
MSc Computer Science
Master Thesis

Evaluating Ordering Strategies
For State Elimination

Pelle Cornelis Abraham de Greeuw

Supervisor: dr.ing. E.M. Hahn
External Assessor: dr.ir. A. Chiumento
Assessor: dr. A. Hartmanns

June 11, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

State elimination is an algorithm which reduces the state space of a Markov chain to a
minimum size, without affecting the probabilities, when calculating unbounded reachability
properties. The resource consumption in terms of memory and processing is greatly affected
by the order in which states are eliminated while the result stays the same. The goal is to
identify an order which performs better than other orders before the elimination process
starts. This thesis lists several orders for elimination which are present in existing research
or implementations. These orders are evaluated against one another on several Markov
Chains from other existing research using two metrics. Using the data gathered from this
evaluation several novel elimination orders are presented and also evaluated. One of these
novel orders,

−−−−−−−→
Heuristic2 , has the best result on one metric for eleven out of fourteen models

and second best for the remaining three. This result leads to the conclusion that there is
one single best elimination order for all models which have been evaluated and likely any
other model as well.

Keywords: State Elimination, Markov Chain, Elimination Order, Heuristic, Unbounded
Reachability

Acknowledgements

My final project was not without problems or bumps in the road. With two failed attempts
this is the third subject which finally stuck around. I would not have been able to continue
on that journey without the continued support of my supervisor. Many thanks for the rest
of the committee taking the time to assess this work and providing feedback during the
process.

I am very grateful for my friends and family for believing in me throughout the last chapter
of my master even when I myself did not see the finish line clearly. Special thanks go out
to Henk, my cat, who tried to contribute many characters to this thesis and provided
emotional support at all times of day. Mauw!

I am deeply indebted to my partner, Janiek, who has pushed me to work on this master
project, provided emotional support throughout and lots of feedback on the final thesis.
Without her, I would not be where I am now.

Contents

1 Introduction 3

2 Background 4
2.1 Markov chains . 4

2.1.1 Stochastic process . 4
2.1.2 Markov property . 4
2.1.3 Representations . 5

2.2 State elimination . 6
2.2.1 Model checking . 6
2.2.2 RE/FA state elimination . 6
2.2.3 Markov chain state elimination . 7

2.3 Related work . 9
2.3.1 Performance evaluations . 9
2.3.2 Vertical decomposition . 9
2.3.3 State weight . 10
2.3.4 Counting cycles . 10

3 Research Questions 11

4 Methodology 13
4.1 Elimination orders . 13
4.2 Heuristics . 14

4.2.1 Heuristic orders . 15
4.3 Metrics . 16
4.4 Data structure . 17
4.5 Tools . 17
4.6 Implementation . 18

4.6.1 Existing codebase . 18
4.6.2 Compilation . 19
4.6.3 New code . 19
4.6.4 Modifications . 22

4.7 Preprocessing . 23
4.7.1 Bisimulation . 23
4.7.2 Unreachable states . 24

4.8 Dataset . 24
4.8.1 PRISM . 24
4.8.2 QComp . 25
4.8.3 Other research . 25

1

4.9 Utility scripts . 26
4.9.1 Data importer . 26
4.9.2 Runner . 26
4.9.3 DOTConverter . 26

4.10 Visualization . 27
4.10.1 Dataset . 27
4.10.2 Dashboard . 27

5 Results 29
5.1 Existing and cycle elimination orders . 29

5.1.1 Observations . 30
5.1.2 Conclusions . 30

5.2 Degree orders . 31
5.2.1 Observations . 31
5.2.2 Conclusion . 35

5.3 Neighbour degree . 35
5.3.1 Observations . 35

5.4 Other heuristics . 38
5.5 Computation time . 39

6 Conclusion 41
6.1 Research Questions . 41
6.2 Future work . 42

6.2.1 More models . 42
6.2.2 Unsolved pattern . 43
6.2.3 Efficiency . 43
6.2.4 Updated calculation metric . 43

2

Chapter 1

Introduction

Designing protocols and writing software are processes which are prone to errors or bugs,
which lead to real-world effects ranging from non-existent to life-threatening. If the game
you are playing on your smartphone suddenly exits with an error message you are merely
inconvenienced. On the other hand, if the road barriers of a railroad crossing do not close
and a train is still allowed to enter the crossing, a disaster may follow. The operator of a
railroad crossing needs a measure of certainty that such a situation will never occur with
the control software they are using. A messaging protocol also benefits from certainty
measures, providing certainty a message arrives at the destination can increase user trust.
Model checking is a technique which can provide such measures.

Model checking uses a graph model of software, or any system, to reason about any prop-
erties it should have. Textual representations of such properties are: if a train is on the
crossing, are the barriers closed; and what is the probability a message eventually arrives
at the destination. The probability the last property calculates is called unbounded reach-
ability, the probability that eventually something will be true. This probability can be
calculated efficiently using the state elimination algorithm, which eliminates every state
which is not initial and not final. After the elimination process, the requested probability
can be read off the remaining model.

The algorithm is not always efficient, the order in which the states are eliminated is a great
influence. This efficiency affects the computation time and the memory consumption of
the algorithm, which can prevent larger models from being checked on smaller hardware
if a worse order is selected. The goal of this thesis is to choose an elimination order
which maximizes the efficiency and minimizes the computational and memory resource
consumption.

The structure of this thesis is as follows. Chapter 2 introduces model checking, the state
elimination algorithm and discusses existing research on the topic. This information is
used in Chapter 3 to formally define the problem and research questions. Chapter 4
specifies the existing and novel elimination orders; implementation details; models; and
tools used. Chapter 5 discusses the results from the evaluations and explains how the
novel elimination orders are created. The thesis concludes in Chapter 6 with answers to
the research questions, remarks and future work.

3

Chapter 2

Background

This chapter presents the background knowledge necessary for this thesis. Section 2.1
explains Markov Chains, Section 2.2 model checking and the state elimination algorithm,
and Section 2.3 the related work.

2.1 Markov chains

This section will explain the concept of Markov Chains from the following definition:

A Markov chain is a stochastic process for which the Markov property holds.

2.1.1 Stochastic process

A stochastic (or random) process [1] is a family of random variables, the state space, which
is either indexed discretely or continuous by a parameter set. This parameter set can be
interpreted as time passing in individual small increments or time flowing continuously
respectively. Stochastic processes are often used as mathematical models of systems and
phenomena that vary randomly.

When both the state space S and parameter space T of a stochastic process are discrete,
the process is classified as a discrete parameter chain. Intuitively this means that for every
time increment, n ∈ T, the process can advance to either another state or the same state.
Through the time parameter set the process can be viewed as a chain of states.

2.1.2 Markov property

A process has the Markov Property or is said to be Markov if and only if the next state of
a process is only determined by the current state for all time increments. Mathematically
this is expressed as follows: the process (Zn)n∈N which is taking values in state space S ∈ Z
has the Markov Property iff [2]

P(Zn+1 = j|Zn = in, Zn−1 = in−1, ..., Z0 = io) = P(Zn+1 = j|Zn = in) (2.1)

A stochastic process which is indexed by a discrete parameter set and holds the Markov
Property is called a Discrete-Time Markov Chain (DTMC). This can be shortened to
Markov Chain (MC). A MC is time-homogeneous if the parameter space has no effect

4

0

1

2

3

4

5

6

d1

d2

d3

d4

d5

d6

Figure 2.1: Die roll simulated by tossing a coin: upper branch corresponds to
head, lower branch to tail. dx indicates the die rolled number x.

on the transition probabilities. In other words, if time does not affect the transition
probabilities. The time-homogeneous property is expressed as follows:

P(Zs+t|Zs = i) = P(Zt|Z0 = i) (2.2)

The process has to be well-defined: for every state, the sum of probabilities of the outgoing
transitions equals 1. This is defined as:∑

j∈S
P(Z1 = j|Z0 = i), i ∈ S (2.3)

Since the process is also time-homogeneous this holds for any time index.

2.1.3 Representations

A Markov process can be modelled as a graph of edges and vertices. Every vertex represents
a state of the process and every edge a transition to another state with an accompanying
probability. Such a finite system where the process is in at most one state at a time is
also called a Finite-State Automaton (FSA), often shortened to Finite Automaton (FA).
Figure 2.1 shows a FA representation of a probabilistic program due to Knuth and Yao [3]
which models a die using coin flips. The FA starts in state 0 and whenever heads is tossed,
the process takes the upper branch. When tails is tossed, it takes the lower branch. This
continues until one of the final states, labels starting with d, has been reached. As Daws [4]
shows, this FA generates a uniform distribution where each die roll has a probability of 1

6 .

Only when a process has a finite state space, such as the die example, can the transition
graph be made, otherwise it would also be of infinite size. The same holds for the transition
probability matrix. This is a matrix which consists of all the probabilities of transitions
between states, the edges in the graph. This is a Pij = S × S matrix where each row
number i is the originating state and each column number j the target state. The value
stored at that point, Pij is the probability of that transition.

Pij = P(Zn+1 = j|Zn = i) (2.4)

5

0 1 2 3 4 5 6 d1 d2 d3 d4 d5 d6
0 0.5 0.5
1 0.5 0.5
2 0.5 0.5
3 0.5 0.5
4 0.5 0.5
5 0.5 0.5
6 0.5 0.5

Table 2.1: Transition probability matrix of a fair coin modeling a die. Row is the
originating state, column the target state.

Table 2.1 shows the transition probability matrix for the die example. Every empty space
indicates a probability of zero. The final states are absorbing, meaning they have a prob-
ability of one going to themselves. These are omitted from the matrix to improve its
readability.

2.2 State elimination

This section explains how a system modeled as a Markov Chain can be used by model
checking. It introduces the property of interest for this thesis and the algorithm used to
calculate the probabilities of this property.

2.2.1 Model checking

Model checking is a verification technique that explores all possible system states in a
brute-force manner [5]. A model checker can verify that a system truly satisfies a certain
property using the underlying Markov chains. Properties which can be verified this way
are, for example: is the generated result of a program OK; does the system eventually
gracefully terminate; and can an error occur in the system within 1 hour?

These properties can be stated using Probabilistic Computation Tree Logic (PCTL) [6]
which extends Computation Tree Logic (CTL) with time and probabilities. For the die
model P =? [F (d1|d2)] specifies the probability P that the model eventually (or finally,
F) reaches state d1 or d2.

2.2.2 RE/FA state elimination

The property of interest for this thesis is unbounded reachability: the probability that the
system will eventually end up in a given set of states. For example, if a program will enter
into an error state or with what probability a number of participants will eventually come
to an agreement. The exact path taken to a state is therefore not of interest but only the
probability that it will eventually be visited.

