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Management Summary

Introduction and problem formulation

The CT radiology department of UMC Utrecht is under increasing pressure due to growing
demand and limited resources. Despite efforts to manage capacity, the current average access
time of 31 days for outpatient CT appointments still exceeds the target of 22.4 days set by Dutch
health insurers. Therefore, the core issue is that the access time exceeds the agreed target set by
health insurers. Interviews with hospital staff, observation studies and data review revealed that
while demand is high, the current appointment schedule does not align with the high volume
of walk-in and unplanned arrivals. This mismatch leads to inefficient scanner use, increased
waiting times, and high access times. Based on this core problem, the main research question
is:

How can we better align patient demand and CT appointment schedules to achieve target
access times for scheduled appointments?

Problem solving approach

We developed a model based on the insights gained from the literature. We chose discrete-event
simulation because it provides valuable performance insights, is user-friendly, and will help the
hospital trust the model, thus increasing the likelihood of successful implementation. We chose
discrete event simulation to evaluate the system, as it can incorporate variable arrival patterns,
multiple patient types, and complex queuing behaviour with fewer simplifying assumptions
than analytical methods. We developed a simulation-based optimisation framework combining
Discrete Event Simulation (DES) with Simulated Annealing (SA). DES was used to evaluate how
well different appointment schedules perform under realistic operating conditions, accounting
for patient types, arrival rates, priority rules, scan durations, and scanner capacity. Simulated
annealing was applied as a metaheuristic search method to explore the vast solution space and
iteratively improve the appointment schedule. Figure 0.1 illustrates the relationship between
DES and SA. SA proposes a new appointment schedule through controlled changes, and DES
evaluates its performance using multiple replications to account for randomness. This loop
continues until the stopping criteria are met.

Figure 0.1: Relation between discrete-event simulation and simulated annealing in the model

A total of eight experiments were performed, including: evaluation of the current schedule;
testing flexible versus hybrid scanner priority rules; testing allowing outpatient appointment
slots on all scanners using simulated annealing; simulating additional outpatient slots using
simulated annealing; exploring stakeholder-proposed schedules; and optimising combinations of
these factors.
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Key Findings:

• Balanced objective function ensured realistic trade-offs. The simulation did not just
seek the lowest average waiting time, but also penalised excessive overtime and unmet
service level targets. This multi-KPI approach led to better-performing schedules.

• Flexible priority rules lead to significantly better system performance. Allowing all
CT scanners to dynamically select the next patient based on patient type (Emergency
patient, inpatient, outpatient and walk-inpatient), rather than having dedicated walking
scanners, resulted in lower average waiting times and higher service level performance.

• Optimised schedules increased utilisation without increasing overtime and capacity.
Using simulated annealing, a schedule was generated that allowed an average of 5.8 ad-
ditional appointments per day. This reduces the access time from 31 days to the target
of 22.4 days. Compared to the initial schedule, the SL of emergency, walk-in and outpa-
tients increased, and that of walking patients decreased but stayed within the target. The
overtime and average waiting time also stay within the target. The comparison with the
initial and proposed appointment schedule can be seen in Figure 0.2 and Figure 0.3. On
all hours of the days extra appointments are added without violating the KPI targets.

• Stakeholder involvement was key. The simulation model is transparent and designed
to be user-friendly, so planners and decision-makers can test new ideas and understand
their effects. This approach led to more grounded experiments, better alignment with
real-world constraints, and a greater chance of implementation.

Figure 0.2: Number of appoint-
ment slots per day

Figure 0.3: Number of
appointment slots per
hour

Conclusion:

This study demonstrates that significant improvements in access time and overall performance
can be achieved through a combination of discrete-event simulation and metaheuristic optimi-
sation (SA). This means that increasing capacity is not always needed to increase efficiency
and access times. We proved that restructuring how and when appointments are scheduled
and using flexible priority rules for all scanners, using DES and SA, delivers a scalable way to
improve efficiency for UMC Utrecht. More case studies need to be performed to determine if
flexible priority rules are best for all departments that deal with many unplanned arrivals.

The final model allows UMC Utrecht to evaluate existing schedules, explore alternative scenar-
ios, and implement data-driven changes. While some simplifications were made, the model is
robust and adaptable, making it a valuable tool for tactical decision-making.
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1 INTRODUCTION

1 Introduction

To complete the master’s programme in Industrial Engineering and Management, research is
conducted at UMC Utrecht. This chapter introduces the company in section 1.1. This is
followed by describing the action problem and associated core problem in section 1.2. The
research design is outlined in section 1.3.

1.1 Company introduction

This section provides an overview of the organisation and its key departments. Section 1.1.1
introduces UMC Utrecht and subsequently discusses the Integral Capacity Management Team
in section 1.1.2. Finally, the Radiology Department is described in section 1.1.3.

1.1.1 UMC Utrecht

Healthcare systems worldwide are under increasing pressure due to the growing demands of
patients and limited resources. Therefore, efficiently using these resources is essential to de-
livering timely and effective patient care. UMC Utrecht is one of the largest hospitals in the
Netherlands, located in the Utrecht Science Park (Interchange, 2021). The hospital was founded
in 1817 and has grown to more than 12,000 employees. The hospital has over 1,000 beds and
treats more than 30,000 inpatients and 350,000 outpatients a year (UMC Utrecht, 2024).

Aside from patient care, another important role of the hospital is academic research and educa-
tion. The hospital works closely with the Utrecht University Medical School and is a training
centre for medical students, residents, and healthcare professionals. Their mission is to create
patient care for tomorrow together, where the patient plays a central role. This means that
in every part of their organisation, they aim for socially acceptable costs to keep healthcare
accessible. For this, an agile organisation must apply innovations quickly and safely. Since it
is an academic hospital, it often focuses on complex, high-quality healthcare. This means that
the patient’s care paths often include multiple specialists and types of diagnostics.

1.1.2 Integral capacity management team

The project owner of this thesis is the Integral Capacity Management team. They focus on
projects that optimise utilisation and capacity to get the correct patients to the right places with
the right resources and satisfy employees and patients. This department was founded in January
2021 during the COVID-19 pandemic. Their vision is to focus on continuous improvement
instead of one superior improvement. For example, this means they prefer quick wins over one
big multi-year project. Their strategy is to give specialists access to reliable data and manage
the hospital based on its capacity limits. This will tackle the hospital-wide problem of the
growing demands and limited resources.

1.1.3 Radiology department

Radiology is one of the hospital’s core departments, with 24 radiologists. In addition to radiol-
ogists, this department consists of laboratory technicians. The laboratory technicians perform
the scans. Senior laboratory technicians are responsible for staff planning and opening appoint-
ment time slots per category for each scan, where patient appointments can be planned. The
radiology administration schedules the patients’ appointments on the available time slots and
registers the patients. Various imaging tests are performed in the radiology department, such as
conventional X-ray diagnostics, ultrasound, angiography, mammography, nuclear examination,
CT, and MRI. In addition to diagnostics, treatments are also performed using image-guided
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1 INTRODUCTION

techniques. The CT department is special compared to others since it uses planned and walk-in
appointments interchangeably.

The Integral Capacity Management department has not yet worked with the radiology depart-
ment; therefore, there are many opportunities for capacity improvement problems. That is why
we will focus on this department.

1.2 Problem identification

Section 1.2.1 describes how the action problem is chosen. Section 1.2.2 outlines the visualised
problem cluster that helps to identify the core problem. Subsequently, section 1.2.3 explains
how the core problem is chosen.

1.2.1 Action problem

The radiology department faces capacity problems. In the future, they need to deliver more
healthcare with the same capacity. This is because the demand for scans will grow, and the
resources will be the same or even less. The radiology department finds customer satisfaction
very important. They believe that they can improve patient satisfaction by letting patients plan
their appointments. On top of this, they think it will also help with the increased demand since
it will save labour time of planners. The department has already started by letting patients plan
their appointments by allowing walk-in appointments for CT scans. For now, the CT scan has
the highest potential to let patients plan their appointments because for example, MRI scans
or radiations require more preparations for both employees and patients and are therefore hard
to plan by patients. To conclude, since this department wants to let patients schedule their
appointments and they have already started with the CT, we will focus on the CT scan process.

To begin with, we conducted extensive interviews with different stakeholders to determine which
part of the CT scan process requires the most improvement in capacity management. We asked
these stakeholders about their most significant concerns and wishes for improvement.

Figure 1.1: Stakeholders’ wishes and concerns identified during the interviews.

Figure 1.1 shows an overview of the outcomes of the interviews. We see that the interests of
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the different stakeholders conflict. Some find the well-being of the patients most important,
while others prioritise the employees, costs or insights into the performance. In a meeting with
all the stakeholders, we agreed they first want to improve the long access times for scheduled
appointments. They want to focus specifically on scheduled appointments since walk-ins and
emergency patients do not have access times since they can arrive on the same day.

Every two weeks, each hospital has to calculate its access times. All hospitals in the Netherlands
do this by counting the calendar days between the referral date and the third opportunity for an
appointment (Zorgkaart Nederland, 2024). The third option is used because earlier appointment
slots may become available due to cancellations, which do not accurately reflect typical waiting
times. By considering the third available appointment, the measurement better represents the
experience of the broader patient population. We calculated an average access time of 48 days
for scheduled appointments over the last six months, with a maximum of 85 days using this
method. Dutch health insurers negotiated with the hospitals that 80% of the patients should be
able to get a CT scan within 21 days and the other 20% within 28 days (CZ, 2024). To simplify
this, this means that the waiting time should have a maximum average of 22.4 days. At UMC
Utrecht, currently 11% of the scans are within 28 days and 22% within 21 days. This means
the waiting time for scheduled appointments is too long. If nothing changes, the access times
will only get longer over time, as the demand for healthcare increases. While tackling the long
access times, other wishes and problems will probably be solved, such as improved workload
variation and better insight into supply, demand, and access times.

The conclusion is that the access times are too long, meaning they cannot even meet the current
demand. Leading us to the following action problem: ”The access time for scheduled CT scan
appointments is longer than agreed with the health insurers.” This research will thus focus on
designing a method to improve the utilisation of CT scans and reduce the access times to the
suggestions of the health insurance. To simplify this target, the average access time should be
at least below 22.4 days.

1.2.2 Problem cluster

This section describes the process from the action problem to the core problem. The observed
action problem is the too-long access times for fixed CT appointments. With these access times,
UMC is not able to face future demand. The action problem captures a discrepancy between
norm and reality (Heerkens and Van Winden, 2017). This research aims to resolve this gap
by addressing its root causes. We made a problem cluster (Figure 1.2) to find the root causes,
which are called the core problems. We gathered all the information with the help of interviews,
observations and data research. The arrows run from effects to causes. There are four reasons
for the long access times for CT scans.

1. The first reason (effect 1 in problem cluster) is an incorrect waiting list length. One
explanation is that some people are on the list twice, while others no longer need a scan
or voluntarily wait. On top of this, walk-in patients are on the list as well, and their access
time is often their own choice. So, the calculated access time per speciality is not correct.
It is, therefore, difficult to find the optimal number of appointments and to balance them
between the specialities.

2. The second reason (2) is that there are not enough CT scans open, so they cannot face
the demand for fixed appointments. The main reason CT scans are closed is due to the
capacity of the laboratory technicians. The number of laboratory technicians available is
not optimal because:

(a) There are not enough technicians to always cover the demand (9).
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(b) The technicians are scheduled according to supply (10). So, for example, they do not
consider the demand when determining whether to approve requests for a day off.

Figure 1.2: Problem cluster showing how we found the core problem.

3. The third reason is overcapacity and undercapacity (3). When there is an overcapacity of
laboratory technicians, they cannot perform more scans because the demand cannot be
increased immediately. The other way around is when too few technicians are present,
appointments must be cancelled. This results in inefficient work, long waiting lists, and
access times. There are three main causes for this.

(a) The capacity of laboratory technicians present is not optimal (6).

(b) The second motive is the arrival time of patients (7). If patients arrive late, staff
may be unoccupied and, later on, overutilized.

(c) Another cause is the wide variation in demand (8). For example, they are buried
in work in the morning, and in the afternoon, it is the opposite. This has different
causes.

i. The first reason is the incorrectly scheduled appointment time. If appointments
are scheduled for longer than the duration, the actual demand will be lower than
expected.

ii. Secondly, appointments are planned during busy walk-in hours. This results
in undercapacity during the busy walk-in hours and overcapacity during quiet
hours.

iii. Lastly, buffers are created in many different ways. So, it is difficult to see how
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much buffer time is planned. For example, too much buffer time will lead to idle
working hours and low utilisation.

4. The fourth argument is that there are too few fixed appointments compared to a walk-in
appointment (4).

(a) The explanation for this is that the planners plan so they can face the walk-in demand
and emergency demand (14). They do not know how many patients will arrive, so
they save a lot of time for this to avoid overtime. This results in high access times
for fixed appointments.

Reasons 11, 12, 13 and 14 all lead to the last potential core problem: the appointment schedule
is not adjusted to demand. The appointment schedule can be adjusted by opening the optimal
number of slots and planning the correct appointment length at the optimal time. This will
decrease the variation in the number of scans daily and weekly. According to the Lean principle,
reducing variation will make the work more efficient, so more patients can get a scan and the
access time decreases (Theisens, 2021).

1.2.3 Core problem

In this section, we choose the core problem from the five candidates shown in Figure 1.2).
Heerkens and Van Winden, 2017 states that the problems that cannot be addressed should be
eliminated from the set of candidates.

It is, for now, impossible to hire more laboratory technicians because there is insufficient money
and a shortage in the labour market (problem 9). Next, you cannot eliminate patients arriving
late because you cannot influence the traffic or, for example, other emergencies that cause
patients to arrive late (problem 7). Accordingly, the problems of ”not having enough laboratory
technicians” and ”planned patients do not come on time” have been deleted from the list.

An administrative employee can remove duplicate patients or patients who do not need a scan
anymore from the waiting list (problem 1). This is very time-consuming and very difficult. A
better solution is to remind employees, with a notification in the scheduling system, to use an
existing order instead of making a new order. This is a quick and practical fix to get a better
insight into the waiting list. It will, however, not reduce the actual access time and, therefore,
is not chosen as the core problem.

It is good to schedule employees according to demand to reduce over- and under-capacity. Right
now, this is impossible since the exact demand is unknown (problem 10). Next to this, it is a
cultural problem that they want to satisfy the time-off requests of their employees. However,
we can make the most significant impact by adjusting the appointment schedule according to
the demand (problem 15). An explanation for this is that four effects will be solved if the
appointment schedule is adjusted to the demand. Therefore, the impact on access time of
fixed appointments will be significant. On the contrary, scheduling laboratory technicians not
according to demand will only solve one effect.

To conclude, the potential core problem: ”The appointment schedule for the CT scans are not
adjusted on demand.” has been chosen as the core problem to solve. Because it is solvable in a
relatively short time, it will have the most impact on the access times.

1.3 Research design

This section will describe the research scope, research questions and deliverables.
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1.3.1 Scope

Certain boundaries are set within the topic of the core problem to ensure the research can be
completed within the time constraints of one academic semester. Regarding the CT scans, we
will only consider the demand for CT 1, CT 2, and CT 3. CT 4 is located at the Wilhelmina
Child Hospital. There is little interaction with the other CT scans, so the demand for this
patient group is left out of scope. The emergency patients are scanned at CT 5 (CT SEH),
located at the emergency department, and at CT 1, CT 2, and CT 3. However, ”normal
patients” are not scanned on CT 5, so we will not adjust the appointment schedule for CT 5.
However, we will consider the emergency patients’ demand because they are also scanned on
CT 1, 2 or 3.

This research aims to better align patient demand with appointment schedules so that the
radiology department can work more efficiently. A demand forecast is needed as input, but it
is not the primary focus of making a perfect demand forecast. In addition, walk-in patients can
arrive any day, so technically, they do not have a waiting time until an appointment. So, the
primary focus will be reducing access times for scheduled appointments.

1.3.2 Research questions

From the core problem, the main research question can be formulated as follows:

How can we better align patient demand and CT-appointment schedules to reach target access
times for scheduled appointments?

This question helps to answer the action problem. Subsequently, sub-research questions are
formulated to answer the main research questions. These questions form the structure of the
report and are described below.

1. What is the current performance of the appointment schedule, and what was
the historical demand pattern?

This research aims to reduce the access times for CT scans. It is essential to obtain detailed
insight into the current situation, such as the current process for ordering a CT scan and the
structure of the current appointment schedule. Next, we also focus on the Key Performance
Indicator (KPI). To answer the following questions, we performed 23 stakeholder interviews,
conducted observation studies, and gathered data from different sources. This is all described
in Chapter 2.

1.1 What steps are involved in the current process for ordering a CT scan?

1.2 How is the scheduling of CT appointments currently managed?

1.3 What is the structure of the current appointment schedule?

1.4 Which KPIs (Key Performance Indicators) are currently in place and what are their per-
formances?

2. According to the literature, what is the most effective method for creating
an appointment schedule in a healthcare diagnostics setting that includes walk-in
patients and access times?

