs[0])
969 if operating_system == "ios":
970 garmin_dict_list = garmin.readAllJsonIos(new_blobs)
971 elif operating_system == "android":
972 garmin_dict_list = garmin.readAllJsonAndroid(new_blobs)
973 else:
974 raise OSError("The operating system is unknown. The options are android

or ios.")
975 existing_data = garmin.readExistingData(subject)
976 print("existing_data:")
977 print(existing_data)
978 garmin_data = garmin.addNewData(existing_data, garmin_dict_list,

new_zip_blobs)
979 print("final_data:")
980 print(garmin_data)
981 sleep_dict = garmin.getSleepData(garmin_data, subject)
982 print(sleep_dict)

71

983 triggered_events = {"1728546000": {"referenceId": "questionnaire_a"},
984 "1828546000": {"referenceId": "questionnaire_b"}}
985 subject_in_bed = {}
986 for ts_key, entry in sleep_dict.items():
987 try:
988 date = datetime.utcfromtimestamp(int(ts_key)).strftime("%Y-%m-%d")
989 subject_in_bed[date] = entry["inBedDuration"]
990 except:
991 continue
992 if subject_in_bed:
993 in_bed_by_subject[subject] = subject_in_bed
994 last_updated = list(garmin_data.keys())[-1].split('_')[1]
995

996 final_data = {'garminData': garmin_data,
997 'sleepData': sleep_dict,
998 'triggeredEvents': triggered_events,
999 'lastUpdated': last_updated}

1000 print(final_data)
1001

1002 filename = subject + "_data.json"
1003 final_json = json.dumps(final_data)
1004 blob_client = garmin.blob_service_client.get_blob_client(container="

vivicadata", blob=filename)
1005 blob_client.upload_blob(final_json, overwrite=True)
1006 return in_bed_by_subject
1007

1008 # sleep_json = json.dumps(sleep_dict)
1009 # filename = subject + "_sleep.json"
1010 # blob_client = garmin.blob_service_client.get_blob_client(container="

vivicadata", blob=filename)
1011 # blob_client.upload_blob(sleep_json, overwrite=True)
1012

1013 # TODO: test script in AzureML environment [Alex]
1014 ##### Eind garmin script
1015 ##### Begin questionnaire script
1016

1017

1018

1019 # The script is based on generating a SAS token to use for data access.
1020 # Below are the parameters you can use to access the data.
1021

1022 # Om de account_url en de sas_token te krijgen moet je Alex van Kraaij (imec) <Alex.
vanKraaij@imec.nl> mailen

1023 account_url_questionnaire = "" # Mail Alex, dit is zelfde account_url als voorheen in
het script

1024 sas_token_questionnaire = "" # Mail Alex, dit is zelfde sas token als voorheen in het
script

1025 blobServiceClient = BlobServiceClient(account_url=account_url_questionnaire,
credential=sas_token_questionnaire)

1026

1027 # Here you can specify which subject you are interested in
1028 subjects = ["p024", "p029"]
1029

1030 def get_questionnaire_of_subject(blob_service_client, subject, questionnaire,
container="participants"):

1031 container_client = blob_service_client.get_container_client(container=container)
1032 blob_names_list = list(container_client.list_blob_names())
1033 subject_blob_list = [i for i in blob_names_list if subject in i]

72

1034 questionnaire_blob_name = [i for i in subject_blob_list if questionnaire in i][0]
1035 blobClient = blob_service_client.get_blob_client(container=container, blob=

questionnaire_blob_name)
1036

1037 with BytesIO() as inputBlob:
1038 blobClient.download_blob().readinto(inputBlob)
1039 inputBlob.seek(0)
1040 questionnaire_data = inputBlob.readlines()
1041

1042 questionnaire_dict_list = []
1043 for i, line in enumerate(questionnaire_data):
1044 try:
1045 obj = json.loads(line.decode('utf-8'))
1046 ts = obj.get("timestamps", {})
1047 if all(k in ts for k in ["opened", "submitted", "uploaded"]):
1048 entry_date = datetime.fromtimestamp(ts["submitted"], tz=pytz.UTC).

strftime("%Y-%m-%d")
1049 obj["date"] = entry_date
1050 questionnaire_dict_list.append(obj)
1051

1052 else:
1053 print(f"� Skipped incomplete entry at line {i}: missing timestamp

fields")
1054 except Exception as e:
1055 print(f"� Error parsing line {i}: {e}")
1056

