
MSc Thesis Embedded Systems

Earable-Based Visual
Distraction Monitoring in
Cyclists

Sidhharth Balakrishnan

Supervisors:
Dr. O. Durmaz - Incel
A.R. Pallamreddy
Dr.ing. Y. Huang
Dr.Ir. D. Reidsma

June, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente



Earable-Based Visual Distraction Monitoring in
Cyclists

Sidhharth Balakrishnan
University of Twente

Enschede, the Netherlands
s.balakrishnan@student.utwente.nl

Akhil Pallamreddy
University of Twente

Pervasive System Research Group
Enschede, the Netherlands
a.r.pallamreddy@utwente.nl

Özlem Durmaz Incel
University of Twente

Pervasive System Research Group
Enschede, the Netherlands
ozlem.durmaz@utwente.nl

Abstract—Visual distractions among cyclists significantly lower
cyclists’ situational awareness, heightening the risk of acci-
dents. This paper proposes the utilization of an open-source
OpenEarable device, which is equipped with onboard inertial
measurement units (IMU), as an easy and non-invasive method
for detecting visual distractions through the quantification of
head movements that are indicative of behaviours associated
with visual distraction. Head movement patterns of 20 subjects
were recorded using earable IMU sensors in naturalistic cycling
scenarios. Classical machine learning and deep learning models
were employed to analyze the collected data and identify patterns
characteristic of visual distractions in cyclists. Among machine
learning models, Support Vector Machine (SVM) achieved the
highest F1-score (85%) with a fair Kappa score (0.59). In deep
learning models, Convolutional Neural Network (CNN) offers
the best F1-score (87%) and a substantial Kappa score (0.74).
To asses edge-deployment feasibility, the models are further
optimized and evaluated for deployment on Raspberry Pi. The
LinearSVC variant of the SVM model offers the best trade-
off between model size, inference time, and classification per-
formance. Whereas, for CNN, quantization techniques like Post
Training Quantization (PTQ) and Quantization-Aware Training
(QAT) reduce the model size without sacrificing performance.
These results highlight the potential of earable devices for real-
time distraction detection and provide a foundation for future
wearable mobility safety systems.

Index Terms—Earables, Inertial Measurement Unit, Head
gestures, Edge computing, Quantization

I. INTRODUCTION

Cycling offers a sustainable mode of transportation that
reduces traffic congestion, environmental pollution, and con-
tributes to better physical and mental health [1]. Regular
cycling substantially reduces the risk of cardiovascular disease,
type 2 diabetes, and also alleviates anxiety and depression [1].
Due to these benefits, cycling continues to gain popularity
as both a recreational activity and a means of transportation.
However, cyclists are among the most vulnerable road users,
primarily due to the fact that they have less physical protection
compared to motor vehicle occupants shielded by protective
devices like airbags and roll cages [2]. Consequently, cyclists
are far more vulnerable to severe or fatal injuries in traffic
accidents [3]. Although helmets significantly decrease head
injuries [4], the overall physical vulnerability persists.

A growing concern regarding bicycle safety is the rise in
visual distractions among cyclists. Visual distractions include
observing objects on or near the road and engaging with
personal devices, which can significantly impair situational
awareness in cyclists [5]. The distractions lower cyclists’ situa-
tional awareness, decrease reaction time, and increase risky be-
havior such as lane weaving or violating traffic signals, thereby
raising the chances of accidents by a significant margin [2].
In the Netherlands, cyclists were involved in approximately
68% of the road injuries as per the 2020 hospital registry,
most frequently as a result of non-motor vehicle collisions,
like those resulting from distractions [4], [6]. Surveys in
the Netherlands reveal an increase in device (smartphones)
interaction among cyclists from 19% in 2015 to 28% in
2019 [2]. Younger cyclists are particularly vulnerable to visual
distraction, as they tend to attend to roadside scenery, mobile
phones, navigation, and media interaction, which significantly
increases their risk of injury [4].

Cycling behavior has been studied with observational stud-
ies and questionnaires [1], [7], [8]. While effective in deter-
mining general patterns of risk [9], they suffer from recall bias,
lack real-time feedback, and cannot capture subtle, dynamic
motion—particularly brief visual attention [10]. Other studies
have used sensor-based technologies to monitor cyclists in
real-time, capturing motion patterns. However, these studies
are focused especially for maneuver prediction and abnormal
driving [11], [12], while their potential for distraction analysis
remains less explored.

Earables, wearable devices specifically designed to be worn
in or around the ear, have integrated sensors such as inertial
measurement units (IMUs). They offer precise head tracking
capabilities, ergonomic design and surpass traditional wear-
ables like smartphones and smartwatches due to fixed place-
ment, minimizing motion artifacts. While eye tracking devices
or smart glasses can also be used, they often suffer from ocular
discrepancies like sunlight, sunglasses, etc., and head pose is
easier to detect and said to have a direct correlation with eye
gaze direction [13]. Earables are lightweight, unobtrusive and
comfortable. They are also ubiquitous, commonly used when
people are cycling, thereby enabling precise measurement of
head movements [14], [15].

This paper explores the possibilities of the OpenEarable



platform [16], building on the potential of earable technology.
The paper focuses on employing real-time head-movement
analysis to identify and categorize cyclists’ visual distractions.
Visual distractions can be identified by monitoring a shift
in gaze direction and head movements [17]. Prior studies
in automotive contexts have shown that head movements
can serve as a reliable indicator of visual distractions [18].
Leveraging this, the OpenEarable’s integrated IMU sensors
are used in a data-driven system to identify and classify head
movement patterns related to visual distraction. Since the
OpenEarable platform is open-source, further hardware and
software customization is supported for scalable distraction
monitoring solutions to be created for cycling scenarios.

The following research questions are addressed in this thesis
in order to accomplish these goals:

• RQ1: Can visual distractions among cyclists be reliably
captured from head movement data collected using IMU
sensors in OpenEarable platform?

• RQ2: How to apply machine learning and deep learning
models to IMU data obtained from earables for accurate
and real-time detection of visual distractions in realistic
cycling scenarios?

• RQ3: How can cyclist distraction detection models be
efficiently deployed and evaluated within edge computing
environments?

This paper presents a list of contributions aimed at an-
swering the research questions. Firstly, a publicly accessible
custom IMU-based dataset is created that captures the head
movement patterns during distraction in dynamic, outdoor
settings. Secondly, a new use case for earables is devel-
oped, highlighting their potential in distraction monitoring.
This process involves data collection, preprocessing, feature
extraction, and classification modelling utilizing both shallow
and deep learning models. The models are designed under
strict constraints (< 5 MB) to enable efficient deployment
on edge devices like Raspberry Pi. This 5 MB threshold is
set as a practical upper bound during training to ensure the
models remain both effective and lightweight, allowing further
optimization for deployment. Among the models developed,
CNN demonstrates moderate performance, with low model
size and a substantial agreement to detect distractions, whereas
in machine learning models, SVM has good accuracy measures
with a fair Kappa score but with a fairly moderate model size.

While CNN and SVM models show good performance
in distraction classification, deploying them efficiently on
resource-constrained edge devices is critical for real-time
monitoring. Microcontrollers in wearables and earables im-
pose strict memory and computational limitations, creating
a gap between model accuracy and practical deployability.
Therefore, this work investigates the trade-off between model
performance and deployability under edge constraints through
a systematic evaluation. For SVM, which lacks standard
quantization tools, feature set reduction techniques such as top-
k feature selection and Principal Component Analysis (PCA)
are examined to understand their impact on model size and

classification performance. Use of an optimized SVM linear
kernel called LinearSVC (a special SVM implementation from
scikit-learn) is also evaluated to infer the performance tradeoff.
For CNN models, optimization techniques like quantization,
pruning and filter reduction are investigated to asses their
effectiveness in reducing model size and inference time.
A structured deployment framework is established to guide
model selection and optimization decisions based on resource
constraints and performance requirements. This deployment-
centered evaluation provides real-world perspective on the
accuracy-efficiency tradeoff and facilitates the development of
earable-based distraction monitoring systems that are suitable
for real-time, embedded deployment.

The remainder of the paper is structured as follows. Sec-
tion II presents an overview of the previous studies on sensor-
based techniques for cyclist monitoring and head gesture
recognition using earables. Section III describes the experi-
mental setup, data collection, preprocessing and model devel-
opment for distraction detection. Section IV reports the results
of the machine and deep learning model, while Section V
discusses these results and outlines limitations and potential
future work. Finally, the paper is concluded in Section VII.

II. RELATED WORK

This section reviews the recent advances in sensor-based
cyclist behavior monitoring, especially focusing on maneuver
predictions and abnormal driving. It then explores the studies
that utilize earables as a solution for head movement tracking,
and concludes by outlining the gap in existing research on
distraction detection in cycling.

A. Sensor-based Monitoring

In the context of cycling, studies have used eye-tracking
and camera-based systems for monitoring drivers’ gaze, using
features like fixation, glance duration, and saccade frequency,
with a level of accuracy greater than 75% [19]. Eye-tracking
glasses have also been used to predict cyclists’ intent to change
lanes [20]. CNNs trained on video data have classified cycling
maneuvers, like passing, avoiding and sidewalk riding, with
82% accuracy [21]. One study labels visual distraction frame-
by-frame using video, identifying instances when the head or
gaze deviates from the road ahead [13]. Another study infers
head pose and gaze direction to trigger alerts when attention
is drawn away [22]. Since gaze detection is often hindered by
sunglasses or lighting conditions, head pose becomes a more
practical alternative [13], [20].