The second research question has the purpose of gathering information for solution generation.
With literature research, we found various methods to make appointment schedules that include
unplanned arrivals and take access time into account. In the Scopus database, we selected
relevant articles based on the search terms in the title, abstract, and keywords. With the help
of the snowballing technique, more articles are reviewed. This literature review is presented in
Chapter 3.
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2.1 What level of detail must the appointment schedule have to incorporate walk-in patients and
access time?

2.2 What are methods to incorporate walk-in appointments in an appointment schedule?

2.3 What are methods to prioritise different patient types in an appointment schedule?

2.4 What tactical decisions must be made to make an appointment schedule that incorporates
walk-in patients?

2.5 Which methods can be used to develop an appointment schedule and test the performance?

3. What appointment schedule methods are most applicable, and how should they
be designed?

Based on Chapter 3 and discussions with stakeholders, a method is developed that adjusts the
current appointment schedule to meet the target access. For this, decisions about the policies,
parameters, and model design had to be made. In Chapter 4 we describe the general solution
approach and in Chapter 5 we described how the simulation should be used for this case study.

3.1 What method for creating an appointment scheduling is most suitable for the radiology
department?

3.2 What should the input and output parameters of the method be?

3.3 How can the new appointment schedules be tested?

4. How can the performance of the new appointment schedules be measured?

In Chapter 6 the interventions are tested against the KPIs. The methods are compared with
the current situation to test the performance.

4.1 What is the performance of the initial appointment schedule?

4.2 Which changes to the appointment schedule give the most improvement potential?

4.3 How robust is the method to relaxations of constraints and differences in input settings?

5. How can the proposed appointment schedule be effectively implemented?

Chapter 7 points out an implementation plan. This is important because the tool has no value
without any guidance and proper implementation.

6. What recommendations can be drawn from the research conducted?

The last chapter, Chapter 8 we conclude the research and describe the limitations of this research
and the practical and scientific contributions.
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2 Current situation

This chapter describes the current situation of the CT department at UMC Utrecht to answer
the research question: ”What is the current performance of the appointment schedule, and
what was the historical demand pattern?”. Section 2.1 provides an overview of the CT radiology
department. Section 2.2 explains the various order flows within the CT scan process. Section 2.3
details the current planning method, while Section 2.4 outlines the department’s performance in
its current state. We gathered all the data from existing data sheets and directly from systems.
We organised the data with SQL. We also conducted numerous interviews and observational
studies. To validate the data, we compared the output from the different sources and allowed
stakeholders to review it.

2.1 Description of the CT Radiology department

The radiology department has multiple CT scanners. This section outlines their functionalities
and the patient groups they serve, and explains the specific scan options available.

2.1.1 CT-scanner

As described in Section 1.3.1, there are five CT scanners (CT1, CT2, CT3, CT4, CT SEH) at
UMC Utrecht. The CT scanner in the emergency department (CT SEH) is exclusively used for
emergency patients. CT4 is located at the Wilhelmina Children’s Hospital and is primarily used
for children. When capacity is available, it is utilised by external hospitals or UMC Utrecht.
CT1, CT2, and CT3 are situated next to each other at UMC Utrecht. CT1 and CT3 offer more
advanced scanning functionalities, meaning some scans cannot be performed on CT2 and CT
SEH. Emergency patients are therefore sometimes scanned on CT1. Transferring patients from
CT1, CT2, or CT3 to the CT SEH scanner can be challenging because the CT SEH scanner is
located in a different area. This, therefore, does not happen very often.

Figure 2.1: Percentage of all scans performed on each CT scanner and the production difference
per year

Using production data of the number of scans performed in the previous years, we created a
graph illustrating the percentage of scans performed on each CT scanner per year and the differ-
ence between the total number of scans performed annually (Figure 2.1). Due to confidentiality,
the exact production numbers cannot be disclosed. However, the graph demonstrates that the
total number of scans was higher in 2022 compared to 2023 and 2024. For example, in 2022,
10% of all scans were performed on the CT SEH. Most scans were performed on CT1, followed
by CT3, while the CT SEH consistently had the lowest number of scans. The reasons for the
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discrepancy between CT1 and CT2 may be that CT2 was almost three times more closed during
regular working hours. On top of this, it could be that on CT1, more scans are done outside reg-
ular working hours or during underutilization, since this scan has more functionalities. Section
2.4 will further explore the performance of the different CT scanners.

2.1.2 Overview of CT scan procedures

There are various ways to perform a scan. Some scans require patients to take oral contrast
before the procedure, while others involve using an IV for contrast. Applying an IV is typically
done in a separate room from the CT scanner and does not affect the CT scanner’s production
time. Additionally, some scans require patients to be sober. For specific rare procedures,
patients need to be under anaesthesia. There are 171 types of scans, one might focus on the
heart, while another targets the foot. These scans are requested by the ten different divisions of
UMC Utrecht or by external parties. Over the past three years, 99% of all scans were scheduled
for 20 minutes, while the remaining 1% were scheduled for 1 hour. These were often punctures.

2.2 System flow

This section begins by explaining the origin of an order. Next, it outlines how the order is
handled within the system. Finally, it describes the production numbers.

2.2.1 Inflow

The order for a CT scan can originate from four different sources. Some of the orders come
from the hospital’s emergency department. These patients arrive at the hospital immediately
after the order is made. Another source is the inpatient clinic, where hospitalised patients need
a CT scan. Another source is the outpatient clinic, where doctors typically place an order after
a patient has attended a consultation. Sometimes, it is clear that a patient requires a CT scan
without a first consultation, and an order is placed immediately. Finally, external clinics such as
private cardiology hospitals can directly place orders for CT scans, which are often outpatient
appointments. These categories of orders have different priorities. Section 2.3 explains how
these orders are scheduled.

2.2.2 Process flow

We developed a flowchart that illustrates the high-level process flow of a CT scan, including the
percentage of patients per category during weekdays (Figure 2.2). For emergency patients and
walk-in patients, no appointment is planned. After placing the order, the patient can proceed
to the waiting room for their CT scan. Outpatients may include both Walk-in patients and
outpatients. The flowchart distinguishes them as ”outpatient appointment order created” and
”walk-in order created”. The walk-in orders make up the most significant part, with 43% of all
orders. Scheduling time in the flowchart refers to the period between the order creation and
the appointment scheduling. Access time measures the interval from when the order is created
to when the actual appointment occurs. Waiting time is the period spent in the waiting room,
while processing time is the duration of the scan itself. Throughput time is the total time spent
in the hospital, from entering the waiting room to leaving the CT scan.

2.2.3 Production flow

Figure 2.3 illustrates the difference in the number of scans performed per month for each year.
For example, in 2022 10% of all scans took place in January. In some months, there is a consistent
trend across all years where production increases or decreases. For instance, in February the
production was always lower than January. In other months, such as August, there is no trend.
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Figure 2.2: High-level process flow with waiting times

These differences can be caused by fluctuating demand or inconsistent opening hours. We only
have data from the opening hours from March to December of 2024. The data show that closing
hours were significantly higher in May, August, and December compared to other months. As
illustrated in Figure 2.3, production in 2024 was also lower during these months. In contrast,
June, July, and October had relatively low closing hours, with July and October showing higher
production levels. However, due to limited data, it is not possible to determine whether these
trends reflect seasonal variation in demand or whether production is directly influenced by
changes in opening hours.

Figure 2.3: Difference in the number of scans performed per month for each year

Figure 2.4 shows the daily production across different years. The production during the weekend
is significantly lower than on weekdays. This is logical since CT1 and CT SEH are open for
emergency patients, and the others are closed. Very occasionally, CT1 is open for appointments
to work overtime when the waiting lists are too long and personnel are available.

2.3 The current planning method

This section provides a more detailed explanation of the planning process for CT scans. In
the hospital, there are different employees responsible for the strategic, tactical and operational
planning. It is therefore important to know what takes place at each planning level. Moreover,
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understanding the current situation will help us in finding and solving the problem. We achieved
this with the help of the healthcare planning and control framework outlined by Hans et al.
(2012).

Figure 2.4: Percentage of number of scans per day of the week per year

2.3.1 Health care planning and control framework

Hans et al. (2012) states that decision-making varies at different points as information becomes
available gradually. This concept forms the basis of their framework, which consists of three
hierarchical levels: strategic, tactical, and operational levels of control. As shown in Table 2.1,
we adapted this framework for the CT scan department. Medical planning involves researching
and developing new CT scan software and protocols. Resource capacity planning regards deci-
sions about flexible or dedicated CT scanners and appointment scheduling. Material planning
involves designing the supply chain for consumable resources. Financial planning addresses
budget allocation for CT machine maintenance and staff salaries. Improving resource capacity
planning aligns closely with the focus of this research (better aligning the appointment sched-
ule with the demand to meet target access times). The following sections will provide further
details on resource capacity planning for appointments and demand at each hierarchical level.

Table 2.1: CT scan healthcare planning and control framework (Hans et al., 2012)
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2.3.2 Strategic planning

Strategic-level planning involves long-term decision-making to define an organisation’s mission
based on high-level forecasts (Hans et al., 2012). Due to cost constraints, UMC Utrecht cannot
purchase new CT scanners and extra staff. On top of this, hiring additional staff is impossible
because of labour market shortages. As a result, the CT department has a fixed capacity.
However, decisions about flexible or dedicated CT scanners are also strategic (Zonderland et
al., 2021) and could influence the access times.

2.3.3 Tactical planning

In tactical planning, decisions are made over a longer horizon than operational planning but
shorter than strategic planning. The CT department schedules its laboratory technicians 4
weeks in advance. The number of technicians scheduled depends on availability rather than
predicted demand. When there is an insufficient number of technicians available, one or more
CT scanners may be closed. The scanners can be opened during the evening or weekend if
necessary.

Appointment schedules allocate specific time slots for particular patient groups, specialities, or
treatments. Some slots are reserved for a heart scan, intensive care patients, or walk-in patients.
These blocks are scheduled based on experience. This means that a specific category will get less
space in the appointment schedule when it is consistently underutilised. There is no overview of
the actual waiting list per category. However, if a department requests more time and the CT
department observes that its appointment slots are quickly filled, they may try to allocate more
time. To limit overtime, they buffer spare time by planning more time than needed, leaving
gaps in the schedule, and blocking time for unexpected situations (Figure 2.5). This leads to
underutilization and a wide variation in access times for different patient groups.

Figure 2.5: Example of appointment schedule of the morning of three CT scanners

2.3.4 Offline operational planning

Operational planning involves short-term decision-making (Hans et al., 2012). We developed a
flow chart of the current appointment scheduling process through stakeholder interviews, shown
in Figure 2.6. This appointment scheduling takes place both centrally and decentrally. The
outpatient clinic administration is responsible for scheduling appointments. They can choose a
walk-in date, in this case, the patient is expected to go to the radiology department on a specific
date. They can also select a walk-in period, where a patient is asked to come before a specific
date. Or the patient gets a particular appointment date and time. They contact the central
radiology administration if they cannot find a suitable time slot. The central administration
often has reserved time slots for emergency and clinical patients that can be used. The central
radiology administration schedules appointments for external patients. Generally, the patients
are planned on a first-come, first-served basis.
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Figure 2.6: Flow chart appointment planning process of the CT scans

2.3.5 Online operational planning

Online operational planning concerns reactive decision-making. In this case, it refers to the
add-on scheduling of emergency patients and determining the order in which patients in the
waiting room are scanned.

2.3.6 Scope planning level

As outlined in Section 2.3.1 the primary focus of this research is on resource capacity planning.
As Zonderland et al. (2021) suggests, we will start the capacity management at the strategic
level and work it through till the operational level. We have to decide on flexible or dedicated
CT scanners for the strategic level, not the capacity, since this is fixed. At the tactical level,
suggestions will be made to improve the block scheduling of appointments to meet the target ac-
cess times. Furthermore, operational planning significantly affects the waiting times of different
patient groups, which makes decisions in prioritising different patient groups important.

2.4 Performance

Together with our stakeholders and the literature, we devised multiple categories to measure
our system’s performance (Bhattacharjee and Ray, 2016, Kortbeek et al., 2014). We gathered
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the data for this analysis through real-life observational studies, reenactments, and multiple
meetings to identify connections between different datasets and explore them. Most of the data
pertains only to the data of 2024, as analysing earlier years was impossible due to a transition
to a new EPD system (Electronic patient file).

2.4.1 Appointment duration

Appointment duration is a key factor in system performance and appointment scheduling (Ma
et al., 2016). In this radiology department, appointment end times are often poorly registered,
making durations in the data appear longer than in reality. To correct this, we adjusted the end
times to the start of the next appointment. Start times are generally accurate, as confirmed by
our observations and laboratory technicians. This is because the recorded start time corresponds
to the moment a technician opens the scan protocol and initiates the scan. However, idle time
is still included in the total appointment duration. Since the recorded end time is based on the
start of the next appointment, we cannot accurately determine the duration of any idle time
between appointments. As a result, it is not possible to filter out this idle time from the data.
Yet, the average appointment time remains shorter than planned (Table 2.2). We concluded
with the laboratory technicians that the maximum appointment duration is still exceptionally
high and not representative of real life. With the help of professionals and the existing data,
we concluded that the maximum scan duration of appointments planned for 60 minutes is
90 minutes and appointments of 20 minutes are a maximum of 35 or 25 minutes, depending
on whether they are more complex scans. Therefore, an extra column is included with the
average appointment duration without outliers. As you can see in the table, the actual average
appointment duration differs significantly from the raw data. Distinguishing scan durations
between more categories, such as patient types, is challenging. Moreover, observations showed
shorter durations during busy periods due to increased staff efficiency. We calculated how often
the scan duration in the data was longer than the maximum time stated above. With these
calculations, we can conclude that at least 58% of the appointment durations in the data deviate
from real life.

Table 2.2: Average appointment duration

2.4.2 Capacity

A key factor in calculating available capacity is the opening hours. Most departments display
capacity using appointment slots in the block schedule, marking unavailable times with orange
blocks. However, this department also uses blocks for intended purposes, such as staffing short-
ages and maintenance, and to reserve time for walk-in or emergency patients. Although this is
the actual capacity, it is not shown in the system (see Figure 2.7). As a result, we could not rely
on the system data to determine capacity. Instead, we manually reviewed the CT scanner agen-
das and data for 218 weekdays. Table 2.3 shows the number of closed days. A typical working
day runs from 08:00 to 16:30, with one scanner operating until 17:30 to reduce overtime. For
our calculations, we assumed this extended schedule always applies to CT scanner 1.
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Figure 2.7: Agenda CT scan with blockings

2.4.3 Utilization

Utilisation is essential for both management and patients. Higher utilisation enables more scans
to be performed, potentially reducing access times, but it can also increase workload and lead
to overtime. Therefore, maintaining a balanced level of utilisation is essential. We distinguish
two types: staff utilisation and CT scanner utilisation. Currently, the department lacks insight
into either. Therefore, we calculated it by dividing the appointment durations by the available
capacity, as shown in the formulas below. Table 2.3 presents the utilisation per scanner. A
notable observation is the large discrepancy between planned and actual utilisation, mainly due
to inaccurate planned appointment durations. This indicates that staff and CT scanners are
often underutilised, highlighting room for improvement.

Table 2.3: Utilisation of the CT scanners of 2024

Planned utilization staff =
Total number of scans×Average planned appointment duration

(Full days open−Days not open)×Workinghours per day× 60
×100

Realized utilization staff =
Total number of scans×Average realized appointment duration

(Full days open−Days not open)×Workinghours per day× 60
×100

Planned utilization scanners =
Total number of scans×Average planned appointment duration

Number of days×Workinghours per day× 60
×100

Realized utilization scanners =
Total number of scans×Average realized appointment duration

Number of days×Workinghours per day× 60
×100
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2.4.4 Access time

As mentioned in Section 1.2.1, only outpatient appointments are associated with access times.
UMC Utrecht defines future access time based on the third available appointment. Over the past
six months, this averaged 48 days, with a maximum of 85 days. We also calculated access time
using historical data by measuring the time between appointment creation and the appointment
date. For outpatients, this resulted in an average access time of 31 days. We discussed with the
administration employees that 91 days was the maximum access time in the past. We excluded
access times over 91 days to avoid misleading results, as these likely reflect voluntary waiting
or a half-year checkup. Figure 2.8 presents a box plot of the access times. You see that the
average waiting time is 31 days. Moreover, 25% of the patients have an access time below 4
days, 50% below 22 days and 75% below 55 days.

Figure 2.8: Boxplot of the access times until 100 days

2.4.5 Variation number of scans

Section 2.1.1 showed significant variation in the number of scans performed per CT scanner.
Section 2.2.3 indicated some fluctuation in the number of scans per month and per day. Figure
2.9 displays the average number of walk-in patients arriving per hour, per day. This varies
substantially, suggesting a significant difference in the arrival rate across both weekdays and
hours of the day. Figure 2.7 illustrates an example of daily variation. Many appointments are
scheduled in the first hour, while almost none are planned in the second. To explore this further,
we created heatmaps for all three CT scanners, showing the average number of appointments
scheduled per hour. Table 2.4 shows the heatmap of one CT scanners. The results were striking:
the average ranged from 0.3 to 4.2 scans per scanner per hour. This variation is not reflected
in the block schedule, potentially affecting patient waiting times, staff workload, and overall
utilisation.

