
MSc Thesis Computer Science

Optimizing the Computational
Efficiency of Fine-tuning and
Inference for Large Language
Models

Luat Gia Khoi Nguyen

Supervisor: Assoc. Prof. Alexandros Stergiou

June 26, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente



Contents

1 Introduction 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7
2.1 Introduction to Large Language Models . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Modern LLM Architecture . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Scaling Large Language Models . . . . . . . . . . . . . . . . . . . . . 9

2.2 Efficiency in LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Computational Challenges in LLMs . . . . . . . . . . . . . . . . . . . 10
2.2.2 Model Compression Techniques . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Efficient Architecture Design Techniques . . . . . . . . . . . . . . . . 11
2.2.4 Parallelism for Memory Efficiency . . . . . . . . . . . . . . . . . . . . 11

2.3 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Traditional Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Parameter-Efficient Fine-Tuning (PEFT) . . . . . . . . . . . . . . . 14
2.3.3 LoRA: Low-Rank Adaptation of Large Language Models . . . . . . . 14

3 Methodology 15
3.1 Preliminary Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Tensor Parallelism in Megatron-LM . . . . . . . . . . . . . . . . . . 15
3.1.2 LoRA Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Combining FSDP with Tensor Parallelism . . . . . . . . . . . . . . . 16

3.2 Proposed Tensor Parallelism Paradigm for LoRA Modules . . . . . . . . . . 17
3.3 Proposed Efficient Model Loading Method for FSDP-TP Sharded Models . 18

4 Experimental Results 21
4.1 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Single Node Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 LoRA Rank Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Throughput (Processed Tokens/Second) . . . . . . . . . . . . . . . . 22
4.2.3 Processing Time per Sample (PTS) . . . . . . . . . . . . . . . . . . . 23

4.3 Multi-node Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Throughput and PTS at Sequence Length = 10,000 . . . . . . . . . . 24
4.3.2 Throughput and PTS at Sequence Length = 20,000 . . . . . . . . . . 26

4.4 Efficient Model Loading Performance . . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion 30
5.1 Single node Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Multi-node Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



5.3 Limitations and Future Outlooks . . . . . . . . . . . . . . . . . . . . . . . . 31

A Supplementary Materials and Examples 40
A.1 Batch Script Configurations for Llama 3.1 70B Training . . . . . . . . . . . 40

A.1.1 Slurm Batch Script Example . . . . . . . . . . . . . . . . . . . . . . 40
A.1.2 Explanation of Key Parameters . . . . . . . . . . . . . . . . . . . . . 41

A.2 Demonstrative Example of 2D Column-wise Sharded Weight Shape . . . . . 42
A.3 Bottlenecks in Naïve Parameter Loading under TP + FSDP . . . . . . . . . 42
A.4 FSDP-TP Weight Gathering: Elaboration, Example, and CPU Memory

Allocation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B Supplementary Data and Experiments 43
B.1 Maximum number of trainable tokens per node of different parallelism con-

figurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.2 Throughput Improvement and PTS reduction (in percentage) of different

Parallelism configurations compared to TP-only configuration . . . . . . . . 43
B.3 MTSL of different parallelism strategies at different LoRA ranks . . . . . . 44
B.4 Throughput at different context length for different configurations . . . . . . 44
B.5 PTS at different context length for different configurations . . . . . . . . . . 44
B.6 Mathematical Analysis of Throughput Degradation in Parallelism Strategies 46

B.6.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.6.2 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . 46
B.6.3 Statement of the Theorem . . . . . . . . . . . . . . . . . . . . . . . . 46
B.6.4 Formal Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.6.5 Implications for Parallel Training Strategies . . . . . . . . . . . . . . 47

3



Acknowledgements

I would like to express my deepest gratitude to Assoc. Prof. Alexandros Stergiou at the
University of Twente for his invaluable guidance and support throughout the formulation
and writing process of this thesis. His insights and advice have been instrumental in
shaping the direction of this work.

I am also sincerely grateful to Prof. Alexander Ilin at Aalto University and System 2
AI Ltd., as well as Dr. Harri Valpola at System 2 AI Ltd., for providing me with technical
supervision and the opportunity to work on this project. Their expertise and mentorship
have greatly enriched my understanding and contributed to the successful completion of
this research.

Furthermore, I would like to extend my heartfelt thanks to Assoc. Prof. Pekka Mart-
tinen for the resources and support provided by his research group at Aalto University,
which enabled me to carry out this thesis work.

To all the individuals and institutions who have supported me during this journey, I
am deeply appreciative of your contributions and encouragement.

4



Chapter 1

Introduction

1.1 Introduction

Fine-tuning Large Language Models (LLMs) for specific downstream tasks has become
a critical step in leveraging their full potential. However, this process requires significant
GPU resources, even with parameter-efficient methods like Low-Rank Adaptation (LoRA).
The sheer size of LLMs poses a major challenge, as the models alone are often too large to
fit into a single GPU, making efficient resource utilization a key priority during fine-tuning.
This limitation necessitates advanced computational strategies to enable effective training
and inference.

Parallelism techniques have emerged as essential tools for improving the computa-
tional efficiency of fine-tuning LoRA-infused models. Among these, Fully Sharded Data
Parallelism (FSDP) and Tensor Parallelism (TP) have shown significant promise in opti-
mizing memory utilization and throughput for large-scale models. These techniques enable
training on longer context lengths and larger batch sizes while maintaining high through-
put and lower peak memory consumption, which is critical when fine-tuning with LoRA.
FSDP distributes model parameters, optimizer state, and gradients while offering com-
petitive throughput thanks to communication-computation overlapping. However, as it is
still indeed a data parallel (DP) approach at its core, the minimum batch size is limited
to the number of GPUs, with no possibility to reduce it further, consequently limiting the
maximum trainable sequence length of the input batch. TP, on the other hand, offers dis-
tribution of computation, enabling sub-unit batch size and longer trainable sequence length
per GPU. However, its high communication overhead greatly affects throughput. As a re-
sult, hybrid parallelism approaches that combine FSDP and TP offer a powerful solution
by balancing inter-GPU communication and memory utility, addressing the trade-offs in-
herent in standalone parallelism strategies. Although the benefits of hybrid approaches
are theoretically well-established, comprehensive comparisons between these three config-
urations in general, and the practical superior performance that hybrid approaches offer
specifically, have not been thoroughly studied, particularly for fine-tuning LoRA-infused
models on single-digit GPU node resources.

This thesis investigates the computational trade-offs and performance of FSDP-TP hy-
brid approaches applied to LoRA-infused models. Specifically, we evaluate their impact on
maximum trainable sequence length (MTSL), throughput, and processing time per sample
(PTS) across different configurations and scenarios, including single-node and multi-node
setups. In order to apply TP to LoRA adapters, we propose a TP paradigm for LoRA
adapters, in addition to the original paradigm for transformer model weights, enabling
compatibility of LoRA computed logits with those produced by original model weights.
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We also propose an efficient model loading method under FSDP-TP to address critical
bottlenecks such as CPU memory allocation and CPU-GPU communication overheads.

The contributions of this work are fourfold:

1. A proposed TP paradigm for LoRA adapters, enabling integration with existing TP
paradigms for original transformer model weights.

2. A proposed method for efficient model loading under FSDP-TP, addressing critical
bottlenecks such as CPU memory allocation and CPU-GPU communication over-
heads.

3. A comprehensive analysis of the computational performance of FSDP, TP, and their
FSDP-TP hybrid approaches for LoRA-infused models, highlighting their advantages
and limitations in terms of maximum trainable sequence length (MTSL), throughput,
and processing time per sample (PTS).

4. Experimental validation of parallelism configurations across single-node and multi-
node setups, providing practical insights into optimal parallelism strategies for vari-
ous training scenarios, enabling effective scaling.

By bridging the gap between parallelism strategies and parameter-efficient fine-tuning,
this thesis contributes to the broader goal of enabling scalable and efficient training and
inference for large-scale LLMs. The findings and methodologies presented herein aim to
serve as a foundation for future research in the domain of computational optimization for
fine-tuning LLMs with LoRA.

This thesis is organized as follows. Chapter 2 reviews relevant literature on LLM
architectures, efficiency techniques, and fine-tuning approaches. Chapter 3 details our
methodology, including tensor parallelism for LoRA modules and our efficient model load-
ing method. Chapter 4 presents experimental results for both single-node and multi-node
configurations, focusing on three defined metrics: maximum trainable sequence length
(MTSL), throughput, and processing time per sample. Chapter 5 discusses our findings
and outlines future research directions. Supplementary materials and additional experi-
mental data are provided in the appendices. In this document, we occasionally use “DP” to
refer to “FSDP” since FSDP is a data parallel (DP) technique, and no plain DP is involved
in this study; therefore, this should not cause any confusion.
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Chapter 2

Literature Review

2.1 Introduction to Large Language Models

This section overviews the core architecture, training approaches, and applications of mod-
ern Large Language Models (LLMs). In section 2.1.1, we examine the fundamental Trans-
former architecture and its key variants - encoder-only, decoder-only, and encoder-decoder
models - which form the backbone of contemporary LLMs. Subsequently, section 2.1.2 ex-
plores essential techniques for scaling LLMs by increasing parameters, depth, and width,
along with methods to address the resulting computational challenges.

