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A computer would deserve to be called intelligent if it could deceive a
human into believing that it was human.

Alan Turing
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1 Introduction

The advent of Large Language Models (LLMs) has revolutionized the field of Nat-
ural Language Processing (NLP) (Hadi et al., 2023). These models utilize deep
learning methods, especially transformer architectures, to capture and interpret the
complex patterns and structures inherent in language data (Dong et al., 2023; Luitse
& Denkena, 2021). LLMs can process large volumes of unstructured text and multi-
modal data, capturing semantic relationships and greatly improving machine un-
derstanding and generation of human-like language (Hadi et al., 2023). However,
a fundamental challenge persists: the trade-off between generality and specificity.
LLMs excel at answering general questions but often falter when faced with domain-
specific inquiries or knowledge-intensive tasks for which they lack explicit knowledge
(Gu et al., 2021). This gap in performance is particularly pronounced in scenarios
where up-to-date domain-specific information is relevant (X. Wang et al., 2024).
One common approach to addressing this challenge is transfer learning (Ruder et
al., 2019). A fine-tuning technique which involves adapting a pre-trained LLM to
a specific domain or task by training it further on a smaller, task-specific dataset.
This technique enables the model to answer more specialized queries and handle
domain-specific tasks more effectively (Raffel et al., 2020). However, fine-tuning
can be resource-intensive, requiring substantial computational power, large labelled
datasets, and repeated retraining to maintain up-to-date knowledge (Hadi et al.,
2023). This makes it an expensive and sometimes impractical solution, especially
in rapidly evolving fields where information changes frequently. To mitigate these
challenges, RAG has emerged as a promising alternative (Lewis et al., 2020). RAG
enhances LLM performance by integrating external data sources, allowing the model
to retrieve relevant information dynamically at the time of inference. This method
provides access to up-to-date and domain-specific knowledge without the need for
extensive fine-tuning, improving the model’s accuracy and reducing the computa-
tional cost (W. X. Zhao et al., 2023). Thus, by retrieving relevant documents or
knowledge bases, RAG enables LLMs to handle knowledge-intensive tasks more
effectively, making it an ideal solution for applications where the information land-
scape is constantly evolving (Naveed et al., 2023).

Therefore, organizations are increasingly interested in leveraging LLMs to enhance
their operations by providing more accurate and contextual relevant information
(Bhat et al., 2024). Particularly, in customer service and support chatbots are
increasingly used to reduce human support personnel and to overcome the limited
availability of domain-experts (Shuster et al., 2021). The overall goals are cost-
savings, redirection of valuable human resources to other important tasks, increased
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availability of the service and overall customer satisfaction (Afzal et al., 2024; Bhat
et al., 2024). Given these advantages, it is no surprise that the global chatbot market,
valued at 5.39 billion dollars in 2023, and is expected to reach 42.83 billion dollars by
2033 (Spherical Insights & Consulting, 2024). With the breakthrough of LLMs which
are equipped with billions of parameters and pre-trained on vast language datasets,
new possibilities for conversational agents are offered (J. Wei et al., 2024). By
crafting specific prompts, LLMs can generate human-like conversational responses
without the need for training data, effectively functioning as chatbots (J. Wei et al.,
2024). In contrast to other frameworks, LLMs demonstrate significant potential in
supporting chatbots that are context-aware and capable of responding to off-topic
user messages (Volum et al., 2022). Therefore, the approach of enhancing LLMs
with RAG seems like a promising solution to build chatbots for Customer Support.
Especially, in technical support RAG should be suitable because questions are highly
specific from a wide range of problems, very repetitive, and sequentially solvable.
Thus, this master’s thesis will test the hypothesis that enhancing LLMs with RAG is
suitable for Customer Support Chatbots by building a Chatbot for the IT Support
of the University of Münster.

The Center for Information Technology (CIT) of the University of Münster provides
IT services mainly for their students and staff members. Via Web they provide
guides, FAQs and documentations on different IT services including access to the
University’s Internet, communication services, software applications, how to use the
IT infrastructure (e.g. Remote Desktop, Uni Cloud, etc.) and technical support
for teaching, research, and administrative purposes. Beyond that they provide User
Support during the day in a form of an IT Hotline, Service Desk, and an on-site IT
Support. With the increasing number of provided services the Web page became
cluttered and complex to use, therefore more questions are sent to the User Support
which could have been answered in the documentation on the Web already. Thus,
the overall goal is to tackle this problem by leveraging a RAG-based chatbot to
complement the User Support to substitute the overwhelming navigation on the web
page and to improve the availability of the User Support. Further, this use case is
suitable to answer the stated hypothesis as the University of Münster hosts their own
on-premise LLMs where it is ideal to build a RAG-System with. Currently, the on-
premise LLMs, namely Llama 3.1-70B and Mixtral 8x7B, are in use for their UniGPT
chatbot service which was developed to provide a GPT service for dealing with
sensitive data and projects where data protection is paramount. Therefore, an on-
premise LLM is especially advantageous when dealing with Customer requests which
contain sensitive data that needs to be processed. Additionally, they provide up-to-
date Large Language Model (LLM)s by OpenAI, such as gpt-4o-mini. Lastly, with
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over 46,000 students, the University of Münster ranks among the largest universities
in Germany. Given the resource-intensive nature of IT support for such a large
institution, the introduction of a complementary chatbot could significantly reduce
operational costs while enhancing service efficiency.

Based on the problem statement that LLM are limited concerning domain specific
inquiries and the hypothesis that enhanced LLMs with RAG are suitable for building
effective chatbots in customer support, the research objective of this thesis is twofold:
First, an implementation of a RAG-based chatbot LLM-agnostic for the University
of Münster with the goal to improve their IT support by reducing user dependency on
web navigation and improving access to specific information. Second, to rigorously
evaluate this chatbot’s performance in meeting the unique demands of an IT support
environment. The evaluation will focus on the chatbot’s ability to handle domain-
specific queries, improve user experience, and optimize support operations. For that
the evaluation will be based on user surveys, feedback from IT staff, and a structured
performance test. Through these artifacts, this thesis aims to contribute insights
on the feasibility and practical benefits of RAG-enhanced LLMs within institutional
support frameworks, ultimately testing whether this approach can improve customer
service in complex technical support scenarios.

The remainder of this thesis is structured as follows: Chapter 2 provides the theo-
retical background of chatbots, LLMs, RAG, and case studies of chatbots. Chapter
3 presents the methods used, including the use of the Design Science Research
(DSR) Methodology to guide artifact development and a mixed-method approach
for evaluation. Chapter 4 describes the implementation of the RAG-based chatbot,
including technical architecture, system logic and deployment. Chapter 5 details
the evaluation process and presents the results from user studies, staff feedback,
and performance assessments. Chapter 6 contains a critical discussion of the results
in light of the research objectives, followed by Chapter 7, which concludes the thesis
and outlines implications for future work.
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2 Background

This chapter provides the theoretical foundation and contextual knowledge necessary
to understand RAG-based chatbots and their application in domain specific envi-
ronments. It begins with an overview of conversational Artificial Intelligence (AI)
and chatbot technologies, followed by an introduction of Large Language Models
and recent developments in the field of NLP. After that, the chapter examines RAG
in detail, including its architecture, advantages over alternative approaches, opti-
mization techniques, and best practices from the literature. The chapter concludes
by addressing the application of RAG-based chatbots in domain-specific business
contexts, discussing their benefits, implementation challenges, and key deployment
considerations for enterprise environments.

2.1 Chatbots: An advancement in Human-Computer Interaction

The way humans interact with computers has evolved significantly over the decades,
driven by advancements in Human-Computer Interaction (HCI). HCI "is a discipline
concerned with the design, evaluation and implementation of interactive computing
systems for human use and with the study of major phenomena surrounding them"
(Sinha et al., 2010). Traditionally, HCI was limited to command-line interfaces
and graphical user interfaces (GUIs), requiring users to adapt to system structures
(Sinha et al., 2010). However, with the rise of AI, HCI has become more natu-
ral and intuitive, allowing users to engage with computers using natural language
rather than complex commands (Ramírez, 2024). A key innovation in this trans-
formation is the development of chatbots. According to the dictionary, a chatbot
is "a computer program designed to respond with conversational or informational
replies to verbal or written messages from users." (Dictionary.com, 2025). Thus,
a chatbot is an AI program and a HCI model, which facilitates dialogue between
users and machines via text or voice-based exchanges (Adamopoulou & Moussiades,
2020; Bansal & Khan, 2018). Here, AI program refers to the utilization of NLP by
chatbots when evaluating the input of the users and when generating the response
by the system (Corea, 2019). NLP is an interdisciplinary field at the intersection
of linguistics, computer science, and AI. NLP enables the computer to comprehend,
interpret and generate human language in a manner that imitates human commu-
nication (Ramírez, 2024). Therefore, the application of NLP is fundamental for the
development of chatbots.
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2.1.1 General Chatbot Architecture

Suhaili et al. (2021) present a general chatbot pipeline by introducing the most rele-
vant components, each performing essential functions to build a chatbot system (see
Fig. 1). The first step is the NLP Pre-Processing of the text input. In this step,
techniques like tokenization, lemmatization, and stemming to the user’s query are
applied to convert the text into structured data. The next step is Natural Language
Understanding (NLU) where user input is analysed by identifying intent and ex-
tracting relevant details. The Dialogue Manager processes the previous structured
user input, maintains the dialogue context, and decides the system’s next action.
If information is missing or unclear, it can request clarification to ensure semantic
accuracy. Data Sources store and retrieve information that the Dialogue Manager
utilizes to generate responses. These sources can be internal, such as predefined
rules or databases, or external, accessed through third-party services like Web APIs
to fetch relevant information. The Response Generator selects the most appropriate
response from a set of candidate options or generates dynamically a response based
on the processed input.

Figure 1 General Chatbot Pipeline (Suhaili et al., 2021)

2.1.2 Chatbot Design Principles

To develop a chatbot there are several design principles. A quick look into recent lit-
erature shows that there exist different names for the design approaches even though
they describing the same principle. Singh and Namin (2025) distinguish the chat-
bot designs between rule-based and AI-based approaches. The rule-based approach
relies on predefined patterns and rules to generate responses based on user input
(Adamopoulou & Moussiades, 2020). AI-based approaches are majorly classified
into retrieval-based approaches and generative-based approaches. Chatbots that
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follow the retrieval-based approach typically search a pre-existing dialogue database
to select the response that best matches the users’ queries (Bartl & Spanakis, 2017;
Z. Wang et al., 2019).In generative-based approaches, AI model chatbots produce re-
sponses one word at a time, forming completely new sentences tailored to the user’s
queries (Singh & Namin, 2025). Adamopoulou and Moussiades (2020) differentiat-
ing between pattern matching approaches and machine learning approaches. Where
Adamopoulou and Moussiades (2020) use pattern matching and rule-based approach
interchangeably. And machine learning approaches are also classified into retrieval
and generative-based approaches. Lastly, Suhaili et al. (2021) divide the chatbot
design approaches into retrieval-based and generative-based approaches. Where
rule-based Chatbots are defined as a sub-category of retrieval-based chatbots. For
this reason, the rule-based, retrieval-based, and generative-based approaches are pre-
sented more in detail below, where retrieval-based and generative-based approaches
are examined from the machine learning perspective.

2.1.3 Dialogue in Chatbot Design

Before diving into the design approaches, it is crucial to first understand the different
types of dialogues in HCI and provide a formal definition of a dialogue system. Thus,
when examining dialogue, several key dimensions help categorize conversational pat-
terns. As Ramesh et al. (2017) explains, conversations can be classified based on
their length into two primary types. Short-text conversations produce a single re-
sponse to a single input, such as answering a specific question queried by a user.
In contrast, long-text conversations involve extensive information exchange where
historical context must be maintained to generate appropriate responses, e.g. by
customer care conversations with multiple questions and responses. Another crit-
ical distinction lies between open-domain and closed-domain (or domain-specific)
conversations. According to Ramesh et al. (2017), open-domain conversations mir-
ror natural human interactions where topics may shift across domains over time,
e.g. similar to exchanges on social media platforms. These conversations are chal-
lenging to automate due to the extensive knowledge required to generate reasonable
responses across various topics. In contrast, closed-domain conversations operate
within limited knowledge boundaries specific to particular domains, such as cus-
tomer support, health care service, e-learning, etc., where interactions remain fo-
cused on addressing specific purposes without deviating from the intended domain
(Ramesh et al., 2017).

The literature shows a well-defined problem formulation for dialogue systems. First,
a dialogue session refers to a complete conversational exchange. If a session consists
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of only one interaction between two participants, comprising a query and a response,
it is classified as a single-turn dialogue (Shang et al., 2015). On the other hand, if
multiple exchanges occur within the session, it is considered a multi-turn dialogue
(Jurafsky, 2000). In such cases, the final utterance serves as the response, while the
preceding exchanges form the context. Lastly, when a conversation involves only two
participants, it is known as a dyadic dialogue. And if more than two individuals are
engaged, it is referred to as a multi-party dialogue (Hsueh et al., 2006).

In addition to conversational data, external resources such as structured documents,
knowledge graphs, or unstructured text can support dialogue generation (Fu et al.,
2022). In multi-modal settings, inputs like images, videos, or adios may also be
used, depending on the task (Fu et al., 2022).

In essence a dialogue system’s goal is to return a response to a query from a user,
while taking the conversational data meaning the chat history and external sources
if available into account. Therefore, Fu et al. (2022) formally describe a dialogue
system as follows: Given a dialogue context C = X1Y1X2Y2 . . . Xt−1Yt−1 and the
last query Xt as an input from one user, a model should generate an appropriate
response Yt, utilizing external resources S. Thus, a dialogue system can be expressed
as:

Ŷ = arg max
Y ∈Ω

P (Y | C, S)

where Ω represents the search space for possible responses, and S serves as the
external knowledge base to support the dialogue.

In a retrieval-based dialogue system, the search space consists of a predefined set
of candidate responses Y1, Y2, Y3, . . . , Yn, where n is typically equal or proportional
to the dataset size. In contrast, a generation-based system has a search space that
grows exponentially with the vocabulary size |V| and the allowable response length
range [lmin, lmax]. At the core of the model lies a search and scoring function P , which
navigates the hypothesis space to identify the most suitable response Ŷ . Therefore,
search spaces differ for different models and approaches, for retrieval-based and
generative-based approaches, more details are provided in their respective subsec-
tion.

2.1.4 Rule-based Chatbots

Rule-based chatbot design relies on predefined patterns and rules to generate re-
sponses based on user input (Adamopoulou & Moussiades, 2020). These chatbots
use pattern-matching algorithms to compare user queries with stored answers, se-
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lecting the most appropriate response from a predefined set (Hussain et al., 2019).
Context can also influence rule selection, allowing for slightly more dynamic inter-
actions with the user (Marietto et al., 2013). The main advantages of this approach
include fast response times and ease of implementation, as no complex learning mod-
els are required (Jia, 2009; Singh & Namin, 2025). However, rule-based chatbots
struggle with grammatical and syntactic variations in user input, leading to rigid
and sometimes repetitive responses that lack human-like spontaneity (Ramesh et al.,
2017). Further, maintaining and expanding the rule set is labour-intensive, as thou-
sands of rules may be needed for a chatbot to function effectively (Adamopoulou &
Moussiades, 2020).

Inspired by the Turing test proposed by Alan Turing in 1950, researchers have devel-
oped various rule-based chatbots to simulate human-like conversations to convince
users that they are chatting with a real person (Shieber, 1994; Shum et al., 2018;
Turing, 2009). One of the earliest examples is Eliza, created by Joseph Weizen-
baum in 1966, which used hand-crafted scripts to mimic a Rogerian psychotherapist
through pattern matching, despite lacking true understanding of the conversation
(Weizenbaum, 1966). Kenneth Colby developed Parry in 1972, that introduced a
more advanced structure by incorporating a mental model that simulated paranoia,
allowing it to adjust its responses based on emotional intensity (Colby et al., 1972).
In addition to the pattern matching algorithm, Colby has built in a parsing module,
which attempts to understand the interview by extracting meaningful information
from the input and then feeding it as input to the interpretation module, where
the pattern matching then takes place (Colby, 1981). Later, Alice, introduced by
Richard Wallace, utilized Artificial Intelligence Markup Language (AIML) to enable
recursive pattern matching, making chatbot customization more accessible (Wallace,
2009). Although Alice demonstrated improvements in chatbot design, it still strug-
gled with long-term dialogue coherence, which prevented it from passing the Turing
test (Shieber, 1994; Shum et al., 2018). These chatbots illustrate the gradual ad-
vancements in rule-based systems, from simple scripted responses to more dynamic
conversational models, yet they remain limited by predefined patterns and lack true
conversational understanding (Shum et al., 2018).

2.1.5 Retrieval-based Chatbots

Retrieval-based methods in chatbot design operate on the principle that the ap-
propriate dialogue response exists within a predefined set of candidate responses
(Fu et al., 2022). As Fu et al. (2022) explain, these methods evaluate all possible
replies in a candidate set, assigning each a score to determine its appropriateness
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for the current context, ultimately selecting the highest-scoring candidate as the
output response. The core components of a retrieval-based model include a score
function s() which determines the matching score for context-response pairs, and
an encoding function e() that converts natural language context and responses into
dense representations (Fu et al., 2022). According to Huang et al. (2020), exist-
ing retrieval-based methods can be categorized into "shallow interaction" and "deep
interaction" based on the forms of these encoding and score functions.

In shallow interaction, as Huang et al. (2020) elaborate, candidate responses and
queries are encoded independently. After the encoding phase the best possible an-
swer is found by the highest scoring pair of context and response, which can be
formulated as:

Ŷ = arg max
Y ∈Y

s(e(C), e(Y ))

where Y represents the candidate set (Fu et al., 2022). Early retrieval-based methods
used shallow interaction and primarily relied on lexical co-occurrence or syntax anal-
ysis (Kang et al., 2014; M. Wang et al., 2015; Z. Wang et al., 2017). Common scoring
techniques include TF-IDF (Term Frequency - Inverse Document Frequency), the
number of common words, and using dependency trees (Kang et al., 2014; M. Wang
et al., 2015; Z. Wang et al., 2017). With the rise of neural networks and deep learn-
ing, modern approaches increasingly use neural scoring functions, such as bilinear
functions, multi-layer perceptrons, or Euclidean distance (Hu et al., 2014; Lu & Li,
2013; Yang et al., 2018). The encoding function could be handled by a Convolutional
Neural Network (CNN), a Recurrent Neural Network (RNN), or a combination of
both (Fu et al., 2022).

A retrieval-based method is considered as a deep interaction if the interaction be-
tween the dialogue context and a candidate response begins during the encoding
phase, such that their representations are computed with mutual awareness (Fu et
al., 2022). In this case, the scoring function is defined as:

Ŷ = arg max
Y ∈Y

s(e(C, Y ))

Here, the key difference lies in the encoding function e(·, ·), which encodes the con-
text and response jointly (Fu et al., 2022). Many deep interaction models treat
multi-turn dialogues as sequences, with each utterance as an element (Y. Wu et al.,
2016; Yang et al., 2018; X. Zhou et al., 2018). The overall matching between the
dialogue context and a candidate response is then broken down into the matching
between each individual utterance and the response (Fu et al., 2022).
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Retrieval-based approaches also rely on predefined responses, similar to rule-based
methods(C.-W. Liu et al., 2016). However, the key distinction lies in their use of
more advanced techniques, such as machine learning algorithms or semantic simi-
larity measures for the scoring function, which draw on information from databases
or knowledge bases rather than relying on human-made rules (C.-W. Liu et al.,
2016; Suhaili et al., 2021). Suhaili et al. (2021) highlight that since retrieval-based
chatbots use pre-defined responses, they produce no grammatical errors, requiring
only sufficient intelligence to match requests with appropriate responses. However,
these benefits come with constraints, Caldarini et al. (2022) point out that creating a
knowledge base for retrieval-based approaches can be expensive and time-consuming,
requiring extensive training and a comprehensive knowledge base, while their sim-
plicity in design limits their ability to handle advanced queries.

2.1.6 Generative-based Chatbots

In contrast to retrieval-based methods, which rely on selecting the most suitable
response from a predefined set, generative-based approaches create responses dy-
namically (Fu et al., 2022). In this paradigm, the chatbot generates text word
by word, constructing entirely new sentences based on the user’s input (Singh &
Namin, 2025). Generative-based chatbot systems are powered by deep learning
models that learn linguistic patterns and semantics from large corpora of text, com-
mon algorithms include RNN and Long Short-Term Memory (LSTM) (Caldarini
et al., 2022). While these models laid the foundation for generative dialog systems,
they often suffer from limitations such as generating low-quality or inconsistent re-
sponses (Hussain et al., 2019).

Generative dialogue systems are typically implemented using an encoder-decoder ar-
chitecture, a foundational structure in sequence-to-sequence learning models (Sabry,
2023). In this architecture, the encoder takes the user’s input, typically a sentence or
sequence of words, and converts it into a fixed-length internal representation known
as a context vector or hidden state (Cho et al., 2014; Murel & Noble, 2024). This
vector serves as a so called dense summary or representation of the semantic and
syntactic information in the input, capturing the meaning of the entire sentence
(Fu et al., 2022). The decoder then uses this context vector to generate a response
(Cho et al., 2014). It does so sequentially, producing one unit of text at a time (Fu
et al., 2022). Each unit—called a token, it can represent a word, subword, or even
a single character depending on the tokenizer used by the model. For example, the
word "ChatGPT" is split by the GPT-4o model into the tokens "Chat" and "GPT",
while a more fine-grained tokenizer might split it into smaller parts like "Ch", "at",
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"G", "PT" (OpenAI, 2024d). The decoder begins by generating the first token of
the response based on the context vector. Then, it uses both the context vector
and the previously generated tokens to produce the next token. This continues until
an end-of-sentence token is generated or a predefined maximum length is reached.
This token-by-token generation process is why the method is called auto-regressive,
meaning the generation of each token depends on the tokens that came before it.

Formally, the goal of a generative dialogue system is to find the most probable
response Ŷ from the space of all possible responses Ω. The model aims to maximize
the joint probability of all individual tokens in the response, given the user’s input
C and the tokens that have already been generated:

Ŷ = arg max
Y ∈Ω

|lY |∏
i=1

pθ(yi | C, y<i)

Here, pθ denotes the model’s conditional probability function parameterized by θ,
|lY | is the length of the response Y , yi is the i-th token in the response, and y<i

represents all generated tokens before the i-th timestep (Fu et al., 2022). Although
this method tends to produce high-quality and coherent responses, it suffers from
slow inference speeds because of its sequential nature. Because each word must
be generated in order, parallelization is not possible during the generation phase.
To address this limitation, researchers have proposed non-auto-regressive generation
techniques, which assume that each token in the response is conditionally indepen-
dent from others given the input context. This allows the model to generate all
tokens in parallel, significantly speeding up the response time:

Ŷ = arg max
Y ∈Ω

|lY |∏
i=1

pθ(yi | C)

(Fu et al., 2022). Although non-auto-regressive methods are faster, they currently
lag behind in terms of the quality and coherence of the generated responses Kaiser
et al., 2018; Lee et al., 2018. Nonetheless, they open promising avenues for real-time
conversational systems and remain an active area of research.

A major breakthrough in generative approaches was the introduction of the Trans-
former architecture by Vaswani et al. (2017). Unlike earlier approaches based on
RNNs or CNNs, the Transformer dispenses both recurrence and convolutions en-
tirely. Instead, it relies solely on a mechanism called self-attention to model de-
pendencies between words (Vaswani et al., 2017). On the one hand, RNNs process
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sequences by maintaining a hidden state that is updated at each time step (Sale-
hinejad et al., 2017). This allows them to handle variable-length inputs and outputs,
but they suffer from problems like vanishing gradients and difficulty modelling long-
range dependencies (Salehinejad et al., 2017). CNNs, on the other hand, capture
local features in sequences through convolutional filters, but struggle to model global
sequence structure unless stacked deeply (Yin et al., 2017).

The Transformer architecture addresses these limitations by using self-attention to
capture relationships between all words in a sequence, regardless of their positions.
This enables parallel processing of tokens during training and more effective learn-
ing of contextual information (Vaswani et al., 2017). Although the Transformer
is also auto-regressive during generation, meaning predicting one token at a time
based on the preceding ones, it differs from RNNs in how it processes information.
Unlike RNNs, which must compute each step in strict sequence (token by token),
the Transformer allows parallel computation during training by attending to all po-
sitions in the input at once using self-attention (Salehinejad et al., 2017; Vaswani
et al., 2017). This removes the constraint of processing tokens strictly one after
the other and significantly improves efficiency (Vaswani et al., 2017). Due to its
superior performance, scalability, and training efficiency, the Transformer architec-
ture has become the de facto standard in natural language processing (Hadi et al.,
2023; Vaswani et al., 2017). Today, most state-of-the-art LLMs, including GPT,
Claude, Gemini, and LLaMA and many more, are based on variants of the Trans-
former architecture (Hadi et al., 2023). This paradigm shift paved the way for the
development of LLMs, which are Transformer-based models trained on massive text
corpora comprising billions of tokens. These models are capable of understanding
and generating human-like text across a wide range of tasks, including question an-
swering, summarization, translation, and dialogue (Hadi et al., 2023). The following
section will dive deeper into Large Language Models, providing an overview of their
tasks, applications, and the key challenges and limitations they face.

