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Management Summary

This research was conducted at Nijhof Wassink, specifically within the Dry Bulk Logistics (DBL)
department. They specialize in the transportation of silo-based goods, such as plastic granulates. The
department operates with approximately 100 vehicles and executes around 400 requests per week. A
source of operational costs is the distance driven without a load, known as empty kilometers. This
research aims to optimize routing efficiency by reducing empty kilometers, leading to the following
main research question: ”How can the Dry Bulk Logistics planning at Nijhof Wassink be optimized
to reduce empty kilometers?”.

Problem Context
The current planning process relies heavily on manual planning decisions, which are time-consuming
and prone to errors. No automated routing optimization tools are currently in use. Therefore, man-
aging the complexity of requests and vehicle constraints can be a challenge. As a result, the existing
approach is prone to a high number of empty kilometers and other routing inefficiencies. A context
analysis highlighted the desire for a standardized and scalable planning approach.

Solution Design
To address these challenges, a vehicle routing algorithm was developed to generate weekly routing
plans that respect practical constraints, including time windows, transfers, and driver regulations.
The routing problem is formalized as a Multi-Depot, Pick-up, and Delivery Problem, with Time Win-
dows and Transfers (MD-PDPTW-T). Due to its complexity, a two-phase heuristic approach was
implemented. The first phase uses a fast constructive heuristic to create an initial, feasible routing
solution. The second phase applies an Adaptive Large Neighborhood Search (ALNS) algorithm to
iteratively improve a routing solution. The model balances multiple objectives. While minimizing
empty kilometers is the key priority, other components, such as total travel distance, time window
violation, unserved requests, and vehicle utilization, were added to avoid impractical and unrealistic
routing solutions.

Results
The heuristic solutions were compared to historical planning data and the initial, constructive routing
solution. Scenario analyses further explored the effect of input parameters on routing performance.
The key findings are as follows:

• 10% reduction in overall planning cost compared to historical routing plans.

• 26% reduction in the overall planning cost compared to the constructive, initial solution.

• Improvements were mainly driven by better vehicle utilization, not reduced empty kilometers.

• Solution improvements were achieved by an optimized vehicle utilization.

• A trade-off was identified between reducing empty and total distance and an increase in unserved
requests.

• A clear relationship was found between reducing the number of vehicles and an increase in
unserved requests.

• Flexible time windows significantly improved routing flexibility.

• No consistent correlation was found between late received orders and routing efficiency.
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Practical Contribution
This study provides several practical contributions. First, the algorithm shows that it effectively
improves routing efficiency, which offers the potential for reduced operational costs. Although mini-
mizing empty kilometers was the primary objective, results showed limited improvement for this Key
Performance Indicator (KPI). Instead, the main improvement was achieved through better vehicle uti-
lization. Therefore, it is recommended to shift the focus toward vehicle utilization to save operational
costs. Second, the algorithm demonstrates its ability to create concept routing plans with improved or
similar performance to historical routing plans. While the model is not yet suitable for direct integra-
tion into the daily planning process, it can already support strategic and tactical decisions in tender
evaluation and post-analysis. Third, this research provides a foundation for developing a more stan-
dardized, data-driven, and less resource-intensive planning process. For full practical implementation,
further development is needed to incorporate additional real-world constraints.
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1| Introduction
This thesis is conducted at Nijhof Wassink and aims to reduce empty kilometers in the Dry Bulk Lo-
gistics (DBL) planning. This chapter will introduce the research. Section 1.1 provides the background
of Nijhof Wassink and the research motivation. Furthermore, Section 1.2 describes the problem iden-
tification, followed by Section 1.3, which outlines the research design and research questions. Lastly,
Section 1.4 defines the scope of the research.

1.1 Background

1.1.1 Company Background

A brief introduction to the company for which this thesis is conducted is provided for a broader con-
text. Nijhof Wassink specializes in bulk transport across multiple modalities, such as road, rail, and
water [44]. The company focuses on end-to-end logistics, meaning that it coordinates the entire logistic
process to ensure the transport of loads. The company employs around 1000 employees and operates
mainly in the Netherlands, Germany, Belgium, Poland, and Hungary. The main office is located in
Rijssen, the Netherlands. The company’s expertise lies in animal feed logistics, chemical logistics, and
warehousing. To manage its various operations, Nijhof Wassink is organized into four business units:
Animal Feed Distribution, Dry Bulk Logistics, Liquid Bulk Logistics, and Fuel Distribution.

This research specifically focuses on Dry Bulk logistics. This business unit specializes in silo transport
of dry bulk, such as clean granulates and powders. The most common are plastics used in everyday
objects like polyvinyl (PVC), polyethylene (PE), polypropylene (PP), and polyethylene terephthalate
(PET). The company has an international reach, with a main focus on transporting loads in Germany,
Poland, and the Netherlands. Furthermore, customers request Nijhof Wassink to transport loads from
location A to B as a one-stop shop. The planners are responsible for planning as many requests
as possible per vehicle while respecting the driver, product, and customer constraints. The DBL
department relies on manually constructed routing plans and aims to explore possibilities to enhance
this process. The department desires to provide planners with tools to make the best possible, data-
driven decisions.

1.1.2 Research Motivation

The goal of the research is to minimize empty kilometers. This is the distance that trucks travel
without carrying any load. Reducing empty kilometers will generally reduce Nijhof Wassink’s opera-
tional costs, and therefore, it can offer more competitive transport rates for customers. This can lead
to more business opportunities as (potential) customers are attracted to lower prices. Additionally,
as the number of requests and customers increases, the probability that the customers’ locations lie
closer together increases. In this way, it is easier to plan the next request in the vicinity, reducing
empty kilometers even further. This positive feedback loop is in line with Nijhof Wassink’s goal of max-
imizing profitability and expanding its customer base. This ultimately strengthens its market position.

Next to the commercial benefits, the importance of reducing the environmental impact has increased
in recent years. Nijhof Wassink aims to reduce its CO2 footprint by 10% in 2025 and by 30% in
2030. Therefore, reducing empty kilometers directly supports these sustainability goals. Furthermore,
under the Corporate Sustainability Reporting Directive (CSRD), larger companies in the European
Union are required to report their greenhouse gas emissions, of which CO2 is the primary contributor.
This includes both direct and indirect emissions through suppliers and distributors. As a result,
Nijhof Wassinks (potential) clients value working with transport companies that minimize emissions,
next to offering competitive rates. By reducing empty kilometers, Nijhof Wassink not only cuts its
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emissions but it also helps the company to provide an attractive sustainability report to its clients. To
conclude, Nijhof Wassink is interested in reducing its empty kilometers as it may create more business
opportunities due to more competitive rates and more attractive sustainability reports.

1.2 Problem Identification

1.2.1 Problem Cluster and Core Problem

Figure 1.1 provides a schematic overview of the problem cluster, outlining the action them. The
flowchart helps to identify the underlying problems and illustrates the relationships between the prob-
lems. Below, some of the underlying problems will be discussed, and a motivation for the chosen core
problems is provided.

Manual route
planning

Inefficient
planning

High proportion 
of  empty 

kilometers (27%)

Lot of  time spend
on revising
planning

Short planning
horizon

Hard to keep
overview

Less flexibility 
in planning

Prone to get stuck
in old patterns

Hard to find
closely located

requests

Network is
imbalanced

Requests
are handled 
one-by-one

9% of  requests
arrive shortly in

advance

Unpredictable
demand

Prone to
overcapacity

Prone to errors

Legend

Core problem

Action problem Underlying
problem

Potential core
problem

Reduced potential
to meet 30%

emission reduction 

Suboptimal use of
resources

Figure 1.1: Problem cluster.

Many empty kilometers
According to the post-analysis by Nijhof Wassink, it has become evident that the load factor in 2023
was 73%, meaning that 73% of the total kilometers were driven with a load. This is equivalent to
stating that 27% of the driven kilometers trailers were driven empty. The company has a strong de-
sire to reduce empty kilometers to lower the operational costs, which increases business opportunities,
and decreases emissions. The underlying problem of empty kilometers stems from inefficiencies in the
routing plan.

Suboptimal use of vehicles
Nijhof Wassink also suspects that its vehicles are being used suboptimally, which stems from ineffi-
cient planning. Ineffective routing can result in underutilized vehicles, meaning that more vehicles are
required to complete the same volume of work. As a result, the company may miss business opportu-
nities. Moreover, operational costs increase, ultimately limiting the ability to offer competitive pricing.
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Emission reduction
Nijhof Wassink aims to reduce its CO2 emissions by 30% by 2030. However, reaching this goal is at
risk due to inefficient planning. Unnecessary kilometers and suboptimal route optimization increase
emissions without adding operational value, ultimately undermining the company’s progress toward
sustainability goals. As a result, the company faces a reduced ability to create attractive sustainability
reports for its customers.

Inefficient planning
Nijhof Wassink uses planning software from Ortec to track incoming requests and the routing plan
for each truck. While Ortec offers automated planning functionalities, these are currently not imple-
mented at Nijhof Wassink. Instead, planners have to manually assign each request to a vehicle and a
driver. The company often operates with inefficient routing plans due to several reasons. Due to the
large number of requests and trucks, it is hard to keep an overview of the routing plan as a whole, and
planners are likely to fall into old planning patterns instead of trying to find an improved solution.
Also, there is a risk of unnoticed human errors in the planning process, and no available tool exists to
detect them. Furthermore, some requests arrive shortly before they need to be executed. This, com-
bined with the numerous planning constraints, such as the availability of trucks and drivers, required
cleanings, required product handling, and customer time windows, results in limited flexibility in the
routing plan. These factors contribute to inefficiencies in the routing plan.

Revising the routing plan
Planners continuously review the list of unplanned requests and assign each request individually to a
vehicle. When new requests arrive, planners attempt to assign them to an available vehicle, or they
must reconsider the already planned vehicles to make an optimal routing choice. Additionally, some
requests need to be planned at the last minute, often requiring the current routing plan to be recon-
sidered and adjusted to satisfy all constraints. A negative consequence of this continuous planning
approach is the large amount of time spent revisiting and revising the routing plan.

Network imbalance
Requests have a start and end location and usually cover a large distance. To reduce empty kilo-
meters, it is ideal to have a request with a starting location close to another request’s end location.
This is called a balanced network. If the network is imbalanced, pick-up and delivery locations have a
widespread. This is partially caused by the short planning horizon, as there is limited time to identify
pairs of requests that lie close together. Furthermore, unknown demand is prone to overcapacity of
available resources. This causes underutilization of the resources and may lead to unnecessary trav-
eled distance, as the planning department prioritizes using all available resources, even if that implies
suboptimal routes.

Core problems
From this problem cluster, three core problems can be identified: manual route planning, a short
planning horizon, and unpredictable demand. This thesis will focus on the first two, as the plan-
ning department is expected to have the most influence in these areas. Currently, the manual route
planning approach relies solely on the planners’ experience and intuition. This approach may lack
efficiency and often results in more empty kilometers. Additionally, the current planning horizon is
1 or 2 days. Within this short time frame, there is limited time to optimize the routes and there is
limited flexibility when selecting which requests to pair together. This can result in suboptimal rout-
ing decisions. To address these issues, automatically constructed routing plans with a longer planning
horizon and with an aim to reduce empty kilometers can help to optimize truck routing.

As for the third core problem, unpredictable demand is caused by the agreements that Nijhof Wassink
has made with its customers. These constraints allow customers to place a certain number of requests
within a specified period. However, the agreements do not specify when the requests must be made
or if they must be made periodically. Due to the loosely defined timing of requests, it is challenging
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to predict the number of requests without adjusting the approach of constructing contracts with
customers. The planning department has little influence on this process and is therefore not chosen
as a core problem.

1.3 Research Design

As Nijhof Wassink seeks to reduce empty kilometers to improve its market position, there is a need
to improve the routing plan. Hence, the main research question of this thesis is formulated as follows:
How can the Dry Bulk Logistics planning at Nijhof Wassink be optimized to reduce empty kilometers?
To answer the main research question structurally, the different chapters of the thesis will explore a
part of the main question. For this, each chapter has a sub-research question. To help answer each
sub-research question, it is divided into a set of smaller questions. Together, they provide a framework
for the research. Additionally, a schematic representation of the research questions and the input and
output per chapter is shown in Appendix A.

Ch 2: Context Analysis
This chapter analyzes the current planning approach at Nijhof Wassink’s DBL. This includes
understanding what request and resource constraints the planners have to respect and what
methodology the planners use to minimize empty kilometers. Also, a stakeholder analysis is
done to illustrate the parties and their impact on the planning process. Furthermore, we need
to formulate certain parameters that can indicate how good a routing plan is, the so-called key
performance indicators (KPIs). Lastly, the challenges that the planners currently face when
constructing a routing plan will be analyzed. The information will be obtained by interviewing
the company’s planning department and other experts. This yields the following sub-research
questions and sub-questions.
RQ: How is the current planning process organized?

a) Who are the stakeholders involved in the planning process?
b) What are the characteristics of the current planning approach in DBL?
c) What are the limits of the current planning approach?
d) What are relevant KPIs to determine the quality of the routing plan?

Ch 3: Literature Review
After the analysis of the current situation, an extensive literature review is done to explore
already existing research in the transport sector of Dry Bulk. Specifically, we are interested in
classifying the problem in this context. The review aims to summarize relevant optimization
models and solution approaches that align with this company’s problem. This will yield a
theoretical foundation for solving the problem in the next chapters.
RQ: What are the most suitable methods for developing an optimization model in the context
of Nijhof Wassink’s DBL planning?

a) Which theoretical transport problem resembles most with the DBL planning problem?
b) How can the characteristics of the DBL planning be modeled?
c) What are solution methods to solve the optimization model?

Ch 4: Problem Description and Mathematical Formulation
This chapter provides a formal description of the problem and presents a mathematical for-
mulation of the Nijhof Wassinks DBL optimization problem. This formulation, combined with
modeling assumptions, ensures a universal understanding of the problem at hand. Furthermore,
the problem is modeled as a Mixed Integer Problem (MIP) and serves as an exact approach to
solving the problem. However, the feasibility of the exact approach needs to be investigated,
as large instances may be too computationally expensive.
RQ: How can the DBL planning problem be described and formulated mathematically?
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a) What are the modeling assumptions?
b) What is the theoretical formulation of the routing problem?
c) What are the limitations of this exact method?

Ch 5: Heuristic Approach
Given the computational challenges of solving large instances with an exact approach, this
chapter introduces a heuristic solution for the DBL planning problem. This chapter explains
the design logic of the proposed heuristic and explains how the objective and constraint from
the mathematical model can be identified. The goal of the heuristic is to provide a good-quality
routing solution within a reasonable computation time.
RQ: How can a heuristic solution be designed to optimize the DBL planning?

a) How does the heuristic solution address the specific characteristics of the DBL planning?
b) How can this heuristic solution be applied to solve this problem?

Ch 6: Experiments and Results
After the solution design, we can start to experiment with the solutions. Firstly, the preprocess-
ing steps of the input data are explained, and the experiment parameters are tuned. Different
experiments result in routing solutions. Their quality is compared to the historical planning
data. Nijhof Wassink’s DBL planners are involved to help assess the routing solutions. Fur-
thermore, the impact of the computational time and the solution quality will be compared.
RQ: What are the model outcomes, and what is the overall performance?

a) How should the input data be prepared for the optimization model?
b) What parameter settings have the best performance on the solution?
c) To what extent does the solution improve the current planning process?
d) What is the trade-off between computational time and solution quality?