States which are neither the start of the chain nor are a subject in the requested property
are only interesting because they influence the probabilities of the final result. If these
probabilities are preserved these states can be removed from the chain. Daws [4] presents
a way to use regular expressions (RE) as the transition probabilities. The resulting FA

6

can then be converted to a single RE using the state elimination method described by
Hopcroft [7].

For simplicity the same notation is used for getting the character of an edge in a RE
automaton as with the probability of an edge in an FA. Pij = C(Zn+1 = j|Zn = i) where
C labels the edge from state i to state j with a RE.

Let sk ∈ S be a state which is to be eliminated. This state has predecessor states A =
{ai ∈ S|Pik ̸= ∅} and successor states B = {bj ∈ S|Pkj ̸= ∅}. For each combination of
predecessor and successor states, the respective edges to state s and the optional self-loop
of s are combined. The result of this combination is added to the edge going from the
predecessor state directly to the successor state. If such an edge is not present it will be
created. The RE on this edge is now Pij = Pij ∪ Pik(Pkk)

∗Pkj , where Pkk is the self loop
from s to s which can occur any number of times. Finally, state sk and all its incoming
and outgoing transitions are removed from the graph.

The RE result of the elimination process is read off the edges once all applicable states have
been eliminated. This resulting RE is a function of the starting probabilities of the model.
The elements in the RE are replaced with their original probabilities and the resulting
expression is then solved to obtain the requested probabilities.

Elimination order

Going back to the die example of Figure 2.1, suppose we want to know the probability of
throwing a 1 or a 2. That corresponds to the unbounded reachability of d1 and d2, the
probability of eventually reaching those states. Once states 2 and d3 are visited, d1 and
d2 can never be reached. Therefore, these states, and every state further down the path,
can be merged into one single error state. For the purpose of this example the error state
has been left out. The remaining part of the DTMC is turned into a FA with letters as
edge labels, Figure 2.2a shows this starting state. The elimination algorithm cannot be
used on an entire FA but rather on a single state of a FA. Therefore, we have to choose
which states to eliminate and in what order. In this situation we are interested in states
d1 and d2 and start in state 0, every other state can be eliminated. Figure 2.2 shows two
possible orders for eliminating the states, the final resulting RE is both edges combined
with the or operator.

While the language accepted by the resulting REs is the same, they differ in length:
a(bd)*be + a(bd)*cf of length 10 compared to ab(db)*e + acf+ab(db)*bcf of length
15. This size difference increases with the size of the automaton as shown by Maneth [8],
which makes the elimination order a candidate for optimization.

2.2.3 Markov chain state elimination

Another way to perform state elimination on a MC was proposed by Hahn et al. [9].
When performing the elimination algorithm the transition probabilities are solved directly.
This results in smaller edge labels and completely prevents the resulting probability from
exploding in size. The steps for elimination are very similar to state elimination in a FA
as described in Section 2.2.2. The only difference is the formula used for combining the
edges. This formula is:

Pij = Pij + Pik
1

1− Pkk
Pkj

7

0 1

3

4

d1

d2

a
b

c

d
e

f

(a) Starting FA.

0 1

4

d1

d2

a
be

c

bd

f

(b) State 3 eliminated.

0

3

4

d1

d2

ab

ac bc

db

e

f

(c) State 1 eliminated.

0 1

d1

d2

a
be

cf

bd

(d) State 4 eliminated.

0

3 d1

d2

ab

acf bcf

db

e

(e) State 4 eliminated.

0

d1

d2

a(bd)*be

a(bd)*cf

(f) State 1 eliminated.

0

d1

d2

ab(db)*e

acf+ab(db)*bcf

(g) State 3 eliminated.

Figure 2.2: 2 different orders of state elimination. Both are starting in (A) then
order 1 on the left eliminates 3 → 4 → 1 and order 2 on the right eliminates 1 →
4 → 3.

8

0

1

2

3 5

4

6

(a) Starting FA - 6 edges.

0

1

2

5

4

6

(b) State 3 eliminated - 9 edges.

Figure 2.3: Example of state elimination generating more edges than it removes
when eliminating a state.

where now Pij is once again the probability of the transition occurring from state si to sj .

Because these formulas can be mathematically solved or simplified during the elimination
process this algorithm does not suffer as much from a different order as the basic FA
algorithm. The number of calculations which need to be performed still has a difference:
six calculations for the left order in Figure 2.2 compared to nine for the right order.

The memory usage of this algorithm can still blow up with the number of states because
the elimination algorithm can generate new edges. Figure 2.3 shows an example of how
eliminating a state can introduce more edges than it eliminates.

2.3 Related work

Most research related to the state elimination algorithm is in the field of RE generation
from FAs. Since the algorithm is the same except for the edge labels I expect it to be
applicable for the model checking use case as well.

2.3.1 Performance evaluations

Moreira et al. [10] compares the performance of several elimination orders based on the
resulting alphabetical size of the RE. There is no best elimination order for every model
tested, each order has the best performance for some of the models.

Han [11] introduces different orders and also performs a performance comparison. Con-
cluding that the performance impact introduced on the elimination algorithm is negated
by the reduced size of the resulting RE.

Gruber and Holzer [12] present a literature study on the conversion of RE to FA and back.
They list several developments on the state elimination algorithm including on the order
of elimination. Ordering states on their degree presented by McNaughton et al. [13] and
ordering on how many new edges are generated by the elimination of a state by Lombardy
et al. [14]. They also report comparable results between elimination orders.

2.3.2 Vertical decomposition

Bridge states are defined by Han [15] to be states where, if the chain passes through this
state, it cannot visit any of the previous states except the bridge state itself. Effectively

9

they make it possible to split the automaton at this state, where the bridge state is the
final state of the first half and the starting state of the second half.

These states are then used to chop the automaton in (several) sub-automata which are
then separately calculated, and summarily concatenated for the final resulting RE. These
states are rare according to Moreira [10], however, random automata have been used for
these experiments which might not reflect real world automata.

2.3.3 State weight

Another option is to calculate the weight of each state and use that to eliminate either
the heaviest or lightest state first. There are different definitions of this weight heuristic.
Delgado and Morais [16] are performing state elimination on RE’s and define the weight
of a state as the weight added to the automaton when the state would be eliminated. The
weight of the automaton is defined as the sum of the sizes of all regular expressions labeling
the edges of the automaton.

When using probabilities, the weight of the automaton with this definition would only
decrease when eliminating a state or when we are performing state elimination on a PMC
with a small amount of parameters.

2.3.4 Counting cycles

Moreira et al. [10] propose 2 variations of cycle counting orderings: statically count the
amount of cycles a state is present in the automaton; and dynamically count this for each
elimination step. The latter being much more computationally intensive than the first;
O(n2) versus O(n3) respectively. The states are ordered from the least cycles participated
in to most.

10

Chapter 3

Research Questions

This chapter defines and explains the research questions for this thesis.

Section 2.2.3 explained the state elimination algorithm and the edge explosion problem
which can occur during this elimination process. Different orderings result in different
performance gains. Without a clear insight into why this is the case for particular DTMCs
or automatons, an ordering cannot be chosen beforehand with certainty of a gain in per-
formance. This thesis aims to provide this insight and use it to positively impact the
performance of the state elimination algorithm.

This thesis focuses on the practical implementation of orders in existing research into an
existing codebase and using that implementation to gather results. A smaller theoretical
framework is presented for the reasoning behind the elimination orders.

RQ1

How to choose an elimination order which has a positive impact on perfor-
mance?

The performance consists of two parts, compute and memory usage. They are closely
related, more transitions means more is needed to store them and more computations are
needed to eliminate them. This choice is made with a model as input, just before the
elimination process starts. This question is separated into sub-questions below.

RQ1.1

Which state elimination orders exist?

To evaluate elimination orders against one another they have to be identified first.

RQ1.2

What is the difference in performance between elimination orders?

This question relates to the resources used by just the elimination algorithm itself. The
computational cost of determining what that order is, is excluded.

11

RQ1.3

Which relations exist between characteristics of MCs and the performance of
an elimination order?

The hypothesis is that MCs exhibit certain characteristics in terms of how states are
interconnected, which can be correlated to a performance difference in elimination orders.

RQ1.4

When does the performance gained by choosing a better elimination order
overtake the computational cost of determining that order?

The entire elimination process includes the determination of the elimination order. De-
tecting certain characteristics might prove computationally expensive to the point that it
overtakes the performance gained by providing a better order.

12

Chapter 4

Methodology

The general approach for this thesis is as follows:

• Evaluate the ordering strategies against a compiled list of models.

• Create orders which have a better result for all models or, find characteristics in a
model which can indicate a certain order should be used for that model.

• Implement these orders and characteristics such that the program selects an order
and evaluate this choice.

This chapter first lays out all elimination orders and how they work in Section 4.1, Sec-
tion 4.2 does this for the heuristic orders. Section 4.3 explains the metrics which quantity
the elimination orders and Section 4.4 explains how they are stored. Section 4.5 lists the
tools used. Section 4.6 discusses the implementation of both elimination orders and met-
rics. Section 4.7 explains the preprocessing steps in place. Section 4.8 lists the models
used for evaluation the elimination orders. Section 4.9 lists utility scripts created during
the thesis. Section 4.10 explains how the metrics are visualized for the evaluation.

4.1 Elimination orders

This section defines the elimination orders which have been evaluated. Why these have
been chosen or created is discussed in Chapter 5. For clarity elimination orders are noted
as
−−−−−−−−−−−−−→
EliminationOrder from now on.

Forward
−−−−−→
Forward collects states starting from the initial set of states. The model is traversed
breadth first and all states visited are collected in that order. Going forward from the
initial state.

Forward reversed
−−−−−−−−−−−−→
ForwardReversed takes the order from

−−−−−→
Forward and reverses it.

13

Backward
−−−−−−→
Backward collects states similarly to

−−−−−→
Forward but is starting from the target set of states.

Going backward from the target states to the initial state. Not all states can reach the
target set of states, these are missed by this collection method. Any missing states which
should be eliminated are added afterwards, ordered by state number. Ordering by state
number is effectively random.

Backward reversed
−−−−−−−−−−−−−→
BackwardReversed takes the order from

−−−−−−→
Backward and reverses it.

Degree

The degree of a state is defined as the sum of edges incident to the state.
−−−−→
Degree orders

states from least to greatest degree.

Degree mult

Similar to
−−−−→
Degree but instead of summing the in- and out-degree, they are multiplied. If

a self loop is present, one is subtracted from the larger of the in- and out-degree. See
Algorithm 1.

−−−−−−−−→
DegreeMult orders states from least to greatest multiplicative degree.

Algorithm 1 Calculation of the multiplicative degree of a state.
function degreeMult(indegree, outdegree, selfloop)

if selfloop then
if indegree ≥ outdegree then

indegree ← indegree - 1
else

outdegree ← outdegree - 1
end if

end if
return indegree × outdegree

end function

Simple cycle count
−−−−−−−−−−−−−→
SimpleCycleCount counts all unique cycles a state is participating in and orders the states
from the least cycles to the most cycles.