2.2 Large Language Models

LLMs represent a transformative leap in NLP, often described as “next-generation”
or “transformative” due to their significant impact on the field (Hadi et al., 2023;
J. Wei, Tay, et al., 2022). These models are primarily built upon the Transformer
architecture, a deep learning innovation introduced by Vaswani et al. (2017) in their
landmark paper "Attention is All You Need". Unlike earlier models, the Trans-
former’s self-attention mechanism enables the efficient modelling of long-range de-
pendencies and parallel processing during training, which has made it possible to
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scale models massively across multiple GPUs (Carion et al., 2020; Shaw et al.,
2018). This foundation has led to the development of some of the most powerful
LLMs, such as OpenAI’s GPT series (Ghojogh & Ghodsi, 2020), Google’s BERT
and Gemini (Devlin et al., 2019; Pichai & Hassabis, 2023), Claude from Anthropic
(Anthropic, 2023), Llama by Meta (Touvron et al., 2023), and many other models
that revolutionized the way machines process and generate human language. One of
the core strengths of LLMs lies in their ability to ingest and process vast amounts of
unstructured text data, capturing semantic relationships between words and phrases
(Adnan & Akbar, 2019; Dong et al., 2023). Furthermore, many of these models have
been extended to handle not only textual inputs but also multi-modal data, such
as visuals and audio, trained to understand semantic relationships between them
(Awais et al., 2025). The pre-training and fine-tuning paradigm has become central
to their training methodology. Models are initially exposed to massive internet text
corpora to acquire general language understanding, and then fine-tuned on specific
datasets to adapt to particular tasks (Hadi et al., 2023; Naveed et al., 2023). For
instance, ChatGPT, LLaMA, and Falcon, which are all variants of the Generative
Pre-trained Generative Pre-trained (GPT) Transformer model, have been fine-tuned
for diverse applications, ranging from conversational agents to specialized research
tools (Chiang et al., 2023; Katz et al., 2024; Zhuo et al., 2023). The release of GPT-1
in 2018 marked the beginning of this new era, with its 117 million parameters show-
casing the potential of transformer-based architectures in generating coherent text
(Akbar et al., 2021; Radford et al., 2018). Subsequent iterations, such as GPT-3
in 2020 and GPT-4 thereafter, demonstrated the ability of a variety of NLP tasks
and even improved the ability coherency and natural sounding (Floridi & Chiriatti,
2020; Hadi et al., 2023). Major tech companies joined the AI race, introducing their
own models, e.g. Meta’s LLaMA (Touvron et al., 2023), Google’s Gemini (Pichai &
Hassabis, 2023), Amazon’s Alexa-enhanced AI (Khatri et al., 2018), and Huawei’s
Pangu (Zeng et al., 2021). Today, LLMs have become foundational to modern AI
systems, enabling capabilities such as dialogue generation, summarization, transla-
tion, and beyond (Hadi et al., 2023).

2.2.1 Large Language Model Tasks

LLMs have demonstrated remarkable capabilities across a wide range of NLP tasks.
Hadi et al. (2023) published a comprehensive overview of LLMs presenting a tax-
onomy of LLMs tasks: In the domain of question answering, LLMs leverage their
semantic understanding to accurately extract or generate responses from complex
textual contexts (Su et al., 2019). Their ability to produce coherent and contex-
tually appropriate output also makes them highly effective in text generation for
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applications such as article writing, social media posts, and source code creation
(Celikyilmaz et al., 2020; Zhu et al., 2023). In language translation, LLMs provide
fluent and accurate translations, enabling seamless communication across linguistic
boundaries (L. Wang, Lyu, et al., 2023). Their text classification capabilities sup-
port efficient organization of large-scale textual data, facilitating sentiment analysis,
spam detection, and content moderation (Labonne & Moran, 2023; Mullick et al.,
2023; W. Zhang et al., 2023). Moreover, LLMs are proficient in summarization, con-
densing lengthy documents into concise texts while preserving key information (T.
Zhang et al., 2024). As previously told, LLMs also play a pivotal role in powering
virtual assistants and chatbots through natural and responsive conversational inter-
actions, while reducing workload of human personnel, showing again the potential
of improved HCI and customer support and service (Hadi et al., 2023; Luo et al.,
2023; Susanto & Khaq, 2024). In information extraction, LLMs enable the identifi-
cation of entities, relationships, and events from unstructured text, contributing to
the construction of structured knowledge bases (X. Wei et al., 2023). In the area of
semantic search, LLMs interpret user intent beyond keyword matching, improving
the relevance and accuracy of retrieved information (Zhuo et al., 2023). Finally,
LLMs have advanced the field of automated speech recognition by providing ro-
bust transcription capabilities, even in the presence of accents or domain-specific
vocabulary (Radford et al., 2023). Collectively, these functionalities underscore the
transformative impact of LLMs in advancing language-based AI systems for HCI.

2.2.2 Applications of Large Language Models

Given their ability to perform a wide range of tasks, LLMs are increasingly being
adopted across various domains and industries. Hadi et al. (2023) and Naveed et al.
(2023) presenting a variety of applications in various fields: In the medical domain,
LLMs demonstrate significant potential across various applications, including medi-
cal education, clinical decision-making, radiologic and genetic analysis, patient com-
munication, medical imaging interpretation, and drug discovery, thereby enhancing
both patient care and healthcare delivery systems (Hadi et al., 2023; Naveed et al.,
2023). In education, LLMs are being leveraged to personalize learning, assist with
assignments and feedback, support teaching, and automate grading. Although their
effectiveness, potential drawbacks include decline in students’ creativity and critical
thinking skills, the risk of inadequate training and contextual fine-tuning limiting
their effectiveness, and fears of job displacement for educators, potentially deepening
educational inequality (Hadi et al., 2023; Naveed et al., 2023). In the finance sector,
LLMs are being applied to financial tasks such as risk assessment, market predic-
tion, and algorithmic trading, offering enhanced decision-making (Hadi et al., 2023;
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Naveed et al., 2023). In engineering, LLMs are increasingly being utilized for tasks
such as code generation, debugging, design support, and troubleshooting, although
challenges remain regarding the accuracy of complex technical computations (Hadi
et al., 2023; Naveed et al., 2023). In the media and entertainment industry, LLMs
are revolutionizing content creation, personalization, and audience engagement by
enabling automated media generation, personalized recommendations, and virtual
presenters, thereby transforming how content is produced, curated, and consumed
(Hadi et al., 2023). LLMs help to transform the legal profession by enhancing legal
research, drafting, and decision-making, with tools like Chatlaw (Cui et al., 2023).
Nonetheless, there are observed inaccuracies in legal citations, which highlight the
need for careful integration into legal practice (Carrick & Kesteven, 2023). Lastly,
LLM-based chatbots and virtual assistants are transforming customer service by
offering scalable, efficient, and instant responses to customer inquiries (Hadi et al.,
2023; Olujimi & Ade-Ibijola, 2023). Unlike human staff, they can handle large
volumes of interactions simultaneously, reducing wait times and boosting customer
satisfaction (Howell et al., 2023). This automation also lowers costs by reducing
the need for large support teams (Allen et al., 2023). Thus, an increasing number
of companies employing NLP to support human staff instead of employing more
expensive human personnel (Olujimi & Ade-Ibijola, 2023). This eases the workload
while maintaining timely and personalized service. In IT support, LLMs can provide
24/7 help with common issues, allowing human staff to focus on more complex tasks
(Susanto & Khaq, 2024).

2.2.3 Limitations and Challenges of Large Language Models

While LLMs have made notable advancements in various fields, they still face signif-
icant limitations and challenges (Hadi et al., 2023; Naveed et al., 2023). Although
LLMs are often viewed as forerunners of Artificial General Intelligence (AGI), their
impressive performance in conversational tasks doesn’t fully address the many ar-
eas in which they fall short, making them unlikely to represent an early form of
AGI (Hadi et al., 2023). For example, LLMs face significant challenges in terms of
training data, as the vast size and complexity of datasets make them prone to bi-
ases, duplicates, and privacy leaks, while also complicating quality assessment and
accurate evaluation due to the black-box nature of data distribution and unclear
data requirements for specific tasks (Kaddour, 2023; Kaplan et al., 2020). Tok-
enization in LLMs involves breaking down words into smaller units, often using sub-
word tokenization to handle unfamiliar vocabulary while managing computational
complexity (Sennrich et al., 2015). However, this method can lead to issues like
inconsistent token combinations affecting API pricing (Hadi et al., 2023), as well as
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unexpected model responses in multilingual settings, such as in Mandarin variations
due to different spacing in prompts (Fujii et al., 2023). Training LLMs incurs high
computational costs, both financially and environmentally, requiring vast resources,
and scaling these models poses further challenges, prompting the introduction of
Computer Optimal Training to enhance efficiency (Kaplan et al., 2020; Schwartz
et al., 2020; Strubell et al., 2020). Again, Fine-tuning LLMs for custom tasks needs
a high amount of memory and computational resources, limits accessibility, and con-
tribute to high carbon emissions (Hadi et al., 2023; Schwartz et al., 2020; X.-K. Wu
et al., 2025). Another major challenge of LLMs is high inference latency, primar-
ily caused by large memory footprints and lack of model parallelism (Hadi et al.,
2023). Further, a key challenge of LLMs is the limited context length, which affects
their ability to interpret prompts and perform semantic analysis effectively (Hadi
et al., 2023). Next challenge for LLMs is knowledge updating and refinement, as
the knowledge acquired during pre-training is limited and can become outdated over
time (Naveed et al., 2023). Yet retraining the model with updated data is costly
and not a sustainable solution (Hadi et al., 2023). Lastly, Hadi et al. (2023) describe
the risk of foundation models, where a foundation model refers to a base model that
serves for various NLP tasks. For example following risks are listed by Hadi et al.
(2023): Bias, which can arise from biased training data, user inputs, or algorith-
mic design itself, leading to unfair or discriminatory outputs. Further, information
hallucination occurs when models generate plausible-sounding but factually incor-
rect content due to gaps in knowledge or context. Lack of explainability makes it
difficult to understand or justify the model’s outputs, which raises concerns around
trust and accountability. Reasoning errors highlight limitations in logic, planning,
and common sense, often causing flawed conclusions. Security vulnerabilities, such
as prompt injection, jailbreaks, and data poisoning, can manipulate model behaviour
in harmful ways. Adversarial attacks exploit model weaknesses by subtly altering
inputs to trigger incorrect or dangerous responses. Behavioural changes over time,
also referred as model drift, may lead to unpredictable performance fluctuations.
Lastly, foundation models may struggle with basic tasks like spelling and counting
due to their statistical rather than symbolic nature.

2.2.4 Countermeasures for expensive Fine-Tuning

In response to these challenges, numerous techniques and improvements have been
proposed to enhance the performance and reliability of LLMs. For example, in
the case of Fine-tuning a model on domain-specific tasks there are three prominent
alternative approaches proposed namely prompt engineering, knowledge distillation
and RAG (X.-K. Wu et al., 2025). Prompt engineering is to provide the LLM a set
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of instructions to enhance or refine the models behaviour and capabilities. A prompt
can be used to influence the conversation with an LLM providing specific rules and
guidelines (White et al., 2023).Further, Knowledge distillation is a technique used
to transfer the capabilities of a large, complex model to a smaller, more efficient
one, making it especially valuable in scenarios with limited computational resources
(X.-K. Wu et al., 2025). While fine-tuning adapts a model to specific tasks using
domain-relevant data to enhance its performance, knowledge distillation focuses on
compressing the model by transferring learned patterns and behaviours (X.-K. Wu
et al., 2025). Lastly, RAG improves the models capability by retrieving relevant
information from external knowledge bases. The relevant external information is
then fed with the query into the LLM to improve the generated response. This
type of hybrid approach combining a retrieval-based and generative-based approach
has emerged as a cheaper solution for fine-tuning LLMs for domain-specific tasks
instead of expensive fine-tuning the whole model. (S. Wu et al., 2024). Furthermore,
RAG emerged as a viable solution to mitigate against more limitations of LLMs.
For example, RAG can reduce hallucinations by filling knowledge gaps, mitigate
against outdated data and information by retrieving up-to-date data and improve
the models accuracy by more relevant and concise information retrieval (Lewis et al.,
2020). A whole new research area emerged to leverage these potential advantages,
resulting in a wide range of applications of RAG. Arslan et al. (2024) present over 50
studies which apply the RAG technology for various LLM tasks. Up to 20 studies
were dedicated to questions-answering tasks underlying the potential for RAG in
domain-specific chatbot systems.

2.2.5 Applications of Retrieval-Augmented Generation

When looking into recent literature a wide range of RAG-based chatbots have been
developed. For example, Bhat et al. (2024) built a RAG-based restaurant chatbot,
which is able to interact with customers in natural language, to improve the dining
industry. Arabi et al. (2024) implemented Habit Coach, a chatbot which supports
you to build habits on a daily-basis. Another related work is by Antico et al. (2024)
who developed a chatbot for the University of Milano-Bicocca, which is able to
retrieve university-related documents and links for students. Quidwai and Lagana
(2024) developed a RAG-based chatbot for personalized treatment recommendations
for Multiple Myeloma patients. This chatbot is able to retrieve relevant Multiple
Myeloma literature based on patient-specific genomic data. Further, Vakayil et al.
(2024) implemented a chatbot assisting victims of sexual harassment based on the
LLM Llama-2 model, which is enhanced with RAG to improve the accuracy of pro-
viding information in an understanding and helpful tone by retrieving sources from
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the government or legal system of India. Moreover, Gamage et al. (2024) build
a multi-agent RAG chatbot architecture for decision support in net-zero emission
energy systems. For the RAG logic Gamage et al. (2024) implemented four agents:
the Observer, which monitors energy environments for key events; the Behavior An-
alyzer, which interprets energy patterns for behavior analysis; the Visualizer, which
creates intuitive visualizations; and the Knowledge Retriever, which extracts and
compiles relevant documents and images. These agents working together to retrieve
the relevant context which was afterwards processed by an LLM. Again, another
work developed a RAG-based chatbot for students and staff in the university con-
text: Olawore et al. (2023) developed a chatbot for the Ulster University in Northern
Ireland leveraging information of websites about different faculties, including details
on fees, courses, modules, and assessment.

These examples highlight the growing trend of RAG-based chatbots tailored to spe-
cific domains, demonstrating their potential to enhance user interaction and support
in various sectors. Building on this development, the central aim of this master thesis
is to contribute to the field by designing, developing and evaluating a RAG-based
chatbot specifically for the university IT support of Muenster. The focus lies on
investigating whether such a chatbot can effectively assist IT staff in their daily op-
erations and whether it is likely to be adopted by students as a helpful support tool.
To lay the foundation for this, the following section provides a deeper exploration of
RAG, introducing its architecture and outlining best practices for implementation.

2.3 Retrieval-Augmented Generation (RAG)

Lewis et al. (2020) were the first to introduce the term Retrieval-Augmented Gener-
ation to describe a hybrid approach that combines generative language models with
a retrieval-based mechanism. Their core idea was to improve the factual accuracy
and scalability of generation models by incorporating relevant external documents
at inference time, rather than relying solely on parametric knowledge stored within
the model’s weights. In their formulation, RAG consists of two main components:
a retriever that selects relevant documents from a large corpus based on the in-
put query, and a generator that conditions on both the query and the retrieved
documents to produce an output. The retriever is typically based on dense vector
representations, while the generator in the original work is a sequence-to-sequence
model, specifically BART. Lewis et al. (2020) propose two variants of RAG, namely
RAG-Sequence and RAG-Token:
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In the RAG-Sequence model, each retrieved document is treated as a latent vari-
able for the entire output sequence. The model marginalizes over the top-k retrieved
documents to compute the sequence likelihood:

pRAG-Sequence(y | x) ≈
∑

z∈top-k
pη(z | x) · pθ(y | x, z) (2.1)

Here, x is the input query, z is a retrieved document, and y is the generated output.

The RAG-Token model, on the other hand, allows different documents to influ-
ence different tokens during generation. The model marginalizes over the retrieved
documents at each token position:

pRAG-Token(y | x) ≈
∏

i

∑
z∈top-k

pη(z | x) · pθ(yi | x, z, y1:i−1) (2.2)

This allows the model to dynamically switch between sources at the token level,
enabling more flexible integration of retrieved information.

With the rise of LLMs, the implementation of RAG has evolved significantly. In
modern RAG systems, such as those built with GPT-based models, the retrieved
documents are no longer treated as latent variables. Instead, the retrieved passages
are explicitly concatenated with the input query and passed to the LLM as part of
a single prompt. The LLM then generates the output in an auto-regressive manner,
attending to the full input (query + retrieved documents) at every generation step.

Formally, the modern RAG workflow with LLMs can be described as (S. Wu et al.,
2024):

Retriever(x, D) = {z1, z2, ..., zk}, zi ∈ D (2.3)

pLLM-RAG(y | x) ≈ pθ (y | concat(x, Retriever(x, D))) (2.4)

Where:

• x is the user query,

• D are all the retrievable documents,



20

• z1, . . . , zk are the top-k retrieved documents based on the query,

• a LLM generator pθ, typically a transformer-based decoder nowadays
(Naveed et al., 2023),

• and the input to the LLM is a structured prompt combining the query
and retrieved documents.

This architecture enables the LLM to access and attend to all retrieved information
simultaneously, without needing to marginalize over document-specific outputs as in
the original RAG models by Lewis et al. (2020). While this method resembles RAG-
Sequence structurally (one prompt per generation), it offers token-level flexibility
similar to RAG-Token, thanks to the self-attention mechanism of transformer-based
LLMs.

Therefore, the literature categorise the augmentation process, meaning the technical
process that integrates retrieval and generation (Fan et al., 2024) (also called Fusion
(S. Wu et al., 2024)), into three types: (1) Query-based RAG, (2) Logit-based RAG,
and (3) Latent Representation-based RAG (P. Zhao et al., 2024). These three main
types are conducted at the input, output, and intermediate layers of generators (Fan
et al., 2024). As described above as the modern RAG workflow with LLMs, Query-
based RAG concatenates the query and the retrieved documents based on the query
as an input to the generator. In Logit-based RAG, the integration occurs during
decoding by combining the generator’s output logits (meaning the internal score
before calculating the probability for the predicted next token) with those derived
from retrieved information (S. Wu et al., 2024; P. Zhao et al., 2024). For instance,
kNN-LM interpolates two next-token probability distributions during prediction,
where one is generated by the language model itself and the other is derived from
the nearest neighbours retrieved from all retrievable documents (Fan et al., 2024).
Lastly, in Latent Representation-based RAG, the retrieved documents are encoded
into intermediate representations which are fused with the generator’s hidden states
(S. Wu et al., 2024).

Figure 2 illustrates a LLM workflow compared to a Query-based RAG workflow.
On top of the figure, the generation of a response relying only on an LLM. On the
bottom of the figure, the RAG workflow is depicted, where based on the question
relevant information is retrieved to enhance the context. A prompt consisting of the
question and relevant context is then fed into the LLM to generate an accurate and
up-to-date response (LangChain, 2024a). As an demonstration the question "Who
won the german federal election 2025?" was fed into the LLM gpt-4o, on the top,
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solely relying on the knowledge of the LLM until October 2023 and at the bottom
enhanced with a Web Search able to retrieve accurate and up-to-date knowledge.

Figure 2 LLM Workflow vs. RAG Workflow (LangChain, 2024a)

2.3.1 Building a Retriever

To build a retriever for RAG it involves usually three main steps: (1) chunking the
external knowledge, (2) encoding chunks, and (3) building a vector database (S.
Wu et al., 2024). The process is depicted in Figure 3. The first step is chunking
the external knowledge, which involves dividing large documents into semantically
meaningful text chunks. The idea is that texts should be semantically independent,
and contain one core idea for models to encode to prevent ambiguities (S. Wu et al.,
2024). Further, long texts would result in considerable resource overheads, while
shorter text chunks processed faster, accelerate the encoding process and save mem-
ory costs (S. Wu et al., 2024). Thus, the main challenge of chunking techniques is to
find the best trade-off between meaningful semantics and encoding efficiency (S. Wu
et al., 2024). The second step, focuses on encoding the chunks as context vectors,
so called embeddings. LLM-based encoders generate dense embeddings, which cap-
ture the semantic meaning of text chunks, enabling content-based similarity search
rather than simple keyword matching (S. Wu et al., 2024). These encoders lever-
age large-scale pre-training and powerful representation capabilities to produce rich,
high-dimensional vectors (S. Wu et al., 2024). The last step is concerned with build-
ing a datastore, where data is stored as key-value pairs. On the one hand, keys are
high-dimensional embeddings and on the other hand values contain the correspond-
ing domain-specific knowledge. This type is a specialized datastore a so called vector
database or vector store, which enables to efficiently store, manage, and retrieve em-
beddings. The vector store leverages indexing to accelerate the search process to
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enable similarity search of embeddings and a given query embedding. Thus, the
vector store focuses on supporting efficient Approximate Nearest Neighbour (ANN)
search which enables to retrieve semantically similar chunks for a given query.

Figure 3 How to build a retriever. (Y. Wu et al., 2016)

2.3.2 Querying a Retriever

The constructed vector database now serves as the foundation for retrieving the
most relevant text chunks in response to user queries. Again, S. Wu et al. (2024)
describes the querying process with three mains steps: (1) encoding the query, (2)
employing ANN search, and (3) post-processing. The encoding of the query uses the
same encoder as the text chunks have been encoded. For example, OpenAI (2024c)
provides their embedding models text-embedding-3-small and text-embedding-3-large
to measure the relatedness of text strings. They have different size of dimensionality
and are represented as a vector list to measure the distance between two vectors,
where a small distance describes a high relatedness and a large distance suggests a
low relatedness (OpenAI, 2024c). In the second step ANN search is carried out. The
ANN search uses the existing indexing of the vector store to efficiently locate simi-
lar data through ANN algorithms and retrieves the associated values (S. Wu et al.,
2024). Common distance functions or similarity metrics which are deployed include
cosine similarity, Euclidean distance and dot product (Langchain, 2024b; OpenAI,
2024c). For example, OpenAI suggest for their embedding models cosine similarity
search, as their embeddings are normalized to the length of 1, which means that it is
computed faster than the dot product and it has the identical relatedness ranks when
using the Euclidean distance (OpenAI, 2024c). Given a distance function to measure
the similarity between the embedded query and the embedded documents, an algo-
rithm is needed to perform an efficient search over all embedded documents to find
the most similar ones (Langchain, 2024b). Therefore, S. Wu et al. (2024) presents
three advanced ANN Indexing techniques for this purpose: IVFPQ (Inverted File
System with Product Quantization) enables efficient and scalable approximate near-
est neighbor (ANN) search by clustering data into coarse partitions and compressing
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each cluster into compact sub-vectors. HNSW (Hierarchical Navigable Small World)
uses a layered graph structure where high-dimensional vectors are connected to their
nearest neighbours, allowing fast and accurate retrieval through probabilistic nav-
igation. Tree-based indexing methods like KD-Trees, Ball Trees, and Annoy orga-
nize vectors into hierarchical structures using random projections to partition the
space, enabling efficient ANN search through tree traversal. These ANN Indexing
techniques are then leveraged to retrieve the top-k nearest neighbours of the query
embedding. The post-processing step aims to refine, enhance or adapt the initial
retrieval step (S. Wu et al., 2024). Common techniques include reranking of the
initial retrieved documents, document repacking in the prompt or summarization of
initial results to reduce redundancies and unnecessary information (X. Wang et al.,
2024; S. Wu et al., 2024).

2.3.3 RAG Best Practices

Given the above insights of literature and practice a RAG System for LLMs consist
of two main components: (1) a retriever, which has the external knowledge stored
in embeddings and can be queried for retrieving similar documents and (2) a gen-
eration model which is able to process a prompt which is composed of the initial
query and the contents of the retrieved documents. Looking into RAG literature
it shows consistent efforts to enhance parts of the RAG Workflow (or also called
RAG Pipeline) to improve the response of the RAG System. X. Wang et al. (2024)
and P. Zhao et al. (2024) present RAG enhancements and best practices concerning
the input query, retriever, generator and output response of the RAG Workflow.
Due to the capabilities of LLMs not every query require RAG, thus X. Wang et al.
(2024) suggests query classification based on the task prior to the retrieval step to
determine if RAG is required or not. For example, translation tasks usually do not
require RAG where as search questions post the training date of the LLMs require
such information to be up-to-date and factually correct. Although RAG improves in-
formation accuracy and helps minimize hallucinations, repeated retrieval steps may
lead to longer response times, that is why query classification should be considered
when RAG is not frequently required in a System (X. Wang et al., 2024). Another
technique is Query Transformation with the goal of modifying the input query in
such a way to retrieve more accurate results. For example, Query2doc (L. Wang,
Yang, & Wei, 2023) or HyDE (Gao et al., 2023) generate based on the initial query
a pseudo document which is richer in relevant information. Instead of directly em-
bedding the user’s query and comparing it to the document embeddings, the pseudo
document, which reflects a hypothetical answer to the query using a LLM in HyDE’s
case, is embedded and used as the basis for retrieving relevant texts from the vec-
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tor database. Further, Data Augmentation is used to improve input data before
retrieval, where techniques such as filtering out unnecessary content, eliminating
ambiguity and vague expressions, refreshing obsolete documents, and integrating
new information are leveraged.(P. Zhao et al., 2024). Furthermore, Multi Query
Retriever decomposes the query into multiple clear sub-queries, which are generated
by the LLM to enhance the input query for retrieval (Langchain, 2024a; P. Zhao
et al., 2024). Common optimization techniques for the retriever are concerned with
the chunking of the source documents. Chunking documents into smaller segments
is essential to improve retrieval accuracy and to prevent issues with input length
limitations in large language models (X. Wang et al., 2024). This segmentation can
be performed at different levels of granularity (X. Wang et al., 2024). Token-level
chunking is simple to implement but may disrupt sentence structure, potentially re-
ducing retrieval effectiveness. Sentence-level chunking offers a practical balance by
maintaining semantic coherence while remaining efficient. Semantic-level chunking,
on the other hand, leverages LLMs to identify meaningful breakpoints, preserving
context more effectively but at the cost of increased computational time. Thus, the
chunk size plays a critical role in retrieval performance (X. Wang et al., 2024). Larger
chunks offer more contextual information, which can improve understanding but also
lead to longer processing times. In contrast, smaller chunks are quicker to process
and tend to boost retrieval recall, though they might not contain enough context to
fully capture the meaning of the original content. For example, the LLM GPT-4o
has a context window of 128,000 tokens which should be considered when feeding
the prompt with chunks before generation (OpenAI, 2024a). Moreover, X. Wang et
al. (2024) describes that for RAG applications, choosing the right vector database
directly impacts performance, especially when dealing with large-scale or cloud-
based deployments. Key criteria for selecting a vector database include support
for multiple index types, billion-scale vector handling, hybrid search capabilities,
and cloud-native integration. Multiple indexing options allow flexibility to optimize
searches based on different use cases, while billion-scale support ensures scalability
for massive datasets. Hybrid search enhances accuracy by combining vector similar-
ity with keyword-based search, and cloud-native features simplify deployment and
management. (X. Wang et al., 2024) did a comparison of five open-source vector
databases: Weaviate, Faiss, Chroma, Qdrant and Milvus, where Milvus stands out
fulfilling all the presented criteria. Another enhancement is recursive retrieval which
repeatedly queries the vector database to uncover deeper and more accurate content
(P. Zhao et al., 2024). Next is the technique of re-ranking of the initial retrieved
documents to improve the relevance of the retrieved documents and to ensure the
most relevant information is prioritized (X. Wang et al., 2024). This phase em-
ploys more accurate and resource-demanding techniques to reorder the documents,
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enhancing the similarity between the query and the top-ranked results (X. Wang
et al., 2024). For example, DLM Reranking uses fine-tuned deep language models
to classify document relevancy based on query-document pairs, while another tech-
nique called TILDE Reranking calculates token probabilities independently to score
documents (X. Wang et al., 2024). Moreover, Document Repacking deal with the
order of the retrieved documents placed into the prompt before generation with the
LLM (X. Wang et al., 2024). The motivation behind it ware observed by N. F. Liu
et al. (2024) who found out, that the performance of considering relevant context
within the input for a LLM is the highest when it is places at the beginning or end
of the prompt. Therefore, repacking the documents in an descending or ascending
order based on relevancy can have an impact on the response generation (X. Wang
et al., 2024). Further, the technique of Summarization is used after retrieval and
before generation to check the retrieved documents if they contain redundant or
unnecessary information to avoid long prompts which can slow down the generation
or accuracy of the response (X. Wang et al., 2024). Lastly, prompt engineering is
used for generator enhancement. In the context of RAG prompt engineering is addi-
tionally utilized to fine tune the generator to improve the quality of the final output.
For example, Chain of Thought Prompt (J. Wei, Wang, et al., 2022) improve the
reasoning abilities of the LLM by encouraging it to generate intermediate steps when
solving complex problems. Active prompting tries to generate multiple and mean-
ingful questions based on the user query (Diao et al., 2023). And lastly, Step-Back
Prompting is a technique by asking the LLM to take a step back and look at the big
picture before solving a problem, meaning an abstraction from the original query
to let the LLM grasp the higher-level concepts of the question (Zheng et al., 2023).
Overall, these enhancements show various ways of improving the RAG Pipeline for
LLMs reflecting the relevancy and ongoing research of RAG and the striving to find
a balance between the trade-off of high quality responses and resource efficient and
fast runtime.