1057 return questionnaire_dict_list
1058

1059

1060 def extract_combined_answers(subject):
1061 combined_answers = []
1062

1063 # Get the most recent PSQI answer (last entry's last answer)
1064 try:
1065 psqi_data = get_questionnaire_of_subject(blobServiceClient, subject, "PSQI")
1066 if psqi_data:
1067 latest_psqi_entry = psqi_data[-1]
1068 last_answer = latest_psqi_entry['answers'][-1]['answer']
1069 combined_answers.append(last_answer)
1070 except Exception as e:
1071 print(f"[{subject}] Failed to process PSQI: {e}")
1072

1073 # Get all dailySleepQ answers with complete timestamps
1074 try:
1075 sleep_data = get_questionnaire_of_subject(blobServiceClient, subject, "

dailySleepQ")
1076 for entry in sleep_data:
1077 if all(k in entry.get("timestamps", {}) for k in ["opened", "submitted", "

uploaded"]):
1078 answers = [a['answer'] for a in entry['answers']]
1079 combined_answers.extend(answers)
1080 except Exception as e:
1081 print(f"[{subject}] Failed to process dailySleepQ: {e}")
1082

1083 return combined_answers
1084

1085 def build_goal_timeline_for_subject(subject):
1086 try:

73

1087 goals_data = get_questionnaire_of_subject(blobServiceClient, subject, "Goals")
1088 if goals_data:
1089 timeline = []
1090 for entry in goals_data:
1091 try:
1092 date = datetime.fromtimestamp(entry["timestamps"]["submitted"], tz=

pytz.UTC).date()
1093 goal_value = float(entry["answers"][0]["answer"].replace(",", "."))
1094 timeline.append((date, goal_value))
1095 except Exception as e:
1096 print(f"[{subject}] Failed parsing Goals entry: {e}")
1097 timeline.sort()
1098 return timeline
1099 except Exception as e:
1100 print(f"[{subject}] Failed to get goal data: {e}")
1101 return []
1102

1103 def get_goal_for_date(goal_timeline, target_date):
1104 applicable_goals = [g for (d, g) in goal_timeline if d <= target_date]
1105 return applicable_goals[-1] if applicable_goals else None
1106

1107 def calculate_score(duration, main_goal):
1108 try:
1109 duration = float(duration)
1110 except:
1111 return 0
1112 time_diff = abs(duration - (main_goal * 60))
1113 if time_diff <= 15:
1114 return 5
1115 elif time_diff <= 60:
1116 return 4
1117 elif time_diff <= 120:
1118 return 3
1119 elif time_diff <= 180:
1120 return 2
1121 else:
1122 return 1
1123

1124

1125 def score_daily_sleep_answers(answers):
1126 score_daily_questionnaire = 0
1127

1128 try:
1129 val = int(answers[0])
1130 if 0 <= val <= 19:
1131 score_daily_questionnaire += 1
1132 elif 20 <= val <= 39:
1133 score_daily_questionnaire += 2
1134 elif 40 <= val <= 59:
1135 score_daily_questionnaire += 3
1136 elif 60 <= val <= 79:
1137 score_daily_questionnaire += 4
1138 elif 80 <= val <= 100:
1139 score_daily_questionnaire += 5
1140 except:
1141 pass
1142

1143 if answers[1].strip().lower() == "ja":

74

1144 score_daily_questionnaire -= 0.4
1145

1146 q3_map = {
1147 "ja, een keer": -0.2,
1148 "ja, twee keer": -0.4,
1149 "ja, drie keer": -0.6,
1150 "ja, meer dan drie keer": -0.8,
1151 "niet gedurende afgelopen nacht": 0
1152 }
1153 score_daily_questionnaire += q3_map.get(answers[5].strip().lower(), 0)
1154

1155 q4_map = {
1156 "een klein beetje een probleem": -0.2,
1157 "enigszins een probleem": -0.4,
1158 "behoorlijk een probleem": -0.6,
1159 "een groot probleem": -0.8,
1160 "helemaal geen probleem": 0
1161 }
1162 score_daily_questionnaire += q4_map.get(answers[2].strip().lower(), 0)
1163

1164 return score_daily_questionnaire
1165

1166 def calculate_in_bed_from_questionnaire(answers):
1167 try:
1168 # Parse Q4 en Q5 als tijd (formaat bijv. '23:45' of '07:15')
1169 to_bed_raw = datetime.strptime(answers[3], "%H:%M")
1170 # Adjust if someone enters something between 6:00 and 15:00 as 'to bed' (likely

meant PM)
1171 if 6 <= to_bed_raw.hour <= 15:
1172 to_bed = to_bed_raw - timedelta(hours=12) # e.g. 10:55 becomes 22:55
1173 else:
1174 to_bed = to_bed_raw
1175 get_up = datetime.strptime(answers[4], "%H:%M")
1176