Cycle size 3 count
−−−−−−−−−−−−→
CycleSize3Count counts all unique cycles which have exactly 3 states participating. It
orders the states from least to most participations in such cycles.

4.2 Heuristics

Heuristics are popularly known as rules of thumb, intuitive judgements or simply common
sense, as defined by Pearl [17]. A heuristic function is a function that ranks alternatives
at each step based on available information to decide which next step to take.

14

Heuristic elimination orders make use of any number of heuristic functions in any order.
Each function gives a ranking to the given states. The best ranking states, the ones which
should be eliminated next, are output as a set. This set is given to the next heuristic if
present. Eventually a single state should remain, which is to be eliminated next. Heuristics
are shown as

←−−−−−−
Heuristic for clarity.

Degree mult
←−−−−−−−−
DegreeMult is a heuristic version of

−−−−−−−−→
DegreeMult , it returns the lowest degree states.

Neighbour degree change

Take all neighbours of a state and calculate the multiplicative degree of all of them. Then
eliminate the state and recalculate the degrees of all previously selected neighbours. For
each neighbour calculate the change in this degree and sum all changes.

←−−−−−−−−−−−−−
NeighbourDegreeC

returns the states which have the lowest change. See Algorithm 2.

Algorithm 2 Calculation of change in multiplicative degree of the neighbours of a
state.

function NeighbourDegreeChange(state, model)
before ← NEIGHBOURDEGREEMULT(state, model)
model.eliminate(state)
after ← NEIGHBOURDEGREEMULT(state, model)
model.revertElimination(state)
return after - before

end function

Minimal neighbour degree change
←−−−−−−−−−−−−−−−−
MinNeighbourDegreeC takes the same initial approach as

←−−−−−−−−−−−−−
NeighbourDegreeC by calculating

the degree change for every neighbour. Then it takes the minimal degree of all neighbours
for every state and returns the state which have the lowest minimal value.

Indegree
←−−−−−
Indegree returns the states with the lowest number of incoming edges, also called the
indegree.

4.2.1 Heuristic orders

These are numbered heuristic elimination orders which consist of a number of ordered
heuristics.

Heuristic 1
←−−−−−−−−
DegreeMult →

←−−−−−−−−−−−−−
NeighbourDegreeC

Heuristic 2
←−−−−−−−−
DegreeMult →

←−−−−−−−−−−−−−
NeighbourDegreeC →

←−−−−−
Indegree

15

Heuristic 3
←−−−−−−−−
DegreeMult →

←−−−−−−−−−−−−−
NeighbourDegreeC →

←−−−−−−−−−−−−−−−−
MinNeighbourDegreeC

Heuristic 4
←−−−−−−−−
DegreeMult →

←−−−−−−−−−−−−−−−−
MinNeighbourDegreeC →

←−−−−−−−−−−−−−
NeighbourDegreeC

4.3 Metrics

Number of edges

The performance of a model needs to be quantized in order to evaluate it. The goal of this
thesis is to reduce memory and compute usage which is directly influenced by the size of
the model, both int the number of states and the number of edges. During the elimination
process the number of states with edges will only ever decrease. However, the number
of edges can fluctuate greatly. This metric can be plotted on a graph, where the x-axis
is the number of states eliminated and the y-axis the number of edges at the moment of
elimination. Problematic orders can be spotted with ease in such a graph in the form of
a large spike. It is not very suitable for comparison between elimination orders because
a single large spike can have the same performance impact as many smaller ones. This
difference is hard to spot from a graph as a human.

Calculations

A better metric for performance is the number of calculations made by the elimination
algorithm. A calculation is defined as a combination of edges. In the elimination algorithm,
every incoming edge is combined with every outgoing edge, optionally with the self-loop.
When a state is eliminated the number of calculations is therefore, indegree×outdegree

if no self loop is present and min((indegree+1)×outdegree, indegree×(outdegree+1))
if there is a self-loop. If a self-loop is present it is multiplied with either every incoming
edge or every outgoing edge. A small optimization is to multiply it with the smaller set of
the two. This also counts as a calculation, therefore, one is added to either the indegree
or outdegree.

Every edge which is created also must be eliminated eventually, therefore, the calculations
metric will shoot up similarly to the graph of the number of edges. Single numbers can
be easily compared to one another and the best option can be determined as well. More
edges need more memory to be stored, and every created edge also needs to be eliminated
eventually. A higher calculation metric therefore indicates more memory and processor
usage. The calculations metric will be used to quantify the performance of the elimination
orders in this thesis.

Time

Calculating the order to be eliminated is a non-trivial task and can take significant com-
putation time itself. Preferably a metric such as the calculations is used for quantifying
the time orders take to calculate as well. Because of the number of different orders and
complexity of calculations they perform this process would take too much time during
this thesis. The calculation of the order is therefore simply timed using this metric thus
depends on the hardware on which it is being executed.

16

Figure 4.1: Database structure.

4.4 Data structure

A SQL database has been created to store the collected metrics, the metrics can then be
queried manually or by another application for visualization and evaluation. The structure
of this SQL database is show in figure 4.1 and an explanation of every field in table 4.1.
For every elimination run (afterwards just run) every step is recorded: which state has
been eliminated; how many calculations have been done; and how many edges are left after
the state has been eliminated. These steps are linked to a run row which is in turn linked
to a model and a property row. This allows the user to query the metrics for a certain
model, elimination order or run. The elimination order does not have its own table since
there is no extra data besides the name of the order, compared to the model which also
stores the entire model definition.

4.5 Tools

The tools used in this thesis are open source if available to allow the reader to reproduce any
results without having to acquire proprietary software. Many smaller tools and programs
have been used throughout the thesis, but the most important ones are listed below.

Eclipse1

IDE with support for many languages. Used for the implementation and debugging of the
algorithms presented.

1https://www.eclipse.org/downloads/

17

https://www.eclipse.org/downloads/

step
eliminated_state Number of the

eliminated state
eliminated_index Order index of the

eliminated state
calculations Number of

calculations
performed

transitions Number of
transitions after
elimination

run
start Start of the run
end End of the run

completed Run has completed
calculations Total number of

calculations
elimination_order Elimination order

used

run_group
start Start of the

benchmark
end End of the

benchmark
machine Identifier of the

machine the
benchmark has
been run on

model
name Name of the model
model Model input text

file
property

name Name of the
property

description Property
description

Table 4.1: Explanation of data structure variables.

MariaDB2

SQL database server. Used to store the metrics from the elimination runs.

Apache Superset3

Data exploration and visualization platform. Used to visualize and explore the generated
metrics.

4.6 Implementation

This section explains all details related to the implementation of the elimination orders
and metrics into the PRISM codebase. First the location of the code is determined in
Section 4.6.1 and how this code can be executed in Section 4.6.2. Section 4.6.3 discusses
all new code which was written and Section 4.6.4 discusses all modifications to include this
new code.

4.6.1 Existing codebase

PRISM has a few different engines which can be used for model checking, each having
its own strengths and weaknesses. The exact engine is the only engine which has the
state elimination algorithm already implemented and is therefore the engine which will be
used. This engine stores the model explicitly in a graph format which makes it intuitive
to manipulate it for the elimination process and inspect it for characteristics.

2https://mariadb.org/
3https://superset.apache.org/

18

https://mariadb.org/
https://superset.apache.org/

With multiple engines comes quite an extensive codebase and not all parts originate from
the PRISM project but have been incorporated into it at a later time. This is also the case
with the exact engine which originates from PARAM [18]. Most of the engine has been
placed in the param package which greatly decreases the required knowledge for adapting
the code.

4.6.2 Compilation

The source code of PRISM is written in Java,but there are some dependencies on libraries
which are outside the Java ecosystem. It makes use of a modified version of the CU
Decision Diagram (CUDD) package4, which is written in C and compiled using Make5.
Make is not readily available for Windows and most installation instructions for PRISM
also pertain to a Linux machine. Development on a Windows machine is achieved through
WSL (Windows Subsystem Linux) where Eclipse is installed and run from to compile, run
and debug PRISM inside the WSL container.

Compiling the Java source code does not result in an instantly runnable jar-file. The
program relies on several environment variables which contain the location of external li-
braries. The project source root folder contains a Makefile which takes care of compiling
both Java and C libraries. It creates a runnable shell file which sets all the applicable envi-
ronment variables to run the jar-file and then calls the Java executable. By inspecting this
file, the necessary environment variables are identified and copied to the run configurations
in Eclipse. This run configuration is used as a template to create run configurations for
each model. The run configurations not only allow for running PRISM from eclipse but
also enables the use of the debugger, essential for debugging during implementation.

4.6.3 New code

Implementing the orders and extracting metrics has introduced several new classes into
the PRISM codebase. This subsection describes all created classes and their functionality.
Packages of the classes will be aligned to the right of the page.

EliminationOrderIterator param.elimination

The elimination orders have been abstracted to a single class EliminationOrderIterator.
Other parts of the program do not need to know what the order is doing or when, they just
need to know if there are more states to eliminate and what state to eliminate next. These
2 requirements are very much akin to the Iterator and therefore this class implements
that interface. An elimination order is defined by having 2 functions, hasNext(), which
returns true if there are more states to eliminate and next(), which returns the next state
to eliminate.

The next function is supposed to be called only after the elimination of the previous state.
This allows the implemented order to decide if it calculates the next state on instantiation
of the class all at once, or incrementally after each elimination.

EliminationOrder param.elimination

It is possible to get all inheritors of a class and as such compute all available elimination
orders at runtime, but this process reduces the readability of the code greatly. Therefore,

4https://github.com/ivmai/cudd
5https://www.gnu.org/software/make/

19

https://github.com/ivmai/cudd
https://www.gnu.org/software/make/

an enum has been created which holds all available orders. When a new elimination order
is created by implementing the EliminationOrderIterator it should get a unique value
in this enum as well.

Trivial elimination orders param.elimination

All elimination orders implement the EliminationOrderIterator either directly, or indi-
rectly through another class.

−−−−−→
Forward ,

−−−−−−−−−−−−→
ForwardReversed ,

−−−−−−→
Backward and

−−−−−−−−−−−−−→
BackwardReversed

are re-implemented from exising code in the StateEliminator. These orders are calcu-
lated before the elimination process starts, the order is stored in a List. A list already
provides the ability to create an Iterator on it, next() and hasNext() on the order call
the respective functions on this iterator.

−−−−−−→
Reversed versions make use of the builtin reverse

function of Java to reverse the list and the created iterator.
−−−−→
Degree and

−−−−−−−−→
DegreeMult are trivially implemented but calculate the next state to be elim-

inated only when next() is called. The MutablePMC provides access to collections of
incoming and outgoing edges for every state. The sizes of these collections are summed for−−−−→
Degree and multiplied for

−−−−−−−−→
DegreeMult , taking into account the extra logic in case of a self

loop.