Ch 7: Conclusions, Contributions and Recommendations
Based on the solutions found in the previous chapter, this chapter evaluates the research findings
and the practical implications for Nijhof Wassink. It provides recommendations for improving
their routing efficiency.
RQ: What are the conclusions and recommendations that can be given to Nijhof Wassink?

a) What conclusions can be drawn from the results?
b) What are the recommendations for Nijhof Wassink?
c) What are further research possibilities?
d) What are the practical and academic contributions of this paper?

1.3.1 Research Layout

Based on the framework above, the layout of the thesis will be as follows. Chapter 2 describes the
analysis of the current situation of the DBL planning at Nijhof Wassink. This provides insights into
the current planning methodology, constraints, parameters, and current issues. After understanding
the current situation, Chapter 3 elaborates on the existing literature about DBL planning and provides
a theoretical foundation for the remainder of the research. Subsequently, in Chapter 4, the problem
is formally described and modeled as a MIP. Chapter 5 provides a heuristic solution to address large
planning instances. Subsequently, experiments on the model are performed, and the quality of the
solutions is determined in Chapter 6. Finally, Chapter 7 evaluates the research findings and the
practical implications for Nijhof Wassink.
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1.4 Scope

This thesis aims to provide a practical contribution to the context of Nijhof Wassink’s DBL routing
plan. The findings are only applicable to the Dry Bulk department of Nijhof Wassink and are solely
focused on long-term planning. This means that it is focused on the routing plan that is made ahead
of time rather than last-minute problem-solving in response to disruptive events. Furthermore, the
findings are intended to demonstrate the improvement potential of using a model-based planning tool.
The thesis, however, does not provide a functional planning tool that is ready to be implemented.
Instead, it attempts to find evidence that such a tool can help to support the planning department
to make the best possible routing decisions. This offers a starting point for further development and
application within the company.

The key deliverables are the mathematical model based on Nijhof Wassink’s context, a proof of concept
demonstrating how a model-based approach can influence their planning efficiency and a set of recom-
mendations regarding how Nijhof Wassink can use these results in their current context. Furthermore,
this thesis is limited to 20 weeks, following after the approval of the project plan.
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2| Context Analysis
This chapter analyses the current planning process of DBL at Nijhof Wassink to address the first
research question: “How is the current planning process organized?”. Firstly, the parties involved in
the planning process, and their influence will be explained in a stakeholder analysis in Section 2.1.
Furthermore, the overall procedure of planning requests is explained in Section 2.2. This also includes
a data analysis of the current resources and planning decisions. Lastly, the KPIs that determine the
quality of the routing plan are discussed, as well as the performance of the current routing plan 2.3.

2.1 Stakeholder Analysis

The stakeholders involved in the planning process at Nijhof Wassink are the customers, the manage-
ment, and the planning department. They have various interests in this transport process and the
relations between them are explained below.

The Customers
The customers have a wide selection of transportation companies to choose from, making cost effi-
ciency, service reliability, and sustainability key factors in their decision-making process. Customers
desire to have affordable transport rates to increase their profitability, as well as reliable and timely
pick-ups and deliveries to ensure a smooth supply chain. Additionally, transportation companies that
emit minimal CO2 emissions can reduce the customer’s carbon footprint. Based on these factors, cus-
tomers may choose Nijhof Wassink as their transportation company. This influences Nijhof Wassink’s
request demand.

The Management
Nijhof Wassink’s management competes in a highly competitive market and aims to attract potential
customers. This is done by offering the best affordable rates while maintaining a high service level.
They aim to increase business opportunities and expand their market share. To achieve this, they are
continuously looking for ways to reduce their operational costs and carbon footprint. The manage-
ment’s strategic choices have a high influence on the competitiveness of the transport market.

The Planning Department
The planning department works 6 days a week to ensure that the DBL planning process runs smoothly.
Their goal is to plan all the customer’s pick-ups and deliveries within the given time windows while
respecting the request, product, and resource constraints. Additionally, they are responsible for plan-
ning optimal routes to minimize empty kilometers, which is a key factor in reducing operational costs
and improving efficiency. Besides planning ahead, the planning department faces many ad hoc chal-
lenges with last-minute delays due to traffic congestion or loading delays. This can make balancing
a proactive, ahead-of-time routing plan and last-minute problem-solving challenging. All in all, the
planning department also has a high influence on the operational efficiency of the DBL planning pro-
cess.

To conclude, Nijhof Wassink’s planning process is influenced by the relationships between the cus-
tomers, management, and the planning department. Customers can influence the demand for requests
based on costs, reliability, and sustainability. The management plays an essential role in strategic
decision-making to improve the company’s performance, whereas the planning department is crucial
for developing and executing operational planning strategies. The stakeholder’s interactions impact
the operational efficiency, customer satisfaction, and, ultimately, Nijhof Wassink’s market position.
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2.2 Current Planning Process

Nijhof Wassink’s current planning process is complex due to its large scale and its many decisions.
During workdays, around 100 vehicles are on the road, and approximately 100 requests, consisting of
a pick-up and delivery, are fulfilled. To plan these vehicles, a planning department of 4 planners is at
work for 5 days a week. The planners are focused on constructing a routing plan for the upcoming days,
as well as real-time problem-solving when unexpected issues arise due to delays or other disruptive
events. The planners work with a planning software, which lists all unplanned requests, the current
routing plan, and real-time information about the location of the vehicles. Below, all components of
constructing a routing plan will be discussed, and the process flow will be explained.

2.2.1 Customer Agreements

Before the requests are planned, it is essential to understand the underlying process of receiving
requests. This process is managed by the Nijhof Wassink’s sales department. The procurement
of customers is conducted through a tender process. Potential customers send out their required
number of requests from pick-up location A to delivery location B. Transport companies, among
Nijhof Wassink, can then submit their proposals, and the potential customers choose their preferred
transport company based on price, emissions, and service levels. The prices are determined by the
transport costs from the start to end location, the expected empty kilometers after performing the
trip, the product handling costs, and the desired profit rate. If Nijhof Wassink is the chosen transport
company, an agreement with the customer is established. This agreement is made for a specified
trip only, and therefore, it is common for customers to have several agreements with the transport
company. This contains the following information:

• The start (pick-up) and end (delivery) location of a trip

• The product information

• The number of trips

• The time frame in which all trips need to be requested

• The price of a trip

In the past 6 months, Nijhof Wassink had a customer base of around 100 customers. The number of
requests that each customer requests varies widely. Namely, 13% of the customers account for 80% of
the total number of requests. Furthermore, notice that the customer agreement only states that the
maximum number of requests should be requested within some time frame, but the requests do not
have to be spread evenly among the time frame. For instance, if the time frame is a year and the total
number of trips is 12, the customer can request one request each month but is also allowed to request
all 12 trips in the first month. Additionally, the agreed number of trips is a maximum, and there is no
consequence if the customer requests fewer trips. This combination causes an unknown request rate
in the planning department. Also, there is no clear agreement on the time between placing a request
and the scheduled pick-up date. Generally, requests are requested 9 days in advance. However, with a
planning horizon of 2 days, around 9% of requests are placed after the routing plan for the scheduled
pick-up date has been completed. These requests are, therefore, considered late. Subsection 2.2.6 will
elaborate on this further.

2.2.2 Request Information

After the agreement is established, the customer is allowed to request requests at Nijhof Wassink’s
customer service. These requests contain more details than the customer agreement. Each request
contains the following information:

• Pick-up location and delivery location

• Time window of pick-up and time window of delivery
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• Product handling instructions

• Customer handling preferences

When a request is sent to the planning department, it should contain time windows in which the
vehicle has to arrive at the pick-up and delivery location. The flexibility of the time windows varies
by location. Based on experience, the planning department is aware of how each location handles
deviations. Furthermore, the product handling instructions can include certain forbidden products
to precede this request. These rules are established by law. For example, plastic granulates cannot
be transported before a human food product is carried without cleaning the inside of the trailer.
Additionally, certain customers have preferences on product handling. For instance, some customers
always require a trailer cleaning, even when it is not required by law. These handling instructions
should be respected by Nijhof Wassink. Furthermore, it is important to note that each request in
DBL is a full truckload. Each trailer can carry at most one product for exactly one customer, as the
trailer has one compartment and products cannot be mixed. Therefore, the request quantity is always
one. Although not included in the request information, the service time for pick-up and delivery is
a relevant characteristic of a request. Customers are not required to specify this, but Nijhof-Wassink
estimates the service time based on historical data for similar requests.

A data analysis was conducted, showing that the pick-up and delivery windows are approximately
8 hours long, as can be seen in Figure 2.1. The length of the pick-up time window has a larger
spread and has more extreme outliers compared to the delivery time windows. In 45% of the cases,
the pick-up time window is set to 1 minute. This means that the deadline for the pick-up is at that
time. Arriving earlier at the pick-up location is often also allowed. Delivery time windows have less
variation, and only 8% of the time windows have a specified deadline. The time between the end
of the pick-up window and the start of the delivery window is usually 1 or 2 days, disregarding the
outliers (see Figure 2.2. Therefore, most pick-ups have a next day or day after delivery. Furthermore,
the workload on each day is approximately the same on weekdays. Monday and Tuesday tend to be
busier with deliveries, and only a few requests are due during the weekend. This distribution of the
workload can be found in Figure 2.3.

Figure 2.1: Box plot of the length of the
pick-up and delivery time windows.

Figure 2.2: Box plot of the time between
the end of the pick-up and the start of
the delivery window.
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Furthermore, the data show that after 67% of the requests, a cleaning is planned. On average, the
cleaning takes place 80.43 km from the delivery location. However, from the histogram in Figure 2.4,
there are outliers with long distances. These have a large impact on the average. By only excluding
5% of the highest values, the average already decreases to 56.9 km.

Figure 2.3: Weekly distribution of pick-ups
and deliveries.

Figure 2.4: Histogram of the distance between
the delivery and cleaning.

2.2.3 Vehicle Resources

To plan the requests, the planning department needs to consider its available vehicles. Nijhof Wassink
deploys truck and trailer combinations, together referred to as vehicles. The truck is the front part
containing the driver’s cabin and cannot transport any load. The trailer is coupled to the truck and
transports the load. As said before, the trailer always holds a full truckload and serves at most one
customer at a time. Nijhof Wassink’s DBL has 97 trucks and 136 trailers in total. Generally, all
trucks and trailers are in use every week.

Moreover, the vehicles are stored at trailer parks located in Rijssen, Coevorden, Rotterdam, Bleskens-
graaf, Antwerpen(BE), Zelzate(BE), Kallo(BE) and Barleben(DE). These trailer parks are also re-
ferred to as transfer locations, and are often the start and end locations of a driver’s route. It also
holds space for spare trailers. This makes it possible for drivers to decouple their trailer, either empty
or loaded, and exchange it for another trailer. Transferring trailers can be convenient for driver
changes or meeting tight time windows. It is also common for vehicles to end their shifts at the end
of the week with a loaded trailer. The trailer is then stored over the weekend without impacting
the operational capacity, and the request is delivered the following week. By exception, drivers are
allowed to store their vehicles at another location. These locations are solely used as start and end
locations, so transfers are not permitted there.

To give an overview of the distribution of the pick-up and delivery locations and transfer locations,
Figure 2.5 helps to identify geographical clusters. The color of the circles identifies the type of location,
and the size of the circles indicates the number of actions recorded over the past 6 months. It is evident
that the pick-up locations are more concentrated, and the delivery locations are more dispersed. This
is logical as pick-ups typically occur near harbors or other central hubs where the load can enter
a country. Nijhof Wassink’s deliveries serve as a means to distribute those loads. Furthermore,
the transfer locations, indicated in green, are located near high-traffic areas, such as the harbor of
Rotterdam and Antwerp. These transfer locations can easily facilitate the storage of incoming pick-ups
until the delivery is scheduled.
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Delivery
Pickup
Transfer location

Figure 2.5: Map with locations of pick-ups, deliveries, and transfer locations and their quantities.

2.2.4 Driver Resources

Additionally, the truck drivers are an important resource. In total, Nijhof Wassink has a pool of
160 drivers. At the start of the year, a preliminary schedule outlining the available driver hours.
So, the total number of staffed trucks is known in advance. All truck drivers are long-haul drivers,
meaning they are on the road for multiple consecutive days and stay overnight at an on-route location.
Nijhof-Wassink chooses a standard shift length of 5 days. Each shift starts and ends at one of Nijhof
Wassink’s transfer locations. The planning department is responsible for complying with the Dutch
”rij- en rusttijden bij wegvervoer” law [52]. These regulations define the driver’s maximum allowable
working hours and minimum required rest periods. The law distinguishes between different types of
time allocation: rest time in which no work is performed, driving time spent on actively driving a
vehicle, and work time, which includes driving time and waiting time at customers. The law states
the following:

• Drivers must take a daily rest of at least 11 consecutive hours.

• Between two full daily rest periods, the rest period may be reduced to 9 hours consecutively
without compensating for the missed rest period.

• A break of 45 minutes is required on work days exceeding 9 hours, while a break of 30 minutes
is required on work days between 6 and 9 hours.

• The maximum allowed total driving time is 10 hours per day up to 2 times a week. On the other
working days of the same week, the maximum is 9 hours per day.

• The weekly maximum driving time is 56 hours.

For Nijhof Wassink, the most restrictive factor in the routing planning is the daily rest requirement.
Short breaks are typically taken during waiting times at a pick-up or delivery location, minimizing
their impact on the routing plan. Additionally, the law permits drivers to work every day of the week,
whereas Nijhof-Wassink chooses a 5-day work week. As a result, the last condition of the law only
applies in cases of overtime.
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2.2.5 Outsourcing Requests

Given the driver and vehicle resources, Nijhof Wassink can sometimes have insufficient resources to
fulfill all incoming requests within the required time windows. Additionally, outsourcing requests can
boost planning efficiency, for instance, if the pick-up or delivery location is inconvenient in combina-
tion with the current routing plan. This may induce many empty kilometers, reducing the request’s
profitability or even a financial loss. So even though charters must be paid to execute an outsourced
request, fulfilling the request with Nijhof Wassink’s vehicles may be more costly. The planning de-
partment can choose to outsource requests to other transporters, known as charters. Nijhof Wassink
collaborates with multiple trusted charters, and 34% of requests of the last half year were outsourced.
The charter rates are already known, so the planners can estimate if the charter costs outweigh the
costs of keeping the request. These outsourcing decisions reduce the planning workload as the requests
do not have to be planned anymore.

2.2.6 Planning Horizon

The current planning horizon is 1 to 2 days, meaning there is a strong focus on a short-term routing
plan. Even though the planning horizon is short, historical data show that requests are received
on average 9 days before the scheduled pick-up date. This suggests that there is an opportunity
for extending the planning horizon. As said before, 9% of the requests arrive late, meaning that
planners are actively working on the routing plan of the specified pick-up date when the late request
arrives. Regardless of the short notice, almost all requests are accepted. This is partly due to an act
of service but also because of a lack of overview in the overall routing plan. Due to the latter, it is
currently unknown if a late-arriving request has a positive or negative effect on the overall routing plan.
This means that there is little reason to reject requests. Extending the planning horizon potentially
increases the number of late requests, which may require Nijhof Wassink to reconsider its planning
strategy to reduce the late requests.