1177 if get_up <= to_bed:
1178 get_up += timedelta(days=1)
1179

1180 in_bed_duration = (get_up - to_bed).total_seconds() / 60 # in minuten
1181

1182 # Check op Q7 (alleen als Q6 != 'niet gedurende afgelopen nacht')
1183 if answers[5].strip().lower() != "niet gedurende afgelopen nacht" and len(

answers) >= 7:
1184 try:
1185 awake_minutes = int(answers[6])
1186 in_bed_duration -= awake_minutes
1187 except:
1188 pass
1189

1190 return max(in_bed_duration, 0)
1191 except Exception as e:
1192 print(f"Fallback berekening mislukt: {e}")
1193 return None
1194

1195 def generate_recommendation(avg_sleep_score, avg_daily_score, avg_total_score):
1196 recs = []
1197

1198 # Sleep duration part
1199 if avg_total_score == 5:

75

1200 return ("You're doing an excellent job with your sleep! Your sleep duration and
quality are in a great place. "

1201 "Keep up your healthy sleep habits to maintain this balance! If you're
feeling confident, you could even "

1202 "challenge yourself by setting a slightly more ambitious sleep goal to
explore your optimal sleep and see "

1203 "how it feels. Keep it up!")
1204

1205 if avg_total_score <= 4:
1206 # Sleep duration recommendation
1207 if avg_sleep_score < 2:
1208 rec = ("It seems like you are facing some sleep issues, and it can impact

how you feel overall. "
1209 "It might be a good idea to talk to a professional to understand what'

s going on. In the meantime, try to set either a realistic sleep duration goal or
adjust your bedtime or wake-up time gradually to align better with your goal.")

1210 elif avg_sleep_score == 2:
1211 rec = ("Your sleep ’isnt quite on track right now. Over the last five days,

your sleep has been about two hours over or under your goal, which can impact how you
feel during the day. Try gradually adjusting your bedtime or wake-up time to better
match your sleep goal. If needed, consider adjusting your target sleep duration goal
to find what works best for you!!")

1212 elif avg_sleep_score == 3:
1213 rec = ("You're on the right track, but ’theres still a little room to

improve your sleep duration. Over the last five days, your sleep has been about an
hour over or under your goal, which can affect how you feel during the day. Hitting
the perfect sleep schedule every night ’isnt easy, but small —adjustmentslike
gradually shifting your bedtime or wake-up time over the —weekscan help you stay on
track”!")

1214 elif avg_sleep_score < 4:
1215 rec = ("Over the last five days, your sleep has been slightly outside your

ideal duration. To improve consistency, try adjusting your bedtime or wake-up time by
30 to 60 minutes. ")

1216 else:
1217 rec = "Your sleep duration currently aligns well with your stated goal. This

consistency indicates effective time management and attention to healthy sleep habits
. Continuing to monitor and maintain this pattern may contribute positively to your
overall well-being."

1218 recs.append(rec)
1219

1220 # Sleep quality recommendation
1221 if avg_daily_score < 2:
1222 rec = ("It looks like your sleep quality needs some major improvements. To

improve your sleep quality, try turning off screens before bed, making your bedroom
more comfortable, and going to bed at the same time each night. If you wake up often
during the night, try drinking less water before going to bed and cutting out caffeine
late in the day. A relaxing bedtime routine, like reading or deep breathing, can also
help you sleep better. If poor sleep continues, it might be a good idea to talk to a

professional for more help”.")
1223 elif avg_daily_score == 2:
1224 rec = ("Your sleep isn't as restful as it could be. To improve your sleep

quality, try turning off screens before bed, making your bedroom more comfortable, and
going to bed at the same time each night. If you wake up often during the night, try

drinking less water before going to bed and cutting out caffeine late in the day. A
relaxing bedtime routine, like reading or deep breathing, can also help you sleep
better and wake up feeling more refreshed! ")

1225 elif avg_daily_score == 3:

76

1226 rec = ("Your sleep quality is decent, but a few small changes could make it
even better. Try limiting screen time before bed, adjusting your sleep environment for
comfort, or cutting back on fluids in the evening if you wake up frequently at night.
Stay consistent, make small changes, and over time, you'll find the routine that

works best for you!")
1227 elif avg_daily_score == 4:
1228 rec = ("Your sleep quality is good, but there is some room for improvement!

Keep up a consistent bedtime and try incorporating a relaxing activity before sleep,
like reading or deep breathing, to wake up feeling even more refreshed.")

1229 else:
1230 rec = "Your reported sleep quality is at a desirable level. This outcome

suggests that current sleep-related behaviors and environmental factors may be
supporting restful sleep. Ongoing attention to these elements can help preserve this
favorable pattern over time."

