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Abstract

This thesis investigated the uncertainty in Conventional Acoustic Phased Array Beamforming (CBF)
using the Monte Carlo method. An analytical line source CBF model was made and an experimental
CBF case was conducted in the wind tunnel at the University of Twente. Both models focused on
uncertainties arising from the microphone phased array, as well as from environmental factors. The
experimental case measured the sound power output of the turbulent boundary layer trailing edge noise
generated by an airfoil, while the analytical model simulated it. The uncertainties were evaluated by
perturbing variables within the beamforming algorithm. The perturbed variables that were related to
the microphone array include the microphone phases, microphone sensitivities, microphone coordinates,
and the array broadband distance. In addition to the microphone parameters, the environmental factors
such as the temperature and the cross correlated spectral signals received from the microphones were
also perturbed. The perturbation limits for each variable were defined by the gaussian distributions,
which were based on the covariance of each variable. Afterwards, both the analytical and experimental
models were simultaneously perturbed across all the variables which were previously mentioned and
across a frequency spectrum. The error bounds were then defined around the frequency range, allowing
the uncertainty in the beamforming method to be quantified in Sound Pressure Level (SPL) with 95%
confidence level both analytically and experimentally.

The analytical studies suggested that the microphone sensitivity was the dominant perturbation
mechanism. For sound waves emitted from the trailing edge at 2 kHz, the microphone sensitivity
perturbations created a variation by ±0.16 dB in SPL at 10 percent perturbation of the nominal micro-
phone sensitivity. Those were followed by the microphone phase perturbations, which were the second
largest contribution of uncertainty to the CBF output. A standard deviation of 10 degree in phase
caused a SPL variation by ±0.11 dB. The experimental result of the Thesis showed that the dominant
perturbation mechanisms were the Cross Spectral Matrix (CSM) and the array’s broadband distance
perturbations. For sound waves emitted at 2kHz , for the perturbed CSM, the CBF outputted a SPL
variation of ±6.69 dB. By increasing the amount of effective time segments used for the signal process-
ing, it slightly reduced this uncertainty, with the variation decreasing to ±6.58 dB. This study indicated
that with increasing the frequency of the sound wave to be analyzed for beamforming led to greater
uncertainty in the sound pressure level estimation for both models.
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1 Introduction

Aeroacoustics is the study of sound generated by flow. It combines the fields of aerodynamics and
acoustics, and it examines how the pressure perturbations which are caused by sound waves propagate
through a fluid medium at a speed c0, which is dependent on the fluid’s local properties. As an airplane
flies, a boundary layer of air forms around its surface, there, interactions between the turbulent airflow
and the aircraft structure create pressure fluctuations that afterwards they radiate as sound. That
acoustic radiation can be captured using microphone phased arrays.

A microphone phased array is a carefully arranged set of microphones which are measuring pres-
sure variations over space and time. Beamforming comes next where it processes that measured signal
from the array and enables the generation of acoustic images, which provide insights into the spatial
distribution of sound sources in a flow field such as around an aircraft. However, current practices in
the Aeroacoustics community widely neglect uncertainty quantification in these measurements. This
substantially impacts the confidence of acoustic far field beamforming results.

When using the microphone arrays and the beamforming process, real world, and noisy data must
be processed and therefore requires a wind tunnel for the experiment to be conducted in a realistic flow
condition. These experiment aims to replicate realistic uncertainty conditions that are very difficult to
simulate accurately. The complexity of turbulent flows and that combined to a 3D complex geometry
of an airfoil makes analytical approaches alone insufficient for evaluating the confidence and reliability
of acoustic beamforming for a practical situation. The experimental data could however validate the
computational models and help reduce the gap between them.

Several factors introduce uncertainty into the beamforming analysis, that includes the microphone
positioning errors, the calibration inaccuracies of those microphones, the background noise, the flow
variability, and the assumptions made to the beamforming algorithm. This paper will make use of an
uncertainty quantification approach based on the method proposed by T. Yardibi [26], where uncer-
tainties to those mentioned factors are propagated through the Conventional Beamforming algorithm
using a Monte Carlo method. This technique accounts for multi variable uncertainty by consistently
perturbing input parameters within defined ranges and applying statistical methods to quantify their
impact to the CBF output.
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1.1 Research objective

To improve reliability, this project focuses on the uncertainty analysis of the conventional beamforming
(CBF) using the Monte Carlo method. This analysis will focus on uncertainties arising from micro-
phone phased array, and on the uncertainties in the determination of integrated sound pressure levels
through the source power integration technique used for quantifying sound sources.

A numerical study will first be conducted, incorporating both analytical models and experimental
benchmark cases representing typical aeroacoustic measurements to validate the CBF algorithm. An
uncertainty analysis framework will then be developed. Following this, an analytical line source CBF
model will be made and an experimental CBF case will be conducted in the Aeroacoustics wind tunnel
at the University of Twente. Both models will focus on uncertainties arising from the microphone
phased array, as well as from environmental factors. The experimental case will measure the sound
power output of the turbulent boundary layer trailing edge noise generated by an airfoil model, which
is recognized as the dominant acoustic source for airfoils [22] , while the analytical model will simulate
it. The uncertainty analysis framework will then be applied to that analytical model and experimental
case. Through this work, confidence intervals can be calculated that quantify the uncertainty in micro-
phone phased array measurements.

Ultimately, The objective of this project is to develop an uncertainty quantification
method and tool which will enhance the reliability and credibility of acoustic far-field
beam forming results. Additionally, it will serve as a valuable resource for guiding the design and
planning of future experimental campaigns, enabling more informed decisions in planning an experi-
mental approach.
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2 Theoretical Background of Phased Array Beamforming

2.1 Time domain Conventional Beamforming

Beamforming is used to localize a sound source in the far field using an array of microphones. For
Beamforming in the time domain, a sound source is emitting sound waves in time pressure signal
format as seen in figure 1. A grid is constructed around the source location, and based on the time
delay of the sound wave that took to reach each microphone, the source can be localized and its
amplitude can be defined.

Figure 1: Schematic of Time domain Beamforming

The distance between the microphone coordinates xm and the search grid coordinates xo is the
norm between those 2 vectors:

rm,o = ∣∣xm − xo∣∣ (1)

and the time taken for the wave to travel that distance is the distance rm,o divided by the speed of
sound. It is also known as the signal delay received by each microphone m:

δtm,o =
rm,o

c0
(2)

The source power from the beamforming is expressed as the summation of all time phase shifted
microphone signals pm(tm − δtm,o) multiplied by their respective spherical spreading factor as seen in
equation 3. The derivation leading to that beamforming equation, has been derived starting from the
balance equations in the appendix A.

L(t,o) =
N

∑
m=1

vm,opm(tm − δtm,o) (3)

Where vm,o is the spherical spreading factor, for our case since we want to receive beamforming

results to the center of the Acoustic array: vm,o =
1

4πrm,o
.
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A simple example is created showcasing the time domain conventional beamforming (CBF). The
example incorporates 5 microphones receiving each a sinusoidal sound pressure signal varying from -1
to 1 amplitude. The simulated pressure signal from the source without any phase delay is seen in figure
2a. In an ideal situation, each microphone will receive this signal with a unique time delay which is
the delay taken for the sound wave to travel from the source to the microphones. By knowing each
microphone coordinates xm and by creating a 2 dimensional search grid with index notation o, the time
shift of each microphone can be found. First by assuming that the sound source lies in that contained
area (search grid) with each grid point having coordinates xo, it is possible to phase shift each received
signal. That will lead to ideally align all of the received microphone signals with each other and add
them all up by summation as seen in figure 2b.

(a) Source pressure signal (b) Reconstructed and summed received signal

Figure 2: The time domain pressure signals which are captured by the microphone array are phase
shifted and coherently summed, which produces constructive interference in the signal.
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As can be seen, the figure 2b shows constructive interference indicating high peaks (high lobes).
That will happen only when the correct or the closest selected gridpoint to the actual source location
is used as a source location assumption. That leads to all signals aligning nicely. The constructive
interference will reach its highest amplitude (all microphone signals nicely aligned) at the actual source
location for the CBF output map which is visualised by the contour plot in figure 3b. As can be seen in
figure 3b, the simulated source which was given with coordinates: x = 0.2[m], y = 0.5[m] and located
z = 1.3 meters away from the microphone array is nicely mapped in the CBF output in red which
highlights higher magnitude than the blue contour (lower magnitude). The spatial resolution is weak
as only 9 microphones have been used in that example.

(a) (b)

Figure 3: Figure 3a shows the coordinates of the microphones used while figure 3b shows the Sound
pressure level in dB units of the Conventional beamforming from the time domain pressure signal. A
main lobe can be seen at x=0.2[m], y=0.5[m], z=1.3[m] which is where the source is simulated to be.
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2.2 Frequency domain Conventional Beamforming

Now going to the frequency spectrum. It is beneficial to convert the CBF method to frequency domain
as it will reveal more information about the sound source. This would allow to categorize the frequencies
of the emitted sound waves and perform CBF for various frequencies of interest as seen in figure 4.

Figure 4: Schematic of Frequency domain Beamforming

To begin with, the same equation as the pressure in time domain is used from equation 2. The time
domain equation is then transformed to the frequency spectrum by applying the Fourier transformation
as seen in equation 79.

Zo(f ) =
N

∑
m=1

vm,opm(f )e−iωδtm,o (4)

So far we have the output of the Conventional Beamformer Zo(f ). To get the total power Lo(f ) of
that output [8]:

Lo(f ) =
1

2
∣Zo(f )∣2 = g

†
m,o(

1

2
pmp

†
m)gm,o (5)

Where gm,o(f ) is the steering vector which is dependent on both the microphone with index nota-
tion m, grid search location with index notation o and on the frequency which the steering vector is
operated at. The derivation of that equation can be found in appendix B.

The expression (1
2
pmp

†
m) is a matrix and is called the Cross Spectral Matrix (CSM) (see equation 6).

In the diagonal of the CSM, the auto power spectral is stored. The diagonal terms don’t give correlation
information between different microphones but only capture the squared magnitude of the resulting
complex values (real and phase values of each individual microphone). Therefore the diagonal terms
are the terms which capture mostly the background sound including the noise. Later, the diagonal
terms will be removed to decrease the noise for both the analytical experimental case models (section
4 and 5 respectively). The off diagonal terms correlate all the possible combinations of the signal pairs
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received by the microphones. Those terms will be later used along with the steering vector to localize
and quantify the sound sources.

CSM (f ) = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(f )p∗1(f ) ⋯ p1(f )p∗N (f )
⋮ ⋱ ⋮

pN (f )p∗1(f ) ⋯ pN (f )p∗N (f )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

By applying the steering vectors and the Cross spectral Matrix, the sound power expression is
computed as:

Lo(f ) = g
†
m,o CSM (f ) gm,o (7)

The steering vector captures only the relative phase shifts across the array. For diagonal removal,
the steering vector is divided by the term [24]:

wm,o =
gm,o√

((∑N
n=1 ∣gm,o∣2)2 −∑N

n=1 ∣gm,o∣4)
(8)

Finally to convert the sound power, equations 6 to 8 are all assembled:

Lo(f ) = w
∗
m,o(f )CSM (f )wm,o(f ) (9)

The sound power has units: (pa
2
m

2
).

The last step is to convert the beamformed expression Lo(f ) into sound pressure level (SPL) with
decibel units (dB). It is generally preferred to use decibel units as it aligns with human hearing and
therefore the CBF output can be easier interpreted. The sound pressure level, which is measured at
a distance R0,o from the source is the distance between each grid point with index notation o to the
center of all microphone arrays symbolized with index 0. Finally, pref is the pressure reference which

is accounted for pref = 2 ⋅ 10−5[Pa].

SPLo(f ) = 20
10
log(

√
Lo(f )

4πR0,o

1
pref

) (10)
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2.3 Cross Spectral Matrix with blocks, signal segmentation

In the previous section, the computation of the cross spectral matrix (equation 6) was shown. In this
paper, a pressure signal will be used as input to the CSM. However, since the signal varies over time,
its time dependent nature introduces uncertainty, and that will affect the accuracy of the beamforming
results. To address this, the signal will be segmented in the time domain before being transformed into
segments to the frequency domain [26]. By doing that, the covariance of the CSM (discussed later in
section 3.2) will be determined and its uncertainty could be quantified. Therefore, in this section a new
CSM using time segments will be formulated.

In order to perform a Beamforming, first the microphones record a pressure over a time range.
This pressure for each one of those microphones is then converted to the frequency domain by first
segmenting the signal into multiple blocks. Each of those blocks represent a time step which represents
how the signal progresses over time. This is done to analyse a time unsteady signal. It will be really
important for analysing the uncertainty of the Cross spectral matrix with using blocks (sections 4 and
5 ). Each of those time segments will then be converted to frequency domain by using discrete fourier
transform (DFT).

To start with, the length of the window function is computed first by :

window length =
Signal length

Segments
(11)

The window length defines the number of DFT points per time segment used. Afterwards a hanning
window is used to that defined window length from equation 11. The hanning window is preferred as it
fades in and out the edges of the signal and therefore making less spectral leakage, and leading to better
side lobe suppression. An example of a hanning window is visualized in figure 5, with 100 samples.

Figure 5: Hanning window example with 100 samples
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Once the window is computed, it is used to the spectrogram as seen in equation 14.

An overlap is also going to be applied as it is used to ensure continuity between the windows. It
improves the time frequency resolution and reduces artifacts. The time segments will incorporate also
an overlap and will then be called effective segments. The effective segments are computed as:

Effective segments =
signal length − (

overlapÌÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Î
v ⋅ window length)

window length − (v ⋅ window length)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

τ

(12)

The effective segments will be indexed with the symbol s. In addition, v is the overlap ratio where
v = 0.5 represents 50 percent of overlap. The more overleap there is, the smoother the transition between
the windows ensuring that it will capture also the tapered sections (faded edges) of the window. Finally,
as explained the window hopes over the original signal at intervals of τ samples. The more effective
segments are used, the less the transformed frequency signal changes between each segment. However
the resolution is worse due to the decreased window length per segment. In addition to that, adding
more effective segments would make wider frequency bins (larger ∆f). That imitatively means worse
frequency resolution as can be visualized by the equations below:

∆f =
fs

window length
(13)

Finally, the Short Time Fourier Transform is going to be used using the spectrogram [5] equation:

Ss,m(f ) =
∞

∑
t=−∞

pm(t)window(t − sτ )e−i2πft (14)

where the variable: window(t − sτ ) is the window function being applied to the pressure signal pm(t)
by sliding through it. The window hopes over the signal pm(t) at intervals of τ samples for each it-
eration s. The spectrogram (equation 14) is a very important part of this paper as it shows how the
beamforming algorithm is performed and analysed through time. The spectrogram is then used in a
descritised version of that equation.

As a next step, Ss,m(f ) is normalized to account for the energy scaling introduced by the window.
This is done by dividing the spectra by the total energy of the window and then dividing that by its
root mean square (RMS):

Ŝs,m(f ) =
Ss,m(f )

∑(window2)
RMS(window)

(15)

Next, the cross spectral matrix is formulated with using the STFT values of the pressure signal
Ŝs,m(f ). Since each of those variables contain segmented values s over the time domain, the mean is
taken to average all of those effective segments:

CSM (f ) = 1

2
⋅
∑All

s=1 Ŝs,m(f ) ⋅ Ŝs,m(f )∗

Effective segments
(16)

The symbol
∗
indicates the complex conjugate of the variable Ŝs,m(f ).
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2.4 Analytical beamforming, Line source method

In this section an analytical approach will be discussed about simulating a sound source and a mi-
crophone response. More specifically, the line source method is going to be applied where a linearly
arranged amount of incoherent point sources are equally amplified and distributed along a line. That
line will represent a trailing edge airfoil. The line source coordinates are given with vector coordinates
ξ = (ξ, η, ζ). In addition, ξl = ζl = 0 meters and ηl is a column vector with non zero values which forms
the line. Each source point is indexed by l.