2.1.1 Modern LLM Architecture

Transformers [61] are the foundational blocks for modern LLMs and rely entirely on
attention.

Attention allows the model to weigh the importance of different parts of the input
sequence when generating a representation for each element in the sequence. This mech-
anism enables the model to capture long-range dependencies and relationships within the
data more effectively than RNN-based models.

Key Components Transformers typically comprise an encoder and a decoder (Figure
2.1). The encoder processes the input sequence and generates a contextualized representa-
tion of it. The decoder then uses this representation, along with its own internal state, to
generate an output sequence. Both the encoder and decoder are made up of stacked layers,
each containing multi-head attention mechanisms and position-wise feed-forward networks
(Figure 2.1).

Architectural variations

This section will discuss three main attention-based architectural variations: encoder-only,
decoder-only, and encoder-decoder models.

Encoder-only models like BERT [15] utilize an encoder-only architecture for tasks like
sentence classification, question answering, and natural language inference. BERT’s pre-
training approach involves two key objectives: masked language modeling, which trains
the model to predict randomly masked tokens in a sentence, and next sentence predic-
tion, which enables the model to determine if two sentences logically follow each other.
These objectives help BERT learn rich contextual representations from large amounts of
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Figure 2.1: Architecture of the standard Transformer. Excerpt from [55].

unlabeled text data, resulting in significant performance improvements compared to pre-
vious non-contextual embedding methods (e.g., Word2Vec, GloVe) due to its ability to
capture contextual nuances in language. However, the computational cost of BERT can be
a limiting factor for certain applications, particularly in resource-constrained scenarios or
real-time systems, as BERT’s large size and complexity demand significant computational
resources. Specifically, BERT’s bidirectional architecture necessitates simultaneous pro-
cessing of the entire input sequence, increasing computational overhead. This limitation
has prompted research into more efficient variants, such as DistilBERT and TinyBERT.

Decoder-only models. such as the GPT family [41, 42, 7] exemplifies the decoder-only
approach. These models focus on autoregressive text generation with causal attention.
GPT models generate the next token in a sequence by conditioning on the preceding con-
text, using a unidirectional (causal) transformer architecture. This unidirectional approach
has shown remarkable performance in tasks like machine translation [56], text summariza-
tion [68, 1], and dialogue generation [57, 49]. In addition, this architecture has proven
particularly effective for in-context learning [7, 29] and chain-of-thought reasoning [64,
63]. The development of larger GPT models, such as GPT-3 [7], has further pushed the
boundaries of language generation, showcasing the potential of decoder-only architectures
in capturing long-range dependencies and generating human-quality text. Notably, the
principles underlying these models extend beyond text processing, as the decoder architec-
ture can effectively process encodings from various modalities, including vision and audio
inputs [3, 16].

Encoder-decoder models like T5 [44], utilizes both an encoder and a decoder. This
structure is well-suited for sequence-to-sequence tasks, such as machine translation [5, 65,
61], text summarization [50, 68, 33], and question answering [47, 30, 8], where the model
needs to capture complex dependencies between the input and output sequences.
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Memory Usage of Multi-head Attention (MHA) and Multi-layer Perceptron
(MLP) Blocks

The memory usage of an MHA block, according to Li et al. [34], can be represented as:

16AZH

N
+

4BLZA

N
+

BZL2

N
+BLH (2.1)

where B is batch size, L is sequence length, H is hidden size of linear layers, A is
attention head size, Z is number of attention heads, and N is number of GPUs.

On the other hand, the memory usage of an MLP block is:

32H2

N
+

4BLH

N
+BLH (2.2)

2.1.2 Scaling Large Language Models

This section examines the critical dimensions of scale in large language models and asso-
ciated techniques.

Scaling techniques (depth, width, and parameter count) Scaling LLMs involves
increasing the number of parameters, layers (depth), or hidden units (width). Simply in-
creasing the size of LLMs can lead to significant computational challenges. Techniques
such as recurrence mechanisms (e.g., Transformer-XL [12]), memory-based approaches
(e.g., Compressive Transformer [43]), low-rank methods (e.g., Linformer [62]), and fixed
patterns (e.g., Big Bird [67]) have been used to reduce computational overheads. Addition-
ally, sparse architectures (e.g., Sparse Transformer [9]) and conditional computation (e.g.,
Switch Transformer [18]) offer promising avenues for scaling Transformers while maintain-
ing efficiency.

Impact of scaling Scaling has demonstrated significant benefits across various applica-
tions. Models like Llama 2 [60] have shown that increased scale, combined with careful
fine-tuning on high-quality conversation data, can produce models that rival or exceed the
performance of specialized dialogue systems. Similarly, unified approaches like T5 [44] have
effectively leveraged scale to transfer learning across diverse NLP tasks.

2.2 Efficiency in LLMs

This section examines the key challenges and solutions in making Large Language Models
(LLMs) more computationally efficient. In Section 2.2.1, we analyze the fundamental com-
putational challenges facing modern LLMs, including memory requirements, training costs,
and computational complexity. Section 2.2.2 explores various model compression tech-
niques such as quantization, pruning, and knowledge distillation. Section 2.2.3 discusses
efficient architecture design approaches, particularly focusing on attention mechanisms and
mixture of experts. Finally, in section 2.2.4, we detail different parallelization strategies
for memory-efficient training, including data, tensor, pipeline, and hybrid parallelism.

9



2.2.1 Computational Challenges in LLMs

Model Complexity and Capacity. The parameter count in modern LLMs has under-
gone a dramatic surge, escalating from BERT’s 340 million parameters [15] to 540 billion
parameters in PaLM [11]. This exponential growth translates directly into substantial
memory requirements and computational overhead. In mixed-precision training, as de-
tailed by Rajbhandari et al. [45], a single parameter requires 16 bytes of memory, leading
to significant hardware demands. For instance, training GPT-3 with its 175 billion param-
eters cost over $4.6 million using Tesla V100 cloud instances [31], highlighting both the
financial and computational intensity of developing these models.

Measures of Compute. The computational demands of LLMs can be quantified through
several key metrics. Floating-point operations (FLOPs) measure the basic arithmetic oper-
ations during inference, with the self-attention mechanism exhibiting quadratic complex-
ity O(n2d) relative to sequence length n and model dimension d [61]. Another metric
is memory footprint. Memory footprint refers to the RAM required during model oper-
ation. It encompasses both model states and residual states, where even inference can
exceed single-GPU capacity [45]. To measure inference performance, latency (response
time) and throughput (tokens per second) are common metrics, which are especially cru-
cial for real-time applications. These computational challenges have driven innovations in
model compression, efficient architectures, and distributed training strategies like Tensor
Parallelism (TP) [52], which forms a key technique in this research.

2.2.2 Model Compression Techniques

Quantization. Quantization compresses LLMs by converting model weights and/or acti-
vations from high-precision data types to low-precision ones. There are several approaches
to quantization. Post-training quantization (PTQ) applies quantization after model train-
ing, with methods like LLM.int8() achieving significant memory reduction while main-
taining model performance [14]. GPTQ enables compression to 3 or 4 bits with minimal
accuracy loss [20]. Quantization-aware training (QAT) incorporates quantization during
the training process, with methods like QuantGPT achieving 14.4× compression rates
while maintaining performance [54]. Mixed-precision training enhances efficiency by us-
ing low-precision models for forward and backward propagation while converting gradients
to high precision for weight updates. Notable implementations include Automatic Mixed
Precision (AMP) [38] and BFLOAT16 [28].

Pruning. Pruning reduces model size by removing redundant or less important param-
eters. Structured pruning focuses on eliminating structured patterns like rows or columns
in weight matrices. For example, LLM-Pruner uses gradient information to selectively
remove non-essential interconnected structures [37], while Sheared LLaMA achieves supe-
rior compression by pruning layers, heads, and dimensions in an end-to-end manner [66].
Unstructured pruning removes individual weights, offering more flexibility but potentially
creating irregular sparsification patterns. SparseGPT demonstrates that models like OPT-
135B can reach about 60% unstructured sparsity with only slight performance degradation
[19]. Wanda achieves competitive performance by pruning based on weight magnitudes
and their respective input activations [53].

Knowledge Distillation. Knowledge distillation transfers knowledge from a large teacher
model to a smaller student model, and can be categorized into white-box and black-box
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approaches. White-box KD utilizes the teacher model’s parameters or logits in the distilla-
tion process, with methods like Baby LLaMA demonstrating successful distillation through
training an ensemble of smaller models [59]. MiniLLM improves conventional KD by em-
ploying policy gradient techniques to minimize reverse KLD, achieving better accuracy
than traditional KD [21]. TED enhances performance through layer-specific task distilla-
tion using specially designed filters to align internal states of both models [35]. In contrast,
black-box KD only uses the teacher model’s output generations, making it more flexible.
For instance, Lion introduces an adversarial distillation architecture that incrementally
improves the student model’s skill level through imitation, discrimination, and generation
[27].