2.4.6 Waiting time

We calculated waiting time as the difference between the scheduled appointment time and the
actual start time. If a patient arrives early, the scheduled time is used, as this reflects voluntary
waiting. On average, emergency patients wait 7.11 minutes, inpatients 6.26 minutes, outpatients
5.14 minutes, and walk-ins 19.10 minutes. We observed that most inpatient and outpatient
appointments start on or before the scheduled time. Walk-in patients get an appointment when
they arrive in the hospital, and experience the longest average waiting times. Therefore, we
focused on this group in Figure 2.10, which shows the percentage of walk-in patients who wait
longer than a given duration. For instance, 55% wait more than 15 minutes, and 20% wait more
than 35 minutes.
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Figure 2.9: Average number of walk-ins per hour per day

Table 2.4: Heatmap of one CT scanner (number of scans planned per hour)

Figure 2.10: Percentage of the walk-in patients that have to wait longer then ..minutes
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2.4.7 Overtime

There is both planned and unplanned overtime. One laboratory technician is always available
to scan patients during evenings and weekends. This technician can perform additional scans
if patients are still in the waiting room after regular hours. When a scan is already in progress
at the end of a shift, it is completed, though this overtime is minimal due to the short scan
durations. If multiple patients remain in the waiting room, overtime may be required. However,
this has not occurred in the past year. Planned overtime, such as evening or weekend shifts, is
occasionally scheduled to meet demand.

2.4.8 Number of no-shows

Unfortunately, no data on the number of no-shows is available. However, since the introduction
of the walk-in hour, no-shows appear to have become less frequent. Inpatient appointments are
usually scheduled on short notice, making no-shows unlikely. Outpatient appointments account
for approximately 30% of all appointments, and no-shows still occur in this group, although the
exact number is unknown.

2.5 Chapter conclusion

This chapter provided a comprehensive overview of the current CT scheduling process. The
focus of this research will be on resource capacity planning. Key decisions include whether to
have dedicated or flexible CT scanners, how to improve block scheduling, and how to prioritise
different patient groups. We identified issues such as inconsistent data registration and the
use of CT agenda blocks that do not accurately reflect actual capacity. Utilisation is currently
low, and there is significant variation in patient arrivals by hour and day. This variability is not
effectively incorporated into the block schedule, which likely contributes to longer waiting times,
increased staff workload, low utilisation, and high access times. These findings emphasise the
need for a more adaptive appointment scheduling approach that balances access time, workload,
and flexibility for walk-in patients. This provides the foundation for the literature review in
Chapter 3, where we explore methods for improving healthcare appointment scheduling under
uncertainty and fluctuating demand.
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3 Literature review

This chapter presents a literature review to address the research question: ”According to the
literature, what is the most effective method for creating an appointment schedule in a health-
care setting that includes walk-in patients?”. Appointment schedules can be classified at various
levels of detail, as outlined in Section 3.1. Section 3.2 explores methods for prioritising differ-
ent patient types. The process of developing an appointment schedule involves several tactical
decisions, which are summarised in Section 3.3. Finally, Section 3.4 reviews methods from the
literature used to evaluate the performance of appointment schedules.

3.1 The level of detail of appointment scheduling methods

This research aims to improve appointment scheduling methods in a healthcare setting, accom-
modating walk-in patients. The primary objective is to reduce patient access times by aligning
demand with available appointment slots. Zomer (2022) introduced a framework for comparing
different appointment scheduling methods. This framework has three dimensions: the various
goals, the level of detail, and the characteristics of appointment scheduling methods. Using
this framework as a foundation, we developed a customised framework tailored to this research
(Table 3.1).

For this research, the primary goal of a scheduling method must be to minimise access time.
Consequently, all scheduling methods included in our framework address access time. According
to Zomer (2022), appointment scheduling methods can be categorised into five types. Among
these, the categories percentage of patient types, block scheduling, and slots filled with service
types include scheduling methods that account for access time. Therefore, these three categories
are included in the first dimension of our framework (Table 3.1). The primary distinction
between the categories lies in the level of detail in the appointment schedules. These categories
will be further discussed in the following sections. The second dimension of our framework
incorporates the characteristics of the appointment scheduling methods, as it is essential to
determine whether they accommodate the needs of walk-in patients. The planning process
of walk-in patients can be seen as emergency arrivals since they arrive at the clinic without
an appointment. However, the methods must take into account the different priority rules of
emergency patients and walk-in patients.

Table 3.1: Scheduling methods that keep in mind the access time (Zomer, 2022)

3.1.1 Percentages for patient types

This appointment scheduling method operates at the lowest level of detail. Specifically, it only
specifies the percentage of capacity allocated to different patient types (Zomer, 2022). It does
not consider emergency arrivals, walk-in patients, or same-day appointments.
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3.1.2 Block scheduling

The methods in this category allocate capacity among different patient types and assign specific
lengths to each block (Zomer, 2022). This category includes the method developed by Van Riet
and Demeulemeester (2015), which considers emergency arrivals and same-day appointments.
Additionally, it emphasises the access times. Appointment scheduling methods that reserve
appointment blocks for specific patient types are commonly used in surgery planning (Van Riet
and Demeulemeester, 2015). Most of these methods use block-wise scheduling (Van Riet and
Demeulemeester, 2015). Van Riet and Demeulemeester (2015) outlines three strategies for
incorporating emergency arrivals into surgery appointment scheduling: the dedicated policy,
the flexible policy, and the hybrid policy. These strategies will be further explained in Section
3.3.3.

3.1.3 Slots filled with patient types

This scheduling method has fixed slots with predetermined start and end times allocated to
specific patient types (Zomer, 2022). This category includes the methods proposed by Kortbeek
et al. (2014) and Deglise-Hawkinson et al. (2018), which incorporate emergency arrivals and
same-day appointments while focusing on access times. The method developed by Kortbeek et
al. (2014) specifies the number of appointments to schedule each day and their optimal timing.
It also determines the availability of slots for walk-in patients, aiming to balance unscheduled
waiting times with scheduled access times. Access time is evaluated using a discrete-time cyclic
queuing model, while the daily-level process is assessed with a Markov reward process (Kortbeek
et al., 2014).

Deglise-Hawkinson et al. (2018) presents an appointment scheduling approach that allocates
slots to patient groups based on urgency while minimising access delays for all appointments.
Access time, also called indirect delay, is a KPI often overlooked in the literature. Gupta and
Denton (2008) were among the first to incorporate access time into planning and scheduling
methods. This problem is formulated as a queueing network optimisation and approximated
using deterministic linear optimisation. The approach seeks to balance workloads and meet
targeted access times, ensuring efficient scheduling for urgent and non-urgent patient groups.

3.2 How to prioritise different patient types

This section explores methods for prioritising different patient types in appointment schedul-
ing, focusing on balancing access and waiting times for various patient groups. Prioritising
one patient group can significantly affect resource utilisation and patient satisfaction. The
literature highlights multiple approaches to prioritise patients, each with unique benefits and
trade-offs. By analysing these strategies, this chapter aims to identify how prioritisation affects
appointment scheduling methods and how the preferred patient needs can be met.

3.2.1 Priority access times for urgent patients

The method described by Deglise-Hawkinson et al. (2018) is an example of an appointment
scheduling approach that allocates a specific number of slots to patient groups based on urgency.
This method reduces access times for urgent patient groups, but it may increase the average
access time across all patients. It balances the trade-offs between throughput, overtime, and
access delay, making it particularly useful for a system with multiple patient classes, specialists,
and competing performance metrics. To implement this method, the patient groups must have
different priorities regarding access times.
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3.2.2 Priority access times scheduled patients

Sequential appointment scheduling prioritises scheduled patients over walk-in patients. This
approach allocates unfilled time slots not assigned to fixed appointments to walk-in patients
(Yan et al., 2014). This method primarily focuses on cost efficiency and considers access times
and high resource utilisation factors. It can, however, also cause more overtime. Suppose the
department handles a large number of walk-in patients. In that case, this method may be less
suitable, as it can lead to significant fluctuations in workload, overtime, and patient waiting
times.

3.2.3 Priority access times for scheduled patients and freedom for walk-in patients

This method, called delay scheduling, allows walk-in patients to decide whether to accept the
waiting time or return later (Reilly et al., 1978). This approach focuses on giving walk-in
patients more control over their scheduling decisions, as they can decide whether to wait or
not. The workload of the patients who choose not to stay in the queue is shifted to a different
time, which can help improve overall waiting times, reduce workload variation, and minimise
overtime. However, predicting when the appointment will occur is more challenging as patients
have more freedom. Additionally, access times may increase since no specific slots are reserved
for walk-in patients, potentially resulting in longer waiting times or patients returning later.

3.2.4 Priority access times scheduled patients and waiting time walk-in patients

The method developed by Kortbeek et al. (2014) considers both the access times for scheduled
patients and the waiting time for walk-in patients. This method relies on the fact that demand
for both scheduled and walk-in patients often follows a cyclic pattern. This allows appointment
schedules to be designed cyclically as well. The cycle length can range from days to weeks
or even months. The method determines the number of appointments to schedule each day
and the optimal timing for these appointments using queue length probabilities. It uses fixed
appointment slot lengths, and the service always takes one time slot. Patients who cannot be
treated within their desired access times will be rejected, and no overtime is allowed.

3.2.5 Priority waiting time walk-in patients

One method that prioritises the waiting time of walk-in patients is off-peak scheduling devel-
oped by Gupta and Denton (2008). This method predicts the arrival patterns of walk-in and
emergency patients. The remaining time slots can be used for scheduled patients in a way that
complements the arrival of walk-in patients. As a result, patient arrivals become more evenly
distributed, leading to a more homogeneous workload and reduced overtime (Zonderland et al.,
2009). For this method, it is crucial that the arrival times of walk-in patients are predictable
and that the remaining appointments can be planned flexibly. However, since the primary focus
is reducing the waiting time for walk-in patients, the access time for scheduled appointments
may be longer.

3.2.6 Priority on appointment characteristics

In addition to prioritising patient types, appointment scheduling can also prioritise appointment
characteristics. The literature identifies various sequencing rules for scheduling, such as first-
come, first-served, shortest-case-first, and longest-case-first (Hulshof et al., 2012). For this
method to be effective, appointment characteristics must be more important than patient types.
Most importantly, the characteristics of appointments must differ significantly from one another.
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3.2.7 Summary

This section has explored various methods for prioritising patient groups in scheduling systems.
Table 3.2 summarises these approaches by categorising them by their priority group, focus,
requirements, and limitations. Depending on the patient group’s needs, each method balances
trade-offs such as access times, waiting times, and resource utilisation. By analysing these
methods, healthcare providers can choose the most suitable approach based on their priorities.

Table 3.2: Summary of options to prioritise patient groups with the methods

3.3 Tactical decisions for appointment schedules

This chapter explores tactical decisions, queueing dynamics, and policies for managing elective
and emergency patient flows, which are necessary for designing efficient scheduling systems.

3.3.1 Tactical decisions

Zonderland et al. (2021) identifies eight key tactical decisions to address when designing an
effective appointment schedule. These decisions include capacity allocation, the number of
patients per consultation session, patient overbooking, the length of the appointment slot, the
number of patients per appointment slot, the sequence of appointments, queue discipline in the
waiting room, and anticipation for unscheduled patients. Each decision influences access times,
waiting times, and overtime. For instance, the number of appointment slots per consultation
session directly impacts patient access time and waiting times (Hulshof et al., 2012). Increasing
the number of patients scheduled in a session can reduce access times, but often also leads
to longer waiting times for patients and increased staff overtime. Similarly, the decision to
allow overbooking can improve utilisation rates and reduce access times by compensating for
the effects of no-shows. However, overbooking may also lead to extended patient waiting times
and higher staff overtime (Hulshof et al., 2012). These trade-offs highlight the importance of
carefully balancing priorities when designing appointment schedules.

3.3.2 Queueing theory in a healthcare setting

To optimise the current appointment schedule, it is essential to understand the existing system
flow and the underlying queueing mechanisms. This understanding is crucial, for example,
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when simulating the current system or evaluating potential improvements. Healthcare systems
can be described as complex queueing networks, as highlighted by Creemers and Lambrecht
(2008). The patient flow through the healthcare system significantly impacts the outcomes of
an appointment schedule (Srinivas and Ravindran, 2020). Queueing theory provides a valuable
framework for understanding and modelling this flow. In systems with parallel servers, patients
need to utilise only one server to complete their service (Winston, 2003), which we see in pictures
a and c of Figure 3.1. In contrast, serial treatments require a sequence of different services,
needing patients to go through all stages sequentially to complete the process, as we see in
pictures b and d of Figure 3.1.

Figure 3.1: Queueing systems (Srinivas and Ravindran, 2020)

The total waiting time experienced in single-stage and multi-stage systems can differ signifi-
cantly (Srinivas and Ravindran, 2020). In multi-stage systems, overall waiting times may vary
considerably due to uneven waiting times among servers, where some servers may become bottle-
necks. With a single server, the waiting time only depends on the queue length for that specific
server. This difference highlights the effects of server dynamics and designs when evaluating or
optimising appointment schedules.

3.3.3 Dedicated policy versus flexible and hybrid policy

As outlined in section 3.1.2, there are three primary methods for managing emergency patients.
However, the literature does not yet agree on which of these methods best fits a system that
includes walk-in patients. These methods are described in detail below. The dedicated policy
assigns separate operating rooms for elective and emergency patients. This approach reduces
the waiting time for non-elective patients but increases the waiting time for elective patients
(Van Riet and Demeulemeester, 2015). Additionally, it leads to higher utilisation of regular
operating rooms while lowering the utilisation of dedicated emergency rooms (Van Riet and
Demeulemeester, 2015). This method aims to improve access to care for both patient groups
(Hans and Vanberkel, 2011).

Under the flexible policy, all operating rooms are available for elective and emergency cases.
According to a survey by Cardoen et al. (2010), 85% of hospitals implement this strategy.
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Elective surgeries are scheduled in advance, while emergency surgeries are accommodated using
pre-scheduled buffers (break-in moments) or reserving slack capacity. Moreover, scheduling
appointments in complement to walk-in arrivals can lead to a more consistent patient arrival
pattern (Zonderland et al., 2009). Ferrand et al. (2010) argue that elective and emergency
patients benefit from greater flexibility in highly variable systems. However, many studies
indicate that the increased flexibility often disrupts the elective schedule by incoming non-
electives and emergency patients, leading to longer waiting times for elective patients (Van
Riet and Demeulemeester, 2015). On the other hand, waiting times for non-elective patients
and emergency patients are expected to decrease. Furthermore, this policy will result in an
overall improved utilisation and increased overtime (Van Riet and Demeulemeester, 2015). The
objective of this policy is to minimise waiting time for emergency patients (Hans and Vanberkel,
2011).

The hybrid policy combines elements of both the dedicated and flexible policies, aiming to
achieve a better balance between flexibility and access time. Tancrez et al. (2009) proposes
a model in which there is one dedicated operating room for non-elective patients, two rooms
in which non-electives can still enter with priority if the dedicated room is occupied, and the
other rooms are just for elective patients. Despite its potential advantages, research on the
hybrid policy remains limited, and its benefits are not yet fully validated. However, Ferrand
et al. (2014) suggest that the hybrid approach outperforms the dedicated and flexible policies by
improving waiting times for elective and non-elective patients while reducing overtime. These
findings indicate that the hybrid policy could provide promising solutions for systems seeking
to optimise access and waiting times across diverse patient groups.

3.4 Solution approaches

Several methodologies exist to optimise appointment schedules. Some can evaluate the perfor-
mance of a single schedule rule, compare various alternative appointment schedules, or search
for near-optimal schedules (Bhattacharjee and Ray, 2016). According to Bhattacharjee and Ray
(2016), all these approaches require an accurate representation of the system’s inputs, processes,
and outputs to evaluate an appointment schedule’s performance effectively. Two primary tech-
niques are commonly used to model patient flows within a system: analytical queueing-theoretic
models and discrete-event simulation. Among these, discrete-event simulation is the most widely
used due to its flexibility and detailed representation capabilities (Cayirli and Veral, 2003). This
section explores the advantages and limitations of these two methodologies used for appointment
scheduling.