A schematic example which will be later examined in this section is shown in figure 6.

Figure 6: Schematic of Analytical Line source benchmark [24]

To represent those spaced sources, the acoustic pressure pm(t) is introduced (equation 20). The
acoustic pressure formula satisfies the convective wave equation (equation 17) which is the time variant
equation from the frequency domain Helmholtz [25] equation.

∇
2
p −

1
c (

1
c
∂

∂t
+ M⃗∇)

2

p = σ(t)δ(x − ξ) (17)

In that equation, δ(x − ξ) is the Dirac-delta function, k is the wave number and σ(t) is the source
amplitude.

To simulate the sound wave pressure of each source, a simulated wave will be created:

σ(t) = acos(2πft) (18)

Since the goal is to measure broadband noise coming from a far field, a sum of all frequencies needs
to be taken [20], this is visualized with equation 19:
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σ(t − δtm,l) =
F

∑
j=1

ajcos(2πfj(t − δtm,l)) (19)

Where F is the maximum frequency of the broadband noise coming from the source. To simulate the
pressure wave traveling all the way through each individual microphones, 3D vectorized sound sources
are defined. Each source point location is indexed by l and denoted as vector ξl. The distance between
each sound source and each microphone, indexed by m, is represented by r̃m,l and is shown in equation
21. It is assumed that the sound propagates through a medium with a uniform flow replicating the
wind tunnel flow with velocity and Mach vectors, U and M respectively.

For our simplified case, it is assumed that the source amplitude is independent of frequency. All
sources are assumed to be distributed along a line and hence are all summed up to obtain the total
pressure signal received at each microphone[20]. Therefore, the total pressure simulated and received
for each microphone m is visualised with equation 20:

pm,l(t) =
All

∑
source=1

−σ(t − δtm,l)
4π ˜rm,l

(20)

where r̃m,l is:

˜rm,l =

√
M ⋅ (xm − ξl) + β2((xm − ξl)2) , β =

√
1 − norm(M)2 (21)

And δtm,l which represents the time delay for a sound wave leaving the source and arriving to each
individual microphone is:

δtm,l =
1

cβ2
( −M ⋅ (xm − ξl) +

√
(M ⋅ (xm − ξl))

2

+ β2r2
m,l

) , rm,l = ∣∣xm − ξl∣∣ (22)

The pressure wave equation has now been fully defined, as a next step the steering vector will have
to be defined. The steering vector gm,o(f ) is given as [25]:

gm,o(f ) =
−e−2iπfδtm,o

4π ˜rm,o
(23)

and for the diagonal removal [24], the steering vector becomes :

wm,o(f ) =
gm,o√

((∑N
n=1 ∣gm,o∣2)2 −∑N

n=1 ∣gm,o∣4)
(24)

For the beamforming process, a 3D vectorized search grid is defined, where each point is indexed
by o and denoted with vector ξo. It is assumed that the sound source is located in the region covered
by this grid. The distance between each grid point o and each microphone m, is represented by r̃m,o
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and the corresponding time delay for a sound wave to travel from each grid point o to microphone m
is given by δtm,o. Both r̃m,o and δtm,o are computed in the same exact way as in equations 21 and 22,
respectively. However, instead of using the source location vector ξl, the grid coordinates ξo are used
instead.

Next the pressure signal (equation 20) is converted via the SFT technique (equation 14 ) into fre-
quency domain and in segments. The STFT of the line source is then normalised (equation 15) and is
then plugged to equation 16 to form the cross spectral matrix. For the beamforming, the same method
as depicted with equation 9 is done by using the steering vector from equation 24, and the cross spectral
matrix of the analytical simulation. Finally, the sound power is converted to sound pressure level using
equation 10.

An example is constructed using 93 microphones arranged in an array with a diameter of 1.8 meters,
the microphone array is based from the research benchmark [24]. A schematic of that example is also
shown in figure 6. A total of 20 equally distributed and amplified sources are used to form the line
source. In figure 7, it can be seen that a vertically oriented line of discrete sources is detected at the ex-
act coordinates ξl as specified (ξl = 0, ζl = 0 and −0.8 ≤ ηl ≤ 0.8). A source amplitude of 1 [Pa⋅m] is used.

Figure 7: Line source by summation, representing trailing edge noise located at 1 meter from the
microphone array for 1 kHz emitted waves.
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2.5 Experimental case, beamforming

In this section an Experimental approach will be discussed. More specifically, an airfoil is placed inside
a wind tunnel and a flow is simulated to flow around that airfoil. A sound will be emitted from the
trailing edge and a microphone array placed in the far field will record its response. Since the objective
is to first validate the CBF algorithm before experimenting with new equipment and hence dataset, an
experimental benchmark from [24] will be analyzed in this section and validated in section 2.6.2.

Figure 8: Leading Edge and Trailing edge schematic from NASA 2 Revision benchmark [24].

The beamforming algorithm for this experimental model follows the same steps as described in
section 2.3 for computing the cross-spectral matrix. Additionally, equation 9 indicates the method
used to determine the sound power and, consequently, the sound pressure level (equation 10 ). In
Equations 82 and 8, for computing the steering vector, the shear layer corrected distances and time
delays Ram,o

and δtamietm,o
respectively should be used in place of rm,o and δtm,o. Those shear layer

corrected distances and time delays can be computed with the equations from the appendix of section C.
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An example is constructed using 33 microphones arranged in an array with a diameter of 0.18 me-
ters. The recorded aeroacoustic data is from a NACA 63-215 airfoil with a chord length of 0.406 meters
and a span of 0.914 meters, mounted at an angle of attack of –1.2°, and tested in a flow at Mach 0.17.
This setup is based on the NASA 2 (Revision 2) experimental data benchmark from [24].

In Figure 9, a vertically oriented line source is clearly detected at the exact location of the trailing
edge. The airfoil’s trailing edge generates sound waves at different frequencies. Figure 9 indicates the
CBF output of that test case for emitted sound waves at 4kHz frequency.

Figure 9: CBF result, indicating the sound source at the trailing edge of a NACA 63-215 airfoil, located
1.524 meters from the microphone array for 4 kHz emitted waves.
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2.6 Source power integration

The conventional beamformer is suffering from overlapping main lobes and wide point spread functions,
this causes inaccurate estimation of source strength and location in the acoustic map. To reduce the
influence of these array induced artifacts and improve spatial resolution, the source power integration
method is applied. This approach integrates the estimated acoustic power within a predefined region
of interest (ROI) which is approximately where the source region is, leading to a more accurate CBF
output.

In this paper, an airfoil will be tested both analytically by applying the line source summation
method and experimentally by applying an actual airfoil. Therefore, for both situations, the region of
interest would be the trailing edge of the airfoil. The source power integration technique will quantify
the total source power over that area of interest (ROI) for a given frequency f .

The integrated sound power Pint given by [18], is computed with equation 25. In that equation,
the maximum value of the simulated monopole’s PSF is normalised and hence taken as one 1, Psim = 1
[Pa

2
m

2
].

Pint =
Psim∑G

r=1 L
exp
r (f )

∑G
r=1 L

sim
r (f )

(25)

where:

L
exp
r (f ) =

w
∗
m,r(f)CSM (f )wm,r(f )

42β2π2R2
0,r

(26)

L
sim
r (f ) = w

∗
m,r(f )(gm,r(f )g∗m,r(f ))wm,r(f ) (27)

As shown in the source power integration (SPI) equation (equation 25), the SPI technique sums all
the sound power within the region of interest. Each gridpoint located in the region of interest is indexed
with g while the symbol G represents the total number of gird points inside the ROI. To prevent con-
tributions from source powers associated with side lobes, or sound powers which are significantly lower
than the peak sound power in both the simulated and measured CBF outputs, their corresponding
sound power levels, will be set to zero. L

exp
g (f ) is computed by taking the beamformer output Lg(f )

and normalizing it by dividing that term by 4
2
β
2
π
2
R

2
. The later will remove the distance dependent

scaling effect of the array in order to get a more accurate integration.
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2.6.1 Source Power Integration, Line source analytical model

For the line source, based on the benchmark from section [24], a region of interest is drawn around the
trailing edge, enclosing the majority of the line source in that area, as illustrated in figure 10a. The
integrated sound powers within this ROI, converted to sound pressure levels are plotted against their
corresponding frequencies to form a power spectral density plot as shown in figure 10b.

(a) (b)

Figure 10: Figure 10a shows the CBF output of the line source benchmark, where a region of interest
is defined around the SPL of the trailing edge. Figure 10b shows the integrated sound power in SPL
plotted against its corresponding frequency, forming a power spectral density plot.

As seen from figure 10b, the SPL of the integrated sound power from the analytical Benchmark [24]
is computed and compared with TU Delft institution results (TUD, Conventional) and the University
of Adelaide along with University of New South Wales, both Schools of Mechanical Engineering (UnIA,
Conventional) [23]. The plotted line labeled as ”Nikolas, Conventional” represents the SPL computed
in this study, based from the line source theory explained in section 2.4. The SPL power from TUD is
different by less than 1 dB from the results of Nikolas’s study at 2 kHz, this SPL difference decreases
as the frequency of the emitted wave increases. Similarly, the data from UniA also aligns well with the
SPL from this study for 2 kHz and higher frequency range with approximately 1 dB difference across
that frequency range. This study models a discretized amount of sources for computational efficiency
to perform the Monte Carlo uncertainty simulation quicker in section 4. In contrast, both TUD and
UniA have integrated their line source models by assuming an infinite number of infinitesimal sources
distributed along the line. With this approach, TUD and UniA have captured a slightly higher SPL
amplitude at frequencies of 3khz and higher. However at lower frequencies, the wavelength is large and
hence the beamwidth is also large which causes the discretized model from this study to have the sound
field of those sources to overlap with each other, overestimating the SPL to as much as 10 dB at 1 kHz.
This overestimation drops quickly with increasing frequency.
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2.6.2 Source Power Integration, Experimental Benchmark

For the experimental benchmark based on the NASA 2 (Revision 2) dataset from section [24], a region
of interest was defined around the trailing edge, enclosing the majority of the line source in that area,
as shown with figure 11a. The integrated sound powers within the ROI were then converted to sound
pressure levels and plotted against their corresponding frequencies to form a power spectral density
plot as shown in figure 11b.

(a) (b)

Figure 11: Figure 11a shows the experimental benchmark based on the NASA 2 (Revision 2) dataset,
where a region of interest is defined around the sound pressure level of the trailing edge. Figure 11b
shows the integrated sound power in SPL per foot that is plotted against its corresponding frequency,
forming a power spectral density plot for the NASA 2 (Revision 2) benchmark.

As shown in figure 11b, the plotted line labeled as ”Nikolas, Conventional, DR” represents the SPL
per foot from the integrated sound power computed in this study, based from the beamforming theory
explained in section 2.5. Another line which is labeled as ”UTwente, Conventional, DR” corresponds
to results obtained by Dr. Ir. M.P.J. Sanders, Assistant Professor at the University of Twente. The
computed results from this study closely enough match the UTwente data, with the SPL being mostly
less than 1 dB different across the frequency spectrum. In addition, the data from the University of
New South Wales (UNSW) [2] also matches sufficiently enough the SPL computed from this study,
with deviations starting at 2.5 kHz and onward with around 3 dB difference. This figure validates
the conventional beamforming algorithm used in this study. The difference in SPL between those 3
mentioned studies that occur could perhaps be due to the diagonal removal from the cross matrix used
in Utwente and Nikolas (this paper’s study) studies. A diagonal removal decreases the background noise
and reduces the Sound pressure levels which is also observed in that figure (figure 11b). In addition,
the SPL differences could also be in how the cross spectral matrix is computed, which in this study it
is computed using time blocks, as discussed in section 2.3.
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3 Uncertainty Quantification using the Monte Carlo Method

The Monte Carlo method is used in this paper to quantify the uncertainty of the CBF model. At each
Monte Carlo iteration, random inputs are sampled from the standard normal Gaussian distribution and
assembled into the matrix X. Those random inputs from the matrix X are then scaled and dimension-
alized for each variable to be perturbed Vinput from the CBF algorithm by using the covariance matrix
of those variables. Those variables which are subject for perturbation are discussed in section 3.1, and
the Covariance method is discussed in section 3.2. The resulting perturbed variables Vinput are then
fed into the CBF model. After many iterations and convergence has occurred, the simulation leads to
a full output distribution, which leads in capturing the uncertainty of the CBF response. With that
approach, the CBF model can be also evaluated under multiple, simultaneously perturbed, nonlinear
input variables Vinput.

This paper uses the normal Gaussian distribution because it is nicely suited for modeling real world
phenomena with large data samples. That is according to the Central Limit Theorem [21] which
states that the sum of a large number of independent random variables forms a distribution which will
get closer and closer to a normal Gaussian distribution, no matter what their original distributions were.

3.1 Input Variables

The input variables that affect beamforming include the cross spectral matrix, microphone locations,
temperature, microphone sensitivity, microphone phase, and the array’s broadband spacing [26]. These
inputs will be examined by perturbing them using the Monte Carlo iteration method. The input vari-
ables Vinput to be analyzed and perturbed are represented as follows:

The microphone position input vector consists of the x,y, and z coordinate values for each of the
microphones.

Vxm
= [x1, ...,xM] (28)

The microphone phase input matrix consists of an individual phase value to each microphone.

V
phase
m = [ph1...phM ] (29)

The microphone sensitivity input matrix consists of an individual sensitivity value to each micro-
phone.

V
sensitivity
m = [se1...seM ] (30)

For the room temperature input matrix, the matrix is composed of 1 element:

VTemp = [T0] (31)

The Array broadband distance input matrix consists of an individual broadband distance value to
each microphone.

V
array
m = [z1, ...zM ] (32)

For the cross spectral matrix input , since the CSM is already a matrix, its input matrix differs
from the others. First, the diagonal elements of the CSM are extracted as input elements. Then, the
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real parts of the elements from the upper triangular CSM matrix are taken, followed by the imaginary
parts of the upper triangular elements. The reason for only considering the upper triangular elements of
the CSM is that the CSM is a Hermitian matrix (CSM = CSM

†
). Therefore, the input vector becomes:

VCSM = [CSM11, ..., CSMMM , Re[CSM12], ..., Re[CSM1M ], ..., Re[CSM23], ..., Re[CSMM−1,M ]
(33)

, Im[CSM12], ..., Im[CSM1M ], ..., Im[CSM23], ..., Im[CSMM−1,M ]]
(34)

3.2 Covariance matrix and Cholesky decomposition

The variables to be perturbed for the beamforming process have been categorized as uncorrelated and
correlated input variables as seen in sections 3.3 and 3.4 respectively. An example of a correlated
variable is the cross spectral matrix , where perturbations to one of its non diagonal elements affects
the others. This is because the CSM captures the correlation between all microphones, making its
components dependent to each other.