2.3.4 Evaluation of Retrieval-Augmented Generation

Evaluating RAG systems presents several unique challenges due to the complex in-
teraction between the retrieval and generation components(Yu et al., 2024). In the
survey by Yu et al. (2024), they explain that it is not enough to look at each part
of the RAG pipeline separately, since the quality of the final output depends on
how well the retrieved information is used in generation. This subsection summa-
rizes the main findings of their work and gives an overview of the most important
aspects of RAG evaluation. It covers the key challenges, the evaluation criteria for
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both retrieval and generation, common metrics used to measure performance, and
additional evaluation requirements discussed in recent literature:

A key difficulty in assessing the retrieval component lies in the dynamic and vast na-
ture of potential knowledge sources, ranging from static databases to the constantly
evolving web. This diversity demands metrics that go beyond traditional precision
and recall, as they cannot fully capture the temporal relevance, contextual speci-
ficity, and filtering quality necessary in RAG applications. Moreover, information
decay over time and source heterogeneity introduce additional complications for con-
sistent evaluation. On the generation side, the main challenges include assessing the
faithfulness and factual correctness of the output in relation to retrieved documents,
while also ensuring relevance to the user query and overall textual coherence. Tasks
such as open question answering add subjectivity, complicating the definition of a
universally "correct" response (Rosset et al., 2024). Importantly, evaluating a RAG
system as a whole cannot be accomplished by assessing its modules in isolation,
since the quality of the generated output often hinges on how effectively retrieved
content is leveraged. The combined evaluation must consider the added value of
retrieval to generation, system latency, robustness to ambiguous inputs, and user
performance factors such as clarity and usability.

To capture these dimensions, several key evaluation objectives have been proposed
by Yu et al. (2024). For the retrieval module, two primary relations are examined:
the relevance of retrieved documents to the query, and the accuracy of selected
documents in relation to the total candidate documents. These are operational-
ized through relevance and accuracy scores. In the generation module, relevance,
faithfulness , and correctness are central criteria. Relevance assesses how well the
generated response aligns with the user’s intent and the informational needs ex-
pressed in the question. Faithfulness measures the degree to which the generated
content accurately reflects and does not contradict the retrieved source documents.
Correctness evaluates whether the generated response is factually accurate when
compared to a human-validated or ground truth answer. These metrics collectively
measure how well the output reflects the users need, adheres to the content of
the retrieved sources, and aligns with a sample response. Beyond these primary
components, additional requirements for comprehensive RAG evaluation include la-
tency, diversity, noise robustness, rejection capability when insufficient information
is present, and counterfactual robustness. Further aspects such as readability, toxi-
city, and perplexity are also relevant when aligning chatbot behaviour with human
preferences.
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For retrieval quality, both non-rank and rank-based metrics are employed. Non-rank
metrics include Accuracy, Precision, and Recall@k, which evaluate the relevance of
selected documents without considering their order. Rank-based metrics, such as
Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP), account for the
position of relevant results in the ranked list, rewarding systems that prioritize more
useful documents earlier. For generation quality, the evaluation focuses on linguistic
and semantic attributes. Classical metrics like BLEU, ROUGE, and F1 Score are
still widely used to compare with reference answers. However, newer methods such
as BERTScore leverage contextual embeddings to evaluate semantic similarity more
robustly. Furthermore, LLMs as judges have emerged as a promising automatic
evaluation technique, where large language models assess the quality of generated
text across dimensions such as coherence, fluency, and informativeness, often guided
by detailed scoring prompts. This shift from reference-based to context-aware eval-
uation allows for more nuanced, scalable, and human-aligned quality assessments.

In conclusion, the evaluation of RAG systems requires a multidimensional and in-
tegrated approach, encompassing document retrieval relevance, generative align-
ment and correctness, system performance metrics, and user focused considerations.
While existing benchmarks address isolated aspects of this pipeline, a truly holistic
evaluation framework must unify these layers to provide meaningful insights into
RAG system quality and usability (Yu et al., 2024).

2.4 Economical effects of Chatbots

In recent years, various companies across industries have successfully implemented
AI chatbots in customer service and support to achieve significant economic ef-
fects. For example, the fashion brand Motel Rocks integrated Zendesk Advanced
AI to enhance self-service capabilities, allowing agents to focus on complex queries
(Zendesk, 2024). This led to a 43% deflection of tickets, a 50% reduction in ticket
volume, and a 9.44% increase in customer satisfaction. Camping World addressed
its overburdened call center by deploying IBM’s AI assistant Arvee, which operated
24/7 and improved customer engagement by 40%, cut wait times by 33 seconds,
and increased agent efficiency by 33% (IBM, 2024). Similarly, Australian telecom
giant Telstra introduced “Ask Telstra” using Microsoft’s OpenAI service to sum-
marize customer histories and fetch answers in seconds, reducing follow-up on calls
by 20% and improving agent effectiveness, where 90% of agents reported enhanced
performance and 84% of agents said it positively impacted customer interactions
(Microsoft, 2024). ClickUp, a project management platform, adopted Maven AGI’s
Co-Pilot to provide AI-generated ticket summaries and suggestions, which boosted
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resolution speed by 25% solves per hour and allowed the team to shift focus toward
customer retention strategies (AGI, 2024). At Six Flags, a Google Cloud-powered
Generative AI virtual assistant helped visitors order food, navigate the park, and
access ride wait times, significantly enhancing guest experience (Flags, 2023). Dur-
ing the COVID-19 crisis, TEAG, a German energy supplier, implemented a chatbot
in just 14 days to handle FAQs, achieving 68% automation despite limited staffing
(moinAI, 2025a). Fressnapf, a pet supply retailer, achieved an 86% automation
rate in customer service, with a Customer Satisfaction Score of 75% and a human
takeover rate as low as 0.3% (moinAI, 2025b). Geberit, a manufacturer of sanitary
products, used its chatbot to automate 47% of inquiries in multiple languages from
customers and businesses and reduced support requests by 25%, while also gener-
ating leads from 10% of conversations (moinAI, 2023). Chocoversum, a chocolate
museum, used a chatbot to handle 77% of inquiries and increased online ticket sales
by 41%, offering services in both English and German (moinAI, 2025c). Lastly,
the Frankfurter Allgemeine Zeitung (FAZ) used an AI chatbot in its subscription
shop and paywall, automating 71% of inquiries and achieving an 18% click conver-
sion rate, which led to reduced cancellation rates and improved customer service
(moinAI, 2025d). These cases collectively illustrate how AI chatbots contribute
to higher efficiency, reduced operational costs, improved customer satisfaction, and
increased sales or conversion across both B2C and B2B settings.
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3 Methodology

This thesis adopts the DSR Methodology as its overarching research framework.
DSR is particularly suited for research that aims to create and evaluate innovative
IT artifacts that address real-world problems. This master thesis orientates itself to
the design and engineering cycle by Wieringa (2014) to present the methods used
to develop the artifact and the evaluation of it. The engineering cycle consist of five
phases: (1) Problem Investigation, (2) Treatment Design, (3) Treatment Validation,
(4) Treatment Implementation, and (5) Implementation Evaluation. These phases
are presented in the following, explaining the design problem, the plan for solving
the problem, the requirements for validating the solution, and finally the procedures
for the evaluation of the artifact.

3.1 Problem Investigation

The given problem context is the use case of the IT Support of the University of
Muenster, which goal it is to improve the IT Support by reducing the number of
repetitive requests and by that reducing personnel cost or redirecting human per-
sonal to more valuable tasks and by increasing the availability of the IT service and
by making the access to information for students and staff member easier. Based on
an interview with the Head of IT Services the IT Support identified a chatbot as a
potential solution for this problem. So far they have tested a rule-based chatbot for
this purpose but it was not able to satisfy their requirements, there were numerous
reasons why such a chatbot was not deployed. The development of such a rule-based
chatbot in the IT Support context required an immense effort and constant main-
tenance to program the rules by hand for every possible question in that context,
thus having a limited flexibility and scalability. Further, the rule-based chatbot was
not suitable for open and complex questions which is common for support requests.
Lastly, outsourcing was an option, but it was too costly for the limited value offered
by the rule-based chatbot and would have entailed a significant loss of control over
system customization and maintenance. As a result of these factors, the project
was ultimately suspended. Now with the rise of RAG for LLMs a new solution, in
terms of DSR a treatment of a real-world problem, emerged for developing a domain-
specific chatbot for the IT Support. Thus, this master thesis explores the artifact of
a RAG-based chatbot for the IT Support of the University of Münster. According to
Wieringa (2014) design problem template this design problem could be formulated
as follows: Improve the IT Support Service by designing a RAG-based chatbot
that satisfies accuracy, availability, flexibility and scalability requirements so that
the IT Support personnel is no longer occupied with a high amount of repetitive
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requests and so that students and staff members can access the 1st-Level IT Support
at any time and get factual correct answers faster and more conveniently.

3.2 Treatment Design

The artifact developed in this master thesis is a RAG-based chatbot designed to im-
prove access to IT support information at the University of Münster. To effectively
address the problem context and fulfil stakeholder needs, the chatbot must satisfy
a set of design objectives derived from the identified requirements.

3.2.1 Design Objectives

Based on the analysis of the problem context and stakeholder expectations, the
following design objectives were formulated:

• O1: Enable easy and web-based access to the chatbot.

• O2: Ensure accurate information retrieval by loading the original sources
of the CIT website.

• O3: Ensure a scalable deployment capable of handling thousands of si-
multaneous users.

• O4: Use a modular software architecture that supports the integration of
both internal and external LLMs.

• O5: Maintain conversational context through persistent chat history.

• O6: Allow future extensibility for additional data sources and potential
chatbot features.

3.2.2 System Architecture and Implementation Design

To meet these objectives, a modular web application was designed, consisting of the
following core components:

• Frontend: A user-friendly web interface with a chat component, allowing
users to interact with the chatbot in a natural language format. This
frontend can either be integrated into the official CIT website or hosted
separately with a shared access link.
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• Backend: A RAG-based retrieval logic is implemented in the backend. It
uses a combination of a vector store and a generation module to produce
contextually relevant and accurate responses. All relevant documents from
the CIT website are scraped using automated scripts then embedded and
lastly stored in a vector database.

• LLM Integration: The generation component is model-agnostic and
supports both own hosted and external LLMs. This allows flexibility in
switching or upgrading models in the future as new capabilities become
available.

• Source Attribution: All responses include source links to the relevant
CIT webpages, enabling users to verify and explore information further.

• Memory Component: To enhance the quality of the interaction, the
chatbot maintains a memory of the chat history, ensuring coherent and
context-aware responses across multi-turn dialogues.

3.2.3 Deployment Considerations

Given that the University of Münster serves over 42,000 students and 7,000 staff
members, the system is designed for high scalability and availability. The application
is deployed in a containerized environment on the university’s Kubernetes cluster to
ensure efficient orchestration and fault tolerance.

For the initial release, the chatbot was deployed in a controlled environment with
exclusive access granted to a limited group of test users. This approach allows for
a thorough evaluation of the system before wider public deployment. Evaluation
results are discussed in Chapter 5.

With the above design and architectural decisions, a functional RAG-based chatbot
was developed. Implementation details are described in Chapter 4.

3.3 Treatment Validation

Treatment validation involves predicting the outcomes of applying the artifact within
the intended problem context. As shown in Chapter 2.2.5, RAG-based chatbots have
demonstrated their utility across diverse domains beyond academia. This suggests
strong potential for domain-specific applications, including university IT support.
Additionally, Chapter 2.4 presents evidence from similar artifacts that have improved
service efficiency and yielded positive economic effects.
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3.3.1 Expected Effects for Users

The deployment of a RAG-based chatbot by the IT support of the University of
Münster is anticipated to result in the following user benefits:

• Instant access to support: Users receive accurate answers immediately
without having to wait in hotline queues or for email replies.

• Availability outside working hours: The chatbot is accessible 24/7,
which is especially helpful for students and staff working during evenings
or weekends.

• Reduced frustration: Users are spared from navigating lengthy docu-
mentation and can ask their question directly.

• Context awareness: The chatbot can adapt responses based on user
status (e.g. student or staff) or technical parameters (e.g. operating sys-
tem).

• Multilingual support: International students and staff benefit from
communication in their preferred language.

• Potential barriers: Some users may hesitate to adopt the chatbot, par-
ticularly for sensitive or complex issues where human support is preferred.

Overall, increased user satisfaction is expected due to reduced search time and the
convenience of conversational interaction with the chatbot.

3.3.2 Expected Effects for IT Support Staff

For the IT support team, the chatbot is expected to deliver operational relief and
efficiency:

• Reduced workload: Frequently asked questions (e.g., “How do I connect
to the VPN?”) can be answered automatically.

• Lower ticket volume: Fewer repetitive questions mean more time for
complex, high-priority cases.

• Improved resource allocation: Staff can focus on tasks requiring deeper
technical insight.

• Fewer interruptions: Less phone calls leads to less interruptions which
leads to more focused work.



33

• Support for onboarding: New staff members can use the chatbot as a
knowledge base to quickly access internal resources and guides.

• Increased job satisfaction: Less time spent on routine replies allows
staff to concentrate on meaningful problem-solving.

3.3.3 Expected Economic Effects for the University

For the institution, the following economic benefits are anticipated:

• Reduced support costs: Automation of routine questions decreases the
need for human intervention in 1st-Level Support.

• Lower operational overhead: The chatbot as a new service offer re-
duces the reliance on phone and email channels.

• Scalable support: The chatbot can handle high demand (e.g. at semester
starts) without requiring additional staff.

• Long-term savings: Cost reductions through delay or elimination of
hiring additional support staff.

3.4 Treatment Implementation

The chatbot was deployed productively via the internet. However, access was ini-
tially limited to a selected group of users, ensuring that feedback could be collected
in a controlled environment before public release. This phased rollout helped assess
technical performance, user satisfaction, and usability while minimizing risk.

The chatbot is hosted on the university’s Kubernetes cluster and built using the
LangChain framework, with a Streamlit front-end. Relevant content from the CIT
website was scraped using BeautifulSoup and stored in a vector database (Chro-
maDB). The system supports integration with both internal and external LLMs,
allowing future upgrades with more advanced models. Source links are included in
the responses for user transparency and traceability. Details on the implementation
and design decision are presented in chapter 4.

3.5 Implementation Evaluation

The evaluation of the implemented chatbot follows a mixed-methods approach, com-
bining both quantitative and qualitative data collection techniques to comprehen-
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sively assess the system’s performance and stakeholder impact. This includes three
surveys targeting different evaluation objectives:

• Survey 1 – Users: This survey captures user preferences regarding in-
formation retrieval strategies (e.g., Google, CIT website, generic LLM, or
the RAG-based chatbot) and the perceived usefulness and convenience of
the chatbot.

• Survey 2 – IT Staff: This survey investigates the chatbot’s impact on
internal work processes, including the reduction of repetitive questions,
perceived workload changes, and the usefulness of the chatbot as a support
tool.

• Survey 3 – Response Accuracy: This evaluation assesses the factual
correctness of chatbot-generated answers for the top 8 most frequently
asked support questions. These questions were provided by the Head
of IT Services. Each generated answer was manually compared to the
official information published on the CIT website to verify whether the
response accurately reflects the content of the source. For that a binary
scoring system is applied across four key dimensions: factual correctness,
completeness, clarity, and correct source attribution. Yielding an accuracy
score from 0 to 4 per response. The final accuracy score is derived by
averaging the results across all tested questions.

Survey 1 and 2 incorporate both structured Likert-scale items (1–5) for statistical
analysis and open questions to gather qualitative insights, such as user experiences,
feedback, and suggestions for improvement. To analyse the responses for the open
questions, a qualitative content analysis was conducted. The responses were sys-
tematically examined to identify recurring themes and develop relevant categories.
These categories enabled the summarization of feedback across multiple participants
and supported the identification of key issues and user perceptions related to the
chatbot. To support the qualitative content analysis, the LLM ChatGPT (GPT-4
by OpenAI) was employed to serve as a classification engine. The tool was primarily
used to assist in the initial structuring of responses, identifying recurring themes,
and formulating preliminary categorizations. Its use served as a means to enhance
efficiency during the coding process. All outputs generated by the AI model were
critically reviewed and cross-checked against the original responses. Modifications
and corrections were made where necessary to ensure the accuracy and validity of
the final analysis. Thus, while ChatGPT provided useful support in processing and
organizing the qualitative data, the final categorization, coding, and interpretation
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were carried out and validated by the author in line with established principles of
qualitative content analysis.

Survey 3 provides an accuracy evaluation framework comparing the chatbots accu-
racy in responding to the top 8 frequently asked questions. A detailed analysis and
the results of the evaluation are presented in Chapter 5.

3.6 Limitations

Despite the structured evaluation approach, several limitations must be acknowl-
edged. The evaluation was conducted in a controlled setting and has not yet been
tested in real operational support workflows. The number of participants was limited
to 25 end users and 10 IT support staff members, which restricts the generalizability
of the results and the statistical power of the findings. Additionally, long-term user
behaviour, chatbot fatigue, or evolving needs over time were not captured in the
short evaluation window.

Another methodological limitation concerns the insufficient exploration of stake-
holder requirements prior to the implementation phase. The initial needs were only
discussed in an interview with the Head of IT Services, where the focus primarily
lay on identifying a feasible technical solution rather than thoroughly investigating
the expectations of end users or support staff regarding user experience and func-
tional features. Although a rule-based chatbot had previously been evaluated and
dismissed due to high maintenance efforts, lack of flexibility, and poor scalability
for open questions, no extensive follow-up study or survey was conducted to define
what a successful alternative chatbot should deliver from a user-centric perspective
for this use case. As a result, the development phase may have missed the oppor-
tunity to incorporate more tailored requirements related to usability, conversational
tone, personalization features, or accessibility. Conducting a more comprehensive
needs assessment beforehand could have provided a clearer design focus and ensured
a higher alignment with actual user and staff expectations.

From a technical perspective, the implementation is based on the LangChain frame-
work, which was selected due to its rapid development capabilities and extensive
support for RAG workflows. However, no comparison was made with alternative
frameworks such as Haystack or LlamaIndex, and as such, it remains unclear whether
LangChain offered the most efficient or reliable solution for this use case. Its re-
liance on internal abstractions and predefined functions may also have limited the
opportunity for deeper customization or optimization.
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Another limitation of the current implementation is the absence of query classifica-
tion and reranking techniques within the RAG-logic. While the system was designed
to always provide the source of the most relevant document out of the top 5 results,
the lack of query classification means that a source was provided for every ques-
tion, even if it was not contextually appropriate. Additionally, without reranking
or other advanced techniques, the document ranking was solely determined by the
similarity search relevance order in the ChromaDB vector store. As a result, the
top document was not necessarily the most relevant or the most useful to the user,
potentially leading to less accurate or less helpful responses in some cases. This
limitation opens the door for future exploration of additional RAG enhancements.

Additionally, the application was designed to be model-agnostic, and during devel-
opment, different large language models were tested. This included local models
provided by the University of Münster. While the Llama-3.3-70B model performed
reasonably well, the newer mistral-small model exhibited unstable and unexpected
behaviour during internal testing. These models were only evaluated in development
and not exposed to user-facing deployment due to accuracy issues. Ultimately, gpt-
4o-mini was chosen as the most reliable option for delivering consistent and high-
quality responses. However, gpt-4o-mini is an external service, which introduces
potential privacy concerns, especially when handling user inputs that may contain
sensitive information. Although the CIT website content is publicly accessible and
does not inherently pose a confidentiality risk, this limitation must be carefully
considered when planning a broader deployment of the application, particularly in
regard to data protection for end users and compliance with university IT data
privacy policy.
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4 Implementation of the RAG-based Chatbot

This chapter details the technical implementation of the RAG-based chatbot de-
veloped as part of this thesis. It begins with an overview of the overall application
architecture, followed by a discussion of the selected frameworks and tools, including
the rationale behind their use. Subsequently, the application logic is described in
detail, encompassing the preprocessing of documents, the individual components of
the RAG workflow, session management, and the integration with the frontend in-
terface. Finally, the chapter concludes with a description of the deployment process
on the Kubernetes cluster of the University of Münster.

For comprehensive insight into the source code, a GitLab repository was created
and made publicly accessible via the following URL:

https://zivgitlab.uni-muenster.de/j_alth12/rag-master-thesis.

The deployed instance of the RAG-based chatbot can be accessed at:

https://rag-thesis.uni-muenster.de/.

4.1 Architectural Design

The developed application is implemented in the Python programming language
using the Visual Studio Code IDE. The system architecture follows a modular de-
sign, with the LangChain framework serving as the core for implementing the RAG
workflow. For content extraction, BeautifulSoup is used to scrape relevant infor-
mation from the official CIT website. These documents are then embedded using
OpenAI’s embedding models, and the resulting vector representations are stored in
a ChromaDB vector store. The language generation is powered by the gpt-4o-mini
model, which was selected due to its strong performance during internal testing.
The user interface is built with Streamlit, which also provides session state capa-
bilities to maintain chat history during user interactions. Finally, the application is
deployed on the Kubernetes cluster of the University of Münster. For this purpose,
a Docker image was created and published via Docker Hub, allowing containerized
deployment within the cluster environment.

Figure 4 provides a visual overview of the system architecture, illustrating the core
components, including the programming language, frameworks, backend logic, and
frontend technologies. The following subsections provide a detailed description of
each framework and tool used in the implementation.

https://zivgitlab.uni-muenster.de/j_alth12/rag-master-thesis
https://rag-thesis.uni-muenster.de/
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Figure 4 Application Frameworks and Tools

4.1.1 LangChain

LangChain is a comprehensive framework designed to facilitate the development of
applications powered by LLMs. In this project, LangChain version 0.2 (LangChain,
2024c) was utilized to implement the RAG logic. At its core, LangChain provides a
modular and extensible system architecture that supports chaining together various
components such as prompt templates, retrievers, LLMs, output parsers, and vector
stores. Central to its framework is the LangChain Expression Language (LCEL),
a declarative syntax that enables developers to build chains, from simple prompts
feeding into LLMs to complex multi-step workflows with production readiness in
mind. LCEL supports synchronous and asynchronous execution, nearly real-time
streaming output, parallel execution, retries, fallbacks, and intermediate result ac-
cess (LangChain, 2024d). These capabilities significantly reduce latency (e.g., time-
to-first-token) and enhance robustness under concurrent loads (LangChain, 2024d).
LangChain introduces a unified “Runnable” interface, enabling consistent invocation
across components with methods such as invoke, stream, and their asynchronous
counterparts like ainvoke or astream. Additionally, LangChain offers extensive sup-
port for handling various message types with role-based metadata, a robust docu-
ment processing pipeline (including loaders, transformers, and splitters), and native
integration with multiple vector stores and embedding providers. This modular-
ity allows for precise control over document ingestion, transformation, storage, and
retrieval, which is critical for the design of RAG-based systems. Chat history man-
agement and output parsers further strengthen its utility in dialogue-centric appli-
cations by maintaining conversational context and structuring model outputs.
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One of the main reasons for selecting LangChain for the development of the RAG-
based chatbot was its rich ecosystem, comprehensive documentation, and exten-
sive support for third-party integrations, including leading LLM and vector store
providers. Moreover, LangChain’s tight coupling with evaluation tools such as Lang-
Smith facilitates rigorous monitoring and iterative refinement in production settings.
The learning curve was eased considerably by well structured tutorials, particularly
for RAG implementations. Notably, the framework’s latest version (v0.3) marks a
paradigmatic shift from static chains to agent-based architectures. Agents are sys-
tems that levering LLMs as reasoning engines capable of dynamically invoking tools
and taking contextual actions in a more adaptive and interactive way (LangChain,
2024b). This trajectory aligns with the broader movement in LLM development to-
ward autonomous and decision-capable agents, making LangChain not only a prac-
tical but also a forward-looking choice for modern LLM application development.