1231 recs.append(rec)
1232

1233 return " ".join(recs)
1234

1235

1236

1237 if __name__ == "__main__":
1238 all_subjects_answers = {}
1239 main_sleep_goal_by_subject = {}
1240 for subject in subjects:
1241 answers = extract_combined_answers(subject)
1242 all_subjects_answers[subject] = answers
1243

1244 in_bed_durations_per_subject = process_blob()
1245

1246 # Store scores for later matching
1247 sleep_scores_by_subject = {}
1248 questionnaire_scores_by_subject = {}
1249

1250 for subject in subjects:
1251 sleep_scores = []
1252 daily_scores = []
1253 last_answer_value = None
1254

1255

1256 # Main sleep goal (from Goals questionnaire)
1257 goal_timeline = build_goal_timeline_for_subject(subject)
1258 main_sleep_goal_by_subject[subject] = goal_timeline[-1][1] if goal_timeline

else None # voor referentie
1259

1260

1261 # Sleep durations
1262 durations = in_bed_durations_per_subject.get(subject, [])
1263 for duration in durations:
1264 if last_answer_value is not None:
1265 score = calculate_score(duration, last_answer_value)
1266 sleep_scores.append(score)
1267

1268 # Questionnaire scores
1269 try:
1270 sleep_data = get_questionnaire_of_subject(blobServiceClient, subject, "

dailySleepQ")
1271 for entry in sleep_data:

77

1272 if not all(k in entry.get("timestamps", {}) for k in ["opened", "
submitted", "uploaded"]):

1273 continue # Skip incomplete entries
1274 answers = [a['answer'] for a in entry['answers']]
1275 if len(answers) >= 4:
1276 score = score_daily_sleep_answers(answers)
1277 daily_scores.append(score)
1278

1279 except Exception as e:
1280 print(f"[{subject}] Failed to get dailySleepQ data: {e}")
1281

1282 sleep_scores_by_subject[subject] = sleep_scores
1283 questionnaire_scores_by_subject[subject] = daily_scores
1284

1285 # --- Combine latest unused sleep & questionnaire scores per subject ---
1286 combined_scores_per_subject = {}
1287

1288 for subject in subjects:
1289 sleep_data = in_bed_durations_per_subject.get(subject, {})
1290 daily_entries = []
1291 try:
1292 raw_daily_data = get_questionnaire_of_subject(blobServiceClient, subject, "

dailySleepQ")
1293 daily_entries = [
1294 entry for entry in raw_daily_data
1295 if all(k in entry.get("timestamps", {}) for k in ["opened", "submitted",

"uploaded"])
1296]
1297 except Exception as e:
1298 print(f"[{subject}] Failed to load dailySleepQ entries: {e}")
1299

1300 try:
1301 goals_data = get_questionnaire_of_subject(blobServiceClient, subject, "Goals

")
1302 if goals_data:
1303 latest_goal_entry = goals_data[-1]
1304 raw_goal = latest_goal_entry['answers'][0]['answer'].replace(",", ".")
1305 main_goal_value = float(raw_goal)
1306 main_sleep_goal_by_subject[subject] = main_goal_value
1307 except Exception as e:
1308 print(f"[{subject}] Failed to get sleep goal from 'Goals' questionnaire: {e}

")
1309 main_goal_value = None
1310

1311 combined_scores = []
1312 goal_timeline = build_goal_timeline_for_subject(subject)
1313 main_sleep_goal_by_subject[subject] = goal_timeline[-1][1] if goal_timeline

else None # laatste voor referentie
1314 combined_scores = []
1315

1316 for entry in daily_entries:
1317 if not all(k in entry.get("timestamps", {}) for k in ["opened", "submitted",

"uploaded"]):
1318 continue
1319

1320 entry_date_str = entry.get("date")
1321 entry_date = datetime.strptime(entry_date_str, "%Y-%m-%d").date()
1322

78

1323 # � Haal juiste doel op voor deze datum
1324 main_goal_value = get_goal_for_date(goal_timeline, entry_date)
1325

1326 answers = [a["answer"] for a in entry["answers"]]
1327 daily_score = score_daily_sleep_answers(answers)
1328 note = ""
1329 in_bed = None
1330