Analytical theoretic models

Mercer was the first to conduct a queueing theoretic analysis of appointment systems (Bhat-
tacharjee and Ray, 2016). In his model, patients were scheduled to arrive at equal time intervals.
The patient could come at the start of the scheduled interval with a general lateness distribu-
tion or may not show up at all. Doi, Chen, and Osawa (Bhattacharjee and Ray, 2016 analysed
an appointment system where scheduled inter-arrival times were assigned randomly and were
modelled as independent and identically distributed random variables. In this model, patients
who cannot enter the system within their assigned interval leave. Hassin and Mendel (2008)
developed an analytical queueing model that considered the impact of no-shows. However, in-
tegrating all the unique features of an appointment system, such as scheduled and unscheduled
arrivals, non-punctuality, and no-shows, into a single queueing model is complex and often in-
tractable. Additionally, issues related to sequencing and including multiple patient classes have
seldom been addressed in the literature (Kolisch and Sickinger, 2007). To conclude, this method
can be helpful when one of the characteristics of an appointment system needs to be tested and
improved (Huh et al., 2013).
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Discrete-event simulation

Analytical queueing models encounter several limitations when applied to appointment systems
that involve no-shows, walk-ins, multiple patient types, sequencing rules, and non-exponential
inter-arrival and service times (Bhattacharjee and Ray, 2016). In contrast, discrete-event sim-
ulation is widely used for studying complex systems and accounting for uncertainty (Van Riet
and Demeulemeester, 2015). This method can model performance within a stochastic environ-
ment, making it highly suitable for unpredictable patient flow scenarios (Bikker et al., 2015).
Another unique feature of simulation is that scheduling approaches can be easily tested in vari-
ous circumstances (Joustra et al., 2012). Law (2013) classifies simulation models based on three
key characteristics. First, models can be either static or dynamic. A static model represents a
system at a single point in time, whereas a dynamic model accounts for changes over time (Law,
2013). Second, models are categorised as deterministic or stochastic. Deterministic models have
predictable, non-random components, while stochastic models include random variables that in-
troduce variability (Law, 2013). Finally, simulation models can be discrete or continuous. In
discrete models, changes occur at specific points or events, whereas continuous models progress
and change continuously over time (Law, 2013).

The literature indicates that simulation is the most widely used approach for addressing chal-
lenges related to patient flow and capacity allocation (Vieira, 2020). For instance, Joustra et
al. (2012) employed discrete-event simulation to model the radiotherapy process and evaluated
strategies to minimise patient waiting times. Similarly (Ma et al., 2016), utilised simulation to
improve patients’ access times by determining the optimal number of appointment slots and
testing various scheduling policies. Another benefit of simulation models is that they are more
visualised and are, therefore, more accessible for healthcare management to understand. The
downside of using a simulation model is that it can be very time-consuming to make and run.
Overall, discrete-event simulation is an effective tool for incorporating stochastic elements and
testing complex scenarios to improve appointment schedules (Van Riet and Demeulemeester,
2015).

Combining Analytical models and Discrete-event simulation

As mentioned earlier, some processes are too complex to be accurately captured by analytical
queueing models alone. Conversely, identifying optimal appointment schedules using simu-
lation models can also be challenging. Simulation is more commonly used to test different
configurations and visualise system performance, rather than determining optimal solutions.
To effectively represent the complexity of healthcare processes, which often involve numerous
interdependent variables, a combination of analytical queueing models and discrete-event sim-
ulation can be advantageous. This hybrid approach leverages the strengths of both techniques.
Analytical queueing models are well-suited for addressing scheduling problems, but they are
limited in handling dynamic optimisation tasks (Bikker et al., 2015). In contrast, discrete-event
simulation is capable of modelling dynamic and complex systems in detail, but it is not ideally
suited for optimisation (Bikker et al., 2015).

A practical application of this hybrid approach involves using an analytical metaheuristic to
search for good (often near-optimal) solutions within a complex search space, while the sim-
ulation serves as the environment for evaluating those solutions. Simulated annealing is a
commonly used analytical optimisation technique in this context, as it helps avoid convergence
to local optima (Zheng et al., 2025). It does so by swapping or moving appointments within a
schedule based on various parameters (Hans and Vanberkel, 2011).
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3.5 Chapter conclusion

There have been valuable proposals in the literature for classifying the level of detail in ap-
pointment schedules. We created a structured overview of appointment scheduling methods
that incorporate walk-in patients and access time. The proposed method, slots filled with pa-
tient types, will be used to develop a tailored appointment schedule. This method uses fixed
slots with predetermined start and end times allocated to specific patient groups. This approach
is especially helpful for decentralised administrations, which often lack the necessary knowledge
to optimally schedule appointments. It will therefore positively impact patient inflow variability,
access times, and waiting times.

In addition, we provided an overview of methods for prioritising different patient types, each of
which affects access and waiting times in different ways. In our case, there are no clear priority
distinctions within patient types, nor are patient characteristics known in advance. Moreover, it
is impractical to focus solely on either scheduled patients or walk-in patients. Therefore, cyclic
appointment schedules, a technique that balances the access times of scheduled patients with
the waiting times of walk-in patients, is the most suitable, as it aligns best with the focus of
this research.

Many tactical decisions are required when creating a new appointment schedule. To the best
of our knowledge, the literature has not yet addressed whether it is better to use a flexible or
hybrid policy when considering the high demand of unplanned patients, along with access and
waiting time constraints. We will experiment with both settings and evaluate the outcomes,
forming the theoretical contribution of this research.

To improve the current CT appointment scheduling system, we explored several methods for de-
signing appointment schedules under uncertainty and with walk-in demand. We chose discrete-
event simulation to evaluate the system, as it can incorporate variable arrival patterns, multiple
patient types, and complex queuing behaviour with fewer simplifying assumptions than analyt-
ical methods. Analytical queueing models lack the scalability and flexibility needed for settings
involving diverse KPIs and operational constraints. To optimise the appointment schedule, we
will use simulated annealing. This metaheuristic was preferred over exact optimisation tech-
niques due to the vast solution space and the inability to analytically express the system’s per-
formance. Simulated annealing enables effective exploration while reducing the risk of getting
stuck in local optima. It also integrates well with simulation models. This combined approach
allows us to evaluate and improve appointment schedules realistically and transparently, making
the results more accessible and trustworthy for stakeholders.
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4 Solution approach

Based on insights from Chapter 3, it remains unclear whether flexible or hybrid rooms are more
effective with many walk-in patients in reducing access time. This chapter provides an overview
of the solution approach. It presents a simulation model to evaluate appointment schedules and
priority rules, focusing on how patient prioritisation and room pooling affect key performance
indicators (KPIs). Additionally, the level of detail in the conceptual model is explained through
its assumptions and simplifications. The inputs, outputs, model setup, simulation settings, and
validation and verification processes are described. The chapter ends with an explanation of
the experiments.

4.1 Overview solution approach

This section describes the solution approach, based on the process outlined by Robinson (2014).
As discussed in Section 3.4, various methods exist to model appointment systems, including ana-
lytical queueing models and simulation. We selected a combination of discrete-event simulation
and a metaheuristic optimisation method, simulated annealing, to improve the appointment
schedule. Figure 4.1 provides a high-level overview of the modelling process. The following
sections describe each step in more detail.

Figure 4.1: The simulation steps

Simulation allows us to evaluate different configurations without disrupting actual operations.
It provides a controlled, repeatable environment to test scenarios and assess performance. In
contrast, analytical queueing models, rely on simplifying assumptions, such as exponential inter-
tarrival times and service times, and are difficult to extend to real-world complexities like walk-
ins, sequencing rules, and multiple patient types (Kolisch and Sickinger, 2007; Bhattacharjee
and Ray, 2016; Hassin and Mendel, 2008). These models are better suited to studying isolated
aspects of appointment systems rather than integrated scheduling policies.

Discrete-event simulation overcomes these limitations by capturing system variability and op-
erational complexity. It models stochastic arrivals, dynamic resource constraints, and priority-
based sequencing with minimal simplification. This makes it especially suitable for healthcare
diagnostic settings, where patient flow is highly variable. Moreover, the visual nature of simu-
lation improves accessibility for stakeholders, increasing trust in model outcomes.

Manually testing all possible schedules with the simulation would be computationally infeasible.
Therefore, we use simulated annealing, designed for large, complex search spaces, to guide the
optimisation. It iteratively modifies the current schedule and evaluates performance using the
simulation model. This means that discrete-event simulation evaluates candidate schedules,
while simulated annealing navigates the search space. The simulation model can also be used
independently to analyse fixed schedules, such as the current planning or stakeholder-proposed
changes. Figure 4.2 illustrates this interaction.

4.2 Model objective

This research aims to develop a new appointment schedule for CT scans at UMC Utrecht that
better aligns with patient demand while ensuring that target access times are met and no KPIs
are negatively affected. To achieve this, the simulation model has the following objectives:

28



4 SOLUTION APPROACH

• Provide a reliable representation of patient flow and appointment scheduling procedures.

• Offer insights into the performance of the current schedule, stakeholder-proposed sched-
ules, and schedules generated through simulation-based optimisation, based on KPIs,
access time, utilisation, waiting time, and overtime.

• Ensure user-friendlyness by maintaining only the necessary level of detail.

• Present simulation outcomes understandable through visualisations and summary tables.

• Ensure that the recommended appointment schedule is flexible and easy to understand
and implement.

Figure 4.2: Relation between discrete-event simulation and simulated annealing in the model

4.3 Input

A well-designed conceptual and computer model is essential, but even the best model will
produce inaccurate results if the input data is poor (Robinson, 2014). This section outlines
what data is needed as input for the model.

Capacity

Capacity is a key factor in determining the feasibility and efficiency of appointment schedules, as
it directly influences how many patients can be served and under what operational constraints.
Capacity consists of several components.

1. Staff: The model considers only laboratory technicians, excluding radiologists, planners,
and administrative staff, as they do not directly impact the number of scans that can be
performed or their speed.

2. Scanners: Number of scanners available and how many hours they are available for
patient scans.

3. Appointment scheduling: The appointment schedule specifies the capacity for different
patient types and scan procedures.

Patient attributes

Patient attributes are essential for accurately modelling system behaviour, as they determine
how and when patients enter the system, how long they require resources, and how their needs
vary.
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1. Patient classification: Patients are typically classified as inpatients, outpatients, or
emergency. Outpatients may have scheduled or walk-in appointments, which can be
booked well in advance or last minute. To ensure the system can accommodate non-
elective arrivals, we simulated how many appointments can be planned ahead. Since not
all scan types qualify for walk-ins, it’s important to estimate how many require scheduling
and reserve enough time slots to handle them promptly.

2. Arrival rates: The outpatient clinic schedule could predict non-elective patient arrivals
by using referral rates per appointment type. For example, the number of times a cardi-
ologist refers a patient for a CT scan during an initial consultation. In some cases, even
the scan type may be predicted. This requires consistent workflows and accurate data
registration.

Arrival rates can also be derived from historical data, but it’s essential to first test for
statistical differences across weeks, days, and hours to determine if separate rates are
needed. Input rates can be based on traces, empirical, or statistical distributions. Traces
use raw historical data, while empirical distributions estimate the distribution from data
and generate random values accordingly (Robinson, 2014). Sufficient data points are
needed to capture variability and support generalisation (Robinson, 2014). Statistical
distributions rely on theoretical models, offering less transparency but greater flexibility
for parameter tuning and sensitivity analysis, enhancing model robustness.

The steps to derive a statistical distribution that best fits the data using empirical data
are: creating a histogram to visualise the data’s shape, estimating parameters, testing the
goodness of fit through, do a chi-square test, and making a Q-Q plot (Robinson, 2014).
With the chi-squared test, you calculate the expected frequency error with the distribution
and the actual frequency. When the total relative error is smaller than the critical value,
it can be said that with 95% confidence, the data fit the distribution. When no clear
distribution emerges it is important to use scientific knowledge to match the data with
the right distribution.

3. Service times: The service time distributions can be developed in the same way as the
arrival rates.

Sequencing and priority rules

It is important to simulate the priority rules from the real systems as precisely as possible. In
Section 3.2 we described that when focusing on access time, waiting time, and overtime, using
cyclic appointment schedules is the most effective approach, particularly when fixed appoint-
ment lengths are considered. Therefore, it is good to use the method of Kortbeek et al. (2014)
and implement a discrete-time cyclic queuing model in a discrete-event simulation to assess the
access and waiting times for different patient types. This will help balance the access time for
scheduled patients and the waiting time for unscheduled patients.

4.4 Output

Outputs are crucial for validating the simulation, assessing whether the objectives have been
met, and identifying the reasons for any failure. In collaboration with stakeholders, we identified
relevant KPIs.

Calculating access times

Forecasting demand based on historical production is unreliable, as production is constrained
by available capacity. Furthermore, access time is not always reflected accurately in waiting
lists. Zonderland et al. (2021) notes that waiting lists often contain patients who no longer
require care, and that 10% of waiting time may be voluntary. Zonderland et al. (2021) states
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that the number of appointment slots directly impacts access times. Hulshof et al. (2012) even
suggests an exponential relationship between appointment volume and access time. With this
relationship, we formulated the formula below to estimate the number of slots required and the
corresponding access time.

New access time = Old access time×
(
1− New appointments−Old appointments

Old appointments

)
Waiting time per patient type and service level

According to Kortbeek et al. (2014), waiting time directly influences access time, making it
essential to balance both. Minimising waiting time improves not only the patient experience
but also workflow efficiency for example, due to happier patients. Since perceived waiting
time differs across patient types, we will measure it separately for each group. To evaluate
performance, we will track both the average waiting time and the percentage of patients seen
within the target, referred to as the service level. This is important because a low average may
still hide long waits for many patients. The service level provides a more complete assessment.

Utilization

Many researchers have confirmed the effect of utilisation on access time (Hulshof et al., 2012,
Zonderland et al., 2021), and generally agree on the relationship between open slots, utilisation,
and waiting time (Srinivas and Ravindran, 2020). However, these studies provide limited guid-
ance on effectively balancing these factors. To address this gap, we will experiment with different
configurations in our simulation model and assess their impact on utilisation. One potential
strategy to improve utilisation is to temporarily adjust capacity (Vermeulen et al., 2009). The
simulation results will also be used to help validate the model by comparing utilisation outputs
to realistic expectations.

Overtime

To ensure that improvements in access time do not come at the expense of staff well-being and
extra costs, we include overtime as a key performance indicator. Measuring overtime allows us
to evaluate whether demand can be met within regular working hours. It also helps identify
when scheduling changes lead to excessive workload.

Patients rejected

To evaluate the model’s ability to meet demand, we include patient rejection as a key per-
formance indicator. This KPI reflects whether the system can accommodate all patient types
within the available capacity.

Outputs to verify the model

Some outputs are not essential for measuring the objective but are crucial for verifying the
model. They can help checking that the simulation behaves as intended and aligns with the
conceptual model.

1. Average number of arrivals per patient type per hour of the day: This can be
used to verify whether the simulation correctly produces the expected number of arrivals
per hour according to the defined inputs and does not delete or add extra patients.

2. Variance of the number of arrivals per patient type per hour of the day:
Ensuring that the model replicates the intended variance is important, as it can influence
downstream behaviours such as queue lengths and staff workload.
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3. Average processing time: This output enables a check that the simulation is correctly
implementing the defined processing logic, without unintended changes to patient flow or
timing.

4.5 Level of detail

This section outlines the level of detail in the simulation model. Simplifications and assump-
tions are needed to ensure feasibility and keep the simulation manageable and effective while
maintaining a reasonable level of realism. They are made based on the knowledge of UMC
Utrecht however, we expect that they are similar for other hospitals.

4.5.1 Assumptions

We made several assumptions due to data availability and uncertainties surrounding the actual
processes.

1. All available time slots are assumed to be filled: There is a long waiting list, along
with last-minute scan requests, which help fill any gaps in the schedule.

2. Patients are not prioritised based on expenses: While hospitals receive different
payments for various patient types, there is no prioritisation based on these expenses.

3. No no-shows: The number of no-shows has drastically decreased since the implementa-
tion of walk-in hours. The exact number of no-shows is unknown.

4. No delays due to equipment shortages: All necessary medical supplies are assumed
to be always available.

5. No changeover time: The time between scans is considered negligible for this model.

6. No failed scans: Technicians report that almost no scans require a repeat procedure.

7. Uniform skill levels among technicians: There has been no observed correlation
between technician skill levels and efficiency across procedures.

8. Consistent staff availability: Scheduled technicians or their substitutes have consis-
tently been present during their shifts, according to the data.

9. Scanners are only accessible for patient scans: In the past, research was conducted
outside regular working hours.

10. The arrival rate of walk-ins does not vary per week: Although the number of scan
types available for walk-ins is growing, the lack of sufficient data makes it challenging to
compare walk-in demand week by week.

11. Only CT1 works overtime: Overtime use has historically been limited to just one
scanner working after regular hours.

12. Patients are sent home at 23:00: Any patients still in the system at 23:00 are assumed
to be sent home. This has never happened in the past.

4.5.2 Simplifications

We made simplifications, to facilitate the rapid development and maintain transparency in the
simulation model.

1. Uninterrupted functioning of CT scanners: CT scanners are assumed to operate
without breakdowns or planned maintenance. In reality, they are out of service 2.1% of
the time, but this is ignored to simplify the simulation.
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2. Infinite waiting room capacity: There are no constraints on the physical capacity of
the waiting room.

3. Fixed one-week block schedules: Although scheduling adjustments can occur and the
schedule may vary each week, the simulation uses a fixed weekly schedule. This approach
is ideal for employees, as they often desire structure.

4. Two types of consultation duration distributions: The data indicates a significant
difference in appointment duration between regular consultations and puncture proce-
dures. Due to the limited data available, no further distinctions are made between other
types of consultations.

5. Consistent staff availability: Staff holidays are not considered in the simulation to
simplify the model and reduce run time.

6. Arrivals are simulated between 8:00 and 17:00: The simulation is designed to test
the block schedule within regular working hours, from 8:00 to 17:00.