4.1.2 ChromaDB

ChromaDB is an open-source vector database designed for AI applications. It comes
with powerful built-in capabilities such as embedding support, vector search, docu-
ment storage, full-text search, metadata filtering, and multi-modal retrieval—all in
a single package (Chroma, 2024). It supports both local persistence, ideal for man-
aging private or self-hosted documents, and cloud-based management via Chroma
Cloud. Hybrid search is also supported (X. Wang et al., 2024). ChromaDB inte-
grates seamlessly with LangChain for creating and managing vector stores, making
it a great fit for RAG applications. ChromaDB was choosen for this project because
of its simple setup, native integration with LangChain, and suitability for small to
medium-scale use cases. Since the documents used are homogeneous in structure
and under 1000 in number, ChromaDB’s performance and scalability are more than
sufficient for current and foreseeable requirements.

4.1.3 OpenAI GPT-4 series and Embedding model

For the implementation of the RAG-based chatbot, the gpt-4o-mini model from Ope-
nAI’s GPT-4 series was selected. This LLM represents a powerful, state-of-the-art
system that excels in reasoning, problem-solving, and maintaining contextual coher-
ence (OpenAI, 2025). During development and testing, gpt-4o-mini demonstrated
itself to be especially robust and consistent, both in terms of response quality and
stability across diverse user inputs. Moreover, the pay-as-you-go pricing model of-
fers flexibility and cost-efficiency, making it particularly attractive for academic and
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prototype use cases. Gpt-4o-mini also integrates well into RAG architectures due to
its strong instruction-following capabilities and ability to effectively ground answers
in retrieved context (J. Zhou et al., 2023).

To complement the language model, OpenAI’s text-embedding-3-large was used
as the embedding model. This model transforms text into high-dimensional vec-
tor representations and supports customization of the embedding dimension, allow-
ing trade-offs between computational cost and representational richness (OpenAI,
2024c). The ability to reduce vector size while preserving semantic relationships is
particularly useful for efficient storage and fast similarity search in vector databases
(OpenAI, 2024c). Together, with gpt-4o-mini strength in instruction following and
OpenAI’s text-embedding-3-large model which is highly tuned for semantic accuracy
it enables a effective pair in a RAG system (OpenAI, 2024b). During the develop-
ment and testing of the RAG-based chatbot, testing other embedding models to
improve accuracy was not prioritized, as the current setup performed well from the
beginning. Moreover, the application is model-agnostic for the LLM, allowing for
substitution with other models. However, both embedding model and LLM selection
can be further explored on RAG system performance.

4.1.4 BeatifulSoup

BeautifulSoup is a Python library used for parsing HTML and XML documents,
offering an intuitive interface for navigating, searching, and modifying page content
(Richardson, 2004–2025). It is particularly effective for extracting specific informa-
tion from web pages when an official API is unavailable or insufficient (Richardson,
2004–2025). BeautifulSoup supports multiple parsers and allows developers to tar-
get elements using tag names, attributes, and CSS selectors, making it well-suited
for structured content extraction (Richardson, 2004–2025). In this project, Beau-
tifulSoup was used to scrape relevant content from the official website of the CIT
at the University of Münster. The scraped data included all pages of the CIT
webpage which are reachable from its site map, which were subsequently cleaned
and preprocessed for embedding into the retrieval pipeline. By automating the
data collection process, BeautifulSoup enabled consistent and up-to-date access to
the knowledge base, forming the foundation for accurate and contextually relevant
chatbot responses.
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4.1.5 Streamlit

Streamlit is an open-source Python framework designed to facilitate the rapid de-
velopment of interactive web applications for data science and machine learning use
cases (Snowflake Inc., 2025e). It allows developers to create rich, responsive user
interfaces with minimal frontend expertise by writing Python scripts. Its declarative
syntax and automatic UI rendering make it particularly suitable for prototyping and
deploying AI-powered applications, including those involving large language models
(LLMs) and chatbot systems. One of Streamlit’s key advantages is its seamless
integration with the Python ecosystem, enabling end-to-end development without
context switching between languages or frameworks. For chatbot applications, it
provides robust support for managing conversational flow and user input through
session states, which makes it possible to preserve chat history and intermediate
outputs across user interactions (Snowflake Inc., 2025f). This feature proved to be
useful for debugging and testing during the development phase, particularly in visu-
alizing the scraped documents, retrieved documents, and final response stream with
metadata enrichment. Furthermore, Streamlit supports function caching, which
significantly improves runtime performance by avoiding unnecessary recomputation
which is especially beneficial in applications where data updates or vector store in-
dexing occur infrequently, as every interaction with the webpage runs the script in
the background again (Snowflake Inc., 2025d). Its extensive API documentation and
active community ensure smooth onboarding and quick problem-solving. Addition-
ally, Streamlit offers clear guidance on containerization using Docker and supports
deployment via Kubernetes, making it an excellent choice for scalable and main-
tainable frontend deployment in production environments (Snowflake Inc., 2025a,
2025b). Due to these characteristics, Streamlit was selected as the frontend frame-
work for the chatbot application, offering an ideal balance between development
speed, functionality, and production readiness.

4.2 Application Logic

This section describes step-by-step how the application runs and goes into implemen-
tation details. Again the full source code is available under the URL: https://zivgitlab.uni-
muenster.de/j_alth12/rag-master-thesis.

4.2.1 Source Document Preparation

The preparation of source documents begins with scraping web content from the
CIT website, which contains comprehensive information about the university’s IT

https://zivgitlab.uni-muenster.de/j_alth12/rag-master-thesis
https://zivgitlab.uni-muenster.de/j_alth12/rag-master-thesis
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services. The scraping process starts from the CIT site map and recursively collects
all links that match the CIT base URL pattern (https://www.uni-muenster.de/IT/)
up to a depth of five levels. The recursion halts once no further valid links under the
base URL are found or is currently set to seven levels deep. To maintain up-to-date
content, scraping is scheduled once per day. This is controlled by a function named
should_update(), which compares the timestamp of the last update with the current
date to determine whether a new scraping cycle should be initiated. This automa-
tion ensures that newly added or modified documents are continuously integrated
without manual effort. Additionally, the scraper compares existing and new links
to avoid overwriting previously stored data in the event of temporary unavailability
or removal of pages. All collected links are persisted in a JSON file for further pro-
cessing. Following the persistence of relevant URLs, the web content is extracted
and stored using the function get_persistent_docs(). This function utilizes a cus-
tomized WebBaseLoader in combination with BeautifulSoup. To focus exclusively
on relevant content, BeautifulSoup’s SoupStrainer is used to restrict parsing to div
elements with the class module-content, which contain the main body of information.
This approach excludes irrelevant components such as navigation sidebars. It is im-
portant to note that this approach relies on the specific structure of the underlying
HTML files and may require adjustments if applied to other websites in the future,
as HTML structures can vary significantly. The LangChain WebBaseLoader returns
the content as a list of Document objects, each containing metadata (e.g. the source
URL) and page content in plain text. However, this format does not retain hyper-
links, which are important for the chatbot’s ability to provide source references. To
overcome this limitation, a custom class LinkPreservingWebLoader(WebBaseLoader)
was developed to preserve hyperlinks by appending the target URL in parentheses
after the anchor text (e.g. “Click here” (Link)). This enhancement enables the chat-
bot to include functional links within its responses. The resulting list of Document
objects is persisted in a .pkl file and serves as the basis for the embedding and
storage process. The .pkl format was chosen to store the list of documents because
it allows efficient serialization and deserialization of Python objects, as pickle is bi-
nary, preserving their structure and content for seamless reuse without the need for
reprocessing (IONOS, 2024).

4.2.2 Embedding and Vector Store Initialization

The source code of the embedding model, vector store, and retriever is shown in List-
ing 1. The next step involved building a retriever using LangChain’s vector store
utilities. For this purpose, the Chroma class was employed to initialize a Chroma
vector store instance, which persists data locally and utilizes OpenAI’s embedding

https://www.uni-muenster.de/IT/


43

model text-embedding-3-large. To reduce computational costs and memory usage
during embedding and retrieval, the dimensionality of the generated embeddings was
reduced from the original 3072 dimensions to 512 by using the dimensions param-
eter provided by the OpenAI API (OpenAI, 2024c). This dimensionality reduction
results in a significantly smaller vector representation while preserving the semantic
properties of the embeddings (OpenAI, 2024c). Initial testing with the shortened
512-dimensional vectors revealed no substantial loss in retrieval performance, mak-
ing it a practical configuration for this application. Nonetheless, the relationship
between embedding dimension, retrieval quality, and resource consumption presents
an interesting avenue for further research, especially in the context of large scale or
domain-diverse datasets. During development, a notable challenge emerged when
attempting to embed the full corpus of documents in a single request. This approach
exceeded the maximum token limit allowed per request by the OpenAI embedding
API, resulting in the following error:

1 openai . BadRequestError : Error code: 400 - {
2 ’error ’: {
3 ’message ’: ’Requested 600275 tokens , max 600000 tokens per

request ’,
4 ’type ’: ’max_tokens_per_request ’,
5 ’param ’: None ,
6 ’code ’: ’max_tokens_per_request ’
7 }
8 }

This constraint necessitated batching the embedding process to comply with the
API’s maximum token limit of 600,000 per request. To address the token limit im-
posed by the OpenAI embedding API, a batching logic was implemented. This was
achieved by utilizing OpenAI’s Tokenizer to compute the token count for each docu-
ment (OpenAI, 2024d). A custom function, batch_documents_by_tokens(documents),
was developed to divide the input documents into batches such that each batch re-
mained within the 600,000-token limit, returning a list of batches. These batches
were then processed sequentially, embedding and adding them to the vector store
without exceeding the token constraints of a single API request. As a result, a fully
populated vector store containing all embedded documents was successfully con-
structed. To ensure that the vector store reflects the most recent data, the batching
function was designed with caching functionality. Since the document import occurs
daily, the previous vector store instance, if existent, is deleted and recreated using
the current document set. This guarantees that modifications to existing documents
or additions of new documents are consistently reflected in the embeddings stored.
Once populated, the vector store can be queried to retrieve semantically relevant
documents. For this, a function named get_retriever() was implemented. It per-
forms a similarity search between the embedding of a user query and the stored
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document embeddings, returning the top five most relevant results. The underlying
similarity metric is determined by the vector store implementation and the scale of
the embeddings (LangChain, 2023b). Given that OpenAI’s embedding vectors are
normalized to length 1, cosine similarity and Euclidean distance are monotonically
related, thereby producing identical ranking outcomes. Formally this can be shown,
derived from Terveer (2019):

Let the vectors a = (x1, x2) and b = (y1, y2) have unit length, i.e.:

∥a∥ = ∥b∥ = 1.

The cosine of the angle φ between the two vectors is given by the dot product
formula:

cos(φ) = a · b = x1y1 + x2y2.

And the Euclidean distance between the vectors a and b is defined as:

∥a − b∥2 = (x1 − y1)2 + (x2 − y2)2

Using ∥a∥2 = 1 and ∥b∥2 = 1, we get:

∥a − b∥2 = 2 − 2(x1y1 + x2y2)

Substitute cos(φ) = x1y1 + x2y2:

∥a − b∥2 = 2 − 2 cos(φ)

Finally, taking the square root of both sides:

∥a − b∥ =
√

2(1 − cos(φ))

Here we can see that cosine similarity and the Euclidean distance are monotonically
related because if the cosine similarity increases the Euclidean distance decreases and
vice versa. Therefore, ranking vectors by cosine similarity or by Euclidean distance
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gives the same ordering of similarity when the vectors are normalized to length 1.
LangChain also supports more search types such as maximal marginal relevance
based on a similarity score threshold. These possibilities also opens up an area
for further research to measure retrieval quality based on search types which was
not in the scope of this work. LangChain additionally supports advanced search
methods such as Maximal Marginal Relevance, which combines similarity scoring
with a diversity criterion or similarity score thresholds to retrieve relevant documents
independent of the k value, which reflects the number of documents to retrieve
(LangChain, 2025a, 2025b). These extended capabilities offer promising avenues
for future research, particularly with respect to evaluating retrieval quality across
different search strategies but this is an aspect that lies beyond the scope of this
work.

1 def get_embeddings ():
2 return OpenAIEmbeddings (
3 model="text -embedding -3- large",
4 dimensions =512
5 )
6
7 def vector_store ():
8 """
9 Creates and caches a Chroma vector store while handling

token batching to stay within API limits .
10
11 - Deletes and recreates the vector store if it already

exists .
12 - Retrieves documents and adds them in batches .
13 - Ensures that each batch remains below the OpenAI token

limit.
14 - Persists the vector store after processing all

documents .
15
16 : return : A Chroma vector store containing all processed

documents .
17 """
18 db_path = "./db" # Directory where the Chroma vector

store will be saved
19
20 # Step 1: Check if the vector store already exists and

delete it if present
21 if os.path. exists ( db_path ):
22 shutil . rmtree ( db_path ) # Remove the existing vector

store
23 logging .info(" Previous vector store has been deleted .

")
24
25 # Step 2: Create a new Chroma vector database
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26 vectordb = Chroma ( persist_directory =db_path ,
embedding_function = get_embeddings ())

27
28 # Step 3: Fetch the latest documents from persistent

storage
29 documents = get_persistent_docs ()
30
31 # Step 4: Process documents in batches to ensure they

stay below the OpenAI token limit
32 for batch in batch_documents_by_tokens ( documents ):
33 vectordb . add_documents (batch)
34
35 # Step 5: Persist the vector store after processing all

the documents
36 vectordb . persist ()
37 logging .info("New vector store successfully created and

saved.")
38
39 # Step 6: Return the created vector store
40 return vectordb
41
42
43 def get_retriever ():
44 """
45 Retrieves a similarity -based retriever from the Chroma

vector store.
46
47 This function returns a retriever that allows searching

for the top -k most
48 similar documents based on their vector embeddings .
49
50 : return : A retriever object that can be used to fetch

relevant documents .
51 """
52 return vector_store (). as_retriever (
53 search_type =" similarity ", # Use similarity -based

retrieval
54 search_kwargs ={’k’: 5} # Retrieve the 5 most

relevant documents
55 )

Listing 1 Defining the Embedding Function, Chroma Vector Store and Retriever

4.2.3 RAG Logic

The query-based RAG pipeline implemented in this work consists of three primary
steps. The first step involves query transformation, where the user’s current input
is reformulated based on the preceding chat history. This transformation ensures
that the generated query reflects the full conversational context before the retrieval
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of relevant documents in the subsequent step. For this purpose, LangChain pro-
vides a pre-built utility function: create_history_aware_retriever(llm: Language-
ModelLike, retriever: RetrieverLike, prompt: BasePromptTemplate), which accepts
a Large Language Model (LLM), a retriever, and a prompt for query contextual-
ization as input. It returns a list of documents that are most relevant to the re-
formulated query (LangChain, 2023a).In this setup, OpenAI’s GPT-4o-mini model
is used as the LLM, while the retriever corresponds to the previously instantiated
ChromaDB instance. The prompt employed for query contextualization is derived
from LangChain’s template library and is structured as a system message. This
message provides explicit instructions to the LLM to rephrase the user input into
a standalone question that incorporates prior conversational context. The resulting
standalone query is then embedded and passed to the retriever to perform a sim-
ilarity search, retrieving the top five documents most relevant to the transformed
query. The complete implementation of the contextualization logic is provided in
Listing 2.

1 def history_aware_retriever_with_contextualization ():
2 """
3 Creates a history -aware retriever that can formulate

standalone questions
4 from a chat history and the latest user input. The

history -aware retriever
5 ensures that the context of previous interactions is

taken into account
6 when processing user queries .
7
8 - Uses a system prompt to contextualize the user ’s

question .
9 - Combines the chat history with the latest user input to

generate a standalone question .
10 - Returns a retriever that integrates contextualization

and history -aware search .
11
12 : return : A history -aware retriever ready for use in a

conversational system .
13 """
14
15 # Step 1: Define the system prompt that provides

instructions for contextualizing the question
16 contextualize_q_system_prompt = (
17 "Given a chat history and the latest user question "
18 "which might reference context in the chat history , "
19 " formulate a standalone question which can be

understood "
20 " without the chat history . Do NOT answer the question

, "
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21 "just reformulate it if needed and otherwise return
it as is."

22 )
23
24 # Step 2: Create a ChatPromptTemplate with placeholders

for the chat history and the latest user input
25 contextualize_q_prompt = ChatPromptTemplate . from_messages

(
26 [
27 (" system ", contextualize_q_system_prompt ), #

System message with instructions
28 MessagesPlaceholder (" chat_history "), #

Placeholder for chat history
29 ("human", "{input}"), #

Placeholder for the user ’s latest input
30 ]
31 )
32
33 # Step 3: Create a history -aware retriever by combining

the contextualization prompt and retriever
34 history_aware_retriever = create_history_aware_retriever (
35 get_lmm (), # Language model that will be

used for contextualization
36 get_retriever (), # Base retriever which does a

similarity search
37 contextualize_q_prompt # The prompt that helps to

generate a standalone question
38 )
39
40 # Return the created history -aware retriever
41 return history_aware_retriever

Listing 2 Defining a History-Aware Retriever with Contextualization

The third step involves combining the reformulated query, the retrieved contextual
documents, and a predefined system prompt, which together form the input for the
LLM. For this purpose, a dedicated function named rag_chain() was implemented.
This function returns an LCEL Runnable object that can be invoked to produce
a dictionary containing both the context and the generated answer in response
to a user query. Initially, the function uses create_stuff_documents_chain(llm,
qa_prompt) to construct a chain that integrates the relevant context, the conversa-
tion history, and the current user input into a unified prompt for response generation.
This chain is subsequently embedded into a final RAG pipeline using the LangChain
utility function create_retrieval_chain(retriever, question_answer_chain). This
function combines the output of the history-aware retriever, meaning the retrieved
documents, with the final generation chain, enabling the LLM to produce contex-
tually grounded responses. The system prompt used within the chain is specifically
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crafted to instruct the language model to act as an IT support assistant for the
University of Münster. It imposes several behavioural constraints: the assistant
should only respond to IT-related inquiries within the university’s context, refer
users to the official CIT website when additional information is required, and esca-
late complex or unresolvable questions to the university’s IT hotline. The assistant
is also instructed to answer in the same language used by the user and to follow
detailed procedural rules when providing installation or troubleshooting support.
This includes delivering step-by-step instructions, incorporating hyperlinks where
relevant, and prompting for clarifying information such as the operating system in
use. Moreover, the assistant is designed to exhibit an approachable and empathetic
tone by using emojis and engaging in intelligent follow-up questions to refine its un-
derstanding of the user’s needs. The full content of the system prompt, as developed
through a trial-and-error process, is shown in Listing 3. This stage of the pipeline
underscores the significance of prompt engineering in achieving desired conversa-
tional behaviour and generation quality. Optimizing the prompt remains an open
area for further experimentation, where techniques such as document repacking or
advanced prompt restructuring may further enhance performance (N. F. Liu et al.,
2024; X. Wang et al., 2024). By invoking the rag_chain() function, the full RAG
workflow is activated, starting from the transformation of the user query, continuing
with retrieval of relevant documents, and concluding with context-aware response
generation, thereby enabling the chatbot to provide coherent and domain-specific
answers to user questions.

1 def rag_chain ():
2 """
3 Creates an IT support assistant chain for the University

of M n s t e r that answers IT - related queries .
4
5 This function defines a system prompt for the assistant ,

creates a question - answer chain with context ,
6 and integrates a history -aware retriever for

contextualized querying .
7
8 - The system prompt defines the behavior , rules , and

expectations of the IT support assistant .
9 - The assistant uses a ChatPromptTemplate to incorporate

chat history and the latest user input.
10 - The history -aware retriever is used to ensure the

assistant can handle and contextualize ongoing
conversations .

11
12 : return : A chain of the IT support assistant capable of

answering IT - related questions .
13 """
14
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15 # Step 1: Define the system prompt that dictates the
behavior of the IT support assistant

16 system_prompt = (
17 """
18 You are an IT support assistant for the University of

M n s t e r .
19 Your sole purpose is to assist with IT - related issues

that students and employees of the university may
encounter .

20
21 IMPORTANT RULES:
22 - Focus on answering IT - related questions concerning

the university ’s IT services .
23 - Also try to answer all questions concerning the

University of M n s t e r .
24 - Try to predict if they mean something else or

similar with the question .
25 - If you do not know the answer
26 1. Ask smart counter questions which can help to

clarify the question .
27 If the question is clear and you still cannot

answer .
28 2. Refer to the CIT Website : https :// www.uni -

muenster .de/IT/ services /index.html
29 Lastly , if you still do not know and the question

is super complex then
30 3. refer to the right Contact Persons (

Ansprechpartner ) or at least the IT Hotline (
https :// www.uni - muenster .de/IT/ ansprechpartner
/index.html#id0) for general questions .

31 - Always answer in the same language as the user.
32
33
34 INSTALLATION & TROUBLESHOOTING :
35 - For installation guides :
36 Always ask for the operating system before

providing steps.
37 List ** all required prerequisites ** before

explaining the installation .
38 Provide a ** detailed step -by -step ** guide with

numbered steps.
39 Do not skip any important configurations or

settings .
40 Be as detailed as possible list ** everything **!
41 Always provide Hyperlinks when they are part of the

guide.
42 - If troubleshooting an issue:
43 Ask clarifying questions to understand the exact

problem .
44 Provide ** structured debugging steps **, from basic

to advanced .
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45
46 AUTHENTICITY & ENGAGEMENT :
47 - You have a authentic personality , you are really

kind and you also use emojis sometimes to be more
authentic .

48 - Ask smart counter - questions when necessary to give
precise answers .

49 - If the context retrieved does not provide a
sufficient answer , state:

50 "I do not have enough relevant information to
answer your question ."

51 - Always ensure accuracy by using the provided **
context ** below.

52
53 \n\n
54 Context : { context }
55 """
56 )
57
58 # Step 2: Create the ChatPromptTemplate with placeholders

for the chat history and the user input
59 qa_prompt = ChatPromptTemplate . from_messages (
60 [
61 (" system ", system_prompt ), # System

message with IT support assistant rules
62 MessagesPlaceholder (" chat_history "), #

Placeholder for chat history
63 ("human", "{input}"), #

Placeholder for the u s e r s input/ question
64 ]
65 )
66
67 # Step 3: Create the question - answer chain using the

language model and the QA prompt
68 question_answer_chain = create_stuff_documents_chain (

get_lmm (), qa_prompt )
69
70 # Step 4: Create the retrieval chain with a history -aware

retriever that uses the contextualized prompts
71 rag_chain = create_retrieval_chain (

history_aware_retriever_with_contextualization (),
question_answer_chain )

72
73 # Step 5: Return the complete chain , which combines

retrieval and question - answering
74 return rag_chain

Listing 3 RAG Chain for the IT Support Assistant
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4.2.4 Frontend Logic

In the final step of the RAG pipeline, the system is integrated into a frontend
interface, enabling users to interact with the virtual assistant through a chat-based
application. The implementation utilizes the Streamlit framework, which provides
convenient components for building interactive user interfaces, including support
for rendering chat messages and input fields. To enable continuous dialogue with
the assistant, the chat history is managed via the st.session_state object, which
allows messages to persist across user interactions. Each new message, whether
from the user or the assistant, is appended to the conversation history and displayed
on the UI, thereby maintaining context throughout the session. A custom function
named generate_response() is used to handle the response generation. This function
calls the RAG pipeline asynchronously and streams the assistant’s reply token by
token, providing a more natural and real-time chat experience. Furthermore, each
generated answer gets a reference link to the most relevant source document at the
end of the response message, thereby enhancing transparency and trust by enabling
traceability in the provided information.

Figure 5 illustrates the resulting user interface. The design is intentionally kept
minimalistic to focus on usability and clarity. The welcome message appears at the
top, while users can enter queries at the bottom. The application is accessible via:
https://rag-thesis.uni-muenster.de/

Figure 5 User interface of the RAG-based chatbot

Although Streamlit offers various options for customization and advanced UI design,
a simplified layout was deliberately chosen for this implementation and subsequent

https://rag-thesis.uni-muenster.de/
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evaluation. Nevertheless, the application could be extended further by embedding
it into the official website of the CIT using Streamlit’s embedding functionality,
thereby enabling its direct use in production (Snowflake Inc., 2025c). In this project,
however, the application was containerized using Docker and deployed on the Ku-
bernetes cluster maintained by the University of Münster, which is discussed in the
following section.

4.3 Deployment on Kubernetes

The decision to deploy the app on the Kubernetes cluster of the University of Mün-
ster came from the motivation that with project completion the CIT has a simple
takeover of the chatbot and has a productive configuration that they can orchestrate
and scale responsibly. Kubernetes is an open-source platform designed to automate
the deployment, scaling, and management of containerized applications (The Linux
Foundation, 2025a). It offers a reliable and efficient way to orchestrate services by
providing features such as service discovery, load balancing, self-healing, and auto-
mated rollouts and rollbacks (The Linux Foundation, 2025b). The advantages of
Kubernetes lie in its ability to manage complex application lifecycles, ensure high
availability, and optimize resource usage across multiple environments (The Linux
Foundation, 2025c). It is especially useful in large-scale environments where mi-
croservices and container-based architectures are employed (The Linux Foundation,
2025c).

The University of Münster hosts its own Kubernetes infrastructure through the CIT,
offering a robust and shared platform for running containerized services securely, ob-
servably, and efficiently (University of Münster, 2025a). This infrastructure supports
workgroups and departments by offering this service for projects enabling scalable
deployments. The University’s Kubernetes cluster is composed of several central
components (University of Münster, 2025b): Cilium is used as the Container Net-
work Interface (CNI). It manages internal and external network connections between
pods and services, implements firewall policies, and handles outbound traffic rout-
ing. Istio acts as both the ingress and egress gateway, controlling HTTP(S) traffic
in and out of the cluster. As a service mesh, it provides advanced features like mu-
tual TLS, load balancing, and support for multi-cluster setups. Gatekeeper enforces
security policies through the Open Policy Agent (OPA). It validates resources upon
creation, ensuring compliance with organizational policies, such as setting resource
limits or applying default configurations. The University operates its Kubernetes en-
vironment across three different multi-cluster setups (University of Münster, 2025c):
dev, staging, and prod. While tenants have access to the staging and production
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clusters, the development cluster is reserved for testing the core cluster functionali-
ties. Tenants can use the staging environment to test their own applications before
going live in the production environment. These clusters are distributed across two
physical locations in Münster: ms1 (Einsteinstraße), which serves as the primary
location, and ms2 (Schlossplatz), which is mainly used for backups and multi-cluster
functionality.