Inertial measurement units (IMUs) are accelerometer, gy-
roscope and magnetometer enabled and are highly effective
in tracking head and body motion [12], [23]. Helmet-mounted
IMUs have been used to classify cruising, turns, and right lane
change at over 85% accuracy with a 4-second prediction inter-
val [12]. IMUs mounted on bicycles achieved a turn prediction
F1-score of 0.92 using a CNN-LSTM structure for capture of
spatial and temporal motion patterns [11]. Intelligent helmets
in motorcycling picked up head movements—upward, down-
ward, leftward, and rightward—with 95.9%–99.1% accuracy



[24], while three-axis accelerometer-based systems coupled
with FNNs and preprocessing methods such as SVM-SMOTE
and t-SNE achieved 89.57% accuracy [25].

Smartphones, with built-in accelerometers, gyroscopes, and
GPS, have been used extensively in sensing activities such
as braking, turning, swerving, and lane weaving [26]–[28].
Random Forest and SVM machine learning models have
achieved F1-scores of up to 0.90 [26]. GPS has been used
to detect riding anomalies such as wrong-way cycling [29],
and smartwatches have enabled motion tracking through hand
gesture interpretation inside vehicles [30]. However, mounting
sensors such as smartphones or IMUs on the bicycle results
in significant noise from road vibrations, uneven surfaces, and
shocks, which makes it difficult to accurately isolate motion
patterns [26].

B. Earables

Earables provide a non-intrusive and comfortable frame-
work for tracking motion patterns with good accuracy. Their
ergonomic design encourages natural behavior without the
constraints of helmets or bike-mounted sensors, making them
universally acceptable across a wide variety of demographics
[15]. Several studies have utilized the earables for motion-
based behavior recognition [31], [32]. Devices like the eSense
[15] with accelerometers and gyroscopes have also been used
for detection and correction of forward head posture (FHP)
[33]. Head gestures, including nodding and shaking, were
successfully detected using the IMU sensors embedded in the
eSense earable device [34], [35]. The studies mentioned have
used accuracies and F1-score as their main metrics to show
the reliability of the models developed for human activity
recognition (HAR) activities. The classification of head move-
ments achieved an F1-score of 88.24% [35]. Head movement
classification (left, right and straight) was performed both in
stationary and driving scenarios (car) using machine learning
models like Random Forest and KNN yielding 96% accuracy
[31]. Beyond head gestures, activities such as speaking, eating,
walking, and posture changes have been recognized with
over 90% accuracy using both machine learning and deep
learning models like SVM, Random Forest and CNNs [36].
Classical machine learning models, combined with Dynamic
Time Warping (DTW), were employed to classify boxing
gestures, achieving an accuracy of 96% [32]. These findings
highlight the potential of earables for real-time distraction
monitoring in dynamic cycling environments.

C. Research Gap

One study explored cognitive distractions in an immersive
virtual environment on the basis of physiological cues and
head movements (e.g., Heart rate variability, electro-dermal
activity) [6]. While it found correlations between cognitive
load and reduced head movement, the experimental setup was
expensive and artificial, and it did not explore the development
of an end-to-end system to test real-world effectiveness.

To our knowledge, very few studies have specifically looked
at the detection of distractions. Prior research for driving sce-

narios has demonstrated that head position measurements can
reliably identify visual distractions when attention is deflected
away from the road [17], [18], these results have not been
sufficiently explored in the cycling domain. While existing
research has shown that earables can effectively track head
movements, few efforts have focused on building embedded
framework that can recognize visual distractions based on
motion patterns. Moreover, although some studies have ex-
plored activity recognition using earables, there is a clear gap
in assessing the deployability of such models on constrained
wearable devices. This study aims to fill these gaps by using
the OpenEarable platform to explore how head movement data
can be used as a proxy to detect visual distractions in cyclists
and evaluate the feasibility of deploying visual distraction
classification models on resource-constrained edge devices,
thus aiming to reduce unsafe cycling behavior.

III. METHODOLOGY

This section describes the experimental setup, data collec-
tion using the OpenEarable device, preprocessing the collected
data and the development of machine learning and deep
learning models for distraction classification.

A. Experimental Setup

The experimental setup is designed to collect the head
motion data from the participants using the OpenEarable
device. The OpenEarable, powered by Arduino nano 33 BLE
Sense, is equipped with 9-axis IMU sensor comprising an
accelerometer, gyroscope and magnetometer and can stream
data up to 50 Hz via Bluetooth low energy (BLE) [16].
Additionally, it includes ultrasound-capable microphone, an
ear canal pressure sensor, a speaker and an RGB LED.
Data logging can be performed using either a browser-based
dashboard or a mobile app, which runs on a Nokia C32
smartphone to collect sensor data via Bluetooth Low Energy
(BLE) during the experiment. An Akamduman Action camera
(GoPro) is mounted on the bicycle’s handlebar to continuously
record the participant’s face, which is later used as a ground
truth for distraction labelling. The experiment is conducted in
a secluded area with minimal to no traffic within the university
campus to ensure participant safety while maintaining realistic
riding conditions. The experimental route, as shown in Fig. 1,
covers a distance of approximately 125.62 meters in length
and about 27.50 meters in width.

B. Participants

A total of 20 participants participated in this experiment
(height in cm: 172.3 ±6.7, weight in kg: 72.5±7.8, age in
years: 24.9± 1.9). All participants report no physical or neuro-
logical conditions that could impact their cycling performance
and have a minimum of three years of riding experience.
Each participant was informed about the purpose of the
study and provided informed consent prior to participation.
The experiment is conducted in accordance with the ethical
guidelines approved by the Computer & Information Sciences
(CIS) Ethics Committee of the University of Twente.



Fig. 1: Experimental route map

C. Data Collection

The data collection experiment to capture head movements
is conducted under different conditions using the OpenEarable
device. At the start, participants are asked to complete a
consent form and questionnaire with demographic information
and basic questions related to cycling. After placing the right
OpenEarable on the participant and securing the mobile phone
and the GoPro camera on the handlebar of the cycle, each
participant is asked to complete five sessions. Each session
consists of five laps along the predetermined route, covering
a distance of 1545.9 meters. Before the start of each session,
the OpenEarable is calibrated using the OpenEarable mobile
App, which streams the 9-axis IMU data at 30 Hz using BLE.
The participants are asked to perform head movements, such
as up, down, left, and right, to see if the OpenEarable device
is working as intended. Both the camera and the data recorder
on the mobile phone are manually turned on by the researcher
at the same time when the experiment begins.
The sessions are explained in detail below:

• Session 1 and Session 2: The participants cycle in the
route at a leisure pace without any induced technological
distractions. This is to monitor the visual distraction
patterns under natural, normal driving behavior.

• Session 3: Participants listen to two low-tempo songs
(Uptown funk by Bruno Mars and Sunflower by Post
Malone) through a Bluetooth earbud placed in the left ear.
The goal is to examine whether subtle auditory stimuli
influence visual distraction behavior compared to the first
two session.

• Session 4: Follow a similar structure as Session 3 but
with two high-tempo songs (Starboy by The Weeknd and
Bye Bye Bye by Nsync) to observe the visual distraction

(a) Raw Gyroscope Z-axis Signal

(b) Filtered Gyroscope Z-axis Signal

Fig. 2: (a) Raw signal showing wobbling motion around
200–220 seconds, and (b) filtered signal after removing the
wobbling component

styles under more stimulating audio conditions.
• Session 5: A mock phone call is conducted between the

participant and the researcher via Microsoft Teams. This
scenario introduces a cognitively engaging distraction and
is used to examine whether it affects the visual distraction
profile compared to earlier sessions.

The list of questions used by the researcher during the
phone call session is provided in Appendix A. This struc-
tured approach ensures that participants experience different
distraction conditions, providing valuable data that is used for
distraction analysis. At the end of each session, the data logged
on the mobile phone is saved and uploaded to the cloud.

D. Data Pre-processing

The data collected from the OpenEarable device includes
9-axis IMU signals, sampled at 30 Hz (the highest sampling
rate provided by the OpenEarable app). Magnetometer data
are excluded from further analysis to avoid distortion caused
by metallic interference and from other electrical devices, such
as Bluetooth earbuds worn on the left ear [37].

To improve the quality of the signals and reduce artifacts,
a two-step filtering process is applied to the raw inertial
data collected from the OpenEarable device. Most participants
exhibit wobbling head motion, especially during straight-line
cycling. The wobbling head motion is purely personal and con-
tributes significantly to overall head movements. To remove
these wobbling motions, the frequency of the wobbling motion
(seen more clearly on gyroscope of Z-axis) is determined
separately for each participant and each session. A notch filter
is then designed and applied around the detected wobbling
frequency, effectively eliminating the wobbling component.
Following this, a second-stage filtering is performed using a
low-pass filter with a cutoff frequency of 6 Hz on all axes
of the accelerometer and gyroscope. This helps to remove
remaining high-frequency noise while retaining meaningful
motion patterns. This is illustrated in Fig. 2, which compares
raw and filtered data.