1331 # � Gebruik juiste doel bij berekenen van slaapscore
1332 if entry_date_str in sleep_data:
1333 in_bed = sleep_data[entry_date_str]
1334 sleep_score = calculate_score(in_bed, main_goal_value)
1335 else:
1336 fallback = calculate_in_bed_from_questionnaire(answers)
1337 if fallback:
1338 in_bed = fallback
1339 sleep_score = calculate_score(fallback, main_goal_value)
1340 note = f"Fallback sleep duration used: {round(fallback)} min ({round(

fallback/60,2)} hrs)"
1341 else:
1342 sleep_score = 0
1343 note = "No sleep data available"
1344

1345 total_score = (sleep_score * 0.5) + (daily_score * 0.5)
1346

1347 combined_scores.append({
1348 "date": entry_date_str,
1349 "sleep_score": sleep_score,
1350 "daily_score": daily_score,
1351 "total_score": total_score,
1352 "in_bed_duration": in_bed,
1353 "note": note,
1354 "goal_used": main_goal_value # � optioneel voor in Excel
1355 })
1356

1357 combined_scores_per_subject[subject] = combined_scores
1358

1359 # for entry in daily_entries:
1360 # entry_date = entry.get("date")
1361 # answers = [a["answer"] for a in entry["answers"]]
1362 # daily_score = score_daily_sleep_answers(answers)
1363 # note = ""
1364 # in_bed = None
1365

1366 # if entry_date in sleep_data:
1367 # in_bed = sleep_data[entry_date]
1368 # sleep_score = calculate_score(in_bed, main_goal_value)
1369 # else:
1370 # fallback = calculate_in_bed_from_questionnaire(answers)
1371 # if fallback:
1372 # in_bed = fallback
1373 # sleep_score = calculate_score(fallback, main_goal_value)
1374 # note = f"Fallback sleep duration used: {round(fallback)} min ({

round(fallback/60,2)} hrs)"
1375 # else:
1376 # sleep_score = 0
1377 # note = "No sleep data available"
1378

79

1379 # total_score = (sleep_score * 0.5) + (daily_score * 0.5)
1380

1381 # combined_scores.append({
1382 # "date": entry_date,
1383 # "sleep_score": sleep_score,
1384 # "daily_score": daily_score,
1385 # "total_score": total_score,
1386 # "in_bed_duration": in_bed,
1387 # "note": note
1388 # })
1389

1390 # combined_scores_per_subject[subject] = combined_scores
1391

1392

1393 # --- Output ---
1394 for subject, scores in combined_scores_per_subject.items():
1395 print(f"\n--- {subject} Combined Daily Scores ---")
1396 total_so_far = 0
1397

1398 # Laad alle dagelijkse antwoorden vooraf
1399 try:
1400 daily_data = get_questionnaire_of_subject(blobServiceClient, subject, "

dailySleepQ")
1401 except Exception as e:
1402 print(f"[{subject}] Failed to load dailySleepQ entries for printing: {e}

")
1403 daily_data = []
1404

1405 print(f"\n--- {subject} Combined Daily Scores ---")
1406 total_so_far = 0
1407

1408 # Print per dag
1409 # Maak mapping per datum
1410 score_by_date = {entry["date"]: entry for entry in scores}
1411

1412 # Combineer alle datums
1413 dates_questionnaire = [e["date"] for e in daily_data]
1414 dates_sleep = list(in_bed_durations_per_subject.get(subject, {}).keys())
1415 all_dates = sorted(set(dates_questionnaire + dates_sleep))
1416

1417 print(f"\n--- {subject} Combined Daily Scores (by date) ---")
1418

1419 for i, date in enumerate(all_dates):
1420 entry = score_by_date.get(date, {})
1421 sleep_score = entry.get("sleep_score", "")
1422 daily_score = entry.get("daily_score", "")
1423 total_score = entry.get("total_score", "")
1424 in_bed = entry.get("in_bed_duration", "")
1425 note = entry.get("note", "No questionnaire data available for this day")
1426

1427 print(f"\�n === {date} ===")
1428 print(f"� Sleep score: {sleep_score if sleep_score != '' else –''}")
1429 print(f"� Daily questionnaire score: {daily_score if daily_score != ''

else –''}")
1430 print(f"� Total score: {total_score if total_score != '' else –''}")
1431

1432 if in_bed != "":
1433 hours = round(in_bed / 60, 2)

80

1434 print(f" In-bed duration: {round(in_bed)} minutes ({hours} hours)")
1435 else:
1436 print(" In-bed duration: Not available")
1437

1438 print(f" Note: {note}")
1439

1440 # Toon vragen en antwoorden als beschikbaar
1441 daily_entry = next((e for e in daily_data if e["date"] == date), None)
1442 if daily_entry:
1443 answers = daily_entry["answers"]
1444 questions = {
1445 q["id"]: q["description"]
1446 for q in daily_entry.get("questionnaire", [{}])[0].get("questions"