As part of this infrastructure, the project was granted a dedicated namespace within
the productive cluster to deploy and run the RAG-based chatbot application. This
enables scalable and secure hosting of the application in a real-world environment,
making it accessible to end users while benefiting from the orchestration, monitoring,
and policy enforcement features provided by the University’s Kubernetes platform.

Before setting up the deployment.yaml file a docker image needs to be created out
of the application. For that the following Dockerfile was created:

1 # Use a slim Python base image built on Debian / Ubuntu for a
small footprint

2 FROM python :3.11 - slim
3
4 # Set the working directory inside the container to /app
5 WORKDIR /app
6
7 # Copy the dependency file into the container and install

required Python packages
8 COPY requirements .txt requirements .txt
9 RUN pip install --no -cache -dir -r requirements .txt

10
11 # Copy the rest of the application files into the container
12 COPY . .
13
14 # Expose port 8501 to allow access to the Streamlit app from

outside the container
15 EXPOSE 8501
16
17 # Add a health check to verify if the Streamlit app is

running and healthy
18 HEALTHCHECK CMD curl --fail http :// localhost :8501/ _stcore /

health
19
20 # Define the default command to run the Streamlit app on

container startup
21 ENTRYPOINT [" streamlit ", "run", "app.py", "--server .port =8501

", "--server . address =0.0.0.0 "]

Listing 4 Dockerfile for Containerizing the Streamlit Application
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The Dockerfile defines the setup for containerizing a Streamlit-based application. It
starts from a minimal Python 3.11 image to ensure a lightweight build. The working
directory is set to /app, where the application files will reside. It then installs all
Python dependencies required by the application, such as Streamlit, LangChain,
ChromaDB and Beatifulsoup, listed in requirements.txt, followed by copying the
entire project into the container. The application is configured to run on port 8501,
which is the default for Streamlit, and this port is explicitly exposed to allow external
access. A HEALTHCHECK is included to ensure the service is responding properly.
Finally, the container starts the Streamlit application via the ENTRYPOINT, bind-
ing it to all network interfaces to ensure accessibility within a Kubernetes cluster or
from the host machine. An image was built from this Dockerfile and subsequently up-
loaded to Docker Hub (https://hub.docker.com/r/josefsdocker/ragchatbot, making
it accessible for deployment within the Kubernetes cluster via the deployment.yaml
configuration.

To deploy the RAG-based chatbot on the University of Münster’s Kubernetes clus-
ter, following five YAML files were created and configured: deployment.yaml, ser-
vice.yaml, gateway.yaml, networkpolicy.yaml, and virtualservice.yaml. These files
define the necessary components for orchestrating the application within the pro-
ductive cluster namespace rag-thesis assigned to the project.

The deployment.yaml file is responsible for defining how the application should be
deployed. It specifies the Docker container image to be used, named josefsdock-
er/rag_chatbot:latest, the number of pod replicas, in this case equals one, and in-
cludes resource requests and limits to ensure efficient resource usage. Furthermore, it
defines liveness and readiness probes that monitor the health and availability of the
Streamlit app. The deployment also includes metadata and labels for identification
and organization within the Kubernetes cluster.

The service.yaml file exposes the deployed application internally within the cluster
via a ClusterIP service, making it accessible to other Kubernetes resources. It
forwards traffic on port 8501 to the corresponding application pod.

The gateway.yaml file defines an Istio Gateway resource that enables ingress traffic
from outside the cluster. It handles both HTTP and HTTPS traffic and sets up TLS
termination for secure communication, using a certificate managed by the university.

The networkpolicy.yaml file, implemented using Cilium, enforces strict ingress and
egress rules. It allows traffic to the app only from the Istio ingress gateway on the
specified port and enables DNS resolution and optional internet access.

https://hub.docker.com/r/josefsdocker/rag_chatbot
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The virtualservice.yaml is used to define how incoming requests from the Istio gate-
way should be routed to the internal service. It acts as a routing layer, ensuring
that external HTTP(S) traffic is directed to the correct pod based on host and path
rules.

Lastly, to secure the application via HTTPS, a TLS certificate with the Common
Name (CN) rag-thesis.uni-muenster.de, issued by the GEANT Certification Author-
ity, was configured. The certificate was set up and integrated into the Kubernetes
cluster by a support staff member of the CIT. It uses TLS version 1.3 and is valid
until April 2, 2026.

Together, these files ensure a secure, scalable, and well-orchestrated deployment of
the chatbot application on the University of Münster’s Kubernetes infrastructure.
This deployment builds the foundation for productive testing of the RAG-based
chatbot. Thus, the next chapter focus on the evaluation of the chatbot from the
user, IT staff and performance perspective.
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5 Evalution of the Chatbot Performance

This chapter presents the evaluation of the developed IT support chatbot. The
assessment is based on three separate surveys, each addressing different aspects of
the chatbot’s performance and utility. The first survey comprises a user study de-
signed to assess two main aspects: (1) how the chatbot performs in comparison to
other information retrieval approaches such as web search, LLMs, and the official
CIT website; and (2) how users perceive the interaction with the chatbot in terms of
usability, usefulness, and satisfaction. Furthermore, it investigates whether the chat-
bot is suitable for broader deployment and identifies any remaining limitations or
areas for improvement. The second survey targets IT support staff, aiming to deter-
mine whether the chatbot can deliver responses similar in quality to those provided
by human personnel. Additionally, the survey explores the potential of the chatbot
to be integrated into first-level support processes, its contribution to improving ef-
ficiency or reducing operational workload, and whether further enhancements are
necessary before deployment. The third survey focuses on the chatbot’s accuracy
by comparing its responses to the eight most frequently asked IT support questions
with the official information provided on the CIT website. This comparison aims
to identify inconsistencies or deficiencies in the chatbot’s ability to deliver reliable
answers. In the following sections, each of the three surveys is described in detail,
followed by an analysis and presentation of the respective results.

5.1 User Study

To evaluate the chatbot from a user perspective, a questionnaire was designed using
Microsoft Forms. The full questionnaire is provided in Appendix A. A total of 25
participants, primarily students or former students, took part in the study. The
survey takes approximately 20 minutes to finish. Users were allowed to answer in
German or English.

The survey is divided into two main parts. In the first part, participants were in-
structed to utilize different search strategies (including a general web search, an
arbitrary LLM, the CIT website, and the developed chatbot) to find answers to a
frequently asked IT-related question in the context of the University of Münster.
Participants were then asked to assess whether each approach provided a correct
answer in their opinion. Following this, they were required to rank the search ap-
proaches in terms of convenience, speed, and quality. Additionally, participants
described their typical search behaviour when seeking answers to IT-related prob-
lems and reflected on the perceived advantages and challenges of each method. The
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primary goal of the first part is to evaluate the chatbot’s performance in compar-
ison to conventional search methods and to gain insight into how users generally
approach problem-solving for IT-related issues, including the difficulties they en-
counter. Which can shed more light on user requirements in synthesis. In the
second part of the survey, participants engaged more deeply with the chatbot by
using it to search for answers to either predefined frequently asked questions or
their own individual queries. The aim of this section was to explore the chatbot’s
strengths and limitations and to collect user feedback on potential improvements.
In the following, the results of the survey are analysed and presented in detail.

The first question asked if the search approach was able to provide a correct answer
to a frequently asked question question. The results show that the IT Support
Chatbot was perceived as the most effective tool, with 24 out of 25 participants
indicating that it provided a correct answer to their question. This was followed
closely by the CIT website (22 responses), then web search (19 responses). The
arbitrary LLM was the least effective, with only 12 participants stating it provided
a correct answer. Overall, the chatbot outperformed all other approaches in terms
of answer accuracy.

The next three questions asked to rank the approaches in convenience, speed and
quality. For convenience the results indicate that the IT Support Chatbot was most
frequently ranked as the most convenient method to find answers to IT-related
questions, with 72% of respondents selecting it as their first choice. Web search was
generally placed in second or third position, while LLMs received varied rankings
across the middle positions. The CIT website was most commonly ranked as the least
convenient approach. In terms of speed, the IT Support Chatbot was considered the
fastest approach, with 56% of participants ranking it first and 32% ranking it second.
Web Search followed in second place, often being selected as either the first or second
fastest method. LLMs were generally positioned in the middle ranks, while the CIT
website was most frequently rated as the slowest option. Regarding response quality
and accuracy, the IT Support Chatbot was again rated highest, being most often
ranked first. The CIT website received mixed responses but tended to be placed
higher than LLMs and Web Search in terms of correctness and detail. LLMs and
Web Search were typically rated as less reliable, with Web Search most frequently
being ranked last.

The fifth survey question asked participants to elaborate on how they would search
for an answer to an IT-related issue in the context of the University of Münster. Since
this was an open-ended question, a content analysis was conducted to identify and
classify common search strategies. The analysis involved two main steps. First, the
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responses were read and interpreted to derive meaningful categories that represent
different approaches to seeking IT support. In the second step, a colour coding
scheme was applied to the responses, visually highlighting the relevant parts of the
answers according to the assigned categories. The whole answers and categorization
for each response can be found in the appendix 9 and 10.

The derived categories reflect the diversity of information-seeking behaviour among
participants. In particular, the category Ask Colleagues / Communication refers
to respondents who prefer informal help channels such as talking to peers or col-
leagues. The Hybrid Strategy category represents cases where multiple approaches
are mentioned or used in sequence (e.g. searching the CIT website first and then
using Google if no result is found).

The following colour-coded legend was used to annotate the responses:

C IT Support Chatbot – Direct use or preference for the chatbot introduced
in the survey.

G Google / Web Search – General web search using search engines like
Google.

W CIT Website – Direct navigation through the official CIT or university
website.

L LLM (e.g. ChatGPT, UniGPT, etc.) – Use of general LLMs not
limited to university scope.

H Ask Colleagues / Communication – Peer-to-peer communication.

M Hybrid Strategy – A combination of the above, typically sequential.

The colour coding revealed that the most frequently mentioned search strategies
were the use of Google or general web search ( G ) and direct consultation of the

CIT Website ( W ), each appearing in 16 out of 25 responses. These were followed

by the IT Support Chatbot ( C ), which was referenced in 12 responses. Addition-
ally, peer-to-peer communication channels such as asking colleagues or using internal
communication tools, such as a mattermost channel ( P ) were mentioned in 3 re-

sponses, while general-purpose large language models like ChatGPT ( L ) appeared
in 2 cases. Furthermore, 17 out of 25 participants mentioned multiple approaches in
their answers, indicating a clear tendency toward hybrid search strategies that com-
bine sources like Google, the chatbot, and the official university website in sequence
or as alternatives.
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The open-ended responses to Question 6 were analysed using qualitative content
analysis to identify recurring themes regarding the perceived advantages and chal-
lenges of the four evaluated approaches: Web Search, LLM, CIT Website, and IT
Support Chatbot. All answers and the categorization can be found in the appendix
11,12,13,14 and 15. Several core categories emerged from this analysis: Speed and
quick access to information was one of the most frequently mentioned advan-
tages, particularly in reference to the IT Support Chatbot (e.g. ID 1, 3, 5, 8, 9,
19), which was praised for delivering prompt responses and actionable advice. Web
search was also described as a fast method to reach the correct subpage directly (ID
9, 15), although some users noted that this speed came at the cost of completeness
or contextual accuracy (ID 1, 11). Another prominent category was the accuracy
and reliability of information. The IT Support Chatbot was frequently per-
ceived as both accurate and detailed (ID 3, 5, 12, 19), with some users highlighting
its ability to provide precise instructions tailored to the university’s infrastructure
(ID 1, 18). However, general-purpose LLMs were often criticized for offering vague
or factually incorrect content (ID 7, 12, 17, 18, 22). In contrast, the CIT website
was valued as a trusted source with up-to-date information (ID 10, 15), but a web-
site that required significant effort to navigate. Ease of use and convenience
formed another critical category. The Chatbot was generally regarded as intuitive
and user-friendly (ID 1, 8, 14, 21), while LLMs were recommended for their simplic-
ity in handling general queries (ID 1, 11, 15). Conversely, navigational challenges
were reported in connection with the CIT Website (ID 2, 6, 8, 19, 21, 24) and, to a
lesser extent, the web search approach (ID 5, 7, 20). These challenges included dif-
ficulties locating the appropriate subpages, unclear menu structures, or uncertainty
regarding the correct search terms. In terms of level of detail and presentation,
the Chatbot stood out positively for offering structured, step-by-step instructions
(ID 6, 17, 23), while the CIT website received praise for its inclusion of screenshots
and broader service overviews (ID 16, 19). However, some participants also desired
better integration of visuals or the possibility to submit screenshots to the Chatbot
(ID 16). University specific information was a distinct advantage associated
with the Chatbot and CIT Website. Multiple responses emphasized the value of
accessing information aligned with the university’s domain and wording by Univer-
sity of Münster (ID 5, 11, 18). LLMs and web search, in contrast, were sometimes
perceived as too general or not tailored to the university context (ID 13, 22, 23).
Other emerging categories included trust and perceived reliability, with several
users expressing hesitation to fully trust LLMs (ID 7, 17, 19), and in a few cases,
also the Chatbot (ID 9, 22). Source verification and link availability were noted as
limitations, especially for LLMs, which often failed to provide URLs or references
for further validation (ID 1, 7, 12). Finally, design-related aspects were addressed;
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users mentioned aesthetic or usability benefits of the Chatbot and CIT Website (ID
1, 19), but also noted isolated issues such as security warnings or access barriers
when using the Chatbot (ID 1). Overall, the analysis demonstrates that the IT
Support Chatbot was widely perceived as a fast, accurate, and university-specific
tool. However, challenges remain regarding its visibility and trustworthiness, as well
as feature suggestions for further interaction. Comparatively, while the CIT Web-
site offers official and reliable content, its navigation and discoverability continue to
pose usability challenges. LLMs and web search approaches were valued for their
speed and accessibility but fell short in providing university-specific, reliable, and
well-structured responses.

The second part of the user study focused on the targeted evaluation of the chat-
bot itself. Participants were first presented with a series of statements assessed
on a 5-point Likert scale, followed by open-ended questions to gather more nu-
anced insights into the chatbot’s perceived viability as an IT support solution. The
Likert-scale items were adapted from the evaluation framework developed by Essop
et al. (2023), who designed a questionnaire specifically for university FAQ chatbots.
Their approach was grounded in a comprehensive literature review and structured
using the extended Unified Theory of Acceptance and Use of Technology (UTAUT2)
framework (Tamilmani et al., 2021). Therefore, the evaluation encompassed a range
of chatbot design dimensions, including Usability, User Interface (UI), Natural Lan-
guage Processing (NLP), Anthropomorphism, Personas, User Experience (UX), Effi-
ciency, Quality and Accuracy, and Conversational Memory. In this context, Anthro-
pomorphism refers to the degree to which a chatbot exhibits human-like characteris-
tics such as emotional expression, social presence, and likability, which can influence
user engagement and acceptance. (Essop et al., 2023). Personas, on the other hand,
describe the stylistic and personality elements embedded into the chatbot, such as
the use of emojis, humour, and tone, which collectively shape the overall interaction
experience (Essop et al., 2023). Building on this evaluation model, the questionnaire
was adapted to the specific context of IT support, and additional focus was placed
on metrics particularly relevant for a RAG-based chatbot, namely Efficiency, Qual-
ity and Accuracy, and Conversational Memory. The questions with their assigned
metric dimension can be looked at in the appendix 16. Participants rated each item
using a 5-point Likert scale ranging from Strongly Agree to Strongly Disagree. The
results are presented in table 1, which displays the absolute number of responses
and percentage for each level of agreement across all evaluated questions.

The Likert-scale evaluation revealed that a majority of respondents perceived the
chatbot’s responses as complete and accurate, with 84% selecting agree or strongly
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agree. Most users also found the chatbot to be quick in delivering answers, with 88%
expressing agreement. Regarding the chatbot’s ability to retain conversational con-
text, 79% of participants agreed or strongly agreed. The perceived human-likeness of
the chatbot’s responses showed a broader distribution, with 60% agreeing or strongly
agreeing. Similarly, 68% indicated that the chatbot’s conversational style positively
influenced their willingness to use it in the future. When asked whether the chatbot
reduced the effort needed compared to other search methods, 72% responded agree
or strongly agree. A smaller majority, 64%, stated they would prefer using the chat-
bot over other sources in the future. Ease of use received strong affirmation, with
96% selecting agree or strongly agree. The visual appearance of the chatbot was
perceived positively by 64% of respondents, while 76% agreed that the chatbot’s
design and personality made the interaction more engaging. Lastly, 92% expressed
satisfaction with the overall experience of using the chatbot.

The next two question asked the user what they liked or disliked about the chatbot.
A content analysis revealed that the most appreciated features were the chatbot’s
clear and structured responses, the inclusion of reliable links to official university
sources, and the general speed and convenience of interaction. Many users high-
lighted the chatbot’s ability to ask clarifying questions and tailor its responses ac-
cordingly, as well as its friendly tone and ease of use which is especially valuable for
less experienced users. On the other hand, the most frequently reported drawbacks
included the slow token generation animation, occasional inaccuracies or incomplete
answers, and a perception of excessive talkativeness that did not align with user
expectations for an IT support tool. Some participants also voiced concerns about
trust in LLMs, limited memory across sessions, or a lack of customization options
in how the chatbot interacts. The detailed answers are in the appendix 17,18, 19
and 20 presenting the feedback category as well.

The evaluation continued with question 10 and 11 to explore the preferences of
participants in using the chatbot compared to self-directed search or human sup-
port. The answers are summarized in table 2 and 3. In response to Question 10, a
significant number of users emphasized the chatbot’s convenience, speed, and struc-
tured responses as key reasons for preferring it over manual search, especially when
seeking step-by-step IT instructions. Many participants noted they would use the
chatbot for specific or unfamiliar issues, while still resorting to traditional search
for quick or habitual access. A subset of users expressed hesitancy due to trust
concerns or the chatbot’s current access setup, indicating they would use it more
often if it were more integrated into the university’s web environment. Regarding
Question 11, users generally indicated a strong preference for using the chatbot for
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common and straightforward IT problems. The main benefits cited were availabil-
ity, the non-judgmental nature of interaction, and reduced response time compared
to human support. Nonetheless, when dealing with complex, personal, or approval-
based issues, users still valued human expertise and preferred direct contact. Several
participants also indicated that they would try the chatbot first and only escalate
to human support when necessary, suggesting its potential as a valuable first-level
support tool. The detailed answers of the users are available in appendix 21,22, 23
and 24.

The final question of the user study invited participants to provide suggestions for
improvement or report any issues encountered with the chatbot. Table 4 present the
major limitations encountered and suggestions for chatbot by the users. The ma-
jority of respondents provided either no suggestions or expressed satisfaction with
the chatbot’s performance, citing no major problems. However, several participants
proposed enhancements to improve usability and accuracy. One frequently men-
tioned issue was the lack of conversation history, which required users to repeat
their queries upon reopening the chatbot. Additionally, respondents expressed in-
terest in expanding language support, such as including Spanish for international
students even though the chatbot is capable of speaking in Spanish. Others rec-
ommended user interface improvements, including the option to upload screenshots
and select clickable response categories instead of typing, to streamline interaction.
A subset of participants noted inaccuracies or confusion in the chatbot’s answers,
particularly concerning technical distinctions between university services like the IT
portal and the intranet. These users emphasized the importance of reliable sources
and alignment with official university content to maintain trust. Finally, suggestions
were made to provide faster access to fallback responses like “I do not know” and to
offer more technical, minimal interfaces for experienced users. Overall, the feedback
highlights a desire for both enhanced interactivity and greater content reliability to
support a broader range of user needs. All 18 responses can be found in detail in
appendix 25 and 26.
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The chatbot’s responses were
complete and accurate to answer
my questions.

9 (36%) 12 (48%) 3 (12%) 1 (4%) 0 (0%)

Using the chatbot to find my an-
swer felt quick.

13 (52%) 9 (36%) 2 (8%) 1 (4%) 0 (0%)

I felt that the chatbot was able
to retain context and remember
previous messages throughout the
conversation.

6 (25%) 13 (54%) 3 (12%) 2 (8%) 0 (0%)

I believed the chatbot understood
and responded to me like a human
would when answering questions.

5 (20%) 10 (40%) 5 (20%) 4 (16%) 1 (4%)

The chatbot’s conversational
style influenced my willingness to
use it in the future.

8 (32%) 9 (36%) 6 (24%) 2 (8%) 0 (0%)

The chatbot allowed me to resolve
my IT issue with less effort com-
pared to web search, LLMs, or the
CIT website.

11 (44%) 7 (28%) 4 (16%) 3 (12%) 0 (0%)

From now on, I would prefer the
chatbot over other ways to ob-
tain information on my IT-related
problems.

9 (36%) 7 (28%) 5 (20%) 3 (12%) 1 (4%)

It was easy for me to use the chat-
bot to get my question answered.

16 (64%) 8 (32%) 0 (0%) 1 (4%) 0 (0%)

The visual appearance of the
chatbot made it easier for me to
interact with it.

6 (24%) 10 (40%) 9 (36%) 0 (0%) 0 (0%)

The chatbot’s design and person-
ality made it more engaging to in-
teract with.

10 (40%) 9 (36%) 6 (24%) 0 (0%) 0 (0%)

I was satisfied with the overall ex-
perience of using the chatbot.

15 (60%) 8 (32%) 1 (4%) 0 (0%) 0 (0%)

Table 1 Evaluation of Question 7 on the Likert-Scala
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Category Description Respondents
Faster and Easier to Use Chatbot is perceived as quicker and less ef-

fortful than manual search (Google/CIT)
1, 2, 3, 8, 15,
18, 19, 23

Helpful for Complex or
Unfamiliar Issues

Particularly useful when users are unsure
about their issue or need detailed, guided
help

4, 5, 11, 13,
14

Conditional on Reliabil-
ity or Context

Use depends on whether the chatbot is con-
sidered reliable or equally official as the CIT
website

6, 7, 16, 17,
21

Preference for Manual
Search

Preference for web search or CIT website due
to trust, habit, or usability

9, 10, 12, 20,
22

Table 2 Categorization of Responses to Question 10: Use of Chatbot Instead of
Searching on Your Own

Category Description Respondents
Preferred for Simple/S-
tandard Issues

Chatbot suitable for FAQs, step-by-step
guides, or known solutions

1, 3, 4, 5, 6, 7,
9, 10, 11, 13,
14, 15, 17, 18,
21, 23

Human Support Pre-
ferred for Complex or
Sensitive Issues

Human interaction is seen as necessary when
dealing with complex, sensitive, or approval-
related matters

2, 4, 6, 10, 11,
16, 19, 20, 22

Chatbot Accessibility
and Emotional Comfort

Chatbot valued for being non-judgmental, al-
ways available, and easier to approach than
people

1, 8, 12, 14,
18, 21, 23

Conditional Use Chatbot used as a first point of contact be-
fore escalating to human support if needed

12, 13, 15, 17,
19, 23

Table 3 Categorization of Responses to Question 11: Use of Chatbot Instead of
Human Support
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Category Description Respondents

Persistence and His-
tory

A user wishes for conversation history
or session persistence to revisit past re-
sponses.

1

Multilingual Support Suggestion to support more languages,
e.g. Spanish, for international students.

4

Token Generation An-
imation

A user finds the typing animation slow or
distracting.

5

Incorrect or Mislead-
ing Information

Reported instances of factual inaccuracies
or unhelpful sources.

7, 8, 17

UI or Interaction Im-
provements

Users suggested clickable response options
and better input efficiency.

9, 14

Media Upload and Vi-
sual Enhancements

Suggestions to allow uploading screen-
shots and include more images from of-
ficial instructions.

12, 13

Reliability of Sources
and Answer Com-
pleteness

Desire for more consistent source attribu-
tion and more complete responses.

12, 15, 17

Limited on CIT con-
tent

A user reported misleading response be-
cuase of the wrong context.

17

No Suggestions or
Positive Feedback

Respondents who explicitly stated no sug-
gestions or were satisfied.

2, 3, 6, 10, 11,
16, 18

Table 4 Results of the Content Analysis of Suggestions and Issues (Question 12)
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5.2 IT Support Staff Study

To evaluate the chatbot from a IT Support staff perspective, a questionnaire was
designed using Microsoft Forms. The full questionnaire is provided in appendix B.
A total of 10 participants from the IT Support staff department participated. The
survey takes approximately 15 minutes to finish. The staff were allowed to answer
in German or English. The task given by the questionnaire it to test the RAG-based
chatbot’s ability to function as a 1st-Level IT support assistant by asking IT-related
questions. Afterwards they should complete the questionnaire by answering the
questions.

The first questions use a 5-point Likert scale similar to the user study. Again the
questions are based on metric dimensions but this time focusing on the chatbot’s
capability on improving the 1st-Level Support operations. The metrics include, ac-
curacy, chat history, anthropomorphism, personas, operational efficiency, usability,
user interface, availability, adoption, operational efficiency and user experience. In
appendix 27 the assignment of metrics to questions are illustrated.

The table 5 displays the absolute number of responses and percentage for each level
of agreement across all evaluated questions. Regarding accuracy, 70% of respondents
either agreed or strongly agreed that the chatbot delivers complete and accurate re-
sponses, while 20% disagreed. Context awareness was also positively received, with
80% affirming that the chatbot could retain context during conversations. In terms
of anthropomorphism, 60% agreed or strongly agreed that the chatbot responded
like a human, though 30% remained neutral. When asked if the chatbot’s conversa-
tional style resembled a real IT support agent, 40% agreed, 40% remained neutral,
and 20% disagreed. The chatbot’s ability to resolve IT issues like a human sup-
port agent was supported by 50%, while 30% expressed disagreement. In terms
of integration into 1st-level support, 50% agreed it could play a role, though 30%
remained neutral. Half of the respondents also agreed that the chatbot could help
relieve personnel shortages, even though 30% disagreeing. Regarding user adoption,
opinions were mixed, as only 40% agreed the chatbot would achieve widespread
adoption, while another 40% remained neutral. The chatbot’s personality and de-
sign were positively rated by 60%, but one person found it disengaging. In terms of
availability, 70% agreed the chatbot could increase support accessibility. Similarly,
70% believed the chatbot simplifies the process of finding information on the CIT
website. Furthermore, 80% of IT staff agreed the chatbot could reduce repetitive
requests. However, when asked whether the chatbot could fully replace the support



68

hotline, 80% either disagreed or strongly disagreed, clearly indicating that while the
chatbot adds value, it is not yet seen as a complete substitute for human IT support.