On the other hand, uncorrelated input variables include microphone sensitivities and phase re-
sponses, since disturbances to each microphone are assumed to be independent. Similarly, variables
such as room temperature and array broadband distance are treated as uncorrelated, as they are singu-
lar values and not influenced by other parameters. The microphone positions present a more complex
case. If one microphone is moved, others in the same branch of the array may also shift, introducing
potential correlation. Simulating those kind of dependencies would require to dynamically track the
position of each microphone over time, which would significantly increase the model’s complexity. To
avoid this, the simulation modeled individual microphone position perturbations independently, and
therefore it was assumed that the microphone position disturbances to be as uncorrelated. For the
uncorrelated variables, a standard deviation will be given initially. This will be used to construct a
diagonal covariance matrix, where each diagonal element represents the variance of the corresponding
input. The covariance matrix for the uncorrelated perturbed inputs is computed as: Γdiagonal = std

2
input,

where stdinput represents the standard deviation of an input variable.

The situation differs for correlated inputs. As defined in section 3.4, the cross spectral matrix
elements to be perturbed are dependent to each other. The CSM elements will be transformed into
a full covariance matrix, where the off diagonal elements of the full covariance matrix represent the
correlation between element pairs of the CSM, while the diagonal elements of the full covariance matrix
represent the variance of each CSM element.

An example of a correlated matrix is given with an example of a variable v constituting of 3 inputs
(v1, v2 and v3).

The covariance sample matrix of the variable v becomes:

3 Uncertainty Quantification using the Monte Carlo Method Page 19



Γ =

⎛
⎜⎜
⎝

v11 v12 v13
v21 v22 v23
v31 v32 v33

⎞
⎟⎟
⎠

(35)

Each input (element of the covariance matrix, equation 35) is the covariance of 2 elements (element
zij and zkj) of the variable v with index i and k respectively [12]:

vik =
1

(n − 1)

n

∑
j=1

(zij − xi)(zkj − xk) (36)

Here, n is the number of samples used for the covariance elements. In the case of this research,
it refers to the number of effective segments of the CSM matrix. Additionally, xi and xk represent
the mean values of the elements vi and vk which are the pair of elements selected for the covariance
calculation at indices i and k respectively:

xi =
1
n

n

∑
j=1

zij (37)

xk =
1
n

n

∑
j=1

zkj (38)

The sample covariance matrix captures the relationships between all elements which are included
in the matrix Vinput. To apply this defined correlation structure to the randomly generated inputs X
at each Monte Carlo iteration, the covariance matrix needs to be first decomposed using the Cholesky
decomposition [27]. The Cholesky decomposition produces a triangular matrix L as seen from equation
39. It is a simplified form of the covariance matrix Γ and captures the correlations between the elements
of the matrix Vinput to be perturbed.

Γ = LL
T

(39)

The Cholesky decomposition is used to impose the desired correlation structure on the inputs from
the variable to be perturbed. Random values which are drawn from the standard normal Gaussian
distribution are assembled into the matrix X. Those values are generated in MATLAB with mean 0
and standard deviation 1, and they are initially uncorrelated. By multiplying the matrix X with the
Cholesky matrix, the perturbation term is formed. With this, the perturbation term is added to the
nominal variable Vinput to form the perturbed variable V

′
input. This process is illustrated in Equation

40:

V
′
input = VinputÍÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ

nominal input

+ XL′

ÍÒÒÒÒÑÒÒÒÒÒÏ
perturbation term

(40)

For each iteration, the simulation computes a perturbed variable V
′
input and incorporates it as an

input variable to the beamforming algorithm. After the simulation has converged, a beamforming out-
put map with all possible variations of sound pressure level SPL

′
o is generated.
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3.3 Method for Perturbing Variables with Uncorrelated Elements

To analyse the uncertainty of the beamforming algorithm, different types of perturbations are incorpo-
rated to the conventional beamforming model. In particular, the temperature which affects the speed of
sound and consequently the Mach number, the cross spectral matrix which affects the localization and
amplitude of the source. In addition, the microphone phases also affect the localization especially at
higher frequencies where phase differences correspond to shorter wavelengths. In addition, the micro-
phones sensitivity is also perturbed as that directly affects the amplitude of the actual source . Finally,
the microphones coordinates as well as the array broadband distance will also be perturbed as those
variables greatly impact the beamforming output in general. The variables selected for perturbation are
divided into uncorrelated and correlated input types. In this section, the uncorrelated input variables
will be discussed.

More specifically the:

Temperature:
During the wind tunnel testing, the temperature ranged from 18 to 21 degree. For that reason, a
standard deviation of 1 and then of 3 kelvin will be assumed to the uncertainty model. Since the
temperature variable consists of only 1 input, the covariance matrix is only consisted of a diagonal
where its element is the square root of the mentioned temperature standard deviation. The covariance
matrix is then converted using the Cholesky decomposition as explained in section 3.2. Afterwards,
a random value within the defined distribution is generated and added with the nominal temperature
V

′
Temp = VTempÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

nominal value

+ XL′
TempÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

perturbation term

. A perturbed temperature T
′
for each Monte Carlo iteration is

then defined. Afterwards, a 95 percent uncertainty interval is used to define the error bounds around
the mean of the perturbed sound pressure level SPL

′
o.

Microphone position:
During wind tunnel testing, the microphones vibrated and deviated from their origin due to the flow pro-
duced by the wind tunnel. Consequently, the theoretical distances from the microphones origin to the
source is not equal to the actual distances of the deviated microphones position to the source during the
testing. Therefore, 2 cases will be examined where a standard deviation of 1mm and of 10mm will be in-
troduced to each microphone coordinate as a perturbation input. For the covariance matrix, again only
a diagonal will be created as it is assumed that each input (x,y,z coordinates for each of the microphones)
is uncorrelated. The process afterwards is explained in section 3.2. Each microphone coordinate is then
perturbed for each Monte Carlo iteration and is depicted as: Vxm

′
= VxmÍÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒ Ï

nominal value

+ XL′
xmÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

perturbation term

.

Microphone phase:
A unique random phase is also introduced to each of the microphone signals as part of the variables to
be perturbed for the Monte Carlo simulation. Each of the 112 microphones used (see section 5.1 ) may
introduce a small phase delay when receiving a signal. This delay adds up to the phase shift already
caused by the varying distances between the sound source and each microphone. For this reason, a
phase standard deviation of 1 and later 10 degree will be used for each microphones as input variables
to be perturbed. That is modeled by applying random phase shifts to the signal in the frequency
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domain, which was previously obtained with equation 15 by converting the time domain signal using
a spectrogram. The phase shift is represented as: e

iθm and is an element of the input matrix V
phase
m .

The radian angle θ is the phase angle.

After performing the same process as explained in section 3.2, the signal Ŝs,m (from equation 15)

with the phase perturbation term XL′
phasem

for each microphone m becomes: Ŝ
′
s,m = Ŝs,m XL′

phasemÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
perturbation term

.

Microphone sensitivity:

The nominal sensitivity of each microphone is around 11.4mV /Pa [28], that means that if the sound
pressure level is 1 pa, the microphone outputs 11.4 mV . However due to manufacturing, calibration,
temperature and other situations, the sensitivity of the microphones may be different. To account for
this uncertainty, a perturbed sensitivity will be applied to each microphone signal.

The standard deviations to be tested will be 10 and 5 percent of the nominal sensitivity. That
accounts to 1.14 and 0.57 mV /Pa respectively.

The perturbed signal Ŝ
′
s,m, resulting from the microphone sensitivity perturbation term XL′

sensitivitym
,

is given as:

Ŝ
′
s,m = Ŝs,m

perturbation termÌÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
XL′

sensitivitym

V
sensitivity
mÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

nominal value

(41)

This perturbed microphone sensitivity is applied in the Monte Carlo simulation with a different
sensitivity assigned to each microphone. That means that there will be 112 input signals for the covari-
ance matrix, each of which is uncorrelated. The process is performed in the same way as to the other
perturbations described above.

Array broadband distance:

Similar to the microphone coordinate perturbations, this time only the z axis of the microphone
positions is perturbed. That affects the distance from the microphone array to the source. The nominal
array broadband distance is 1.801 meters. A standard deviation of 5 and 2.5 percent of the nominal
array broadband distance will be used. That corresponds to 90 and 45 mm respectively.

Each microphone z axis coordinate is then perturbed for each Monte Carlo iteration as shown:
V

′
arraym = V

array
mÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

nominal value

+ XL′
arraymÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

perturbation term

.
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3.4 Method for Perturbing Variables with Correlated Elements

The cross spectral matrix, is the only considered correlated input variable.

Cross spectral matrix:
The cross spectral matrix is harder to perturb as it is derived from the spectrogram (equation 15 ).That
being said, the spectrogram transforms the signal into the frequency domain, where it is represented
over a wide range of frequencies. For each frequency, the signal is divided into time segments (effective
segments). By applying the beamforming to each of those time segments separately, it becomes clear
that the results of the beamforming vary over time segment. That makes the beamforming output to
be a time dependent uncertainty. To measure the uncertainty of that variation, a covariance matrix is
constructed by applying and relating all the elements of the cross spectral matrix as explained also in
section 3.2. Each of the CSM elements are spectra between microphones and hence they are dependent
to each other. Therefore the Covariance matrix will be consisted of both diagonal and off diagonal
terms. The amount of effective segments used determines the amount of samples to be used for each
element of the covariance matrix. This is called a Sample Covariance matrix.

The sample covariance matrix contains estimation errors. Ledoit and Wolf [15] suggest using the
matrix obtained from the sample covariance matrix through a transformation called shrinkage. This
results in getting the most extreme coefficients towards more central values, therefore it reduces the
estimation error where it is very important. The paper of Ledoit and Wolf describe the optimal shrink-
age intensity and they give the formula ( see equation 42). The shrinking method applied is called the
Ledoit Shrinkage.

Ledoit gives an expression for the shrinkage of the Covariance matrix which is defined as:

ΓShrink = δ̂∗F + (1 − δ̂
∗)ΓCSM (42)

In order to solve the above expression, many terms first need to be addressed. Those terms have
already been derived and therefore only their final form will be given in this paper.

Starting first with the Shrinkage intensity δ̂
∗
, Ledoit proposes:

δ̂∗ = max{0,min{ κ̂

eff segm
, 1}} (43)

This is just to assure that κ̂
eff segm

is always within 0 and 1. The consistent estimator for κ̂ is

related to the consistence estimators γ̂ and ρ̂ as:

κ̂ =
π̂ − ρ̂

γ̂
(44)

Those consistent estimators are equal to:
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π̂ =

N

∑
i=1

N

∑
j=1

π̂ij (45)

where

π̂ij =
1

eff segm

eff segm

∑
s=1

{(VCSMi,s
− VCSMi

.)(VCSMj,s
− VCSMj

) − ΓCSMi,j
}2 (46)

eff segm is short for total effective segments. VCSMi,s
is the input variable containing as inputs

the elements of the CSM matrix to be sampled for the covariance. The overline symbol represents the
mean of the variable overlined with respect to the amount of effective segments. For instance, VCSMj

is the mean of the variable VCSMj,s
. The index of the elements of the covariance sampled matrix is

denoted as i and s is the effective segment index. In addition, ΓCSMi,j
is an element of the sample

covariance matrix of CSM.

The consistent estimator ρ̂ is equal to:

ρ̂ =

N

∑
i=1

π̂ii +
N

∑
i=1

N

∑
j=1,j≠i

r

2
(
√

ΓCSMj,j

ΓCSMi,i

θ̂ii,ij +

√
ΓCSMi,i

ΓCSMj,j

θ̂jj,ij) (47)

where θ̂ii,ij and θ̂jj,ij elements contained in the consistent estimator ρ̂ are:

θ̂ii,ij =
1

eff segm

eff segm

∑
s=1

{(VCSMi,s
−VCSMi

)2 −ΓCSMi,i
}{(VCSMi,s

−VCSMi
)(VCSMj,s

−VCSMj
)−ΓCSMi,j

}

(48)
and

θ̂jj,ij =
1

eff segm

eff segm

∑
s=1

{(VCSMj,s
−VCSMj

)2−ΓCSMj,j
}{(VCSMi,s

−VCSMi
)(VCSMj,s

−VCSMj
)−ΓCSMi,j

}

(49)
Finally, the consistent estimator γ̂ is given as:

γ̂ =

N

∑
i=1

N

∑
j=1

(fij − ΓCSMi,j
)2 (50)

r is the sample correlation and is expressed as:

r =
2

(N − 1)N

N−1

∑
i=1

N

∑
j=i+1

ΓCSMi,j√
ΓCSMi,i

ΓCSMj,j

(51)

Then the shrinkage target F is defined as the matrix F which is basically a sample constant corre-
lation matrix. fii elements denote its diagonal and represent the sample variances:

fii = ΓCSM,ii (52)
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and the off diagonal elements: fij represent its average sample correlation:

fij = r
√
ΓCSMi,i

ΓCSMj,j
(53)

Where ΓCSM,ii are the diagonal elements of the sample covariance matrix ΓCSM . After this process
has been performed, the shrank sampled covariance matrix ΓShrink is defined. This method minimizes
errors to that uncertainty estimation.

While performing this process, it is important to note that the covariance matrix only consists of real
numbers. The elements of the cross spectral matrix used as inputs of the variable VCSM to construct
the covariance matrix are extracted as real values R, specifically Re[VCSM ] ∈ R and Im[VCSM ] ∈ R.
After its construction, it is shrank as shown above and then decomposed using the Cholesky decom-
position method. During each Monte Carlo iteration, a random value is used to scale the decomposed
triangular matrix L

′
CSM .

The perturbed CSM is computed as V
′
CSM = VCSMÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

nominal value

+ XL′
CSMÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

perturbation term

.

Afterwards, during the reconstruction of the perturbed cross spectral matrix V
′
CSM in the original

M ×M form (M representing the total amount of microphones used), the imaginary components are
multiplied by the imaginary unit i, while the real parts are preserved. The real and imaginary parts
are then summed together to reconstruct the complex elements of the perturbed CSM.

3.5 Monte Carlo Convergence

For the Monte Carlo simulation, a fixed number of iterations will be used for each different perturbation
input variable into the CBF model. To determine if the amount of Monte Carlo iterations is sufficient
enough, the standard deviation divided by the mean of the computed perturbed sound pressure levels
at the source location is evaluated. The model will be evaluated at increasing iteration counts, starting
from 10 iterations and continuing in steps of 10 up to 1000 iterations. As the amount of iterations is
increased, if the standard deviation over the mean no longer show significant changes, it will indicate
that the number of iterations is sufficient enough.

3.6 Uncertainty interval of Monte Carlo Simulation

After the Monte Carlo simulation is completed, the CBF outputs of all iterations are processed to
define the uncertainty interval of the perturbed sound pressure level SPL

′
o. An aleatoric uncertainty

approach will be used in this work [17]. Aleatoric uncertainty is a type of uncertainty that comes
from natural randomness in the system’s output, in our case that is the the perturbed sound pressure
level SPL

′
o. This type of uncertainty cant be decreased or removed by having more data, but what

can change is that its estimation could become more stable with an increased number of simulation
iterations. The uncertainty interval (see equation 54) derived from this aleatoric uncertainty approach
quantifies the range in where the output is expected to fall, given the randomness in the inputs. For
most experimental methods, using 95% confidence is generally considered sufficient and therefore to be
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used in this paper [26]. That means that there is a 95 % chance that the CBF output to fall in that
band region. Finally, this interval visualizes the spread of possible CBF outcomes from the perturbed
variables used in the Monte Carlo.