2.2.3 Efficient Architecture Design Techniques

Efficient Attention. The quadratic time and space complexity of attention modules
significantly impacts the efficiency of LLMs in pre-training, inference, and fine-tuning.
Several approaches have been proposed to optimize attention mechanisms. Sharing-based
attention techniques like multi-query attention (MQA) [51] and grouped-query attention
(GQA) [2] accelerate inference through KV heads sharing. Another approach involves ker-
nelization or low-rank techniques, adopted by models such as Sumformer [4] and Performer
[10], which enhance efficiency by utilizing low-rank representations of the self-attention ma-
trix. Hardware-assisted attention techniques, exemplified by FlashAttention [13], optimize
memory access between GPU high-bandwidth memory and on-chip SRAM during attention
computation.

Mixture of Experts (MoE). MoE represents a sparse approach that segments tasks
into sub-tasks handled by specialized smaller models called experts. This architecture en-
hances model capacity while managing computational and memory requirements efficiently.
Notable implementations include GShard [32], which offers refined parallel computation
frameworks, and Switch Transformer [17], which introduces a switch routing algorithm
supporting up to one trillion parameters divided among 2,048 experts. Recent develop-
ments include Mixtral 8x7B [26], which outperforms larger models like LLaMA-2 70B on
various benchmarks while using only 12.9B parameters per token for inference, demon-
strating a 6x faster inference speed.

2.2.4 Parallelism for Memory Efficiency

Data Parallelism. Data parallelism is a fundamental approach to scaling deep learn-
ing training across multiple devices where each worker maintains a complete copy of the
model while the input dataset is sharded across workers [40]. In this strategy, each worker
processes different subsets of data in parallel, computes gradients locally, and then aggre-
gates these gradients periodically through collective communication operations to ensure all
workers maintain consistent model versions. The standard implementation uses an AllRe-
duce operation to average gradients across workers before applying optimizer updates.
While simple and effective for models that fit on a single device, basic data parallelism
becomes inefficient for very large models due to the memory overhead of replicating the
entire model, gradients, and optimizer states on each device [69]. Additionally, beyond a
certain point, the per-GPU batch size becomes too small, reducing GPU utilization and
increasing communication costs relative to computation. The maximum number of devices
that can be effectively used is also limited by the global batch size, as each worker needs
at least one sample to process [40].

11



Fully Sharded Data Parallel. Fully Sharded Data Parallel (FSDP) addresses the mem-
ory limitations of standard data parallelism by sharding model parameters, gradients, and
optimizer states across data-parallel workers [69]. FSDP decomposes the model into smaller
units and manages each unit independently, only materializing unsharded parameters and
gradients of one unit at a time while keeping other units sharded. During forward and
backward passes, parameters are gathered on-demand before computations and then im-
mediately resharded afterward. FSDP offers various sharding strategies ranging from fully
replicated to fully sharded, with hybrid approaches in between. The sharding factor F
determines how many ranks share parameters, with F = 1 being equivalent to standard
data parallelism and F = world_size providing maximum memory savings [69]. Key
optimizations include deferred initialization for efficient model creation, communication
scheduling to overlap with computation, and rate limiting to manage GPU memory frag-
mentation. FSDP can be combined with other parallelism techniques and has been shown
to achieve comparable performance to standard data parallelism while enabling training of
significantly larger models [45].

Pipeline Parallelism. Pipeline parallelism partitions model layers across multiple de-
vices, with each device responsible for a subset of consecutive layers. The input batch is
split into smaller micro-batches that flow through the pipeline stages sequentially. Two
main scheduling approaches exist: GPipe-style scheduling [25] where all forward passes
are executed followed by all backward passes, and 1F1B scheduling [39] where forward
and backward passes are interleaved. A key challenge is the pipeline bubble - idle time at
the start and end of processing each batch when devices wait for activations to propagate
through the pipeline. The bubble size is proportional to (p-1)/m where p is the number of
pipeline stages and m is the number of micro-batches. An innovative interleaved pipeline
schedule can reduce this bubble by assigning multiple chunks of layers to each device,
though this comes with increased communication overhead [40]. While effective for scaling
very large models, pipeline parallelism in isolation can only scale to the number of layers in
the model. Therefore, pipeline parallelism is often combined with other parallelism tech-
niques, such as tensor parallelism, to leverage additional advantages like sub-unit weight
sharding.

Tensor Parallelism. First introduced in the Megatron-LM paper [52], tensor parallelism
(TP) partitions individual neural network layers across multiple devices to enable train-
ing of very large models by dividing operations within each layer. Figure 2.2a and 2.2b
illustrate how TP is implemented in transformer-based language models, showing both the
matrix partitioning schemes and the required communication patterns.

For transformer-based language models, TP exploits the inherent parallelism in both
the multi-layer perceptron (MLP) and self-attention blocks. The approach splits weight
matrices along their width and distributes the sharded weights across devices in a way
that minimizes communication while maintaining computational efficiency. In the MLP
blocks, the weights are partitioned to allow independent application of activation functions
across devices. Similarly, for self-attention blocks, the key, query, and value matrices
are strategically split to reduce communication overhead. The communication pattern in
both blocks is implemented using complementary operators that alternate between identity
operations and all-reduce operations in the forward and backward passes.

This partitioning scheme requires only two all-reduce operations in both forward and
backward passes for synchronization. However, tensor parallelism necessitates expensive
all-reduce communication between devices, making it primarily suitable within a single
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node with high-bandwidth interconnects like NVLink [52]. The degree of tensor parallelism
is thus typically limited to the number of GPUs within a server node (e.g., 8 for NVIDIA
DGX systems).

(a) MLP (b) MHA

Figure 2.2: Transformer blocks with tensor parallelism implementation. The
operations f and g form a conjugate pair where f performs identity in forward
propagation and all-reduce in backward propagation, while g performs the opposite
pattern: all-reduce in forward propagation and identity in backward propagation.

Hybrid Parallelism. Hybrid parallelism combines multiple forms of parallelism to over-
come the limitations of each individual approach. Common combinations include 3D par-
allelism (pipeline, tensor, and data parallelism) and 2D parallelism, e.g., tensor parallelism
with fully sharded data parallelism or tensor parallelism with pipeline parallelism [40]. For
LLMs, tensor parallelism is typically used within a single node to maximize use of high-
bandwidth intra-node connections, while pipeline parallelism spans across nodes using
cheaper point-to-point communication. The optimal configuration depends on model size,
hardware topology, and communication bandwidth. When using FSDP instead of standard
data parallelism, memory usage can be further optimized by sharding parameters across
data-parallel workers [46]. However, the interaction between different parallelism strate-
gies must be carefully managed - for instance, tensor parallel all-reduce operations must
be coordinated with pipeline schedules, and data parallel gradient synchronization must
account for both tensor and pipeline parallel communication patterns [40]. The trade-offs
include memory efficiency, communication overhead, and computational utilization, which
must be balanced based on specific hardware configurations and model architectures.

2.3 Fine-tuning

This section explores the evolution of fine-tuning approaches for language models, begin-
ning with Traditional Fine-tuning (Section 2.3.1), which becomes impractical as models
grow larger due to the computational burden of updating billions of parameters. The
chapter then introduces Parameter-Efficient Fine-Tuning (PEFT) methods (Section 2.3.2)
that solve these limitations by updating only a small subset of parameters, categoriz-
ing them into addition-based, reparameterization-based, and selection-based techniques.
The discussion concludes with a detailed examination of Low-Rank Adaptation (LoRA)
(Section 2.3.3), a breakthrough PEFT method that introduces trainable low-rank decom-
position matrices alongside frozen pre-trained weights, offering significant advantages in
parameter efficiency, memory usage, inference performance, and task-switching capabilities
while maintaining comparable performance to traditional fine-tuning across various model
scales.
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2.3.1 Traditional Fine-tuning

Traditional fine-tuning involves updating all parameters of a pre-trained model to adapt it
to downstream tasks [15]. This approach, while effective, becomes increasingly impractical
as models grow in size. For instance, fine-tuning GPT-3 175B requires maintaining separate
copies of 175 billion parameters for each task [24], making it computationally expensive and
memory-intensive. The storage requirements alone can be prohibitive, as each fine-tuned
model requires hundreds of gigabytes of storage space.

2.3.2 Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) methods address computational limitations of
traditional layer-based fine-tuning by introducing and updating a small subset of parame-
ters [23]. These approaches can be broadly categorized into several types:

Addition-based methods. These techniques introduce new trainable parameters to the
model while keeping the original parameters frozen. Examples include adapter layers [48]
and soft prompts [58].

Reparameterization-based methods. These approaches reparameterize the weight
updates using low-rank decompositions, such as LoRA [24].

Selection-based methods. These methods selectively update only certain parameters
of the original model, such as tuning only the biases [6], or using structured pruning
approaches [22].

The key advantage of PEFT methods is their ability to achieve performance comparable
to full fine-tuning while training orders of magnitude fewer parameters. For instance, on
the GLUE benchmark, adapter-based methods can match within 0.4% of full fine-tuning
performance while adding only 3.6% parameters per task [23].