The next two question this time asked the IT staff what they liked or disliked
about the chatbot. The feedback from the IT staff highlighted several positive
aspects: Respondents (R) especially appreciated the speed and availability of the
system, which enabled fast access to frequently requested information and support
at any time of the day (R3, R4, R5). In addition, the chatbot’s ability to deliver
structured, step-by-step recommendations was commended, particularly for complex
or less common IT problems (R1, R5, R6). Someone also valued the inclusion of
contact information for the relevant follow-up support of the CIT (R7) and found the
design and interface to be appealing (R8). Someone also appreciated the endurance
of the chatbot keeping always the same mood independent of the frequencies of the
questions (R2).

However, several limitations were also noted. Some IT staff criticized the interac-
tion flow, finding it unintuitive when responding to multi-part queries (R1), and
mentioned the chatbot’s dependence on specific keywords to generate meaningful
answers (R2). Others pointed out the issue of overgeneralization (R5) and were
particularly concerned about the chatbot’s tendency to deliver confident but incor-
rect technical responses, which could potentially mislead users (R6). Additionally,
complaints were raised about the chatbot’s use of irrelevant sources (R7) and its
susceptibility to hallucinations, often requiring multiple interactions before receiv-
ing a useful response (R8). The detailed answers can be found in appendix 28 and
29.

The next questions deals with the ability of the chatbot to resolve support requests.
The responses reveal a consensus among IT staff that the chatbot is well-suited to
resolve standard, clearly defined, and frequently recurring support requests, such as
password resets or general navigation questions (R1-R6). However, several partic-
ipants emphasized the chatbot’s current limitations in handling complex, context-
sensitive, or user-specific cases, particularly those requiring backend system access
or up-to-date operational data (R1, R5-R7). Requests such as advanced identity
verification or system incidents (e.g. software availability) were cited as remaining
within the domain of human support. Additionally, one respondent highlighted that
users often struggle to articulate their problems accurately, presenting another lim-
itation for chatbot-based interactions (R7). The detailed answers can be found in
appendix 30.
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The second last question deals with the economical or operative effects on the IT
Support. The IT staff identified a range of potential economic and operational im-
provements that could result from integrating the chatbot into 1st-level IT support.
A key advantage noted by several respondents (R1, R3, R6, R7) is the chatbot’s
ability to provide 24/7 support, increasing service availability beyond typical office
hours. Others emphasized that delegating standard questions to the chatbot could
reduce the burden on human support personnel, allowing them to focus on more
complex issues (R4, R5, R7). This redirection of simple tasks could also lead to
quicker responses and fewer repetitive questions (R2, R4, R5, R7). Additionally,
participants pointed out that some users, particularly students, may prefer interact-
ing with a chatbot over contacting human support due to comfort and convenience
or changing communication preferences (R2, R7). However, some concerns were
raised: one respondent (R6) questioned whether the chatbot would yield actual
resource savings, as time gained might be offset by correcting chatbot errors. An-
other one (R1) was unsure if the chatbot offers real advantages compared to existing
FAQs. Finally, one critical respondent (R8) expressed concerns about the possible
negative social consequences of automation, such as job displacement and decreased
customer satisfaction. Detailed answers are presented in appendix 31.

The final question asked to share suggestions for improvement and to identify missing
features or significant limitations. A recurring recommendation concerned the ex-
tension of the chatbot’s data coverage (R1, R3, R5, R6), particularly the inclusion of
training data for services such as Sciebo and domain-specific resources like the HPC
cluster documentation. Participants emphasized that broader access to relevant
sources would significantly enhance the chatbot’s utility in support contexts. An-
other point raised was the lack of conversational memory or context awareness (R2).
The respondent suggested that the chatbot could improve by recognizing when users
develop partial solutions themselves during dialogue and incorporating this feedback
into future responses. One respondent noted an issue with platform-specific output
(R4), describing a situation in which the chatbot failed to differentiate between op-
erating systems, though this problem could not be replicated. Finally, concerns were
expressed regarding the transparency and accuracy of cited sources (R5), with the
chatbot sometimes attributing answers to seemingly arbitrary or unrelated pages.
This led to a recommendation for clearer indication of data origins and limitations,
especially when the chatbot lacks access to certain documentation. The full answers
are in appendix 32.
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The chatbot is able to provide com-
plete and accurate responses to IT-
related questions.

1 (10%) 6 (60%) 1 (10%) 2 (20%) 0 (0%)

The chatbot was able to retain con-
text and remember previous mes-
sages throughout the conversation.

2 (20%) 6 (60%) 1 (10%) 1 (10%) 0 (0%)

The chatbot understood and re-
sponded like a human would when
answering questions.

3 (30%) 3 (30%) 3 (30%) 1 (10%) 0 (0%)

The chatbot’s conversational style is
similar to a real IT support person.

0 (0%) 4 (40%) 4 (40%) 2 (20%) 0 (0%)

The chatbot is capable to resolve IT
issues like the human support per-
sonnel.

0 (0%) 5 (50%) 2 (20%) 2 (20%) 1 (10%)

I believe that the chatbot can be
part of the 1st-Level Support from
now on.

1 (10%) 4 (40%) 3 (30%) 2 (20%) 0 (0%)

I believe that it could relieve or com-
pensate for personnel shortages.

0 (0%) 5 (50%) 2 (20%) 2 (20%) 1 (10%)

I believe the chatbot will have a huge
adoption of users.

0 (0%) 4 (40%) 4 (40%) 2 (20%) 0 (0%)

The chatbot’s design and personal-
ity made it more engaging to inter-
act with.

1 (10%) 5 (50%) 3 (30%) 0 (0%) 1 (10%)

The chatbot could be a beneficial
way to increase the availability of IT
Support.

2 (20%) 5 (50%) 2 (20%) 1 (10%) 0 (0%)

The chatbot provides an easier way
to find sources on the CIT website
than searching by yourself.

2 (20%) 5 (50%) 2 (20%) 1 (10%) 0 (0%)

Do you think the chatbot can help
reduce the number of repeated re-
quests of frequently asked questions?

2 (20%) 6 (60%) 1 (10%) 1 (10%) 0 (0%)

Do you think the chatbot is able
to completely substitute the Support
Hotline?

0 (0%) 1 (10%) 1 (10%) 2 (20%) 6 (60%)

Table 5 Evaluation of IT Staff Feedback on the Likert Scale
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5.3 Performance Study

In this study the performance in factual accuracy and quality of the chatbot gen-
erated answers was evaluated. For that, eight frequently asked questions and their
corresponding sources on the CIT webpage were given by the Head of IT Services for
evaluation. The evaluation focused on whether the chatbot’s responses accurately
reflected the content of the official sources, whether the answers were complete,
clearly formulated without ambiguity, and whether the correct source link was pro-
vided. For each criterion met, one point was awarded per response. The total score
was then averaged across all questions to assess the chatbot’s overall factual perfor-
mance. Table 6 presents the results. The results show that the chatbot performed
well overall, delivering fully correct, complete, and clear responses with accurate
source attribution in five out of eight cases. In the case of the WLAN configuration
question, the chatbot directly responded with instructions for the university’s “uni-
ms” network, neglecting to counter question which of the available WLAN networks
the user intended to configure. This lack of clarification affected the clarity score.
Regarding the VPN setup, the response included information on how to start and
stop a VPN session but omitted the installation guide. While the chatbot did ask
whether the VPN client had already been installed and offered further assistance
if not, this conditional approach led to a deduction in completeness. The question
where the chatbot failed most significantly was related to the Remote Desktop con-
nection. Although the chatbot correctly linked to the general information page, it
failed to include or reference the installation instructions specific for different oper-
ating systems. This issue was traced back to a limitation in the link crawling, as
the crawler did not access subpages containing the relevant instructions, based from
the site map.
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Question Factual
Correct-

ness

Completeness Clarity Correct
Source

How do I set up an OTP
generator?

1 1 1 1

I forgot my password.
What should I do now?

1 1 1 1

How do I set up my
WLAN?

1 1 0 1

How do I establish a
VPN connection?

1 0 1 1

How do I get access to
Office 365?

1 1 1 1

I can’t find the poster
printer. What could be
the reason?

1 1 1 1

How do I connect to the
Remote Desktop?

0 0 0 1

How can I extend my uni-
versity ID?

1 1 1 1

Table 6 Evaluation of Chatbot Responses for Frequently Asked Questions
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6 Discussion

This chapter presents a critical discussion of the developed RAG-based chatbot in
light of the initial design problem and the requirements identified from key stake-
holders. The aim is to evaluate whether the implemented artifact successfully ad-
dresses the goals of improving IT support at the University of Münster by meeting
stakeholder expectations regarding decreased workload for the IT staff and increased
availability and correct answers by the IT Support for the students. The analysis
begins with an examination of the results from the three evaluation perspectives:
the user study, the IT staff feedback, and the performance evaluation of the chat-
bot in handling frequently asked questions. These findings are then systematically
discussed in relation to the implemented system to assess its practical effectiveness.
Based on this evidence, the chapter evaluates whether the originally defined de-
sign objectives have been met. Building on this analysis, implications for users, IT
personnel, and the university administration are derived and contrasted with the
expected effects formulated during the design phase. Based on these insights, ac-
tionable recommendations are proposed to guide further development. The chapter
concludes by discussing the limitations of this study, including contextual constraints
and methodological boundaries.

The goal of the first part of the user study was to find out if the RAG-based chatbot
is able to provide factual correct answers faster and more conveniently compared to
other search strategies or tools. The IT Support Chatbot was perceived by most par-
ticipants as the most effective method for obtaining correct answers, indicating that
the majority of student inquiries could be adequately addressed through the chatbot.
In theory the CIT website should be able to provide an answer to all given questions
to the users in the questionnaire. Still users often failed to locate the relevant con-
tent. There might be two causes why a user did not find the right answer on the CIT
website, either the navigation to the question was not feasible or the user did not un-
derstand the full context of the question, because for example the question "How can
I extend my university ID?" can have two answers depending on the context, either
it refers to the general university ID which cannot be extended after exmatricula-
tion or it refers to the extension of group memberships where someone can make an
application in the IT-Portal. This highlights the necessity of contextual understand-
ing in information retrieval. Because of the relevance in question understanding the
chatbot was instructed in the system prompt to always to try to clarify the question
by asking smart counter questions. For convenience, speed and quality the ranking
of the respondents were as expected. On the one hand, the CIT website was ranked
on top with the chatbot to provide qualitative answers, but when it comes to conve-
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nience and speed the CIT website was voted on the last rank compared to the other
search approaches. The IT Support Chatbot ranking one on all three dimensions
suggesting to overcome the challenge of navigating through documents by directly
retrieving the relevant information and provide it in a precise response. Again em-
phasizing the advantage of the RAG-based architecture providing the automation
of retrieval of relevant documents. These findings were further supported by re-
sponses, where users frequently cited navigational difficulties with the CIT website.
Another interesting concern of the users was the trust and perceived reliability. On
the one hand, users were expressing hesitation to trust the generated answers by the
LLMs and the chatbot. On the other hand, the ability of source verification by the
chatbot reduced the scepticism. An important observation from the user feedback is
the stated use of combined search strategies. Many respondents reported that they
typically use a combination of approaches, such as performing a web search and then
navigating to the CIT website. A key insight derived from the responses is that web
search remains the most common method for finding information, primarily because
it is perceived as fast and convenient. However, several participants indicated that
they would prefer to use the chatbot, provided they were aware of its existence, it
was already publicly available, and it was seamlessly integrated into the CIT web-
site. This suggests that accessibility, visibility, and integration are critical factors
for broader adoption of the chatbot. Another important insight from the user study
concerns the level of detail and presentation of the chatbot’s responses. Partici-
pants positively highlighted the structured, step-by-step nature of the answers by
the chatbot. However, in contrast to the CIT website, some users criticized the lack
of visual elements such as screenshots or the inability to upload error messages or
images for context. This limitation originates from the current design of the devel-
oped RAG-based system, which is restricted to natural language processing (NLP)
and does not support multimodal inputs. In the context of IT support, where many
issues are visual or interface-related, this is a significant consideration. Neverthe-
less, modern RAG frameworks such as LangChain already support integration with
multimodal LLMs, enabling the processing of text, images, and other media for-
mats. While this flexibility theoretically allows for future extension of the system,
it raises questions about cost-efficiency and practical implementation. On the one
hand, incorporating multimodal capabilities would increase both the complexity of
the pipeline and the operational costs, as image-based queries are significantly more
expensive to process than plain text. On the other hand, including screenshots in
tutorials would require additional preprocessing, embedding, and storage, adding
further development effort. Given that the current system already delivers accurate
and context aware responses with appropriate source links, which leading users to
the original web pages that often contain visual guidance, there remains a trade-off
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between enhanced user experience and the associated cost and implementation ef-
fort. Thus, while the system architecture supports multimodal extension, a careful
cost-benefit analysis is needed before proceeding with such enhancements. Another
noteworthy observation emerged from the user feedback, where one participant ex-
pressed the desire for the chatbot to support Spanish, particularly to assist Erasmus
students. Interestingly, the chatbot is technically capable of responding in Span-
ish, as the underlying LLM includes robust translation capabilities. However, this
functionality was not apparent to the user. By design, the chatbot automatically
replies in the language in which the question is asked, as specified in the system
prompt. Nonetheless, due to the absence of an introductory message or interface
cues that clearly communicate this feature, users may assume that the chatbot is
limited to English. This highlights an important usability issue. The capabilities
of the chatbot must be explicitly communicated to users at the beginning of the
interaction. A clearly formulated welcome message or short introductory statement
could inform users about supported languages and clarify the chatbot’s ability to
answer domain-specific questions based on information from the CIT website. This
would help manage expectations and empower users to make full use of the system’s
functionalities, thereby improving the overall user experience and reducing potential
frustration caused by perceived limitations. Moreover, most users confirmed that
the chatbot was able to retain chat history and context within a single conversation,
which positively contributed to the perceived coherence and usability of the system.
However, one limitation identified by a participant was the inability to access previ-
ous conversations after refreshing or revisiting the page. This meant that users had
to repeat their queries if they returned to the chatbot later, potentially reducing
efficiency and user satisfaction. Persisting chat history beyond the current session
could enhance usability by allowing users to quickly reference previous interactions
and avoid redundant queries. As the current implementation stores conversation
data only within the active session, a possible enhancement would be to integrate a
login mechanism for university members. This would enable the saving and retrieval
of past conversations across sessions and devices, supporting more personalized and
efficient interactions with the chatbot. However, such an expansion of the appli-
cation would need to be carefully weighed against the anticipated benefits, as the
actual frequency with which users revisit past conversations may be low and may
not justify the additional development and resource investment. Another important
point concerns the chatbot’s potential for future adoption. This is supported by the
fact that 68% of respondents indicated a willingness to use the chatbot again in the
future, while 72% agreed that the chatbot required less effort to find the desired
information compared to alternative approaches. Further, the chatbot’s 24/7 avail-
ability was particularly appreciated, especially by users who work during evenings
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or weekends and may not have access to human support increasing the motivation to
use this chatbot. Additionally, many users highlighted that the chatbot allows them
to ask follow-up questions without hesitation or fear of judgment, which lowers the
entry barrier for IT-inexperienced individuals. The ability to interact naturally and
receive immediate, context aware responses further supports its role as an effective
first point of contact. At the same time, respondents acknowledged the continued im-
portance of human support for complex, sensitive, or approval-dependent requests,
positioning the chatbot as a valuable tool for initial assistance that helps reduce
the workload of IT personnel by filtering routine questions. A critical observation
from the evaluation is that the chatbot was unable to respond accurately to queries
related to services beyond the scope of the CIT website, such as the university’s
research portal or other non-IT university services. In these cases, the chatbot occa-
sionally produced hallucinated content or provided fallback responses like “I do not
know” too late in the conversation. From this, it can be deduced that the current
limitation of the knowledge base significantly restricts the chatbot’s utility across
broader university support contexts and that users like to ask questions beyond the
CIT context. To address this, the scope of scraped documents must be expanded
to include other relevant university platforms. Additionally, the prompt engineer-
ing of the RAG system should be refined to enforce earlier fallback responses when
a question cannot be answered based on the available data. This would not only
reduce hallucinations but also improve user trust. Furthermore, these issues may
also originate from ambiguous phrasing or abbreviations in user queries, where the
model without additional context might understand different meanings. In conclu-
sion, extending the document base and improving the prompt design are necessary
steps to enhance the accuracy and reliability of the chatbot in a diverse univer-
sity environment. Therefore, ensuring the reliability of the chatbot’s responses is
of critical importance, particularly because there is a risk that users may interpret
inaccurate answers as official advice. To mitigate this risk, it is essential to include
a clear disclaimer at the beginning of the interaction, outlining the chatbot’s role as
a support tool rather than a definitive authority. Establishing transparent bound-
aries for the chatbot’s capabilities helps manage user expectations and responsible
use. Furthermore, users should be informed that the system currently relies on an
external LLM, specifically gpt-4o-mini, which processes user inputs externally. This
raises potential concerns regarding data sensitivity and privacy, especially when
users unknowingly share personal or institutional information. A viable solution to
this issue would be to integrate one of the locally hosted LLMs operated within the
university’s infrastructure. This would ensure greater control over data processing,
strengthen compliance with internal data protection policies, and increase user trust
in the system.
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The primary objective of the IT support staff study was to assess whether the
chatbot could effectively assist in 1st-level IT support by reducing the volume of
repetitive tasks and contributing to improved operational efficiency. Overall, the
chatbot’s accuracy was positively rated, with the majority of respondents consider-
ing the responses complete and accurate. However, 20% of participants expressed
disagreement, which can likely be attributed to instances where the chatbot was
tested with queries beyond the scope of the CIT website. This again underscores a
critical limitation: the current knowledge base is too narrow to accommodate the
full range of support requests typically received by IT personnel. Staff members
emphasized the need for integrating information from additional platforms such as
Sciebo, which is frequently referenced in user inquiries. A key takeaway from the
study is the consensus among IT staff that, while the chatbot shows strong poten-
tial for addressing routine and frequently asked questions, it is not suitable as a
replacement for human support channels such as the IT Hotline. Rather, the chat-
bot is seen as a complementary tool which suits for resolving standard questions,
but less capable of handling complex, system-specific, or backend-related issues that
require human expertise. This distinction is crucial for understanding the chatbot’s
role within the broader IT support infrastructure. Nonetheless, one respondent ex-
pressed concern that the introduction of the chatbot could potentially lead to job
displacement, suggesting that the university might prioritize cost-saving measures
over maintaining high levels of customer satisfaction. However, this fear appears
to be premature and not fully justified given the current capabilities of the system.
As the chatbot is presently limited to answering standard inquiries based on in-
formation from the CIT website, its functional scope does not extend to handling
complex, context-specific, or system-dependent issues that require human expertise.
Moreover, the evaluation results clearly demonstrate that users continue to value
and prefer human support for such cases. The strategic intent behind the chatbot
is not to replace IT personnel but to relief their workload by automating responses
to frequently asked questions. In this way, the chatbot serves as a supportive tool
to optimize resource allocation and improve service availability, rather than as a
substitute for human expertise. This insight underscores that RAG for LLMss in
the context of IT support are not designed to fully replace human personnel as tasks
such identification and admin system-access cannot be taken over by such a chat-
bot. Instead, their strength lies in domain-specific information retrieval, where they
can efficiently provide accurate and context-relevant answers. From an economic
perspective for the university the chatbot has the potential to reduce the workload
of IT staff by handling repetitive, frequently asked questions, thereby enabling the
redirection of human resources toward more complex tasks. However, to accurately
assess the extent of these benefits, the chatbot must be deployed on a broader scale
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and integrated into the daily operations of the IT support team. Only through real-
world usage over time can its true impact on operational efficiency and cost savings
be systematically evaluated, showing limitation of this study.

The results of the performance evaluation demonstrate that the chatbot was gener-
ally capable of retrieving and generating suitable answers for nearly all frequently
asked questions. However, certain limitations emerged in cases where the user’s
query lacked sufficient context. For instance, the question "How do I set up my
WLAN?" is inherently ambiguous, as the university offers multiple WLAN options.
The chatbot, in this case, assumed that the user referred to the most commonly
used network, "uni-ms", and provided instructions accordingly. While technically
correct, this response lacked clarity, as it did not prompt the user to specify which
WLAN they intended to configure, even though the retrieved documents contained
information on alternative networks. Similarly, in response to the question "How
do I establish a VPN connection?", the chatbot described the process of initiating
and terminating a VPN session but omitted the installation procedure for the VPN
client. Although it did indicate that installation is a prerequisite and offered to as-
sist if the VPN was not yet installed, the omission affected the completeness of the
response. These examples underscore the critical role of question formulation in the
retrieval and generation process. In cases where the input query lacks specificity,
the chatbot tends to rely on the most prominent or frequently accessed content from
the retrieved documents, which may not fully address the user’s intent. This high-
lights the importance of implementing mechanisms—either through prompt design
or conversational clarification strategies—that enable the chatbot to ask for addi-
tional context when needed to enhance answer precision and relevance. To address
these limitations, several techniques can be employed to enhance the performance
of the RAG-based chatbot. One approach could be query rewriting, which reformu-
lates user questions from different angles to better capture the underlying intent. In
combination with improved prompt engineering, the system can be guided to proac-
tively ask counter questions when a query is vague or context-dependent. This would
enable the chatbot to collect additional clarifying information before attempting to
generate an answer, thereby increasing both completeness and accuracy. These
strategies highlight the potential for further RAG enhancements and represent valu-
able directions for future research and development. Lastly, one question could be
solved at all because the relevant document could not be found to give the relevant
context. This incident revealed that not all documents from the CIT website were
successfully loaded into the vector store. It appears that either the sitemap did not
allow crawling to this particular subpage, or that a logical error in the implementa-
tion excluded certain links from being processed. This issue must be addressed as a
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priority. Therefore, the link scraping function should be thoroughly reviewed, and
the set of retrieved links should be supplemented with the complete list of available
pages. A simple solution might already lie in adjusting the base URL for scraping to
https://www.uni-muenster.de/, which could ensure a more comprehensive coverage
of the entire website and even more documents. Furthermore, although the correct
source links were often provided, the current implementation lacks consistency in
this regard. Due to the absence of a query classification mechanism, the chatbot
always displays the top-ranked source link, even when it is not contextually appro-
priate. While this behaviour does not typically impair the user experience, it was
addressed by both users and IT staff that, in cases where the chatbot was unable
to provide a meaningful response, the accompanying source link also appeared irrel-
evant. This observation highlights the need for improved source attribution logic,
ideally by integrating query classification to ensure that links are shown only when
they are genuinely useful in supporting the provided answer.

With the evaluation and discussion of the results it is possible to reflect if the de-
sign objectives from the beginning were met. Table 7 provides an overview of the
fulfilment status of the design objectives defined for the development of the RAG-
based chatbot during treatment design. The evaluation reveals that most objectives
were successfully achieved. Web-based access (O1) was implemented via a Stream-
lit interface, allowing intuitive interaction with the chatbot. The use of Kubernetes
ensured a scalable deployment (O3), while the modular and model-agnostic architec-
ture (O4) enables integration with both internal and external LLMs. The retrieval
pipeline (O2) mostly succeeded in loading relevant documents from the CIT website,
though gaps were identified due to missing subpages in the vector store, indicating
room for improvement. Chat history persistence (O5) is only maintained within
the current session, which limits its utility in long-term interactions. Nonetheless,
the architecture is designed to support future extensibility (O6), allowing for the
integration of additional data sources (e.g. other webpages of the university, pdfs,
images) and functionalities (e.g. query classification, query rewriting, embedding of
the webpage via streamlit, etc.). Overall, the technical implementation addressed
the key design requirements, though certain features, particularly persistent memory
and complete data coverage, require further development.

Table 8 presents the results of the validation of the expected effects defined in the
problem context. The deployment of the RAG-based chatbot successfully deliv-
ered on the majority of user, operational, and economic expectations. From a user
perspective, the chatbot met core criteria such as instant access to support, 24/7
availability, reduced frustration through conversational interfaces, and multilingual
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ID Design Objective Achieved?
O1 Enable easy and web-based access to

the chatbot.
✓ Achieved via Streamlit inter-
face.

O2 Ensure accurate information retrieval
by loading the original sources of the
CIT website.

✓ Partially achieved; missing
pages discovered.

O3 Ensure a scalable deployment capable
of handling thousands of simultaneous
users.

✓ Achieved through Kuber-
netes deployment.

O4 Use a modular software architecture
that supports the integration of both
internal and external LLMs.

✓ Achieved; model-agnostic
setup implemented.

O5 Maintain conversational context
through persistent chat history.

– Partially achieved; only
session-based.

O6 Allow future extensibility for additional
data sources and potential chatbot fea-
tures.

✓ Achieved; extensible design
supports this.

Table 7 Assessment of Design Objectives

capabilities via the underlying LLM. Although it maintains context during a ses-
sion, the lack of persistent memory limits deeper context awareness across multiple
interactions. Notably, this was the only partially met objective among the user-
focused effects. In contrast, the expected effects for IT support staff remain un-
validated, as the chatbot has not yet been integrated into daily operations. While
the survey with IT staff provided positive feedback on the chatbot’s potential to
reduce repetitive tasks and redirect human resources, these benefits could not be
empirically confirmed. Effects such as reduced ticket volume, improved resource
allocation, or increased job satisfaction must be observed over time in a live en-
vironment. Consequently, these outcomes are currently considered theoretical and
should be re-evaluated in the context of a broader deployment. A long-term field
study is recommended to verify the operational and economic impact of the chatbot
in real-world support workflows.