7. Patients arrive on time: Scheduled patients are assumed to arrive on time, as there is
no data on late arrivals.

4.6 Model setup

As described, the simulation model will be developed using discrete event simulation to replicate
the scheduling process. The design must be as user-friendly as possible, so that users without
specialised modelling knowledge can operate and interpret it. During the simulation, entities
(patients) progress through the process, and data is collected in real time. Each arriving patient
is assigned a unique ID, arrival time, patient type, processing time, and scan type. When a
patient arrives or when a scanner becomes available, the model determines which patient will be
served next based on the priority rules. The model also checks if the scanner is compatible with
the patient’s scan type. Once a patient completes the scan, all relevant attributes are saved to
assess the performance and validity of the appointment schedule.

4.7 Simulation settings

Before experimentation, it is crucial to ensure that the results of the model’s performance are
accurate (Robinson, 2014). To achieve this, it is essential to determine the type of simulation
being used, assess whether a warm-up period is necessary, and ensure that the simulation has
an appropriate run length and a sufficient number of replications.

Type of simulation

Understanding the nature of a simulation model and its output is essential to obtain accurate
results. A simulation can be classified as a terminating or a non-terminating model (Robinson,
2014). A terminating simulation has a natural endpoint, whereas a non-terminating simulation
does not. For accurate output, it is also crucial to determine whether we are dealing with
transient or steady-state production. A transient output refers to a distribution that changes
over time.

Run length and replications

Often many simulation inputs are stochastic, which makes the outputs naturally variable as well
(Robinson, 2014). So, a single run does not reliably reflect the behaviour of the system. Instead,
the model must run for a sufficient duration or be repeated across multiple replications. Each
replication uses a fixed stream of random numbers, ensuring reproducibility and facilitating
comparison across experiments (Robinson, 2014).
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To determine the required number of replications, we apply the confidence interval method
described by Robinson (2014), using a 95% confidence level (α = 0.05). We monitor the relative
half-width of the interval and aim for a maximum deviation of 5% from the mean. We need as
many replications until this criterion is consistently met. The confidence interval is calculated
using the formula below. where: x̄ = Sample mean, tα/2 = Critical value from the t-distribution,
s = Sample standard deviation, and n = Number of replications.

CI = x̄± tα/2 ·
s√
n

4.8 Verification & validation

Verification and validation are critical components of the simulation modelling process. Ver-
ification ensures that the conceptual model has been accurately translated into a functioning
computer model (Robinson, 2014). Validation, on the other hand, evaluates whether the model’s
outputs are sufficiently accurate for the user’s intended purpose Robinson, 2014.

4.9 Experiment design

This section describes the experiments needed to find the appointment schedule that meets the
objective and the experimental setup.

4.9.1 Experiments description

As shown in Figure 4.2, we evaluate the performance of appointment schedules using discrete
event simulation (DES) and generate new schedules using simulated annealing (SA). The goal
is to find appointment schedules that improve access time and patient flow without increasing
overtime or reducing service levels. To achieve this, we test various experimental configurations.
One key question is whether it is more effective to apply flexible priority rules to all scanners or to
use hybrid scanners. Additionally, we explore whether fixed appointments should be scheduled
on all scanners or only on a subset. To improve access time, we also experiment with increasing
the number of appointment slots. Based on insights from previous chapters, employees can
have ideas for new schedules. Furthermore, different combinations of these factors can yield
varying outcomes. Based on this information, and in collaboration with scheduling staff, we
have designed eight distinct experiments and outlined their potential effects on the different
stakeholders in Table 4.1.

1. Experiment 1 evaluates the performance of the current appointment schedule and is used
for validation, verification and comparison with the other experiments.

2. Experiment 2 uses the current schedule but applies flexible priority rules to all scanners.
As the literature states, it is unclear what the effect is on waiting time, overtime and work
pressure. On the other KPIs, it will have no effect.

3. Experiment 3 builds on Experiment 2 by using SA to generate alternative appointment
schedules with fixed appointments on all scanners, which are then tested using DES.
Having appointments are more optimal times will improve access time, work pressure and
overtime.

4. Experiment 4 also starts from the settings in Experiment 2, but SA is used to design sched-
ules with an increased number of fixed appointments. More appointments will positively
affect the access time and production, but negatively waiting time and overtime.

5. Experiment 5 builds on Experiment 3, where the input schedule already includes fixed
appointments on all scanners. With SA, schedules can be designed with an increased
number of fixed appointments. It is unclear what the effect is of all flexible scanners.
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Table 4.1: Expected effect of experiments

6. Experiments 6, 7, and 8 use appointment schedules proposed by employees as the basis
for further experimentation. We will test whether the staff or SA can generate better-
performing appointment schedules.

4.9.2 Simulated Annealing

Simulated annealing works by generating new solutions through small changes to a current
solution. Worse solutions can be accepted to avoid local optima. Over time, the acceptance
probability of worse solutions decreases with the temperature. Zheng et al. (2025) and van Essen
et al. (2014) have demonstrated that simulated annealing is effective for schedule optimisation in
healthcare environments. As shown in Figure 4.3, the algorithm follows a structured process of
generating neighbourhood solutions, evaluating them, and adjusting the temperature to control
acceptance.

4.9.3 Performance Function

The DES evaluates the performance function for each proposed appointment schedule. The
performance function consists of the average waiting time with penalty terms for service level
violations and overtime. This allows the model to balance performance across multiple KPIs.
Penalties are added when a patient category’s service level falls below its target or when total
overtime exceeds the limit.

We use penalties to ensure that unacceptable schedules are discouraged. This enables the
simulated annealing algorithm to consider trade-offs, such as a slight increase in waiting time
in exchange for a better service level or reduced overtime. Penalties must be high enough to
discourage solutions that severely violate service level targets or exceed acceptable overtime,
but not so high that the algorithm rejects all slightly suboptimal solutions. Therefore, it is
important to calibrate the penalty weights (Thomas Schneider et al., 2020). This ensures a
smooth and meaningful neighbourhood search during simulated annealing.
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Figure 4.3: Simulated annealing approach
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4.9.4 Parameter calibration of simulated annealing parameters

Parameter calibration improves the algorithm’s effectiveness. This includes selecting appropri-
ate values for the start temperature, cooling rate, number of iterations per temperature, and
stopping conditions. The goal is to achieve high-quality solutions within a reasonable compu-
tation time, while avoiding early convergence to local optima. The calibration ensures that
solutions close to the best are accepted early, while poor solutions are less often accepted as
the temperature decreases. Zheng et al. (2025) suggests adding a restart mechanism to further
reduce the risk of getting stuck in a local optimum.

4.10 Chapter conclusion

In this chapter, we presented the complete solution approach used to develop and evaluate new
appointment schedules that meet target access times and other KPIs. We selected discrete-event
simulation to model patient flow, capacity, and priority rules in a realistic, transparent, and
flexible way. DES helps us to measure the performance of the appointment schedules. SA will
be used to navigate the large and complex solution spaces without exhaustive search. These
new appointment schedules will again be tested with the DES.

We described how the model’s performance will be measured and the scope, which ensures a
feasible and focused model. The model aims to evaluate and improve appointment schedules
based on the KPIs: access time, waiting time, utilisation, and overtime. A performance function
balances the KPIs using penalties, calibrated to navigate the search space efficiently. This
solution approach forms the foundation for the case study discussed in Chapter 5.
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5 Case study

In this chapter, we apply the conceptual model and solution approach of Chapter 4 to the CT
department of UMC Utrecht. In Section 5.1 and 5.2 we describe the specific input en outputs.
Section 5.3 and Section 5.4 explains the simulation model and its settings for UMC Utrecht.
This is followed by a verification and validation study in Section 5.5. Section 5.6 describes the
experimental setup. The chapter ends with a conclusion of this case study in Section 5.7.

5.1 Input

This section outlines the data used as input for the simulation model. We collected this data
with observational studies, interviews with stakeholders and by using the available data.

5.1.1 Capacity

Staff

Typically, a CT scanner operates when two laboratory technicians are available. Regular work-
ing hours are from 08:00 to 16:30, Monday to Friday. During the lunch break (12:00–14:00),
technicians alternate, and an additional staff member assists to prevent delays. From 16:30 to
17:30, one technician is present to handle appointment overruns, ensuring one scanner remains
operational. On top of this, outside regular hours, one technician is always available. As pre-
viously noted, we assume technician capacity remains constant each week. Although in reality,
staff availability decreases during school holidays, along with scan demand. Our focus is limited
to the appointment schedule for regular weeks.

CT Scanners

As described, CT1, CT2, and CT3 operate when staff are available. In case of an employee
shortage, CT2 is the first to close, followed by CT3. We assume no scanner breakdowns occur,
so the staff capacity matches the capacity of the CT scanners.

Appointment scheduling

Currently, two appointment schedules are used, one for even weeks and one for odd weeks, but
the differences are minimal. Therefore, we use a single schedule as the initial input for our
simulation model. The current schedule reserves slots for outpatient appointments while also
accommodating walk-in, emergency, and inpatient cases. An example of the initial appointment
schedule for CT1 is shown in Figure A.1 in Appendix A.1.

Currently, specific appointments are reserved for certain scan types, such as heart scans. How-
ever, due to the lack of data on waiting lists for different scan types, we cannot recommend
the exact number of blocks that should be allocated to each type. Furthermore, reserving ded-
icated time slots for specific scans could negatively impact overall access time, as it increases
the likelihood of unfilled slots. As discussed in Section 3.1, the appointment schedules should
include fixed slots with predetermined start and end times allocated to specific patient types,
in this case, outpatient clinic appointments.

5.1.2 Patient attributes

Patient classification

The following scans cannot be scheduled as walk-ins and must be scheduled in advance: CTA-
Arterial, Drainage, Puncture, Heart-Coronary, Heart-Standard/Vascular Ring, Heart-Valve,
Anaesthesia, and scans from the Princess Máxima Centrum, due to their complexity.
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Arrival rates

In our case, predicting non-elective patient arrivals based on outpatient clinic schedules is not
feasible. Appointment registration and reporting vary across departments, making consistent
analysis difficult. Additionally, clinics often deviate from their schedules, and we lack accu-
rate, usable data to identify reliable patterns. Further, some departments only allow walk-ins
immediately after consultation, while others permit walk-ins on later days.

Given these limitations, we estimate patient arrival rates using historical data. Since we focus
on regular weekly appointment schedules, we assume arrival rates remain stable week to week.
However, Section 2.4.5 showed variation in walk-in arrivals per hour and day. With statistical
tests we confirmed that 8 out of 10 time slots had p-values below 0.05, indicating significant
differences in arrival rates by hour and day (see Table A.2 in Appendix A.1), and must be
calculated per hour and day. Our arrival time data spans March to December 2024, with only
about 40 data points per hour and day. Relying solely on traces or empirical distributions would
limit the model’s ability to generalise. To balance flexibility and accuracy, we use a combination
of empirical and statistical distributions where possible.

Due to limited data, no clear distribution emerged from histograms, goodness-of-fit tests, or
Q-Q plots. Since patient arrivals are discrete events per hour, we considered standard discrete
distributions such as the binomial and Poisson distributions. According to Robinson (2014),
random arrivals per time interval often follow a Poisson distribution. We therefore did a cor-
relation test between the number of arrivals on one day and hour and the following hour to
test dependencies. The correlation coefficients can be seen in Table A.1 of Appendix A.1). All
correlations are close to zero, which indicates minimal correlation. We also tested correlation
with a hypothesis test. When the absolute value of the t-statistic is equal to or less than the
critical value (2.023), we fail to reject the null hypothesis, meaning the data do not provide
evidence of a significant correlation. With all our t-statistics smaller than the critical value, we
can confirm that arrivals occur independently, supporting our choice to model patient arrivals
using the Poisson distribution.

The Poisson distribution is defined by a single parameter, the mean (Robinson, 2014). Since
our focus is on regular weeks, we used historical data from these periods to calculate the mean
arrival rate for each hour of the week across the three patient types. The arrival rates were
calculated using the following formula, where X1 is the number of arrivals observed over T1

periods (Robinson, 2014):

λ1 =
X1

T1

As previously noted, we assume all available time slots are filled due to high demand, so the
arrival rate of outpatient clinic scheduled appointments corresponds to the number of available
time slots.

Service times

As described in Section 2.4.1, limited data on appointment durations makes it difficult to
distinguish between service times of CT scanners, patient types, or scan types. According to
stakeholders, scan type is the main factor influencing appointment duration. For example, CT
puncture scans typically take significantly longer, while heart scans average about five minutes
more than other types. However, over 60% of scans are unplanned and their type is unknown
in advance, limiting the impact of this knowledge on the simulation. Currently, CT puncture
scans are allocated 60 minutes, and all other planned scans 20 minutes.

Although we initially expected inpatients to take longer due to mobility constraints, they of-
ten arrive prepared and with support, resulting in durations similar to outpatients. Walk-in
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appointments tend to be shorter, likely because puncture scans are not performed on a walk-in
basis. Given the limited data and stakeholder input, we categorise appointment durations into
two groups: CT puncture scans and all other scans. For the non-puncture group, we assume
average durations will balance out.

As with arrival rates, we aimed to fit a statistical distribution to the observed appointment
durations. For the 20-minute group, the gamma distribution provided the best fit based on the
histograms (Figure 5.1). However, the chi-squared test statistic (515) exceeded the critical value
(26), likely due to the data being rounded to whole minutes, while actual appointment durations
are recorded in seconds. The gamma distribution remains the best fit, with parameters:

α =
mean2

variance
=

14.102

47.44
= 4.19, β =

variance

mean
=

47.44

14.10
= 3.36

Figure 5.1: Histogram: 20-minute appointment duration

For CT puncture scans, both gamma and normal distributions seemed fitting (Appendix A.2,
Figure A.3). The chi-squared test results showed a total relative error of 19.8 for the gamma
distribution and 20.4 for the normal, with a critical value of 19.7. We therefore selected the
gamma distribution, with parameters: α = 8.57 and β = 6.87. Appendix A.2 provides a full
overview of all chi-squared tests performed.

5.1.3 Sequencing and priority rule

Figure 5.2 illustrates the priority rules in the waiting room for both the current system and the
simulation. In the current system, CT 3 prioritises walk-in patients, while CT 1 and CT 2 offer
more flexibility in handling different patient types. In the simulation, the priority rules have
been simplified because we have no data on how many clinical patients arrive with a nurse, nor
the number of early arrivals. On top of this, laboratory technicians cannot see in the system if
a patient arrives with a nurse. They only know this when they see it in the waiting room, it is
then a human choice to let this patient go first or not.

5.2 Output

The department previously lacked established KPIs. We identified relevant KPIs, set targets
and observed the current performance. These KPIs are outlined below.

Number of outpatient clinic appointments per week for calculating access times

In the current system at UMC Utrecht, only outpatients wait for appointment slots. Stakehold-
ers confirmed that the waiting list often includes outdated referrals and patients postponing
scans voluntarily, making it an unreliable indicator of access time. We therefore used the ex-
ponential relationship between the number of slots and the access time as described in Section
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4.4. Currently, the average access time is 31 days with 21 outpatient slots per day. Applying
the exponential access time model, using the formula below, would require an average of 26.8
outpatient appointment slots per day to achieve the target access time of 22.4.

Access time = 31×
(
1− Number of outpatient appointments− 21

21

)

Figure 5.2: Priority rules actual system and simulation

Waiting time per patient type and service level

Through interviews, we discovered that both administration employees and laboratory techni-
cians benefit from shorter waiting queues. Administration employees handle fewer complaints,
while laboratory technicians work with less stressed patients, which can positively impact pro-
cessing times. In collaboration with the staff, we defined target waiting times for each patient
category: 5 minutes for emergency patients, 10 minutes for inpatients, 15 minutes for outpa-
tients, and 30 minutes for walk-in patients. The target service level is to meet 95% of these
waiting times.

Utilization

The hospital aims to maximise CT scanner utilisation while keeping waiting times within target
limits. High utilisation is important, as CT laboratory technicians are in high demand and can
also support MRI or X-ray departments when not needed for CT. Therefore, maintaining high
utilisation not only improves efficiency but also optimises staff efficiency across departments.

Overtime

The hospital prioritises employee satisfaction and aims to minimise overtime. Therefore, any
improvements in access time must not result in additional overtime for staff.

Patients rejected

In the current system at UMC Utrecht, no patient are rejected. The department places great
importance on ensuring that every patient receives care. Therefore, the target for this KPI is
to maintain zero patient rejections.
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5.3 The simulation model

Using all the information gathered for UMC Utrecht, we programmed the simulation model in
Plant Simulation. Figure 5.3 displays the control panel of the simulation model. In the input
quadrant, users can adjust all variables relevant to the case study, such as target waiting times,
closing times, and arrival rates.

Figure 5.3: Control panel discrete event simulation CT radiology department

Figure 5.4 illustrates the operation of the model. The simulation follows the defined logic using
real-world inputs, allowing users to test and see the performance of appointment schedules.