2.3.3 LoRA: Low-Rank Adaptation of Large Language Models

Low-Rank Adaptation (LoRA) [24] represents a significant advancement in parameter-
efficient fine-tuning. The method is based on the hypothesis that the weight updates during
model adaptation have a low "intrinsic rank." Instead of directly updating the model’s
weights, LoRA introduces low-rank decomposition matrices that are trained alongside the
frozen pre-trained weights.

LoRA offers several key advantages. It significantly reduces the number of trainable
parameters. For example, when applied to GPT-3 175B, LoRA reduces the number of
trained parameters by a factor of 10,000 while maintaining model quality. LoRA also im-
proves memory efficiency. The method reduces GPU memory requirements by up to 2/3
during training since optimizer states are needed only for the smaller matrices. Further-
more, LoRA introduces zero inference overhead. During inference, the low-rank matrices
can be merged with the original weights, introducing no additional latency. Finally, LoRA
facilitates task switching. Multiple tasks can be efficiently handled by storing different
sets of rank decomposition matrices while sharing the same pre-trained model, making it
particularly suitable for serving multiple downstream tasks.

The effectiveness of LoRA has been demonstrated across various model scales, from
BERT and RoBERTa to GPT-3, showing consistent performance comparable to full fine-
tuning while being significantly more parameter-efficient [24].
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Chapter 3

Methodology

3.1 Preliminary Techniques

3.1.1 Tensor Parallelism in Megatron-LM

First introduced in the Megatron-LM paper [52], Tensor Parallelism (TP) proposes a way to
shard Multihead Attention (MHA) and Multilayer Perceptron (MLP) weights to minimize
communication between devices. For instance, the first linear layer in the MLP block
partitions its weight matrix along columns, while the second linear projection layer is
partitioned along rows (Figure 2.2a). Formally, for an input X and weight matrix A of the
first linear layer, the calculation in the first linear layer is represented as:

[Y1, Y2] = [GeLU(XA1),GeLU(XA2)], A = [A1, A2] (3.1)

where column-wise sharding of A allows independent General Matrix Multiplication (GEMM)
and subsequent GeLU computations, eliminating the need for synchronization. Subse-
quently, the second linear layer, whose weight matrix is presented as B, takes this activation
and performs a row-wise computation:

Z = Y1B1 + Y2B2, B =

[
B1

B2

]
(3.2)

resulting in a single all-reduce synchronization after the computation. Similarly, in the self-
attention block, the query (Q), key (K), and value (V ) matrices are partitioned column-
wise. The computation of each attention head or group of attention heads (in case the
number of attention heads is a multiple of the TP sharding factor) occurs locally within a
single GPU without intermediate synchronization. The subsequent output linear projection
is then partitioned row-wise, taking outputs directly from the parallel attention heads,
thereby further reducing communication (Figure 2.2b).

Consequently, the only synchronization required within each transformer block is an
all-reduce operation at the end of each MHA or MLP block during the forward pass and
at the beginning during the backward pass, simplifying communication to two all-reduce
operations per block per training iteration.

3.1.2 LoRA Adapters

Each pair of LoRA [24] decomposition matrices, or adapters, consists of two projection
matrices, namely A and B. Matrix A ∈ Rd×r projects the input from the hidden dimension
d to a lower intrinsic dimension r, and matrix B ∈ Rr×d projects it back to the original
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dimension. Let x ∈ Rd denote an input hidden state vector, W ∈ Rd×d a pretrained
weight matrix, and y ∈ Rd the output logit. Then, each modified linear transformation is
formulated as:

y = xW + xAB. (3.3)

Here, W remains frozen during training, while A and B are trainable and adapt to new
data, functioning as modular plugins for fine-tuning on downstream tasks. The paradigm
of LoRA is illustrated in Figure 3.1.

x

d

W ∈ ℝd x d

A ∈ ℝd x r

B ∈ ℝr x d

r

y

d

Figure 3.1: LoRA reparameterization.

3.1.3 Combining FSDP with Tensor Parallelism

Figure 3.2 illustrates the parameter distribution when combining FSDP with TP.

W00 W01 W02 W03

W10 W11 W12 W13

FSDP Dimension

TP Dimension

GPU:0

GPU:4

GPU:1 GPU:2 GPU:3

GPU:5 GPU:6 GPU:7

Figure 3.2: The sharding paradigm for weight W when combining FSDP and TP.
Each weight is first sharded across the TP dimension and subsequently across the
FSDP dimension. Examples of sharded weight shapes are given in Appendix A.2.
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Here, each Wij is a 2D-sharded weight that is sharded along the TP dimension and
FSDP dimension. To perform the forward or backward pass, each GPU must contain the
TP-sharded weight (i.e., a 1D-sharded weight) of the corresponding layer in use — for
example, the Q-projection linear layer’s weight in the 30th decoder layer of the LLaMA
3.1 70B model. This means that each device has to gather the weight from other devices
along the FSDP dimension.

In the example shown in Figure 3.2, device GPU:0 will gather the TP-sharded weight
from GPU:1, and vice versa, to reconstruct the full 1D-sharded weight, preparing for for-
ward/backward computations.

For convenience, we refer to each FSDP group as a DP group. During the forward
and backward passes, each device fetches the TP-sharded weights only along the FSDP
dimension, resulting in TP-sharded weights being available on each GPU. Together, this
paradigm enables distributed computation of multiple micro-batches across DP groups
while simultaneously parallelizing the computation of intermediate logits of each micro-
batch across devices within each DP group (i.e., having the same DP rank but different
TP ranks).

3.2 Proposed Tensor Parallelism Paradigm for LoRA Mod-
ules

Figure 3.3 illustrates our proposed tensor parallelism (TP) sharding paradigm for LoRA
adapters alongside the original weight matrix W ∈ Rd×d. Depending on the sharding
strategy of W—either column-wise or row-wise—the corresponding LoRA adapters adopt
a consistent sharding strategy. This design ensures that the output logits produced by the
LoRA adapters have the same shape as those produced by the pretrained matrix W , so
the subsequent addition operation can be applied.

For a column-wise sharding strategy, W is split along its output (column) dimension,
for example, into two shards: W1 ∈ Rd× d

2 and W2 ∈ Rd× d
2 , such that W = [W1,W2]. To

match this, the matrix B ∈ Rr×d is likewise sharded column-wise as B = [B1, B2], with
B1, B2 ∈ Rr× d

2 . Matrix A ∈ Rd×r is replicated across devices to ensure a valid matrix
multiplication operation with the sharded matrix B.

Let X ∈ Rb×s×d be a batch of input hidden states with b and s are batch size and
sequence length, respectively. Then the output from each TP shard is computed as:

Y = [Y1, Y2] = [GeLU(XW1 +XAB1), GeLU(XW2 +XAB2)] ,

W = [W1,W2], B = [B1, B2].
(3.4)

Here, Y1, Y2 ∈ Rb×s× d
2 are the outputs computed independently on each TP shard. The

final output Y is the concatenation of Y1 and Y2 across the feature (column) dimension.
This design enables parallelism over the output dimension d, balancing computation and
memory while preserving the semantics of LoRA-enhanced linear transformations.

The computation for the row-wise strategy follows inherently the same logic, but in a
row-wise manner, with the sharding applied to adapter A. The calculation is formulated
in equation 3.5.

[
Y1
Y2

]
=

[
GeLU(X1W1 +X1A1B)
GeLU(X2W2 +X2A2B)

]
,

W =

[
W1

W2

]
, A =

[
A1

A2

]
.

(3.5)
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Figure 3.3: TP sharding paradigm for LoRA adapters.

Notably, in both of these scenarios, only one of the two adapters in each pair is sharded,
while the other is replicated across devices.

3.3 Proposed Efficient Model Loading Method for FSDP-TP
Sharded Models

In practice, initializing a model sharded with both TP (Tensor Parallelism) and FSDP
(Fully Sharded Data Parallelism) is challenging due to redundant weight loading, which
leads to excessive memory usage and slow initialization. Specifically, the standard loading
approach results in each GPU redundantly loading the entire model, severely limiting
scalability and efficiency. This issue arises because each GPU cannot independently identify
and load only the specific subset of weights it requires, ultimately resulting in GPU memory
overload—or even CPU memory overload if CPU offloading is employed—and causing
bottlenecks in data transfer between CPU and GPU. A detailed discussion of this issue,
including examples and quantification of memory overhead, is provided in Appendix A.3.
To address this, we propose a straightforward and efficient loading method illustrated in
Figure 3.4.

Initially, the pretrained model weights—either from a singleton model or a LoRA-
infused model—are loaded onto the CPU.

Next, the correct portion of each weight matrix is identified by inspecting the shape
of the local tensor corresponding to that TP rank. This step highlights the distribution of
the FSDP-TP model. TP first shards each weight tensor along a specific dimension, i.e.
colum-wise or row-wise. Subsequently, FSDP further shards this TP-sharded tensor across
devices in the same DP group, i.e. devices that have the same TP rank but different DP
rank (the number of devices in one DP group equals the DP dimension size, which is 4 in
the example in Figure 3.4). Examples of the 2D-sharded weight shapes for both row-wise
and column-wise manner are presented at A.2

However, prior to the stable release of FSDP2 (which remains under development),
FSDP treats parameters as immutable and uninterpretable FlatParameter objects. Con-
sequently, each device must explicitly retrieve the original weights from FlatParameter to
modify the underlying tensor data (in this case, overwrite it with trained weights). It is
important to note that the weight retrieved at each device remains a TP-sharded weight
corresponding to the TP rank of the device (i.e., the size of the retrieved weight equals
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the size of the full weight divided by the TP dimension size). This operation requires a
temporary allocation of CPU memory equal to the size of the retrieved weights. However,
as every device must perform this operation, it leads to potential CPU Out-of-memory
(OOM) errors.