2.2.7 Current Planning Process

Combining the information about the resources and requests, the process flow of constructing a rout-
ing plan can be explained. The flow chart is also shown in Appendix B. When a request is received,
customer services first checks if the request is in line with the customer agreement. If the request
details are incorrect, the customer is redirected to the sales department. Otherwise, the request is
added to the list of unplanned requests and is forwarded to the planning department.

The planning department plans each request one by one. If the request is urgent, it has to be planned
as soon as possible and is assigned to the vehicle that is best suited. The driver is probably already
en route, so the planners have to send updated route information to the driver.

If the request is not urgent, there is more planning flexibility. Firstly, the planner checks if there is
a vehicle that is allowed to carry this request’s product after its previous load. Moreover, the vehicle
must be able to execute the pick-up and delivery within the required time windows. After considering
these constraints, the planners aim to minimize the empty kilometers by assigning the request to a
vehicle that is sufficiently close to the pick-up location. After that, the planners check if a cleaning
is required. The vehicle is assigned to the closest cleaning station, and updated route information is
sent to the vehicle. If no vehicle can satisfy the constraints or is not close enough to the location of
the request, planners attempt to alter the routing plan of the already planned vehicles or outsource
the request. If this is unsuccessful, the planning department can ask customer service to contact the
customer and discuss how to proceed. This is a continuous process until all requests are planned.
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2.3 Key Performance Indicators

After the construction of the routing plan, the quality of the routing solution is evaluated by different
key performance indicators (KPIs), such as the load factor, the total travel distance, and the CO2
footprint. This section will explain each KPI and assess the planning performance from the last half
year. In this period, 9445 requests have been planned and executed by Nijhof Wassink’s DBL. An
overview of these KPIs is provided in Table 2.2.

2.3.1 Load Factor

Empty kilometers are travel distances without a load. This occurs when the trailer is empty, for
instance, between the delivery of one request and the pick-up of another request. It also includes the
travel distance from and to a cleaning station. To evaluate the number of empty kilometers, we use a
percentage of empty kilometers relative to the total travel distance. The load factor (LF) is related to
the empty kilometers, as it is the percentage of travel distance with a load. Therefore, the load factor
complements the percentage of empty kilometers and can be calculated as 1 minus this percentage
(see Equation 2.1). Note that this formula assumes full truckload operations, where the truck is either
empty or full. In less-than-truckload settings, the load factor is typically measured relative to the
trailer’s weight utilization over distance. To increase Nijhof Wassink’s efficiency, a high load factor is
favorable.

LF = 1− EmptyKilometers
TotalDistance (2.1)

In the historical data from the last half year, the average empty distance per request was 143.5 km.
Relative to the total distance per request, the percentage of empty kilometers is 27.20%, and the load
factor is 72.80%. The distribution of empty kilometers as a function of total request travel distance is
shown in Table 2.1. Requests with a low and high total distance tend to have more empty kilometers.
For short trips, the percentage of empty kilometers is easily influenced when the total travel distance
is small. The longest trips have a rather high percentage of empty kilometers due to the request’s
location. Some requests lie far away from the areas with a high demand, which makes it harder to
find a return load in this vicinity. This can lead to long travel distances without a load.

Travel distance interval (km) % Empty kilometers #Requests in interval
[0-200) 47.5% 662
[200-400) 26.8% 1272
[400-600) 23.9% 2751
[600-800) 26.8% 2185
[800-1000) 24.3% 1710
[1000-1200) 28.4% 606
[1200-1400) 36.4% 157
>1400 41.4% 102

Table 2.1: Percentage of empty kilometers for requests grouped by total travel distance
and the number of requests per total travel distance interval.

2.3.2 Total Travel Distance

The total travel distance is another KPI. This is the total number of kilometers traveled by all trailers.
Note that Nijhof Wassink tracks the trailers instead of the vehicles or trucks. This is because their
customers are charged based on the trailer’s route. Each request’s route is determined from the
moment that the truck is coupled to the designated trailer used for the request until the trailer is
decoupled. For high efficiency and low operational costs, a lower total travel distance is desired.
Also, a low travel distance can indicate that Nijhof Wassink has room for taking on more business
opportunities. The data analysis shows that the total travel distance per request is, on average, 527.8
km.
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2.3.3 Total Emissions

Lastly, as said in Chapter 1, Nijhof Wassink aims to reduce its emissions, in particular its CO2 foot-
print. The planning performance can be assessed based on the CO2 emissions, which reflects the
environmental impact of this planning solution. The calculation is done based on the GLEC Frame-
work. This is a well-known framework in the logistics sector used to measure emissions [19]. The CO2
footprint is expressed as the average Wheel To Wheel CO2 efficiency in grams per kilometer. Wheel
to Wheel refers to the entire fuel lifecycle, so from the production to the consumption. The formula
is shown below in Equation 2.2. The lower the CO2 emissions, the more efficient and environmentally
friendly the routing plan is.

CO2 footprint [kg/km] = Emission factor [kg/L] ∗ Fuel usuage[L]
Travel distance [km] (2.2)

Based on the historical data, the average CO2 footprint per request is 0.93 kg/km. The emission factor
of Nijhof Wassink’s vehicles is 3.256 kg/L, based on B7 biodiesel. Moreover, the average amount of
fuel used on an average length route is 150.55 L.

KPI Value
Average travel distance per request 527.8 km
Average empty kilometers per request 143.5 km
Average % of empty kilometers per request 27.2%
% Load factor per request 72.8%
Average CO2 footprint per request 0.93 kg/km
Number of requests 9446

Table 2.2: Summary of the KPIs.

2.4 Conclusion

This chapter answered the research question: ”How is the current planning process organized?”.
Firstly, the stakeholders are introduced, and their requirements and wishes are determined. Then, the
sub-processes of the current planning process are introduced and analyzed. It discusses all aspects
concerning the customers, requests, drivers, and vehicles. This section concludes by discussing the
connections between the sub-processes. Lastly, the key performance indicators are explained, and the
performance of the routing plan from the past half year is assessed. The relevant KPIs are summarized
in Table 2.2. This understanding of the context is essential to understanding what optimization model
is the best fit for this company’s context. Chapter 3 therefore explores methods to model a routing
solution that minimizes empty kilometers.
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3| Literature Review
This chapter explores the available theories and methods in the literature to answer the research
questions mentioned in Section 1.3. The purpose of this literature review is to acquire the necessary
knowledge to develop an optimization model that can solve Nijhof Wassink’s routing problem. Based
on the context understanding from Chapter 2, Section 3.1 classifies this company’s transport chal-
lenge within recognized logistics and transportation problem classes. Section 3.2 discusses different
variants of vehicle routing solutions and discusses the best methods that can be applied and adapted
to this company’s context. Section 3.3 discusses relevant solution methods that can be combined with
discussed optimization models.

3.1 Classifying the Problem Context

The transportation challenge of minimizing empty kilometers can be classified within different recog-
nized logistics and transportation problem classes. This section will analyze which concept is the best
fit for this company’s context.

The structure and aim of Nijhof Wassink’s DBL planning and its transportation challenges strongly
align with a Vehicle Routing Problem (VRP). This is a combinatorial optimization problem that is
NP-hard. The concept of a VRP is defined as “the problem of designing least-cost delivery routes
from a depot to a set of geographically scattered customers, subject to side constraints.” [34]. The
resemblance is the design of a routing solution. Moreover, cost is, in this context, defined as minimal
empty kilometers. The side constraints refer to this problem’s request and resource constraints. Ad-
ditionally, the VRP has been widely studied and has evolved to include real-life complexities, such as
time windows, vehicle limitations, and multi-depots [5]. The adaptability of the VRP can be used to
customize to Nijhof Wassink’s problem context.

Opposed to the VRP, the transport problem at hand has minor resemblances with the Generalized
Assignment Problem (GAP). This problem “examines the minimum cost assignment of n jobs to m
agents, such that each job is assigned to exactly one agent and subject to capacity restrictions on the
agents” [7]. Particularly, each request is considered as a job that needs to be assigned to a vehicle.
The GAP can also incorporate real-life complexities but is usually applied to small problems and
focuses mainly on assigning agents to jobs. However, this case deals with homogeneous vehicles and
focuses on route optimization [4]. Furthermore, Network Flow Problems (NFP) are used to optimize
the flow of goods between a set of nodes [56]. They are commonly used in transport networks and
focus on aggregate product flows between those nodes. They often do not explicitly model individual
vehicle routing or customer-specific constraints. For this problem, however, we aim to route each
vehicle instead of the total product flows, and customers pose limitations on the solution. Moreover,
scheduling problems are also common in combinatorial optimization. They aim to find a schedule
that determines the sequence of jobs at different agents [63]. This solution heavily depends on the
precedences between jobs. In this research’s problem context, request pick-ups should precede their
deliveries but there are no dependencies between the requests. This problem class is, therefore, not
suitable for Nijhof Wassink’s problem.

This section compares commonly used problem classes in transport. It concludes that the VRP
is the best fit for Nijhof Wassink’s problem context due to its ability to optimize routes between
geographical locations and its flexibility concerning different constraints. To introduce and identify
the most appropriate variant of the VRP for this context, Section 3.2 provides a comparison between
commonly used variants.
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3.2 Variants of the Vehicle Routing Problem

The classical VRP, first introduced by Dantzig and Ramser, is concerned with designing optimal
delivery routes, where each vehicle travels at most one route [15]. Also, each customer has a demand
and vehicles have some capacity that cannot be exceeded. It originated as an extension of the Traveling
Salesman Problem (TSP). This problem is concerned with visiting all nodes in one route while visiting
each node exactly once and minimizing the cost. The VRP can utilize more than one vehicle to visit
all nodes. Conversely, if we assume that the VRP has one vehicle with infinite capacity, the VRP
reduces to the TSP [51]. The TSP and VRP are both combinatorial optimization problems that
are both NP-hard. Over time, numerous variants have been derived from the VRP to incorporate
real-life complexities into the VRP. For example, models can deal with multiple depot locations, time
windows for customers, and customer pick-ups and deliveries. Since the VRP is an NP-hard problem,
all variants of the VRP are also NP-hard [33]. This section provides an overview of key variants of
the VRP. These variants are also displayed in Figure 3.1.

VRPTW

MDVRP

VRPPD
TTP

VRP-T
MTVRP

VRP
Pick-up & delivery

Time windows

Multi depot

Transfers
Multi trip

Truck & trailer

VRP-BBackhauls

Figure 3.1: Variants of the VRP explained in Section 3.2.

3.2.1 VRP with Time Windows

A commonly occurring variant of the VRP is the routing problem with time windows (VRPTW). This
variant adds a time constraint for each customer. Customers must be served between the start and end
of their time window. The vehicle can arrive before the start of the time window but the customer will
not be served before [20]. In practice, time windows are a useful addition as on-time deliveries have
been linked to the accuracy of the transport and customer satisfaction. Typically, the time windows
can be soft or hard constraints. Violating a hard constraint results in infeasible solutions, whereas the
violation of a soft constraint is a feasible solution but induces a cost penalty in the objective function
[64]. Hard constraints have a large impact on the solution space of the problem. Instead, softening
the constraints can lead to more feasible solutions and is more likely to provide an executable vehicle
routing solution [59]. Soft time windows can be modeled in various ways depending on the context
[49]. Often, the penalty costs increase linearly with the degree of violation. Alternatively, penalties
for late arrivals are significantly higher than for early arrivals. The latter occurs in situations where
vehicles are allowed to wait without added costs. In other words, only the delay must be minimized.
Another option allows a small amount of earliness and latency without significant added costs but at
some specified deviation, the costs become extremely high. The extreme costs mimic the modeling
of hard constraints. This is seen in inventory control, where slight deviations generally do not risk
a stock-out but after a substantial deviation from the time window, it either increases the inventory
holding costs excessively or risks stock-outs [9].

3.2.2 VRP with Pick-ups and Deliveries

Another well-researched variant is the VRP with pick-ups and deliveries (VRPPD). This case involves
customer requests consisting of a pick-up and a delivery instead of deliveries to each customer from the
depot in the general VRP. The routing solution should pair the pick-up and corresponding delivery.
Practical examples of this are parcel delivery services that pick up packages from a sender to a delivery
address. This is a one-to-one process, as each pick-up location corresponds to exactly one delivery
location. It is also common in recycling and waste collection, which is a one-to-many process [3]. A
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single delivery location serves multiple delivery locations. Parragh et al. (2008) note that the VRPPD
is often combined with time windows, commonly referred to as the VRPPDTW [45].

3.2.3 VRP with Multiple Depots

This variant of the VRP includes multiple depot locations for vehicles to start and end from and it
is referred to as the Multi-Depot VRP (MDVRP) [42]. This is a more realistic situation in which the
distribution of load is done from several depots to its customers. This can be particularly useful if
the customers have a wide geographical spread. Practically, it also appears when raw materials are
harvested from different locations and should be distributed amongst different plants. To deal with
a multi-depot VRP, customers should be divided amongst the depots. Thus, this problem first deals
with an assignment problem before the routing problem [25]. One way is to assign each customer to
the closest depot. This problem can then be solved as a set of parallel general VRPs but in practice,
this assignment is not always as clear [32]. This particularly is not an effective solution in collaborating
companies that bundle their vehicles and customers to optimize their route solution [42, 37]. Therefore,
generally, the multi-depot approach can serve each customer with an available vehicle from any depot.
The vehicles should, however, start and end at the same depot. An alternative version allows the
vehicles to start and end at a different depot. This allows vehicles to replenish at the closest depot,
minimizing total travel distance [13].

3.2.4 Truck and Trailer Problem

The truck and trailer problem (TTP) is a less straightforward derivation from the VRP. In a TTP, a
fleet of trucks and trailers serve a set of customers [32, 16]. A truck and trailer combination, i.e., a
truck pulling a trailer, is similar to a vehicle as introduced before. Trucks, as well as trailers, can hold
loads but only the truck, with or without a trailer, can drive. Unlike before, trucks can park their
trailers to, for example, increase truck maneuverability. This divides the customers into two sets: only
accessible by truck or accessible by complete vehicle (but also without trailer). The routing solution
provides vehicle routes with two levels. The main level includes complete vehicle routes, whereas the
second level includes only truck routes. These routes differentiate from the VRP as the TTP solution
allows to visit a node more than once, resulting in a routing solution with subtours. This enables
trucks to re-couple with their trailer [58]. Real-world applications have appeared in milk transport
with customers in mountainous areas or waste collection in crowded cities [23, 26]. A set-partitioning
formulation of the TTP can be seen in Villegas et al. (2013) [61].

3.2.5 Multi-trip VRP

A multi-trip VRP (MTVRP) allows vehicles to make multiple trips in a working period [64]. As
opposed to the general VRP, this variant allows subtours in the routing solution. The additional
challenge of this VRP is determining the set of trips and assigning each trip to a vehicle. In practice,
this variant is useful if the total demand exceeds the total vehicle capacity [35]. Its advantage is that
smaller capacity vehicles can accommodate the demands of a large area by utilizing intermediate stops
at the depot. Practically, MTVRP is used if the depot is replenished continuously throughout the
working period [6] and vehicles may need to return to the depot for an intermediate replenishment.
It is also often suitable for city contexts, where distances between the depot and customers are short.
Cattaruzza et al. (2016) proposed several mathematical formulations of the MTVRP [6].

