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ABSTRACT: Air-source heat pump performance is often hindered by frost formation on the evaporator plates.
Frost conductivity models aimed at mitigating the performance losses of the frost layer utilize bulk- and layer-
averaged properties, ignoring differences in frost morphology. Two scripts were developed to generate frost
structures and calculate their properties respectively. Air conduction above and below side branches, inter-
branch interactions, and loop interactions were found to affect the total conductivity up to 3 % by analyzing
aggregations of basic structures. For randomly generated samples, differences in verticality accounted for the
largest conductivity differences of 5.6 %.
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1 INTRODUCTION

Nature contains various porous structures, of which
frost is one. Frost is, amongst other locations, formed
in air-source heat pumps (ASHPs) on the evapora-
tor plates, and hinders the performance of these heat
pumps due to ASHPs’ interaction with air, in some
stages of its growth [1]. ASHPs are installed in in-
creasingly more households than ever before [2] and
have to deal with the issues of frost growth during
their operation [3], which often hinders the opera-
tional efficiency of the applications by as much as a
60% loss [1]. Heat pumps have frost-defrost cycles
implemented to deal with frost formation [4], but the
models used for these systems are suspected to be in-
accurate, implying the unit’s control system will not
work as intended. This will subsequently result in
more unwanted greenhouse gas emissions.
The methods currently used for modelling thermal
conductivity can be divided into 3 main categories:
analytical, empirical, and numerical models [5]. The
first category involves models of Rayleigh, Maxwell,
Maxwell-Eucken, Lewis-Nielson, Deitenberger, Le
Gall et al., and many more, as well as the effective-
medium theory which describes models that revolve
around circular, cylindrical, or connected circular
particles embedded into a matrix in a uniform or
purely random dispersion [5, 6]. The second cat-
egory involves experimentally determined empirical
relations for the properties of a sample of microp-
orous materials. Models such as Negrelli-Hermes,
Song-Dang, O’Neal-Tree, Aurasher, and many more
are often used [5, 6]. The final category entails nu-

merical methods like FEM analysis, such as the unit
cell approach proposed by Ganapathy et al. [5, 7]

The aforementioned models often use bulk or layer
property simplifications to make computations or for-
mulas more manageable [8]. However due to frost
being comprised of varying structures, which pro-
duce locally varying properties [4], these simplifi-
cations introduce unwanted sporadic errors between
modelled and experimental bulk properties. The ex-
act errors are uncertain, with individual model au-
thors measuring up to 15 % while reviewers find er-
rors significantly more than 30 % [4, 9, 10]. This
begs the question of whether different values for con-
ductivity and diffusivity can be achieved for the same
bulk and layer-averaged parameters in a frost sample
and to what degree they are responsible for the devi-
ations.

To evaluate the effect of structural influence on frost
structures of uniform bulk and layer densities, frost
growth as described by Hermes et al. [11], Huang et
al. [12], and other authors, needs to be considered.
Negrelli et al. have developed a frost-generating al-
gorithm that can simulate both frost growth and den-
sification [4], making it useful as a starting point for
frost analysis. However, no attention was given to
the structural differences, as only the bulk proper-
ties were considered. This paper will investigate the
structural interactions by generating and evaluating
the properties of constant bulk and layer-bulk density
frost to provide more insight into the sources of the
deviations measured.



2 METHODOLOGY

When modelling frost in a cell grid, a frost structure
may be considered to be comprised of 3 distinct types
of structures [13], see Figure 1:

1. Vertical: parallel to the heat flux direction
2. Complex: diagonal to the heat flux direction
3. Horizontal: perpendicular to heat flux direction

Figure 1: 1) Vertical, 2) Complex, 3) Horizontal structures. Ar-
rows indicate the most favourable paths of conduction through
the structure

To aggregate these basic structures into a singular
structure, two scripts were run in MATLAB R2023a,
utilizing a Windows operating system with an i7-
11800H processor and 16GB of RAM. Script 1 gen-
erates aggregations of basic structures based on the
input of a percentile of each type of basic structure
wanted, and a predefined layer density (and thus also
bulk density), as is depicted in Figure 2.
To create sufficiently varying structures, and while
adhering to the density limits, permutations are used.
Because the percentages from the basic structures are
used to choose which location the particle aggregates
to, it is likely that only the most favourable structures
will be output. By allowing the algorithm to effec-
tively choose two aggregation locations, a wider va-
riety of structures can be analyzed. This could be in-
creased to all locations in theory but would result in
long processing times, which causes little variation
in the latter stages of generation as the time-limiting
loop in Figure 2 would remove most permutations.
Script 2 calculates the effective conductivity keff as

keff = keff,cond + keff,diff = (q
′′

cond +m
′′
isv)