Cycle elimination orders param.elimination

The next two orders, order states based on how many cycles they participate in. This
requires the detection of cycles, which is not an easy task. Johnsons’ [19] algorithm is used
to find all simple cycles in a graph. The algorithm takes Strongly Connected Components
(SCCs) as input and requires the states to be ordered. The only requirement on this order
of states is that it does not change while running the algorithm, therefore the existing state
numbers can be used.

SCC computation has already been implemented in PRISM, albeit in a different engine.
The MutablePMC has to be transformed into a DTMCSimple from the explicit engine, for
which the algorithm has been implemented. To keep things simple all probabilities have
been set to 1. These probabilities do not affect the result of the algorithm, smaller functions
on the edges theoretically increase the memory usage the least. The resulting SCCSs are
then fed to Johnsons’ algorithm, which outputs every simple cycle in the graph.

The cycles output by Johnsons algorithm are used to keep a count for every state how
many cycles it is participating in. The

−−−−−−−−−−−−−→
SimpleCycleCount order counts every cycle whereas

the
−−−−−−−−−−−−→
CycleSize3Count order counts only cycles of size 3. Any number of cycles can be

implemented but 3 was chosen to experiment with.

Heuristic orders param.heuristic

A Heuristic is an abstract class implemented by all heuristics which provides functionality
to return the set of states with the lowest weight calculated from a given set of states. The
individual heuristics only need to implement the getWeight() function which returns the
weight of a given state.

Degree Mult param.heuristic
←−−−−−−−−
DegreeMult is a simple heuristic which bases its implementation on

−−−−−−−−→
DegreeMult .

20

Neighbour degree change heuristic param.heuristic

When eliminating a state s, the edges are combined and the new probabilities on those
edges are computed. This process is only reversible with great effort so a straightforward
implement of Algorithm 2 is not possible. The probabilities on the edges are not used in
that algorithm, only if the edge exists. If a neighbour is in s’ outgoing state set, the new
indegree of that neighbour can be calculated by taking the union of its incoming state set
with s’ incoming state set. Similarly, if the neighbour is in the incoming state set of s, the
outgoing state set of the neighbour is unioned with the outgoing state set of s. s Is then
removed from those sets and now the multiplicative degree can be calculated. Algorithm 3
shows the pseudocode implementation.

Algorithm 3 Implemented neighbour degree change.
function GETNEIGHBOURDEGREECHANGE(targetstate)

change ← 0
for neighbour ∈ (state.incomingstates

⋃
state.outgoingstates) do

before ← DEGREEMULT(
neighbour.indegree,neighbour.outdegree. neighbour.hasselfloop)

incoming ← neighbour.incomingstates \ {state}
outgoing ← neighbour.outgoingstates \ {state}
if neighbour ∈ state.incomingstates then

outgoing ← (outgoing
⋃

state.outgoingstates)
end if
if neighbour ∈ state.outgoingstates then

incoming ← (incoming
⋃

state.incomingstates)
end if
after ← DEGREEMULT(

incoming.size,outgoing.size, neighbour ∈ incoming)
change ← change + (after - before)

end for
return change

end function

Minimal Neighbour Degree Change Heuristic param.heuristic

This heuristic copies the code from the previous Neighbour Degree Change Heuristic and
adapts it slightly to get the minimal change from the neighbours instead of the sum.

Minimal Indegree Heuristic param.heuristic

Simply returns the indegree of a state as weight.

DOTExport param.benchmark

Helper class for exporting a MutablePMC to a dot representation.

Elimination-Step and -Run param.benchmark

EliminationStep and EliminationRun are Java records of the similarly named elimination
step and run in Figure 4.1. The EliminationRun class contains all steps for a single

21

elimination run, which it exports upon completion of the run. This export is done because
memory usage is one of the key problems identified in this thesis, therefore, all metrics are
kept in memory only for as long necessary.

EliminationRunGroup param.benchmark

The state elimination process is split between a number of different classes. To limit
changes to these classes as much as possible, the EliminationRunGroup class has been
created to statically keep track of elimination runs. After all runs have been completed it
exports the data to a JSON file and compresses this file along with the step file of each
run to a single archive.

4.6.4 Modifications

Besides new code some classes have to be adapted as well. This subsection describes the
important changes made to the existing codebase of PRISM.

PRISMSettings prism

This class holds the setting definitions for PRISM, including the available elimination
orders. The orders setting has been adapted to be generated from the EliminationOrder
enum. This removes the additional step of adapting the settings when adding a new
elimination order.

ValueComputer param

This class is called by PRISM to verify properties on a model. It is the entry-point into
the param package and takes care of delegating calls to the appropriate other classes for
relevant properties and models. It constructs the MutablePMC from the input model, which
is used as input for the elimination process.

The ValueComputer also performs preprocessing on the input model to which one more
step is added, removal of unreachable states, described in section 4.7.2.

The elimination order was originally given to the StateEliminator which contained all
order logic. Since that was abstracted away to EliminationOrderItator, the elimina-
tion orders must now be constructed in this class. The iterator is then passed on to the
StateEliminator.

The elimination order is defined by the EliminationOrder enum throughout the calls
until the program arrives at the elimination step. If the elimination order chosen is not
Benchmark, the ValueComputer will instantiate a StateEliminator with the constructed
EliminationOrderIterator and MutablePMC. After the state elimination has been per-
formed the results are retrieved and mapped back onto the original model. Multiple pre-
processing steps can change the number of states in the model, which can change the
number of a state which is used to keep track of the states. A mapping is kept from the
original model all the way to the model where the state elimination is performed on. If
the elimination order is Benchmark the elimination process is repeated for all elimination
orders defined in the EliminationOrder enum.

Logging calls to the EliminationRunGroup class are introduced at the appropriate points:
starting, stopping and exporting of single runs.

22

StateEliminator param

The StateEliminator contains the elimination algorithm and helper functions related to
the state elimination algorithm. It takes a pre-processed model and elimination order as
input for instantiation. The eliminate() function is called to perform the algorithm and
retrieve the resulting probabilities.

This class calculated the elimination order and stored the result in an array which was con-
sumed during elimination. This has all been removed in favor of the EliminationOrderItator.
The elimination algorithm is slightly adapted to call the next() and hasNext() functions.

Model exports with the DOTExport class have been placed at strategic points to allow
inspection of the model at any point in the elimination process. These are disabled by
default because large models can generate a lot of data by exporting the model at every
step.

The PRISM implementation of the state elimination algorithm has support for rewards
and time. This not only required extra calculations for each step but added more steps
to the algorithm. Instead of removing all transitions when a state is eliminated, only
the incoming edges and the self-loop are removed, the outgoing edges remain and add a
significant number of calculations to the process. In essence PRISM is calculating the
reachability probability for every state at once, this is necessary to get consistent results
for properties referencing rewards.

In the case that the property which is verified does not require rewards, these extra steps
are unnecessary but still performed. A copy of the elimination algorithm has been created
which removes all outgoing edges. The version of the algorithm is selected based on if
the model uses time, rewards or both. Removing all edges introduces a new problem
related to the elimination of the initial state. Since the original algorithm does not delete
outgoing edges, eliminating this state is not a problem. The adapted algorithm does
remove these and thus leaves the initial state without outgoing transitions. This causes
the ValueComputer to return incorrect results. All orders have been adapted to exclude the
initial and target states, effectively preventing these states from being eliminated, which
solves the problem of incorrect results.

4.7 Preprocessing

Before reaching the state elimination algorithm there are some preprocessing steps in place,
some which happen for each engine and some which are specific to the state elimination
situation. One step has been purposefully turned off sometimes and another has been
added. They are listed in the following subsections.

4.7.1 Bisimulation

The Lumper is a class that performs a preprocessing step which, depending on settings,
performs weak or strong bisimulation on the model. This bisimulation can group states
together and usually results in a smaller model without changing the probabilities for the
requested properties. Weak or strong simulation is mainly decided by the type of property
used, but can be overridden through settings and also completely disabled.

This preprocessing step has mixed results depending on the input model. In some cases it
can completely reduce the model to only 2 states while in other cases it does not remove

23

any states at all. This is taken into account when selecting models, a 2 state MC does not
have a lot to order and a 2 million state MC cannot be calculated in a reasonable amount
of time.

4.7.2 Unreachable states

PRISM performs a deadlock analysis which removes some unreachable and deadlocked
states from each model. When performing state elimination there is an initial state, a
set of target states and all states which are neither. For the latter category of states it
is possible that they do not connect to the target and initial states. Therefore, they are
completely unreachable and are removed from the model.

Another definition of unreachable is in relation to the target states. This is the same
problem which presented itself with the

−−−−−−→
Backward orders. States can exist which are

reachable from the initial state, but once visited the model can never reach a target state.
A preprocessing step has been introduced right before the bisimulation where all of these
unreachable states are replaced by a single unreachable state. The states cannot simply
be removed because that would leave other states with a total outgoing probability of less
than one which violates the Markov property.

4.8 Dataset

Comparison of the orders is done by running all of them on a model. Running on only
one model could result in the orders begin overly focussed on the patterns in that model.
Therefore, more models are needed for the evaluation. There are a few sources identified
which could yield models for running. The size of the model is of importance as the exact
engine cannot handle the largest ones. Experimental runs suggest the limit is somewhere
around the 500,000 states. Every model will be tested if it finishes before being added to
the dataset. This section lists all models used in this thesis.

4.8.1 PRISM

PRISM itself has a number of examples for a number of supported model types, among
them DTMC’s. These models are sometimes used to explain a part of the PRISM program
or are part of case studies done with PRISM.

BRP [20] Bounded Retransmission Protocol, a protocol which sends a file in a number
of chunks but allows only a bounded number of retransmissions of each chunk.

Herman Herman’s self stabilizing algorithm. A self-stabilizing protocol for a network
of processes is a protocol which, when started from some possibly illegal start
configuration, returns to a legal/stable configuration without any outside in-
tervention within some finite number of steps. The original protocol is from
Herman [21] and the model reference from Kwiatkowska et al. [22].

Leader Sync [23] Given a synchronous ring of N processors design a protocol such that they will
be able to elect a leader (a uniquely designated processor) by sending messages
around the ring.

Dice [3] Model of a die using only fair coins.

24

Besides the examples there is also a benchmark suite6, this suite holds models which have
a larger amount of states in them when compiled. These are used to benchmark PRISM
and therefore can also be used to benchmark the elimination orders. Because of the engines
size limitations not all available models can be used. The usable models are:

EGL A randomized protocol for signing contracts. The protocol is from Even et al. [24]
and the model reference from Norman and Shmatikov [25].