Specifically, since each device has to retrieve its corresponding TP-sharded weight, the
total amount of CPU memory allocated equals to N times the full model size, where N is
the FSDP dimension size, easily leading to CPU OOM error. A detailed description of this
operation and calculation of the total amount of CPU memory allocated is present at A.4.
Most hardware configurations lack sufficient CPU memory for this scenario. For instance,
in our development environment, the maximum shared CPU memory on a single node with
8 GPUs is 480 GB, which is insufficient to store four LLaMA 3.1 70B models—requiring
approximately 560 GB in total—assuming the model parameters are in bfloat16 format.

To address this issue, we propose a method wherein CPU weights are loaded exclusively
to DP rank-0 devices (e.g., GPU:0 and GPU:1 in the example in Figure 3.4) and subse-
quently broadcasted to other devices within the same DP group (i.e., vertically as shown
in Figure 3.4). This strategy provides two main benefits: (1) limiting maximum CPU
memory consumption to the size of a single full model (e.g., 140GB for the LLaMA 3.1
70B model in bfloat16), regardless of the DP dimension size, and (2) significantly speeding
up the loading process through GPU-based broadcast operations, which offer substantially
higher bandwidth compared to CPU-GPU communication.

Here is an example of how the process of loading a weight W works. The weight W
is first sharded by the factor of TP size, e.g., into W0 and W1, and loaded accordingly
to GPU:0 and GPU:1, whose DP ranks are 0. GPU:0, whose TP rank is 0, proceeds to
slice W0 by a factor of DP size and distribute those slices (using broadcast operations)
exclusively to other devices within the same DP group, i.e., GPU:2, GPU:3, and GPU:4.
The same behavior is performed in DP Group 1, i.e., GPU:1, GPU:3, GPU:5, and GPU:6.
As a result, the amount of data transferred through CPU-GPU communication is exactly
the model size, compared to N times the model size in the standard loading mechanism.
The rest of the communication is inter-GPU, which takes almost no time due to their
extremely fast bandwidth, e.g., 200 GB/s unidirectional on our AMD MI250X.
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Figure 3.4: Efficient mechanism for loading model weights onto devices. In this
example, the TP dimension size is 2, and the DP dimension size is 4.
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Chapter 4

Experimental Results

4.1 Experiment Environment

All of our experiments are run on CSC’s LUMI supercomputer using up to 4 GPU nodes.
Each node features a single 64-core AMD EPYC 7A53 “Trento” CPU and four AMD In-
stinct MI250X GPUs. Each MI250X GPU is a multi-chip module containing two Graphics
Compute Dies (GCDs), effectively presenting eight logical GPUs per node, with each log-
ical GPU having 64 GB of memory. The maximum CPU memory that can be requested
by users is 480 GB per node.

The model used in our experiments is LLaMA 3.1 70B in bfloat16 format, approximately
140 GB in size. Each experiment run has exclusive access to the requested resources,
without any interference or overhead from other jobs.

The batch size in each run is determined by the minimum batch size of each configura-
tion. For example, running FSDP-only on 8 GPUs requires the minimum batch size of 8,
with each GPU processing one sample. Running TP-only on 8 GPUs enable batch size of
1 as it can distribute the computation of a single sample; therefore, the chosen batch size
for this configuration will be 1. For hybrid approach configurations, the minimum batch
size equals the FSDP dimension size. For the loss function, we choose cross entropy loss on
the full input sequence. The metrics are measured by aggregating performance over four
training epochs, which take approximately 1–2 hours depending on the number of nodes
and the dataset size.

The maximum trainable sequence length was obtained through trial and error with a
step of 100 tokens until reaching OOM error.

4.2 Single Node Performance

4.2.1 LoRA Rank Scaling

Our experiments reveal significant differences in maximum trainable sequence length (MTSL)
across different parallelism strategies (Figure 4.1). For annotation, we denote each setting
in the format FSDP-TP (x, y), where x is the dimension size of FSDP (or DP for short),
and y is that of TP. For example, FSDP-TP (8, 1) refers to an FSDP-only setup, as the
TP dimension size is 1—meaning no TP sharding is applied. Similarly, FSDP-TP (4, 2)
means an FSDP factor of 4 and a TP factor of 2. The exact MTSL at different LoRA
ranks for each configuration is given in Table B.4.

As shown in the figure, FSDP-only setting FSDP-only (i.e., DP size = 8) exhibits the
most limited performance, with a maximum trainable length of approximately 11,500 at
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Figure 4.1: Comparison of Maximum Trainable Sequence Length Across Config-
urations

LoRA rank = 128. In contrast, TP-only (i.e., TP size = 8) consistently demonstrates the
longest trainable sequence length across almost all LoRA rank values.

Hybrid approaches combining FSDP and TP show intermediate performance between
the two pure strategies. Configurations with larger FSDP dimension sizes (i.e., DP size
= 4) behave more similarly to FSDP-only, while those with larger TP dimension sizes
(i.e., TP size = 4) exhibit characteristics closer to TP-only. At high LoRA ranks, where
the percentage of trainable parameters approaches 25% of the original model size, three
out of four configurations encounter out-of-memory (OOM) errors due to GPU memory
constraints.

The detailed explanation for the difference in MTSL between parallelism configurations
is further discussed in section 5.1. However, in exchange for the extended trainable sequence
length, TP introduces a significantly lower throughput compared to FSDP, which is shown
in the next section.

4.2.2 Throughput (Processed Tokens/Second)

Table B.1 presents the maximum total number of trainable tokens per node for different
parallelism configurations. This number is calculated as the batch size multiplied by the
sequence length. Note that it differs from the MTSL mentioned above, as MTSL measures
the maximum trainable sequence length at the minimal batch size of each configuration.
In the following experiments, we employed weak scaling of sequence length and batch size,
i.e., maintaining roughly this maximum total token count per node for every configuration.
Specifically, we fixed sequence length and varied batch size.

Figure 4.2 demonstrates the superior performance of FSDP over TP in throughput,
measured by the number of tokens processed per second at a fixed sequence length and
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Figure 4.2: Efficient mechanism for loading model weights onto devices. In this
example, the TP dimension size is 2, and the DP dimension size is 4.

maximum trainable batch size. Another minor observation is the throughput drop over
time, with FSDP exhibiting more significant decreases compared to TP. These two observa-
tions are further discussed in section 5.1. The detailed experimental values corresponding
to figure 4.2 is given in table B.5

4.2.3 Processing Time per Sample (PTS)

Another metric of interest is Processing Time per Sample (PTS), calculated as Processing
time / batch size. As illustrated in Figure 4.3, we observe a consistent increase in PTS
across all FSDP-TP configurations when scaling up sequence length and scaling down batch
size by the same factor. This upward trend in PTS directly correlates with the previously
observed drop in throughput, confirming that longer sequences require more processing
time per sample even when maintaining constant total token count. The detailed values
corresponding to this figure are presented in Table B.6.

4.3 Multi-node Scaling

In our multi-node scaling experiments, we employed weak scaling by fixing sequence lengths
to 10,000 and 20,000 while maximizing batch size. This approach is referred to as weak
scaling, ensuring that the total tokens processed on each node is unchanged and matched
the maximum trainable token count identified for each parallelism configuration in the
single-node experiments. Additionally, we used only FSDP for multi-node scaling; for
example, FSDP-TP (4,2) on a single node becomes FSDP-TP (8,2) and FSDP-TP (12,2)
in 2-node and 3-node training, respectively. For simplicity of annotation, we always refer
to the single-node configuration; for example, we use FSDP-TP (4,2) instead of FSDP-
TP (4×#nodes, 2) in multi-node training. We do not scale the TP dimension, as TP
introduces more communication overhead compared to FSDP. This makes it unsuitable for
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Figure 4.3: Processing Time per Sample (PTS) vs Context Length Across Differ-
ent Parallelism Settings

scaling beyond a single node, especially over low-bandwidth communication channels such
as inter-node InfiniBand, as noted in the Megatron-LM paper [52].

4.3.1 Throughput and PTS at Sequence Length = 10,000

Figure 4.4 illustrates throughput scaling when adding more nodes. Table 4.1 presents the
exact throughput of different parallelism configurations at varying numbers of nodes.

Table 4.1: Throughput (tokens/s) vs. Number of Nodes for Different Configura-
tions at Sequence Length of 10,000.