δ

∆T
(1)

where kcond and kdiff are the thermal conductivities
considering conduction and diffusion respectively in
W

m.K
, q′′

cond and m
′′ are the heat and diffusion fluxes

across the cell border in W
m2 and kg

m2s
respectively, isv

is the latent heat of sublimation in kJ
kg

, δ is the thick-
ness of the cell in m, and ∆T is the temperature
difference across the cell in ◦C [14]. In this paper,
Eq. (1) is decoupled to only focus on keff,cond to in-
vestigate the conductivity errors introduced by struc-
tural effects without concern over errors introduced
by diffusion models.
The MATLAB code as developed by Labuschagne et
al. [13] is incorporated to calculate keff,cond for each
cell boundary, which is set at 5 µm. The values of
each cell boundary are found in a 7 by 7 grid un-
less this size is insufficient to show all possible inter-
actions (occurs in larger structures) or insignificant
results (occurs in smaller structures). The top and
bottom grid boundaries are set to 10◦C and 0◦C re-
spectively. Both sides are considered to be adiabatic.
The properties of ice and air are identical to those of
Labuschagne et al. [13]. These calculations will be
checked by MATLAB’s Partial Differential Equation
Toolbox version 3.10 (PDE) to verify the solutions.
The results will be analyzed in two steps. The first
focuses on creating a set of similar basic structures to
see what effects play a role in the conduction paths.
This allows for an in-depth analysis of the behaviour
of the basic types in larger structures. It is only possi-
ble to look at similar bulk density structures here and
compare their conductivities with one another, seeing
as the layer density is not the same for many samples.
In the second step, the behavioural differences of
larger samples with constant layer densities are evalu-
ated. In addition, samples for the complete spectrum
of vertical, complex and horizontal structure mixtures
will be analyzed based on their thermal conductivity.
Differences between the samples will be discussed
using the knowledge from the first step. Lastly, the
Mean Absolute Error (MAE) of the structures will
be compared to that found in literature [4, 9, 10] to
see how much of the observed deviations can be ex-
plained using only structural differences.

3 BASIC STRUCTURES

The basic structures are compared to one another in
sets, such that the properties of each set are closely
related but variations can still be made. An overview
of the sets can be seen in Figure 3.
The three basic structures show trivial behaviour and
will not be discussed. For combined structures, all
side groups are varied in length and position, which
is indicated with black arrows, to find out how con-



Figure 2: The frost structure generating algorithm, where the orange loop displays the main frost generation, red depicts initialization
and termination, and blue shows data used. C1 is a constant determining the percentage of structures being discontinued, Nvalid is
the number of valid growth locations, Nstruct is the number of generated structures, ρ is the number of ice blocks present, ρmax is
the maximum layer or bulk density, and t is the time per orange loop for all Nstruct.

Figure 3: Compared sets, with basic structures, single verti-
cal permutations (1 & 2), and double vertical permutations (3).
Colours indicate groups with similar bulk densities

duction is influenced. Vertical growths are utilized in
most structures as they will conduct most of the heat,
making the findings a conservative estimate of what
the side branches are capable of. Parallel and perpen-
dicular air conduction (Qy and Qx respectively) one
block above and below the side branches are com-
pared. All changes in Qy and Qx are expressed in %
and are cumulative to the initial structure. Notable
conduction paths are indicated with white arrows.
It should be noted that the results from MATLAB’s
PDE solver were within 10% of those calculated by
Script 2. A mesh with maximal edge lengths of
0.1 µm was utilized, as lower lengths resulted in
changes less than 1% to the final result. The main dif-
ferences between the script and the PDE solver were
found in corners between blocks, which a mesh could
handle more accurately than a block of 5 µm.