, [])
1447 }
1448

1449 print("\�n Daily questionnaire and answers:")
1450 for qa in answers:
1451 q_id = qa.get("id")
1452 question = questions.get(q_id, f"Unknown question (id: {q_id})")
1453 answer = qa.get("answer", "No answer")
1454 print(f" - {question}: {answer}")
1455 else:
1456 print("� No questionnaire available for this day.")
1457

1458 # Print aanbeveling op basis van gemiddelden
1459 if scores:
1460 avg_sleep_score = sum([entry["sleep_score"] for entry in scores if "

sleep_score" in entry]) / len(scores)
1461 avg_daily_score = sum([entry["daily_score"] for entry in scores if "

daily_score" in entry]) / len(scores)
1462 avg_total_score = sum([entry["total_score"] for entry in scores if "

total_score" in entry]) / len(scores)
1463

1464 recommendation = generate_recommendation(avg_sleep_score,
avg_daily_score, avg_total_score)

1465

1466 print("\�n === Recommendations based on your averages ===")
1467 print(recommendation)
1468 print("� ==\n")
1469

1470 for entry in scores:
1471 entry["recommendation"] = recommendation
1472

1473 # Voeg vragen en antwoorden toe als beschikbaar
1474 if i < len(daily_data):
1475 try:
1476 entry = daily_data[i]
1477 answers = entry["answers"]
1478 question_map = {q["id"]: q["description"] for q in entry.get("

questionnaire", [{}])[0].get("questions", [])}
1479

1480 print("\�n Daily questionnaire and answers:")
1481 for qa in answers:
1482 q_id = qa.get("id")
1483 question = question_map.get(q_id, f"Unknown question (id: {

q_id})")
1484 answer = qa.get("answer", "No answer")

81

1485 print(f" - {question}: {answer}")
1486

1487 except Exception as e:
1488 print(f" Error while retrieving questions/answers: {e}")
1489 else:
1490 print(" No daily questionnaire available for this day.")
1491 print("� ------------------------------\n")
1492

1493

1494

1495

1496 # Maak ExcelWriter om meerdere tabs/sheets aan te maken
1497 output_file = "combined_sleep_scores_per_subject_day15_all.xlsx"
1498 with pd.ExcelWriter(output_file, engine='openpyxl') as writer:
1499 for subject, scores in combined_scores_per_subject.items():
1500 if not scores:
1501 continue
1502

1503 subject_rows = []
1504

1505 # Stap 1: Laad vragenlijstdata + dates
1506 daily_data_raw = get_questionnaire_of_subject(blobServiceClient, subject, "

dailySleepQ")
1507 daily_data = [
1508 e for e in daily_data_raw
1509 if all(k in e.get("timestamps", {}) for k in ["opened", "submitted", "

uploaded"])
1510]
1511 dates_questionnaire = [e["date"] for e in daily_data]
1512

1513 # Stap 2: Haal alle dagen met slaapmeting (die dict is {date: duration})
1514 sleep_data_dict = in_bed_durations_per_subject.get(subject, {})
1515

1516 # Stap 3: Combineer alle dagen waarin iets zit
1517 all_dates = sorted(set(dates_questionnaire + list(sleep_data_dict.keys())))
1518

1519 # Stap 4: Bouw scores per datum (inclusief alleen-metingsdagen)
1520 score_by_date = {}
1521

1522 for e in scores:
1523 score_by_date[e["date"]] = e
1524

1525 for date, duration in sleep_data_dict.items():
1526 if date not in score_by_date:
1527 sleep_score = calculate_score(duration, main_sleep_goal_by_subject.get(

subject, 8))
1528 score_by_date[date] = {
1529 "date": date,
1530 "sleep_score": sleep_score,
1531 "daily_score": "",
1532 "total_score": round(sleep_score * 0.5, 2),
1533 "note": "No questionnaire data available for this day",
1534 "in_bed_duration": duration,
1535 "recommendation": "",
1536 }
1537

1538 # Stap 5: Maak per dag de rijen aan
1539 for date in all_dates:

82

1540 entry = score_by_date.get(date, {})
1541 row = {
1542 "Goal used (hours)": entry.get("goal_used", ""),
1543 "Subject": subject,
1544 "Main Goal (hours)": main_sleep_goal_by_subject.get(subject, None),
1545 "Date": date,
1546 "Sleep Score": entry.get("sleep_score", ""),
1547 "Daily Score": entry.get("daily_score", ""),
1548 "Total Score": entry.get("total_score", ""),
1549 "Average Total Score": "",
1550 "In-bed (minutes)": round(entry["in_bed_duration"], 2) if entry.get("

in_bed_duration") else "",
1551 "In-bed (hours)": round(entry["in_bed_duration"] / 60, 2) if entry.get("

in_bed_duration") else "",
1552 "Note": entry.get("note", "No questionnaire data available for this day"