Based on the discussion plenty of limitations for the implementation and evaluation
emerges for this project which are presented in the following: Several limitations of
the current implementation must be acknowledged. The chatbot’s knowledge base
was restricted to documents retrieved from the CIT website. As a result, ques-
tions referring to broader university services (e.g. Sciebo or the research portal)
could not be answered reliably, leading to hallucinated responses or delayed fall-
back replies such as “I do not know.” Furthermore, although the system is designed
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for context-aware dialogue, chat history is only maintained within the current user
session. There is no persistent memory that would allow users to revisit previous
conversations across sessions or devices. Another limitation lies in the lack of sup-
port for multimodal input: users cannot upload screenshots or visual cues, which
are often essential for describing technical issues. Additionally, the document re-
trieval pipeline revealed inconsistencies in scraping completeness. Some subpages
(e.g. Remote Desktop installation instructions) were not captured due to either
sitemap limitations or crawling logic flaws, resulting in incomplete or misleading
answers. Lastly, the chatbot lacks query classification and relevance-based source
ranking, occasionally presenting irrelevant sources when answers could not be con-
fidently retrieved, an issue also observed by users and IT staff. On the other side,
the evaluation of the chatbot was conducted in a pre-deployment phase with a lim-
ited set of test users and IT support staff, which presents several methodological
limitations. Most notably, the expected organizational and economic effects, such
as reduced workload, ticket volume, or support costs, could not be validated, as the
chatbot has not yet been integrated into daily IT operations. Therefore, findings
in this regard remain speculative and must be substantiated through longitudinal
studies in a real-world setting. Furthermore, the evaluation relied primarily on
survey responses, which reflect subjective perceptions rather than observable usage
behaviour. While these insights are valuable, they may not accurately predict ac-
tual adoption or usage patterns. The scope of the performance evaluation was also
limited to a predefined list of frequently asked questions. Although this ensured
standardization, it excluded more complex, ambiguous, or error-prone scenarios,
which are common in live support environments. Finally, without a formal baseline
or control group (e.g. performance of a previous rule-based system), it is difficult
to quantify the exact degree of improvement offered by the RAG-based approach.
These limitations highlight the need for a broader and more integrated evaluation
strategy in future work.

Based on these limitations recommendation for action can be made. First, the
knowledge base should be expanded to include other relevant university platforms
and services, such as the Sciebo documentation. This would significantly increase the
chatbot’s utility and reduce its susceptibility to hallucinations in queries beyond the
CIT website’s scope. Additionally, improvements in the scraping logic are necessary
to ensure the completeness of the data source coverage, particularly by ensuring that
nested subpages are correctly indexed and embedded. To support multilingual users
more effectively, a revised onboarding message should be implemented to clearly
communicate the chatbot’s language capabilities and scope. The embedding of the
chatbot into the CIT website would also increase the adoption. Further, pointing
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out the capabilities of the chatbot and disclaiming offical advice. Furthermore,
enhancing the prompting strategy to encourage counter questions in ambiguous
cases and implementing query classification could help reduce misinterpretations and
increase the reliability of responses. Lastly, for future evaluations, the chatbot should
be deployed in daily operations, enabling data-driven analysis of user interaction
patterns, support volume reduction, and cost savings over time.

Concluding with the developed artifact of the RAG-based chatbot for the IT Sup-
port of the University of Münster. While the chatbot developed in this study was
tailored specifically for the IT Support context of the University of Münster, its
architecture and implementation approach are highly transferable to other domains.
The modular design, comprising a document ingestion pipeline, vector store, and
model-agnostic generation layer, allows for easy adaptation to new knowledge do-
mains by replacing or augmenting the source data. This means the chatbot could
be repurposed for other university departments (e.g. library services, student ad-
ministration) or even external institutions that rely on structured and unstructured
documentation for user support. Additionally, because the LangChain framework
supports integration with both internal and external LLMs and allows for domain-
specific prompting, it is suited for use in highly regulated or knowledge-intensive
environments such as healthcare, finance, or public administration. The ability to
deliver contextual, source-grounded responses while remaining scalable and extensi-
ble suggests strong potential for generalizability, provided that the domain-specific
documentation is made accessible and the prompting is adjusted accordingly. Thus,
the artifact serves not only as a tailored solution for IT support but also as a
blueprint for implementing reliable and maintainable RAG-based chatbot systems
in other contexts.
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Expected Effect Achieved?
Instant access to support ✓ Chatbot provides immediate re-

sponses without delay.
Availability outside working hours ✓ Accessible 24/7 as a web-based appli-

cation.
Reduced frustration ✓ Eliminates need to search through

documentation; conversational input pre-
ferred.

Context awareness – Partially achieved; context main-
tained within sessions but no long-term
memory.

Multilingual support ✓ Translation via LLM works, though
not clearly communicated to users.

Potential barriers (e.g., trust or sensi-
tivity)

✓ Users prefer humans for complex or
personal issues; boundaries respected.

Reduced workload – Still to be validated; chatbot not yet
integrated into daily operations.

Lower ticket volume – Expected effect; future studies must
validate in production use.

Improved resource allocation – Not yet observable; depends on long-
term integration.

Fewer interruptions – Not measurable until broader deploy-
ment.

Support for onboarding – Potential use case, not evaluated in
this study.

Increased job satisfaction – Remains to be assessed after integra-
tion.

Reduced support costs – Economic impact must be shown in
practice.

Lower operational overhead – Theoretical benefit; not yet quantifi-
able.

Scalable support ✓ Can handle increased demand during
peak periods.

Long-term savings – Still hypothetical until sustained de-
ployment.

Table 8 Assessment of Expected Effects
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7 Conclusion

This thesis set out to explore the potential of RAG for LLMs in the context of
university IT support, specifically within the operational setting of the University
of Münster. The underlying research problem addressed how a RAG-based chat-
bot could improve the IT Support by reducing the number of repetitive requests
and by that reducing personnel cost or redirecting human personal to more valu-
able tasks and by increasing the availability of the IT service and by making the
access to information for students and staff member easier. The motivation origi-
nates from previous limitations observed in rule-based chatbot systems, which were
considered inadequate due to their inflexibility, high maintenance demands, and in-
ability to handle open questions. With the rise of RAG for LLMs, a new opportunity
emerged to implement a more dynamic, context-aware chatbot capable of addressing
a broader range of user needs in a scalable and maintainable way. To approach this
challenge, a comprehensive theoretical background study was conducted to under-
stand the mechanisms of RAG for chatbots, its core components, namely retrieval
and generation, and the recent advances in its application for domain-specific use
cases. This literature review formed the conceptual foundation for the artifact’s
design and informed the use of DSR methodology. Within the DSR process, the
chatbot was defined as the artifact and developed in close alignment with the stake-
holder needs identified through discussions with the Head of IT Services. A set of
six design objectives was formulated, including web accessibility, accurate informa-
tion retrieval from official CIT sources, scalable deployment, modular architecture,
session-based context awareness, and extensibility for future use cases.

The implementation followed a modular system architecture, utilizing LangChain as
the core RAG framework, gpt-4o-mini as the external LLM, and ChromaDB as the
vector database. All documents from the official CIT website were scraped and em-
bedded to serve as the basis for document retrieval. The frontend was implemented
using Streamlit, ensuring web-based accessibility, and the entire application was de-
ployed on the university’s Kubernetes cluster to ensure scalability and availability.
To evaluate the artifact, a multi-layered methodology was established, including
three evaluations: a user study with students and staff, a targeted IT support staff
study, and a factual performance test covering frequently asked support questions.
Each of these evaluations focused on different aspects of the system, allowing for
both technical and experiential insights.

The user study revealed that the RAG-based chatbot was widely perceived as a
faster and more convenient tool for finding IT-related information than traditional
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methods such as web search, the CIT website, or general LLMs. While users ac-
knowledged the reliability of the CIT website, they consistently ranked the chatbot
highest in terms of speed and ease of use. Notably, users expressed a clear prefer-
ence for using the chatbot as a first point of contact, particularly for straightforward
IT issues, and would only escalate to human support when necessary. This finding
suggests that the chatbot could effectively function as an initial support layer, reduc-
ing unnecessary load on IT personnel. The chatbot’s ability to clarify ambiguous
queries, maintain conversational context, and retrieve answers with sources also
contributed to increased user trust, although some expressed a need for more trans-
parency about the chatbot’s capabilities and limitations. The staff study yielded
complementary findings. IT support personnel recognized the chatbot’s utility in
addressing standard and repetitive support requests. While they did not consider
it a full replacement for the IT hotline, they did see its potential to free human
resources for more complex or system-specific issues, ultimately supporting a more
efficient allocation of work. From an economic perspective, the staff also noted
possible gains through 24/7 service availability and reduced ticket volumes, though
some remained cautious about whether these effects would scale in practice without
broader deployment. The performance evaluation further validated the chatbot’s
capabilities. Out of eight frequently asked questions, five were answered with full
accuracy, completeness, clarity, and correct source attribution. In two cases, partial
points were deducted due to insufficient clarification or missing steps in the expla-
nation, yet the responses still demonstrated contextual awareness and adaptability.
One question, related to remote desktop access, revealed a critical weakness in the
scraping logic, where certain subpages of the CIT website were not included in the
vector store. This incident highlighted the importance of thorough preprocessing,
source crawling, and fallback handling within a RAG system. The findings from this
evaluation not only confirmed the chatbot’s capability to handle real-world IT sup-
port scenarios but also emphasized the need for continuous monitoring, improvement
of prompt engineering, and enhanced retrieval logic.

The discussion of results led to several important implications. On the one hand,
it became evident that the current implementation largely fulfilled the defined de-
sign objectives. The chatbot was accessible, scalable, and accurate in retrieving
content from its document base, while allowing for future extensibility and model
integration. However, limitations also came up, particularly with respect to per-
sistent chat history, inconsistent source attribution, and lack of multimodal input.
Suggestions such as the integration of login-based chat memory and support for im-
age uploads (e.g. error screenshots) were derived from both user and staff feedback.
Furthermore, the findings underscore the importance of clearly communicating the
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chatbot’s capabilities and limitations to users, particularly its language support and
domain-specific scope.

In conclusion, the RAG-based chatbot developed in this thesis demonstrates a
promising solution to the challenges faced by university IT support services. It ful-
fills its role as a 1st-level support system by providing accurate, fast, and convenient
answers to common queries while relieving pressure on human staff. The chatbot
can serve as a valuable assistant in operational environments where standard infor-
mation needs are frequent and documented. In terms of the research problem, the
results affirm that RAG-based chatbots, when customized for a specific knowledge
base and context, can meaningfully enhance institutional support services. Within
the current research landscape, the developed system represents a state-of-the-art,
query-based application of RAG that aligns with the latest advancements in LLM
technologies. As such, it serves not only as a practical tool for the University of
Münster but also as a blueprint for similar implementations in other organizational
contexts. Looking ahead, future research on the exploration of RAG should focus on
the integration and evaluation of RAG enhancements. For the continued develop-
ment of the RAG-based chatbot within the university’s IT support, particular focus
should be placed on incorporating multimodal input, refining prompt engineering
techniques, and extending the scope of document retrieval to improve both reliabil-
ity and user experience. Finally, a large scale productive deployment of the chatbot
should be pursued to enable a more accurate assessment of its economic impact and
operational value in a real setting for the IT support.
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Appendix

A User Study Questionnaire

IT Support Chatbot Evaluation - User Study

As part of this master’s thesis, a chatbot for the IT support at the University of
Münster was developed. The purpose of this questionnaire is to evaluate the newly
developed chatbot.

This questionnaire consists of two parts:

• The first part evaluates different approaches to find an answer to IT-
related questions.

• The second part focuses on a detailed evaluation of the IT Support Chat-
bot.

The entire questionnaire will take approximately 15–20 minutes to complete.

You can access the new chatbot via the following link: https://rag-thesis.
uni-muenster.de/

You can answer open questions either in English or German.

Part I:

Here are four frequently asked IT-related questions. Your task is to find answers
using different approaches.

Questions:

(1) I have forgotten my password. What do I have to do now?

(2) How can I extend my university ID?

(3) How do I set up an OTP generator?

(4) How do I establish a VPN connection?

https://rag-thesis.uni-muenster.de/
https://rag-thesis.uni-muenster.de/
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Approaches:

(1) Perform a web search (e.g., Google, Bing, Yahoo) to find an answer.

(2) Use a Large Language Model (ChatGPT, UniGPT, Claude, Gemini, etc.)
of your choice to find an answer.

(3) Use the CIT Website (https://www.uni-muenster.de/IT/services/index.
html) where you can find the answers to the questions.

(4) Use the newly developed IT Support Chatbot (https://rag-thesis.uni-muenster.
de/) to find an answer.

You can decide which question to answer with which approach. However, please
ensure that each approach is used at least once.

Once you have completed this task, please answer the following questions below:

(1) Which approaches were able to provide a correct answer to your
question?

• Web Search □

• LLM □

• CIT Website □

• IT Support Chatbot □

(2) Rank the approaches from the most convenient way (1) to the
least convenient way (4) to find an answer to a question.
Approach Rank (1–4)
Web Search
LLM
CIT Website
IT Support Chatbot

(3) Rank the approaches from the fastest (1) to the slowest (4) in
terms of response time for finding an answer to a question.
Approach Rank (1–4)
Web Search
LLM
CIT Website
IT Support Chatbot

(4) Rank the approaches based on the quality and accuracy of the
answer to your question, from the most detailed and correct (1)
to the least detailed and correct (4).

https://www.uni-muenster.de/IT/services/index.html
https://www.uni-muenster.de/IT/services/index.html
https://rag-thesis.uni-muenster.de/
https://rag-thesis.uni-muenster.de/
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Approach Rank (1–4)
Web Search
LLM
CIT Website
IT Support Chatbot

(5) Please elaborate on how you would search for an answer to an
IT-related issue in the context of the University.

(6) What were the biggest challenges and advantages of each ap-
proach? You can answer in bullet points.

Part II

In this part, you are invited to try out the new IT Support Chatbot in
more detail.

Link: https://rag-thesis.uni-muenster.de/

Here are some more frequently asked questions for example to ask:

• How do I establish a connection to the Remote Desktop?

• How do I get Office 365?

• How do I set up my WLAN?

• I can’t find the poster printer. Why is that?

• My OTP generator no longer works. What do I have to do
now?

If you are not familiar with IT-related questions, you can simulate being
a new student at the University of Münster seeking onboarding informa-
tion.

Feel free to be creative and come up with your own questions.

Please take around 5 minutes to try out the new chatbot, then fill out
the questionnaire below.

(a) Please indicate your level of agreement with the following
statements.

https://rag-thesis.uni-muenster.de/
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Statement St
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The chatbot’s responses were
complete and accurate to answer
my questions.

□ □ □ □ □

Using the chatbot to find my an-
swer felt quick.

□ □ □ □ □

I felt that the chatbot was able
to retain context and remember
previous messages throughout the
conversation.

□ □ □ □ □

I believed the chatbot understood
and responded to me like a human
would when answering questions.

□ □ □ □ □

The chatbot’s conversational
style influenced my willingness to
use it in the future.

□ □ □ □ □

The chatbot allowed me to resolve
my IT issue with less effort com-
pared to web search, LLMs, or the
CIT website.

□ □ □ □ □

From now on, I would prefer the
chatbot over other ways to ob-
tain information on my IT-related
problems.

□ □ □ □ □

It was easy for me to use the chat-
bot to get my question answered.

□ □ □ □ □

The visual appearance of the
chatbot made it easier for me to
interact with it.

□ □ □ □ □

The chatbot’s design and person-
ality made it more engaging to in-
teract with.

□ □ □ □ □

I was satisfied with the overall ex-
perience of using the chatbot.

□ □ □ □ □

(b) What do you like about the chatbot?

(c) What do you not like about the chatbot?
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(d) Would you use the chatbot instead of searching on your
own? Why or why not?
And when would you use the chatbot instead of searching
on your own?

(e) Would you use the chatbot instead of human support?
Why or why not?
And when would you use the chatbot instead of human
support?

(f) Do you have suggestions for improvement? Are there cru-
cial parts missing? Did you encounter major issues?

B IT Support Staff Study

IT Support Chatbot Evaluation – IT Support Team Study
As part of my master’s thesis, I developed a chatbot to support the IT services at
the University of Münster.
This questionnaire aims to evaluate the chatbot’s effectiveness and usability. Com-
pleting the survey will take approximately 15 minutes.

The chatbot leverages the LLM GPT-4o-mini and retrieval-augmented generation
(RAG) to access and provide information from the CIT website.

You can access the chatbot via the following link: https://rag-thesis.uni-muenster.
de/
Please note that the website may display a security warning. You can ignore this
message and proceed with the evaluation.

To participate, please test the chatbot’s ability to function as a first-level IT support
assistant by asking IT-related questions.

Afterwards, kindly complete the questionnaire below. You can answer open ques-
tions either in English or German. Thank you for your time and support!

https://rag-thesis.uni-muenster.de/
https://rag-thesis.uni-muenster.de/
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(1) Please indicate your level of agreement with the following state-
ments.

Statement St
ro

ng
ly
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ee
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ee

The chatbot is able to provide
complete and accurate responses
to IT-related questions.

□ □ □ □ □

The chatbot was able to retain
context and remember previous
messages throughout the conver-
sation.

□ □ □ □ □

The chatbot understood and re-
sponded like a human would
when answering questions.

□ □ □ □ □

The chatbot’s conversational
style is similar to a real IT
support person.

□ □ □ □ □

The chatbot is capable to resolve
IT issues like the human support
personnel.

□ □ □ □ □

I believe that the chatbot can
be part of the 1st-Level Support
from now on.

□ □ □ □ □

I believe that it could relieve or
compensate for personnel short-
ages.

□ □ □ □ □

I believe the chatbot will have a
huge adoption of users.

□ □ □ □ □

The chatbot’s design and person-
ality made it more engaging to in-
teract with.

□ □ □ □ □

The chatbot could be a beneficial
way to increase the availability of
IT Support.

□ □ □ □ □

The chatbot provides an easier
way to find sources on the CIT
website than searching by your-
self.

□ □ □ □ □

Do you think the chatbot can help
reduce the number of repeated re-
quests of frequently asked ques-
tions?

□ □ □ □ □

Do you think the chatbot is able
to completely substitute the Sup-
port Hotline?

□ □ □ □ □
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(2) What do you like about the chatbot?

(3) What do you not like about the chatbot?

(4) Which support requests do you think could be fully resolved by
the chatbot?
And are there certain types of requests that the chatbot cannot
answer and still require human assistance?

(5) What kind of improvements (e.g. cost-savings, redirection of
valuable human resources to other important tasks, increased
availability of the service, overall higher customer satisfaction,
etc.) do you expect when the chatbot is part of the 1st-Level
support and why?

(6) Do you have suggestions for improvement? Are there crucial
features missing? Did you encounter major issues or limita-
tions?

C Content Analysis of Open Questions

C.1 User Study:

Question 5: Please elaborate on how you would search for an answer to an IT-related
issue in the context of the University.
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ID Category Response

1 G W C before I would have probably used Google and then go via the
CIT website ; but now I would use the IT Chatbot because
it was the most detailed, understandable and easiest way to
find an answer

2 W C First I would visit the university’s IT website . If I see that
there is a Support Chatbot available like in this survey I
would certainly use it because it can help me the fastest.

3 G P Usually through a google search or
communication channels

4 L C LLM or IT Support Chatbot
5 C W L Falls der IT Support Chatbot schon verfügbar ist, würde

ich ihn benutzen [...] Ansonsten würde ich erstmal auf
der CIT Website schauen und wenn ich dort nichts finde,
Chat GPT fragen.

6 C W Der IT Chatbot wirkt am schnellsten und passend detailliert
für IT Fragen. Vor allem im Gegensatz zum CiT

7 G I would do a google search
8 G W Google the problem, which normally leads me to the desired

part of the CIT website .
9 G W Google and look für university held pages
10 G W googlen , dann kommt man entweder auf die CIT-Seite oder

eine passende andere Webseite.
11 G I would google some keywords of my problem and hope that

it would give me the relating websites.
12 G C I would google it first because it’s very convenient [...]. If I

am not forwarded [...] I would ask the IT Support Chatbot
13 P W C normally I ask my colleagues or use the search on the

CIT Website , but I will try the IT support chatbot
14 W CIT website
15 G W Usually using a search engine to find the right "entry point"

on the websites
16 W C I have always used the CIT website until now, but the

chatbot would be a good alternative
17 G W My first step is always to google and most times I am pro-

vided the desired link to a University Page

Table 9 Categorization of IT Support Search Approaches - Part 1
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ID Category Response

18 G W C Without the IT Support Chatbot : google the topic + uni-
versity münster [...] subpage of the CIT homepage [...] With
IT Support Chatbot [...]

19 G C Currently, usually via web search . But if reliable, I’d always
prefer a Chatbot

20 W Probably would check the website first
21 G C I would try a web search first [...]. Though a fully functional

IT Support Chatbot would be even faster
22 Be sure that it comes from an official source.
23 W C G P First I would check the CIT service portal [...]. Now I would

try the solution as described . If this does not work, I would
either google or ask colleagues or write to the CIT support.

24 G google
25 W G CIT Website or Web Search

Table 10 Categorization of IT Support Search Approaches - Part 2
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C.2 User Study: Question 6

Question 6: What were the biggest challenges and advantages of each approach.
You can answer in bullet points.

ID Category Response

1 Speed, Accu-
racy, Ease of
Use, Visual
Design, Com-
pleteness,
Reliability

Web Search: + fast + no extra website I have
to use - gave the most inconvenient answer - did
not give all options available just one; LLM: +
easy + fast detailed answer + can explain further
if needed - did not give all available options to
solve the problem - did not give links; CIT Web-
site: + gave all options available - complicated to
use - no clear, easy or fast overview - don’t know
where to look for what - no nice design; IT Chat-
bot: + easy to use + provides all available options
+ clear structure + answers fast and understand-
able + nice design + gives hints what to keep in
mind and take care of when using the options (like
that the password reset can take some time) + can
explain further if needed - gives security warning
- can only use it via the link, not directly on the
website

2 Navigational
Challenges

The challenge most of the time is, that in an uni-
versity environment there are many different de-
partments and sometimes it makes it difficult to
find the information you need.

3 Speed, Accu-
racy

Advantage of the Chatbot: accuracy and speed.
Challenges for the others were either the speed or
the accuracy.

4 Speed Fast answers.

Table 11 Categorization of Challenges and Advantages – Part 1
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ID Category Response

5 Navigational
Challenges,
Speed, Com-
pleteness,
Human
Support
Availability

Websuche: Man muss sich durch viele Seiten
durchklicken und sucht lange nach der passenden
Antwort. Chat GPT oder Ähnliches: Funktion-
iert ähnlich gut wie der IT-Chatbot und verweist
bei Angabe der Uni auch auf passende Websites.
IT Support Chatbot: Liefert zumindest auf die
4 Beispielfragen sehr ausführliche Infos zur direk-
ten Problembehebung. CIT Website: Man muss
sich etwas länger durch alle Reiter klicken aber
auch hier findet man eigentlich gute Hilfe. Außer-
dem hat man einen Überblick über alle Bereiche
und findet Kontaktinformationen, falls man alleine
nicht weiterkommt – die erhält man aber auch
(spätestens auf Nachfrage) vom IT Support Chat-
bot. Generell liefert der Chatbot am schnellsten
die gewünschte Information.

6 Navigational
Challenges,
Accuracy,
Completeness

Bei der Websuche muss man selbst Seiten finden
wo die Antwort steht, sie ist nicht direkt parat.
Cit lieferte kein passendes Ergebnis nur Artikel wo
Worte der Frage vorkamen. ChatGPT gab direkt
eine Antwort allerdings allgemein. Der Chatbot
gab eine allgemeine Antwort und konkretisierte
direkt und fragte nach einem weiteren Detail
woraufhin direkt eine ausführliche Schritt-für-
Schritt Anleitung folgte.

7 Accuracy,
Navigational
Challenges,
Completeness

LLM: is sometimes wrong and presents a solution
to a slightly different problem. Websearch: I have
to look through 1–3 websites. Chatbot: I cannot
intuitively see further helpful links that I would see
on a website.

8 Navigational
Challenges,
Accuracy,
Detail Level

The CIT website is difficult to navigate (to which
category belongs OTP? where can I find informa-
tion on how to prolong my group memberships?)
– the web search usually navigates me to the right
part of the CIT website – the LLM (uniGPT) takes
quite long and is very vague, therefore not a good
option – I really like that the IT Support Chat Bot
also provides me with a website, where I can check
if the answer given was correct. Overall, the level
of detail the Chat Bot provides is much higher than
with the other options.

Table 12 Categorization of Challenges and Advantages – Part 2
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ID Category Response

9 Speed, Ac-
curacy,
Navigational
Challenges,
Trust

Chat bot: fastest and easiest, but I’m scared it’s
wrong. CIT website: I get the right answer but the
menu is not good. Google: convenient and faster
than the website because I get to the right subpage
directly. LLM: I know what page to go to, but the
answer is wrong.

10 Accuracy,
Specificity

Googlen liefert das richtige Ergebnis in den meis-
ten Fällen – Webseite hat die wirklich korrekte
Anleitung mit passenden uni-spezifischen Param-
etern.

11 Speed, Speci-
ficity, Usabil-
ity

- Using the google search and the website itself
needs much time (a lot of text to read). - Using
the IT chatbot and chatGPT is fast. - The IT
chatbot gives me specific information about our
university, not of the whole world.

12 Accuracy,
Complexity,
Presentation

- LLM: Information given was partially wrong –
so I had to consider whether the information given
was right or wrong. - IT Support Chatbot: ex-
perience was fully positive. - Web search: Very
effective by using bullet points only but is not ap-
propriate for more complex questions. - CIT web-
site: same as web search.

13 Relevance,
Navigation

Web Search and LLM: not university specific.
CIT-Website: had to search first. IT Support
Chatbot: none.

14 Chatbot
Tone, Target
Group

If you know the CIT website a little bit, it’s just
OK to use it. The Chatbot is quite chatty if you
know what you want, but I guess it’s a very good
option/addition for people who are new to this,
especially new students.

Table 13 Categorization of Challenges and Advantages – Part 3
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ID Category Response

15 Information
Currency,
Navigation,
Speed, Accu-
racy

* CIT Website: Most up-to-date information; nav-
igation to the correct sub-page can be tricky. *
Web Search: Extremely fast result for the gen-
eral direction; manual review of result page nec-
essary. * Support Chatbot: Quite up-to-date in-
formation and good details (e.g. password differ-
ences); longer waiting time for answer. * LLM:
Inaccurate/outdated information; longer waiting
time; ease of use.

16 Personalization,
Media Inte-
gration

- I really like the screenshots included on the CIT
Website. Otherwise the IT support Chatbot and
the LLM provided similarly good results. - The
chatbot is focused on my specific problem, on the
website I have to filter for my cases (android,
ios,...). - It would be amazing when I could send
screenshots with error messages to the chatbot and
the screenshots from the website are included in
the bot.