3.2.6 VRP with Backhauls

The VRP with backhauls (VRP-B) is a routing problem with pick-ups and deliveries [30]. Customers
are divided into linehaul customers, who require deliveries from the depot, and backhaul customers,
who return goods to the depot. A key constraint is that all linehaul customers must be served before
any backhauls are scheduled, and the vehicle’s capacity cannot be exceeded. Furthermore, the linehaul
and backhaul customers are not paired, and transported volumes are less than a truckload. This type
of VRP is commonly used in contexts with two steams of goods, such as a recycling process or in
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the retail industry where suppliers are the linehaul and stores are the backhaul. The variant can be
extended to include time windows, utilization of a mixed fleet, or spatial vehicle loading constraints.
Objectives of a VRP-B often minimize total travel distance or cost [31]. Mingozzi (1999) presented
one of the first mathematical formulations of this VRP variant [40].

3.2.7 VRP with Transfers

The VRP with transfers (VRP-T) allows the vehicles to transfer their load between vehicles at inter-
mediate locations [21]. This is similar to the multi-trip VRP, except that the transfer locations are at
a different location than the depot. This is convenient when a vehicle cannot complete an entire trip.
Pemberthy et al. (2019) have studied a case where vehicles cannot cross country borders, and the load
needs to be transferred [46], or Rais et al. (2014) use transfers to adjust the load or switch drivers
[50]. Moreover, it is applied in a distribution chain, where the load is transported from a large central
depot to local hubs and finally to the customer. The local hubs are, in this case, transfer locations.
The use of transfers is often used in combination with pick-ups and deliveries [50, 38]. This allows
vehicles to store the pick-ups at some transfer location. Then, other vehicles can finish the delivery, or
the same vehicle can continue this request later. This can help to better utilize the vehicle availability
and capacity and increase the solution space [3]. A formal definition of the VRPT can be found in
the work of Rais et al. (2014) [50].

3.2.8 Overview of Variants

The variants of the VRP introduced above are all researched to some extent. Konstantakopoulos
et al. (2022) researched that the general VRP with vehicle capacities has appeared in 82.9% of the
papers published between 2012 and 2022 [32]. Second and third are the VRP with time windows and
pick-ups and deliveries with respectively 46.4% and 20.2%. They also mention that these variants are
rarely studied individually. Combining the different VRP variants to resemble real-life scenarios is
more common. There is an extensive amount of literature found on VRPs with pick-ups, deliveries
and, time windows, and is referred to as PDPTW [64]. For example, Kammarti et al. (2007) proposed
a solution method, and Khoo and Bonab (2022) addressed this problem with multiple objectives
[28, 29]. Moreover, the MTVRP, VRP-B, and TTP appear less than 5% and were combined with
time windows in the following papers: [27, 35, 36, 17, 31]. Also, the TTP has been combined with
transfers in [46]. Furthermore, variants with transfers are often paired with pick-ups and deliveries.
The advancements of VRPPD with transfers have been summarized in [3]. A combination of transfers,
pick-ups, deliveries, and time windows has also been researched but the number of papers is limited.
Cortés et al. (2010) propose a formulation in a passenger transport system [11]. Their formulation also
allows the use of several depots but does not include restrictions on driver hours or customer-specific
constraints. Lye and Yu (2023) followed with a critical review of this problem and proposed a revised
formulation, which also did not include these restrictions [38]. Additionally, Masson et al. (2013)
cover a MDPDPTW-T [39]. Unlike this case, all delivery locations can be used as transfer locations,
the number of vehicles is unlimited, and the total planning horizon is 10 hours. An applied case in
crowd-shipping was also modeled as MDPDPTW-T [57]. However, this study has a planning horizon
of at most 5 hours, allows vehicles to visit a transfer station only once, and includes no customer-
specific constraints. A complete table with the relevant papers and their discussed VRP variants can
be found in Appendix C.

3.2.9 Selecting a VRP Variant

Nijhof Wassink’s problem context shares characteristics with several of the variants that were previ-
ously introduced. The variants that do not align with this problem’s context are the MTVRP, TTP,
and VRP-B. In a multi-trip context, vehicles must restock or unload at the depot as an intermediate
stop to continue their routes. Contrarily, in Nijhof Wassink’s context, depots merely park the vehicles,
which is counter-productive when serving customers. The TTP is also not the best fit for this context,
as the TTP utilizes trucks that can operate without trailers. For Nijhof Wassink, the trucks are only
a means of moving the trailers and the trucks on their own cannot transport any load. The backhaul
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variant incorporates both pick-ups and deliveries but does not support a pairing of the pick-up to the
delivery. It commonly involves less-than-a-truckload operations and has a focus on vehicle capacity
management and loading constraints. Instead, Nijhof Wassink requires a paired pick-up and delivery,
and truckloads are always full, reducing the relevance of vehicle capacity planning. On the other hand,
a combination of the PDPTW with multiple depots and transfers seems to have the strongest resem-
blance. This combination will, for the remainder of this research, be referred to as MD-PDPTW-T.
As mentioned, some papers have explored this combination of VRP variants before but there are still
key differences to this paper’s problem context. To the best of my knowledge, these papers have not
considered an objective based on empty kilometers and only included limited driver and customer
constraints.

3.3 Solution Methods for VRPs

Over time, many researchers have proposed different ways to solve variants of the VRP. These solution
approaches can be divided into two categories, namely exact and heuristic approaches. Exact methods
often involve mixed-integer programs (MIPs). However, the complexity of VRPs makes finding an
optimal solution in a reasonable time almost impossible, particularly in larger instances. Therefore,
heuristics are typically favored over exact methods due to their balance between solution quality and
computation time. The following sections elaborate on the most relevant approaches for the MD-
PDPTW-T. Additionally, a summary of the solution methods for each of the VRP variants can be
found in Appendix C.

3.3.1 Exact Methods

Exact VRP solutions are often based on MIP models and guarantee an optimal solution if one exists.
The most used methods for the PDPTW are branch-and-cut, branch-and-price, and branch-and-cut-
and-price methods. The work of Ropke and Cordeau (2009) used the latter approach, and their results
have been established as a benchmark for future research [53]. Baldacci et al. (2010) formulate VRPs
as a set partition problem and provide an exact branch and price algorithm. The proposed algorithms
were able to solve most of the benchmark instances on the PDPTW and MDVRP relatively fast
[1, 18]. Thereafter, Pessoa et al. (2019) proposed a branch-and-cut-and-price method for a generic
VRP model [47]. It achieved superior results on the VRPTW, notably better performance on the
MDVRP, and mixed outcomes on the PDPTW, compared to existing literature. Recently, a revised
MIP formulation for the PDPTW-T with a single depot was proposed by Lyu and Yu (2023) [38].
Their solvable scale has increased from 3 requests and 4 transfer stations to 5 requests and 4 transfer
stations while reducing the average computing time by 40%. From the literature, it seems that solving
a realistically sized problem exactly at this moment is not possible in a feasible time.

3.3.2 Heuristic Methods

The heuristics used in VRPs can be divided into constructive heuristics and meta-heuristics. The anal-
ysis by Konstantakopoulos (2022) concluded that construction algorithms are mainly used to build an
initial solution [32]. The initial solution can then be used as input for meta-heuristics. Meta-heuristics
are widely used for solving VRPs due to their ability to handle complexity and large-scale problems.
These methods are capable of both exploring the often large solution space as well as exploiting a
promising region of the solution space. Some of the most used meta-heuristics in VRPs will be dis-
cussed below.

Simulated Annealing
Simulated annealing is one of the first and most well-known meta-heuristics [55]. It requires an ini-
tial solution, which is usually chosen at random. Then, by making a small change to the current
solution, so-called neighbor solutions are drawn up. If the solution is better, it is always accepted
as the new, best current solution but if the solution is worse, it can still be accepted with a certain
probability. The acceptance probability of worse solutions decreases as the temperature parameter
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gradually decreases [20]. At high temperatures, the algorithm is more likely to accept worse solutions,
enabling exploration of the solution space and chances of escaping local optima. As the temperature
decreases, the acceptance of worse solutions is less frequent, allowing the algorithm to focus on thor-
oughly exploiting the solution space around the current solution. According to Zhang et al. (2022),
SA is computationally efficient but works best in small-scale instances [64].

One of the first applications of SA on a VRP with time windows was done by Chiang and Russel
(1996) [8]. They proposed a SA method with 2 methods of finding new neighbors and tested this on
instances of 100 customers. In 2006, Bent and Van HentenRyck proposed a two-stage SA approach
to minimize the number of vehicles, combined with a linear search to minimize distance[2]. Their
approach was applied to VRPTWs. However, the authors noted that an extension with pick-ups and
deliveries remains an issue. Furthermore, a parallel SA method is proposed to solve a VRP with
simultaneous pick-ups and deliveries and time windows [62]. Future work suggests that different local
search techniques can be used to further decrease travel distance. Cortes and Suzuki (2020) applied
a two-stage SA to a VRP with transfers at customer locations, compared to a VRP without transfers
[12]. It also allows customer demand to be satisfied by more than one vehicle. The study suggests
that transfers decrease overall costs in instances of 400 customers.

Tabu Search
A tabu search (TS) is a local search method that aims to escape local optima by also allowing a worse
solution than the best found so far [24, 22]. It also constrains the search in the solution space by
prohibiting certain neighborhood moves. These moves are on the so-called ’tabu list’ for a predefined
time. Zhang et al. (2022) found that TS methods are closest to the optimal solution but have the
longest computation time [64].

One of the first greedy solutions for the VRP with pick-ups, deliveries, and time windows, was the
reactive tabu search developed by Nanry and Barnes (2000) [43]. The initial solution was created by
an insertion algorithm, and three different neighbor moves were considered. For instances with 50
customers, near-optimal results were obtained. Soon after, Cordeau et al. introduced a unified TS
method applicable to multiple variants, including the MDVRPTW [10]. Crevier et al. (2007) studied
a case of MDVRP with inter-depot routes, allowing vehicles to replenish at certain depots. They
found routing solutions with a tabu search, combined with adaptive memory and linear programming
[13]. Note that the inter-depot replenishments are similar to transfers. Moreover, Montané and Gal-
vao proposed a tabu search for VRPTW with simultaneous pick-ups and deliveries. Three types of
movements and 4 different neighborhood moves are used and presented quality results for instances
up to 400 customers [41]. Although various VRP variants have been solved successfully with a TS,
the specific variant of interest addressed in this paper has not yet been explored.

Adaptive Large Neighborhood Search
The adaptive large neighborhood search (ALNS) is a local search framework that uses a set of heuris-
tics. Destruction heuristics are in place to destroy a part of the solution, upon which repair heuristics
rebuild a new solution. ALNS can track the performance of the destroy and repair heuristics and adjust
the probabilities of selecting those heuristics. The choice of a set of operators enables the algorithm to
explore large parts of the solution space in a structured way [48]. Furthermore, the heuristic requires
a local search framework, which can be based on simulated annealing. This allows the algorithm to
occasionally accept worse solutions to avoid getting trapped in local optima. This makes the ALNS
more robust. The downside to the algorithm is the relatively large number of variables that are in
need of parameter tuning, including the scores for each operator.

Pisinger and Ropke (2007) have studied the MDVRP and PDPTW with an ALNS [48] and see po-
tential to extend their algorithm to other combinations of VRP variants. They also mention that,
compared to other heuristics, the ALNS performs better in tightly constrained problems. This is due
to its ability to make large changes to the solution to reach new feasible solutions. Masson et al.
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(2013) then extended this research and added transfers to the PDPTW variant [39]. They presented
an ALNS with 3 destruction and 3 repair heuristics, as well as heuristics for selecting an appropriate
transfer location. The proposed algorithm is tested on PDPTW instances compared to PDPTW-T
instances. The instances used have up to 4 transfer locations and can handle at most 200 requests.
The computational time of instances, including transfers, is much longer but improves the solution
by 9%. A similar study was done by Sampaio et al. (2020) [57]. They aimed to show the benefits of
utilizing transfers in crowd shipping. To do so, their ALNS employs 5 destroy operators and 3 repair
operators and showed significant improvements in comparison to the benchmark instances.

Genetic Algorithm
The genetic algorithm (GA) is a population-based meta-heuristic. Inspired by biological natural se-
lection, this algorithm generates new ’offspring’ solutions based on the fitness of the current ’parent’
solutions. The higher the fitness, the higher the probability of selecting this parent solution. Pairs of
parent solutions are crossed over to generate offspring. Additionally, random mutations are introduced
to some offspring to maintain diversity and explore the solution space. As each generation passes down
its strengths to the offspring, the population is refined over time, improving the solution quality.

A hybrid genetic algorithm was proposed by Vidal et al. (2013) [60]. This algorithm is applicable for
large-scale instances of the VRPTW, combined with multiple depots and route duration constraints.
The instances range from 50 - 1000 customers and up to 9 depot locations. The solution quality and
computational efficiency are higher than the current methods. Moreover, Danloup et al. (2018) were
the first ones to solve the PDPTW-T with a GA [14]. They performed a comparative study on the
performance of an ALNS and GA on benchmark instances. The study shows that the GA slightly
outperforms the ALNS. The GA achieves an optimal solution in 74% of the cases, compared to 65%
for the ALNS. Furthermore, the proposed algorithm aims to find a set of routes, each starting and
ending at one of the depots, and satisfying all requests while minimizing the number of vehicles used
and the total traveled distance.

3.3.3 Selecting a Solution Method

As mentioned, the VRP and any of its derivatives are NP-hard problems. This means that the opti-
mal solution cannot be guaranteed in polynomial time, particularly for larger instances. While exact
approaches provide precision, they are computationally demanding, especially for large instances.
Heuristics, although less precise, provide more practical solutions within a reasonable time. Given the
large scale of the problem addressed in this paper, a heuristic approach is the most suitable choice.

Among the various heuristic approaches introduced above, the ALNS appears to be the most suitable
for this study. This approach is well-established in the current literature and has performed well
on similar VRP variants and problem instances of comparable size. Although, to the best of my
knowledge, no studies address the exact VRP variant and specific problem context considered in this
paper. However, the design of the destroy and repair operators offers adaptability to the specific
constraints and requirements of this problem.

3.4 Conclusion

This chapter provides a comprehensive literature review of the relevant concepts related to this re-
search. Firstly, the problem class is defined, and it is concluded that the company’s problem resembles
a VRP. Secondly, various variants of the VRP are introduced and compared. This study is most aligned
with the MD-PDPTW-T. Thirdly, exact and heuristic solution approaches are presented. It suggests
that the ALNS is a promising method to solve the addressed problem. The next chapter, Chapter 4,
provides a problem description and a mathematical formulation of the VRP adapted to this research’s
context.
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4| Problem Description & Mathematical
Formulation
This chapter aims to design a mathematical model for DBL’s planning for two key purposes. First, it
provides a mathematical understanding of the optimization problem, including an illustrative example.
Second, it justifies the need for a heuristic solution, which is designed in Chapter 5. Section 4.1 outlines
the optimization problem. Section 4.2 elaborates on the modeling assumptions. Section 4.3 displays
a complete mathematical model and evaluates its feasibility. It ends with section 4.4 concluding the
chapter.