(a) Gyroscope signal for looking left

(b) Gyroscope signal for looking right

Fig. 3: Gyroscope signals capturing head gestures: (a) turning
left and returning to center, and (b) turning right and returning
to center.

Labelling of the data is manually performed using the video
captured from the camera. Each session video is reviewed
frame by frame and visual distraction events are annotated
and time-aligned with the IMU data. Head movements, such as
looking left and right, can be clearly observed in the gyroscope
data. A distinct positive peak is observed in the Gyro-Z axis
when participant turn their head to the left, followed by a
negative peak as the participant returns to the forward-facing
position. For looking right, the pattern is reversed, as shown
in Fig. 3. Similarly, patterns for looking up and looking down
can be observed in the Gyro-Y axis.

To classify between distraction and non-distraction events,
the duration for which the participants’ head is not facing
forward is used as a primary criterion. The following labeling
system is applied using a three-second threshold, based on the
guidelines provided by research on real-world driver behavior
[38].

• Distracted Looking Left (DLL) and Distracted Looking
Right (DLR): When the participants head is not facing
the front road for more than 3 seconds.

• Non-distracted Looking Left (NLL) and Non-distracted
Looking Right (NLR): Head turns that last less than 3
seconds.

• Looking Down (LD): Considered as a distracted event
signaling visual fixation on phone screen.

Fig. 4: Label distribution

• Straights (ST): Period when participants focus on the road
without any head movements.

• Turn Right (TR): Captures intentional right turns during
cycling, as the route only includes right turns.

An event is labelled as a visual distraction not just based
on head orientation, but also based on the participant’s gaze.
For instance, if a participant turns their head but their eyes
remain focused forward, such events are not labelled as visual
distractions. It is only when both the head and eye direction
deviate for more than 3 seconds, the event is labelled as
a visual distraction. This ensures that the label identifies
meaningful attention shifts and avoids classifying intentional,
momentary head movements. A summary of label distribution
across the dataset is presented in Fig. 4. The proportion of total
distraction events across all five sessions from all participants
is shown in Fig. 5.

The preprocessed data is then segmented using a classical
windowing approach. Three window sizes of 2 seconds, 5
seconds and 7 seconds are considered with an overlap of 50%
for each window size. The window sizes are chosen because

Fig. 5: Distribution of distraction events across sessions



TABLE I: IMU Feature Descriptions

Feature Description
Mean The average value of the IMU readings (x,y

and z axis) over a time window.
Standard
Deviation

Measures variability or dispersion of IMU val-
ues around the mean within time window.

Range Difference between the maximum and mini-
mum values within the window for each IMU
axis.

Root Mean
Square
(RMS)

Reflects signal magnitude, computed as square
root of the mean of squared values.

Maximum Largest value recorded in each IMU axis and
magnitude during the window.

Minimum Smallest value recorded in each IMU axis and
magnitude during the window.

Energy Sum of squares of IMU values in a window,
indicating the overall intensity of movement.

Mean Abso-
lute Devia-
tion (MAD)

Mean of absolute differences between values
and their mean, capturing spread.

Band Power Power of the signal in a frequency band (e.g.,
0.5–3 Hz), estimated using Welch’s method.

Spectral En-
tropy

Measures the complexity of the signal by ana-
lyzing the power distribution in the frequency
spectrum.

Interquartile
Range
(IQR)

Range between 75th and 25th percentiles, ro-
bust against outliers.

different participants exhibit different distraction patterns, with
some being distracted for more than 7 seconds. A majority
labelling method is applied to assign a single label for each
window. If a window contains multiple labels (e.g. both dis-
tracted and non-distracted events), the label that appears most
frequently within that window is chosen as the representative
label for that window.

To train classical machine learning models, various features
are extracted from windowed data. The selected statistical
features are shown to support accurate classification and
prediction of IMU data [24], [28]. The features used are shown
in Table I.

E. Model Implementation

Various machine learning and deep learning models are
trained to classify visual distractions. To ensure a fair and
consistent comparison across models, all machine learning and
deep learning models are developed with common constraints:
keeping the final model size under 5 MB while maintaining
an acceptable level of accuracy. The 5 MB threshold is
not the final deployment size, but a practical upper bound
used during model development to design a compact and
performance-efficient architecture. Therefore, the aim is to
identify high-performing models that are already reasonably
lightweight and can be further optimized for deployment.
To achieve this, a GridSearch is conducted for all models
to select the hyperparameters for optimal performance. The
GridSearch is a hyperparameter tuning technique that tests

all possible combinations within a predefined grid to find
the best-performing parameters. However, the hyperparameters
selected using GridSearch resulted in a model size exceeding
5 MB. Therefore, the hyperparameters are further manually
tuned to decrease the model size to less than 5 MB, while also
not compromising on performance, thereby finding a balance
between the two.

The extracted features are used to train various classical
machine learning models. The models include Support Vector
Machine (SVM), XgBoost, Random Forest (RF) and K-Nearest
Neighbors (KNN), all of which are implemented using the
scikit-learn library [39]. The models are selected due to their
effectiveness in classifying IMU-based data. For SVM, a
Linear kernel is used, which balances the model complexity
and generalization while keeping the model lightweight. Since
the dataset is imbalanced, computed weights are used in Xg-
Boost model during training. This adjusts the loss function by
assigning higher weights to the samples from underrepresented
classes. Random Forest is another ensemble method that
aggregates the predictions of multiple decision trees, which
reduces overfitting, and KNN is a simple classification model
that assigns the class to a sample based on the majority class
of its nearest neighbors. The parameters are listed in Table II.

Deep learning pipelines like Convolutional Neural Net-
works (CNNs), CNN-LSTM (CNN combined with Long Short-
Term Memory), DeepConv LSTM [40] and Temporal Convolu-
tional Networks (TCNs) are considered and implemented using
the Tensorflow Keras API. The input shape is window size×
num features, where the num features is 6 and window size
is 60, 150 and 210 for 2 seconds, 5 seconds, 7 seconds
windowing respectively. The CNN model consists of two 1D
convolutional layers followed by a max-pooling and a dense
output layers to capture spatial features. The combination
of a CNN and LSTM for CNN-LSTM allows the model to
extract both spatial and temporal features. The DeepConv-
LSTMs are widely used in HAR (human activity recognition)
and extends their model by stacking additional convolutional
layers before the LSTM layers, allowing the model to learn
long-range dependencies for more complex feature extraction

TABLE II: Parameters for Machine Learning Algorithms

ML Models Parameters
Support Vector Machine (SVM) Regularization parameter (C): 1

Kernel type: linear
Kernel coefficient (gamma): 0.001

XgBoost Number of trees (n estimators): 200
Maximum tree depth (max depth): 6
Learning rate (learning rate): 0.05
Subsample ratio (subsample): 0.8

Random Forest (RF) Number of trees (n estimators): 75
Maximum tree depth (max depth): 10
Minimum samples to split
(min samples split): 5
Minimum samples per leaf
(min samples leaf): 5

k-Nearest Neighbors (KNN) Neighbors (n neighbors): 11
Weight function: distance
Distance metric: euclidean



TABLE III: Deep Learning Model Architectures and Hyper-
parameters

Model Architecture Details
CNN - Two 1D Conv layers (64 filters, kernel size 3, ReLU

activation)
- MaxPooling1D (pool size 2)
- Dropout (rate 0.5)
- Dense (100 units, ReLU) + Output Layer

CNN-LSTM - 1D Conv layer (64 filters, kernel size 3, ReLU
activation)
- MaxPooling1D (pool size 2)
- LSTM (32 units, dropout 0.2, L2 regularization)
- Output Layer

DeepConv-LSTM - Four 1D Conv layers (64 filters, kernel size 5, same
padding, L2 regularization)
- LSTM (128 units) → LSTM (64 units), both with
dropout 0.3 and recurrent dropout 0.3
- Dense (64 units, ReLU) + Dropout (0.5) + Output
Layer

TCN - TCN block: 64 filters, kernel size 5, dilations [1, 2,
4, 8], dropout rate 0.3
- Output Layer

[40]. TCNs are used as an alternative to LSTMs, using dilated
convolutions to capture long-range temporal dependencies
efficiently. TCNs offer a faster and more efficient approach to
modeling temporal patterns without the use of recurrent layers.
The hyperparameters selected for each deep learning model
are shown in Table III. All models are optimized using Adam
optimizers and sparse categorical cross-entropy for multi-class
classification, with a batch size of 64. Although training is set
for 100 epochs, early stopping with a patience of 5 epochs
helps the models converge faster and avoid overfitting.

F. Evaluation

A 75:25 train-test split is used to train and evaluate both
the machine learning and deep learning models. This split
provides a balanced distribution of data for training and
ensures sufficient samples for evaluating generalization per-
formance. In addition to Train-Test split, Group K-Fold and
Leave-One-Subject-Out (LOSO) cross-validation techniques
are employed to assess the robustness of the models across
different participant groups. Train-test split provides a baseline
testing on new participants unseen during training, Group K-
Fold (with K = 5) offers more stable average performance by
dividing the participants into 5 groups and iteratively using
each group as test set. Leave-One-Subject-Out (LOSO) is used
to rigorously test generalization by testing on one entirely
unseen participant at a time.