3.1 Set 1: single side groups

In Figure 4 a horizontal side-branch can be seen.
Within the main vertical structure (MVS), almost 100

Figure 4: Structure with 2-cell wide horizontal branch showing
the logarithmic conduction profile

times more heat is conducted than through the air.
If even one ice block branch is present on the col-
umn, Qy and Qx will increase. Starting from an MVS
and adding one block each time along the black ar-
row in Figure 4 results in an increase of Qy by 14,
21 & 25% respectively, showing exponential decay.
This implies that air layers which ordinarily would
not conduct extra heat are affected by the prospect of
a nearby side branch, and will conduct at most 30%
extra heat, depending on the size of the side branch,
which is taken from the MVS. Additionally, Qx is in-



creased by 43% per added block compared to the pre-
vious state, meaning changes in Qx are constant over
the width of the side branch. Note that this excludes
the first block being added to the MVS, seeing as this
is a transition QX = 0 to some value for QX , which
therefore would make the change approach ∞%.
The exact position of the side branch only matters
slightly. For edges closer to the top or bottom of the
grid, no heat flux can be taken from the MVS, which
means the amount of heat flux passing through the
side branch decreases, making it less effective. This
effect is maximally 0.4% for Qy and 8% for Qx, with
the highest conductivity values appearing when the
side branch is near the centre of the grid.
Additionally, depleted zones (in blue) are visible to
the side of the side branch in Figure 4, where con-
duction drops to near zero due to the heat conducting
into the higher conductivity side branch instead of the
air, as seen by the curved white arrows on the right
side. This effect is independent of branch length and
always acts on the outer 2 to 3 µm.
In Figure 5 a complex side-branch can be seen,
which, on the bottom, behaves similarly to a horizon-
tal side-branch. Because the far side of the structure is

Figure 5: Structure with 2-cell wide complex branch showing
the logarithmic conduction profile

two blocks tall, most heat is conducted from the MVS
into the two-block tall structure, and only a small por-
tion is conducted to the horizontal part, as depicted by
the small white arrow in Figure 5.
This extra conduction in turn also introduces depleted
zones. If the height of the complex structure is ex-
tended along black arrow 1, QY and QX increase re-
spectively with 3 & 10% and 12 & 36% compared to
the case visible in Figure 5. This percentage increase

is caused by the parallel vertical structure, which cre-
ates an additional route for the heat to pass through
aside from the MVS. This results in a 1 & 3% in-
crease in total conductivity of the sample for each
block added respectively. If, on the other hand, the
complex structure is extended along the black arrow
2, the percentage change is slightly larger than for the
horizontal side branch when transitioning from two
blocks wide to three blocks, namely 8 and 43% for
QY and QX respectively. However, the growth of the
now extended complex side branch along black ar-
row 3 only results in a 2 & 5% and 7 & 20% increase
for QY and QX respectively, again showing expo-
nential decay compared to the growth along black
arrow 1. For the same bulk densities with complex
side branches, the total conductivity only differs by
a maximum of 3%, mainly due to the parallel verti-
cal structure being closer to the MVS, allowing for
more parallel heat transfer compared to similar bulk
densities.

3.2 Set 2: mixed side groups

When two side branches are on opposite sides of
an MVS, interactions occur across the MVS and be-
tween height layers, as depicted in Figure 6 by the
white arrows. Here parallel conduction routes may

Figure 6: Structure with two opposing complex branches show-
ing the logarithmic conduction profile

be created depending on the position of the side
branches. The route becomes less parallel whenever
the side branches move further away from one an-
other, as seen in the changes in Qx, which changes
5, 7 & 9% along the black arrow from an initial
symmetric case. This indicates that heat is initially



transported purely symmetrically, then both a parallel
route and sequential routes are used, and lastly, purely
sequential heat travel is utilized once the structures
are further than 15 µm apart from one another. This
sequential route mimics the behaviour of the com-
plex branch growing along black arrow 1 in Figure 5.
Once the heat from the left complex branch can reach
the lower branch’s top part, heat can move into the
MVS and to the next parallel path, increasing the to-
tal conductivity. Qy changes 0.3, 0.6 & 3% along the
black arrow from an initial symmetric case, meaning
if the position of the complex branch is 5 µm lower
than in Figure 6, the sequential route is used. If both
branches are on the same side, the sequential route
is always utilized, but heat is still exchanged with
the MVS if the branches are sufficiently far apart.
For either branch orientation, the average conductiv-
ity changes less than 0.5% due to the absence of ma-
jor parallel routes
A connecting structure can be formed in a multitude
of ways, of which Figure 7 is one example.