4.1 Problem Description

This section outlines the model, including its objective and constraints. As mentioned in Section 3.2,
the problem closely aligns with an MD-PDPTW-T problem. The formulation builds on the multi-
commodity flow network of Rais et al. (2014) [50] and the improvements of Lyu and Yu (2023) [38].
This network has two flows: one considering the flow of requests carried by trailers from pick-up to
delivery location and one considering the flow of trucks from leaving to returning to the depot. The
primary objective is to minimize the empty kilometers, thus minimizing the distance trucks drive with
an empty trailer. However, to reflect Nijhof Wassink’s other operational considerations, the model
also incorporates secondary objectives. In particular, it also minimizes the total traveled distance, the
penalty incurred for violating the time window constraints, and the number of vehicles used. These
additional components are incorporated to ensure more effective and practically feasible solutions. The
inclusion of the minimization of total distance is required to avoid unrealistic solutions. To illustrate,
if only empty kilometers were minimized, combined with the ability to transfer requests, a truck could
continuously couple with loaded trailers to avoid empty kilometers. While this would benefit the
empty kilometer KPI, such routing strategies can lead to unnecessarily high amounts of total travel
distance and infeasible routing solutions in practice. Furthermore, the time window component is
included to represent service level expectations from customers. Additionally, the number of vehicles
used is considered. If the model should use all vehicles, it might spread requests across all vehicles,
each with minimal empty kilometers. However, this can lead to an excessive number of vehicles used,
which can be more costly than a slightly higher proportion of empty kilometers. Therefore, allowing
the model to choose the number of vehicles helps to balance empty kilometers and vehicle usage. The
model further accommodates transfers, full-truck loads, driver hour limitations, and soft time windows
for requests. The model’s output is a routing solution that enables vehicles to fulfill all pick-up and
delivery requests while allowing them to transfer their loads at transfer stations.

4.1.1 Illustrative Example

To illustrate the optimization problem, an example routing solution is shown in Figure 4.1, with 2
vehicles, a depot, a transfer station, and 3 requests. Each request i ∈ {1, 2, 3} consists of a pick-up
Pi and its corresponding delivery Di. All distances are Euclidean, and time units are defined as equal
distance units. Each pick-up and delivery require 2 and 1 unit(s) of service time, respectively. Loading
or unloading at transfers requires no service time. However, synchronization is necessary, meaning
that the pick-up must first arrive at the transfer station before it can be transported to the delivery
location. That is, the vehicle assigned to the delivery cannot depart from the transfer before the
corresponding has been dropped off. The input data, including a distance matrix, are presented in
Appendix D. Vehicles must be returned to the depot at time t = 25, which is a hard constraint. Ad-
ditionally, vehicles require a 5-unit break after 10 units of accumulated work. All locations have time
windows with penalties for early or late arrivals, as presented in a table on the right side of the figure.
If a vehicle arrives before the time window opens, the vehicle must wait. The objective minimizes the
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sum of empty distance, total distance, time window violations, and the number of vehicles used. All
objective components are weighted equally in this example.

Figure 4.1 presents the optimal routing solution. The colored arcs represent the vehicles’ traveled
paths. The numbers on the arc show the distance and time units per arc, and bold represents empty
distance. The t = . . . indicates the vehicle’s arrival time at that location. Vehicle 1 departs from
the depot at t = 0 and reaches P3 at t = 2.2. After which, it serves P3 for 2 units of time and
travels 2 units of time to arrive at D3 at t = 6.2. It then travels to the transfer station to receive the
load of request 1, which was dropped off earlier by vehicle 2. To deliver request 1 at D1, the vehicle
would arrive at t = 11.4 but this exceeds the working limit. Therefore, a 5-unit break is required
and postpones the arrival time to t = 16.4 instead. It returns to the depot before it closes. Vehicle
2 travels to location P1 and drops this load off at the transfer station. It also serves request 2, with
time window violations of 0.2 for both pick-up and delivery. For instance, vehicle 2 arrives at P2 at
15.2, while the location closes at 15, incurring a 0.2 units penalty. To calculate the objective of this
solution, we sum the components. First, empty kilometers are indicated in bold on arcs without a
load, in total 17.1 (see Figure 4.1). The total distance is the sum of all traversed arcs, totaling 27.1.
Time window penalties are incurred if the arrival time is outside the bounds of the time window,
which occurs at P2 and D2. Two vehicles are used for this solution. As all components are weighted
equally, the total objective value is 46.6, as also shown in the table in the figure. This solution satisfies
the constraints and achieves the minimum objective for this example problem. Alternative routing
solutions are either infeasible or yield a higher objective value.
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Figure 4.1: Optimal routing solution of illustrative example, including time windows and objective
value.

4.2 Modeling Assumptions

After outlining the optimization problem, the modeling assumptions are defined. They simplify the
complexities of real-world planning while maintaining the model’s practical applicability. The as-
sumptions are listed below:

Resources
• All available trucks during a certain period match the resources from historical planning data

from the same period.
• Trucks can always be staffed with a driver, so the number of trucks determines the resources.
• Each truck is staffed by one driver. If the driver is resting, the truck is idle.
• All Nijhof Wassink’s trailers can be utilized, even if they were not used in historical data.
• Trailers are homogeneous with identical capacity and travel times for all vehicles.
• Each truck starts and ends at the pre-assigned depot.
• All trailers are empty at the start of the planning horizon.
• Each trailer can hold at most one request. The truck is unable to carry any load.
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Requests
• All requests must be served. Requests that were outsourced are already removed from the input

data.
• Service times at pick-up and delivery locations are deterministic and predefined.
• Each request is a full-truck load and cannot be split.
Travel Distance and Times
• The distance matrix is assumed to be symmetric.
Cleaning Stations
• Due to the abundance of cleaning stations with comparable service times and costs, a predefined

cleaning station is chosen for each delivery. The travel time from the delivery to the cleaning
station and cleaning service time are added to the service time of the delivery. The detour
distance to and from the cleaning station is included in the travel distance to the next location.

Transfer Stations
• Transfers occur only at transfer locations.
• Initially, there are no requests at the transfer stations.
• Transfer stations have no capacity limits.
• Vehicles can wait for a request at a transfer station.
• Transfer stations are always open, meaning they have no time windows.
• Transfer stations store empty, clean trailers ready for use.
• Vehicles can visit a transfer station at most once.
Time Windows
• Vehicles are expected to arrive within the specified time windows. Deviating from this time

window is permitted but incurs a penalty proportional to the violation and the strictness per
location.

• Violations are determined by the time of arrival. As the time of departure is primarily influenced
by the customer, it is not considered when evaluating these violations.

Driver Hour Limitations
• Trucks operate for a fixed 5-day workweek.
• Daily work, including driving and waiting time, is limited to a maximum of 13 hours to comply

with Dutch regulations. The exemption allowing shorter daily rests is intentionally not scheduled
to allow flexibility for potential delays during the execution.

• An 11-hour rest period is scheduled after reaching the daily work limit.
• Short breaks are not explicitly scheduled, as they typically occur during waiting times at pick-up

or delivery locations.
• Drivers are not scheduled for overtime.

4.3 MIP

This section presents the mathematical model formulation concerning the optimization problem of
Nijhof Wassink’s DBL. It begins with defining the sets, parameters, and decision variables, followed
by the objective function and the constraints. Then, the model solves some planning instances, and
the feasibility of the model is evaluated.

4.3.1 Model Notation

Let G(N,A) be a directed graph, where set N represents the nodes and set A represents the arcs
between the nodes. For each pair of nodes i and j ∈ N , the arc from node i to node j is denoted as
ij ∈ A. The graph, consisting of nodes and arcs, is referred to as a network. The requests to be fulfilled
involve transporting loads from a pick-up to a delivery location. A request r is defined by its pick-up
location p(r), with time window [ap(r), bp(r)] and delivery location d(r) with time window [ad(r), bd(r)].
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In Nijhof Wassink’s context, requests can be transferred at depot locations. To follow the notation of
Rais et al. (2014), a dummy set of transfer locations, corresponding to each depot location is used [50].

Network Preprocessing
Since vehicles in this problem only transport full truck loads, certain arcs in the network cannot be
part of a valid routing solution. For example, after visiting a pick-up location, a vehicle is loaded and
cannot pick up another load until it has delivered or transferred the current load. Note that a location
cannot serve as both a pick-up and delivery location for different requests. If a location functions as
both, it is duplicated in the network to ensure each instance serves only one purpose. Also, vehicles
must return to their assigned depot and are not permitted to visit other depots. Table 4.1 shows a
summary of the feasible and infeasible arcs based on the types of nodes. Infeasible arcs are removed
during the preprocessing to reduce the number of decision variables and, consequently, the problem’s
complexity.

From / to Depot Pick-up Delivery Transfer
Depot ∗1 4 7 4

Pick-up 7 7 ∗2 4

Delivery ∗1 4 7 4

Transfer ∗1 4 4 4

∗1 Only to the vehicle’s assigned depot
∗2 Only to the corresponding delivery of the pick-up

Table 4.1: Feasible and infeasible arcs in the network based on the type of nodes.

Sets
The sets are defined as follows:

K indexed by k = {1, . . . , |K|} Set of vehicles
R indexed by r = {1, . . . , |R|} Set of pick-up and delivery requests
O indexed by o = {1, . . . , |O|} Set of depot locations
P indexed by p(r) ∈ N, ∀r ∈ R Set of pick-up locations
D indexed by d(r) ∈ N, ∀r ∈ R Set of delivery locations
T indexed by t = {1, . . . , |T |} Set of transfer locations
N = O ∪ T ∪ P ∪D Set of all nodes

Note that the sets O, T, P, and D are disjoint. Each transfer location is a dummy node of its corre-
sponding depot location. Additionally, if a location serves as both a pick-up and delivery location in
different requests, it is duplicated to ensure that each location only serves one purpose.
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Parameters
The following parameters are defined:

o(k) Start and end depot of vehicle k ∈ K, with o(k) ∈ O

dij Travel distance on arc ij ∈ A

tij Time required to move from node i to node j for i, j ∈ N

[ap(r), bp(r)] Time window for the pick-up of request r ∈ R

[ad(r), bd(r)] Time window for the delivery of request r ∈ R

[ao(k), bo(k)] Time window for the depot locations o(k) ∈ O of vehicle k ∈ K

si Service time at request node i ∈ P ∪D

w Maximum length of a vehicle’s working shift
f Minimum length of a vehicle’s resting period
αi Penalty costs of arriving early at node i ∈ P ∪D

βi Penalty costs of arriving late at node i ∈ P ∪D

ϵ Fixed costs per unit travel distance without a load (empty kilometers)
γ Fixed costs per unit travel distance with a load
δ Fixed costs per utilized vehicle

M Big M parameter, used for conditional constraints

Decision Variables
The decision variables are defined as follows:

Xk
ij = 1 if vehicle k ∈ Kuses the arc ij ∈ A, 0 otherwise

Y kr
ij = 1 if vehicle k ∈ K carries request r ∈ R on the arc ij ∈ A, 0 otherwise
Uk = 1 if vehicle k ∈ K is used, 0 otherwise
Zk
ij = 1 if node i (at any time) precedes node j on route of vehicle k ∈ K,

where i, j ∈ N, 0 otherwise
Skl
jr = 1 if request r ∈ R is transferred from vehicle k ∈ K to vehicle l ∈ K,

at node j ∈ N, 0 otherwise
T k
j ∈ R+ indicating the arrival time at node j ∈ N with vehicle k ∈ K

T̄ k
j ∈ R+ indicating the departure time at node j ∈ N with vehicle k ∈ K

Dk
i ∈ R+ as a slack variable for arriving early at pick-up and delivery locations i ∈ P ∪D

D̄k
i ∈ R+ as a slack variable for arriving late at pick-up and delivery locations i ∈ P ∪D

Qk
i ∈ R+ indicating the cumulative time worked after vehicle k ∈ K visits node i ∈ N

Bk
ij = 1 if vehicle k ∈ Ktakes a break after traversing arc ij ∈ A, 0 otherwise

W kr
ij ∈ [0, 1] as an auxiliary variable, used for linearization of the objective function

4.3.2 Objective and Constraints

Objective
The model aims to minimize costs, consisting of different components. These are the following:

• Empty kilometers, representing the distance traveled without load. Scaled with a cost factor per
unit distance traveled without a load, ϵ.
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• Total distance traveled to discourage unnecessary traveling with a load. Scaled with the cost
factor per unit distance traveled with a load, γ.

• Time window violations, which are calculated by the costs of arriving too early, αi, and arriving
too late, βi. Costs are determined per request location.

• Number of vehicles used, multiplied by a cost factor per used vehicle, denoted by δ.

Combining these components gives the following objective function.

ϵ
∑
ij∈A,
k∈K

dijX
k
ij

(
1−

∑
r∈R

Y kr
ij

)
︸ ︷︷ ︸

Empty kilometers costs

+ γ
∑
ij∈A,
k∈K

dijX
k
ij

︸ ︷︷ ︸
Travel distance costs

+
∑

i∈P∪D,
k∈K

(
αiD

k
i + βiD̄

k
i

)
︸ ︷︷ ︸

Violation of time windows costs

+ δ
∑
k∈K

Uk

︸ ︷︷ ︸
Use of vehicles costs

(4.1)

Note that the empty kilometers costs are nonlinear due to the multiplication of decision variables.
To linearize this component of the objective, the McCormick relaxation constraints are used. By
introducing the auxiliary decision variable W kr

ij = Xk
ij · Y kr

ij , the empty kilometers component of the
objective can be reformulated as follows:

ϵ
∑
ij∈A,
k∈K

dij
(
Xk

ij −
∑
r∈R

W kr
ij

)

Although linearizing an objective function does not always improve a model’s performance, in this
case, the linearized objective outperforms the quadratic objective. This is further discussed in Sub-
section 4.3.3. Additional constraints are required to bound the auxiliary variable and are explained
in the next paragraph.

Constraints
To construct a feasible routing solution, the model has constraints for the truck and trailer availability,
driver hour limitations, and request requirements. Each set of constraints is explained below.