The models are evaluated using several key performance
metrics. The F1-score provides a balance between precision
and recall, especially beneficial for imbalanced datasets. Since
our dataset is highly imbalanced, traditional accuracy may
present a biased view of model performance, therefore Cohen’s
Kappa score is evaluated as a chance-corrected measure that
presents the level of agreement between the predicted and
true labels. The formula for Cohen’s Kappa is is shown
in Equation 1, where the observed agreement (po) is the
proportion of instances that are classified the same by both

TABLE IV: Interpretation of Cohen’s Kappa Score

Kappa Value Interpretation
> 0.8 Almost Perfect Agreement
> 0.6 Substantial
> 0.4 Moderate
> 0.2 Fair

0 – 0.2 Slight
< 0 Poor (no agreement)

Fig. 6: F1-score of Machine Learning models

the model and the ground truth, and the expected agreement
(pe) is the proportion of instances that would be classified the
same purely by chance. The interpretation of Kappa scores
by Landis & Koch [41] is given in Table IV. Model size
is considered to check storage and deployment efficiency,
and inference time measures how quickly the model can
make predictions, which is crucial for real-time applications.
Together, these metrics offer a comprehensive understanding
of the models’ performance and effectiveness.

κ =
po − pe
1− pe

(1)

IV. RESULTS

A. Machine Learning Models

Several machine learning models have been trained and
compared to determine the most suitable one for the dataset.
Among the window sizes tested, the 7-second window with
50% overlap delivers the best balance of performance, accu-
racy, model size, and training time. On the other hand, the
2-second and 5-second windows require more data windows,
resulting in larger model sizes and longer training times. For
simplicity, the results presented here focus on the 7-second
window, as discussing the other two window sizes would take
up unnecessary space without providing significant additional
value.

Fig. 6 presents the comparison of the F1-score across the
ML models. SVM outperforms under LOSO (0.85) compared
with Train-Test (0.79) and Group K-Fold (0.80), indicating



TABLE V: Inference Time (ms) for Machine Learning Models

ML Models Inference Time (ms)
Train-Test GroupKFold LOSO

Support Vector Machine (SVM) 0.3058 0.4205 0.3709
XgBoost 0.0025 0.0041 0.0058

Random Forest (RF) 0.0121 0.0109 0.0127
k-Nearest Neighbors (KNN) 0.0182 0.0186 0.0189

very good generalization to unseen participants. This is be-
cause SVM’s margin-based decision rule and regularization
prevent overfitting of participant-specific patterns. However,
the F1-scores of Random Forest and XGBoost are relatively
stable but poor (around 0.76–0.78), possibly because they
are limited by their shallow depth and the small number of
trees, owing to the constraint on model size. These ensemble
models are good at detecting training patterns but can likely
perform poorly in generalizing across diverse participants.
KNN performs worst (0.76–0.77), as it lacks a learning process
and relies on distance-based classification, which is susceptible
to variations among individuals and disadvantaged in high-
dimensional feature spaces.

The inference time of each model is shown in Table V.
based on the time taken to classify a single 7-second IMU
window, providing a realistic measure of latency for real-
time deployment. XgBoost exhibits the fastest inference times,
around 0.005 ms, due to its efficient gradient boosting struc-
ture. Whereas, SVM has moderate inference time (< 0.5
millisecond) as prediction requires computing multiple support
vectors. Random Forest (RF) and KNN have similar inference
times.

The F1-score against model size trade-off plot in Fig. 7
illustrates the trade-off between performance and memory
consumption for each of the machine learning models. The
SVM model has the largest model size of 3.65 MB. This
increase in size can be explained since SVM stores numerous

Fig. 7: F1-Score vs Model Size for ML models

TABLE VI: Cohen’s Kappa Scores for Machine Learning
Models

ML Models Cohen’s Kappa Score
Train-Test GroupKFold LOSO

Support Vector Machine (SVM) 0.43 0.42 0.59
XgBoost 0.44 0.46 0.44

Random Forest (RF) 0.37 0.38 0.37
k-Nearest Neighbors (KNN) 0.35 0.36 0.35

support vectors needed for generalization. But it is still the
top-performing model compared to all other machine learning
models. Whereas, XgBoost and Random Forest models have
similar model sizes (around 3.3 MB) reflected by multiple
trees in ensemble methods but has low F1-scores when com-
pared to SVM. KNN has the smallest model size of 1.96 MB
and lowest F1-score (0.76) since it does not learn explicit
parameters but rather stores the feature vectors.

In addition to the standard performance metrics, Cohen’s
Kappa score is presented in Table VI. The SVM model
under LOSO validation has a kappa score of 0.59, indicating
moderate classification reliability. This suggests that the model
is reasonably reliable at classifying distraction events, even in
the presence of class imbalance. However, Random Forest and
KNN models show slight agreement with kappa scores less
than 0.40, meaning their predictions are only slightly better
than random guessing. To further examine the classification
performance, confusion matrices of each machine learning
model are provided in Fig. 8. These provide a detailed view
of how each model distinguishes between different distraction
classes. Many misclassifications are observed for Straights
(ST), which is due to the class imbalance in the dataset,
where ST significantly outnumbers the other classes, leading
the model to favor it more during prediction. Additionally,
NLR and NLL are often confused with ST, likely because
these involve minimal head movements and largely resembles
straight-head motion. These trends indicate the need for more
balanced data sets or augmentation in order to improve class-
specific sensitivity.

B. Deep Learning Models

Deep learning models, such as CNN, CNN-LSTM,
DeepConv-LSTM, and Temporal Convolutional Networks
(TCNs), are evaluated. All results in this section are presented
using LOSO validation and a 2-second window with 50%
overlap, as this configuration provides the best performance
across all deep learning models in terms of efficiency and real-
time applicability. For simplicity, the results presented here
focus only on 2-second windowing.

Fig. 9 shows the F1-scores of the deep learning models.
CNN provides the highest accuracy of 0.87, indication reli-
able performance in accurately identifying distraction classes
despite class imbalance. This is explained by its architecture,
which is adequately capable of extracting spatial features from
the IMU data using convolutional layers. TCN follows with
an F1-score of 0.80. Its highlight is the use of dilated causal



(a) SVM (b) XgBoost

(c) Random Forest (d) KNN

Fig. 8: Confusion matrices of Machine Learning models

convolutions, which effectively capture long-range temporal
dependencies without relying on recurrent layers. However,
CNN-LSTM and DeepConv-LSTM models have lower F1-
scores of 0.73 and 0.72, respectively. These models introduce
recurrent layers (LSTMs), which add complexity and increase
the number of trainable parameters within the model. With
minimal training data per participant and significant inter-
participant variability, these models are more prone to overfit-
ting.

The per-window inference time (2-second window) for deep
learning models are shown in Table VII. CNN has the fastest
inference time 0.0703 ms, which uses only convolutional and
dense layers with relatively few parameters. CNN-LSTM has
an inference time of 0.1590 ms, which is slightly slower due to
the inclusion of LSTM layers. Whereas, the DeepConv-LSTM
demonstrates the longest inference time of 0.7276 ms as would
be expected due to its complicated structure of having deeper
stack of convolutional layers followed by LSTM layers. All the
deep learning models has achieved sub-millisecond inference
latency and are suitable for real-world applicability to classify
distractions swiftly.

To show the trade-off between model size and prediction
performance, Fig. 10 shows F1-Score vs. Model Size (MB) for
all models. CNN achieves the best balance with the largest F1-
Score of 0.87 with a moderate model size (0.74 MB). TCN is
also comparable with an F1-Score of 0.80 and small size (0.56
MB). Whereas, DeepConv-LSTM generates the largest model
(0.83 MB) and poorest F1-Score of 0.73, revealing increased
depth does not necessarily translate to good performance.
CNN-LSTM generates the smallest model (0.03 MB) but also
poorest F1-Score. This poor performance is due to the fact that
the model had been highly compressed during training in order
to keep the model size under the provided constraint and hence

Fig. 9: F1-score of Deep Learning models

TABLE VII: Inference Time for Deep Learning Models

DL Models Inference Time (ms)
Convolutional Neural Networks (CNN) 0.0703

CNN-LSTM 0.1590
DeepConv-LSTM 0.7276

Temporal Convolutional Network (TCN) 0.1870

cause its inability to capture meaningful temporal patterns. It
is also observed that deep learning models have smaller model
sizes compared to conventional machine learning models.
This is because deep learning models learn low-dimensional
features internally from raw IMU data, as opposed to machine
learning models which receive high-dimensional statistical
features as inputs. The traditional models such as SVM save
numerous support vectors and ensemble algorithms such as
XgBoost and Random Forest saves numerous decision trees,
which once again makes them bigger in size. Deep learning
models save only learned weights, thus significantly smaller
model sizes.