95%Ub = µ(SPL
′
o) ± tstd(SPL

′
o) (54)

where std(SPL
′
o) is the standard deviation of the perturbed sound pressure level SPL

′
o computed

after performing several Monte Carlo iterations. In addition, looking to the above equation, t is the
critical value which is multiplied by the standard deviation in order to form the uncertainty bound.
Also, µ is the mean from all Monte Carlo iterations of the perturbed sound pressure level SPL

′
o. To

define the critical value t, the standard normal distribution py [11] needs to be plotted using equation
55:

py =
1

std
√
2π

e
−

(x−µ)2

2std2 (55)

Figure 12a shows the standard normal distribution using equation 55. For a two tailed 95 % uncertainty
interval, the critical value t corresponds to the normal distribution curve where 97.5 % of the total area
lies to the left [4]. Next, a numerical Matlab function that computes the area of 97.5 percent from the
figure is applied. Applying the Matlab function: norminv(97.5%), the value of t is found to be 1.96
standard deviations as seen from figure 12b.

(a) Normal distribution curve (b) Critical value t defined with Norminv function

Figure 12: Figure 12a shows the normal distribution density curve against the standard deviation.
Figure 12b shows again the normal distribution density against the standard deviation at 97.5 percent
of the area using the Matlab function Norminv.

Hence the uncertainty interval equation becomes:

95%Ub = µ(SPL
′
o) ± 1.96std(SPL

′
o) (56)
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3.7 Uncertainty Schematic Summary

Figure 13 visualizes the total process for an uncorrelated input variable to be perturbed while figure
14 visualizes the total process for a correlated input variable to be perturbed.

Figure 13: Monte Carlo model in Matlab for uncorrelated variables
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Figure 14: Monte Carlo model in Matlab for correlated variables
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4 Parameter Study, Analytical Beamforming Uncertainty

4.1 Analytical model set up

The model is created based from the line source summation theory (section 2.4), it will be used as a
parametric study to quantify its uncertainty in section 4.3. The microphone coordinates, grid coordi-
nates and the airflow specifications are the same ones used from the experimental parametric study as
seen in section 5. The line source is simulated along a line with vector coordinates ξ = (ξ, η, ζ), with
ξl = 0 and ζl = 1.801 [m]. In addition, −0.345 ≤ ηl ≤ 0.345, forming the line source. The schematic
of this model is seen in figure 15a, while figure 15b shows the conventional beamforming output with
the region of interest being drawn, encircling the simulated trailing edge (line source). The flow is
simulated to travel parallel to the x axis moving from the negative to the positive x direction at Mach
0.17.

In addition, for the line source model to match the same sound power magnitude at the trailing
edge of the airfoil as observed in the experiment, first the experimental model is evaluated at 2 kHz (see
section 5.2). Then afterwards, the amplitude of the line source model is adjusted so that it matches
the same sound power magnitude as from the evaluated experimental CBF output.

(a) (b)

Figure 15: Figure 15a shows a schematic of the analytical set up, while figure 15b shows the unperturbed
Beamforming output of the analytical model for 2 kHz emitted waves.
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4.2 Monte Carlo Simulation Set Up

In this section, the Monte Carlo setup will be explained prior to conducting the actual simulation. The
Monte Carlo uncertainty theory described in section 3 will be applied to evaluate the analytical model
introduced in section 4.1, with its associated uncertainty to be quantified in section 4.3. During the
Monte Carlo simulation, 1000 iterations will be performed for each of the variables to be perturbed
from the CBF algorithm for sound waves emitted at 2 kHz. The variables to be perturbed are: First,
the microphone’s phases will be perturbed by 1 degree standard deviation and then by 10 degree in
section 4.3.1. Afterwards, the microphone’s sensitivities will be perturbed by 5% and 10% of the nom-
inal microphone sensitivity in section 4.3.2. Then, the microphone coordinates will be perturbed with
standard deviations of 1 mm and 10 mm in section 4.3.3. Following this, the array broadband distance
which is the distance from the center of the array to the trailing edge will be perturbed by 2.5 % and
5% of the nominal value of 1.801 meters in section 4.3.4. Afterwards, the temperature will be perturbed
with standard deviations of 1 K and 3 K in section 4.3.5. Then, the Cross Spectral Matrix will be
perturbed based on its segmentation, using 500 and 1000 effective segments in section 4.3.6. Finally,
the model will include multiple simultaneous input perturbations (all variables mentioned above) across
the entire frequency spectrum ranging from 500 Hz to 5000 Hz with 500 Hz increment as presented in
section 4.3.7. Through out the entire uncertainty quantification analysis, a confidence interval of 95%
is used.

Table 1 gives more details of the settings used for simulation.

Amount of sources : 20
Source Amplitude: 0.1187
Mach number: 0.1712

Room Temperature: 293.05K
Segment overlap: 50 percent
Signal length: 70000 samples
Signal time: 0.7 seconds

Sampling Frequency: 48kHz

Table 1: Line source simulation settings
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4.3 Monte Carlo Results

4.3.1 Microphone phase perturbation

(a) (b)

(c) (d)

Figure 16: Quantified Uncertainty of CBF output, more specifically: Figure 16a shows microphone
phase perturbations with a standard deviation of 1 degree, and figure 16b presents a closeup view of
these perturbations. Similarly, figure 16c illustrates microphone phase perturbations with a standard
deviation of 10 degree, while figure 16d shows a closeup view of that case.
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Looking at figures 16a and 16b, it can be seen that a 1 degree perturbation in the microphone phases
has very small impact to the CBF output. Especially at the source origin (x = y = 0), where the stan-
dard deviation is only 0.005 dB. With 95 % confidence level, the upper and lower bounds vary by only
around 0.02 dB. A bit further away from the source (x = −0.2), the effect of the phase perturbation
becomes more noticeable. The standard deviation increases to around 0.02 dB, which enlarges the
uncertainty interval and results in a variation of the mean of approximately 0.1 dB.

When the phase perturbation is increased to 10 degree per microphone, as shown in figures 16c
and 16d, the uncertainty of the CBF output increases. At the source location, the sound pressure level
varies between the upper and lower bounds by around 0.22 dB. Farther from the source (x = −0.2), the
variation increases to around 0.9 dB.

The statistical results from the Monte Carlo simulation of the phase perturbation are also seen in
table 11a and 11b which corresponds to the 1 and 10 degree perturbations respectively. Finally, the
Gaussian distributions for both cases are also plotted in the appendix, in tables 43a and 43b respectively.
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4.3.2 Microphone sensitivity perturbation

(a) (b)

(c) (d)

Figure 17: Quantified Uncertainty of CBF output, more specifically: Figure 17a shows microphone
sensitivity perturbations of 5 %, and figure 17b presents a closeup view of these perturbations. Similarly,
figure 17c illustrates microphone sensitivity perturbations of 10 %, while figure 17d shows a closeup
view of that case.
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For the microphone sensitivities, looking at figures 17a and 17b, it can be seen that a 5 percent
perturbation in the microphone sensitivities has a larger impact to the CBF output than the phase
perturbations. Especially at the source origin (x = y = 0), where the standard deviation is at around
0.04 dB. Using a 95 % confidence level, the upper and lower bounds vary by around 0.2 dB. Looking at
a bit further away from the source (x = −0.2), the effect of the sensitivity perturbation becomes even
more noticeable. The standard deviation increases to around 0.06 dB leading to the mean varying by
about 0.2 dB.

When the sensitivity perturbation is increased to 10 percent for all microphones, as shown in figures
17c and 17d, the uncertainty of the CBF output increases. At the source location, the SPL varies be-
tween the upper and lower bounds by around 0.32 dB. Farther from the source (x = −0.2), the variation
increases to around 0.45 dB.

The statistical results from the Monte Carlo simulation of the sensitivity perturbation are also seen
in table 12a and 12b which corresponds to the 5 and 10 percent perturbations respectively. Finally, the
Gaussian distributions for both cases are also plotted in the appendix, in tables 44a and 44b respectively.
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4.3.3 Microphone location perturbation

(a) (b)

(c) (d)

Figure 18: Quantified Uncertainty of CBF output, more specifically: Figure 18a shows microphone
location perturbations of 1mm, and figure 18b presents a closeup view of these perturbations. Similarly,
figure 18c illustrates microphone location perturbations of 10 mm, while figure 18d shows a closeup
view of that case.
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For the microphone coordinates being perturbed, looking at figures 18a and 18b, it can be seen
that a 1 mm perturbation in the microphone coordinates doesn’t affect much the CBF output. At the
source origin (x = y = 0), the standard deviation is only around 0.002 dB. Looking at a bit further
away from the source (x = −0.2), the effect of the microphone location perturbation becomes slightly
more noticeable but still doesn’t affect much the CBF output. More specifically, the standard deviation
slightly increases to around 0.006 dB

When the coordinates perturbation is increased to 10 mm for all microphones, as shown in figures
18c and 18d, the uncertainty of the CBF output increases. At the source location, the sound pressure
level varies between the upper and lower bounds by around 0.08 dB. Farther from the source (x = −0.2),
the variation increases to around 0.25 dB.

The statistical results from the Monte Carlo simulation of the microphone coordinate perturbations
are also seen in table 13a and 13b which corresponds to the 1 and 10 mm perturbations respectively.
Finally, the Gaussian distributions for both cases are also plotted in the appendix, in tables 45a and
45b respectively.
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4.3.4 Array broadband distance perturbation

(a) (b)

(c) (d)

Figure 19: Quantified Uncertainty of CBF output, more specifically: Figure 19a shows the array
broadband distance perturbed with a standard deviation of 45mm (2.5%), and figure 19b presents
a closeup view of these perturbations. Similarly, figure 19c illustrates the array broadband distance
perturbed with a standard deviation of 90 mm (5%), while figure 19d shows a closeup view of that case.
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In this section, the Array broadband distance is perturbed, looking at figures 19a and 19b, it can
be seen that a 2.5 percent perturbation in the array distance does affect the CBF output. At the
source origin (x = y = 0), the standard deviation is around 0.02 dB. That makes the sound pressure
level to vary by 0.08 dB. Looking at a bit further away from the source (x = −0.2), the effect of the
array perturbation becomes slightly more noticeable. More specifically, the standard deviation slightly
increases to around 0.08 dB, increasing the sound pressure level variation to around 0.2 dB.

However, when the array distance perturbation is increased to 5 percent, as shown in figures 19c
and 19d, the uncertainty of the CBF output increases to a considerable level. At the source location,
the sound pressure level varies between the upper and lower bounds by around 0.2 dB. Farther from
the source (x = −0.2), the variation increases to around 0.7 dB for always a 95 percent confidence, with
a standard deviation of 0.16 dB.

The statistical results from the Monte Carlo simulation of the array broadband distance pertur-
bations are also seen in table 14a and 14b which corresponds to the 45 and 90 mm perturbations
respectively. Finally, the Gaussian distributions for both cases are also plotted in the appendix, in
tables 46a and 46b respectively.
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4.3.5 Temperature perturbation

(a) (b)

(c) (d)

Figure 20: Quantified Uncertainty of CBF output, more specifically: Figure 20a shows the Temperature
perturbed with a standard deviation of 1 kelvin, and figure 20b presents a closeup view of these
perturbation. Similarly, figure 20c illustrates the Temperature perturbed with a standard deviation of
3 kelvin, while figure 20d shows a closeup view of that case.
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The temperature is a very important parameter for the beamforming as the speed of sound is depen-
dent on it which directly impacts the beamforming amplitude and localization. Here, the temperature
is perturbed. From figures 20a and 20b, it can be seen that a 1 kelvin perturbation in the Temperature
is applied. As seen, it doesn’t greatly impact the CBF output. More specifically, at the source origin
(x = y = 0), the standard deviation is around 0.01 dB. That makes the sound pressure level to vary
by 0.04 dB. Looking at a bit further away from the source (x = −0.2), the effect of the temperature
perturbation increases. More specifically, the standard deviation only slightly increases to around 0.04
dB.

For the second case, the temperature perturbation is increased to 3 kelvin, as shown in figures 20c
and 20d. At the source location, the sound pressure level varies between the upper and lower bounds by
around 0.12 dB. Farther from the source (x = −0.2), the variation of the sound pressure level increases
to around 0.45 dB, with a standard deviation of 0.03 dB.

The statistical results from the Monte Carlo simulation of the temperature perturbations are also
seen in table 15a and 15b which corresponds to the 1 and 3 kelvin perturbations respectively. Finally, the
gaussian distributions for both cases are also plotted in the appendix, in tables 47a and 47b respectively.
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4.3.6 Cross spectral matrix perturbation

(a) (b)

(c) (d)

Figure 21: Quantified Uncertainty of CBF output, more specifically: Figure 21a shows the CSM
perturbed with 500 effective segments, and figure 21b presents a closeup view of these perturbations.
Similarly, figure 21c illustrates the CSM perturbed with 1000 effective segments, while figure 21d shows
a closeup view of that case.
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For the Cross Spectral Matrix perturbation, the uncertainty results are as expected. The uncertainty
is very small and almost negligible. This happens because the analytical model uses an ideal, cosine
varying sound source. The microphones capture a signal that varies periodically. When segments
of that signal are transformed into frequency domain, the resulting CSM across each of the effective
segments (time segments) are nearly identical. They are nearly identical and not fully due to some
rounding errors in the analytical model made by Matlab. therefore, the CSM still has a very small
amount of uncertainty, with the standard deviation at the source measured to be only 4.00e − 5 dB.
Figures 21a and 21b show the CSM uncertainty results for 500 segments and figures 21c and 21d show
the CSM uncertainty for 1000 segments. Consequently, by varying the effective segments, wont affect
the CSM as also seen from the statistical summary (tables 16a and 16b). For the experimental model,
where each microphone captures a sound source with lots of background noise, the resulting uncertainty
will differ and have a major impact on the CBF output, as discussed later in section 5.3.6.
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4.3.7 Multi variable perturbation

Figure 22: CBF output of the Monte Carlo simulation with multiple perturbed inputs for sound waves
emitted at 2 kHz frequency.

(a) (b)

Figure 23: Figure 23a illustrates the error bounds of the CBF output for 2 kHz waves, while figure 23b
illustrates a closeup view of the same case.
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In this section, all individually perturbed variables are now simultaneously perturbed throughout the
frequency spectrum using 500 Monte Carlo iterations. Specifically, the microphone phase is perturbed
with 10 degree, microphone sensitivity with 10 percent, microphone position with 10 mm, array broad-
band distance with 2.5 percent, and the temperature with 3 kelvin standard deviations. In addition,
the CSM is perturbed. All perturbations are done with using 500 effective segments. For 2 kHz, the
CBF output is visualized in figure 22. At this frequency, the uncertainty error bounds around the mean
of the 500 Monte Carlo iterations are showed in figures 23a and 23b. Specifically, at the source location
(x = y = 0 [m]), the standard deviation is approximately 0.10 dB, and the sound pressure level varies
by ±0.19 dB. As we increase the frequency to 5 kHz, the SPL varies approximately by ±0.24 dB. A
statistical summary of the analytical multivariate Monte Carlo simulation is given in table 9.

In addition, the power spectral density is performed by integrating the sound power over a region of
interest as explained in section 2.6 and then converting it to logarithmic dB scale with using equation
10. The PSD is presented in figure 24. Starting from a sound pressure level variation of approximately
0.23 dB at 2 kHz, the variation increases with frequency, as expected. The sound pressure level of the
integrated sound power uncertainty reaches approximately 1.38 dB at 5 kHz.