Figure 7: Structure with connected complex and horizontal
branch showing the logarithmic conduction profile

When side branches grow into one another, they can
create a loop. This loop is a favourable path and con-
duction through the branch increases by roughly 7%
if the loop length is increased by one block along the
black arrow. Additionally, Qy above and below the
loop indicated with white arrows increases 10, 21 &
49% compared to the smallest loop possible. This re-
lates back to the creation of parallel paths, but the
effect is stronger than in set 1, seeing as the path
connects back to the MVS. This finding is enforced
by looking at the magnitude of conduction within the
loop branch versus the MVS. Taking the conduction

in the MVS as 100%, the side branch conducts 36,
49, 53 & 59% of that for each length increase of the
loop. The air trapped inside the loop shows a split
between two different effects. Near the MVS, simi-
lar behaviour to a horizontal side branch is observed,
namely heat is taken from and added back to the MVS
before and after the branch respectively, while fur-
ther to the right the heat is redirected into the loop,
contributing to the conduction increase in the parallel
route.
The conduction in the depleted zone past 30 µm in
Figure 7 is a factor 10 larger than that of a single side
branch (0.02 and 0.002 W

m2 respectively). This con-
ductance field is more parallel-oriented than a single
side branch, as all the heat that wants to conduct into
the side branch has already done so at the top and bot-
tom, leaving only ”stray heat” to conduct through the
air, which is almost two times less than the heat on
the left side of the MVS, this being 0.035 W

m2 .

3.3 Set 3: double vertical with single side groups

When two MVSs are present, interactions between
side branches between the two columns also occur.
This can be seen in Figure 8, where a complex
side branch provides a connection between the two
columns. When the lower branch extends along black

Figure 8: Structure with two opposing complex branches show-
ing the logarithmic conduction profile

arrow 1, the average conductivity only changes sig-
nificantly (2%) when the branch connects to the other
MVS. This connection also causes a decrease in Qy,
as heat exchanging between MVSs is now preferred
over air conduction. Growth along black arrow 2 of
more than 10 µm creates a parallel route but alters the



conduction path between the two complex branches.
Instead of the conduction from the left MVS towards
the right MVS occurring in a rough diagonal line,
most conduction would follow the grown complex
branch and thus require much more Qx to use this
parallel route effectively. This can hinder Qy by as
much as 3%. For the heat that does not take this di-
agonal route, a parallel route is instead formed along
the white arrows in Figure 8, which has the same re-
strictions regarding the position of the side branches
as set 2.

3.4 Comparison between different sets

Taking a step back from the inner workings of each
structure and comparing the overall conductivities to
existing models [5, 15] as suggested by Labuschagne
at al. [13], Figure 9 can be made.

Figure 9: Comparison of the set structures’ thermal conductiv-
ity versus bulk density. Colours show different sample sets as
depicted in Figure 3. Existing heterogeneous material models
from Maxwell-Euken [5], Effective medium theory [5] and the
work of Song and Dang [15] are included for reference

As evident from the previously described sets, the
variations among different structures are quite min-
imal, but by comparing similar bulk densities, the
observed variations are quite significant. For exam-
ple, the blue samples indicate structures in set 2,
where simple side branches (low density) like purely
complex and horizontal are near the upper conduc-
tivity limit, and more grown-out structures are fur-
ther and more dispersed from this limit, accentuat-
ing the structural interactions between different struc-
tures and this deviation will be investigated further.
Comparing the samples to existing theories for ther-
mal conductivity in frost, such as models by Song

and Dang [15], indicates non-conformity with real
frost, as the MAE is upwards of 75%. This suggests
that these models are not fit for predicting these basic
structures, implying the structures that will be gener-
ated in the next chapter should take the typical growth
characteristics of frost into account to be a valid com-
parison.