),
1553 "Recommendation": entry.get("recommendation", "")
1554 }
1555

1556 # Voeg vragen en antwoorden toe
1557 daily_entry = next((e for e in daily_data if e["date"] == date), None)
1558 if daily_entry:
1559 answers = daily_entry["answers"]
1560 questions = {
1561 q["id"]: q["description"]
1562 for q in daily_entry.get("questionnaire", [{}])[0].get("questions",

[])
1563 }
1564 for i, qa in enumerate(answers, start=1):
1565 q_id = qa.get("id")
1566 row[f"Q{i}"] = questions.get(q_id, f"Unknown question (id: {q_id})")
1567 row[f"A{i}"] = qa.get("answer", "No answer")
1568

1569 # Bereken voortschrijdend gemiddelde
1570 valid_totals = [
1571 r["Total Score"] for r in subject_rows
1572 if isinstance(r.get("Total Score", None), (int, float, float))
1573]
1574 if isinstance(row["Total Score"], (int, float)):
1575 valid_totals.append(row["Total Score"])
1576 if valid_totals:
1577 row["Average Total Score"] = round(sum(valid_totals) / len(valid_totals)

, 2)
1578

1579 subject_rows.append(row)
1580

1581 if subject_rows:
1582 df = pd.DataFrame(subject_rows)
1583 df.to_excel(writer, sheet_name=subject, index=False)
1584

1585 print(f"\�n Excel file saved as: {output_file} (met correcte matching en lege cellen
waar nodig)")

83

L ALGORITHM - PYTHON SCRIPT - PSQI SCORE

Listing L.1: PSQI Scoring Algorithm
1 #Copyright (c), 2025, OnePlanet Research Center & University of Twente
2

3 # Permission is hereby granted, free of charge, to any person obtaining a copy of
↪→ this software and associated documentation files (the "Software"), to deal in
↪→ the Software without restriction , including without limitation the rights to
↪→ use, copy, modify, merge, publish, distribute , sublicense , and/or sell
↪→ copies of the Software, and to permit persons to whom the Software is
↪→ furnished to do so, subject to the following conditions:

4

5 # The above copyright notice and this permission notice shall be included in all
↪→ copies or substantial portions of the Software.

6

7 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
↪→ , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY , FITNESS FOR
↪→ A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
↪→ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY ,
↪→ WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM, OUT OF OR
↪→ IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8

9

10 #Script from Alex originally , adjusted to give scores to PSQI questionnaire
11 import json
12 from azure.storage.blob import BlobServiceClient
13 from io import BytesIO
14 import pandas as pd
15 from datetime import datetime, timedelta
16

17 # Azure instellingen
18 account_url = "" #mail Alex
19 sas_token = "" #mail Alex
20 blobServiceClient = BlobServiceClient(account_url=account_url , credential=sas_token)
21 # Om de account_url en de sas_token te krijgen moet je Alex van Kraaij (imec) <Alex.

↪→ vanKraaij@imec.nl> mailen
22

23 # Subjectlijst
24 deelnemers = ["p001", "p002"]
25

26 # Mappingfuncties
27 def freq_to_score(answer):
28 return {
29 "niet gedurende deze maand": 0,
30 "minder dan 1 keer per week": 1,
31 "1 tot 2 keer per week": 2,
32 "3 of meer keren per week": 3
33 }.get(answer, 0)
34

35 def quality_to_score(answer):
36 return {
37 "heel goed": 0,

84

38 "redelijk goed": 1,
39 "redelijk slecht": 2,
40 "heel slecht": 3
41 }.get(answer, 0)
42

43 def problem_to_score(answer):
44 return {
45 "helemaal geen probleem": 0,
46 "een klein probleem": 1,
47 "enigszins een probleem": 2,
48 "een groot probleem": 3
49 }.get(answer, 0)
50

51 # PSQI-scoreberekening
52 def calculate_psqi_score(answers):
53 answer_dict = {a['id']: a['answer'] for a in answers}
54

55 comp1 = quality_to_score(answer_dict.get("6", ""))
56

57 # Component 2 – slaaplatentie
58 try:
59 latentie = int(answer_dict.get("2", "0"))
60 except ValueError:
61 latentie = 0
62 comp2a = 0 if latentie <= 15 else 1 if latentie <= 30 else 2 if latentie <= 60