Crowds A system for protecting users’ anonymity by blending them into a crowd. The system
is from Reiter and Rubin [26] and the model reference from Shmatikov [27].

NAND NAND multiplexing, a technique for constructing reliable computation from unre-
liable devices. The technique is from Neumann [28] and the model reference from
Norman et al. [29].

4.8.2 QComp

The Comparison of Tools for the Analysis of Quantitative Formal Models or QComp7 for
short is a friendly competition among verification and analysis tools including PRISM.
The competition also has a benchmark set, the Quantitative Verification Benchmark Set
or QVBS8 for short. Which includes benchmarks from different tools in different formats,
some have been converted to be supported in other tools. The PRISM benchmark set is
also included in this set and also has the most submissions in it. Nonetheless, there are 2
more models which can be used in the dataset:

Coupon This model describes a contest where the goal is to collect all coupons from a given set.
It can be abstracted as drawing from an urn of N different coupons with replacement
where drawing each coupon is equally likely. The model is first presented by Flajolet
et al. [30] and used in Jansen et al. [31]

Haddad Haddad-Monmege is an adversarial example that highlights the problems of the tradi-
tional convergence criteria in value iteration. The model is first presented by Haddad
and Monmege [32]

4.8.3 Other research

The models which are listed above all come from some form of research, protocol or tech-
nique. This search is extended to general libraries by looking for papers which reference
DTMCs, MCs and probabilistic verification. There are a number of papers which make use
of these techniques in different research domains. The main domains are computer science
and biology. The research in the biology field usually pertains to either the inner systems,
cells for example, or the outer systems, humans and societies.

The methodology of finding other research for the dataset is as follows. First search the
papers and categorize them lightly on the size of the model which is used. After a certain
amount has been collected try to categorize those papers more specifically on the type of
DTMC used. Finally extract the DTMCs from useful categories and enter them into the
dataset. This all with a boundary that a single paper may not take too much time to
categorize or implement as that would in turn limit the time available for results.

6https://www.prismmodelchecker.org/benchmarks/models.php#dtmcs
7https://qcomp.org
8https://qcomp.org/benchmarks/

25

https://www.prismmodelchecker.org/benchmarks/models.php#dtmcs
https://qcomp.org
https://qcomp.org/benchmarks/

After the first step about 40 papers have been imported and lightly categorized into the
categories small, large, queue, prism and unknown. Where small is less than 50 states,
large greater than 50 states, prism has a prism model present, and the queue category is
a single line of states.

When trying to categorize the papers more thoroughly, it became increasingly more obvious
with each paper that they are not useful for this thesis. The smaller DTMC’s do not provide
useful results because they are too small for elimination orders to have an effect on the
metrics. The larger models turned out to be queues or grids which are already present
in the dataset. The implementation cost was also too high for the larger models. The
models are described by many complex formulas, which take a lot of time to understand
and convert to a representation suitable for PRISM.

Other research has therefore not been incorporated in the dataset.

4.9 Utility scripts

Some utility scripts have been created to automate parts of the processes which are not
already done by the tools used. This section describes the scripts which have been created.

4.9.1 Data importer

During implementation single invocations of PRISM through eclipse are enough, the results
print to the console or the debugger is used to inspect the process while running. When
comparing multiple elimination orders against one another the data from multiple runs has
to be used. This data is exported as described in Section 4.6.3, however this file still has
to be imported into the database.

A Python script has been created which monitors a folder in which PRISM should deposit
the data files. After a few seconds this script will then import this data-file into the
database. The delay is added to allow PRISM to fully write the file before trying to read
it back in.

4.9.2 Runner

Running every model from Eclipse manually would be a very time-consuming process.
Another Python script has been created to run all models against all elimination orders
consistently. It takes an Excel9 file as input which contains the definition of the models.
Where the model files are stored, which PRISM options should be added and if the model
should be run at all. After all runs have concluded it calls the data importer script to
import all generated data into the database.

4.9.3 DOTConverter

During elimination runs the process may output every step as a DOT file, if this is enabled
in the code. This representation is efficient but not very useful when trying to inspect the
graph. Another small Python script has been created to convert all DOT files inside a
folder to PNG images which can be easily viewed on any device.

9https://www.microsoft.com/microsoft-365/excel

26

https://www.microsoft.com/microsoft-365/excel

4.10 Visualization

All metrics gathered from the elimination runs are now inside the database. It provides a
lot of functionality to query the information, but inspecting the data in this form is not
intuitive for humans. As mentioned in section 4.5, Apache Superset has been chosen to
visualize the data from the database. This section discusses the setup of that tool.

4.10.1 Dataset

First the database is connected to Superset, it inspects the tables which are then available
for use in the Dataset tab. Datasets are an abstraction layer in Superset which hide
the database implementation from the rest of the tool. Allowing a lot of different data
storage solutions to be connected. For each table a dataset is created with some additional
properties besides the existing columns. These properties are references to other tables
using the defined relationships in the SQL database. When looking at Figure 4.1 the
run_group dataset, has the property run_group_id added. All extra properties are listed
in Table 4.2, why these are needed is explained in Section 4.10.2

step
property Full property name

elimination_order Full elimination order name
run_group_id Id of the run group this run

is part of
run

property Full property name
model Full model name

idorder Concatenation of id and
order run

order_id id
run_group

run_group_id id

Table 4.2: Extra properties for Superset datasets

4.10.2 Dashboard

With all relationships between tables in place, a dashboard can be created to show all
data in one place. A dashboard consists of a number of graphs which have the ability to
cross-filter. When selecting a value from a table in a dashboard, Superset will try to filter
every other graph on the information selected. This is completely done on property names,
which is why the extra properties on the datasets are necessary. If the id property of the
run_group table is clicked it will also incorrectly filter the run table on its id.

The following tables have been created for cross-filtering the results: run groups, run,
models, properties and elimination orders.

The visualization of the data is done through graphs. The data in the graphs is affected by
the cross-filtering of the tables. The following graphs have been added to the dashboard:

• line graph of the number of transitions over the number of states eliminated,

• bar graph of the number of calculations made at each elimination step,

27

• bar graph of the total number of calculations made and

• large table of the total number of calculations for each run.

These data graphs all have dimensions on the elimination order and run itself. Such that,
for example, for each elimination order and run there is an individual line for the number
of transitions over the number of states eliminated.

28

Chapter 5

Results

This chapter presents the results of all the elimination runs performed. It goes into detail
per relevant set of elimination orders. The metrics of a set of orders and any observations
made about them are discussed. With those observations conclusions can be drawn which
lead to the next set of elimination orders. The chapter starts with the existing elimination
orders in Section 5.1. Section 5.2 discusses the

−−−−→
Degree orders which lead into the neighbour

degree heuristic in Section 5.3. Finally, the remaining heuristics are discussed in Section 5.4.

5.1 Existing and cycle elimination orders

The first elimination orders which have been evaluated are existing elimination orders. The
existing orders from PRISM are:

−−−−−→
Forward (F),

−−−−−−−−−−−−→
ForwardReversed (FR),

−−−−−−→
Backward (B) and

−−−−−−−−−−−−−→
BackwardReversed (BR). The cycle orders are from existing research:

−−−−−−−−−−−−−→
SimpleCycleCount

(SCC) and
−−−−−−−−−−−−→
CycleSize3Count (CS3C). Table 5.1 shows the calculation metric for every

model when these orders are chosen.

Inspecting Table 5.1 it becomes clear that the cycle elimination orders do not have great
results. They only have the lowest calculation metric for the Haddad-Monmege model,
but every order shares that same lowest result. The weak performance of cycle elimination
orders can be explained for some of the models by the fact that those models do not contain
any cycles. The cycle orders have no defined order for these models and are completely
random. Therefore, the results on these models do not provide much information on this
order. Other models do contain cycles but still do not yield much better results. Inspecting
the models further gives a little more insight into why this might be the case. Cycles are
present, but there are still not many of them. The cycles which are present do not intersect
with each other much. The number of cycles a state participates in therefore does not vary
much, most states end up with the same number of cycles. This again leads to the order
being mostly undefined and random.

The other elimination orders are more interesting to inspect.
−−−−−−→
Backward never yields the

best calculation metric but is not always the worst metric. Even while excluding the cycle
orders this remains true.

−−−−−→
Forward and

−−−−−−−−−−−−→
ForwardReversed split the best results on models

with respectively four and five best calculation results.
−−−−−−−−−−−−−→
BackwardReversed has one best

calculation result with the NAND model and 2 ties on the Leader Sync and EGL models.

29

Model F FR B BR SCC CS3C
Knuth 69 39 53 40 53 53
NAND 15273 10740 8294 4761 37057 37057

Leader4-6 3960 5184 5184 3960 5119 5184
Haddad-Monmege 1196 1196 1196 1196 1196 1196

EGL 7043 10727 10717 7046 10716 10716
(L) EGL 12 11 12 11 12 12
Crowds 375 217 337 282 314 314

(L) Crowds 42 22 31 28 23 23
Coupon 525 1850 3266 1605 3500 3500

(L) Coupon 38 62 79 73 83 83
BRP 1161 8803 7651 23024 7512 7512

(L) BRP 379 278 377 2779 747 747

Table 5.1: Number of calculations per model per elimination order for existing
and cycle orders. Lower is better, lowest is marked per row.

5.1.1 Observations

Edge explosion

The results of the BRP model with
−−−−−−−−−−−−−→
BackwardReversed illustrates the edge explosion prob-

lem. The transition graphs for some of the elimination orders for this model are shown
in Figure 5.1. Figure 5.1a shows a great increase in the amount of states which starts
around 150 states eliminated. The graph grows in size until it has about double the num-
ber of edges compared to the starting graph. This is reflected in the calculation metric,−−−−−−−−−−−−−→
BackwardReversed has more than two times as many calculations as the next worst elimi-
nation order.

The transition graph of
−−−−−−→
Backward in Figure 5.1b still has this explosion in edges albeit

much smaller. The number of edges more than doubles compared to the number of edges
a few steps before but that peak is gone a few steps after. This is an indication that there
are some problem states or patterns in a model which can cause this blowup. Moving them
around in the order can increase or decrease the effect they have. If ordered properly the
effect can be nearly negligible as is shown by

−−−−−→
Forward in Figure 5.1c. No peak is visible

in this last graph.

Lumped compared with not lumped

Most of the models have two entries in the results table, one where the lumper is enabled
and one where it is not. This is mostly visible in the reduced amount of states for the
lumped versions of the model. The most interesting results related to this are with the
EGL and BRP models. These models have a different best order for the lumped and not
lumped versions, the orders are respectively

−−−−−→
Forward and

−−−−−−−−−−−−→
ForwardReversed . This indicates

that either the lumper changes the characteristics of a model or that a size difference in
certain characteristics affects the metrics more than other characteristics.