4 ARBITRARY STRUCTURES

4.1 Model validation

By arbitrarily generating structures using Script 1, a
spectrum of different structures can be found. Fig-
ure 10 was made by assigning the same input param-
eters and running the script multiple times to vali-
date Script 1. A maximum standard deviation σ of

Figure 10: Comparison of 10 samples generated by Script 1 with
the same input parameters and a bulk density of 375.4 kg

m3

0.0015 and a maximum difference in averages µ of
0.001 was found, which, using Operating Character-
istic Curves [16], results in a needed sample size of
at least 20 samples for each possible combination of
vertical, horizontal, and complex structures to reach
a 95% confidence interval, with a type II error rate
of 10%. Additionally, a maximum MAE of 5.4% is
found throughout all script checks, accounting for the
modelling error that might occur when using a sam-
pling approach like Script 1.

4.2 Conductivity spectrum

Structures with the same initial seeding location, bulk
density, and layer density, spanning the entire spec-
trum unit mixture requirements were used to find val-
ues for the average thermal conductivity of frost. This



can be seen in Figure 11. A clear gradient can be

Figure 11: Average thermal conductivity of 20 samples versus
input unit mixture requirement, with a layer density of 393.7 kg

m3

seen, with vertical structures being the main deter-
minator of conductivity. As was already seen in the
analyzed sets, the more vertical a structure grows,
the more conductive it becomes. Change in the per-
centage of vertical structures can account for 5.6%
of the conductivity deviation for the same layer den-
sity. A low likelihood of horizontal growth can in-
crease the conductivity by roughly 2%, suggesting
branch interactivity plays a role between more grown-
out branches. However, this spectrum only specifies
the input settings. The same results over the output
unit mixtures are depicted in Figure 12.

Figure 12: Average thermal conductivity of 20 samples versus
successfully generated output unit mixtures, with a layer density
of 393.7 kg

m3

Even though the same data points are used, the actual
domain spans only a fraction of what is possible. In
this case, the domain is limited by the need for ver-
tical growth as the layer density needs to be reached.

At least one vertical or complex block is necessary to
reach the next layer, resulting in a lack of data in the
bottom left corner. Therefore, most data points, espe-
cially the low % vertical mixtures, are visible on the
66% line of horizontal growth. The 7 by 7 grid used
for all samples currently limits the onward growth of
vertical and complex structures. Different grid sizes
and an increased number of nucleation locations may
be able to generate more sample points in currently
unknown areas. The standard deviation of the sam-
ples versus input unit mixture settings can be seen
in Figure 13 and is much higher at higher complex
growth.

Figure 13: Average standard deviation of 20 thermal conductiv-
ity samples versus input unit mixture requirement, with a layer
density of 393.7 kg

m3

A couple of reasons arise for this difference, with the
main reason being the sample size. Low complex-
containing structures generate datasets which are a
factor of 10 larger than those with more complex
branches, due to how complex branches are gener-
ated. If a location is chosen to be complex growth,
the two subsequent growth locations will necessarily
be the two cells needed to ’complete’ the complex
structure, thus not generating permutations. An in-
fluence of verticality can also be seen in Figure 13,
where extremely low verticality causes larger devia-
tions in conductivity. This is most likely because of
the many side-branches, between which interactions
can occur. The orientation of these branches matters
in this region, as 1 block difference would cause Qy to
be much more impactful on the overall conductivity
due to branch interactions as mentioned in Section 3.
Using this (somewhat limited) dataset, a possible
11,0% of the 15,0 to 31,9% MAE found in literature
[9, 10] can be accounted for by structural influences.



5 CONCLUSION

An analysis of possible structural causes for devia-
tions in thermal conductivity was performed by first
evaluating simple structures with basic side branches
to understand the conduction behaviour in frost crys-
tals. Local conductivity increases were observed
due to the branch interactions with air. Interactions
amongst sufficiently nearby side branches were also
observed, which may contribute to experimental de-
viations. Comparing sets based on bulk density in
Figure 9 showed clear deviations in thermal conduc-
tivity. Even comparing the same layer densities, de-
viations were observed, however smaller at a max-
imum of 5.6%. The full spectrum of output struc-
tures could not be found due to model limitations,
as shown in Figure 12. Deviations are expected to
increase when the full spectrum is modelled, which
may be achieved by additional seeding locations, ex-
panding the growth domain, different initial seeding
locations, and varying layer densities. In the current
work, a possible 11,0% of the 15,0 to 31,9% MAE
found in literature [9, 10] could be explained.
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