# Nodes FSDP-TP
(8, 1)

FSDP-TP
(4, 2)

FSDP-TP
(2, 4)

FSDP-TP
(1, 8)

1 1057.00 1016.52 877.19 886.26
2 889.00 1415.93 1301.87 914.63
3 1350.00 2108.96 1900.24 1374.05
4 1758.00 2775.37 2496.10 1803.16

Surprisingly, although FSDP-only demonstrates the highest throughput in single-node
training, FSDP-TP configurations show clearly superior scaling in multi-node scenarios.

All three configurations exhibit nearly linear scaling, with the exception of a minor
performance drop at node count = 2 for FSDP-only (or FSDP-TP (8, 1) as shown in
the figure). While we cannot fully explain this performance degradation in dual-node
PyTorch FSDP training and attribute it to practical implementation details, the overall
results demonstrate strong scaling capabilities for both FSDP and FSDP-TP. At this se-
quence length range, FSDP-TP (4,2) consistently outperforms FSDP-TP (2,4), suggesting
it represents the optimal configuration for this case. Further discussion and explanation is
presented in section 5.1
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Figure 4.4: Throughput of different parallelism configurations when scaling to
multi-node scaling at sequence length = 10,000.

Table 4.2 quantifies the throughput improvements of hybrid configurations compared
to FSDP-only.

Copy

Table 4.2: Percentage higher throughput of FSDP-TP (8,1) compared to hybrid
FSDP-TP approaches across device scales.

# Nodes
FSDP-TP (4,2)

to FSDP-TP (8,1)
(% higher)

FSDP-TP (2,4)
to FSDP-TP (8,1)

(% higher)

FSDP-TP (1,8)
to FSDP-TP (8,1)

(% higher)
1 -3.83 -17.01 -16.15
2 59.27 46.44 2.88
3 56.22 40.76 1.78
4 57.87 41.99 2.57

PTS As a direct consequence of improved throughput scaling, FSDP-TP (4,2) and FSDP
(2,4) demonstrate significant PTS improvements compared to FSDP-only, while FSDP-TP
(1,8) shows only marginal improvement due to the high TP dimension, which results in
increased communication overhead—even with high-bandwidth intra-node communication.
Figure 4.5 illustrates the multi-node scaling of PTS of different parallelism configurations.
Table 4.3 shows the exact PTS of each configuration and table 4.4 shows the detailed
reduction in PTS (in percentage) of 3 hybrid approaches configurations compared to FSDP-
only (i.e. FSDP-TP (8,1)).
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Figure 4.5: PTS of different parallelism configurations when scaling to multi-node
scaling at sequence length = 10,000.

Table 4.3: Processing Time per Sample (PTS) (secs/sample) vs. Number of Nodes
for Different Configurations at Sequence Length of 10,000.

# Nodes FSDP-TP
(8, 1)

FSDP-TP
(4, 2)

FSDP-TP
(2, 4)

FSDP-TP
(1, 8)

1 9.46 9.84 11.40 11.28
2 11.25 7.06 7.68 10.93
3 7.41 4.74 5.26 7.28
4 5.69 3.60 4.01 5.55

4.3.2 Throughput and PTS at Sequence Length = 20,000

At this sequence length, FSDP-only training no longer works due to an out-of-memory
(OOM) error; therefore, we can only compare the three hybrid approaches. The three
approaches continue to scale linearly. Notably, for sequence lengths less than or equal
to 20,000 (i.e., the MTSL of FSDP-TP (4,2), according to table B.4), FSDP-TP (4,2)
represents the optimal configuration. However, for longer sequences, FSDP-TP (2,4) and
FSDP-TP (1,8) become the preferred options.

Throughput Improvement: Table 4.6 and figure 4.6 show the improvement in through-
put of FSDP-TP (4,2) and FSDP-TP (2,4) over FSDP-TP (1,8). The table also demon-
strates the consistent outperformance of FSDP-TP (4,2) when scaling to multiple nodes
at a sequence length of 20,000. Detailed experimental records corresponding to Figure 4.6
are given in Table 4.5.

Processing Time per Sample (PTS) Reduction: Consequently, we also observe an
outperformance of FSDP-TP (4,2) over FSDP-TP (2,4) and FSDP-TP (1,8) in terms of
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Table 4.4: Percentage reduction in pretraining time per step (PTS) of hybrid
approaches compared to FSDP-only across device scales.

# Nodes FSDP-TP (4,2)
Reduction (%)

FSDP-TP (2,4)
Reduction (%)

FSDP-TP (1,8)
Reduction (%)

1 -4.02 -20.51 -19.24
2 37.24 31.73 2.84
3 36.03 29.01 1.75
4 36.73 29.53 2.46

Figure 4.6: Throughput of different parallelism configurations when scaling to
multi-node scaling at sequence length = 20,000.

PTS. Table 4.8 and Figure 4.7 show the detailed reduction in PTS of FSDP-TP (4,2)
compared to FSDP-TP (2,4). Detailed experimental records corresponding to Figure 4.7
are given in Table 4.7.

4.4 Efficient Model Loading Performance

To benchmark the efficiency of our proposed efficient model loading method, we choose
the baseline as the CPU-GPU communication-based method, which requires each GPU to
load the full weight and only keep its shard of that weight while discarding the rest. Note
that for both the baseline and our method, the weight matrices are loaded consecutively,
one-by-one, with no multiple weight matrices loaded at the same time.

Since it is impossible to benchmark the baseline method with the Llama 3.1 70B model
as it encounters CPU OOM errors, we reduce the original Llama 3.1 70B model, which has
70 billion parameters, to approximately 50 billion parameters by reducing the number of
decoder layers. As a result, for FSDP-TP (4,2), the baseline method requires approximately
400 GB of CPU memory (i.e., 4 times the model size) and takes 9 minutes to complete
model loading. Our proposed method requires only 100 GB of CPU memory (i.e., exactly 1
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Table 4.5: Throughput (tokens/s) vs. Number of Nodes for Different Configura-
tions at Sequence Length of 20,000.

# Nodes FSDP-TP
(4, 2)

FSDP-TP
(2, 4)

FSDP-TP
(1, 8)

1 888.89 813.01 784.31
2 1295.55 1199.40 916.73
3 1916.93 1772.53 1385.68
4 2521.67 2259.89 1839.08

Table 4.6: Percentage improvement in throughput of FSDP-TP (4,2) and FSDP-
TP (2,4) over FSDP-TP (1,8) across different device counts.

# Nodes
FSDP-TP (4,2)

over (1,8)
(% improvement)

FSDP-TP (2,4)
over (1,8)

(% improvement)
1 11.76 3.53
2 29.23 23.54
3 27.74 21.85
4 27.08 18.62

copy of the model size) and takes 4 times less time (i.e., 2 minutes 20 seconds) to complete
loading due to reduced data transfer through CPU-GPU communication while moving
the rest of the weight transfer to GPU-GPU communication, which takes almost no time
thanks to the extremely high bandwidth.
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Figure 4.7: PTS of different parallelism configurations when scaling to multi-node
scaling at sequence length = 20,000.

Table 4.7: Processing Time per Sample (PTS) (secs/sample) vs. Number of Nodes
for Different Configurations at Sequence Length of 20,000.

# Nodes FSDP-TP
(4, 2)

FSDP-TP
(2, 4)

FSDP-TP
(1, 8)

1 22.50 24.60 25.50
2 15.44 16.68 21.82
3 10.43 11.28 14.43
4 7.93 8.85 10.88

Table 4.8: Percentage reduction in pretraining time per step (PTS) of FSDP-TP
(4,2) and FSDP-TP (2,4) compared to FSDP-TP (1,8) across different node counts.

# Nodes FSDP-TP (4,2)
PTS Reduction (%)

FSDP-TP (2,4)
PTS Reduction (%)

1 11.76 3.53
2 29.23 23.54
3 27.74 21.85
4 27.08 18.62
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Chapter 5

Discussion

In this chapter, we dive deeper into the interpretation and explanation for the observations
in the experiment results. This chapter consists of two parts: Single-node Performance and
Multi-node Scaling. In the first part, we discuss the differences in performance across var-
ious parallelism configurations in the single-node setting, focusing on the key predefined
metrics: MTSL, throughput, and PTS. This provides insight into the key advantages and
disadvantages of the two parallelism techniques and their combinations. The second part
expands the knowledge and insights into multi-node settings where inter-node communi-
cation introduces new artifacts into the performance characteristics of the two parallelism
techniques. By analyzing the key design differences, supported by the experimental re-
sults, we gain insights into multi-node scaling and how the combination of two parallelism
techniques offers greater performance benefits from both approaches.

5.1 Single node Performance

TP enables longer MTSL. The difference in MTSL can be explained by examining
the fundamental characteristics of each parallelism strategy. FSDP, at its core, is a Data
Parallel (DP) method that requires each rank to process a complete input. This can
trigger OOM errors since the peak memory consumption during computation of a single
multi-head attention (MHA) or multi-layer perceptron (MLP) block remains unchanged.
Expressions 2.1 and 2.2 show the memory usage of these 2 building blocks.

FSDP distributes layers evenly across devices but does not distribute the computation
of individual layers, resulting in fixed memory consumption within each MHA/MLP com-
putation. The memory savings come solely from the distribution of parameters, optimizer
states, and gradients, not activations.