5.1.2 Conclusions

These results confirm the results of the existing research. Among these orders and models
there is no clear best order for all models. Individual models have a best order, but there

30

0 200 400 600
0

500

1,000

1,500

States eliminated

N
um

be
r

of
tr

an
si

ti
on

s

(a) Backward Reversed.

0 200 400 600
0

500

1,000

1,500

States eliminated

N
um

be
r

of
tr

an
si

ti
on

s

(b) Backward.

0 200 400 600
0

200

400

600

800

States eliminated

N
um

be
r

of
tr

an
si

ti
on

s

(c) Forward.

Figure 5.1: Transition graph of the BRP model.

is no clear indication for why that order is best.

From here on the Haddad-Monmege model will be excluded from the result. This is done
because the model yields the same result for every elimination order and thus offers little
value. Getting the same result across all orders is the result of the model structure, every
state is only connected to the initial and target states. They are identical for the elimination
algorithm and any change in order does not result in a change in the calculation metric.

5.2 Degree orders

Section 2.2.3 indicates the memory usage can increase explosively when state elimination
is performed. This is due to the amount of edges which is generated in such a case.
Two intuitive elimination orders were implemented based on this observation and existing
research [13][14],

−−−−→
Degree and

−−−−−−−−→
DegreeMult .

−−−−→
Degree was implemented first. Inspecting the

state elimination algorithm a little better shows that the amount of calculations is almost
exactly the multiplicative degree of a state,

−−−−−−−−→
DegreeMult was implemented shortly thereafter.

5.2.1 Observations

Validating assumption

The results validate the assumption that using the amount of edges as an input for ordering
decreases the number of calculations overall. Table 5.2 shows that

−−−−→
Degree takes over two

best result spots (compared with the results of Table 5.1).
−−−−−−−−→
DegreeMult matches those

results and takes one additional best result spot for the BRP model. Besides the best

31

Model Degree Degree Mult
Knuth 38 38
NAND 8666 6701

Leader4-6 3960 3960
EGL 8308 8308

(L) EGL 12 12
Crowds 236 222

(L) Crowds 23 23
Coupon 1332 1080

(L) Coupon 67 61
BRP 1042 1027

(L) BRP 192 192

Table 5.2: Number of calculations per model per elimination order for degree
orders. Lowest compared with previous metric table is marked.

result these two orders never yield the worst results out of all elimination orders shown so
far.

Pattern in Coupon model

With these two elimination orders added to the results, there are more calculation metric
results which are close to one another. Specifically in the lower numbers of the metric
closeness is very useful. These lower numbers come from smaller models which in turn
have smaller MutablePMCs. The amount of states which has to be eliminated is very small,
therefore there is not much room for variation and choice. These models can be exported
for each step in the elimination algorithm and then compared against another elimination
order which has a similar calculation metric. During this comparison attention is given
to the difference in order and which elimination step incurred the difference in calculation
metric.

The calculation bar graph generated by Superset is a great asset during this inspection.
Figure 5.2 shows these bar graphs for the Coupon model with

−−−−−→
Forward and

−−−−−−−−→
DegreeMult .

The difference in the calculation metric is significant, 38 and 61 respectively, but the
model is small enough to inspect by hand. The bar graph for

−−−−−→
Forward is consistently

at two calculations per eliminated state.
−−−−−−−−→
DegreeMult diverges from this consistency at

five eliminated states and continues with four calculations per eliminated state. With
this information the graph is inspected for both orders at this divergence to investigate a
possible cause.

Figure 5.3 shows the graph representation of the coupon model. The probabilities have
been removed from the edges for clarity. The model starts off as a pyramid where each
state has two outgoing edges to the two states below it. After reaching its maximum width
it starts to reduce in the same way except that the outer states also have an edge to a
state which has only a self loop. Such a state is also called an absorbing state.
−−−−−→
Forward starts to eliminate states breadth first starting from the initial state, 14→ 17→
2→ 4→ 11. This state is shown in Figure 5.4a. The result is that the top two rows have
been removed and the initial state now has edges to states 1, 10, 0 and 8.

−−−−−−−−→
DegreeMult on

the other hand has eliminated 1→ 2→ 8→ 14→ 19. Up until this step this has resulted

32

0 2 4 6 8 10 12 14 16 18 20

0

2

4

Eliminated states

C
al

cu
la

ti
on

s Degree Mult
Forward

Figure 5.2: Bargraph of calculations per elimination step of the Coupon model.

Figure 5.3: Graph representation of the Coupon model after lumping. Initial
state is gray, target states have only a self loop.

33

(a) Forward order, will eliminate state 8
next.

(b) Degree Mult order, will eliminate
state 11 next.

Figure 5.4: Coupon model after 5 states have been eliminated.

in the same amount of calculations being performed as
−−−−−→
Forward . Figure 5.4b shows the

graph at this point in the elimination process.

The issue
−−−−−−−−→
DegreeMult faces now is that there are no more states which have a multiplicative

degree of two. It can only choose a state which will result in a calculation cost of more than
two.

−−−−−→
Forward still has states available with multiplicative degree two and will continue

to have these until it finishes. Effectively
−−−−−−−−→
DegreeMult has undermined itself by choosing a

not optimal order from the states it deemed best to eliminate. The set of states this order
deems fit to be eliminated at the start of the elimination process is {14, 17, 11, 1, 2, 8, 19}.
This set contains the states which

−−−−−→
Forward selected to eliminate.

−−−−−−−−→
DegreeMult could have

selected those same states from the of set of available states but at this point all states
are equal to one another. The only option it has left taking a random state out of those
options.

This random choice is only a valid option if it does not affect the resulting calculation
metric. In this case it does. The calculation metric can give the same result for many
graphs but to illustrate that sometimes a random choice is necessary one can think of
graph automorphisms [33]. A graph can be subdivided into multiple sub-graphs, if these
sub-graphs are equal to one another in every way shape and form they are isomorph. The

34

Model H1 H2 H3 H4
Knuth 39 39 39 38
NAND 3220 3219 3220 5659

Leader4-6 3960 3960 3960 3960
EGL 7043 7043 7043 7043

(L) EGL 12 11 12 12
Crowds 222 222 222 222

(L) Crowds 22 22 22 22
Coupon 525 525 525 525

(L) Coupon 38 38 38 38
BRP 796 761 796 1027

(L) BRP 191 191 191 191

Table 5.3: Number of calculations per model per elimination order for heuristic
orders. Lowest compared with previous metric tables is marked.

parent graph then contains automorphisms. Take a graph which consists of an initial state,
target state and exactly two sub-graphs which are isomorph. Any state selected will have
at least one completely equal state in the other sub-graph. Therefore, a random choice
between these states has to be made.

5.2.2 Conclusion

When taking a closer look at the two graphs some states stand out. States 17 and 11 which
started as states with a multiplicative degree of two now have five and three respectively.
Inspecting these states on earlier elimination steps reveals the steps where their multi-
plicative degree changed. State 17 increased its multiplicative degree at step one (steps
start counting at zero) from two to three. This is due to the elimination of state 2, which
introduced outgoing edges from state 17 to states 0 and 8. The conclusion drawn from
this observation is that this order can be improved by taking the neighbours of a state into
account. Specifically the effect eliminating a state has on its neighbours.

5.3 Neighbour degree

The states chosen by
−−−−−→
Forward , which yield a better calculation metric, are already in

the set generated by
−−−−−−−−→
DegreeMult . This set of states can be used as a starting point for

more expensive computations. This is the basis for the
−−−−−−→
Heuristic orders, refine a set of

states with increasingly expensive computations until a single best state or set of states is
left.

←−−−−−−−−
DegreeMult is created from

−−−−−−−−→
DegreeMult and

←−−−−−−−−−−−−−
NeighbourDegreeC is created to take the

neighbours of a state into account. Together these two heuristics form
−−−−−−−→
Heuristic1 .

Table 5.3 shows that
−−−−−−−→
Heuristic1 performs significantly better than

−−−−−−−−→
DegreeMult and is on

par with
−−−−−→
Forward for the Coupon model.

5.3.1 Observations

Initial and absorbing states

From the order calculated by
−−−−−−−→
Heuristic1 and

−−−−−→
Forward we can observe the following: good

states to eliminate can often be found near initial or absorbing states. The reason for this is

35

probably the unique property of those states, they either have no incoming or no outgoing
states. When they are eliminated, if they are allowed to, no calculations are necessary.
This is also visible from the calculation of the calculation metric. In these states one of the
multiplicands is zero, any change on the other side therefore has no effect on the outcome.

Indegree

Overall the calculation metric of
−−−−−−−→
Heuristic1 is a lot better than previous elimination orders,

but there are a few models where it performs worse. Interestingly these are the smaller
models, for which the order only performs a little worse. Knuth 38 calculations compared
to 39, EGL 11 and 12 and the biggest difference in crowds with 217 compared to 222. The
same method as before is used to inspect the points in the elimination process which could
be improved.

The EGL model is inspected and Figure 5.5 shows the initial model and two options for
the last elimination step. The calculation costs have again been equal until his point,
where Figure 5.5b incurs a cost of one and Figure 5.5c a cost of two. This is due to the
premature elimination of state four, it eventually reduced its multiplicative degree to one.
Extending

←−−−−−−−−−−−−−
NeighbourDegreeC will catch this pattern but at an exponential cost for every

further step looked ahead. There is another feature of state four which makes it uniquely
distinguishable from the other states in this model. It has two incoming edges where the
other states only have one.

←−−−−−−
InDegree has been created as a result from this observation.

Minimum neighbour degree change

The Knuth model provides the last observation for
−−−−−−−→
Heuristic1 . At the end of the elimi-

nation process there is one extra step with a calculation cost of three, as shown in Fig-
ure 5.6. Figure 5.7 shows the where this increase takes place. States 15 and 0 are equal for←−−−−−−−−
DegreeMult but not for

←−−−−−−−−−−−−−
NeighbourDegreeC . Because of an error when manually calculating

this number they were deemed equal during inspection. Assume for now that this is indeed
the case.

States 13 and 0 are the selected candidates for elimination. Both have the same multiplica-
tive degree, neighbour degree change and indegree. State 13 was chosen by the elimination
order, state 0 was therefore eliminated manually to compare the effects. Figure 5.7b shows
the order

−−−−−−−→
Heuristic1 has chosen where state 0 has been eliminated. With this option the

lowest calculation cost of any state is three. Figure 5.7c shows the other option, where
state 13 is eliminated. In this option there exists a state with a calculation cost of two. For
both options the next two eliminations have a calculation cost of three. The last option
yields the same (best) result as

−−−−−−−−→
DegreeMult and would therefore be preferable over the first

option.