Figure 5.4: Operation discrete event simulation CT radiology department
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5.4 Simulation settings

This simulation is classified as a terminating model, as it has a defined endpoint. The system
is empyt at the end of each working day when staff and still waiting patients are sent home
and starts empty the next morning. While each day terminates individually, the full run length
spans one week to reflect varying appointment schedules and arrival patterns across weekdays.
The system starts and ends empty each day, and we excluded the waiting lists due to the
earlier described data quality and model simplifications, therefore no warm-up period is required
(Robinson, 2014). This setup ensures consistent starting conditions and captures typical weekly
operations.

To determine the required number of replications, we calculated confidence intervals for five key
performance indicators (KPIs). To optimise performance, we selected inputs with the highest
variance or lambda values, since they demand more replications. Figure 5.5 shows that with 42
replications, all relative errors fall below the 0.05 threshold. To ensure accuracy and stability,
we simulate 48 one-week replications, totalling a run length of 336 days.

Figure 5.5: Number of replications of one week needed

5.5 Verification & validation

This section outlines the verification and validation process of our simulation model.

5.5.1 Verification

Code inspection and debugging: Throughout the simulation process, we consistently checked
whether the methods and logic aligned with the conceptual model. To support this, we explained
the code to external experts for review and feedback. For each technique, we created pseudo-
code before implementation to ensure clarity and consistency with the conceptual design. We
then carefully stepped through the simulation, method by method, to confirm that each func-
tioned as intended. Particular attention was paid to unusual values, such as zeros or empty
fields, to detect potential issues.

Patient tracing and Logical Checks: We observed the simulation’s behaviour using visual
outputs to check the correctness of the model’s logic. The model was paused at specific points,
and predictions were made about the expected behaviour of specific patients. These were then
compared with the actual simulation outcomes and the intended meaning of the conceptual
model. Special attention was given to the sequencing rules, as this method was more complex.
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Extreme Condition Testing: We tested the model under extreme scenarios, for example,
with excessive patient arrivals or appointment durations, to verify whether it behaved as in-
tended.

Output Inspection: We tested the inputs defined in the conceptual model against the outputs
of the simulation model to ensure alignment. Table A.2 and Table A.4 in Appendix A.3 show the
calculations of this analysis. Table 5.1 shows that the means of the arrival rates, appointment
durations, and the percentage of appointment type 1 do not differ significantly between the
simulation and the input data. However, half of the simulation distributions have a significantly
lower variance than the input data, suggesting that the simulation may not fully capture reality
in this aspect. However, with approximately 350 arrivals per week and 70 per day, we expect that
the variances in arrival rates, appointment durations, and appointment type percentages will
balance out, making the overall variance acceptable. It is therefore essential that the simulation
includes a sufficient number of replications. Lastly, we verified that all intended outputs and
intermediate calculations were correctly implemented by manually calculating and comparing
them with the simulation results.

Table 5.1: Verification of mean and variances of the simulation model

5.5.2 Validation

This section confirms that the model accurately represents the real-world system and meets the
objectives of the simulation study. Robinson (2014) outlines several validation steps, which are
described below.

Conceptual Model Validation: Along with stakeholders, we reviewed the assumptions and
simplifications to ensure they are reasonable. We also thoroughly examined the sequencing and
priority rules by conducting interviews and observations with multiple laboratory technicians
to gain a deeper understanding of the patient selection process. In addition to creating an
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accurate model, gaining stakeholders’ acceptance of the conceptual model is crucial for building
their confidence in the model.

Data Validation: We gathered data through a step-by-step approach, beginning with obser-
vational studies and interviews to gain an understanding of the process. We then used test
patients, for whom we knew all relevant data and processing times, to verify the accuracy of
the data. This allowed us to understand what data was available and its accuracy. All gathered
data was cross-checked with other available data tables. Additionally, experts reviewed the
data to assess its reliability. However, as mentioned earlier, we found that not all the data was
registered correctly, which affected its accuracy and validation.

White-box validation: White-box validation ensures that each part of the model accurately
represents reality. We focused on timings, such as cycle times, scan durations, and waiting
times, and compared them to real-world observations. The flow of patients through service
points was also reviewed to ensure it followed real-world logic. The implementation of priority
rules, such as selecting the next patient for scanning, was tested. Empirical data verified that the
distributions of patient arrivals, scan durations, and waiting times followed realistic patterns.
Additionally, domain experts reviewed the simulation’s outputs, we compared them with the
HIX agenda, and conducted observation studies to confirm that individual components behaved
as expected.

Black-Box Validation: Black-box validation determines whether the model represents the real
world with sufficient accuracy for its intended purpose (Robinson, 2014). Table 5.2 shows the
validation of the simulation model’s mean and variance. Table A.3 and Table A.5 in Appendix
A.3 show the calculations of this analysis. Using a confidence interval, critical value, and
computed F-statistic, we assessed whether there was a significant difference. The percentage of
inpatients and the total number of arrivals per day are inputs of the simulation. So we can check
if the system is working properly and represents reality. The utilisation and average waiting time
are outputs generated by the simulation and are therefore, essential if the simulation represents
reality. We concluded that the number of patients arriving per category and the utilisation
closely represent the real world. However, the average waiting time and variance are higher in
reality than in the simulation model. Together with our stakeholders, we discussed what the
cause of this could be. We discovered that we had not accounted for the waiting time for blood
results or the time for taking an oral contrast. Since the data does not indicate which patients
had to wait for these reasons or how long they had to wait, we were unable to include this
information in our model. However, we can still compare the waiting time of the experiments
with the initial waiting time of the simulation and see if they increased or decreased.

Experimentation Validation & Solution Validation: It is essential to keep in mind that
the experimental procedures are providing results that are accurate for our research (Robinson,
2014). We achieved this by frequently referring back to our research goal while conducting the
experiments. All experimental factors, such as run length and repetitions, are carefully con-
trolled. In addition, we ensured that all decisions regarding simulated annealing and searching
the solution space were based on literature and tested performance.

5.6 Experiments

Section 4.9 described the experiments that need to be performed to know the best setting for
flexible and hybrid CT scanners, and appointment schedules to meet the target access time
without negatively affecting other KPIs. This section outlines all the experiments and their
methodology.

We use the same random number streams for the distributions in the DES across all experiments
and iterations. This ensures that differences in the performance of appointment schedules and
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priority rules are not due to randomness. However, random numbers are also used in the SA
process to select the next appointment schedule to test. It is crucial that when we return to
the SA after evaluating a schedule in the DES, we do not restart the same random number
stream in the SA. If we did, each next iteration would be identical to the previous one. To
avoid this, we base the seed values for selecting the next iteration on the iteration number itself.
For example, at iteration 10, we use seed value 10 to determine the next appointment schedule.

Table 5.2: Validation of mean and variances of the simulation model

5.6.1 Exp 1: Baseline schedule

In this experiment, we test the performance of the initial appointment schedule and priority
rules with the DES, to validate the model and for comparisons with the other experiments.

5.6.2 Exp 2: Baseline schedule, Flexible scanners

In this experiment, we adjust the priority rules of CT3 from walk-in to flexible. This means
that the priority rules for picking the next patient change (Figure 5.2). We test this with the
initial appointment schedule in the DES.

5.6.3 Exp 3: Baseline schedule, Flexible scanners, Appointments on all scanners
(SA)

This experiment also starts with the baseline schedule and has flexible priority rules for all
scanners. A flexible CT3 means that outpatient appointments can also be planned on CT3. We
will test the performance if we move appointments from CT1 and CT2 to CT3.

Simulated annealing

Our appointment schedule has 825 different places where appointments can be scheduled. This
means that if we test all possible variations, we need to test 2825 different schedules. This will
have a runtime of many days. We will therefore use SA to search the neighbourhood. In SA,
the method of generating new iterations is a critical component of the search process. We will
randomly select an appointment from CT1 or CT2 and move it to a randomly chosen time slot
on CT3, and check the performance in the DES. This strategy enables us to navigate the solution
space effectively, improving performance while maintaining the feasibility of the runtime.

Often, simulated annealing employs a swap or two-sided move operator, allowing you to revisit
previously explored solutions. In our case, when the simulated annealing accepts a worse solu-
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tion, it can never go back since we use a one-way (from CT1 and CT2 to CT3) move operator.
Zheng et al. (2025) proposed a solution to this problem by restarting the simulated annealing
algorithm after a specific period. Studies have shown that the restart mechanism outperforms
the original Simulated Annealing algorithm (Zheng et al., 2025). The restart mechanism helps
to avoid getting stuck in a local optimum. The restart occurs if the solution fails to find a new
best solution after a specified number of iterations (Zheng et al., 2025).

Performance function of appointment schedule

The SA algorithm accepts new iterations based on their performance relative to the best solution
found so far. Since we use multiple KPIs to assess performance, we combine them into a single
performance function for straightforward comparison.

The primary goal is to minimise the average patient waiting time while meeting target service
levels for both waiting time and overtime. When a solution fails to meet service level targets,
penalties are added to the average waiting time. These penalties are scaled based on the degree
of deviation from the targets. Following the recommendations of Thomas Schneider et al. (2020),
who noted that suboptimal penalties can lead to different and suboptimal outcomes, we tested
various configurations. Table 5.3 summarises the calibration results.

Table 5.3: Objective parameter calibration with start temperature

Solutions near the target service level must be accepted with high probability at the initial tem-
perature, while inadequate solutions are rejected. Overtime is critical for hospital operations, so
it must be penalised appropriately. We found that a penalty of 1 minute per 0.01 deviation from
the service level is effective. For example, a service level of 0.89 (slightly below the target) has
a high acceptance probability of 0.96, while a level of 0.87 (somewhat below the target) drops
significantly to 0.67. For overtime, a 3-minute penalty still results in a relatively high accep-
tance probability (0.69). Since overtime is most important for the hospital, we determined that
a 5-minute penalty per minute of overtime is most effective. The final performance function,
including the penalties, is defined as:

Performance Function = AvgWaitingRoomTime + P1 + P2 + P3 + P4 + P5
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Where:

P1 (Penalty 1) =

{
(0.90− SLEmergency)× 100× 1 : 00, if SLEmergency < 0.90

0, otherwise

P2 (Penalty 2) =

{
(0.90− SLWalkIn)× 100× 1 : 00, if SLWalkIn < 0.90

0, otherwise

P3 (Penalty 3) =

{
(0.90− SLInpatient)× 100× 1 : 00, if SLInpatient < 0.90

0, otherwise

P4 (Penalty 4) =

{
(0.90− SLOutpatient)× 100× 3 = 1 : 00, if SLOutpatient < 0.90

0, otherwise

P5 (Penalty 5) =

{
(Overtime− 5 : 00)× 5, if Overtime > 5 : 00

0, otherwise

Parameter choices of Simulated annealing

The parameter choices are described below. An optimal combination is crucial for not getting
stuck in a local optimum too soon or getting too long computation times.

• Begin temperature: The beginning temperature must be high enough so iterations
at the beginning are accepted with a relatively high probability, to escape from a local
optimum (van Essen et al., 2014). If the temperature is too high, this will result in an
unnecessarily high computation time. Thomas Schneider et al. (2020) uses the formula
below to calculate the initial temperature, which is similar to the method employed by
van Essen et al. (2014). Since we do not know what a realistic decrease is, we will choose
280 seconds since this is the maximum decrease and therefore a safe option to start with.
This results in a start temperature of 404. Which means that we want to accept this
decrease with a probability of 0.5.

Begin temperature =
−Maximum decrease of objective function

ln(0.5)
=

−280

ln(0.5)
= 404

• Acceptance probability: Zheng et al. (2025) and van Essen et al. (2014) use the same
method to accept or reject a solution, as can be seen in the formula below. We will
always accept a solution if it is better than the best solution before. Otherwise, a solution
will be accepted based on the difference between the current performance and the best
performance, as well as the temperature. When the difference is small and the temperature
is high, there is a high probability that the solution will be accepted. You will therefore
easily escape from a local minimum. As the temperature gradually decreases, an increasing
number of solutions will be rejected.

Acceptance probability =

{
1, if NewObjective−BestObjective < 0

e
− ∆ Objective

Temperature , Otherwise

• Number of iterations per temperature: van Essen et al. (2014) suggests setting the
number of iterations for each temperature equal to the number of neighbour solutions that
can be achieved by one swap of the initial solution. In our case, we have 105 appointments
that could be moved to CT3 to 260 different time slots. With a high temperature, almost
all moves will be accepted, so it makes no sense to have 260 iterations per temperature
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since CT1 and CT2 will be empty very quickly. We chose to do 80 iterations instead. It
still happens that CT1 and CT2 get empty, and no other neighbourhood solutions are
possible without a reset. This means that more iterations will be unnecessary at one
temperature. The same applies to the number of iterations before a reset. Now, CT1 and
CT2 are occasionally empty, but the temperature does not drop too quickly, and the reset
occurs at a reasonable rate. This provides a good balance between computation time and
searching for neighbourhood solutions.

• Cooling rate: The cooling rate makes sure the temperature goes down after the set
number of iterations with the formula below. Zheng et al. (2025) says that the best cooling
rate depends on the specific case. A high cooling rate results in a high computation time,
while a low cooling rate can miss escapes from local minima. Many researchers suggest
that a cooling rate of 0.95 is a safe starting point (van Essen et al., 2014). But the optimal
value can lie around this.

Temperature := Temperature ∗ CoolingRate

• End temperature: The end temperature must be chosen so that at the end of the
procedure, almost no worse solutions are accepted, to convert to a local minimum (van
Essen et al., 2014). We used the formula of Thomas Schneider et al. (2020) to compute
the end temperature. We decided to accept a negative change in service level, with a 0.005
decrease from 0.9 or an average waiting room time exceeding 60 seconds, to a probability
of 0.001. With the formula below, the end temperature will be 8.7.

End temperature =
Minimum nagative change

ln(0.5)
=

−60

ln(0.001)
= 8.7

Parameter calibration simulated annealing

Table 5.4: Simulated annealing parameter calibration

Zheng et al. (2025) confirms that simulated annealing values significantly impact the algorithm’s
performance and suggests performing parameter calibration. Table 5.4 shows the parameter
calibration that we performed. The first setting is the one indicated by the literature. A higher
start temperature was not necessary to test, since almost all solutions would be accepted initially.
A lower-end temperature also does not need to be tested, as no worse solutions are accepted
anymore in the end. For the other settings, we want to find the best-performing iteration within
a reasonable computation time. Setting 4 gives a significantly better performance value than the
different settings and has a computation time of 2 hours. This is a reasonable computation time
since we do not have to run it weekly or monthly. In a good setting, the number of accepted worse
experiments gradually decreases. Figure 5.6 shows that the number of accepted experiments
with this setting gradually decreases until almost no worse solutions are accepted. Setting four
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is also safe since the last best found experiment is long before the latest experiment. This is
beneficial since the hospital can utilise alternative seed values and random number streams,
which may require more experiments to determine the optimal performance function value.

Figure 5.6: Number of worse accepted iterations per 200 iteration

5.6.4 Exp 4: Baseline schedule, Flexible scanners, More appointments with same
capacity (SA)

This experiment tests the effect on the baseline schedule when more outpatient appointment
slots are created.

Simulated annealing

We will create an extra appointment slot at a random, empty location of one of the CT scanners.
We decided with the hospital employees that a maximum of 7 extra scans per day can be added.
Harden (2023) states in the Royal College of Radiologists that a 10% increase in scans performed
can lead to an increased workload in the rest of the chain. In our case, radiologists already have
too high a work pressure, and therefore we do not want an increase in scans of more than 10%
(max 7 extra appointment slots per day). We maintained the SA parameters constant, allowing
for a reasonable comparison of the different experiments.

Performance function of appointment schedule

The base of the performance function will be the same as in previous experiments, allowing
for easy comparison. However, we added a reward for every extra outpatient appointment slot.
Through trial and error, just as in the previous experiment, we determined that a reward of
25 seconds would be given if there was an extra appointment opportunity on every weekday,
so 5 seconds per weekday. This balance is important because we do not want to violate target
service levels too much with extra appointment slots. The final performance function is:

Performance Function = AvgWaitingRoomTime + P1 + P2 + P3 + P4 + P5 −R6

R6 (Reward 1) =

{
(ConsultedOutpatients− 21)× 0 : 25, Number of consulted outpatients > 21

0, otherwise
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5.6.5 Exp 5: Input exp 3, Flexible scanners, More appointments with same ca-
pacity (SA)

This experiment is the same as experiment 4, but with the best-performing appointment sched-
ule of experiment 3 as input.

5.6.6 Exp 6: Schedule staff

In experiment 6, we test the performance of the newly designed schedule by the staff with DES.

5.6.7 Exp 7: Schedule staff, Flexible scanners

In this experiment, we test with DES the performance of the schedule designed by the staff
with flexible priority rules for all scanners.

5.6.8 Exp 8: Schedule staff, Flexible scanners, Appointments on all scanners (SA)

This experiment is the same as experiment 3, but with the input schedule of the staff.