Cohen’s Kappa score is reported for all the deep learning

Fig. 10: F1-Score vs Model size for DL models



TABLE VIII: Cohen’s Kappa Score for Deep Learning Models

DL Models Kappa Score
Convolutional Neural Networks (CNN) 0.74

CNN-LSTM 0.54
DeepConv-LSTM 0.49

Temporal Convolutional Network (TCN) 0.57

models in Table VIII. The Kappa score of the CNN model is
0.74, which falls under substantial agreement, and therefore
indicates high correspondence between predictions made by
the model and the actual labels beyond chance. CNN-LSTM
and TCN models have Kappa scores of 0.54 and 0.57, respec-
tively, both being under moderate agreement, and therefore the
predictions are quite reliable but not strongly consistent. The
DeepConv-LSTM model attains the Kappa measure of 0.49,
which indicates fair agreement, suggesting only a low level
of prediction reliability. To further evaluate the classification
performance, the confusion matrices for each deep learning
model are presented in Fig. 11. Similar to machine learning
results, a large number of misclassifications are observed for
Straights (ST) because of the class imbalance in the data where
straight riding instance dominates the label distribution. CNN
demonstrates better separation between all distraction classes
(DLL, DLR and LD), whereas other models like CNN-LSTM
and DeepConv-LSTM misclassified the distraction classes,
indicating their difficulty in distinguishing distractions and
naturally occurring head turns.

Overall, the CNN model has a best performance of all
the models trained with F1-score of 87% and a substantial
Kappa score of 0.74. In addition, CNN has compact model size
of 0.74 MB, making it highly suitable for edge deployment.

(a) CNN (b) CNN-LSTM

(c) DeepConv-LSTM (d) TCN

Fig. 11: Confusion matrices of Deep learning models

Among classical machine learning models, SVM demonstrates
reasonable performance with a fair Kappa score (0.59). How-
ever, the model size of 3.65 MB is large when compared to
the CNN model, as previously discussed , due to the storage
of support vectors and reliance of statistical features.

C. Deployment

To assess the real-world applicability of the distraction
classification models, the best-performing machine learning
and deep learning models are prepared for deployment to
evaluate the feasibility on earable devices with resource-
constrained microcontrollers. The OpenEarable is powered by
an Arduino Nano 33 BLE Sense microcontroller has 1MB of
flash memory and 256 KB of SRAM for runtime operations.
Therefore, the deployment objective is to reduce the model
size to less than 256 KB, while reducing inference speed
and maintaining actual performance accuracy. However, for
this implementation, the actual deployment is on a Raspberry
Pi 4, which has sufficient computing and memory capability
to extensively test model performance, evaluate optimiza-
tion techniques, and simulate edge deployment scenarios.
This platform serves as an intermediate environment prior
to deployment to microcontrollers like the Arduino Nano 33
BLE Sense, enabling controlled benchmarking of inference
latency, memory usage, and model behavior under constrained
conditions.

For convenience of deployment on the Raspberry Pi 4,
the trained models and the optimized variants are exported
in suitable formats. Machine learning models such as SVM
are serialized using the Pickle (.pkl) format, while deep
learning models are saved as TensorFlow Lite (.tflite) format
through the TensorFlow Lite converter. These formats allow
for efficient loading as well as execution on the edge devices.
Following deployment, inference takes place with the last five
participants’ test data, in line with the evaluation procedure
followed in previous sections. This follows that there is a
consistent comparison between the deployed model’s output
and the baseline results gathered during the first round of
experimentation.

1) SVM Deployment: The SVM model is chosen as it
demonstrated the best performance among all the other ma-
chine learning models. However, the baseline SVM model
trained using all extracted features (96 features), has a model
size of 3.65 MB, which exceeds the 256 KB threshold. SVM
models do not support quantization in scikit-learn, therefore
other methods like feature selection, dimensionality reduction
and using linearSVC kernel are explored.

• Feature selection using SelectKBest: SelectKBest uses
univariate statistical test (ANOVA F-value), which ranks
features based on the correlation with the target variables.
Irrelevant or redundant features are removed, thereby
reducing the model size and the computation complexity.

• Principal Component Analysis (PCA): A dimension-
ality reduction technique which transforms the original
feature space (96 features) into a lower-dimensional space



(new 16 features) while retaining high variance as possi-
ble. This helps reduce model size and inference time.

• LinearSVC: LinearSVC is a linear classifier which uses
the libnear library instead of default libsvm. It is specif-
ically tailored for high-dimensional data and offers a
memory efficient implementation since it does not store
support vectors (contrary to default linear SVM) and
thereby greatly reducing the model size and inference
time.

The deployment results in Table IX shows the trade-offs
between model size, performance and resource usage. The
baseline SVM model with the best performance has a model
size of 3.65 MB exceeding the model constraints.

Feature selection technique SelectKBest does reduce the
model size to half (1.25 MB), but comes at the cost of reduced
performance around 5%. Principle component analysis offers
similar accuracy and lower inference time (0.97 ms).

LinearSVC significantly reduces the model size to 173 KB
and achieves the fastest inference time of 0.13 ms, while
remaining within the 256 KB deployment constraint. Although
the CPU usage of LinearSVC is more than 90%, it is important
to note that this measurement is based on single-core execution
since Rpi (Quad core ARM Cortex-A72) has 4 cores.

To conclude LinearSVC stands out as the most suitable
option since it provides the best balance between deployment
feasibility and classification performance.

2) CNN Deployment: Among the deep learning models,
CNN achieved the highest performance with a strong F1-
score. Also, the model size is relatively small for a deep
model, mainly due to the parameters chosen while training.
However, the baseline model (0.74 MB) still exceeds the
256 KB memory constraint required for deployment. Various
deployment optimization and compression techniques, such
as quantization and pruning, can be applied to deep learning
models to reduce memory footprint and inference latency [42].
The techniques explored in this implementation are as follows:

• Post-Training Quantization (PTQ): Quantization re-
duced the precision of weights to 8-bit (INT8) or 16-bit
floats (FLOAT16) from 32-bits. This can be done after
a model is fully trained, therefore no need to retrain the
model during quantization.

• Quantization Aware Training (QAT): QAT simulates
low precision (INT8) operations during the training phase
by inserting fake quantization nodes. This allows the
model to learn and adapt to quantization effects, making it
more robust compared to models quantized post-training
(PTQ). QAT optimizes the model’s weights and activa-
tions under quantized conditions, making it especially
effective for preserving performance in small or sensitive
models intended for edge deployment.

• Filter reduction: The number of convolutional filters in
the trained CNN model is reduced from 64→32→16→8
to lower the model size and parameter count. Although
this simplifies the model architecture, it may degrade the
performance if performed aggressively.

• Pruning:Unstructured pruning is an effective technique
for reducing the computation and memory requirements
of deep learning models. Elimination of less important
weights (weights with lower magnitudes) adapts the
model to be more efficient and lightweight without much
loss of performance.

The inference results in Table X shows a comprehensive
comparison off CNN variants optimized for deployments.
The baseline CNN model has strong performance metrics but
exceeds 256 KB limit. Post-training quantization (PTQ) using
FLOAT16 and INT8 reduces the model size to 0.37 MB and
0.19 MB respectively with minimum performance degradation.
However, the FLOAT16 variant does not reduce the memory
size less than 256 KB and the there is no inference time speed
up since FLOAT16 arithmetic is not natively supported by
Raspberry Pi. In contrast, INT8 quantization has model size
less than 256 KB and inference time improved from 1.0784ms
to 0.7798 ms, achieving a ∼ 27.7% speedup.

It is noteworthy that quantization-aware training (QAT) en-
hances the INT8 model by simulating quantization operations
during the training process, resulting in an improved F1-score
of 0.89. The inference time and RAM usage are also reduced,
while the model size is the same as the PTQ INT8 quantized
variant.

The filter reduction technique can be applied when the
hardware lacks support for low-precision data type operations,
such as FLOAT16 and INT8. By reducing the number of
convolutional filters, the number of trainable parameters and
computations is significantly lowered, thereby greatly reducing
both the model size and latency. However, this leads to a
performance drop of approximately 5-6%, and retraining the
whole model is required to adapt the model to the reduced
capacity. For the CNN model developed, a filter size of 16
provides the best balance between performance, model size
and inference time.

Unstructured pruning is performed using TensorFlow’s
pruning API, with a goal of pruning 50% of the weights in
the convolutional and dense layers. Polynomial Decay Pruning
(PDP) schedule gradually increase the pruning from 0% to
50% over the course of training, rather than pruning weights
abruptly. Although it reduces the number of active parameters,
it does not reshape or compress tensors. Therefore, the model
size stays the same (0.74 MB). Also, because the Raspberry Pi
does not support sparse computations, there is no noticeable
improvement in inference time compared to the baseline.
However, when pruning is combined with INT8 quantization,
it does lead to a faster inference time of 0.6170 ms and a
reduced model size of 0.19 MB, all while maintaining the
same level of accuracy.