Figure 24: SPL of the integrated sound power across the frequency spectrum defined from section 4.2,
along with its error bounds, computed from the Monte Carlo multivariate perturbation simulation.

A statistical summary of the SPL of the integrated sound power of the analytical multivariate Monte
Carlo simulation is provided in table 10 for all frequencies tested during the experiment (500 to 5000
Hz).
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5 Parameter Study, Experimental Beamforming Uncertainty

Section 5 will analyze the uncertainty of the acoustic Beamforming during an experiment. The noise
mechanism to be examined will be the sound produced by the interaction of fluid particles to the airfoil,
more specifically the sound emitted from the turbulent eddies while leaving the trailing edge to enter
the free field [14].

5.1 Experimental set up

The experiment will be performed at the wind tunnel of Twente University. A microphone phased array
will be assembled and used (discussed in more detail in section 5.1.2) with the goal to capture pressure
variations of the airfoil’s trailing edge, situated in the far field. After the experiment is performed, the
data will be processed and artificial perturbation inputs (discussed in section 3.1) will be incorporated
to the beamforming algorithm.nThe test set up to be conducted is first visualized with a top view
drawing as seen in figure 25a. The experiment is then set up in the wind tunnel, as shown in figure
25b.

(a) (b)

Figure 25: Figure 25a shows a schematic of the experimental set up while figure 25b shows the actual
experimental setup including the airfoil and the microphone array. The airfoil can be seen without any
tripping device installed yet.
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5.1.1 Microphone Array and Search grid set up

The microphone array is required to be as close as possible to the airfoil to achieve the highest spa-
tial resolution possible, while still remaining in the far field, as explained in section 5.1.2. In this
experiment, the array was positioned 1.8 meters from the trailing edge because the wind effects were
already noticeable to the array at that distance. Moving the array any closer would have made the
microphones to vibrate due to the airflow, potentially resulting in small but important displacements
of a few millimeters. That could lead to measurement inaccuracies, and therefore it was decided to
keep the array at that distance.

The airfoil spans 0.345 meters in both directions from its center as seen from section 5.1.4. There-
fore, a search grid was created at the trailing edge location, extending 0.345 meters in y spanwise
direction from the center. The grid and array positions are shown in Table 2.

Table 2: Search grid and Microphone array positions

Trailing edge position (x): z = 1.801 meters
Microphone array center position (x,y,z): (0,0,0) meters

Plane search grid position (y): −0.345 to 0.345 meters
Plane search grid position (x): −0.49 to 0.2 meters

Sampling rate of array: 48000 Hz
Individual microphone positions (x,y,z): See appendix E

The microphone array is assembled inside the anechoic chamber and mounted on a tripod. To
ensure stability, the tripod is weighted to prevent it from tipping over. A laser distance meter is used
to precisely position the microphone array at 1.801 meters perpendicular to the airfoil’s trailing edge.

5.1.2 Array Point Spread Function

The array point spread function (PSF) returns the microphone response. The PSF measures how much
the pressure signal coming from the source is spread into the neighboring locations at each grid point.
A wide PSF means that the beamformer has poor spatial resolution due to the fact that the energy is
more spread around the neighboring grid points. The goal is to get a sharp PSF peak which is visible
at the source location. This section gives the PSF of the experimental microphone array setup, that
is to provide reference for the beamforming resolution that can be used in future research aiming to
replicate this experiment.

To perform the PSF, the source is simulated at the center of the span, at the trailing edge location,
by placing a speaker and recording the sound via the microphones array. After getting the PSF of the
microphone array, a main slope around the source will be visible. That is the array’s response to the
source. By normalizing the beamforming output so that the maximum value is 0 dB, the -3 dB location
can be found as seen in figure 26a. These points define the beam width, which is the spatial resolution
in meters.
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Figure 26a shows the PSF of the array at 2kHz. More specifically, a 3-dB beam width of that array
can be seen plotted against its relative frequency at an array broadband distance darray of z = 1.801
meters. In addition, the PSF is plotted in Figure 26b for all test frequencies ranging from 0.5 to 10
kHz, with an array broadband distance of 1.801 meters.

(a) (b)

Figure 26: Figure 26a shows the point spread function at 2kHz. Figure 26b shows the PSF at a
frequency range from 500 to 10000 hz. Both figure’s PSF are taken from a array broadband distance
of 1.801 meters.

The beam width which is also called the spatial resolution can also be computed analytically by
using the Rayleigh criterion [16]:

beam width = 1.22
λDarray

darray
(57)

The near field is defined as within one wavelength of the source [13]. In acoustic beamforming, the
goal is to estimate the sound field in the far field. In addition, for better beamforming performance, it
is necessary to maximize the spatial resolution as much as possible. According to equation 57, the only
way to physically improve the spatial resolution without changing the diameter of the array Darray is
to reduce the array broadband distance darray. However, the minimum possible distance was limited
to around 1.8 meters due to concerns that the wind tunnel flow could cause the array to tip over if it
was placed any closer.
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5.1.3 Wind Tunnel and Flow Conditions

To generate an airflow around the airfoil inside the wind tunnel, multiple sensors were used. The axial
flow velocity Ux was measured using a Pitot tube, which defines the velocity by computing the pressure
difference. Additionally, three thermometers were placed next to each other just outside the test section
(next to the nozzle wall where the flow exits) to measure the temperature at three different vertical
positions. An average of all of them was taken to define the temperature T0.

First, a preliminary flow calibration was performed by running the wind tunnel at different power
percentages and recording their corresponding flow velocities. Once a target velocity of approximately
58.8 [m/s] (to reach around 0.17 Mach) was achieved, the corresponding power level was recorded.
The pitot tube was then removed to avoid flow disruption around the airfoil which could impact the
aeroacoustic results. The actual experimental aeroacoustic test was then performed using the recorded
power level found during the calibration. Each test run lasts 25 seconds and records around 1200000
data points per run, with a 48 kHz sampling frequency. Finally, the data captured by the microphones
is saved in Lab view CAE software. The flow conditions during the experiment are showed in table 3
where the Reynolds numbers are calculated using equation 58, the speed of sound is determined with
equation 59 and the Mach number is found by dividing Ux by the speed of sound c0.

Rec =
ρU∞c
µ (58)

c0 =

√
γgasRgasT0

Mollmass
(59)

Table 3: Flow conditions

Speed of sound (c0) : 343.3173 [m/s]
Density (ρ): 1.2148 [kg/m3

]
Dynamic viscosity: µ 18.1e − 6 [kg/(ms)]

Rec: 1.1982e + 6
Mach number: 0.1712

Ux: 58.7847 [m/s]
Specific gas constant of air (Rgas): 8.3140 [J/(molK)]

Room Temperature (T0): 293.05 [K]
Mollmass : 0.02897 [kg/mol]

Ratio of specific heat of air (γgas): 1.401

The flow velocity and angle of attack of the airfoil (the later discussed in section 5.1.4) are selected
based on the NASA and DLR benchmark studies, which most often use a Mach number of 0.17 and
an angle of attack of -1.2 degree. These values are chosen because at Mach 0.17, the flow is in the
low subsonic regime, which has still low compressibility effects and generates significant trailing edge
sound. In addition, the small negative angle of attack minimizes the lift generated by the cambered
airfoil. The negative angle of attack prevents flow separation and stall from happening, which could
otherwise introduce other unwanted sound mechanisms such as vortex shedding [22].
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5.1.4 Airfoil and Tripping Device

Since the objective is to create sound from the trailing edge, a tripping device with a specific thickness
will be applied near the leading edge of the airfoil. This leads to the boundary layer to transition to
turbulence earlier, resulting in a more turbulent flow over the trailing edge. The increased turbulence
increases the sound generated at the trailing edge, making it more easily to be detected by the micro-
phone array during the beamforming process. A zigzag tape is used as the tripping device to force the
transition in the boundary layer. In this section, the thickness and placement location of the tripping
device around the airfoil will be examined. The airfoil profile used is the DU97-W-300 as can be also
seen from figure 40a. The roughness Reynolds number Rek (see equation 60) defines the roughness
thickness k required to transition the flow from laminar to turbulent. Vortices begin to appear at
Rek = 300 and as Rek increases, the flow bypasses linear transition and instead, turbulent flow develops
rapidly downstream of the roughness tripping device [3]. To define the roughness Reynolds number
Rek, a computational analysis using XFOIL is performed with forced transition. Next, the velocity
distribution along the boundary layer throughout the surface of the airfoil is defined and used to solve
the roughness Reynolds Rek equation. The airfoil’s characteristics from table 4 are used as inputs in
XFOIL to compute the turbulent boundary layer.

Table 4: Xfoil inputs

Angle of attack to be tested: -1.2 [
◦
]

Chord length(b): 0.25 [m]
Span length (d): 0.695 [m]

Xfoil indicates that for the upper and lower section of the airfoil, the boundary layer thickness is
starting to rapidly increase from 10 percent chordlength and onward. Placing a tripping device near
the leading edge, below 10 percent of chordlength, would be effective as the boundary layer is smaller
in height at that location and thus the tripping device would have a larger impact on that boundary
layer. For this reason, the boundary layer velocity profile is computed for 8% of the chord length along
the airfoil. The turbulent boundary layer is computed and shown in the appendix, section D by using
method of Pohlhausen [6] along with Xfoil. The results indicate that with a roughness thickness k of 0.3
mm (which was readily available in large quantities), the computed velocity at 0.3 mm perpendicular to
the surface of the airfoil was found to be 33 m/s, therefore the roughness Reynolds number is calculated
as follows:

Rek =
ρu(y)k

µ =
1.214 ∗ 33 ∗ 0.0003

18.1e − 6
= 664.01 (60)

Rek = 664.01, which is higher than 300, and will ensure flow transition starting at 8 % chordlength.
As a result, table 5 presents the tripping device characteristics to be used on the airfoil.

Table 5: Test conditions

Tripping device thickness: 0.3mm
Tripping device position: 8 percent chordlength
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In addition, Figure 27a shows a cross sectional drawing of the airfoil with the tripping device in-
stalled at 8% chord on both the upper and lower surfaces. Figure 27b displays the actual airfoil with
the zigzag tripping tape of 0.3 mm thickness applied. And finally, Figure 27c presents the airfoil with
the tripping device installed inside the wind tunnel room.

(a) (b)

(c)

Figure 27: Figure 27a shows a schematic of the airfoil with the tripping device. Figure 27b shows the
actual airfoil with the tripping device installed. Figure 27c shows the complete experimental setup
prepared for the aeroacoustic testing.
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5.1.5 Signal to noise ratio

The signal to noise ratio SNR is defined [26] by first converting the SPL of the integrated sound powers
Pint to linear scale before dividing the SPL of the integrated sound power of the airfoil SPLint with
the background SPL integrated sound power SPL

noise
int :

SNR(f ) = 10log10( 10
SPLint(f )

10

10
SPLnoise

int
(f )

10

) , units in [dB] (61)

The wind tunnel was initially powered on under the same flow conditions used for testing the airfoil,
but without the airfoil installed. This allowed to measure the background noise generated within the
wind tunnel chamber. Afterwards, the airfoil was installed, and the total Sound Pressure Level which
includes both the background noise and the noise produced by the airfoil was measured. For both cases,
the diagonal of the cross spectral matrix was removed in order to further reduce the background noise.
Figure 28 shows the SPL of the integrated sound power in dB units, measured with and without the
airfoil installed.

Figure 28: SPL of the integrated sound power of the airfoil, including the background noise, compared
to the SPL of the integrated sound power of the background noise alone across all frequencies.

Unfortunately, as can also be seen from figure 28, higher than 2500 Hz leads to lots of background
noise and the airfoil can not be localized anymore. For this reason the experiment will be evaluated
till 2500 Hz. The analytical model which doesn’t incorporate background noise is extended up to 5000
Hz as seen from section 4.1.

5 Parameter Study, Experimental Beamforming Uncertainty Page 51



5.2 Monte Carlo Simulation Set Up

In this section, the Monte Carlo setup will be explained prior to conducting the actual simulation.
The experimental model is evaluated using the Monte Carlo uncertainty analysis explained in section
3. The simulation is performed using the same simulation parameters and setup as those used in the
analytical simulation described in section 4.1. Table 6 gives the model and signal processing settings
used for the Monte Carlo simulation.

Uncertainty confidence level used: 95%
Overlap segment: 50 percent
Signal length: 1200000 samples
Signal time: 25 seconds

Mach number: 0.1712
Room Temperature: 293.05K

Frequency used for individual perturbed variables: 2kHz
Frequency Spectrum used for multivariate perturbations: 500Hz - 2.5kHz

Sampling Frequency: 48kHz
Monte Carlo iterations: 1000 and 500 for the multivariate perturbations
Effective segments used : 500 and 1000 for the CSM perturbation

Table 6: Experimental model simulation settings

The unperturbed nominal CBF output is shown in figure 29b. The region of interest is taken as
such to avoid the near wall emitted sounds at y = −0.345 [m] and y = 0.345 [m].

(a) (b)

Figure 29: Figure 29a shows the airfoil view from the array while figure 29b shows the CBF output
result from the array for emitted sound waves of 2 kHz.
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5.3 Monte Carlo Results

5.3.1 Microphone phase shift perturbation

(a) (b)

(c) (d)

Figure 30: Quantified Uncertainty of CBF output, more specifically: Figure 30a shows microphone
phase perturbations with a standard deviation of 1 degree, and figure 30b presents a closeup view of
these perturbations. Similarly, figure 30c illustrates microphone phase perturbations with a standard
deviation of 10 degree, while figure 30d shows a closeup view of that case.
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In this section, the impact of microphone phase shifts is analyzed using a Monte Carlo simulation
with 1000 iterations. As shown in figures 30a and 30b, a phase perturbation of 1 degree makes the CBF
output to vary within 0.1 dB at the source location (x = y = 0 [m]) with 95 % confidence, where the
standard deviation is 0.02 dB. Moving away from the source to x = −0.2 [m], the standard deviation
increases to around 0.05 dB, and the CBF output varies by approximately 0.2 dB, that can be seen in
more detail with the statistical summary in table 19a.

In addition, increasing the phase perturbation to 10 degree results in a standard deviation of 0.25
dB at the source location, with the sound pressure level varying by approximately 1 dB, as shown in
figures 30c and 30d. Moving farther away from the sound origin, at x = −2 [m], the standard deviation
increases significantly to around 0.54 dB, with the sound pressure level variation reaching to 1.12 dB.
These results are detailed in the statistical summary shown in table 19b.

For both CBF Monte Carlo simulations corresponding to the 1 and 10 degree phase perturbations,
the SPL gaussian distribution of those simulations can be seen with figures 50a and 50b respectively.

5 Parameter Study, Experimental Beamforming Uncertainty Page 54



5.3.2 Microphone sensitivity perturbation

(a) (b)

(c) (d)

Figure 31: Quantified Uncertainty of CBF output, more specifically: Figure 31a shows microphone
sensitivity perturbations of 5 %, and figure 31b presents a closeup view of these perturbations. Similarly,
figure 31c illustrates microphone sensitivity perturbations of 10 %, while figure 31d shows a closeup
view of that case.
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In this section, the impact of microphone sensitivity perturbations is analyzed. As shown in figures
31a and 31b, a sensitivity perturbation of 5% of the nominal microphone sensitivity is applied indepen-
dently to each microphone. This causes the CBF output to vary within 0.32 dB at the source location
(x = y = 0 [m]), with a standard deviation of approximately 0.08 dB. Moving away from the source
to x = −0.2 [m], the standard deviation increases to about 0.14 dB, and the SPL variation reaches
approximately 0.5 dB. These results are further detailed in the statistical summary from table 20a.