5.7 Conclusion

In this chapter, we implemented the solution approach to the CT department of UMC Utrecht.
With the help of historical data and literature, we developed empirical and statistical distribu-
tions that serve as inputs to our simulation model. We extensively tested whether our simulation
model represented the conceptual model. We found no significant difference between the means,
but there are some differences in the variances, which could be the cause of the chosen distribu-
tions. We also tested whether the simulation model accurately represented the real world and
would be usable in practice. Unfortunately, there is a difference between the expected waiting
time and the actual waiting time. As described, this is because the simulation model does not
include the waiting time for blood tests or the time required to drink fluids. Therefore, the
outcome of the waiting time in the simulation model is not reliable. However, a decrease in the
ratio can still be utilised. Lastly, the experiments are set up, the simulated annealing parame-
ters are chosen, and the performance functions are tested and chosen to get the most reliable
results. We implemented a special simulated annealing algorithm with a restart to escape from
a local optimum, as we only use one-way moves. The results are described in the next chapter.
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6 Result analysis

In this chapter, we describe the results of the experiments designed in the previous section. For
each experimental setting, we identify the best-performing appointment schedules. All exper-
iments are compared to the initial appointment schedule and the target levels, and compared
to each other. Table 6.1 presents the outputs of all experiments. The outputs are the averages
per day over all replications. The lower the performance function, the better the appointment
schedule performs. Figure 6.1 shows the number of appointments per weekday, while Figure 6.2
illustrates the number of appointments per hour and the total per week. We will not refer to
these figures and tables repeatedly in the text. Additionally, a sensitivity analysis is conducted
in Section 6.10, and the simulated annealing algorithm is validated in Section 6.11. The chapter
concludes with a comprehensive summary an conclusion in Section 6.12.

Table 6.1: Experiments and best performing (lowest performance function) iterations

6.1 Exp 1: Baseline schedule

The initial appointment schedule has two flexible CT scanners and one dedicated walk-in CT
scanner. The performance of this initial schedule is shown in Table 6.1. Notably, the service
level for emergency patients (0.86) falls significantly below the target of 0.9, which negatively
impacts the performance function (499). In contrast, the other service levels, overtime, and
average waiting times across patient categories perform well. The access time is 31 days, as
calculated in Section 5.2, which is well above the target of 22.4 days. This experiment is used
for simulation validation, verification, and comparisons with other experiments.
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6.2 Exp 2: Baseline schedule, Flexible scanners

We aimed to investigate the impact of flexible priority rules on CT scanner 3. To do so, we
tested the initial schedule with flexible priority rules for all scanners. Compared to the baseline
experiment, the most notable result is that the service level for emergency patients (0.89) is
closer to the target of 0.9, positively influencing the performance function. The average waiting
times for emergency patients, inpatients, and outpatients also improved, along with the service
levels for inpatients and outpatients. Overtime and the overall average waiting time remained
unchanged. However, the average waiting time for walk-in patients increased significantly,
although their service level still met the target. In conclusion, the overall performance function
(281) improved compared to the baseline (499), while the access time remained the same.

Figure 6.1: The number of appointments per day per experiment

Figure 6.2: The number of appointments per hour and per week per experiment

6.3 Exp 3: Baseline schedule, Flexible scanners, Appointments on all scan-
ners (SA)

This experiment examines the effects of CT scanner 3 operating with flexible priority rules and
fixed appointment slots. Table 6.1 shows the results of the three best-performing iterations
(Experiments 3.1, 3.2, and 3.3). Since their performance functions are similar, we selected the
best iteration based on the overall output. Overtime is a key concern for the hospital, as well
as meeting all target levels. Iteration 3.1 achieves the best performance in terms of overtime
and meets all targets, making it the most effective configuration in this setting.
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In this iteration, 39 out of 58 possible appointments shifted to CT3, indicating that many were
not initially scheduled at optimal times. The specific CT scanner used for an appointment does
not affect the sequence in which patients are scanned, as all scanners select the next patient
from a shared waiting room based on the longest waiting time. In the baseline schedule, 40
appointments were planned in the afternoon, compared to 55 in iteration 3.1 (see Figure 6.2).
This shift is logical as observations showed significant idle time in the afternoon, as staff tend
to over-reserve time for unplanned patients to avoid working overtime. Additionally, many
CT1 and CT2 appointments were at the same time in the baseline schedule, whereas in this
experiment, appointments were more evenly distributed. We also see a shift in the number of
appointments scheduled per day. For example, more appointments are planned on Wednesday
and fewer on Friday (see Figure 6.1). This was unexpected, given that more walk-in patients
typically arrive on Wednesdays. However, shifting appointments to the afternoon likely had
a greater impact on the objective function than the daily appointment distribution, especially
since current capacity exceeds demand.

In conclusion, having flexible priority rules and shifting appointments to a more optimal timing
at CT scanner 3 has a big positive effect on the performance function.

6.4 Exp 4: Baseline schedule, Flexible scanners, More appointments with
same capacity (SA)

In previous experiments, we found that assigning flexible priority rules to all CT scanners
positively impacted the performance function. However, the access time remained unchanged.
To address this, we tested a combination of the flexible priority rule configuration with increased
appointment slots. This experiment had the initial schedule as input.

4.1, 4.2, and 4.3 in Table 6.1 show the performance values of the three best-performing iterations
in this experimental setting. While their performance functions are close, there are notable dif-
ferences in overtime and access time. Iteration 4.2 provides the most appointment opportunities
but results in significantly more overtime and fails to meet the service level target. Iteration
4.1 has the highest access time, yet most of its other performance indicators are better than
those of iteration 4.2. Iteration 4.3 achieves an access time of 22.4 days, meeting the target,
and outperforms iteration 4.2 on most other indicators. Since our goal is to reduce access time
without causing significant adverse effects, iteration 4.3 proves to be the most effective.

Compared to the baseline, this schedule adds 29 appointment slots per week, 11 in the morning
and 18 in the afternoon (see Figure 6.2). As previously discussed, it is unsurprising that more
slots were added in the afternoon, given the hospital’s hesitancy to schedule many appointments
during this period. The additional slots are distributed as follows: five on Monday, nine on
Tuesday, two on Wednesday, six on Thursday, and seven on Friday, showing an increase across
all weekdays. Notably, Wednesday, which is expected to have the highest number of unplanned
arrivals, now has the fewest appointment slots (20), which is a logical outcome. Thursday,
with 31 slots, has the most, even though it does not have the fewest unplanned arrivals. This
likely reflects the efficiency of the baseline schedule’s timing on that day, allowing for additional
appointments without disruption. Thursday and Friday, which are expected to have the fewest
unplanned arrivals, have 28 and 29 slots respectively, aligning with expectations.

In conclusion, the baseline schedule can accommodate additional appointment slots with limited
adverse effects. Most new appointments are scheduled during periods with fewer expected
unplanned arrivals. However, this was not always the case and may be influenced by how
well-timed the appointments were in the original schedule.
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6.5 Exp 5: Input exp 3, Flexible scanners, More appointments with same
capacity (SA)

From the previous experiment, we observed that the input appointment schedule significantly
influences how many additional appointment slots can be added. Therefore, we tested the
scenario using the appointment schedule from iteration 3.1 as input. When comparing iterations
5.1, 5.2, and 5.3 to iteration 3.1, we see that all outputs, except access time, perform slightly
worse. However, all target levels are still met. When comparing these results with iterations 4.1,
4.2, and 4.3, we find that iterations 5.1, 5.2, and 5.3 perform better despite offering the same
number of appointment slots. Nonetheless, iteration 4.2 remains the one that yields the highest
number of appointments, a value not matched in this group. We also compared the performance
of iterations 5.1, 5.2, and 5.3 with each other. Iteration 5.3 is the only experiment with an access
time of 22.7 days, close to the target access time of 22.4 days. The other performance metrics
are nearly identical, and almost all targets are met. Therefore, iteration 5.3 is the most effective
within this setting.

This iteration started with 50 appointments in the morning and 55 in the afternoon. In total, 28
additional slots were added, 8 in the morning and 20 in the afternoon, resulting in 58 morning
and 75 afternoon appointments (see Figure 6.2). This distribution contrasts significantly with
iteration 4.3, which had 76 morning and 58 afternoon appointments. This demonstrates that the
initial appointment schedule has a substantial effect on the experiment’s outcome and overall
performance. Moreover, the number of appointments per day does not always align with the
expected number of walk-in arrivals. For example, this schedule allocates 30 appointment slots
to Wednesday, even though Wednesday typically sees the highest volume of walk-ins. This may
be due to the favourable timing of existing appointments on Wednesday in the initial schedule,
which allowed for more additions without negative impact.

In conclusion, the input appointment schedule plays a crucial role in the outcome of the ex-
periment, particularly because we use one-way move operators. Therefore, experimenting with
different initial schedules will give a more robust solution.

6.6 Exp 6: Schedule staff

When the senior laboratory technicians saw our data, especially the low utilisation and high
access times, they realised something had to change. They did not want to wait until the end
of this research to improve and implement. Therefore, they came up with a new appointment
schedule and implemented it. They used information such as that many walk-in patients arrive
during lunchtime, especially on Wednesdays. It is too early to assess the real-world performance
based on historical data, as several months of data are needed to obtain reliable insights. There-
fore, we evaluate the performance using our simulation model. The simulation shows that the
access time dropped to the lowest level observed across all experiments. This improvement was
achieved by adding 11 extra appointment slots per day. Radiologists work with a long working
list and therefore have not yet experienced a higher workload. However, we expect that the
working lists will increase gradually with this number of appointment slots. As outlined in
Section 5.6.4, the radiologist can accommodate a maximum of 7 additional appointments per
day. This confirms that adding 11 extra appointments exceeds the feasible workload limit.

Other performance indicators also showed undesirable effects. The average waiting time for
all patient types increased and nearly doubled over time. In addition, the service level of
emergency patients is far from the target level, and the service level of inpatients and outpatients
is also below the target level. The overtime also increased and is confirmed by the laboratory
technicians. As a result, the performance function increased significantly. One important
improvement is that now the target access times are met.
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6.7 Exp 7: Schedule staff, Flexible scanners

Since we discovered that priority rules can significantly influence performance, we tested the ef-
fect of a flexible priority rule on CT3. Compared to Experiment 6, the objective value improved,
along with the service levels. The average waiting times for emergency patients, inpatients, and
outpatients decreased, while their service levels increased. In contrast, the service level and wait-
ing time for walk-in patients decreased and increased, respectively. This pattern is consistent
with the behaviour observed in previous experiments involving flexible priority rules.

6.8 Exp 8: Schedule staff, Flexible scanners, Appointments on all scanners
(SA)

We also wanted to test the effects of moving appointments to a more optimal timing at CT3
with this schedule as input. Iteration 8.1 performed the best, as its service levels were closer to
the target. Compared to experiments 6 and 7, it outperformed in all areas, even meeting the
target level for overtime. Most appointments remained on the same day, five were moved to the
morning, and several found a more optimal time.

We can conclude that laboratory technicians got better at determining the optimal day and
time for appointments with the help of the provided data. However, SA is better at finding the
ideal timing for appointments.

6.9 Conclusion experiments

To conclude, iteration 4.3 of experiment 4 has the best overall performance. It is the iteration
that meets the target access time while all other KPIs are closely met. This means that it
is best to have flexible priority rules for all scanners and have fixed appointments on CT 3.
Additionally, on each scanner, hour and day extra appointment are added.

6.10 Sensitivity analysis

Ferrand et al. (2014), just as many other researchers suggest, to perform a sensitivity analysis of
the simulation model to test the robustness to change of the model. We will do this by assessing
the consequences of changing the input parameters of Experiment 1, the initial schedule. We
already tested the simulated annealing with different input appointment schedules. We will
adjust the appointment duration distributions, arrival rate distributions, and opening hours.

6.10.1 Distribution 20 minute appointment duration

Our first analysis tested whether the model would work when we adjusted the appointment
durations, and it did. Figure 6.3 shows that as the appointment duration increased, the objective
value also increased. This is logical since waiting time, overtime, and service levels negatively
impact the objective function. From 0% to -10%, the performance function decreased, but
decreasing the appointment duration further had little effect. This is because there is less
waiting time and overtime to improve.

In conclusion, the simulation model can effectively test different appointment durations. Longer
appointment durations significantly affect the performance value, while shorter durations have
minimal impact.

6.10.2 Arrival rate Walk-in patients

The model was also able to test variations in walk-in arrivals. Decreasing the number of arrivals
had a similar effect to reducing the appointment duration. The performance value increased
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Figure 6.3: sensitivity analysis

as more arrivals were added, but the impact was less significant than increasing appointment
duration. This is logical, as the appointment duration applies not only to walk-in patients.
With a 10% increase in arrivals, the performance changed slightly. This indicates that the
appointment schedule can accommodate more patients without adverse effects.

6.10.3 Opening hours CT1

As expected, increasing the opening hours did not affect the objective value since there was
already less overtime. On the other hand, reducing the opening hours of CT1 had a significant
impact on waiting time and overtime. However, a 10% reduction in opening hours had minimal
effects, suggesting that it could be cost-effective to close CT1 earlier or schedule more patients
during the last hour.

6.11 Validation Simulated annealing

As described in Section 4.8, verification and validation are crucial. Many researchers, such as
Zheng et al. (2025) and van Essen et al. (2014), focus on validating their models with real-life
data. However, they rarely describe the process of verifying their simulation models or simulated
annealing. This section outlines the verification steps we took for our simulated annealing.

When we rerun our simulated annealing from the start, it tests the same set of appointment
schedules. This ensures that the random number streams for selecting the next experimental
setting are implemented correctly. This is important because, if an experimental design with a
different input appointment schedule performs better, it should not be attributed to randomness.
Additionally, each time a new appointment schedule is selected for testing, this confirms proper
implementation, as we aim to test more than just one appointment schedule.

We also tested Experiment 3.1 using a different random number stream for our simulated
annealing. Simulated annealing is a metaheuristic and will not necessarily find the optimal
solution (Thomas Schneider et al., 2020). Therefore, we expect the best performance to vary
with different random number streams. However, the simulated annealing should still yield near-
optimal solutions, without extreme outliers. This means the best performance should be closely
aligned. Figure 6.4 displays the results of the 10 best performance values from four simulated
annealing runs with different random number streams. As shown, the worst best performance
(208) and the best best performance (194) differ by only 6%, with no extreme outliers. Since
we actively tested with different simulated annealing parameters, we do not expect further
improvements from adjusting them. However, there may be potential for improvements in
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choosing the next neighbour or the restart mechanism. Compared to the baseline schedule
(499), the least performing performance (208) still shows a 58% improvement, compared to the
best performing performance (194) with a 61% improvement. This indicates that the simulated
annealing is stable enough for our purposes.

Figure 6.4: Testing simulated annealing with different random number streams

6.12 Conclusion

We were able to add appointments to all hours of the day and still meet the KPIs without
changing capacity. First, changing the priority rule to flexible CT scanners positively affected
the performance value and all other target levels. The waiting time for walk-in patients and
the service level increased but remained within the target. Moving appointments to CT3 at
more optimal times also positively affected the performance value. We discovered that it no
longer matters which CT scanner the appointments are assigned to, as the priority rules for all
scanners are now the same. By adding more appointments to the schedule, we achieved the
target access time of 22.4 days. If more appointments are added, the other targets will no longer
be met. We found that the input schedule of the simulated annealing had a significant effect
on the output, suggesting that different input schedules might perform even better. Laboratory
technicians got better at developing schedules with the help of the provided data. However, SA
is better at finding the ideal timing of appointments.

Through the sensitivity analysis of the base schedule, we found that the performance value
deteriorated exponentially with longer appointment durations. Therefore, the hospital should
monitor this change closely. With this schedule, expanding the opening hours has no effect.
However, if the opening hours of one CT scanner decrease by 20% due to, for example, a
breakdown, the overtime and waiting times will increase significantly. A 10% increase or decrease
in walk-in patients will have a minimal effect on the performances.
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7 Implementation and recommendations

This chapter will answer the research question, ”How can the proposed appointment schedule
be effectively implemented?”. Section 7.1 will give the implementation theory and Section
7.2 explain the stakeholders involved. Followed by the implementation actions and further
recommendations in Section 7.3 and Section 7.4.

7.1 Implementation theory

Change management is essential to help employees accept and embrace the changes required
to implement the new appointment schedules and priority rules. Chowdhury and Chandra Shil
(2022) outlines three key steps necessary for successful change. First, it is important to reduce
the forces that maintain the organisation’s current behaviour. We achieved this by involving
employees at all levels in the decision-making process regarding the research focus. We dedicated
considerable time to informing them about the current situation and requesting their feedback
on the problems they encountered. Together, we identified the first problem to address. This
combination of involvement and data about the current situation helped open them to change.

The next step is to prepare employees for the change. We engaged them in designing the
new appointment schedule, ensuring they trusted the data we used and regularly sought their
input. The decision to use discrete event simulation in plant simulation to test new appointment
schedules was key in building trust in the model. The visualised system not only highlighted
the issues with the current system but also demonstrated the new system’s performance. This
allowed employees to think critically and reason in new ways.

The final step is implementing the change and ensuring its acceptance to prevent a gradual
return to the old system. This requires changes to working policies, norms, and structures.
Employees’ willingness to change is evident in the fact that they have already developed and
implemented a new appointment schedule.