The defining feature of the last option is the resulting state of the model. It has a minimum
multiplicative degree of two, while the summation of all multiplicative degrees is equal to
the other option. For option one the neighbouring degrees are calculated at three for state
0 and five1 for state 3. For option two the calculation yields six for state 3 and two for state
13. Intuitively it makes sense that the option with the lower minimum multiplicative degree
is the better choice. The higher degree state can be, and in this scenario is, influenced by
the elimination of the lower degree state at a later elimination step. This is the cause of←−−−−−−−−−−−−−−−−
MinNeighbourDegreeC .

1This is the incorrect calculation but assume it is

36

(a) Initial model. (b) Forward reversed. (c) Heuristic 1.

Figure 5.5: Elimination of EGL model at the last step.

0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

Eliminated states

C
al

cu
la

ti
on

s Degree Mult
Heuristic 1

Figure 5.6: Bargraph of calculations per elimination step of the Knuth model.

37

(a) Step 15.
(b) Step 16 - eliminated
state 13.

(c) Step 16 - eliminated
state 0.

Figure 5.7: Bottleneck in the elimination process of the Knuth model with the
Heuristic 1 order.

The calculation error was uncovered only after running the heuristic. The correct multi-
plicative degree of state 3 in Figure 5.7b is four, bringing the total degree to seven. This is
lower than the other option which has a total degree of eight. This option would therefore
already be disregarded by

←−−−−−−−−−−−−−
NeighbourDegreeC .

5.4 Other heuristics
−−−−−−−→
Heuristic2 follows

−−−−−−−→
Heuristic1 closely with an added step of

←−−−−−−
InDegree. Table 5.3 shows

that this improves the EGL model results to the best result similar to
−−−−−−−−−−−−→
ForwardReversed .

The pattern observed in Section 5.3.1 must also be present in the NAND and BRP models.
These models also have an improved calculation metric, for both this is the best overall
result. The BRP model is boasting a much larger improvement of 35 calculations compared
to just 1 for the NAND model. Only for the Knuth and Crowds model does

−−−−−−−→
Heuristic2

not yield the best result.

Adding
←−−−−−−−−−−−−−−−−
MinNeighbourDegreeC in

−−−−−−−→
Heuristic3 does not yield positive results. For most

models the numbers stay the same but for NAND and BRP they get worse. Putting this
heuristic before

←−−−−−−−−−−−−−
NeighbourDegreeC in

−−−−−−−→
Heuristic4 does give the best result for the Knuth

model however this is the only positive change. The other models stay the same or are
much worse as seen again in the NAND and BRP cases.

The only model which does not have a best result with the heuristics models is now the
Crowds model. Knuth does not have a best result for

−−−−−−−→
Heuristic2 but has been investi-

gated already. Crowds is a model which can be resized with the input parameters, crowd
size CrowdSize and protocol runs to analyze TotalRuns. When running the benchmark
with different input numbers an interesting result is shown. Table 5.4 shows only for the
Crowds(2,5) model, which is the setup for the overall benchmark, a better calculation
metric for

−−−−−−−−−−−−→
ForwardReversed .

The model has been inspected with TotalRuns = 2 and CrowdSize = 4. Figure 5.8 shows
both elimination orders have the same two peaks which are followed by a drop in calculation
cost.

−−−−−−−→
Heuristic2 has a higher peak, which is most likely due to some non-optimal step taken

38

Model Forward Reversed H2
Crowds(3,5) 1539 1513
Crowds(2,5) 217 222
Crowds(2,4) 135 126
Crowds(2,3) 45 36

Table 5.4: Number of calculations per elimination order for the
Crowds(TotalRuns, CrowdSize) model.

0 5 10 15 20 25 30 35 40

0

10

20

30

Eliminated states

C
al

cu
la

ti
on

s Forward Reversed
Heuristc 2

Figure 5.8: Bargraph of calculations per elimination step of the Coupon model.

earlier, since both peaks are at the end of the process. This model is quite a bit larger than
the previous models when at this stage of the inspection. Making it smaller or enabling
the Lumper will result in the elimination orders either switching place or having the same
calculation metric.

The exported graph at the states did not yield a clear pattern which was causing the
difference in calculation metric in the time spent on inspection. A pattern could still be
present and is therefore left as future work.

5.5 Computation time

Table 5.5 shows all computation times for every elimination order against every model.
Some abbreviations have been applied to model and order names. These results are only
relevant relative to one another. This number depends highly on the hardware on which
is it run, better hardware will result lower numbers. System load at the time of running
also introduces a margin of error into these timing metrics.

The timing results show a very clear picture. The heuristics completely lose their advan-
tage from the calculation metric. They take orders of magnitude more time to compute
their orders compared to the other elimination orders. This is also seen with

−−−−→
Degree and−−−−−−−−→

DegreeMult because they perform calculations at each step in comparison with for example−−−−−→
Forward .

Between
−−−−−→
Forward ,

−−−−−−−−−−−−→
ForwardReversed ,

−−−−−−→
Backward and

−−−−−−−−−−−−−→
BackwardReversed there still is a vis-

ible difference in computation time which cannot be attributed to a margin of error alone.
This is due to the increased amount of calculations the elimination algorithm needs to do
when an order is inefficient. Comparing these results with Table 5.1 for the NAND model
shows a similar increase in calculation metric as in computation time for the

−−−−−→
Forward and−−−−−−−−−−−−−→

BackwardReversed orders.

39

Model F FR B BR SCC CS3 D DM H1 H2 H3 H4
Knuth 22 15 12 10 9 2 7 5 11 6 5 6
NAND 1691 865 939 339 2935 41 724 444 3341 3056 4068 2510

Leader4-6 276 150 108 210 143 113 463 437 133s 136s 271s 239s
H-M 332 150 6 136 465 622 157 76 2260 2346 4388 4380
EGL 452 300 279 322 449 413 1268 1297 34s 36s 55s 56s

(L) EGL 6 4 0 1 6 0 4 2 4 2 3 1
Crowds 70 16 39 22 49 9 38 28 30 17 9 9

(L) Crowds 23 8 7 5 10 2 9 4 5 3 4 3
Coupon 179 78 85 55 41 9 65 92 63 27 20 15

(L) Coupon 29 32 17 17 13 5 13 12 15 3 5 7
BRP 243 206 911 842 88 9 70 70 288 214 263 290

(L) BRP 155 66 43 374 99 5 17 14 52 21 31 31

Table 5.5: Milliseconds (or seconds s) spent on the elimination algorithm per
model per elimination order.

A clear win for
−−−−−−−−→
DegreeMult is with the NAND model as well. It has a better calculation

metric compared to the existing orders and a better computation time metric. Overall−−−−−−−−→
DegreeMult performs very well. It does not yield the best calculation metric but is a close
competitor for most models. But more impressively it does not take a great amount of
computation time to get to that result.

40

Chapter 6

Conclusion

In this thesis several elimination orders of the state elimination algorithm have been eval-
uated against one another on two metrics, calculation cost and computation time. The
evaluation has been performed by implementing the elimination orders in an open source
model checker called PRISM. Several models from existing research have been used to
evaluate the elimination orders. The resulting data was analyzed and has been used to
create several novel elimination orders. The elimination order

−−−−−−−→
Heuristic2 has the best per-

formance in all but two of the models, where it has been beaten by a very small margin.
This indicates that an elimination order that performs best for any model does exist. This
order does not perform well in the computation time metric, but this might be remediated
by a more efficient implementation. The elimination order

−−−−−−−−→
DegreeMult provides a consis-

tent result in the calculation metric but not the best. The added computation time of
calculating this order is very small. Therefore, this is the elimination order which should
be chosen for the elimination process regardless of the input model.

The remainder of this chapter answers the individual research questions and discusses the
possible future work on this topic.

6.1 Research Questions

RQ1.1

What state elimination orders exist?

Several elimination orders have been found, from existing research or in existing implemen-
tations. These are:

−−−−−→
Forward ,

−−−−−−−−−−−−→
ForwardReversed ,

−−−−−−→
Backward ,

−−−−−−−−−−−−−→
BackwardReversed ,

−−−−→
Degree,−−−−−−−−→

DegreeMult and
−−−−−−−−−−−−−→
SimpleCycleCount

Several other orders have been created and implemented during this thesis. These are:−−−−−−−−−−−−→
CycleSize3Count ,

−−−−−−−→
Heuristic1 ,

−−−−−−−→
Heuristic2 ,

−−−−−−−→
Heuristic3 and

−−−−−−−→
Heuristic4 .

RQ1.2

What is the difference in performance between elimination orders?

The number of calculations can vary greatly between elimination orders. Depending on
the size and complexity of the graph this can range from single points in the calculation
metric to factors of ten. This highlights the need for a consistent elimination order.

41

The calculation time is closely tied to the calculation metric and shows similar results of
performance difference.

RQ1.3

Which relations exist between characteristics of MCs and the performance of
an elimination order?

Several patterns have been identified in Chapter 5 which have been used to create heuristics
to select the best order for those patterns.

Inspecting these patterns, the following method of ordering was determined to work best
overall:

1. The state with the lowest multiplicative degree

2. The state which causes the least growth in multiplicative degree in its neighbours

3. The state with the least incoming transitions

This best overall result is
−−−−−−−→
Heuristic2 . For the models it was tested on it yielded the best

calculation metric in all but 2.

RQ1.4

When does the performance gained by choosing a better elimination order
overtake the computational cost of determining that order?
−−−−−−−−→
DegreeMult gives the best results of the computation time and calculation cost metrics
together. Heuristics give a better calculation cost but currently at a computation time
cost which is too high. The other orders give a computation time cost in the same order
of magnitude as

−−−−−−−−→
DegreeMult but do not give consistent calculation metric results.

RQ1

How to choose an elimination order which has a positive impact on perfor-
mance?

Take
−−−−−−−−→
DegreeMult if memory usage is less of a concern than computation time. Take−−−−−−−→

Heuristic2 if memory usage is more important than computation time.

6.2 Future work

6.2.1 More models

At the start of this thesis I made an assumption that plenty existing research using Markov
Chains would be available. During the thesis this assumption turned out to be partially
correct. There is plenty of research making use of Markov Chains however it is not inter-
esting for this use case. Therefore, the models on which the orders have been evaluated is
lower than desired. Evaluating the elimination orders on more models would be preferable
to determine if there are more or other patterns which are not accounted for by these
orders.

42

6.2.2 Unsolved pattern

The final best order in regard to the calculation metric is unfortunately not the best for
each and every model. One identified pattern has no solution at the end of this thesis.
More time could be spent on this pattern to identify a metric which can overcome it.

6.2.3 Efficiency

The orders created in this thesis are in some ways more of a proof of concept. Especially
the heuristic orders, no time has been spent on efficiency or those orders. I have some
intuitions that

−−−−−−−−−−−−−→
NeighbourDegreeC can benefit greatly by taking initial and absorbing states

into account. If any substantial efficiency gains can be made the conclusion of this thesis
might be adapted to

−−−−−−−→
Heuristic2 being the best at all times.