Furthermore, increasing the sensitivity perturbation to 10% of the nominal microphone sensitivity,
results in a standard deviation of 0.17 dB at the source location, with the sound pressure level varying
by approximately 0.7 dB, as shown in figures 31c and 31d. Moving farther away from the sound source,
at x = −2 [m], the standard deviation increases slightly to 0.29 dB, with the variation in SPL reaching
1.3 dB. These results are detailed in the statistical summary shown in table 20b.

For both CBF Monte Carlo simulations corresponding to the 5 and 10 % sensitivity perturbations,
the SPL gaussian distribution of those simulations can be seen with figures 51a and 51b respectively.
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5.3.3 Microphone location perturbation

(a) (b)

(c) (d)

Figure 32: Quantified Uncertainty of CBF output, more specifically: Figure 32a shows microphone
location perturbations of 1mm, and figure 32b presents a closeup view of these perturbations. Similarly,
figure 32c illustrates microphone location perturbations of 10 mm, while figure 32d shows a closeup
view of that case.
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In this section, the impact of microphone coordinate perturbations is analyzed. As shown in Figures
32a and 32b, each microphone coordinate is individually perturbed by 1 mm relative to its nominal
position. This causes the CBF output to vary within 0.2 dB at the source location (x = y = 0 [m]),
with a standard deviation of approximately 0.05 dB. Its important to note that the nominal value at
the sound source is 0.25 dB above the mean of the perturbed sound pressure level and 0.15 dB above
the upper bound at 95 % confidence. This could be due to the fact that perturbing the microphones,
increases sidelobes, and therefore reducing the energy in the main lobe. Moving away from the source
to x = −0.2 [m], the standard deviation increases to about 0.1 dB, and the CBF output variation reaches
approximately 0.4 dB. These results are further detailed in the statistical summary from table 21a.

Moreover, increasing the position perturbations to 10 mm of the nominal microphone positions,
results in a standard deviation increasing significantly to around 0.5 dB at the source location, with the
sound pressure level varying by approximately 2 dB, as shown in figures 32c and 32d. Moving farther
away from the sound source, at x = −2 [m], the standard deviation increases even more to 0.87 dB,
with the variation in sound pressure level reaching 3.4 dB. The perturbation of microphone locations
is the largest impact on the CBF output observed till now. These results are detailed in the statistical
summary shown in table 21b.

For both CBF Monte Carlo simulations corresponding to the 1 and 10 mm position perturbations,
the SPL gaussian distribution of those simulations can be seen with figures 52a and 52b respectively.
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5.3.4 Array broadband distance perturbation

(a) (b)

(c) (d)

Figure 33: Quantified Uncertainty of CBF output, more specifically: Figure 33a shows the array
broadband distance perturbed with a standard deviation of 45mm (2.5%), and figure 33b presents
a closeup view of these perturbations. Similarly, figure 33c illustrates the array broadband distance
perturbed with a standard deviation of 90 mm (5%), while figure 33d shows a closeup view of that case.
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Here, the impact of array broadband distance perturbations is analyzed. As shown in Figures 33a
and 33b, each microphone’s z axis coordinate is individually perturbed with 2.5 % of the nominal array
distance (1.801m) to the trailing edge. That causes the CBF output to vary significantly with a range
of 14.62 dB at the source location (x = y = 0 [m]), with a standard deviation of around 3.73 dB. The
error bounds do not change significantly with increasing distance from the source as can be seen from
the statistical summary from table 22a.

Increasing the array broadband perturbations to 5% of the nominal array distance (1.801m) to
the trailing edge, results in a standard deviation slightly decreasing to around 3.39 dB at the source
location as shown in figures 33c and 33d. For both the 2.5 and 5 % perturbations, the uncertainty
in the CBF output remains high. From the figures corresponding to the 2.5 % perturbations, it can
be seen that the source can still be localized. However, with the increased perturbations of 5 %, the
source cant be localized anymore. This indicates that not using the exact broadband distance of the
array into the beamforming algorithm can introduce significant uncertainty into the CBF output. A
detailed statistical summary is provided in Table 22b.

For both CBF Monte Carlo simulations corresponding to the 2.5 % and 5 % perturbations, the SPL
gaussian distribution of those simulations can be seen with figures 53a and 53b respectively.
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5.3.5 Temperature perturbation

(a) (b)

(c) (d)

Figure 34: Quantified Uncertainty of CBF output, more specifically: Figure 34a shows the temperature
perturbed with a standard deviation of 1 kelvin, and figure 34b presents a closeup view of these
perturbation. Similarly, figure 34c illustrates the temperature perturbed with a standard deviation of
3 kelvin, while figure 34d shows a closeup view of that case.
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In this section, the impact of the temperature perturbation is analyzed. As shown in Figures 34a
and 34b, by perturbing the temperature within 1 kelvin, the CBF output doesn’t significantly vary. The
sound pressure level varies within a range of 0.02 dB at the source location (x = y = 0 m), with a stan-
dard deviation of approximately 0.004 dB. The error bounds don’t change significantly with increasing
the distance from the source in chordwise direction, where the sound pressure level varies within a range
of 0.08 dB. A more detailed overview of the temperature uncertainty in the CBF output within a range
of x axis chordwise selected points from the CBF output map is provided in the statistical summary,
table 23a.

Increasing the Temperature perturbations to 3 kelvin of the nominal temperature, results into the
standard deviation increasing to around 0.01 dB at the source location as shown in figures 34c and
34d. Specifically, the sound pressure level varies within a range of 0.04 dB. Going further away from
the source at x = −0.2[m], it can be seen that the sound pressure level varies within a range of 0.2
dB, with a standard deviation of around 0.05 dB. A detailed statistical summary is provided in table 23b.

For both CBF Monte Carlo simulations corresponding to the 1 and 3 kelvin perturbations, the SPL
gaussian distribution of those simulations can be seen with figures 54a and 54b respectively.
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5.3.6 Cross spectral matrix perturbation

(a) (b)

(c) (d)

Figure 35: Quantified Uncertainty of CBF output, more specifically: Figure 35a shows the CSM
perturbed with 500 effective blocks, and figure 35b presents a closeup view of these perturbations.
Similarly, figure 35c illustrates the CSM perturbed with 1000 effective blocks, while figure 35d shows a
closeup view of that case.
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Finally, the cross spectral matrix is perturbed in this section. As shown in figures 35a and 35b, by
perturbing the CSM with using 500 effective segments, the CBF output significantly varies. The sound
pressure level varies within a range of 13.42 dB at the source location (x = y = 0 m), with a standard
deviation of approximately 3.42 dB. It can be observed that the CBF output with the perturbed CSM
still localizes the sound source, as shown by the existence of a lobe in figure 35a, which also aligns
with the main lobe of the nominal value. The error bounds don’t change significantly with increasing
the distance from the source in chordwise direction, where the sound pressure level still varies within
a range of 13 dB. A more detailed overview of the CSM uncertainty in the CBF output is provided in
the statistical summary in table 24a.

Increasing the number of effective segments to 1000 for processing and perturbing the CSM, the
perturbed CBF output is seen in figures 35c and 35d. That results in a slight decrease in standard
deviation to 3.36 dB at the source location. Specifically, the sound pressure level varies within a range
of 13 dB. Further away from the source, at x = −0.2 m, the sound pressure level varies within a range
of 12.8 dB, with a standard deviation of 3.28 dB. As observed, by increasing the amount of effective
segments increases the amplitude at the source location and also reduces the uncertainty. A detailed
statistical summary is provided in table 24b.

For both CBF Monte Carlo simulations corresponding to the CSM perturbations using 500 and
1000 effective segments, the SPL gaussian distribution of those simulations can be seen with figures
55a and 55b respectively.
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5.4 Multi variable perturbation

Figure 36: CBF output of the Monte Carlo simulation with multiple perturbed inputs for sound waves
emitted at 2 kHz frequency

(a) (b)

Figure 37: Figure 37a illustrates the error bounds of the CBF output, while figure 37b illustrates a
closeup view of the same case.
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In this section, all the variables are now simultaneously perturbed throughout the frequency spectrum
using 500 Monte Carlo iterations. It was clear that perturbing the array broadband distance would
create significant uncertainty in the CBF output. Therefore, a smaller perturbation amplitude of 10
mm was used for the array broadband distance. That was done by using the microphone location
perturbation mechanism for all axis with a 10 mm standard deviation. This value comes from the fact
that a laser distance meter is used to position the array with an accuracy of within 1 mm. However,
due to the spiral shaped array, the branches which hold the microphones may deviate from the z axis
and hence 10 mm is considered as worst case. The perturbation settings that are used are the same as
those applied in the analytical line source model from section 4.3.7. All perturbations are performed
using 500 effective segments. For emitted sound waves from the TE at 2 kHz, the CBF output is
shown in figure 36. At this frequency, the uncertainty bounds around the mean of the 500 Monte Carlo
iterations are illustrated in figures 37a and 37b. Specifically, at the source location (x = y = 0 m),
the standard deviation is approximately 3.28 dB, and the sound pressure level varies by about 12.85
dB. From all perturbation mechanisms, the CSM perturbation has the largest impact on the CBF
uncertainty results. A statistical summary of the Monte Carlo simulation is provided in table 17 for
all frequencies tested during the experiment (500 to 2500 Hz). Finally, the power spectral density is
performed by integrating the sound power over a region of interest as explained in section 2.6, the sound
power is then converted to logarithmic dB scale with equation 10. The PSD is presented in figure 38.
Starting from a SPL variation of approximately 1 dB at 0.5 kHz, the variation increases with frequency,
as expected. The SPL uncertainty reaches approximately 6.8 dB at 2.5 kHz. A statistical summary of
the Monte Carlo simulation for the integrated sound power is provided in table 18 for all frequencies
tested during the experiment (500 to 2500 Hz).

Figure 38: SPL of the integrated sound power across the frequency spectrum defined from section 5.1.5,
along with its error bounds, from the Monte Carlo multivariate perturbation simulation.

5 Parameter Study, Experimental Beamforming Uncertainty Page 66



6 Discussion

From the experimental model, the high uncertainty level caused from the cross spectral matrix, which
leads to the sound power to vary within 13.2 dB, is mainly due to the fact that a low signal to noise
ratio SNR of around 7 dB was present during the measuring as seen from figure 28. This low SNR
comes from the fact that there is an important contribution of background noise. This background
noise causes the microphones to capture not only the intended signal but also unrelated noise sources
from the Trailing edge noise of the Airfoil. As a result from that, the spectral signal from all of the
microphones have bad coherence, and that leads to a significant increase in uncertainty to the CBF
output. In addition, the airfoil used in the experiment had a large camber. To minimize the lift and
to reduce the risk of additional noise mechanisms, a low angle of attack was used. However, the airfoil
still generated other noise mechanisms, and that contributed to the background noise, which interfered
with the TE sound mechanism which was the focus of this research. Also, the wind tunnel’s test cham-
ber, had exposed screws and wall voids, which may also have further increased the background noise.
Unfortunately, an alternative airfoil with lower camber was not available. As a recommendation for
future studies, an airfoil with reduced camber should be used to minimize background noise and hence
improving measurement quality. Finally, implementing a microphone calibration method could enhance
the spectral coherence between all the microphones. A speaker would be required to be placed inside
the wind tunnel with no flow being present, near the airfoil’s position. The speaker would then play
sounds at given frequencies to simulate noise. This process would help in determining the microphone
response and would allow for the creation of a correction factor before beamforming occurs to correct
the microphones recording the sound pressure.

For the analytical model because of the computational limitations, only 70000 samples were used
for creating a time pressure signal, compared to 1200000 samples recorded in the experimental case.
This leads to a relatively poor frequency resolution of 171 Hz. Consequently, when I had to analyze
the CBF for a specific frequency, the closest discrete frequency which was available from the sampled
data had to be used, and that introduced additional limitations to the model’s precision.

In conclusion, with these recommended improvements, a more sophisticated model could be devel-
oped to more accurately quantify the uncertainty intervals of the conventional beamforming algorythm
and localizing the sound sources on a flying aircraft or other flying objects.
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7 Conclusions

The Monte Carlo simulations for both the analytical model and the experimental case are designed to
capture the worst case uncertainty in the beamforming parameters. Therefore, the uncertainty bounds
of the integrated sound power which is computed across the full frequency spectrum is representing the
upper bounds of potential error. The analytical model has evaluated how specific variable uncertainties
(discussed in section 3.1) impact the fundamental beamforming design, without being influenced by
any real world factors such as background noise. In contrast, the experimental model evaluated how
those variable uncertainties impacted the CBF output differently under real conditions.

7.1 Analytical line source CBF

The uncertainty of the analytical line source beamforming model was evaluated. It was shown that
the uncertainty of the Conventional Beamforming output was relatively small for both low and high
perturbation levels of each input variable used. Each simulation took six hours around to complete
1000 iterations.

Considering only the quantified uncertainty at the trailing edge location of the mid-span (x = y = 0),
the CBF output uncertainty was found to be most impacted by microphone sensitivity perturbations.
The microphone sensitivity perturbations created a variation by ±0.16 dB around the perturbed com-
puted mean in sound pressure level with using a 95 % confidence level at 10 percent perturbation of the
nominal microphone sensitivity for sound waves emitted at 2 kHz from the TE. Those were followed
by the microphone phase perturbations, which were the second largest contribution of uncertainty to
the CBF output. Perturbing the microphone phases with a standard deviation of 10 degree caused a
sound pressure level variation by ±0.11 dB at 2kHz.

Afterwards, all variables (discussed in section 3.1) were perturbed simultaneously by considering
the largest possible perturbations for input variable used. For the multivariate perturbed CBF output
with a 95% confidence level, the uncertainty bounds were approximately ±0.19 dB around the mean
at 2 kHz. Now considering the quantified uncertainty over an area around the trailing edge (ROI), the
integrated sound power variation around the mean was evaluating over the frequency range of 500 to
5000 Hz. At 2 khz the sound varied by ±0.23 dB and as the frequency increased further, at 5 kHz the
SPL variation of the integrated sound power reached ±1.38 dB around the mean.
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7.2 Experimental CBF

This section concludes the uncertainty analysis of the experimental model. Each simulation took 11
hours around to complete 1000 iterations. The uncertainty analysis was performed at a 95 % confi-
dence level. The most dominant contributions to the simulation uncertainty are coming from the cross
spectral matrix and array broadband distance perturbations.

For sound waves emitted at 2 kHz from the TE, considering only the quantified uncertainty at the
trailing edge location of the mid-span (x = y = 0), for the perturbed CSM, the input variable leads
the sound pressure level to have a variation of ±6.69 dB around the perturbed computed mean. By
increasing the amount of effective segments, only slightly reduces this uncertainty, with the variation
decreasing to ±6.58 dB. In addition, perturbing the array broadband distance by 45 mm uncertainty
leads to a sound pressure level variation of ±7.31 dB. Increasing the perturbation to 90 mm doesn’t
increase the variation in SPL but completely delocalizes the source. Besides from those two dominant
perturbation mechanisms, the microphone locations being perturbed is the third largest contributor
to the uncertainty in the beamforming output. At 2kHz, a worst case perturbation of 10 mm to all
microphones introduces a sound pressure level variation of ±1 dB.