↪→ else 3
63 comp2b = freq_to_score(answer_dict.get("5a", ""))
64 comp2 = round((comp2a + comp2b) / 2)
65

66 # Component 3 – slaapduur
67 try:
68 slaapduur = float(answer_dict.get("4", "0").replace(",", "."))
69 except ValueError:
70 slaapduur = 0
71 comp3 = 0 if slaapduur >= 7 else 1 if slaapduur >= 6 else 2 if slaapduur >= 5

↪→ else 3
72

73 # Component 4 – Slaapefficiëntie
74 try:
75 slaapduur = float(answer_dict.get("4", "0").replace(",", "."))
76

77 bed_str = answer_dict.get("1", "00:00")
78 wake_str = answer_dict.get("3", "00:00")
79

80 bed_time = datetime.strptime(bed_str, "%H:%M").time()
81 wake_time = datetime.strptime(wake_str , "%H:%M").time()
82

83 # Forceer bedtijd als avondtijd indien nodig
84 if bed_time.hour < 12:
85 bed_time = (datetime.combine(datetime.today(), bed_time) + timedelta(

↪→ hours=12)).time()
86

87 bed_dt = datetime.combine(datetime.today(), bed_time)
88 wake_dt = datetime.combine(datetime.today(), wake_time)
89

90 if wake_dt <= bed_dt:
91 wake_dt += timedelta(days=1)
92

93 time_in_bed = (wake_dt - bed_dt).total_seconds() / 3600
94 efficiency = (slaapduur / time_in_bed) * 100 if time_in_bed > 0 else 0
95 comp4 = 0 if efficiency >= 85 else 1 if efficiency >= 75 else 2 if

↪→ efficiency >= 65 else 3
96

85

97 except Exception as e:
98 print(f"� Fout bij berekenen Component 4: {e}")
99 comp4 = 0

100

101

102

103 # Component 5 – slaapproblemen
104 keys = ["5b", "5c", "5d", "5e", "5f", "5g", "5h", "5i", "5j1"]
105 comp5_sum = sum([freq_to_score(answer_dict.get(k, "")) for k in keys])
106 comp5 = 0 if comp5_sum == 0 else 1 if comp5_sum <= 9 else 2 if comp5_sum <= 18

↪→ else 3
107

108 # Component 6 – medicatie
109 comp6 = freq_to_score(answer_dict.get("7", ""))
110

111 # Component 7 – functioneren overdag
112 comp7a = freq_to_score(answer_dict.get("8", ""))
113 comp7b = problem_to_score(answer_dict.get("9", ""))
114 comp7 = round((comp7a + comp7b) / 2)
115

116 totaal = comp1 + comp2 + comp3 + comp4 + comp5 + comp6 + comp7
117

118 return {
119 "Component 1": comp1,
120 "Component 2": comp2,
121 "Component 3": comp3,
122 "Component 4": comp4,
123 "Component 5": comp5,
124 "Component 6": comp6,
125 "Component 7": comp7,
126 "Totaalscore": totaal
127 }
128

129 # Questionnaire ophalen
130 def get_questionnaire(subject, questionnaire="PSQI", container="participants"):
131 container_client = blobServiceClient.get_container_client(container)
132 blobs = list(container_client.list_blob_names())
133 relevant = [b for b in blobs if subject in b and questionnaire in b]
134 if not relevant:
135 return []
136 blob = blobServiceClient.get_blob_client(container=container , blob=relevant[0])
137 with BytesIO() as inputBlob:
138 blob.download_blob().readinto(inputBlob)
139 inputBlob.seek(0)
140 lines = inputBlob.readlines()
141 return [json.loads(line.decode("utf-8")) for line in lines]
142

143 # Hoofdscript
144 if __name__ == "__main__":
145 rows = []
146 for subject in deelnemers:
147 try:
148 entries = get_questionnaire(subject)
149 for entry in entries:
150 scores = calculate_psqi_score(entry["answers"])
151 timestamp = entry.get("timestamps", {}).get("submitted", 0)
152 datum = datetime.fromtimestamp(timestamp).strftime("%Y-%m-%d %H:%M:%

↪→ S")
153 scores["Subject"] = subject
154 scores["Datum"] = datum
155 rows.append(scores)
156 except Exception as e:
157 print(f"Fout bij {subject}: {e}")

86

158

159 df = pd.DataFrame(rows)
160 kolomvolgorde = ["Subject", "Datum"] + [f"Component {i}" for i in range(1, 8)] +

↪→ ["Totaalscore"]
161 df = df[kolomvolgorde]
162 df.to_excel("psqi_scores.xlsx", index=False)
163 print("� PSQI-scores opgeslagen in psqi_scores.xlsx")

87