The deployment methodology is guided by a systematic
process presented in Fig. 12. The flowchart outlines the sys-
tematic approach for selecting and optimizing suitable mod-
els for deployment on resource-constrained earable devices.
In the absence of a pre-trained high capacity DL models,
lightweight models like SVM explores way to reduce the
model size by reducing feature space either using feature



TABLE IX: Comparison of SVM Deployment Variants on Raspberry Pi 4

Configuration Model Size (MB) Inference Time (ms) RAM Usage (KB) CPU Usage (%) F1-score
Baseline 3.65 3.2613 192.71 83.76 0.85
SelectKBest (Top-16) 1.25 1.2279 210.59 90.39 0.77
PCA (16 features) 1.28 0.9678 189.32 83.62 0.77
LinearSVC 0.173 0.1330 186.97 90.47 0.83

TABLE X: Comparison of CNN Deployment Variants on Raspberry Pi 4

Configuration Model Size (MB) Inference Time (ms) RAM Usage (MB) CPU Usage (%) F1-score
Baseline 0.74 1.0784 424 64.53 0.87
Float16 Quantization 0.37 1.1956 412 70.44 0.87
INT8 Quantization 0.19 0.7798 455 63.44 0.86
QAT + INT8 0.19 0.7034 302 60.54 0.89
Filter Size 32 0.36 0.4712 412 73.44 0.81
Filter Size 16 0.18 0.1631 369 65.33 0.83
Filter Size 8 0.09 0.0990 421 73.44 0.81
Pruning (50%) 0.74 1.0775 382 67.53 0.87
Pruning (50%) + INT8 0.19 0.6170 449 55.00 0.86

selection (SelectKBest) or dimensionality reduction (PCA).
Alternatively, in the case of SVM, LinearSVC can be used
as a space-efficient alternative, more robust than the feature
dimensionality reduction techniques. For deep networks like
CNN, techniques like quantization, pruning and filter reduction
can be used, depending on what the target hardware supports.
This systematic approach introduces a definite process to select
the right model combination and optimization techniques,
making the deployment decisions both effective and aligned
with the constraints of the embedded platform.

In conclusion, both post-training INT8 quantization and
quantization-aware training (QAT) with INT8 stand out as
the most practical deployment options for this work. They
strike a good balance between accuracy, compact model size,
and fast inference. With their size reduced to just 0.19 MB
and inference times well under 1 millisecond, these models
meet the strict memory and speed requirements typical of
microcontroller-based systems. While the deployment tests
were carried out on a Raspberry Pi, the final goal is to run
these models on the OpenEarable powered by Arduino Nano
33 BLE Sense. Since the OpenEarable also supports low-
precision INT8 operations, the models are well-suited for real-
time inference in embedded earable applications.

V. DISCUSSION

A. Data analysis

In the data collection experiment, visual distraction activity
varies notably across different sessions. For most participants,
session 5 (phone call session) results in fewer visual distraction
instances compared to the other sessions as seen in Fig. 5.
A likely reason is that during a phone call, participants are
cognitively engaged in conversation, leaving them with less
mental capacity to visually wander. The distractions that do
occur in this session often happen when participants pause to
think about how to respond, which is relatively infrequent.

Session 1 and session 2, which represent normal riding
conditions without any imposed distractions, show similar

levels of visual distraction. This is expected, as participants
tend to direct their gaze to specific areas of interest along the
route and will repeat these visual patterns for return laps.

Sessions 3 and 4, listening to low-tempo and high-tempo
songs, respectively, demonstrate varying levels of visual dis-
traction in participants. Most participants show nodding be-
havior while listening to music, particularly in session 4, as a
natural response to enjoying the rhythm of the songs. These
nods introduce slight motion artifacts in the earable data which
is later removed in the preprocessing stage.

These observations answer RQ1, indicating that visual
distractions between cyclists can be consistently measured via
head movement data obtained from the OpenEarable platform.
The dataset obtained from 20 participants illustrates that IMU
signals yield distinguishable patterns throughout distraction
periods, validating their use for detecting attention states.

B. ML and DL results

SVM achieved the highest F1-score (85%) among all the
machine learning models discussed and have a near substantial
Kappa score (0.59) thus showing its ability to define bound-
aries for accurate distraction classification. XgBoost provides
comparable performance with faster inference time but has
low Kappa scores. Random Forest and KNN has poor Kappa
scores, indicating they are not suitable to classify distractions
correctly in an imbalanced dataset. This is due to the way the
Random Forest and KNN models are fine tuned to have low
model size less than 5 MB.

In deep learning models, CNN achieved the highest F1-
score (87%) and a substantial Kappa score (0.74) with a
moderate model size of 0.74 MB. This shows CNN are
excellent for handling temporal and spatial features from the
2-second windowed IMU data. However, deeper architectures
like CNN-LSTM and DeepConv-LSTM struggles to perform
well when compared to simpler CNNs due to the potential of
overfitting due to smaller dataset thus reducing generalization.
Especially, DeepConv-LSTM exhibits longest inference time



Fig. 12: Model deployment recommendation flowchart

of 0.73 ms but with unsatisfactory performance proving deeper
networks cannot perform well when the data volume is limited.
TCNs offer a reasonable trade-off, achieving good Kappa score
and moderate model size.

Hyperparameters for model tuning are chosen intentionally
to maintain model size under 5 MB to ensure the model can
be safely deployed onto Raspberry Pi. Hence, the number and
depths of trees are limited in Random Forests, the linear kernel
is used in SVM and the deep learning models are carefully
designed to have fewer layers and parameters.

To address the class imbalance in the dataset, oversampling
techniques like SMOTE (Synthetic Minority Over-sampling
Technique) are explored for both ML and DL models. How-
ever, there was a significant drop in performance (F1 score
< 70%). This is because SMOTE synthetically upsamples the
data by interpolating between data points, but in IMU time-
series data like IMU signals, SMOTE can introduce unrealistic
points that can break the natural temporal dependency of
the signal. Although, classical shallow models like SVM and
Random Forest do not have temporal dependencies, the input
features are still extracted from the unrealistic samples of the
upsampled data and this may disrupt the statistical patterns that
the models learn from. Similarly, undersampling techniques,
like reducing samples in the dominant “straight” class, are also
avoided to preserve the natural temporal dependencies required

for distraction classification.
These findings address RQ2, confirming that both machine

learning and deep learning approaches can effectively classify
visual distraction from earable IMU data. The above compar-
ison of models demonstrates that earable-based IMU features
can facilitate moderate and generalizable performance, pro-
viding justification for their utilization in real-world cycling
scenarios.

C. Deployment results

The analysis of deployment shows some practical issues
while optimizing embedded system models. For SVM, al-
though dimensionality reduction helped to minimize model
size, further attempts to minimize complexity through hy-
perparameter optimization like reducing the regularization
parameter C to reduce the number of support vectors are
explored. While this reduces model size in theory, it resulted
in a noticeable reduction in classification performance and
thus was not explored further. LinearSVC kernel can also be
combined with feature space reduction techniques to reduce
the model size even further, but it is not explored as the current
LinearSVC variant produced desirable results. Additionally, if
models like Random Forest were under consideration, other
compression techniques like pruning of trees, feature subsam-
pling, or model distillation would have been available to be



applied to reduce compute complexity and memory footprint
without sacrificing classification performance.

For CNNs, several deployment-oriented strategies are ex-
plored. Filter reduction substantially decreased model size and
inference time, which is particularly useful for deployment on
microcontrollers without support for low-precision hardware
(e.g., Raspberry Pi Pico or STM32F0). Aggressive filter reduc-
tion did cause some significant drops in classification accuracy,
indicating the value of fine-tuning. Post-training INT8 quan-
tization (PTQ) and quantization-aware training (QAT) both
proved to be very effective. Though both lowered the model
size to 0.19 MB and achieved sub-millisecond inference times,
QAT surprisingly outperformed the baseline in classification
accuracy by nearly 1%, uncommon given QAT typically
desires to preserve, not improve, accuracy. This unexpected
behavior may be attributed to QAT quantization noise noise
acting as a regularizer, helping the model generalize better and
reducing overfitting compared to the baseline.

A polynomial decay pruning (PDP) schedule is used to
gradually increase sparsity level from 0% to 50% during
training in such a way that the model is able to adapt more
smoothly compared to constant pruning (CP), which applies
fixed sparsity level abruptly. The smooth transition allows the
model to learn from the removal of low-magnitude weights
without a sudden performance drop, thus making pruning more
stable and efficient. The pruning schedule starts after a few
initial epochs and continues until a particular training step, so
that the model learns a sparse but expressive representation.

To further explore quantization behavior, layer-wise quanti-
zation sensitivity and progressive quantization tests are run
using TensorFlow’s QuantizeWrapper from the TensorFlow
Model Optimization Toolkit (TFMOT). This is done by sub-
stituting a single layer with its quantized version, while the
rest of the model remains FLOAT32. This results in extremely
low accuracy. Because non-quantized layers are not rescaled,
the activations and internal distributions are not rebalanced,
which causes instability and poor predictions. These findings
underscore the importance that proper quantization needs to
be done in an overall manner throughout the model and not
layer-wise in isolation.

These outcomes respond to RQ3. Through the application of
quantization and model compression techniques, both the CNN
and SVM models were compressed into under 256 kilobytes
and achieved sub-millisecond inference latency. This proves
their effectiveness for deployment on edge devices such as
the Arduino Nano 33 BLE Sense.

D. Limitations and future work

This paper presents a feasible detection system for visual
distraction using IMU integrated earables. But there are several
limitations which pave the way for future implications.

The dataset created is sufficient for initial evaluation. The
dataset was collected in semi-controlled cycling conditions
and does not involve complex outdoor settings, including
environmental factors, lane crossing and interaction with other
parties. Future research should aim to collect a more diverse

dataset across different terrains, traffic scenarios and weather
conditions.