17 Trust, Accu-
racy, Redun-
dancy

The general LLM is no option, as it only pro-
vides general Information. However, all of the
other three methods only differ in how to reach
the university page, with the addition that the
Chatbot already provides detailed step-by-step in-
structions. [...] Furthermore, my slight distrust in
LLMs makes me choose the Webpage if provided
the option. Lastly, the webpage, providing pic-
tures is nice, even though they might be outdated.

18 Accuracy,
Reliability,
Information
Structure

Random LLM: does not give accurate informa-
tion / does not represent the answer/solutions my
employer wants me to use for IT-related things.
Google: sometimes links to old/obsolete CIT pages
or "obscure" subpages. CIT webpages: good if I do
not know what I am looking for. Chatbot: com-
bines speed and precision of Google with CIT web-
page advantages.

Table 14 Categorization of Challenges and Advantages – Part 4
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ID Category Response

19 Structure,
Reliability,
Overview

CIT Website: (-) understanding structure and
finding info; (+) screenshots, broader service view.
Web search: (-) choosing correct site; (+) fast and
complete info. LLM: (-) reliability of sources; (+)
quick overview. Chatbot: (+) fast, clear, with
source references.

20 Search Strat-
egy

Coming up with a search strategy.

21 Navigation,
Query For-
mulation,
Specificity,
Convenience

- Biggest challenges: navigating the CIT web-
site, formulating the right search term for the web
search, LLM giving very general responses that
don’t actually apply to this specific situation (e.g.,
advice on what to do after forgetting my pass-
word). - Biggest advantages: the high accuracy
of the web search and IT Support Chatbot, the
Chatbot being more convenient (no need to click
and read through web page, provides an accurate
summary).

22 Consistency,
Specificity

The Chatbot was super convenient – but its an-
swers did not always match the CIT website. For
example lost password: CIT section shows differ-
ent info than the site the chatbot offers. Web
search and LLM are too general. I would need
more specific information.

23 Structure,
Detail Level,
Trust

IT support chatbot: Detailed, OS-specific
branches asked directly, good feeling (being
guided). Google: worked well, led directly to the
correct page. LLM: too general, unsure about cor-
rectness, no links. CIT website: everything fine,
but had to search the CIT URL via Google.

24 Navigation CIT Website: Sometimes difficult to find the topic
I’m looking for.

Table 15 Categorization of Challenges and Advantages – Part 5
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Survey Statement Assigned Dimen-
sion

The chatbot’s responses were complete and accurate to
answer my questions.

Quality and Accuracy

Using the chatbot to find my answer felt quick. Efficiency
I felt that the chatbot was able to retain context and
remember previous messages throughout the conversa-
tion.

Conversational Mem-
ory

I believed the chatbot understood and responded to me
like a human would when answering questions.

Natural Language
Processing (NLP)

The chatbot’s conversational style influenced my will-
ingness to use it in the future.

Anthropomorphism

The chatbot allowed me to resolve my IT issue with
less effort compared to web search, LLMs, or the CIT
website.

Usability

From now on, I would prefer the chatbot over other ways
to obtain information on my IT-related problems.

User Experience (UX)

It was easy for me to use the chatbot to get my question
answered.

Usability

The visual appearance of the chatbot made it easier for
me to interact with it.

User Interface (UI)

The chatbot’s design and personality made it more en-
gaging to interact with.

Personas

I was satisfied with the overall experience of using the
chatbot.

User Experience (UX)

Table 16 Categorization of Likert scale Questions into Evaluation Dimension Met-
rics



102

ID Category Response

1 Response Qual-
ity, Step-by-Step,
Human-Like

That it answers like a human being and can even
specify if I didn’t understand something immediately
and needed a more deep and detailed explanation and
that it provides links and gives godly structured an-
swers I can follow step by step.

2 Structured Re-
sponses

The structured answers. It gave enough information
but not too much information regarding the question
at hand.

3 Speed How fast it can answer my questions.
4 Speed, Detail,

Clarification, De-
sign

Man erhält schnell Hilfe, der Chatbot ist sehr
ausführlich und kann einzelne Dinge auf Nach-
frage nochmal genauer erklären. Er ist optisch
ansprechend.

5 Accuracy, Clarifica-
tion, Step-by-Step

Findet richtige Antworten auch mit Schreibfehlern in
der Frage. Wenn die Frage zu kurz ist, wird nachge-
fragt. Detaillierte Schritt für Schritt Antwort auf
Frage.

6 Step-by-Step, Em-
bedded Links

You always have stepwise instructions links directly
embedded in the answers.

7 Source Referenc-
ing, Clarification

It always states the sources of information it uses so
that I can verify the answers. Also, it asks for further
details to provide a better answer. So in general, it
offers the information from the CIT website, but with
better navigation.

8 Convenience,
Source Referencing

It’s convenient and fast, there is a link for fact check-
ing.

9 Accuracy Gibt korrekte – wenn auch teils allgemeine –
Antworten aus.

10 Friendliness, Speed It is very friendly and it is fast.
11 Source Referenc-

ing, Accuracy
Quelle wird direkt mit angegeben – richtige
Antworten auch auf komplexere Fragen.

12 Human-Like,
Source Referencing

It felt like asking a colleague but being provided the
necessary links at the same time.

13 Onboarding Great start for desoriented newbies.
14 UI, Tone Simple interface, "friendly" responses.
15 Convenience It is quick and less annoying. I do not have to provide

more context like the University of Münster.
16 Speed, Accuracy Good response time and seems accurate.

Table 17 User Feedback on Liked Aspects of the Chatbot - Part 1
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ID Category Response

17 Source Referencing That it directly links to sources and gives the link at
the bottom of each answer.

18 Speed, Design,
Source Referenc-
ing, Clarification,
Multilingualism

Speed, reduced design, highlighting relevant aspects,
sources, available languages, unlike other LLMs it di-
rectly asked for details needed to filter and substan-
tiate the information (e.g. operating system).

19 Convenience Convenience.
20 Usability, Speed,

Surprise Features
Easy to use, provided download link for WinAuth
which positively surprised me, quick and concise.

21 Convenience, Ac-
cessibility

It is very convenient and quick. Especially for non-
IT users it might feel more natural than contacting
a human being and waiting for a more or less nice /
supportive answer. [...] I like the running icon :)

22 Simplicity, Accu-
racy

Einfach, scheint auf die richtigen Informationen Zu-
griff zu haben. Kurze, prägnante, ausreichend aus-
führliche Antworten.

23 Usability Very easy to use.

Table 18 User Feedback on Liked Aspects of the Chatbot - Part 2
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ID Category Response

1 Memory It doesn’t remember the conversation when I close
and then use the link again. And that it gives a
security warning in the beginning.

2 Design Maybe the design could be a bit more original. But I
find it difficult to find something I disliked about the
chatbot.

3 Nothing Everything was good.
4 Verbosity Manchmal vielleicht etwas "zu" ausführlich bei einer

simplen Frage, aber das liegt vermutlich an der Frage
und am Vorwissen der fragenden Person. Mir ist
nichts Negatives beim Ausprobieren aufgefallen.

5 Typing Speed Man muss warten bis der Chatbot alles aus-
geschrieben hat. Man ist gewohnt, dass die Nachricht
direkt komplett aufploppt.

6 Incorrect Answer /
Domain Limitation

I asked for a non-IT related question (how to obtain
new student ID card) [...] maybe this can be handled
better.

7 Incorrect Answer When I prompted that I had forgotten my password,
it stated that I could go to the IT portal to reset it –
uniGPT at least recognized that this was not a valid
option.

8 Trust I have to remember a new website, I don’t trust it,
cause ChatGPT is always wrong, so I have trust issues
with LLMs.

9 Specificity / Typ-
ing

Diese "Wort für Wort"-Schreiben. Ergebnisse nicht
sehr spezifisch und allgemein gehalten mit vielen Op-
tionen, die nicht relevant sind.

10 Personalization That it has no name :) That the jokes don’t make
sense.

11 Nothing Nothing.
12 Conversational

Style
As always, if you know what you want, chatbots are
a bit too chatty for me.

13 Hallucination /
Privacy

* Hallucinations with more specific questions [...] *
No warning about data being sent to an external ser-
vice.

14 Incomplete An-
swers

Sometimes it forgets to mention details and gives in-
complete responses.

15 Irrelevant Sugges-
tions

If it cannot answer it still provides links to unrelated
webpages sometimes.

Table 19 User Feedback on Disliked Aspects of the Chatbot - Part 1



105

ID Category Response

16 Speed / Tone /
Customization

That it is set up to "write" very slowly. That it is set
up to use smileys as a default. That it is set up to
"act" like a conversational human.

17 Incomplete / Incor-
rect Answer

Some answers were incomplete (which the bot itself
noted). Reference was made to the source, but it was
incorrect.

18 Incorrect Answer Sometimes gave incorrect answers (I asked how to
install a certificate in my Outlook).

19 UI Placement Takes up the whole screen. I would rather prefer it
as an icon on any university website.

20 Typing Animation I am not a big fan of typing animations (in general,
not specific to the chatbot) and prefer answers "on
one glance".

21 General Rejection
of AI

Künstliche Intelligenz verschwendet Ressourcen.
Eine Websuche bringt mich auf das gleiche Ergeb-
nis, ich muss nur ein bisschen weniger faul sein.

Table 20 User Feedback on Disliked Aspects of the Chatbot - Part 2
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ID Response
1 I would use it if I need a description on how to do anything IT related,

especially when I need step-by-step descriptions. Because Google and the
CIT website are not well structured and it´s way faster and easier to use
the Chatbot.

2 Yes i would use it because if prompted correctly it finds exactly the infor-
mation i need in a structured overview.

3 Yes! Because its faster and accurate
4 Gerade bei komplizierteren Fragen würde ich den Chatbot benutzen, weil

er alles sehr verständlich erklärt.
5 Für konkrete Anleitungsfragen v.a IT wo man im Web nicht direkt die

richtige Lösung findet ohne sich durch tausend websiten durchzusuchen
6 I’ve never had an IT problem so I dont know. I would probably do a web

search first, as i have google opened faster than the chatbot. I would have
to search for the link to the chatbot first. But when I dont find anything in
one or two web searches, I would look up the bot.

7 I think this would offer a great entry point on where to find the solution to
a problem.

8 Yes, faster and I can ask context questions without having to do a new
search

9 Nein, die Webseite mit Bildern und Unterkategorien der Uni (welche meis-
tens über die Websuche gefunden wird) ist intuitiver zu verstehen.

10 I would use the chatbot for simple information about something. Not for in-
formation where small details are necessary, e.g. the manuals for installing
specific software, where little details during the installation make the differ-
ence between success and failure. And sometimes it is helpful to see pictures
of the installation way.

11 Wenn ich mich in die Lage eines normalen Nutzenden reinversetzte auf jeden
Fall, da vor allem komplexere Probleme eher schwierig zu lösen sind, wenn
man sich nicht gut auf der Seite des CIT auskennt

12 it feels a bit too convenient and sometimes I like to challenge myself and
find things out myself

13 i would use the bot for topics which I am less sure about
14 Probably would use it from time to time for more specific questions where

a simple web search would not suffice
15 It is easier and faster. I would need a search string for google, then check

the results, find the best tab, then read the page until I find what I need.
For the bot I only need a search string or prompt.

16 Probably not, because I would need to search for the Chatbot instead of
searching directly first. I would probably use it if it is embedded in the
University pages, so that if i do not find the Information that I am looking
for, i can ask the chatbot

Table 21 Responses to Question 10: Would you use the chatbot instead of search-
ing on your own? - Part 1
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ID Response
17 If the information given by the chat bot can be trusted to be correct, i.e. it

is equally official to information on the CIT homepage, I would use it. If the
answers of the chatbot are nor regarded as officially correct, I see no point
in using it, if I have to verify by hand that the answers are in accordance
with my employers regulation anyway.

18 If reliable, yes, for all questions related to service information (troubleshoot-
ing, overviews, manuals). Simply because it’s much more convenient.

19 Yes, it is convenient
20 I would use the chatbot instead of searching on my own when I need ’basic’

questions answered. For more complex issues, the solution to which isn’t
spelled out in a database or on the CIT website, I prefer to call the IT
support.

21 for anything which might is crucial for security I would like the official source
to be sure.

22 Probably yes - but I am not someone to uses search options as first step.
Thus I would probably forget that the chatbot is a more convenient method
:)

23 i would use the chatbot, because i think it might be a quicker than searching
by myself

Table 22 Responses to Question 10: Would you use the chatbot instead of search-
ing on your own? - Part 2
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ID Response
1 yes I would, because I can talk to it like a human and ask as many times

as I want to without it getting annoyed or think I am stupid. And I could
use it whenever I want and not only during service hours.

2 I think there are still somethings which are better solved with a human
because the interaction can be faster. But for getting information a human
is in the disadvantage in my opinion.

3 For small questions I would use the chatbot. For bigger once I would want
human support

4 Bei einigen Dingen würde ich lieber persönlichen Support erhalten, da
ich mir alles direkt am Laptop zeigen lassen kann, das hilft manchmal
finde ich. Aber ansonsten würde ich den Chatbot vorziehen, weil er
schneller antwortet. Bei einem Anruf/ persönlichen Termin ist man auf Öff-
nungszeiten angewiesen, per Mail wartet man lange auf Antworten. Außer-
dem ist der Chatbot immer freundlich:)

5 Chatbot geht natürlich viel schneller als eine Person hinzuziehen, jemanden
zu erreichen und dann den Sachverhalt zu erklären. Wenn man ein Problem
selbst lösen möchte, würde ich den Chatbot bevorzugen Chatbot konnte
auf meine Nachrichten eingehen, Antworten liefern, wenn ich nur ein Wort
liefere wird nachgefragt, wenn ich Schreibfehler mache wird trotzdem die
Frage richtig verstanden

6 I would use the chatbot for general problems. If it is really specific and no
one else had this problem before, I would talk to a human

7 Chat bot can solve easy tasks that are already explained on the web site.
More specific questions or more complex problems (even if they start with
an easy question) still need to be solved by a human. I suppose it is also a
good option for people that are afraid of writing an e-mail / calling the IT
support directly.

8 Yes, faster, people are unfriendly and don’t always talk on a "normal per-
sons" level of it understanding

9 Ja, wenn es um einfache Sachverhalte geht.
10 I would use the chatbot for simple questions or information. Not for complex

information where more relations to user groups eg. are important. For that
specials I would contact the human support.

11 Ja würde, da es weniger aufwändig ist. Sollte es um personenbezogene
Daten gehen, würde ich wahrscheinlich aber eher noch den menschlichen
Support wählen.

12 I think the chatbot could be a good first point of contact but if I cannot
find a solution having human support is definitely important.

13 Most likely yes, because it would always be immediately available and would
not ’overlook’ obviously existing information. As soon as I would believe I
have a ’non-standard’ problem, I would prefer human support.

Table 23 Responses to Question 11: Would you use the chatbot instead of human
support? - Part 1



109

ID Response
14 Yes, I can ask stupid questions, when I can angry I can insult it. My first

try would always be the chatbot. As soon as I have problems the bot can’t
resolve within a few promts or causes new problems, I would ask for human
support

15 yes, if i would not be able to find the information directly, i would first
ask the chatbot before calling human support. Mostly because I feel not
needing to bother them, if I can find out quickly myself with the chatbot

16 No, I would not use the chatbot instead of human support. If I ask for
human support it is, because the CIT webpage tells me to contact IT/IVV
regarding my issue or I do have a question which needs human approval
(e.g. can we pay for this? is this not yet listed cloud platform ok to use
according to the DSGVO?)

17 Would always use it before contacting human support. Often support is
contacted, because information can’t be found (quickly enough) although
it’s there.

18 gives flexibility and is good for shy people
19 For individual issues (such as my device not working properly, printer sud-

denly not connecting) I prefer human support since it allows me to explain
my issue more clearly - and if I struggle explaining my issue, the person on
the other end is able to help me out. As mentioned above, I would use the
chatbot for more basic questions, the answer to which I could also find on
my own on the CIT website or through a web search - using the chatbot
would be much more convenient and time-efficient in these cases.

20 I would refer human support if they are friendly and fast (hotline) and for
more complex qustions.

21 As someone who offers IT support: Many people will prefer a chatbot as
it feels less "embarrassing" to ask a machine than asking a human. Even
more so as some colleagues in IT support are not very good at dealing with
insecurities and "noob questions" from their counterparts. The chatbot does
not judge. :) For me, I would prefer a chatbot for easy problems like the
(very good) examples in this survey. For more complex or very specific
questions, I would prefer human support.

22 Bei Informationen, die so speziell sind, dass der Chatbot möglicherweise
falsche Antworten geben würde.

23 the chatbot is very convenient, I don’t like to make phonecalls and mails
often have quite a long response time, so I would definitely try the chatbot
first and only use the human support if I can’t find a solution to my problem

Table 24 Responses to Question 11: Would you use the chatbot instead of human
support? - Part 2
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ID Response

1 It would be nice if there would be previous conversations that I could
look at again instead of once I close it I have to ask the same questions
again and cannot just quickly go to the previous conversations.

2 No.
3 Everything was good
4 Mir fehlt nichts. Vielleicht könnte man zukünftig noch einrichten, dass

der Chatbot auch Fragen auf spanisch beantworten kann für zB Ersamus-
Studenten?

5 Besser wär wenn die Antwort direkt aufploppt. Aber das macht auch
den Chatcharakter und dass die Antwort gerade kommt. Ansonsten vol-
lkommen in Ordnung, sogar sehr zufriedenstellend

6 I didnt notice major issues
7 Sometimes I don’t understand the source it gives to me. I asked why

I cannot login to a very specific service (Beck-Online) and the source
it prompted to me was the onboarding wizard. Since the answer was
not helpful and the source was not either, this was overall not a good
interaction.

8 Most information is correct, but I found one big mistake: The chatbot
mixes up the IT portal and the intranet for students. The campus man-
agement system is not found in the IT portal, but in the intranet for
students.

9 Ist es evtl möglich Auswahlmöglichkeiten direkt zu verlinken, anstatt sie
nochmal in das Textfeld eingeben zu müssen (z.B. bei der Abfrage nach
dem Betriebssystem für die Einrichtung des WLAN, sodass man einfach
nur auf "macOS", "Android", etc. klicken muss)

10 no
11 Great work - you guys are amazing!
12 I would like to upload screenshots and error messages to the bot. Also

for instructions the screenshots on the website are helpful, they would be
nice too. And mostly but sometimes not the bot provides the source. It
would always be helpful.

13 maybe be able to add pictures from the websites could be nice for In-
structions, embedding to uni websites would fit good in my "search Flow",
but that is not diretly chatbot related

Table 25 Responses to Question 12 – Suggestions and Issues - Part 1
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ID Response

14 I would love a more technical option of the bot/something that does not
give the feel of having to have a converstation with a machine/something
that is better suited to finding answers with as few keystrokes/clicks as
possible (not having to write sentences or questions etc.)

15 Sources need to be reliable. Answer should be complete.
16 No nice idea.
17 I would prefer "I do not know" sooner in a conversation. I asked for

example "I need a CRIS account" and received a wrong answer that
would cause me a lot of questions to the wrong humans (plus a correct
link to the CRIS intranet pages - but a) users are lazy and many will not
click the additional link, b) the CRIS manual would be better to answer
the question than the intranet :) ). Only asking more specific "How
does the CRIS of the university of Münster manage CRIS accounts?" I
received "I do not know" (plus again the correct link to the CRIS intranet
pages). Also more training / background data than only the CIT portal.
And if using the CIT Portal as basic data, the answers of the chatbot
should match the CIT pages I as an user would find on my own when
skipping through the CIT portal. Otherwise the chatbot seems to have
some secret knowledge the CIT is hiding. This could cause mistrust in
the chatbot and / or the CIT

18 Ich habe den Chatbot nicht ausführlich genug getestet, er schien seine
Aufgabe aber ausreichend gut zu erfüllen.

Table 26 Responses to Question 12 – Suggestions and Issues - Part 2
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C.3 IT Support Staff Study:

Evaluation Question Assigned Metric
The chatbot is able to provide complete and accurate
responses to IT-related questions.

Accuracy

The chatbot was able to retain context and remember
previous messages throughout the conversation.

Chat History

The chatbot understood and responded like a human
would when answering questions.

Anthropomorphism

The chatbot’s conversational style is similar to a real IT
support person.

Personas

The chatbot is capable to resolve IT issues like the hu-
man support personnel.

Operational Efficiency

I believe that the chatbot can be part of the 1st-Level
Support from now on.

Operational Efficiency

I believe that it could relieve or compensate for person-
nel shortages.

Operational Efficiency

I believe the chatbot will have a huge adoption of users. Adoption
The chatbot’s design and personality made it more en-
gaging to interact with.

User Experience (UX)
/ Personas

The chatbot could be a beneficial way to increase the
availability of IT Support.

Availability

The chatbot provides an easier way finding sources on
the CIT website than searching by yourself.

Usability

Do you think the chatbot can help reduce the number
of repeated requests of frequently asked questions?

Operational Efficiency

Do you think the chatbot is able to completely substi-
tute the Support Hotline?

Operational Efficiency
and Availability

Table 27 Mapping of IT Staff Evaluation Questions to Assessment Metrics
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ID Response
1 Überraschend gute Handlungsempfehlungen auch bei einem nicht

alltäglichen Problem
2 You can ask it again and again, without it gets emotional
3 Pretty fast
4 schnelle und verschiedene Anwortmöglichkeiten
5 I like the detailed solutions and the quick way to get answers to

frequently asked questions. Also the ability to get support at any
time of the day.

6 Gut strukturierte (Schritt-für-Schritt) Lösungsvorschläge.
7 It includes contact information of the relevant IT support personnel.
8 The design is nice and with a bit of repeated asking it seems to

sometimes give reasonably correct answers.

Table 28 IT Staff Feedback Question 2 – What They Liked About the Chatbot

ID Response
1 Bei mehrfachen Fragen ist nicht intuitiv klar, wie man mehrere

davon beantwortet. Oder ggf welche davon
2 If poorly programmed and you don’t know the keywords, you’re

just standing in one place wasting your nerves and not getting the
problem solved.

3 friendly
4 -
5 Manchmal etwas zu allgemein.
6 It very confidently gives incorrect information. For example, when

asked about the installation of a niche program it simply assumed
that the software follows the configure, make, make install process,
which in reality it does not. I would prefer if the chatbot was more
cautious about information it does not know reliably.

7 Er sucht immer eine Quelle, teilweise auch für Antworten für die es
keine Quelle bedarf. Passiert dis, ist die Quelle manchmal random

8 All LLMs are prone to hallucinations. You often have to ask mul-
tiple times to get a relevant answer.

Table 29 IT Staff Feedback Question 3 – What They Disliked About the Chatbot
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ID Response
1 "Einfache" Fragen (z.B. Passwort vergessen) kann man sicher-

lich damit lösen. Das ist dann i.W. ein komfortabler Ersatz für
FAQ-Lesen. Komplexere Anfragen benötigen einen 2nd-Level
Support.

2 The most basic ones, for which there is already a clear and un-
ambiguous manual.

3 Standard questions, after training maybe some more, hopefully
Sciebo, too.

4 Wo finde ich was, wie funktioniert xx, etc.
5 Basic tasks such as answering questions like "Why is my OTP

not working?" can be answered. Deeper things like sending out
special otps and changing numbers should remain a human task.

6 I think the chatbot is a good alternative to problems that can be
answered with the FAQ of the various services. Without always-
up-to-date knowledge and/or direct access to systems like the
identity management, it cannot answer correctly user- or system-
specific questions (e.g., Why can I not access the HPC system?
Is software XYZ installed on the cluster?)

7 Manche Nutzende wissen nicht was Ihr Problem ist und können
die Probleme nicht korrekt bezeichnen, da wird der Bot sicherlich
an seine Grenzen stoßen. Zudem gibt es so stark zeitbasierte
Ereignisse, die unter den Kollegin*innen weitergeleitet werden,
dass der Bot diese Anfragen zu diesen Themen nicht abfangen
kann. Video-Idents oder generell die Prüfung der Identität.

Table 30 IT Staff Responses Question 4 – Types of Requests Suitable for Chatbot
Support
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ID Response
1 Ist sicherlich eine Möglichkeit, außerhalb der Service-Zeiten einen 1st-

Level-Support anzubieten. Ob das besser angenommen wird als der Hin-
weis auf die FAQ, bleibt abzuwarten.

2 Some customers are just more comfortable receiving information in
quanta as it is given out by a chatbot and are not comfortable talk-
ing to a real person.

3 24/7 availability
4 Entlastung der Mitarbeiter bei "einfachen" Support Anfragen
5 Quicker response for customers and a decrease in repetitive questions.
6 I am doubtful of whether the chatbot will provide significant resource

savings overall as the time savings due to successful interactions will
have to compensate the additional time needed to support users that get
bad advice from the bot. However, availability of some level of support
outside of normal office hours is a plus that some customers might ap-
preciate.

7 Ich denke, dass der Bot auf die Gewohnheiten und Bedürfnisse für
Studierende angepasst ist. Diese haben häufig auch spät abends noch
Fragen oder telefonieren nicht mehr so gerne. Gerade Anfragen zum
Semesterstart können so besser abgefangen werden, hier werden immer
wieder ähnliche Fragen gestellt zur Einrichtung des WLANs oder VPNs
etc.

8 I expect redirection of human resources into unemployment, leading to
overall lower customer satisfaction.

Table 31 IT Staff Responses to Question 5 – Expected Economical or Operative
Effects
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ID Response
1 Die Datenbasis kann sicherlich noch erweitert werden.
2 The bot doesn’t memorize answers, customers often tell you how to solve

their problem themselves when they understand the nature of the prob-
lem during the conversation. Such answers should be memorized.

3 Sciebo training is essential for use in our queue.
4 Once I wasn’t asked which operating system I was using and it just spit

out the solution for Windows. However, I could not replicate this problem
again.

5 The chatbot appears to just guess the sources of its information. I asked
questions related to the HPC cluster and got somewhat sensible answers.
However, I assume that the chatbot does not have access to the cluster
documentation yet as it pointed to seemingly random other pages as its
source. A bit more honesty in that regard would be nice ;-)

6 Mehr Auswahl in den Themen der IT

Table 32 IT Staff Responses to Question 6 - Suggestions for Improvement and
Limitations
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