6.2.4 Updated calculation metric

When more efficient algorithms are created the calculation metric should also be updated.
This has already been done with the efficiency step of the self loop as described in Sec-
tion 4.3. The combination of edges or creation is not taken into account currently. Com-
pletely new edges should be a cheaper operation since no functions have to be calculated,
currently these are treated the same as when 2 edges are combined. This can be reflected
in the calculation metric.

43

Bibliography

1. Jazwinski, A. H. en. in Mathematics in Science and Engineering 47–92 (Elsevier,
1970). isbn: 978-0-12-381550-7. doi:10.1016/S0076-5392(09)60372-6.

2. Privault, N. Understanding Markov Chains isbn: 978-981-4451-50-5 978-981-4451-51-
2. doi:10.1007/978-981-4451-51-2 (Springer, Singapore, 2013).

3. Knuth, D. & Yao, A. in. Section: The complexity of nonuniform random number
generation (Academic Press, 1976).

4. Daws, C. Symbolic and Parametric Model Checking of Discrete-Time Markov Chains
en. in Theoretical Aspects of Computing - ICTAC 2004 (eds Liu, Z. & Araki, K.)
(Springer, Berlin, Heidelberg, 2005), 280–294. isbn: 978-3-540-31862-0. doi:10.1007/
978-3-540-31862-0_21.

5. Christel Baier & Joost-Pieter Katoen. Principles of Model Checking English. isbn:
978-0-262-02649-9 (The MIT Press, Cambridge, Mass, 2008).

6. Hansson, H. & Jonsson, B. A logic for reasoning about time and reliability. en. Formal
Aspects of Computing 6, 512–535. issn: 1433-299X. doi:10.1007/BF01211866 (Sept.
1994).

7. Hopcroft, J. E., Motwani, R. & Ullman, J. D. Introduction to automata theory, lan-
guages, and computation 3rd ed. Pearson new international ed. English. Section: 488
pages : illustrations ; 28 cm. isbn: 978-1-292-03905-3 (Pearson Education, Harlow,
Essex, 2014).

8. Implementation and Application of Automata: 14th International Conference, CIAA
2009, Sydney, Australia, July 14-17, 2009. Proceedings en (ed Maneth, S.) isbn:
978-3-642-02978-3 978-3-642-02979-0. doi:10.1007/978-3-642-02979-0 (Springer,
Berlin, Heidelberg, 2009).

9. Hahn, E. M., Hermanns, H. & Zhang, L. Probabilistic reachability for parametric
Markov models. en. International Journal on Software Tools for Technology Transfer
13, 3–19. issn: 1433-2779, 1433-2787. doi:10.1007/s10009-010-0146-x (Jan. 2011).

10. Moreira, N., Nabais, D. & Reis, R. State Elimination Ordering Strategies: Some
Experimental Results. en. Electronic Proceedings in Theoretical Computer Science
31. Publisher: Open Publishing Association, 139–148. issn: 2075-2180. doi:10.4204/
EPTCS.31.16 (Aug. 2010).

11. Han, Y.-S. State Elimination Heuristics for Short Regular Expressions. en. Funda-
menta Informaticae 128. Publisher: IOS Press, 445–462. issn: 0169-2968. doi:10.
3233/FI-2013-952 (Jan. 2013).

12. Gruber, H. & Holzer, M. From Finite Automata to Regular Expressions and Back—A
Summary on Descriptional Complexity. en. Electronic Proceedings in Theoretical Com-
puter Science 151. Publisher: Open Publishing Association, 25–48. issn: 2075-2180.
doi:10.4204/EPTCS.151.2 (May 2014).

13. McNaughton, R. & Yamada, H. Regular Expressions and State Graphs for Automata.
IRE Transactions on Electronic Computers EC-9. Conference Name: IRE Transac-

44

https://doi.org/10.1016/S0076-5392(09)60372-6
https://doi.org/10.1007/978-981-4451-51-2
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-642-02979-0
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.4204/EPTCS.31.16
https://doi.org/10.4204/EPTCS.31.16
https://doi.org/10.3233/FI-2013-952
https://doi.org/10.3233/FI-2013-952
https://doi.org/10.4204/EPTCS.151.2

tions on Electronic Computers, 39–47. issn: 0367-9950. doi:10.1109/TEC.1960.
5221603 (Mar. 1960).

14. Lombardy, S., Régis-Gianas, Y. & Sakarovitch, J. Introducing VAUCANSON. Theo-
retical Computer Science. Implementation and Application of Automata 328, 77–96.
issn: 0304-3975. doi:10.1016/j.tcs.2004.07.007 (Nov. 2004).

15. Han, Y.-S. & Wood, D. Obtaining shorter regular expressions from finite-state au-
tomata. Theoretical Computer Science 370, 110–120. issn: 0304-3975. doi:10.1016/
j.tcs.2006.09.025 (Feb. 2007).

16. Delgado, M. & Morais, J. Approximation to the Smallest Regular Expression for a
Given Regular Language en. in Implementation and Application of Automata (eds
Domaratzki, M., Okhotin, A., Salomaa, K. & Yu, S.) (Springer, Berlin, Heidelberg,
2005), 312–314. isbn: 978-3-540-30500-2. doi:10.1007/978-3-540-30500-2_31.

17. Pearl, J. Heuristics: Intelligent search strategies for computer problem solving (Addison-
Wesley Pub. Co. Inc Reading, MA, Jan. 1984).

18. Hahn, E. M., Hermanns, H., Wachter, B. & Zhang, L. PARAM: A Model Checker
for Parametric Markov Models en. in Computer Aided Verification ISSN: 1611-3349
(Springer, Berlin, Heidelberg, 2010), 660–664. isbn: 978-3-642-14295-6. doi:10.1007/
978-3-642-14295-6_56.

19. Johnson, D. B. Finding All the Elementary Circuits of a Directed Graph. SIAM
Journal on Computing 4. Publisher: Society for Industrial and Applied Mathematics,
77–84. issn: 0097-5397. doi:10.1137/0204007 (Mar. 1975).

20. Helmink, L., Sellink, M. P. A. & Vaandrager, F. W. Proof-checking a data link protocol
en. in Types for Proofs and Programs ISSN: 1611-3349 (Springer, Berlin, Heidelberg,
1994), 127–165. isbn: 978-3-540-48440-0. doi:10.1007/3-540-58085-9_75.

21. Herman, T. Probabilistic Self-stabilization. Information Processing Letters 35, 63–67
(1990).

22. Kwiatkowska, M., Norman, G. & Parker, D. Probabilistic verification of Herman’s self-
stabilisation algorithm. Form. Asp. Comput. 24, 661–670. issn: 0934-5043. doi:10.
1007/s00165-012-0227-6 (July 2012).

23. Itai, A. & Rodeh, M. Symmetry breaking in distributed networks. Information and
Computation 88, 60–87. issn: 0890-5401. doi:10.1016/0890- 5401(90)90004- 2
(Sept. 1990).

24. Even, S., Goldreich, O. & Lempel, A. A randomized protocol for signing contracts.
Commun. ACM 28, 637–647. issn: 0001-0782. doi:10.1145/3812.3818 (June 1985).

25. Norman, G. & Shmatikov, V. Analysis of Probabilistic Contract Signing. Journal of
Computer Security 14, 561–589 (2006).

26. Reiter, M. K. & Rubin, A. D. Crowds: anonymity for Web transactions. ACM Trans.
Inf. Syst. Secur. 1, 66–92. issn: 1094-9224. doi:10.1145/290163.290168 (Nov. 1998).

27. Shmatikov, V. Probabilistic Model Checking of an Anonymity System. Journal of
Computer Security 12, 355–377 (2004).

28. Neumann, J. v. Probabilistic logics and synthesis of reliable organisms from unreli-
able components in Automata Studies (eds Shannon, C. & McCarthy, J.) (Princeton
University Press, 1956), 43–98.

29. Norman, G., Parker, D., Kwiatkowska, M. & Shukla, S. Evaluating the Reliability of
NAND Multiplexing with PRISM. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24, 1629–1637 (2005).

30. Flajolet, P., Gardy, D. & Thimonier, L. Birthday paradox, coupon collectors, caching
algorithms and self-organizing search. Discrete Applied Mathematics 39, 207–229.
issn: 0166-218X. doi:10.1016/0166-218X(92)90177-C (Nov. 1992).

45

https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1016/j.tcs.2004.07.007
https://doi.org/10.1016/j.tcs.2006.09.025
https://doi.org/10.1016/j.tcs.2006.09.025
https://doi.org/10.1007/978-3-540-30500-2_31
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1137/0204007
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1016/0890-5401(90)90004-2
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/290163.290168
https://doi.org/10.1016/0166-218X(92)90177-C

31. Jansen, N., Dehnert, C., Kaminski, B. L., Katoen, J.-P. & Westhofen, L. Bounded
Model Checking for Probabilistic Programs en. in Automated Technology for Verifica-
tion and Analysis ISSN: 1611-3349 (Springer, Cham, 2016), 68–85. isbn: 978-3-319-
46520-3. doi:10.1007/978-3-319-46520-3_5.

32. Haddad, S. & Monmege, B. Interval iteration algorithm for MDPs and IMDPs. The-
oretical Computer Science. Reachability Problems 2014: Special Issue 735, 111–131.
issn: 0304-3975. doi:10.1016/j.tcs.2016.12.003 (July 2018).

33. Pahl, P. J. & Damrath, R. Mathematical Foundations of Computational Engineering:
A Handbook en. Google-Books-ID: kvoaoWOfqd8C. isbn: 978-3-540-67995-0 (Springer
Science & Business Media, July 2001).

46

https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1016/j.tcs.2016.12.003

	Introduction
	Background
	Markov chains
	Stochastic process
	Markov property
	Representations

	State elimination
	Model checking
	RE/FA state elimination
	Markov chain state elimination

	Related work
	Performance evaluations
	Vertical decomposition
	State weight
	Counting cycles

	Research Questions
	Methodology
	Elimination orders
	Heuristics
	Heuristic orders

	Metrics
	Data structure
	Tools
	Implementation
	Existing codebase
	Compilation
	New code
	Modifications

	Preprocessing
	Bisimulation
	Unreachable states

	Dataset
	PRISM
	QComp
	Other research

	Utility scripts
	Data importer
	Runner
	DOTConverter

	Visualization
	Dataset
	Dashboard

	Results
	Existing and cycle elimination orders
	Observations
	Conclusions

	Degree orders
	Observations
	Conclusion

	Neighbour degree
	Observations

	Other heuristics
	Computation time

	Conclusion
	Research Questions
	Future work
	More models
	Unsolved pattern
	Efficiency
	Updated calculation metric