Although head movement are used as a proxy for categoriz-
ing visual distraction, it introduces certain limitations. While
the earables provide an unobtrusive and low-cost replacement
for the eye-tracking glasses, the study assumes a direct correla-
tion between head movement and visual attention. Not all head
movements constitute visual distraction. Cyclists, for instance,
may shift their heads while keeping their eyes on the road,
leading to false positives. These instances are not labeled as
distractions in the dataset, but in actual deployment, the system
may still classify them as such. Similarly, certain distractions
may occur without any head movement especially when cyclist
avert their gaze from the road, giving rise to false negatives.

The participant pool is limited in size (20 participants) and
demographic diversity (young participants between the ages
of 20 and 27). The distraction behaviors and head movements
vary a lot with age, physical ability and riding experience.
Individuals with visual and hearing impairments may have fre-
quent head movements as a compensatory behaviour, and these
head motions may be classified as distractions. Therefore,
expanding the demographic coverage is important to improve
model generalization.

Manual synchronization is carried out to simultaneously
start the video recording and IMU recording. This may in-
troduce some temporal misalignment/delays in the collected
data. Furthermore, during data analysis and labelling, packet
loss, sensor drift and missing data points are observed between
the sessions, likely due to the fact that the earable is powered
by a low-power microcontroller. While the observed sensor
drift was small, it raises concerns for a long-term deployment
as cumulative drifts in acceleration and gyroscope data could
introduce errors that degrade model performance. Future scope
could involve implementing drift correction algorithms, such
as stronger calibration and sensor fusion methods.

Oversampling techniques like SMOTE were found to de-
grade the performance of the model. Future work should
focus on investigating other methods for handling imbalances.
Additionally, to address the performance issues on heavy deep
learning models like CNN-LSTMs and DeepConv-LSTMs,
data augmentation techniques (scaling, flipping) can be ex-
plored to improve model generalization.

For the deployment, the optimized models are evaluated on
a Raspberry Pi 4; however, the end target is the OpenEar-
able powered by the Arduino Nano 33 BLE Sense and has
much stricter memory and computational constraints. Due to
time constraints, real-time deployment on the Arduino is not
conducted. Rather, the Raspberry Pi is used for evaluating
the feasibility of deployment in terms of model size, infer-
ence time, and hardware compatibility. Although unstructured
pruning is able to remove low-magnitude weights and reduce
active parameters, it does not lead to the reduction in file
size since the underlying tensor dimensions are not changed.
Additionally, since sparse matrix operations are not supported
on both the Raspberry Pi and Arduino Nano 33, the inference
time does not become appreciably smaller compared to the



baseline. Moreover, advanced model compression techniques
such as knowledge distillation, where a tiny model is trained
to mimic a large one, and neural architecture search (NAS),
which automatically explores optimal network designs under
deployment constraints, are not explored in this study but rep-
resent promising directions for future work. These techniques
may further reduce model size and computation and, therefore,
be especially valuable when deploying models on hardware
like the OpenEarables.

VI. ETHICAL CONSIDERATIONS

The models proposed in this research accurately detected
visual distractions in most scenarios. However, it is important
to consider the ethical limitations and responsible usage of the
models. The models are trained and tested on a limited dataset
of only 20 participants. This limits the models from being
generalized to a larger population across demographic groups
such as gender, age, ethnicity and geographical background.
Thus, applying the models to a broader context leads to biased
or inaccurate outcomes.

Moreover, the system has been implemented as an exper-
imental research prototype. It is not intended for high-stakes
decision-making or surveillance. Its application to real-life
scenarios without contextual validation can trigger false posi-
tives or misclassifications. It presents third-party misuse risks
for organizations such as insurance companies or regulatory
bodies that can utilize model predictions outside the context,
leading to discriminatory or biased procedures.

While the model is limited to detecting visual distractions
and does not account for cognitive or auditory factors, it still
serves as a step toward broader cyclist distraction detection.
To prevent potential abuse, it is necessary that any use of this
system is preceded by clear disclaimers, applied solely within
its limited research scope, and integrated into broader safety
and surveillance infrastructures that involve human oversight.
Future iterations of this study should also address model
fairness, employ larger and more diverse datasets, and provide
open documentation of system limitations to ensure ethical
integrity and protect user rights.

VII. CONCLUSION

Visual distraction detection, especially in the realm of
cycling, remains underexplored. This paper explores a novel
approach to detecting visual distraction in cyclists using IMU-
based earable sensors collected from head movement data.
Unlike relying on surveys, datasets and expensive equipment
like virtual environments, the proposed work makes notable
contributions by leveraging a lightweight ear-worn sensor,
which enables naturalistic monitoring.

A custom dataset is created for recording head movements
indicative of visual distraction behaviors during cycling sce-
narios. The dataset addresses the lack of open-source data
focusing on dynamic, outdoor scenarios with earables. The
dataset comprises recordings from 20 participants, capturing
natural head movement patterns during both distracted and
non-distracted events. It provides a foundation for developing

visual distraction systems and can be extended for future work
on mobility safety applications.

Machine learning models (SVM, Random Forest, Xg-
Boost, KNN) and deep learning models (CNN,CNN-LSTM,
DeepConv-LSTM, TCN) are trained using the dataset. To
ensure feasible deployment onto an edge device, models are
designed to have the best performance where the model size
is below 5 MB.

The results suggest that visual distractions among cyclists
can be moderately classified using IMU data from head
movements. While SVM and CNN models offer the best trade-
off in F1-score, chance-corrected measure (Kappa score) and
memory footprint, the overall performance shows that there is
still room for improvement, particularly in identifying minority
distraction classes.

The deployment analysis shows that with the right optimiza-
tion techniques, both classical and deep learning models can
be adapted for devices with limited resources. For SVM de-
ployment, LinearSVC stands out as the lightweight option that
supports high-speed inference with minimal performance loss.
INT8 PTQ and INT8 QAT variants reduce the model size with
little to no performance loss in the case of CNN deployment.
Although deployment experiments run on the Raspberry Pi 4,
they serve as a good proxy for embedded systems feasibility
evaluation. The proposed systematic deployment approach
of feature space reduction, pruning, quantization, and filter
reduction offers a usable guide for mapping accurate models
onto runtime wearable applications using the OpenEarable
platform.

Overall, this work establishes a comprehensive founda-
tion for real-world distraction monitoring using earable sen-
sors, covering the complete pipeline from dataset creation
and model training to evaluating deployment feasibility on
resource-constrained wearable platforms.

ACKNOWLEDGMENT

The author would like to thank Özlem Durmaz and Akhil
Pallamreddy for their guidance and support throughout this
research. During the preparation of this work, the author
utilized AI tools for assistance with debugging and refining
the report. All content was thoroughly reviewed and edited as
needed.

REFERENCES

[1] E. H. Rad, F. Kavandi, L. Kouchakinejad-Eramsadati, K. Asadi, and
N. Khodadadi-Hassankiadeh, “Self-reported cycling behavior and previ-
ous history of traffic accidents of cyclists,” BMC Public Health, vol. 24,
no. 1, 2024.

[2] SWOV Institute for Road Safety Research, “Distraction in traffic,”
https://swov.nl/en/fact-sheet/distraction-traffic, n.d., accessed: 2024-12-
22.

[3] J. S. Mindell, D. Leslie, and M. Wardlaw, “Exposure-based, ‘like-for-
like’ assessment of road safety by travel mode using routine health data,”
PLoS ONE, vol. 7, no. 12, p. e50606, 2012.

[4] SWOV Institute for Road Safety Research, “Cyclists,”
https://swov.nl/en/fact-sheet/cyclists, n.d., accessed: 2024-12-22.

[5] D. De Waard, B. Lewis-Evans, B. Jelijs, O. Tucha, and K. Brookhuis,
“The effects of operating a touch screen smartphone and other common
activities performed while bicycling on cycling behaviour,” Transporta-
tion Research Part F: Traffic Psychology and Behaviour, vol. 22, p.
196–206, 2014.



[6] X. Guo, A. Tavakoli, T. D. Chen, and A. Heydarian, “Unveiling the
impact of cognitive distraction on cyclists psycho-behavioral responses
in an immersive virtual environment,” IEEE Transactions on Intelligent
Transportation Systems, p. 1–12, 2024.

[7] M. A. Regan, C. Hallett, and C. P. Gordon, “Driver distraction and driver
inattention: Definition, relationship and taxonomy,” Accident Analysis &
Prevention, vol. 43, no. 5, pp. 1771–1781, 2011.

[8] D. Ethan, C. H. Basch, G. D. Johnson, R. Hammond, C. M. Chow, and
V. Varsos, “An analysis of technology-related distracted biking behaviors
and helmet use among cyclists in new york city,” Journal of Community
Health, vol. 41, no. 1, p. 138–145, 2015.

[9] K. L. Young, A. N. Stephens, S. O’Hern, and S. Koppel,
“Australian cyclists’ engagement in secondary tasks,” Journal of
Transport & Health, vol. 16, p. 100793, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214140519303202

[10] S. A. Useche, F. Alonso, L. Montoro, and C. Esteban, “Distraction of
cyclists: how does it influence their risky behaviors and traffic crashes?”
PeerJ, vol. 6, p. e5616, 2018.