On the other hand, TP shards individual weights, effectively distributing computation
and reducing memory consumption for intermediate logits. According to the theoreti-
cal model, if memory pressure primarily stems from MHA and MLP computations, we
would expect TP to support longer sequences by a factor proportional to the TP factor.
Our experiments confirm this, with TP-only demonstrating approximately 5 times longer
trainable sequences compared to FSDP-only at LoRA ranks of 128, 256, 512, and 768 on a
full 8-GPU single node. This highlights TP’s advantage over FSDP in extending trainable
sequence length.

TP demonstrates lower throughput and higher PTS. According to TP literature
[52], TP requires more communication compared to FSDP due to two synchronization
points at the beginning and end of each MHA/MLP block. The communication tensor
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has a shape of (B,L,H) and cannot be overlapped with computation. In contrast, FSDP
can perform all-gather operations for the next parameter group (i.e., FSDP unit or FSDP
group) during the forward or backward computation of a previous group. This reduces idle
time and consequently increases throughput and decreases PTS.

Throughput drop. Since the attention mechanism has a computational complexity
of O(L2 × hidden_dim), throughput decreases in both TP and FSDP when increasing
L (sequence length) and decreasing B (batch size) by the same factor. However, TP
demonstrates less severe relative drops compared to FSDP. This is mathematically proven
in B.6.

In summary, although TP enables longer context training, it supports a smaller maxi-
mum total number of trainable tokens per step and exhibits notably lower throughput and
higher PTS compared to FSDP-only and FSDP-TP (4,2) hybrid approach, which have
higher FSDP dimension sizes than TP sizes, as shown in table B.2 and table B.3.

5.2 Multi-node Scaling

In our experimental setup, weights are always sharded across all devices, resulting in smaller
local parameter sets on each GPU. In FSDP-only configurations, scaling to high factors may
create scenarios where computation outpaces communication despite operation overlapping
(facilitated by weight pre-fetching). This causes GPUs to idle while waiting for parameters.

In hybrid approaches, although weights are sharded by the same factor as in FSDP-
only, a portion is sharded horizontally across devices within the same DP group. Consider
a model with 8 decoder blocks, representing 8 FSDP units. With FSDP-only at a factor of
8, each device stores a single block. However, with FSDP-TP (4,2), each DP group contains
2 devices, with each group storing 8/4 = 2 blocks. Within each TP group, parameters are
sharded horizontally rather than at block boundaries, resulting in 2 sub-blocks per device.
This paradigm excels in multi-node training as it reduces weight transfers between TP
groups, which can locate on different nodes. Instead, part of the communication occurs
between devices within a TP group, which benefit from much higher bandwidth thanks to
intra-node communication.

In summary, although TP requires more communication than FSDP-only, when scaling
to multiple nodes, inter-node bandwidth limitations severely impact FSDP communication
while TP communication remains intra-node. This makes hybrid approaches the optimal
configurations in multi-node training. Concretely, the optimal configuration is determined
by the maximum sequence length of the training data. Each configuration has its own
MTSL, and based on that insight and the actual sequence length of our training data, we
can decide the optimal configuration. Table B.4 shows the MTSL of each configuration at
different values of LoRA ranks. Based on this, the optimal parallelism configuration for a
case will be the one with the shortest MTSL that is still longer than the longest sequence
in our training data.

5.3 Limitations and Future Outlooks

This study has several important limitations that should be acknowledged. First, our ex-
periments are constrained to the Llama 3 model family architecture, and while we believe
the findings generalize to models with similar architectures, this has not been empirically
validated. Additionally, from an implementation standpoint, our training runs were con-
ducted using PyTorch 2.5 before a stable FSDP2 release was available. This means that
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absolute performance metrics may differ when FSDP2 is eventually deployed, though the
theoretical foundations and clear performance distinctions between FSDP and TP in met-
rics such as throughput and MTSL remain valid for guiding optimal configuration selection.

Hardware constraints also present limitations to our findings. Our experiments were
conducted exclusively on AMD GPUs using ROCm rather than NVIDIA’s CUDA ecosys-
tem. Given PyTorch’s limited support for AMD GPUs, complete experimental repro-
ducibility cannot be guaranteed across different hardware environments. Nevertheless,
the relative performance trends and overall patterns observed should remain consistent
regardless of the specific accelerator architecture.

Despite these limitations, our comprehensive analysis of FSDP-TP hybrid approaches
for LoRA-infused model fine-tuning on single-digit node configurations provides a solid
foundation for future research directions. To conclude, this study has deeply analyzed the
practical performance of different parallelism configurations of FSDP and TP for LoRA-
infused model fine-tuning on a limited single-digit number of nodes. To extend to an
even near-infinite context length, future studies on the combination of FSDP-TP hybrid
approaches with methods such as sequence parallelism [34] or, more recently, ring attention
with the Blockwise Transformer [36], would be a promising starting point to enable long-
context fine-tuning with LoRA. On the other hand, to increase the trainable batch size
while localizing FSDP weight exchanges–especially critical for very large models–pipeline
parallelism techniques [25, 39, 40] are also a worthwhile extension to the current FSDP-TP
schema. Correctly defined metrics are key to incorporating new training methods critically.
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Appendix A

Supplementary Materials and
Examples

A.1 Batch Script Configurations for Llama 3.1 70B Training

This appendix provides the batch script configuration used to train Llama 3.1 70B models
on two nodes of CSC’s Puhti supercomputer.

A.1.1 Slurm Batch Script Example

The following script requests two GPU nodes, each equipped with four NVIDIA V100
GPUs, and dynamically configures multi-node execution.

Listing A.1: Slurm batch script for Llama 3.1 70B training on Puhti
#!/bin/bash
#SBATCH --output="slurm-training.out"
#SBATCH --job-name="training-gpu"
#SBATCH --account=<your_project_account>
#SBATCH --partition=gpu
#SBATCH --ntasks-per-node=1
#SBATCH --nodes=2
#SBATCH --cpus-per-task=10
#SBATCH --gres=gpu:v100:4
#SBATCH --mem=373G
#SBATCH --time=8:00:00

# Load necessary modules
module use /appl/soft/ai/singularity/modulefiles/
module load pytorch/2.3

# Get the hostnames for the allocated nodes
nodes=$(scontrol show hostnames $SLURM_JOB_NODELIST)
node_array=($nodes)

# Total number of nodes allocated
num_nodes=${#node_array[@]}
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# Calculate total workers
total_workers=$((num_nodes * 4))

# Run python scripts on each node dynamically
for (( i=0; i<num_nodes; i++ )); do

if [[ $i -eq 0 ]]; then
# First node runs without a host node parameter
srun --nodes=1 --ntasks=1 -w ${node_array[i]} bash -c "

cd /path/to/training
source .venv/bin/activate
python training/train_script.py -m -w $total_workers --ngpus 4

-nid $i
" &

else
# Subsequent nodes use the first node as the host
srun --nodes=1 --ntasks=1 -w ${node_array[i]} bash -c "

cd /path/to/training
source .venv/bin/activate
python training/train_script.py -m -w $total_workers --ngpus 4

-nid $i --host_node ${node_array[0]}
"&

fi
done

# Wait for all background jobs to finish
wait

echo "All scripts have completed"

A.1.2 Explanation of Key Parameters

• #SBATCH –nodes=2: Requests two compute nodes.

• #SBATCH –ntasks-per-node=1: Allocates one task per node.

• #SBATCH –gres=gpu:v100:4: Assigns four NVIDIA V100 GPUs per node.

• #SBATCH –cpus-per-task=10: Allocates 10 CPU cores per task.

• #SBATCH –mem=373G: Requests 373GB of system memory per node.

• #SBATCH –time=8:00:00: Sets a time limit of 8 hours.

• module load pytorch/2.3: Loads PyTorch version 2.3.

• scontrol show hostnames $SLURM_JOB_NODELIST: Retrieves node hostnames for dy-
namic allocation.

• python training/train_script.py -m -w $total_workers –ngpus 4 -nid $i: Runs
the training script with dynamic worker allocation across nodes.

This script dynamically configures the execution environment to ensure efficient dis-
tributed training across multiple nodes.
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A.2 Demonstrative Example of 2D Column-wise Sharded Weight
Shape

Suppose a weight matrix W has shape [4096, 1024] and the dimension sizes of FSDP and
TP are 4 and 2, respectively. After applying 2D Column-wise sharding, the resulting local
weight shard Wij will have shape:

[4096/#FSDP, 1024/#TP] = [2048, 256], for column-wise sharding

[4096/(#FSDP ×#TP), 1024] = [512, 1024], for row-wise sharding

where #FSDP and #TP denote the sizes of FSDP and TP dimensions, respectively.
Here, the indices i and j refer to the ranks along the FSDP (also referred to as data parallel
or DP) and TP dimensions.

A.3 Bottlenecks in Naïve Parameter Loading under TP +
FSDP

Practically, PyTorch does not support efficient loading of model shards for 2D parallelism
when loading Huggingface (HF) models through the transformers library. Although
efficient loading is supported for FSDP alone, it fails when TP is involved. In fact, it
results in loading the full model onto each GPU because each device cannot automatically
determine which part of the model weights it should load. Therefore, there is a need for
customization and optimization for zero-redundant and fast model loading.