McCormick Constraints

W kr
ij ≤ Xk

ij ∀ij ∈ A, k ∈ K, r ∈ R (4.2)
W kr

ij ≤ Y kr
ij ∀ij ∈ A, k ∈ K, r ∈ R (4.3)

W kr
ij ≥ Xk

ij + Y kr
ij − 1 ∀ij ∈ A, k ∈ K, r ∈ R (4.4)

Constraints 4.2 and 4.3 provide upper bounds for the auxiliary variable by ensuring that it cannot
exceed the value of each of the binary decision variables. Constraints 4.4 provide lower bounds for the
auxiliary variable. Together, these constraints ensure that decision variable W kr

ij behaves like Xk
ij ·Y kr

ij .
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Vehicle and Request Flows∑
j:ij∈A

Xk
ij ≤ 1 i = o(k), ∀k ∈ K (4.5)

∑
j:ij∈A

Xk
ij −

∑
j:ji∈A

Xk
ji = 0 i = o(k), i ̸= j, ∀k ∈ K (4.6)

∑
j:ij∈A

Xk
ij −

∑
j:ji∈A

Xk
ji = 0 ∀i ∈ N\O, ∀k ∈ K (4.7)

∑
j:ij∈A

Xk
ij = Uk i = o(k), j ∈ N\O, ∀k ∈ K (4.8)

∑
k∈K

∑
j:ij∈A

Y kr
ij = 1 i = p(r), ∀r ∈ R (4.9)

∑
k∈K

∑
j:ji∈A

Y kr
ji = 1 i = d(r), ∀r ∈ R (4.10)

∑
k∈K

∑
j:ij∈A

Y kr
ij −

∑
k∈K

∑
j:ji∈A

Y kr
ji = 0 ∀i ∈ T, ∀r ∈ R (4.11)

∑
j:ij∈A

Y kr
ij −

∑
j:ji∈A

Y kr
ji = 0 ∀i ∈ N\{T ∪ {p(r), d(r)}}, ∀r ∈ R, ∀k ∈ K (4.12)

∑
k∈K

∑
j:ji∈A

Y kr
ji = 0 i = p(r), ∀r ∈ R (4.13)

∑
k∈K

∑
j:ij∈A

Y kr
ij = 0 i = d(r), ∀r ∈ R (4.14)

∑
r∈R

Y kr
ij ≤ 1 i ̸= j, ∀ij ∈ A, ∀k ∈ K (4.15)

Y kr
ij ≤ Xk

ij ∀ij ∈ A, ∀r ∈ R, ∀k ∈ K (4.16)
Xk

ij ∈ {0, 1} ∀ij ∈ A, ∀k ∈ K (4.17)
Y kr
ij ∈ {0, 1} ∀ij ∈ A, ∀r ∈ R, ∀k ∈ K (4.18)
Uk ∈ {0, 1} ∀k ∈ K (4.19)

Constraints 4.5 ensure that, at most, one route is initiated for each vehicle from its depot. Using
“≤” instead of “=” allows the model to use fewer vehicles than available. Constraints 4.6 ensure that
each vehicle begins and ends its route at its assigned depot. Constraints 4.7 maintain flow conser-
vation for vehicles throughout the nodes in the network. Constraints 4.8 indicate whether a vehicle
is used, required for minimizing the total number of vehicles used. Constraints 4.9 and 4.10 ensure
that all pick-ups and deliveries are fulfilled, respectively. Constraints 4.11 enforce flow conservation
of requests at transfer nodes and restrict transfers to the designated nodes. On the other hand, con-
straints 4.12 maintain request flow at all other nodes, ensuring that if a request arrives at a node,
it must leave with the same request. Depots are excluded from these constraints, as no request can
be carried from and to the depot. Constraints 4.13 and 4.14 prevent requests from being carried
on arcs before their pick-up or after their delivery. These constraints are needed to calculate the
empty kilometers. Otherwise, the model may carry unnecessary loads to reduce the empty kilometers.
Previous formulations did not require these constraints as they were independent of the objective
function. Constraints 4.15 ensure that at most one request is carried on an arc for a given vehicle.
Constraints 4.16 require vehicle flow if a request is carried on a certain arc. Note that constraints 4.5
to 4.7 ensure flow of vehicles and constraints 4.9 to 4.12 ensure flow of requests. 4.16 is the constraint
that links the two flows. Constraints 4.17, 4.18 and 4.19 ensure that these decision variables are binary.
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Subtour Elimination Constraints

Xk
ij ≤ Zk

ij ∀i, j ∈ N\o(k), ∀k ∈ K (4.20)
Zk
ij + Zk

ji = 1 ∀i, j ∈ N\o(k), ∀k ∈ K (4.21)
Zk
ij + Zk

jl + Zk
li ≤ 2 ∀i, j, l ∈ N\o(k), ∀k ∈ K (4.22)

Zk
ij ∈ {0, 1} ∀i, j ∈ N, k ∈ K (4.23)

For feasible routing solutions, the possibility of vehicles driving in subtours should be eliminated. Con-
straints 4.20, 4.21, and 4.22 serve as subtour elimination constraints by enforcing precedence relations
between nodes in linear ordering. Constraints 4.20 ensure that for any Xk

ij = 1, node i must precede
node j as they are immediate predecessors in the vehicle flow. Constraints 4.21 allow that either node
i precede j or node j precede i but not both. Note that the depot locations are excluded to allow
vehicles to return to the depot. Constraints 4.22 avoid cycles between three distinct nodes visited by
the same vehicle. Constraints 4.23 ensure that the decision variables are binary.

Time Window Constraints

T k
p(r) +Dk

p(r) ≥ ap(r) ∀r ∈ R, ∀k ∈ K (4.24)
T k
d(r) +Dk

d(r) ≥ ad(r) ∀r ∈ R, ∀k ∈ K (4.25)
T k
p(r) − D̄k

p(r) ≤ bp(r) ∀r ∈ R, ∀k ∈ K (4.26)
T k
d(r) − D̄k

d(r) ≤ bd(r) ∀r ∈ R, ∀k ∈ K (4.27)
T k
o(k) ≥ ao(k) ∀k ∈ K (4.28)

T̄ k
i + tij − bo(k) ≤M(1−Xij) j = o(k), ∀i ∈ N\O, ∀k ∈ K (4.29)∑

j:ji∈A
Y kr
ji +

∑
j:ij∈A

Y lr
ij ≤ Skl

jr + 1 ∀r ∈ R, ∀i ∈ T, k ̸= l, ∀k, l ∈ K (4.30)

T k
j − T̄ l

j ≤M(1− Skl
jr) ∀r ∈ R, ∀j ∈ T, k ̸= l, ∀k, l ∈ K (4.31)

T k
p(r), T

k
d(r), Dp(r), Dd(r), D̄p(r), D̄

k
d(r) ≥ 0 p(r) ∈ P, d(r) ∈ D, ∀r ∈ R, ∀k ∈ K (4.32)
T̄ k
i ≥ 0 ∀i ∈ N\O, ∀k ∈ K (4.33)

Skl
jr ≥ 0 ∀j ∈ N, ∀r ∈ R, ∀k, l ∈ K (4.34)

Time windows in this problem are soft, meaning that violations are permitted but incur penalties.
Constraints 4.24 and 4.26 ensure that vehicles arrive at the pick-up location after it opens and before
it closes. 4.25 and 4.27 ensure that vehicles arrive at the delivery location between opening and clos-
ing. Constraints 4.28 and 4.29 enforce the same but for delivery locations. Constraints 4.30 maintain
synchronization of requests during transfers between vehicles. Constraints 4.31 allow a request to
transfer from a vehicle k to vehicle l, provided that vehicle k arrives at the transfer station before the
departure of vehicle l. Constraints 4.32, 4.33, 4.34 enforce that the decision variables are nonnegative.

Driver Hours Constraints

T̄ k
i + tij + f ·Bk

ij − T k
j ≤M(1−Xk

ij) ∀i, j ∈ N, ∀ij ∈ A, ∀k ∈ K (4.35)
Qk

i + tij + sj − w ·Bk
ij −Qk

j ≤M(1−Xk
ij) ∀i, j ∈ N, ∀ij ∈ A, ∀k ∈ K (4.36)

Qk
i − w ≤M(1−Bk

ij) ∀i ∈ N, ∀ij ∈ A, ∀k ∈ K (4.37)
Bk

ij ≤ Xk
ij ∀ij ∈ A, ∀k ∈ K (4.38)

Bk
ij ∈ {0, 1} ∀ij ∈ A, ∀k ∈ K (4.39)

Qk
i ≥ 0 ∀i ∈ N, ∀k ∈ K (4.40)

Constraints 4.35 calculate the arrival time at node j if vehicle k has traversed arc ij. These constraints
account for the travel time and the mandatory break time if a break is required. The constraints are
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nonbinding if the arc ij is not traversed by vehicle k. Constraints 4.36 update a vehicle’s cumulative
working time after visiting a node. When a break is taken, the cumulative working time is reset to
zero. Constraints 4.37 force a vehicle to take a break after its cumulative driving time exceeds the
limit. Constraints 4.38 require breaks to be taken on an arc included in the vehicle’s route. Constraints
4.39 and 4.40 ensure that the decision variables are binary and nonnegative, respectively.

4.3.3 Model Size and Feasibility

To evaluate the computational feasibility of the model, test instances with varying numbers of depot
locations (|O|), requests (|R|), and vehicles (|K|) are defined. The input parameters are derived from
the historical planning data. The travel distances were assumed to be Euclidean, and vehicle speeds
are considered constant at 60 km/h. The cost factor weights were defined as: ϵ = γ = 10, δ = 60, αi =
βi = 5. The verification of the distribution weights is left for the heuristic solution, which aims to
provide practical results. The experiments were conducted using an 8 GB RAM system with the
Gurobi optimizer in Python, and a 30-minute time limit was imposed per run.
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O/T

First arc

Figure 4.2: Routing solution of the instance with 2 depots, 11 requests, and 3 vehicles.

To provide an intuitive understanding of the model’s output, Figure 4.2 displays the optimal routing
solution for the solved instance with 2 depots, 11 requests and 3 vehicles. The solution deploys only 2
vehicles, both starting from the same depot. The figure illustrates how the model assigns requests to
vehicle routes while minimizing the objective components subject to the given constraints. Notable is
that vehicles visit transfer stations en route from the pick-up location to the delivery location, even
when no actual transfer takes place. This occurs because transfer stations do not impose waiting
time penalties, whereas pick-up and delivery locations incur penalties for early and late arrivals. As a
result, the model uses transfer stations as intermediate waiting points to reduce time window penal-
ties. While the model permits this behavior, a stricter formulation could have restricted transfer visits
to only when an actual transfer takes place. However, this was not enforced in the current formulation.
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Table 4.2 summarizes the results of the experiments with the linearized objective function. Although
the original quadratic objective function more directly presents the objective in this problem context,
the model with the quadratic objective consistently led to larger optimality gaps and longer compu-
tation times for the same experiment settings. Therefore, the linearized objective was chosen for the
computational experiments.

Instances Model size Experiment results

|O| |R| |K| Binary
variables

Continuous
variables Constraints Objective

(€)
CPU
time (s)

Optimality
gap (%)

1 11 2 6262 4654 43085 4552 153 -
1 14 3 16779 12912 125139 5872 1802 3.95%
2 9 3 7542 5346 49698 4578 33 -
2 11 3 11646 8574 81824 5086 1533 -
2 13 2 11248 8572 83496 5226 1801 9.33%
3 9 3 9240 6489 63303 4488 145 -
3 11 3 13968 10233 101023 4997 1801 1.82%
4 12 4 26308 19404 19212 5765 1803 2.51%

Table 4.2: Computation time of exact model experiments.

While the illustrative example shows that the model can generate feasible and interpretable routing
solutions for small instances, Table 4.2 shows that the model’s scalability is limited. As expected, the
number of decision variables and constraints increases rapidly as the number of depots, requests, and
vehicles increases. The test case with 3 depots, 9 requests, and 3 vehicles was solved to optimality
within the time limit. Larger instances were not solved to optimality within the time limit, and the
optimality gap increases with the problem size. To apply this model to the DBL planning, the model
requires, on average, 8 depots, 97 vehicles, and 360 requests per week. This amounts to 1.18 · 1011
integer variables, 1.12 · 1011 continuous variables and 3.42 · 1011 constraints. This practical problem
size is significantly greater than what this exact model can handle within reasonable computation
times. Consequently, these results emphasize the need for a heuristic approach to handle large-scale
instances.

4.4 Conclusion

This chapter has developed and evaluated a mathematical model to represent Nijhof Wassink’s opti-
mization problem. Firstly, the optimization problem is outlined, and the modeling assumptions are
discussed. Then, the problem is defined mathematically by introducing sets, parameters, and decision
variables. The objective and constraints explain the goal and restrictions of the model. Lastly, the
chapter concludes with an evaluation of the computation time of the exact model. This also serves as
a motivation for the design of a heuristic solution, proposed in Chapter 5.
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5| Heuristic Approach
The previous chapter highlighted the need for a heuristic approach to solve Nijhof Wassink’s opti-
mization problem. Therefore, this chapter focuses on the design of a heuristic approach. Section 5.1
provides a high-level overview of the algorithm. To initialize the heuristic, a constructive heuristic is
designed in Section 5.2. To evaluate the performance of the improved routing solutions, the objec-
tive function tailored to the designed heuristic is given in Section 5.3. Sections 5.4 and 5.5 elaborate
on the generation of neighborhood solutions and the adaptive weight mechanism. Finally, the stop-
ping criteria are explained in Section 5.6. To summarize the algorithm, it concludes with a complete
pseudocode.

5.1 Overview

A suitable heuristic to solve Nijhof Wassink’s optimization problem is the Adaptive Large Neighbor-
hood Search (ALNS). The general layout of the algorithm is illustrated in Figure 5.1. ALNS uses
an initial feasible solution as a starting point. It then iteratively improves the solution using destroy
and repair operators. In each iteration, a pair of operators is selected to destroy the current solution
and repair it into a new feasible solution. The solution is then accepted based on its objective value
and some acceptance criteria. This allows diversification and intensification. The algorithm updates
the current solution. If the new solution is also better than the best-known solution so far, it is
saved. Thereafter, the algorithmic parameters are updated accordingly. This process repeats until the
stopping criteria are met and the best solution is returned.

Yes

Is the new 
solution accepted? 

Update current
solution

Select destroy and
repair operator

Create new
solution with

operators

Is stopping 
criteria met?

Best solution
Is the new 

solution better than the
best solution?

Update best
solution

Update
parametersInitial solution No

Yes

No

No

No

Yes

Figure 5.1: Flowchart of overview ALNS

5.2 Initial Solution

ALNS uses the initial solution as a starting point. From this solution, it begins to search for neighboring
solutions. The initial solution is constructed with a randomized greedy heuristic. The process is
outlined in Figure 5.2. A more elaborate pseudocode can be found in Appendix E. The algorithm
iteratively assigns each request to a vehicle route. First, requests are sorted by some metric, such as
the earliest pick-up or delivery time window opening time. The order of the vehicle routes is shuffled
for some randomness. In each iteration, a request is selected and inserted with a stop at a transfer
station, or the same vehicle handles the pick-up and delivery. A subset of requests is inserted with a
transfer, as Sampaio et al. have shown that initial solutions with transferred requests are more likely
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to utilize transfers effectively [57]. If a request can be inserted into multiple vehicle routes, a vehicle
is chosen based on weighted random selection. This means smaller detour distances from the current
vehicle location to the request’s pick-up location are more likely to be selected. If insertion with a
transfer fails for every combination of vehicles, a direct insertion is attempted. Only if no vehicle
can feasibly fulfill the direct request may the request be partially fulfilled. This means the pick-up
is visited, and the request is stored at a transfer station for delivery in the next planning period.
The partial request will be finished in the next planning period. If no feasible vehicle is available
for the request, it is marked as unplanned. The process continues until all requests are assigned or
marked as unplanned. The partial and unplanned requests are marked and will be addressed during
the improvement phase. The relaxation allowing partial requests is added to increase the number of
requests served in the initial solution. Without this addition, a larger number of requests would be
marked as unplanned, resulting in a decreased routing performance. The relaxation is further justified
as partial requests are also used in real-world operations, for example, after a driver’s shift has ended.
Partial requests, therefore, make the initial solution more effective and better aligned with practical
planning strategies. However, partial requests are not allowed in the improvement heuristic, as is
discussed in Section 5.4.
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Figure 5.2: Flowchart of construction of initial solution

5.3 Objective Function

Each routing solution is scored with an associated objective value. The objective function for the
algorithm is similar to the objective function from the exact model (see Equation 4.1). The objective
aims to minimize empty kilometer costs, total travel distance costs, time window violation costs for
both early and late arrivals (combined), and use of vehicles costs. While minimizing empty kilometers
remains the primary objective, the inclusion of the other components is essential to obtain feasible
routing solutions in practice. As discussed in Section 4.1, focussing solely on empty kilometers can
lead to unrealistic or inefficient routing strategies, such as excessive detours or vehicles used to avoid
empty kilometers. These added objective components, therefore, ensure more practical and efficient
routing solutions.