7.2 Stakeholders

The primary stakeholders in this research are the integral capacity management team and the
head of radiology. It was crucial to keep them involved and address their needs throughout
the process. The head of the CT scan department also needed to gain trust in this project.
As he has a close relationship with all employees in the department, his influence is key in
determining how much time they can allocate to the project. Ultimately, the head of radiology
and CT scans will decide on implementation. Administration employees, laboratory technicians,
and other departments must also contribute to implementing and adapting their work policies.
For this process to proceed smoothly, these employees must be open to change and trust the
process. We achieved this by involving them in key meetings, allowing them to validate the
model and data, and regularly seeking their input.

7.3 Actions

The new appointment schedule and priority rules can be implemented with the following de-
scription.

Implementation of recommended priority rules and appointment schedule

The first step of implementation is to inform all employees about the new appointment schedule
and priority rules. Currently, appointment slots are assigned to specific departments, such as
cardiology or certain scan types. There is currently insufficient data to reassign large num-
bers of appointment slots to these patient groups based solely on data. Since we now have
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more appointment slots available, we recommend maintaining the current distribution across
departments and using the additional slots as flexible appointments. As noted by Hulshof et al.
(2012), too many reserved slots can lead to idle time, while too few can increase access times
for specific patient groups.

The second step involves updating the priority sequencing rules. CT3 employees should now
follow the same sequencing rules as those used in CT1 and CT2. After this, the new appoint-
ment schedule should be implemented in HIX. Once implemented, administrative staff across
departments can view and fill the new appointment slots. The central administration of the
radiology department should then review existing appointments to ensure they are scheduled
correctly and make adjustments if necessary. This process will require time and effort, making
it essential that the appointment schedule is not changed frequently or at short notice.

The final and most critical step for successful adaptation is learning from experience, as high-
lighted by Chowdhury and Chandra Shil (2022). The hospital now has access to data that can be
used to monitor changes and identify opportunities for further improvement and optimisation.

Appointment schedule simulation

We used the simulation model to test the priority rules and develop new appointment schedules.
This model should be reused whenever key parameters, such as capacity, appointment duration,
or arrival rates, change, to determine the appointment schedule that best fits the updated data.
It can also be used to evaluate the performance of specific proposed schedules.

7.4 Recommendations

Followed by the implementations, we also have recommendations for further improvements in
aligning capacity with demand. We came up with some of them early in the research during the
problem formulation, but they have not been worked out because of the scope. Some of them
are direct results from the research, and others are results from the whole change process. We
placed them in order, based on ease of implementation and potential contribution.

Direct conclusions from research:

1. Improve data quality. As is clear now, the data quality was not always good and useful.
We recommend adjusting work processes, such as closing the patient file when treatment
is finished, to enhance the accuracy of appointment duration data. Also, distinguishing
between expected durations for different patients and scan types can improve demand
forecasting.

2. Implement a uniform working method across all outpatient departments. En-
sure consistent use of the ”wish date” (the date entered by the physician so administration
knows when to schedule the appointment), rather than interpreting it as the preferred or
latest possible appointment date. Departments should also follow the same guidelines
for referring patients to walk-in appointments and using working and waiting lists. This
consistency will improve future demand forecasting.

3. Determine the optimal balance between scheduled and unscheduled appoint-
ments. Currently, no guidelines exist for this balance. Finding the optimal mix can
improve utilisation, access times, waiting times, and more (Hulshof et al., 2012).

4. Conduct a performance peer review. With the available data, it is now possible to
benchmark performance against other hospitals and learn from their practices.

5. Balance capacity across departments. Since laboratory technicians work across mul-
tiple departments, it is essential to balance their capacity with overall hospital demand.
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6. Include the children’s hospital CT scanner. This scanner currently has low utilisa-
tion and could be used for adult appointments to improve efficiency.

Indirect conclusions from research:

1. Create a dashboard to visualise data and current performance. This research
advises on a strategic level and a tactical level. But as described, the tactical and opera-
tional levels are just as important and the next step to tackle. The data is currently stored
in large Excel sheets, making it difficult to monitor. A dashboard would provide clearer
insights and make it easier to align capacity with demand on a tactical and operational
level.

2. Introduce a weekly tactical planning meeting to discuss dashboard insights.
The data that is now available is not useful without translating it into knowledge and
actions. The dashboard might show that many appointment slots remain unfilled. In that
case, the hospital could increase demand by opening slots to external clinics. Or they
see a decrease in the capacity of employees, and can improve this with the help of the
simulation model. With these insights, staff scheduling can shift from supply-driven to
demand-driven, helping address one extra root cause of long access times.

3. Use the dashboard for real-time operational planning. Staff can use it to detect
unusually long waiting room queues and take action, such as rescheduling to prevent
overtime or assigning walk-in patients to preferred time slots. On top of that, they have
control over which patient group has to wait the longest, making it essential to keep track
of whether this still matches the vision and steer on this. Additionally, identifying and
prioritising short appointments can help improve customer service.

4. Perform simulation for other image modalities. We proved that with the simulation
study we can improve the appointment schedules. So it would be valuable to also apply
this to MRI and X-ray.

7.5 Conclusion

To conclude, the theory of implementation and change highlights its importance. It is essential
to keep stakeholders engaged, open to change, and confident in the results. The hospital is
now well-positioned to implement the new appointment schedule, priority rules, and simulation
model. In addition, several recommendations have been provided to support future changes and
successful implementation.
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8 Conclusion

In this thesis, a new appointment schedule and priority sequencing rules were developed and
evaluated through simulation to better align demand with capacity. The process began with
an analysis of the current state and a literature review. Insights gained from the theoretical
research, data analysis, and expert opinions guided the formulation of a proposed simulation
model. Additionally, an implementation plan was created. This chapter addresses the last
research question: ’What conclusions and recommendations can be drawn from the research
conducted?’. Section 8.1 explains the conclusion of this research. Section 8.2 lists the practical
and scientific contributions. The chapter ends with the limitations and suggestions for future
research in Section 8.3.

8.1 Conclusion

The research began in response to multiple capacity issues at the hospital. Together with stake-
holders, we identified the most critical problem to address first: the access time for scheduled
CT scan appointments was longer than agreed upon with health insurers. Our analysis revealed
that this was primarily due to an appointment schedule that did not align with patient demand.
This led us to formulate our main research question: “How can the appointment schedule for
CT scans at UMC Utrecht be optimised to better align with patient demand to achieve the target
access times?”. We provided the department with many valuable data and analyses. Because
of inadequate registration, we had to manually improve the dataset and remove inconsistencies.

Literature recommends using slot-based scheduling in environments with high levels of un-
planned arrivals and the need to reduce access time. This method, allocating fixed slots with
set start and end times to specific patient groups, is particularly suitable for decentralised ad-
ministration. Additionally, we found that using a cyclic appointment schedule is most effective
for improving both access time for scheduled patients and waiting time for walk-in patients. To
design and evaluate these appointment schedules and sequencing rules, we use a combination of
discrete event simulation and simulated annealing. The visualised model in Plant Simulation
proved valuable for engaging stakeholders and increasing the likelihood of successful implemen-
tation. The literature has not reached a consensus on whether flexible or hybrid rooms are
more effective in a system with many unplanned arrivals and focus on improving access time
and overtime. That is why we tested this in our simulation as well.

The simulation model showed that changing the priority rules to make CT scanner 3 flexible, and
allowing it to accommodate scheduled appointments, reduced the performance function by 60%.
We also found that laboratory technicians can improve appointment schedules using available
data, but identifying the optimal timing remains challenging. With the best performing schedule
generated with the SA with more appointment slots, flexible priority rules, and appointments on
CT3, almost all service-level targets were met, and average appointment durations decreased.
On top of this, the access time dropped from 31 days to the target of 22.4 days.

To answer our main research question, a simulation model can optimise the appointment sched-
ules for CT scans at UMC Utrecht to better align with patient demand and achieve target
access times without changing capacity. This model improves the timing and number of sched-
uled appointments and should be supported by adjusting the sequencing rules of CT scanner 3
to a flexible priority approach.
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8.2 Practical and scientific contribution

8.2.1 Practical contribution

This research has made several practical contributions. First, it brought attention to numerous
issues and potential improvements related to capacity and demand, and it successfully encour-
aged openness to change among employees. In addition, a substantial amount of data is now
available to evaluate the department’s performance, for example, they now have insight into
actual access times, waiting times, and utilisation. Previously, the department had no KPIS
or target levels, but we developed them together. As a result, the department can now more
easily identify weaknesses and areas for improvement. With the simulation model we developed,
they can test the impact of adjusting parameters such as capacity and appointment duration
on the appointment schedule. We created a new appointment schedule and sequencing rule
that enables the department to meet both the target access time and other key performance
indicators. Finally, we compiled a list of additional potential implementations to help better
align capacity with demand.

8.2.2 Scientific contribution

First, we structured the steps necessary to create an appointment schedule accommodating
numerous unplanned arrivals while focusing on access time, waiting time, and overtime. While
many studies concentrate on one or two of these aspects, our approach aims to address all of
them. We developed two frameworks to help researchers identify the best method suited to their
priorities. The first framework, shown in Figure 3.1, assists in selecting the appropriate level of
detail when aiming to reduce access time in the appointment schedule. The second framework,
illustrated in Figure 3.2, helps determine the most effective method for designing an appointment
schedule based on prioritising specific patient types, requirements, and limitations.

The literature offers limited guidance on choosing between a flexible or hybrid policy when
dealing with a significant group of walk-in patients. Studies suggest that flexible rules improve
utilisation, increase overtime, and reduce waiting times for emergency patients. In contrast,
hybrid rules optimise access and waiting times across diverse patient groups. In our findings,
the flexible priority rule resulted in a decrease in emergency waiting times and an increase
in overtime. We did not observe a change in utilisation when we only altered the priority
rules and access time. However, with flexible priority rules, the average waiting time decreased
significantly, freeing up additional space for appointments. While literature suggests that hybrid
rules would reduce average waiting times, our results showed that the flexible priority rule
produced the most significant reduction in the objective. It positively impacted access time,
service levels, and average waiting time, although walk-in waiting time and overtime saw a
slight increase. Based on our case study, we can not conclude that flexible priority rules work
best for all hospitals, since we cannot test all dependencies with one case study.

8.3 Limitations and future research

This research has certain limitations because of its defined complexity, scope, assumptions,
simplifications and limited data. As directions for future research, we present suggestions for
addressing these limitations and other potential areas for further investigation.

8.3.1 Simulation model limitations

The simulation model relies on various assumptions and simplifications to ensure feasibility and
usability. We carefully selected them based on stakeholder input and literature, but they still
introduce limitations in how the system is defined.
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1. Not all patient behaviour is explicitly modelled: Patient punctuality, cancellations,
and no-shows are not modelled. For example, we did not model patient rescheduling after
cancellations or no-shows. However, variability is included through stochastic arrival and
service time distributions. These simplifications may influence the accuracy of waiting
time and access time predictions, particularly for outpatient appointments.

2. Scan durations are only split up in two distributions: Although scan duration
distributions are based on empirical data and fitted using statistical methods, they do
not capture different scan protocols or patient types. For instance, complex procedures or
newer scanner technologies may require different processing times, which are not separately
modelled. However, we do think that with the large number of scans, the appointment
durations will balance themselves out, but we did not test the effect on waiting times.

3. We assume consistent staff availability and scanner uptime: In practice, staff
shortages and machine downtime can introduce unmodelled fluctuations in capacity and
can result in longer waiting times and overtime.

4. Demand forecasted based on historical data: It does not have to be true that future
demand will be the same as history. This assumption could result in other performances
than in practice. With higher-quality data, more advanced forecasting methods can be
applied. For example, outpatient clinic schedules could be used to predict walk-in patient
arrivals based on referral rates per appointment type. This would also allow better demand
adjustments to match capacity and the use of alternative appointment schedules during
periods of low or high demand.

8.3.2 Simulated annealing limitations

The simulated annealing algorithm has several limitations and opportunities for future research:

1. No reheated temperature: Currently, the temperature decreases after a fixed number
of iterations. However, when multiple new best solutions are found, staying longer at a
temperature may be beneficial. Additionally, if the algorithm becomes stuck in a local
optimum, reheating could help it escape.

2. Not returned to one of the best schedules or a random one: When the algorithm
gets stuck in a local optimum, simulated annealing restarts with the initial appointment
schedule. However, it might be more effective to try improving one of the best solutions
found so far instead of a random schedule.

3. Testing different stopping criteria: To reduce running time, it may be helpful to stop
the simulation if no new best solution is found after a specific number of iterations.

4. No smart move operators implemented: Keep track of move operators that perform
well and apply those more frequently in subsequent experiments.

5. No tabu lists used: Save the ”bad” moves and skip them for several iterations to avoid
revisiting suboptimal solutions.

6. Potentials in optimising the restart mechanism: Our current simulated annealing
uses one-way operators, meaning that if the best solution is achieved with 50 moves, a
new best solution likely requires at least 50 additional moves. As a result, after a restart,
a worse objective must be accepted at least 50 times before a better solution can be found.
Reducing the frequency of restarts as the temperature decreases may improve the process.

7. Only one move operator is used : This makes the quality of the initial schedule par-
ticularly important. Incorporating a combination of move, swap operators, and adding or
removing appointments could lessen the dependence on the initial schedule. Furthermore,
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this approach would allow for a broader search space, increasing the likelihood of escaping
local optima and finding better solutions.

8.3.3 Experiment limitations

Although the experiments were carefully designed in collaboration with stakeholders, certain
limitations remain in how the scenarios were defined, which may affect the generalisability of
the findings.

1. A limited number of experimental settings are tested: The experiments were cho-
sen in collaboration with stakeholders and based on expected impact. However, there may
be other promising configurations or combinations that were not explored. For example,
experimenting with planning more walk-ins or communicating the current waiting time.

2. Not tested the optimal balance between scheduled and unscheduled patients:
We assumed that we could not influence the decision of planning a patient or not. The
right balance between planned and unplanned arrivals ensures both access and waiting
times are optimised. Currently, there is no clear guideline on how many patients can
arrive unplanned. Further research should develop methods to help determine this optimal
balance.

3. Simulated annealing algorithm uses a specific set of parameters and a one-
way move operator: They are calibrated and tested, but still limit the exploration of
solutions, and often optimal solutions are not found (Thomas Schneider et al., 2020). In
practice, alternative metaheuristics or mixed-integer linear programming might uncover
better-performing solutions. When they are both in place, the pros and cons can be better
compared.

8.3.4 Robustness of results

To assess the reliability of the simulation outcomes, it is essential to reflect on the robustness
of the results.

1. The simulation results are based on a one-week cycle time: This captures day-
to-day variation, but does not account for yearly variation such as holiday periods and
seasonal demand shifts. As a result, the model’s conclusions are most valid for regular
weeks and may not apply to atypical scenarios. However, demand and capacity can be
changed, and atypical weeks can be tested as well.

2. The performance is analysed with replications: This provides stable estimates, but
may hide outliers. Further robustness checks, such as worst-case scenario testing, would
be beneficial.

3. Sensitivity to small changes in parameters: Small changes in opening hours of scans
or arrival rates hardly influence the performance and the model still works. However, small
changes in the appointment duration distributions do affect the performance and therefore
might lack the stability to draw robust conclusions.

4. Variance in input data may not fully represent reality: Some of the fitted dis-
tributions, especially those for appointment durations, do not perfectly reflect real-world
variance. For example, delays caused by blood tests or pre-scan preparation are not
included. This means that while the model captures relative changes well, absolute out-
comes should be interpreted with caution. For these waiting time outputs, the model is
best used for comparing scenarios, rather than for producing exact forecasts.
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5. Simulated annealing results vary across random seeds: Because simulated anneal-
ing is a metaheuristic, its outcome depends on the random number stream used to explore
the solution space. We observed some variation in the best performance across different
seeds, but no extreme outliers. Since different seeds can produce different appointment
schedules, it does not make sense to report a single average performance value. Instead,
we report the best result per run and ensure it is comparable to other top results. These
findings confirm that simulated annealing provides consistent and near-optimal solutions
for our purpose.

6. Decision on flexible scanners based on one case study: Our results suggest that
flexible priority rules are preferable when unplanned arrivals are high and the focus is on
access time, overtime, and waiting time. However, this conclusion is based on a single
case. Future research should explore this in different departments or hospitals to validate
and generalise the findings.
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A Appendix

A.1 Simulation input values

Figure A.1: Initial block schedule CT1, appointment slots in minutes
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Figure A.2: Significant difference in number of arrivals per hour per day of the week

Table A.1: Correlation between the arrivals per hour
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A.2 Appointment duration chi-squared tests

Figure A.3: Histogram distributions 60 minute appointment duration

Figure A.4: Chi-squared tests Gamma distribution 20 minute appointment duration
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Figure A.5: Chi-squared tests Gamma distribution 60 minute appointment duration

Figure A.6: Chi-squared tests Normal distribution 60 minute appointment duration
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A.3 Verification and validation of the simulation model

Table A.2: Verification of means conceptual model

Table A.3: Validation mean simulation model
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Table A.4: Verification of variances conceptual model

Table A.5: Validation variance simulation model
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A.4 Statistical tests experiments

Table A.6: Statistical difference objective experiment 2 flexible or hybrid CT scanner
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