[11] G. d. Smit, D. Yeleshetty, P. J. Havinga, and Y. Huang, “Predicting
turn maneuvers of cyclists using bicycle-mounted imu with cnn-lstm,”
in 2024 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Work-
shops), 2024, pp. 587–592.

[12] Z. Han, L. Xu, X. Dong, Y. Nishiyama, and K. Sezaki, “Headmon:
Head dynamics enabled riding maneuver prediction,” in 2023 IEEE
International Conference on Pervasive Computing and Communications
(PerCom), 2023, pp. 22–31.

[13] S. Zhang and M. Abdel-Aty, “Drivers’ visual distraction detection
using facial landmarks and head pose,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 2676, p.
036119812210872, 04 2022.

[14] T. Röddiger, C. Clarke, P. Breitling, T. Schneegans, H. Zhao,
H. Gellersen, and M. Beigl, “Sensing with earables: A systematic
literature review and taxonomy of phenomena,” vol. 6, no. 3, 2022.
[Online]. Available: https://doi.org/10.1145/3550314

[15] F. Kawsar, C. Min, A. Mathur, and A. Montanari, “Earables for personal-
scale behavior analytics,” IEEE Pervasive Computing, vol. 17, no. 3, pp.
83–89, 2018.

[16] T. Röddiger, T. King, D. R. Roodt, C. Clarke, and M. Beigl,
“Openearable: Open hardware earable sensing platform,” in
Proceedings of the 1st International Workshop on Earable
Computing, ser. EarComp’22. New York, NY, USA: Association
for Computing Machinery, 2023, pp. 29–34. [Online]. Available:
https://doi.org/10.1145/3544793.3563415

[17] R. Oyini Mbouna, S. G. Kong, and M.-G. Chun, “Visual analysis of eye
state and head pose for driver alertness monitoring,” IEEE Transactions
on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1462–1469,
2013.

[18] L. Alam and M. M. Hoque, “Real-time distraction detection based on
driver’s visual features,” in 2019 International Conference on Electrical,
Computer and Communication Engineering (ECCE), 2019, pp. 1–6.

[19] S. Martin, S. Vora, K. Yuen, and M. M. Trivedi, “Dynamics of driver’s
gaze: Explorations in behavior modeling & maneuver prediction,” 2018.
[Online]. Available: https://arxiv.org/abs/1802.00066

[20] A. Doshi and M. M. Trivedi, “On the roles of eye gaze and head dynam-
ics in predicting driver’s intent to change lanes,” IEEE Transactions on
Intelligent Transportation Systems, vol. 10, no. 3, pp. 453–462, 2009.

[21] Y. Gu, Z. Shao, L. Qin, W. Lu, and M. Li, “A deep learning framework
for cycling maneuvers classification,” IEEE Access, vol. 7, pp. 28 799–
28 809, 2019.

[22] F. Vicente, Z. Huang, X. Xiong, F. De la Torre, W. Zhang, and
D. Levi, “Driver gaze tracking and eyes off the road detection system,”
Trans. Intell. Transport. Syst., vol. 16, no. 4, p. 2014–2027, Jul. 2015.
[Online]. Available: https://doi.org/10.1109/TITS.2015.2396031

[23] Z. Han, X. Dong, Y. Nishiyama, and K. Sezaki, “Headsense: A head
movement detecting system for micro-mobility riders,” 09 2021, pp. 26–
27.

[24] K. Wong, Y.-C. Chen, T.-C. Lee, and S.-M. Wang, “Head motion recog-
nition using a smart helmet for motorcycle riders,” in 2019 International
Conference on Machine Learning and Cybernetics (ICMLC), 2019, pp.
1–7.

[25] Y.-R. Chen, C.-M. Tsai, K.-I. Wong, T.-C. Lee, C.-H. Loh, J.-C. Ying,
and Y.-C. Chen, “Motorcyclists’ head motions recognition by using the

smart helmet with low sampling rate,” in 2019 Twelfth International
Conference on Ubi-Media Computing (Ubi-Media), 2019, pp. 157–163.

[26] Y. Usami, K. Ishikawa, T. Takayama, M. Yanagisawa, and N. Togawa,
“Bicycle behavior recognition using sensors equipped with smartphone,”
in 2018 IEEE 8th International Conference on Consumer Electronics -
Berlin (ICCE-Berlin), 2018, pp. 1–6.

[27] W. Gu, Y. Liu, Y. Zhou, Z. Zhou, C. J. Spanos, and L. Zhang, “Bikesafe:
bicycle behavior monitoring via smartphones,” ser. UbiComp ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 45–48.
[Online]. Available: https://doi.org/10.1145/3123024.3123158

[28] W. Gu, Z. Zhou, Y. Zhou, H. Zou, Y. Liu, C. J. Spanos,
and L. Zhang, “Bikemate: Bike riding behavior monitoring with
smartphones,” in Proceedings of the 14th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and
Services, ser. MobiQuitous 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 313–322. [Online]. Available:
https://doi.org/10.1145/3144457.3144462

[29] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin, and
M. Srivastava, “Biketastic: sensing and mapping for better biking,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 1817–1820. [Online]. Available:
https://doi.org/10.1145/1753326.1753598

[30] L. Jiang, X. Lin, X. Liu, C. Bi, and G. Xing, “Safedrive: Detecting
distracted driving behaviors using wrist-worn devices,” Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., vol. 1, no. 4, Jan. 2018.
[Online]. Available: https://doi.org/10.1145/3161179

[31] L. Shojaeifard, A. Islam, H. Shaheen, V. Schroderus, and E. Peltonen,
“Left or right? detecting driver’s head movement on the road,” 11 2023.

[32] T. Sepanosian and O. Durmaz Incel, “Boxing gesture recognition
in real-time using earable imus,” in Companion of the 2024 on
ACM International Joint Conference on Pervasive and Ubiquitous
Computing, ser. UbiComp ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 673–678. [Online]. Available:
https://doi.org/10.1145/3675094.3680524

[33] M. Radhakrishnan, K. Misra, and V. Ravichandran, “Applying “earable”
inertial sensing for real-time head posture detection,” in 2021 IEEE
International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops), 2021, pp.
176–181.

[34] M. Laporte, P. Baglat, S. Gashi, M. Gjoreski, S. Santini, and
M. Langheinrich, “Detecting verbal and non-verbal gestures using
earables,” in Adjunct Proceedings of the 2021 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2021 ACM International Symposium on Wearable Computers,
ser. UbiComp/ISWC ’21 Adjunct. New York, NY, USA: Association
for Computing Machinery, 2021, p. 165–170. [Online]. Available:
https://doi.org/10.1145/3460418.3479322

[35] S. Gashi, A. Saeed, A. Vicini, E. Di Lascio, and S. Santini, “Hierarchical
classification and transfer learning to recognize head gestures and facial
expressions using earbuds,” in Proceedings of the 2021 International
Conference on Multimodal Interaction, ser. ICMI ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 168–176.
[Online]. Available: https://doi.org/10.1145/3462244.3479921

[36] T. Hossain, M. S. Islam, M. A. R. Ahad, and S. Inoue, “Human
activity recognition using earable device,” in Adjunct Proceedings
of the 2019 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers, ser. UbiComp/ISWC ’19 Adjunct.
New York, NY, USA: Association for Computing Machinery, 2019, p.
81–84. [Online]. Available: https://doi.org/10.1145/3341162.3343822

[37] A. Ferlini, A. Montanari, C. Mascolo, and R. Harle, “Head motion
tracking through in-ear wearables,” in Proceedings of the 1st
International Workshop on Earable Computing, ser. EarComp’19.
New York, NY, USA: Association for Computing Machinery, 2020, p.
8–13. [Online]. Available: https://doi.org/10.1145/3345615.3361131

[38] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J. Bao,
M. Montes-de Oca, Y. Cheng, M. Lin, L. Torresani, and A. T.
Campbell, “Carsafe app: alerting drowsy and distracted drivers using
dual cameras on smartphones,” ser. MobiSys ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 13–26. [Online].
Available: https://doi.org/10.1145/2462456.2465428

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-



derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard
Duchesnay, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[40] F. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[41] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data.” Biometrics, vol. 33 1, pp. 159–74, 1977. [Online].
Available: https://api.semanticscholar.org/CorpusID:11077516

[42] N. Sheikh, “On the design of efficient deep learning methods for human
activity recognition in resource constrained devices,” Master’s Thesis,
University of Waterloo, Waterloo, Ontario, Canada, 2023.

APPENDIX A: PHONE CALL QUESTIONS

The questions asked to the participants during the phone call
session (Session 5) are as follows:

• What did you eat for your breakfast? Can you describe
it in detail, including ingredients used?

• Tell me about your morning routine from the moment
you woke up until you left home.

• What were the last three items you purchased, and why
did you choose them?

• Can you remember your favourite childhood game? De-
scribe how it was played.

• Describe the last event or celebration you attended. What
made it special?

• If you could invent a new gadget to make life easier, what
would it be and how would it work?

• Imagine you won the lottery—what’s the first thing you
would do?

• If you could time travel to any era, where would you go
and why?

• If you could have dinner with any three famous people,
who would they be and why?

• If you could time travel to any era, where would you go
and why?

• What superpower would you like to have? and why?