Unlike the exact model from the previous chapter, the heuristic allows requests to be left unserved. In
the exact model, fulfilling all requests is a hard constraint, as it can still find optimal solutions even
with this constraint. While serving all requests is preferable from a practical perspective, enforcing
this as a hard constraint would often result in infeasible routing solutions and restrict the algorithm’s
ability to explore the neighboring solution space. Therefore, the heuristic allows for more flexibility,
which is especially important in large problem instances. Each component is scaled with a scaling
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factor, respectively (s1, . . . , s5) to balance their impact based on priority and magnitude. This is
crucial as the components are in different units and scales. For the remainder of this study, the
objective function Z(S) for a routing solution S will be calculated as follows:

Z(S) = s1Cempty + s2Cdist + s3Ctimewindows + s4Cvehicles + s5Cunserved (5.1)

The load factor will also be used to evaluate the routing solution. This is derived from the empty and
total distance, as defined in Equation 2.1.

5.4 Neighborhood Solutions

To create neighborhood solutions, operators are needed to adapt the solution. Like in many other
ALNS algorithms, destroy operators are meant to destroy a set of requests from the solution. The
removed requests are temporarily stored in a request bank. The repair operators then reconstruct
the solution differently by reinserting the requests from the request bank. If a request cannot feasibly
be inserted, it remains in the request bank. Note that the neighborhood solutions are restricted to
either fully serving a request or not serving it at all. In particular, partial requests are not allowed.
This is because the improvement phase is designed to optimize routing solutions by better request
planning rather than by optimizing the use of partial fulfillment, which should remain a last-resort
measure. However, the algorithm could have included a fallback to reintroduce partial requests during
the repair phases. However, this was omitted due to the additional computational complexity and
time constraints. After each removal or insertion of requests, the arrival times in the routing solution
are fully updated. This maintains feasibility and consistency after each repair. This is particularly
important for requests with transfers, as the vehicle assigned to the delivery cannot depart from
the transfer station until the vehicle carrying the pick-up arrives. Ideally, the selection of destroy
operators should contain a mix of heuristics that can diversify and intensify the search. Repair
operators should focus on repairing the destroyed solution in a computationally efficient way. Each
operator aims to improve a certain part of the solution and, by doing so, contributes to lowering
the overall objective function. The following subsections describe the operators. For more detailed
descriptions, pseudocodes can be found in Appendix F.

5.4.1 Destroy Operators

The set of destroy operators, DO = {DO1, . . . , DO6}, used for this ALNS heuristic are described
below. An important parameter for these operators is the degree of destruction, denoted as DOD
where DOD ∈ [0, 1]. This value represents the fraction of requests that are temporarily removed from
the routing solution. A low value results in small adaptations to the current solution, limiting the
potential for improvement in the repair phase. On the contrary, a high value causes rigorous changes
to the routing solution. This increases the potential to escape local minima but also risks losing
too much solution integrity. This can make it difficult for repair operators to reconstruct a feasible
solution.

DO1 Random destroy: randomly removes DOD requests that are not transferred in the current routing
solution. This operator can help diversify the search.

DO2 Worst destroy time windows: removes DOD requests that have the highest contribution to
the time window penalty. The penalty accounts for stricter locations, making requests with
unflexible time windows more likely to be chosen. Requests with a transfer cannot be selected.

DO3 Worst vehicle: removes all requests of a vehicle route based on load factor. A route with a lower
load factor is more likely to be chosen than a route with a high load factor. This cleans up
inefficient vehicle routes.

DO4 Transfer station removal: removes DOD transferred requests from the same transfer station.
The transfer station is selected based on its cumulative synchronization time. Synchronization
time refers to the waiting time at a transfer station when the vehicle assigned to the delivery
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arrives before the vehicle carrying the pick-up. In such cases, the delivery vehicle must wait
until the request is dropped off.

DO5 Related requests removal: removes pairs of requests that are related. Their relatedness is calcu-
lated based on the overlap in time windows and the spatial closeness of locations for both the
pick-up and delivery. First, a random set of DOD

2 requests is drawn. Then, for each request,
a related request is selected based on its relatedness score. Removing similar requests allows
repair operators to explore new combinations. They can be interchanged in the solution without
significantly increasing the objective function.

DO6 Long distance request removal: removes DOD requests based on their travel distance. Requests
with a longer distance between pick-up and delivery are more likely to be chosen because they
have a high influence on the objective value if placed inefficiently.

5.4.2 Repair Operators

The set of repair operators, RO = {RO1, . . . , RO5}, used in this ALNS framework are described as
follows:

RO1 Random insertion: inserts as many requests as possible from the request bank. For each request,
it randomly selects a feasible vehicle and position within the route. It only inserts requests
without a transfer. This operator diversifies the solution space.

RO2 Greedy detour insertion: inserts requests directly by selecting the route and position, resulting
in the least detour distance. The detour is calculated as the additional distance caused by
the insertion. This operator prioritizes minimizing the distance components of the objective
function.

RO3 Regret-2 empty distance: inserts requests based on the difference in empty kilometers between
its best and second-best routes. This is referred to as the regret value. Requests with the
highest regret are chosen first, as postponing their insertion may lead to a larger increase in
empty distance later.

RO4 Regret-2 time windows: inserts requests similar to RO3, except the regret is calculated based
on time window penalties. Requests are chosen based on how much worse the penalties may
become if not inserted now.

RO5 Best transfer: inserts requests via transfer stations. It only considers requests that have a high
insertion cost if inserted directly. The cost is calculated using the objective function, as shown in
Equation 5.1 with s5 = s6 = 0, applied to a single route. Then, it selects the best combination of
transfer station, vehicle for pick-up, and vehicle for delivery. The insertion should result in the
least increase in objective value and the shortest synchronization time between the two vehicles.

5.5 Adaptive Weight Operators

The adaptability of the ALNS lies in the dynamic selection of destroy and repair operators based
on their historical performance. This is achieved with a roulette wheel selection principle, as also
explained by Ropke and Pisinger in [54].

Operator Selection
Let k denote the number of operators, each associated with a weight wi, for i ∈ {1, . . . , k}. The
weights determine the selection probability of each operator. In particular, the selection probability of
operator j is given by pj =

wj∑k
i=1 wi

. Note that the probabilities are a normalization of the weights. At
each iteration, a destroy operator, DOi∗ , and a repair operator, ROj∗ , are selected independently based
on these probabilities. The selected operators then transform the current routing solution Scurrent into
a new routing solution: Snew = ROj∗(DOi∗(Scurrent)). This selection mechanism ensures a balance
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between favoring operators based on historical successes and allowing less effective operators to be
selected for diversity.

Markov Segments
The entire search is divided into segments, each with a Markov chain length of L iterations. The
Markov chain length determines the number of iterations in which parameters, such as operator
weights and temperature, remain fixed. A smaller value for L updates their parameters frequently
and encourages a faster convergence with limited exploration of worse solutions. In contrast, a higher
value allows for more extensive exploration of the solution space before updating but leads to slower
convergence. After each set of L iterations, the weights are updated.

Scoring Mechanism
To track the performance of the operators during a segment, each operator i ∈ {1, . . . , k} accumulates
a total score of πi. This total score is incremented with scores σ1, σ2, σ3, or 0 whenever operator i is
selected, based on the quality of the new routing solution. If the new solution, Snew, improves the
global best solution Sbest, then score σ1 is added to the total score of the destroy and repair opera-
tors. If the new solution is accepted and is better than the current solution but worse than the best
solution, σ2 is added to the destroy and repair operator’s total score. Lastly, the destroy and repair
operators are scored with σ3 if the new solution is accepted but is worse than the current solution.
If the solution is not accepted, the total score remains unchanged. This is also summarized in Table
5.1. These scores are predefined constants that require parameter tuning. Their relative magnitudes
influence the algorithm’s search behavior. A high value for σ1 relative to σ2 and σ3 favors operators
that lead to global improvements, encouraging the exploitation of the solution space. Conversely,
higher values for σ2 and σ3 encourage less effective operators.

Score Condition
σ1 If Snew is accepted and Z(Snew) < Z(Sbest)
σ2 If Snew is accepted and Z(Sbest) < Z(Snew) < Z(Scurrent)
σ3 If Snew is accepted and Z(Snew) > Z(Scurrent)
0 Otherwise

Table 5.1: Parameters for score adjustment.

Updating Weights
At the end of a segment, the weights of each operator are updated based on its current weight, accu-
mulated score, and the predetermined reaction factor, ρ. The latter controls how quickly the weights
adapt to new scores. A low value for ρ results in a slower adaptation. This is useful if operator
performance is highly variable. In contrast, a high value for ρ reacts quickly to recent performance
and is used for cases with rapidly changing operator effectiveness.

Let wi,l be the weight of operator i ∈ {1, . . . , k} in segment l and let θi be the number of times operator
i was selected during segment l. Then, the new weight for operator i in segment l+ 1 is computed as
follows:

wi,l+1 = wi,l(1− ρ) + ρ
πi
θi

(5.2)

The operator’s initial weights, before the first segment starts, are typically set equally to ensure a
fair early exploration. However, they can also be differentiated based on results from preliminary
experiments or problem-specific insights to guide the start of the search.

5.6 Acceptance and Stopping Criteria

To avoid the risk of the heuristic getting trapped in local minima, it uses acceptance and stopping
criteria based on the principles of simulated annealing. The acceptance criterion is defined as follows:
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if the candidate solution, Snew, is better than the current solution Scurrent, it is always accepted.
Otherwise, it is accepted with a probability of:

e−(Z(Snew)−Z(Scurrent))· 1T (5.3)

where T > 0 is the current temperature. This parameter controls the degree of exploration during
the search process. A higher temperature is more likely to accept worse solutions to help escape
local minima, whereas a lower temperature favors the exploitation of promising solution spaces. The
temperature is reduced at each segment of L iterations using a cooling schedule, defined as T ← T · c,
where 0 < c < 1 is the cooling rate. The cooling rate determines how quickly the temperature
decreases in each segment. A higher value for the cooling rate results in a more thorough exploration
of the solution space and slower convergence. In contrast, a lower value reduces the likelihood of
accepting worse solutions faster, resulting in faster convergence but a higher risk of getting trapped in
a local minimum. The algorithm starts with the initial temperature, Tinit, and terminates when the
temperature T falls below some temperature threshold Tend.

5.7 ALNS Overview

The pseudocode in Algorithm 1 integrates all discussed components from the preceding sections. Before
the improvement phase begins, all partially fulfilled requests are removed from the initial solution.
These, together with requests marked as unplanned, are used to initialize the request bank, denoted by
RB. In this way, the improvement phase can reassign the initially infeasible requests to the improved
routing solution.

Algorithm 1 Adaptive Large Neighborhood Search (ALNS).
1: Input: Tinit, Tend, c, L, {DO1, . . . , DO6}, {RO1, . . . , RO5}
2: Output: Sbest
3: S0 ← ConstructInitialSolution() ▷ Section 5.2
4: Initialize Sbest ← S0 without partial requests
5: Initialize Scurrent ← S0 without partial requests
6: Initialize RB ← PartialRequestsInitialSolution()
7: Initialize T ← Tinit
8: Initialize 1← wd, wr, ∀r ∈ RO, d ∈ DO
9: Initialize 0← πd, πr, ∀r ∈ RO, d ∈ DO

10: while T > Tend do
11: for l ∈ {1, . . . , L} do
12: Select destroy operator d based on wd, and update πd, d ∈ DO ▷ Section 5.4.1
13: Select repair operator r based on wr, and update πr, r ∈ RO ▷ Section 5.4.2
14: Snew := r(d(Scurrent))
15: if Z(Snew) < Z(Scurrent) then ▷ Section 5.3
16: Scurrent ← Snew
17: if Z(Snew) < Z(Sbest) then
18: Sbest ← Snew
19: end if
20: else if RandomAccept(Snew) = True then ▷ Section 5.6
21: Scurrent ← Snew
22: end if
23: Update RB based on Scurrent ▷ Section 5.4
24: end for
25: Update wd, wr based on πd, πr, respectively ▷ Section 5.5
26: T ← T · c
27: end while
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5.8 Conclusion

This chapter presents an ALNS algorithm tailored to the routing problem of Nijhof Wassink. The set
of destroy and repair operators is designed to improve the routing solution reflecting the company’s
priorities. Furthermore, it elaborated on the mechanisms incorporated to balance exploration and
exploitation of the solution space. The algorithm serves as a basis for the computational experiments
in Chapter 6.
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6| Experiments & Results
This chapter describes the experiments and results obtained using the previously described ALNS
algorithm. First, the input data provided by Nijhof Wassink is discussed in Section 6.1. Then,
the input parameter of the initial solution and the objective weights are determined in Section 6.2
and Section 6.3. The algorithmic parameter tuning is tested in Section 6.4. Thereafter, the ALNS
algorithm’s performance is compared to both the initial solution and the historical routing plan in
Section 6.5. This is followed by a scenario analysis to find the solution’s sensitivity to certain input
parameters.

6.1 Data Input DBL Nijhof Wassink

Two initial data sets from Nijhof Wassink’s DBL are used as input data for the optimization model.

Historical Data
The first data set is the historical routing plan from the planning department. It contains detailed
route information for each vehicle, including which request was assigned to which vehicle, when the
pick-ups and deliveries of each request took place, and if any transfers occurred. The data set is
split into 5-day periods, each creating a test instance. The performance of the optimization model
is compared to the historical routing plan quality. To eliminate any external factors, such as traffic
congestion and road conditions, in the historical data, the routes are recalculated using Euclidean
distance, assuming a constant vehicle speed of 60 km/h.

Open Requests
The second data set, referred to as “open requests”, contains all requests that are accepted by customer
service but have yet to be assigned to a vehicle. Each request consists of a pick-up and a delivery,
defined by their locations, time windows, and service times. Based on experience, the planning
department has categorized each location by the strictness of its time windows. The first category
includes flexible locations, where deviations from the time windows incur minimal penalties, and the
vehicle can always be served at arrival. The second category operates using deadlines, allowing early
arrivals to be served immediately but incurs high penalties for late arrivals. The last category enforces
strict time windows. Any deviations incur substantial penalties, and vehicles must wait until the
slot opens if arriving early. Moreover, the outsourced requests are filtered from the data as they are
managed externally rather than by Nijhof Wassink. A test instance of open requests is derived from
the requests handled in the corresponding 5-day historical period, allowing a direct comparison.