A straightforward approach involves initially loading the entire model onto CPU mem-
ory and subsequently transferring only the required weight shards to each GPU. However,
when this strategy is employed across N GPUs, it requires storing N times the full model
size in CPU memory. In our setup on LUMI, this situation is exacerbated since all GPUs
in a node share the same CPU memory. This approach introduces two critical bottlenecks:
out-of-memory (OOM) errors in CPU memory, and significantly increased loading times
due to limited CPU-GPU bandwidth.

A.4 FSDP-TP Weight Gathering: Elaboration, Example, and
CPU Memory Allocation Analysis

Each device now holds a local shard that is equal to 1/(#FSDP × #TP) of the original
weight size. After the retrieval operation, each device stores a weight of size 1/#TP of the
original weight in CPU memory. As a result, the total memory allocated across all devices
is

#devices × 1

#TP
= #FSDP ×#TP × 1

#TP
= #FSDP

times the original weight size. Therefore, we end up loading N times more memory onto
the CPU, where N = #FSDP, i.e., the size of the FSDP dimension.

42



Appendix B

Supplementary Data and
Experiments

B.1 Maximum number of trainable tokens per node of differ-
ent parallelism configurations

Table B.1: Maximum trainable sequence length with different FSDP-TP config-
urations

Configuration Maximum Tokens
FSDP-TP (8, 1) 88000
FSDP-TP (4, 2) 80000
FSDP-TP (2, 4) 82000
FSDP-TP (1, 8) 65000

B.2 Throughput Improvement and PTS reduction (in per-
centage) of different Parallelism configurations compared
to TP-only configuration

Table B.2: Throughput comparison showing percentage higher performance of
FSDP-only, FSDP-TP (4,2), and FSDP-TP (2,4) configurations relative to TP-
only configuration across different context lengths.

Context FSDP-only FSDP-TP (4,2) FSDP-TP (2,4)
Length to TP-only to TP-only to TP-only

(% higher) (% higher) (% higher)
2200 24.06 17.30 0.05
5496 23.95 14.13 0.27
11496 20.06 12.75 -1.83
20000 25.81 13.31 -0.33
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Table B.3: Processing Time per Sample (PTS) comparison showing percentage
lower PTS of FSDP-only, FSDP-TP (4,2), and FSDP-TP (2,4) configurations rela-
tive to TP-only configuration across different context lengths.

Context FSDP-only FSDP-TP (4,2) FSDP-TP (2,4)
Length to TP-only to TP-only to TP-only

(% lower) (% lower) (% lower)
2200 19.56 14.67 0.00
5496 19.25 12.27 0.17
11496 16.70 11.27 -1.89
20000 54.32 11.74 -0.31

B.3 MTSL of different parallelism strategies at different LoRA
ranks

Table B.4: Maximum trainable sequence length (MTSL) of different parallelism
strategies across various LoRA ranks.

LoRA FSDP-only FSDP-TP FSDP-TP TP-only
Rank (FSDP-TP (8,1)) (4,2) (2,4) (FSDP-TP (1,8))
128 11500 20000 41000 65000
256 11000 19000 38000 50000
512 10000 16000 33000 40000
768 5000 14000 17000 25000
1024 0 4000 0 0

B.4 Throughput at different context length for different con-
figurations

Table B.5 shows the specific throughput values at different context lengths for each paral-
lelism configuration. Note that the empty entries are due to the absence of the correspond-
ing experiments, as they could not ensure that the total number of processed tokens was
approximately equal to the maximum total trainable tokens of the respective parallelism
configurations.

B.5 PTS at different context length for different configura-
tions

Table B.6 shows the specific PTS values at different context lengths for each parallelism
configuration. Note that the empty entries are due to the absence of the corresponding
experiments, as they could not ensure that the total number of processed tokens was
approximately equal to the maximum total trainable tokens of the respective parallelism
configurations.
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Table B.5: Throughput (tokens/sec) vs. Context Length for Different Configura-
tions

Context Length FSDP-TP
(2, 4)

FSDP-TP
(8, 1)

FSDP-TP
(4, 2)

FSDP-TP
(1, 8)

2,200 978.99 1213.79 1147.83 978.53
3,950 - - 1097.22 -
5,496 938.34 1160.00 1068.05 935.85
8,200 911.11 - - -
11,496 853.66 1044.00 980.47 869.59
13,000 - - - 844.16
20,000 782.78 - 889.88 785.34
32,496 684.13 - - 684.13
41,000 630.77 - - -
65,000 - - - 509.01

Table B.6: Processing Time per Sample (PTS) (secs/sample) vs. Context Length
for Different Configurations

Context Length FSDP-TP
(2, 4)

FSDP-TP
(8, 1)

FSDP-TP
(4, 2)

FSDP-TP
(1, 8)

2,200 2.25 1.81 1.92 2.25
3,950 - - 3.60 -
5,496 5.86 4.74 5.15 5.87
8,200 9.00 - - -

11,496 13.47 11.01 11.73 13.22
13,000 - - - 15.40
20,000 25.55 - 22.48 25.47
32,496 47.50 - - 47.50
41,000 65.00 - - -
65,000 - - - 127.70
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B.6 Mathematical Analysis of Throughput Degradation in
Parallelism Strategies

This section provides a rigorous mathematical proof demonstrating why Tensor Parallelism
(TP) exhibits less significant throughput degradation compared to Fully Sharded Data
Parallelism (FSDP) when sequence length increases and batch size decreases proportionally.

B.6.1 Theoretical Framework

Let us define the following notation for our analysis:

• a0: Computational cost (measured in time) for FSDP with batch size B0 and sequence
length L0.

• b0: Computational cost for TP with identical parameters (B0, L0).

• C: Fixed communication overhead inherent to TP implementation.

• a1: Computational cost for FSDP with adjusted parameters
(
B0/n, L0 × n

)
.

• b1: Computational cost for TP with adjusted parameters
(
B0/n, L0 × n

)
.

To maintain constant token throughput during our analysis, we establish that:

B0 × L0 = (B0/n)× (L0 × n) (B.1)

This constraint ensures that the total number of tokens processed remains invariant,
while only the distribution between batch size and sequence length changes by a factor of
n.

B.6.2 Computational Complexity Analysis

The computational complexity of attention mechanisms in transformer-based models is
known to scale quadratically with sequence length:

• For FSDP: The computational cost is proportional to L2 × hidden_dimension, with
each rank processing the entire hidden dimension.

• For TP: The computational cost is proportional to L2×(hidden_dimension/p), where
p represents the number of tensor-parallel ranks.

When scaling sequence length by a factor of n, the computational cost increases by
approximately n2 for both parallelism strategies. We can thus establish:

a1
a0

= n2 and
b1
b0

= n2 (B.2)

B.6.3 Statement of the Theorem

We aim to prove that FSDP experiences a more significant relative throughput degradation
compared to TP when sequence length increases and batch size decreases proportionally.
Mathematically, we need to demonstrate:

a1
a0

>
b1 + C

b0 + C
(B.3)

Given the following conditions:
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• a1/a0 = n2

• b1/b0 = n2

• n > 1 (sequence length increases)

• C > 0 (positive communication overhead)

• b0 > 0 (positive initial computational cost)

B.6.4 Formal Proof

We proceed with a step-by-step proof:

1. Substituting b1 = n2b0 into the right side of our inequality:

b1 + C

b0 + C
=

n2b0 + C

b0 + C
(B.4)

2. Comparing n2 with this fraction:

n2 − n2b0 + C

b0 + C
=

n2(b0 + C)− (n2b0 + C)

b0 + C
(B.5)

3. Simplifying the numerator:

n2(b0 + C)− (n2b0 + C) = n2b0 + n2C − n2b0 − C (B.6)

= n2C − C (B.7)

= C(n2 − 1) (B.8)

4. Since n > 1 implies n2 − 1 > 0, and given C > 0, we can conclude:

C(n2 − 1) > 0 (B.9)

5. Therefore:

n2 − n2b0 + C

b0 + C
> 0 ⇒ n2 >

n2b0 + C

b0 + C
(B.10)

6. Finally, since a1
a0

= n2, we have:

a1
a0

>
b1 + C

b0 + C
(B.11)

B.6.5 Implications for Parallel Training Strategies

This mathematical analysis demonstrates that as sequence length increases (and batch size
decreases proportionally), FSDP experiences a steeper relative throughput degradation
compared to TP. This phenomenon is explained by the fixed communication overhead
in TP implementations, which becomes relatively less significant as computational costs
increase with longer sequences.

Specifically, while both parallelism strategies experience increased computational costs
proportional to n2 (due to the quadratic nature of attention), the relative impact on TP is
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moderated by the fixed communication overhead. This theoretical finding aligns with our
experimental results, where we observed that TP-based configurations maintained better
relative throughput when processing longer sequences.

This mathematical insight provides crucial guidance for practitioners in selecting opti-
mal parallelism strategies based on expected sequence lengths and computational resources.
It suggests that as sequence lengths increase, the relative advantage of incorporating TP
becomes more pronounced, particularly in scenarios where maximum sequence length is a
priority over raw throughput.
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