After all variables were perturbed simultaneously, the sound pressure level varied within ±1.69 dB
at 1 kHz. Increasing the frequency to 2.5 kHz enhanced the sound pressure level variation to ±5.99 dB.
This study indicates that with increasing frequency from the sound source leads to greater uncertainty
in the sound power estimation. Now considering the quantified uncertainty over an area around the
trailing edge (ROI), integrating the sound power over the region of interest, the SPL variation of the
integrated sound power at 1 kHz is ±1.46 dB. Increasing the frequency to 2.5 kHz increases the uncer-
tainty of the CBF output to ±3.40 dB around the trailing edge of the airfoil.
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Appendices

A Wave equation derivation from balance equations

Starting with the mass equation:

∂ρ

∂t
+
∂(ρvi)
∂xi

= 0 (62)

Linearising by replacing the density ρ with ρ0 + ρ
′
(where ρ0 is a constant and ρ

′
is varying) and

assuming that ρ
′
<< ρ0 for all acoustic waves:

∂ρ

∂t
+
∂(ρvi)
∂xi

=
∂ρ

′

∂t
+
∂(ρ0vi)
∂xi

+
∂(ρ′vi)
∂xi

≈
∂ρ

′

∂t
+ ρ0

∂(vi)
∂xi

≈ 0 (63)

The mass equation is next differentiated with respect to space becoming:

∂

∂t
(∂ρ

′

∂t
) + ∂

∂t
(ρ0

∂vi
∂xi

) ≈ 0 (64)

≈
∂
2
ρ
′

∂t2
+ ρ0

∂
2
vi

∂xi∂t
≈ 0 (65)

For small linear pressure perturbations in a stationary fluid: p
′
= c

2
0ρ

′
:

1

c20

∂
2
p
′

∂t2
≈ −ρ0

∂
2
vi

∂xi∂t
(66)

Now with the momentum equation:

∂(ρvi)
∂t

+
∂(ρvivj + pij)

∂xj
= 0 (67)

Applying Linearisation again:

∂(ρvi)
∂t

+
∂(ρvivj + pij)

∂xj
≈ (68)

≈ ρ0
∂vi
∂t

+
∂(ρ0 + ρ

′)(vivj)
∂xj

+
∂(p0 + p

′)
∂xi

(69)

≈ ρ0
∂vi
∂t

+ ρ0
∂(vivj)
∂xj

+
∂ρ

′(vivj)
∂xj

+
∂(p0 + p

′)
∂xi

(70)

since ρ
′
is small:

≈ ρ0
∂vi
∂t

+ ρ0
∂(vivj)
∂xj

+
∂(p0 + p

′)
∂xi

≈ 0 (71)
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In a still standing fluid the mean pressure gradient is zero: p0 = 0, hence:

ρ0
∂vi
∂t

+ ρ0
∂(vivj)
∂xj

+
∂p

′

∂xi
≈ 0 (72)

Also the velocity perturbation of the wave is assumed to be small compared to the speed of sound. To
this account:

ρ0
∂vi
∂t

+
∂p

′

∂xi
≈ 0 (73)

The momentum equation is then differentiated with respect to time:

∂

∂xi
(ρ0

∂vi
∂t

) + ∂

∂xi
( ∂p

′

∂xi
) ≈ 0 (74)

≈ ρ0
∂
2
vi

∂xi∂t
+
∂
2
p
′

∂x2
i

≈ 0 (75)

Combining the mass and momentum equations, equations 66 and 75 respectively:

1

c20

∂
2
p
′

∂t2
−
∂
2
p
′

∂x2
i

= 0 or
1

c20

∂
2
p
′

∂t2
− ∇

2
p
′
= 0 (76)

The wave equation shown above is also called the Alembert wave equation and is a pressure varying
equation dependent on space and time. This equation, describes the propagation of small pressure
disturbances in a homogeneous free field. By adding a sound source q to the equation, and multiplying
it to the Dirac Delta function δ(x⃗ − x⃗0) accounts for both generation and propagation of sound from a
source. The non-homogeneous wave equation then becomes:

1

c20

∂
2
p
′

∂t2
− ∇

2
p
′
= q(t)δ(x − x0) (77)

k is called the wave number and is symbolized as: k = ω/c0 = 2πfj/c0. The solution of the non
homogeneous free field equation is given as [8]:

p(x,x0, t) =
q(x0, t −

∣∣x−x0∣∣
c0

)
4π∣∣x − x0∣∣

(78)

x0 is the source location and x is the observer location in the far field [8]. As can be seen from
the equation, 4π∣∣x−x0∣∣ is the spherical spreading, and the larger the distance between the source x0

and the observer x, the larger the spherical spreading factor is. Hence, the propagated pressure to the
observer decreases as the sound wave travels by the spherical propagation factor [19].
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B Frequency domain beamforming, sound power derivation

Zo(f ) =
N

∑
m=1

vm,opm(f )e−iωδtm,o (79)

It can be rewritten as [8]:

Zo(f ) = g
†
m,o(f )pm(f ) (80)

Where gm,o(f ) is the steering vector which is dependent on both the microphone with index nota-
tion m, grid search location with index notation o and on the frequency which the steering vector is
operated at. The steering vector is:

gm,o(f ) = vm,oe
−2πifδtm,o (81)

The symbol
†
represents the complex conjugate of the complex value of gm,o. Therefore the complex

conjugate of gm,o, is:

g
†
m,o(f ) = vm,oe

i2πfδtm,o (82)

So far we have the output of the Conventional Beamformer Zo(f ). To get the total power Lo(f ) of
that output:

Lo(f ) = ∣Zo(f )∣2 (83)

The total energy of a signal is split across positive and negative frequencies. However since a one-
sided spectrum is used (see section 2.3 ) that accounts for only positive values. Therefore to account
only for the positive values, the power output is divided by 2:

Lo(f ) =
1

2
∣Zo(f )∣2 (84)

=
1

2
Zo(f )Z∗

o (f ) (85)

=
1

2
(g†

m,opm)(g†
m,opm)∗ (86)

= g
†
m,o(

1

2
pmp

†
m)gm,o (87)
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C Shear layer correction using Amiet theory

A challenge arises in the experimental setup that was not present in the analytical model, the airfoil
is positioned within a potential flow interacting with the shear flow. As a result, the data obtained
from the phased array does not account for shear layer effects, which can cause the apparent source
location to be shifted downstream along the wind tunnel flow. To correct for this, Amiet’s shear layer
correction will be applied.

The deflection of the ray path representing the direction of sound propagation from the trailing
edge depends on the thickness of the shear layer. In this section, a planar shear layer correction model
developed by Amiet [1] will be discussed. This correction adjusts both the angle and the effective
propagation distance of the sound wave, and consequently, it also modifies the amplitude recorded
by the microphones. In the figure below (figure 39a), the shear layer effect is illustrated, showing a
deflected acoustic ray, shown as being split into two segments of lengths r1 and r2 respectively. In
the following section, a numerical solution will be presented for determining these ray lengths and the
corresponding travel time δtamiet

for the sound wave along those paths. In figure 39b, the ray paths
from each of the 33 microphones from the NASA 2 (Revision 2) experimental data benchmark from [24]
are computed from the numerical method explained in this section. These rays travel through the shear
layer, and as expected, the sound source appears shifted downstream in the flow when conventional
beamforming is applied.

(a) (b)

Figure 39: Figure 39a shows a schematic of the shear layer effect on a deflected acoustic ray, while figure
39b shows ray paths from all 33 microphones of NASA revision 2 benchmark to the sound source, the
flow direction is from left to right in the chordwise direction of the airfoil
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The microphone positions are denoted by xm, ym and zm with microphone index m, while the shear
layer intersection point where ray 1 and ray 2 meet is represented by the coordinates xi, yi, zi with ray
path index i.

The solution to Amiet’s theory, as presented by Amiet [1], is obtained by solving the two equations.

F0(xi, yi) =
xi√

x2
i
+ β2(y2

i
+ z2

i
)
− β

2 (xm − xi)√
(xm − xi)2 + (ym − yi)2 + (zm − zi)2

−Mx = 0 (88)

F1(xi, yi) =
yi√

x2
i
+ β2(y2

i
+ z2

i
)
−

(ym − yi)√
(xm − xi)2 + (ym − yi)2 + (zm − zi)2

= 0 (89)

In addition for the speed of sounds of c0 and c1 corresponding to ray 2 and ray 1 respectively:

c
2
0 = c

2
0x + c

2
0y + c

2
0z (90)

c
2
1 = c

2
1x + c

2
1y + c

2
1z (91)

The speed of sound in the air region through which ray 2 travels is known. However, in the air
region where ray 1 travels, the speed of sound c1 may differ and must be determined accordingly due
to the shear layer being present. Where looking at the geometric relations from figure 39a, C. Bahr
gives those relations [7] :

c0x = c1x − U∞ = c1
xi√

x2
i
+ y2

i
+ z2

i

−M∞c0 (92)

c0y = c1y = c1
yi√

x2
i
+ y2

i
+ z2

i

(93)

c0z = c1z = c1
zi√

x2
i
+ y2

i
+ z2

i

(94)

Substituting those equations above (92- 94), c1, c0 and xi,yi and zi relations can be found:

c1 =
xi√

x2
i
+ y2

i
+ z2

i

M∞c0 +

√
√√√√√⎷( xi√

x2
i
+ y2

i
+ z2

i

M∞c0)
2

+ c20 − (M∞c0)2 (95)

First the search grid and microphone location is defined along with a given speed of sound c0, Mach
number M∞ and shear layer location zi. Afterwards, F1 and F0 are then evaluated numerically for xi
and yi. Once xi and yi are determined, they are then filled in the equation 95 and c1 is then found.
By defining the shear layer intersection coordinates (xi and yi), the ray distances r1 and r2 can be
calculated using the Euclidean distance formula. The speed of sound c1 is then used to compute the
ray total propagation time δtamiet

and distance Ra which those include the shear layer delay.
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δtamiet
=
r1
c1

+
r2
c0

(96)

and
Ra = r1 + r2 (97)

xi and yi need to be found, hence the Newton method will be applied which uses the first order
Taylor series expansion to find the non linear solutions: xi and yi. Those solutions are contained in the
functions: F1 and F0. As a first step their partial derivative is taken with respect to xi and yi. The
derivatives of F0 and F1 are then assembled to a Jacobian matrix:

J (xi, yi) = [∂F0

∂xi
(xi, yi),

∂F0

∂yi
(xi, yi),

∂F1

∂xi
(xi, yi),

∂F1

∂yi
(yi, yi)] (98)

and the F matrix is:

F (xi, yi) = [F0(xi, yi), F1(xi, yi)] (99)

To define F, and consequently xi and yi, at each iteration k, F (xi, yi) is approximated linearly using
the first order Taylor expansion around the current guess xk.

First order Taylor Series:

f (xk+1) ≈ f (xk) + f (xk)′(xk+1 − xk) = 0 (100)

In our case xk is a guessed vector containing two values, one for xi and one for yi. For this reason,
the guessed vector is symbolized as: xk. Applying this to the Amiet’s equation case:

F (xk +∆x) ≈ F (xk) + J (xk) ⋅ (xk+1 − xk) = 0 (101)

J (xk) ⋅ (xk+1 − xk) = −F (xk) (102)

From the form above (equation 102), the equation is solved for xk+1 as seen with equation 103.

→ xk+1 = xk − J
−1(xk) ⋅ F (xk) (103)

Equation 103 is iterated using the index k, and the iteration continues until the norm of F (xk) be-
comes sufficiently small so that F (xk) ≈ 0 as initially stated. Only then the method will have converged
and therefore only when the method converges: xk+1 = [xi, yi].
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D Xfoil Turbulent Boundary layer computation

Pohlhausen [6] approximates the dimensionless velocity profile f (η) by the following fourth order poly-
nomial:

f (η) = U

Ue
(η) = 2η − 2η

3
+ η

4
+ Λ(η

6
−
η
2

2
+
η
3

2
−
η
3

6
) (104)

f (η) should be within 0 and 1, and Λ should be within -12 and 12. In addition, η =
y(t)
δ(x) , y(t) is the

normal distance from the surface of the airfoil and therefore η cant be greater than 1 as that would
indicate a location outside the boundary layer.

The displacement thickness δ
∗
and momentum thickness θ are computed by XFOIL for both the

upper and lower surfaces of the airfoil, as shown in Table 7. These values can also be calculated using
the von Kármán momentum integral equations (Equations 105 and 106), which are simplified forms
that include the dimensionless velocity profile function f (η) [10].

δ
∗
= δ( 3

10
−

Λ

120
) (105)

θ = δ( 37
315

−
Λ

945
+

Λ
2

9072
) (106)

Combining those two equations for H =
δ
∗

θ
, Λ which is the Pohlhausen parameter can be determined

[9]:

H(Λ) = δ
∗

θ
=

3
10

− Λ
120

37
315

− Λ
945

− Λ2

9072

(107)

Therefore, a value for Λ which satisfies the boundary layer shape factor H obtained from XFOIL at 8
% chord (x = 0.08) can be determined. With δ

∗
and θ known from Xfoil (see table 7 ), and Λ calculated

using equation 107 (see Λ value in table 8 ), the boundary layer thickness δ at 8 % chord position can
then be found by solving either of the von Karman momentum integral equations (Equations 105 or
106) for δ. δ is used to define η across the normal distance from the surface of the airfoil. δ value is
listed in table 8 for both the upper and lower airfoil sections. The non dimensional velocity f (η) is then
defined for both the upper and lower airfoil sections, and is then dimensionalized by using equation:

u(y) = (0.99Ue)f (
y(t)
δ(x) ) , x = 0.08 for 8% chordlength (108)

Where Ue is the flow velocity at the edge of the boundary layer and when the pressure drops, the
flow can accelerate faster than the free stream velocity as seen also with figure 40b.
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Table 7: Boundary layer values at 8 % chord computed by XFOIL

Upper airfoil section H value : 2.3616

Upper airfoil section δ
∗
value : 3.001e-04

Upper airfoil section η value : 0.808
Upper airfoil section Ue value : 67.4847 [m/s]
Upper airfoil section θ value : 1.2594e-04

Lower airfoil section H value : 2.3023

Lower airfoil section δ
∗
value : 2.8512e-04

Lower airfoil section η value : 0.845
Lower airfoil section Ue value : 73.6705 [m/s]
Lower airfoil section θ value : 1.2251e-04

Table 8: Pohlhaussen computed values at 8 % chord

Upper airfoil section Λ value : 9.61
Upper airfoil section δ value : 0.001364

Lower airfoil section Λ value : 7.0610
Lower airfoil section δ value : 0.001182

(a) (b)

Figure 40: Figure 40a shows the contour plot of the DU97-W-300 Airfoil with normalized chordlength.
Figure 40b shows the velocity distribution along the boundary layer throughout the surface of the airfoil
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E Microphone individual coordinates

Figure 41: Individual microphone coordinates numbered and plotted

E Microphone individual coordinates Page 81



F Monte Carlo simulations, Gaussian distributions

F.1 Analytical case simulations

Figure 42: Gaussian distribution of SPL from the multivariate perturbation simulation

Frequency [kHz] 0.5 1 2 3 4 5

std [dB]: 0.08 0.08 0.10 0.10 0.12 0.13
95 % higher bound [dB]: 53.79 54.03 51.37 49.16 47.28 45.56
95 % lower bound [dB]: 53.46 53.69 50.98 48.75 46.82 45.07

Mean [dB]: 53.62 53.86 51.18 48.96 47.05 45.32
Median [dB]: 53.63 53.86 51.17 48.96 47.05 45.31
Nominal [dB]: 53.80 53.99 51.31 49.1 47.2 45.46

Table 9: Statistical summary of the multivariate perturbation simulation across the frequency spectrum
at the source location (x = y = 0 [m]).

Frequency [kHz] 0.5 1 2 3 4 5

std [dB]: 0.08 0.09 0.11 0.68 0.70 0.70
95 % higher bound [dB]: 55.00 58.83 63.44 63.10 53.87 52.36
95 % lower bound [dB]: 54.67 58.47 62.98 60.43 51.11 49.60

Mean [dB]: 54.84 58.65 63.21 61.77 52.49 50.98
Median [dB]: 54.85 58.65 63.22 61.75 52.45 50.99
Nominal [dB]: 55.02 58.81 63.482 60.96 52.33 51.62

Table 10: Statistical summary of the SPL of the integrated sound power under multivariate perturba-
tions across the frequency spectrum.
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(a) (b)

Figure 43: Figure 43a shows the Gaussian distribution of SPL which results from the phase perturbation
simulation with a standard deviation of 1 degree, while figure 43b shows the result for a standard
deviation of 10 degree.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.02 0.01 0.005

95% higher bound [dB]: 45.07 49.93 50.93
95% lower bound [dB]: 44.98 49.89 50.91

Mean [dB]: 45.03 49.91 50.92
Median [dB]: 45.03 49.91 50.92
Nominal [dB]: 45.03 49.91 50.92

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.23 0.09 0.06

95% higher bound [dB]: 45.34 49.96 50.90
95% lower bound [dB]: 44.43 49.59 50.68

Mean [dB]: 44.88 49.77 50.79
Median [dB]: 44.88 49.78 50.79
Nominal [dB]: 45.03 49.91 50.92

(b)

Table 11: Table 11a presents a statistical summary from the microphone phase perturbation simulation
with a standard deviation of 1 degree. Similarly, Table 11b provides a statistical summary from the
microphone phase perturbation simulation with a standard deviation of 10 degree.
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(a) (b)

Figure 44: Figure 44a shows the Gaussian distribution of SPL which results from the microphone
sensitivity perturbation simulation with a 5 % standard deviation, while figure 44b shows the result for
a standard deviation of 10 %.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.06 0.04 0.04

95% higher bound [dB]: 45.14 49.99 51.01
95% lower bound [dB]: 44.91 49.83 50.84

Mean [dB]: 45.03 49.91 50.92
Median [dB]: 45.03 49.91 50.92
Nominal [dB]: 45.03 49.91 50.92

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.12 0.08 0.08

95% higher bound [dB]: 45.25 50.07 51.09
95% lower bound [dB]: 44.79 49.74 50.76

Mean [dB]: 45.02 49.91 50.92
Median [dB]: 45.02 49.90 50.92
Nominal [dB]: 45.03 49.91 50.92

(b)

Table 12: Table 12a presents a statistical summary from the microphone sensitivity perturbation sim-
ulation with a standard deviation of 5%. Similarly, Table 12b provides a statistical summary from the
microphone sensitivity perturbation simulation with a standard deviation of 10%.
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(a) (b)

Figure 45: Figure 45a shows the Gaussian distribution of SPL which results from the microphone
location perturbation simulation with a standard deviation of 1 mm, while figure 45b shows the result
for a standard deviation of 10 mm.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.006 0.002 0.002

95% higher bound [dB]: 45.04 49.91 50.93
95% lower bound [dB]: 45.02 49.91 50.92

Mean [dB]: 45.03 49.91 50.92
Median [dB]: 45.03 49.91 50.92
Nominal [dB]: 45.03 49.91 50.92

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.06 0.02 0.02

95% higher bound [dB]: 45.15 49.95 50.96
95% lower bound [dB]: 45.90 49.86 50.88

Mean [dB]: 45.02 49.91 50.92
Median [dB]: 45.02 49.90 50.92
Nominal [dB]: 45.03 49.91 50.92

(b)

Table 13: Table 13a presents a statistical summary from the microphone location perturbation simula-
tion with a standard deviation of 1mm. Similarly, Table 13b provides a statistical summary from the
microphone location perturbation simulation with a standard deviation of 10 mm.
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(a) (b)

Figure 46: Figure 46a shows the Gaussian distribution of SPL which results from the array distance
perturbation simulation with a standard deviation of 2.5%, while figure 46b shows the result for a
standard deviation of 5%.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.08 0.03 0.02

95% higher bound [dB]: 45.16 49.96 50.96
95% lower bound [dB]: 44.84 49.84 50.87

Mean [dB]: 44.99 49.90 50.92
Median [dB]: 45.00 49.90 50.92
Nominal [dB]: 45.03 49.91 50.92

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.16 0.06 0.05

95% higher bound [dB]: 45.23 49.98 50.99
95% lower bound [dB]: 44.59 49.74 50.79

Mean [dB]: 44.91 49.86 50.89
Median [dB]: 44.91 49.86 50.89
Nominal [dB]: 45.03 49.91 50.92

(b)

Table 14: Table 14a presents a statistical summary from the array broadband distance perturbation
simulation with a standard deviation of 45mm. Similarly, Table 14b provides a statistical summary
from the array broadband distance perturbation simulation with a standard deviation of 90mm.
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(a) (b)

Figure 47: Figure 47a shows the Gaussian distribution of SPL which results from the temperature
perturbation simulation with a standard deviation of 1 kelvin, while figure 47b shows the result for a
standard deviation of 3 kelvin.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.04 0.01 0.01

95% higher bound [dB]: 45.10 49.94 50.94
95% lower bound [dB]: 44.95 49.88 50.90

Mean [dB]: 45.03 49.91 50.92
Median [dB]: 45.03 49.91 50.92
Nominal [dB]: 45.03 49.91 50.92

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.11 0.04 0.03

95% higher bound [dB]: 45.25 49.99 50.98
95% lower bound [dB]: 44.80 49.82 50.86

Mean [dB]: 45.02 49.91 50.92
Median [dB]: 45.03 49.91 50.92
Nominal [dB]: 45.03 49.91 50.92

(b)

Table 15: Table 15a presents a statistical summary from the temperature perturbation simulation
with a standard deviation of 1 kelvin. Similarly, table 15b provides a statistical summary from the
temperature perturbation simulation with a standard deviation of 3 kelvin.
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(a) (b)

Figure 48: Figure 48a shows the Gaussian distribution of SPL which results from the CSM perturbation
with 500 effective segments, while figure 48b shows the result for 1000 effective segments.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 1.59e-5 5.10e-6 4.00e-5

95% higher bound [dB]: 45.03 49.91 50.92
95% lower bound [dB]: 45.03 49.91 50.92

Mean [dB]: 45.03 49.91 50.92
Median [dB]: 45.03 49.91 50.92
Nominal [dB]: 45.03 49.91 50.92

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 1.561e-5 5.061e-5 4.047e-5

95% higher bound [dB]: 45.03 49.91 50.92
95% lower bound [dB]: 45.03 49.91 50.92

Mean [dB]: 45.03 49.91 50.92
Median [dB]: 45.03 49.91 50.92
Nominal [dB]: 45.03 49.91 50.92

(b)

Table 16: Table 16a presents a statistical summary from the CSM perturbation simulation with 500
effective segments. Similarly, Table 16b provides a statistical summary from the CSM perturbation
simulation with 1000 effective segments.
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F.2 Experimental case simulations

Figure 49: Gaussian distribution of SPL from the multivariate perturbation simulation

Frequency [kHz] 0.5 1 1.5 2 2.5
std [dB]: 0.25 0.86 2.12 3.28 3.05

95 % higher bound [dB]: 72.46 59.89 54.71 49.46 46.91
95 % lower bound [dB]: 71.45 56.50 46.38 36.59 34.93

Mean [dB]: 71.95 58.20 50.55 43.03 40.92
Median [dB]: 71.96 58.26 50.98 43.62 41.26
Nominal [dB]: 72.00 58.65 51.30 43.85 38.18

Table 17: Statistical summary of the multivariate perturbation simulation across the frequency spec-
trum at the source location (x = y = 0 [m]).

Frequency [kHz] 0.5 1 1.5 2 2.5
std [dB]: 0.25 0.74 1.47 2.19 1.74

95 % higher bound [dB]: 73.27 61.10 55.65 50.10 48.37
95 % lower bound [dB]: 72.28 58.18 49.88 41.53 41.57

Mean [dB]: 72.78 59.64 52.76 45.82 44.97
Median [dB]: 72.78 59.69 53.00 45.88 45.02
Nominal [dB]: 72.87 60.11 53.86 45.84 41.58

Table 18: Statistical summary of the SPL of the integrated sound power under multivariate perturba-
tions across the frequency spectrum.
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(a) (b)

Figure 50: Figure 50a shows the Gaussian distribution of SPL which results from the phase perturbation
simulation with a standard deviation of 1 degree, while figure 50b shows the result for a standard
deviation of 10 degree.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.05 0.03 0.02

95% higher bound [dB]: 40.19 43.17 43.75
95% lower bound [dB]: 39.99 43.06 43.66

Mean [dB]: 40.09 43.11 43.71
Median [dB]: 40.09 43.11 43.71
Nominal [dB]: 40.09 43.11 43.71

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.54 0.29 0.25

95% higher bound [dB]: 41.01 43.55 44.08
95% lower bound [dB]: 38.88 42.42 43.08

Mean [dB]: 39.94 42.98 43.58
Median [dB]: 39.97 42.99 43.59
Nominal [dB]: 40.09 43.11 43.71

(b)

Table 19: Table 19a presents a statistical summary from the microphone phase perturbation simulation
with a standard deviation of 1 degree. Similarly, Table 19b provides a statistical summary from the
microphone phase perturbation simulation with a standard deviation of 10 degree.
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(a) (b)

Figure 51: Figure 51a shows the Gaussian distribution of SPL which results from the microphone
sensitivity perturbation simulation with a 5 % standard deviation, while figure 51b shows the result for
a standard deviation of 10 %.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.14 0.09 0.08

95% higher bound [dB]: 40.37 43.30 43.88
95% lower bound [dB]: 39.81 42.93 43.54

Mean [dB]: 40.09 43.11 43.71
Median [dB]: 40.09 43.11 43.70
Nominal [dB]: 40.09 43.11 43.71

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.29 0.19 0.17

95% higher bound [dB]: 40.64 43.48 44.04
95% lower bound [dB]: 39.52 42.74 43.36

Mean [dB]: 40.08 43.11 43.70
Median [dB]: 40.07 43.10 43.70
Nominal [dB]: 40.091 43.11 43.71

(b)

Table 20: Table 20a presents a statistical summary from the microphone sensitivity perturbation sim-
ulation with a standard deviation of 5%. Similarly, Table 20b provides a statistical summary from the
microphone sensitivity perturbation simulation with a standard deviation of 10%.
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(a) (b)

Figure 52: Figure 52a shows the Gaussian distribution of SPL which results from the microphone
location perturbation simulation with a standard deviation of 1 mm, while figure 52b shows the result
for a standard deviation of 10 mm.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.10 0.05 0.05

95% higher bound [dB]: 40.29 43.05 43.56
95% lower bound [dB]: 39.88 42.83 43.36

Mean [dB]: 40.08 42.94 43.46
Median [dB]: 40.09 42.94 43.46
Nominal [dB]: 40.09 43.11 43.71

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.87 0.55 0.51

95% higher bound [dB]: 42.18 43.81 44.12
95% lower bound [dB]: 38.77 41.67 42.13

Mean [dB]: 40.48 42.74 43.13
Median [dB]: 40.56 42.78 43.17
Nominal [dB]: 40.09 43.11 43.71

(b)

Table 21: Table 21a presents a statistical summary from the microphone location perturbation simula-
tion with a standard deviation of 1mm. Similarly, Table 21b provides a statistical summary from the
microphone location perturbation simulation with a standard deviation of 10 mm.
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(a) (b)

Figure 53: Figure 53a shows the Gaussian distribution of SPL which results from the array distance
perturbation simulation with a standard deviation of 2.5%, while figure 53b shows the result for a
standard deviation of 5%.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 3.50 3.67 3.73

95% higher bound [dB]: 40.65 41.49 41.81
95% lower bound [dB]: 26.91 27.08 27.18

Mean [dB]: 33.78 34.28 34.50
Median [dB]: 34.11 34.75 35.05
Nominal [dB]: 40.09 43.11 43.71

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 3.40 3.43 3.39

95% higher bound [dB]: 40.21 40.03 40.06
95% lower bound [dB]: 26.87 26.59 26.75

Mean [dB]: 33.54 33.31 33.41
Median [dB]: 34.13 33.80 33.98
Nominal [dB]: 40.09 43.11 43.71

(b)

Table 22: Table 22a presents a statistical summary from the array broadband distance perturbation
simulation with a standard deviation of 45mm. Similarly, Table 22b provides a statistical summary
from the array broadband distance perturbation simulation with a standard deviation of 90mm.
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(a) (b)

Figure 54: Figure 54a shows the Gaussian distribution of SPL which results from the temperature
perturbation simulation with a standard deviation of 1 kelvin, while figure 54b shows the result for a
standard deviation of 3 kelvin.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.02 0.006 0.004

95% higher bound [dB]: 40.12 43.12 43.71
95% lower bound [dB]: 40.06 43.10 43.70

Mean [dB]: 40.09 43.11 43.71
Median [dB]: 40.09 43.11 43.71
Nominal [dB]: 40.09 43.11 43.71

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 0.05 0.02 0.01

95% higher bound [dB]: 40.20 43.15 43.73
95% lower bound [dB]: 39.99 43.08 43.68

Mean [dB]: 40.09 43.11 43.71
Median [dB]: 40.09 43.11 43.70
Nominal [dB]: 40.09 43.11 43.70

(b)

Table 23: Table 23a presents a statistical summary from the temperature perturbation simulation
with a standard deviation of 1 kelvin. Similarly, Table 23b provides a statistical summary from the
temperature perturbation simulation with a standard deviation of 3 kelvin.
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(a) (b)

Figure 55: Figure 55a shows the Gaussian distribution of SPL which results from the CSM perturbation
with 500 effective segments, while figure 55b shows the result for 1000 effective segments.

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 3.30 3.35 3.42

95% higher bound [dB]: 49.39 50.24 50.50
95% lower bound [dB]: 36.46 37.12 37.11

Mean [dB]: 42.92 43.68 43.80
Median [dB]: 43.29 44.23 44.37
Nominal [dB]: 40.09 43.11 43.71

(a)

Metric [m] x = −0.2 x = −0.1 x = 0
std [dB]: 3.28 3.41 3.36

95% higher bound [dB]: 52.47 53.29 53.47
95% lower bound [dB]: 39.61 39.92 40.30

Mean [dB]: 46.04 46.61 46.89
Median [dB]: 46.42 47.13 47.39
Nominal [dB]: 40.09 43.11 43.71

(b)

Table 24: Table 24a presents a statistical summary from the CSM perturbation simulation with 500
effective segments. Similarly, Table 24b provides a statistical summary from the CSM perturbation
simulation with 1000 effective segments.
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