6.2 Initial Solution

The initial solution is generated with a randomized greedy insertion heuristic, as explained in Section
5.2. Different sorting metrics are used to test the difference in objective value. First, requests are
sorted based on the opening of the pick-up time window. This aims to maximize vehicle utilization
at the start of the week and minimize the time window penalties for the pick-ups. Alternatively,
the sorting is based on the earliest delivery time window, which minimizes the time window penalty
incurred at the delivery locations. Lastly, the construction heuristic may prioritize requests with the
least slack time between a request’s pick-up and delivery. This ensures that requests that are harder
to schedule are given the best chance of fitting into the routing plan. Furthermore, probabilities
ptransfer ∈ {0.01, 0.05, 0.15, 0.2} for inserting a request with transfer are tested. The experiments are
done for all combinations of ptransfer and sorting methods for 25 data weeks. Each data week has 10
runs to account for any variability caused by randomness. This amounts to 1500 experiments. The
results are displayed in Table 6.1. The table compares the mean total objective value across all weeks.
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As the number of requests varies over the weeks, the objectives per week have different magnitudes.
To make a fair comparison, the week’s objective is normalized. For each week, the objective values for
the initial settings are normalized as follows:

Zscaled(S) =
Z(S)− Z(S)min

Z(S)max − Z(S)min
(6.1)

Here, Z(S)min and Z(S)max are the minimum and maximum objective values of that week, respec-
tively. This scaling ensures that each week’s objective values are scaled between 0, representing the
best objective, to 1, representing the worst. The column “Obj(scaled)” represents the average nor-
malized objective across all weeks. Furthermore, the standard deviation of the total scaled objective,
average load factor, average unserved requests, average used vehicles, and average computation time
are included.

The results show that the earliest delivery sorting method yields slightly better results compared to
the earliest pick-up sorting method. The least slack method yields the worst mean objectives. The
transfer probability of 0.01 yields the best mean objective values and leaves an acceptable amount of
requests unserved. However, as mentioned in Section 5.2, transferred requests in the initial solution are
essential for the improvement phase to work effectively. Therefore, the best initial parameter settings
are based on the second-best experiment, which uses the sorting method with the earliest delivery
and ptransfer = 0.05. These settings achieve comparable standard deviation, requests unserved, and
vehicles used. The computation time is deemed insignificant compared to the improvement phase.
The remainder of the experiments uses these parameters to generate the initial solution.

ptransfer Sorting Method Obj(scaled) Obj(scaled) SD LoadFactor Unserved Vehicles Time(s)
0.01 Earliest Delivery 0.0564 0.0703 0.5871 11.26 94.70 3.72
0.05 Earliest Delivery 0.0842 0.0974 0.5818 12.88 93.94 4.42
0.01 Earliest Pick-up 0.1282 0.0794 0.5872 10.79 95.04 3.74
0.05 Earliest Pick-up 0.1967 0.0939 0.5793 11.48 94.73 4.49
0.10 Earliest Delivery 0.2180 0.1262 0.5748 15.79 93.53 6.00
0.10 Earliest Pick-up 0.2590 0.1241 0.5729 14.23 93.99 5.87
0.15 Earliest Delivery 0.3708 0.1647 0.5644 19.67 93.34 8.20
0.15 Earliest Pick-up 0.3805 0.1196 0.5642 19.11 93.21 8.15
0.20 Earliest Delivery 0.5048 0.1275 0.5530 22.38 93.51 10.48
0.20 Earliest Pick-up 0.5862 0.1865 0.5534 22.99 93.97 10.77
0.05 Least Slack 0.6311 0.1568 0.5834 12.82 95.72 4.76
0.01 Least Slack 0.6438 0.1874 0.5871 12.29 96.41 3.71
0.10 Least Slack 0.6985 0.1731 0.5755 15.09 95.17 6.47
0.15 Least Slack 0.8138 0.1523 0.5678 19.24 94.86 8.93
0.20 Least Slack 0.9508 0.1557 0.5570 22.80 94.93 11.41

Table 6.1: Experiments on initial solution settings.

6.3 Objective Weights

The objective weights, s1, . . . , s5, as mentioned in Section 5.3, are determined by empirical testing of
different weight configurations. Since the objective components differ in scale and importance, the
weights have two key roles. First, to normalize the components to make them comparable despite their
different units. Second, reflect the relative importance of the components in this problem context. As
a result of these roles, the weights are unitless and not physically interpretable. The weight selection
for the experiments was guided by empirical observations on the resulting routing solutions. The
other parameters involved in the ALNS are not yet tuned and are set to reasonable default values.
This is sufficient at this stage, as the focus lies on the sensitivity of objective weights rather than
solution quality. The relative importance of weights is tailored to Nijhof Wassink’s business case.
Their main goal is to minimize the empty kilometers. Therefore, this component should be weighted
most heavily. However, to retain practically feasible routing solutions, the other objective components
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are also weighted accordingly. The distance was given a lower weight. It is considered a less critical
factor, as this is naturally incurred by serving requests and is partially accounted for in the empty
kilometers component. Violating time windows are penalized to encourage timely pick-ups and de-
liveries. However, an excessively high value is very restrictive in the solution search. This ultimately
results in unfavorably low load factors. Moreover, unserved requests are penalized to preserve solu-
tion flexibility. However, tests showed that the penalty must be sufficiently high to prioritize servicing
requests. Too low values cause the algorithm to return near-empty solutions to avoid violating any
other constraints. Lastly, the costs of using a vehicle are necessary to promote efficient use of the
resources. It is observed that low values lead to high vehicle idle times. Based on these observations,
the final objective weights are scaled as follows: (s1, s2, s3, s4, s5) = (0.25, 0.05, 0.25, 1250, 500).

The load factor is an important KPI for the routing solution. During the experiments, the solutions
showed a substantial amount of empty kilometers from departing from the depot to the first route
location and returning to the depot. Due to the modeling assumption that requests need to be fulfilled
completely, these two travel actions are always driven empty. However, in practice, requests can stay
at the transfer location over the weekend, reducing empty kilometers. To make a fair comparison
between the modeled solution and the historical data, a modified version of the load factor will be
presented. Instead of the ratio between total empty kilometers and the total driven distance, we use
the empty and total distance driven between the first location after the depot and the last location
before returning to the depot. Therefore, the first and last travel actions from and to the depot have
no effect on the load factor for both the historical and the model routing solution.

6.4 Parameter Tuning

In this section, the parameters of the ALNS algorithm are tuned. This is important for the solution
quality. The parameters that require tuning are the ones involved in the simulated annealing criteria,
namely Tinit, Tend, c, and L, and the ALNS parameters, namely the degree of destruction (DOD)
and the reaction factor (ρ). The tuning is divided into two stages to manage complexity. First, the
simulated annealing parameters are tuned. These are fixed after finding promising values for those
parameters, and then ALNS parameters are tuned. The parameter tuning is done on 2 different
representative data sets. The tuned parameters are assumed to also work well for the other data
sets. Additionally, a limit of 30 minutes has been set for each experiment to manage computational
resources. Given the large number of potential configurations and limited computational resources,
this tuning approach is chosen to reduce the search space.

6.4.1 Simulated Annealing Parameters

The parameters Tinit, Tend, c and L work closely together in the acceptance and stopping criteria.
Their influence on the solution search is discussed in Section 5.6. Therefore, these are tuned simul-
taneously. Even with four parameters, the number of possible configurations is large. An iterative
approach is adopted to manage this. Initially, a set of candidate values is defined for each parameter.
The elements in the set span a wide range, covering a large area of the parameter space. A total of
18 random parameter combinations are sampled from these sets and tested on two datasets, result-
ing in 36 experiments per iteration. Then, the performance of the experiments is evaluated, and a
refined set is determined, focusing on the most promising values. This process is repeated twice to
obtain a refined set of parameters with promising results. The ALNS parameters DOD and ρ are
kept constant during the experiments. Specifically, DOD was fixed at 10%, meaning that a tenth of
the total requests were destroyed in each iteration. In some preliminary testing, this value appears to
balance between the diversification of the solution and the preservation of sufficient solution structure,
enabling effective repair. The reaction factor was set to 0.5, which is an average responsiveness to
recent operator effectiveness.

The first iteration has a wide range of values, facilitating a broad exploration of the parameter space.
The initial range of Tinit is set such that there is approximately a 50% chance of accepting a worse
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solution in the first iteration of the ALNS. This can be computed with Equation 5.3. The most
promising parameter combinations were identified based on the lowest total objective, a relatively low
percentage of unserved requests, and a reasonable runtime. Total objectives have been normalized to
compare across different weeks. Consistency has also contributed to the selection of parameter values.
That is, parameters that performed well in multiple configurations are favored. Table 6.2 displays the
parameter sets for each iteration. Each parameter value is accompanied by the average normalized
objective value of each solution in which this value occurs. The average excludes solutions with more
than 2 % unserved requests and solutions that reached the time limit. The most promising parameter
values are marked with an asterisk (*). The second and third iterations use narrower parameter
ranges, which are centered around the marked values from the previous iteration. The annotated
values highlight noteworthy selection considerations. Note 1 is a second marked value as values 10
and 20 yield similar promising results. Notes 2 and 3 indicate values that appear to outperform the
chosen promising value but, in some cases, lead to solutions that did not converge within the time
limit. The full results of the iterations are presented in Appendices G.1, G.2 and G.3. The final
selected parameter set is (Tinit, Tend, c, L) = (5000, 90, 0.94, 15).

Iteration Tinit Tend c L
Value Avg. obj. Value Avg. obj. Value Avg. obj. Value Avg. obj.

Iteration 1
3000 0.2457 10 0.3254 0.9 0.3276 10* 0.2357
5000* 0.2094 50* 0.2107 0.95* 0.2666 20∗[1] 0.2361
7000 0.2548 100* 0.2419 0.99 - 30 -

Iteration 2
4000 0.4955 60 - 0.925 - 10* 0.4206
5000* 0.3253 80 0.5116 0.95* 0.4372 15* 0.4129
6000 0.5116 100* 0.3820 0.975[2] 0.4206 20 0.4453

Iteration 3
4500 0.5164 90* 0.3567 0.94* 0.3043 12 0.5506
5000* 0.2858 100 0.3756 0.95 0.3782 15* 0.3224
5500 0.2979 110 0.4886 0.96 0.4184 18[3] 0.2948

Table 6.2: Parameter values for tuning simulated annealing parameters. Promising values based on
overall performance trends are marked with (*). See Subsection 6.4.1 for details on annotated values.

6.4.2 ALNS Parameters

After fixing the simulated annealing parameters, the ALNS-specific parameters are tuned. These are
the degree of destruction DOD and the reaction factor ρ, as explained in Section 5.4 and Section
5.5, respectively. The tested values for DOD are {0.05, 0.1, 0.15, 0.2} and the tested values for ρ
are {0.1, 0.35, 0.7, 0.9}. Testing all combinations on two datasets amounts to 32 experiments. The
results are displayed in Appendix G.4. Given the limited range of the parameters, a single iteration
of parameter refinement is considered sufficient. Preliminary testing showed that a DOD greater
than 0.2 leads to a growing request bank size, resulting in inefficient repair phases and ultimately
infeasible solutions within the time limit. The results are shown in Appendix G.4. The parameters that
most consistently reached the lowest total objective in reasonable time were parameters (DOD, ρ) =
(0.1, 0.35). These are, therefore, used during the experiments.

6.4.3 Other Parameters

Other parameters that influence the adaptive weight mechanism of the ALNS are the operator scores
σ1, σ2, σ3 and the initial operator weights, as discussed in Section 5.5. These scores are awarded to an
operator based on its effectiveness. Given the computational cost of tuning the parameters mentioned
above, this research adopts the score values proposed by Ropke and Pisinger [54]. These values have
been validated in a similar context and showed a strong performance on benchmark instances. The
operator scores are fixed at (σ1, σ2, σ3) = (33, 9, 13). Additionally, the initial weights of the destroy
and repair operators are set to 1. At the start of the algorithm, each operator has an equal probability
of being selected.
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6.5 ALNS Solution Performance

This section evaluates whether the ALNS algorithm yields improved routing solutions compared to the
initial heuristic generated by the constructive heuristic and the historical routing plan. The compari-
son is based on the previously discussed components of the objective function. Additionally, differences
in other solution characteristics, such as the number of transfers, are also analyzed. The experiments
are executed on 25 data instances based on Nijhof Wassink’s historical routing plan. Detailed results
per data week and aggregated statistics are shown in Appendix H. Figure 6.1 presents the objective
values for each solution approach. The total objective value is displayed on the right side of the legend.
Figure 6.2 shows the composition of the objective components for each of the routing solutions. Table
6.3 shows a summary of additional solution metrics. Both the figure and table include average values
across the data instances. The following subsections analyze each objective component individually.

Figure 6.1: Bar chart of objective components historic, initial, and ALNS routing solutions.

Figure 6.2: Stacked chart of objective components historic, initial, and ALNS routing solutions.

Metric ALNS Initial Historical
Load factor 0.75 0.74 0.73
Nr. vehicles 66.60 90.91 81.20
Unserved req. (%) 2.94 4.91 -
Partial req. (%) - 4.50 19.82
Nr. transfers 1.48 34.43 53.36

Table 6.3: Other average solution metrics for each solution type.
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Empty Distance
The ALNS algorithm reduces the empty distance by approximately 27% compared to the initial so-
lution. However, the historical solution has a better performance for this metric. Specifically, the
historical routing plan has 26% fewer empty kilometers than the ALNS solution. Despite this, the
ALNS solution can serve 19.82% of the partial requests fully, minus the 2.91% that remain unserved.

Total Distance
Regarding total distance, the ALNS solution achieves an average reduction of 8% compared to the
initial solution. Compared to the historical data, it incurs a slight increase of approximately 3%. This
increase in total distance aligns with the increased number of fully served requests, as serving requests
naturally involves more travel distance. This suggests a trade-off between the served requests and the
travel distance.

Load Factor
The load factor, representing the ratio of distance traveled with a load, only improves marginally
between the different solutions. Compared to the initial solution, the ALNS solution improves the
load factor by 2%. The improvement over the historical solution was only 1%. The average load fac-
tor of the ALNS solution is 0.75, with a standard deviation of 1.6%. It consistently outperforms the
historical routing plan on this objective component. However, in weeks 5 and 25, the load factor from
the initial solution is better than that of the ALNS solution. These lower performances coincide with
weeks that have fewer requests. Compared to weeks with higher demand, weeks with fewer requests
have a reduced potential for efficient routing solutions.

Vehicle Utilization
The ALNS solution achieves the largest reduction of vehicle utilization penalties. On average, it re-
quires 27% fewer vehicles than the initial solution, with a standard deviation of 11%. This is equivalent
to a variation of up to 8 vehicles per week. Compared to the historical solution, ALNS uses around
18% fewer vehicles. The most significant reduction is found in weeks 14, 15, and 20. However, these
weeks also show an above-average number of requests being unserved compared to other improved
solutions. In particular, these weeks have around 5% of unserved requests, while the average is 3%.
Only in week 12 is a large reduction of utilized vehicles observed, while the number of unserved re-
quests is below average in the improved solution. While these patterns suggest a trade-off between
vehicle utilization and request fulfillment, the overall efficiency of the solution routes improves. In the
ALNS solution, each vehicle serves, on average, 5.44 requests compared to the 4.59 requests in the
historical solution. This indicates that the ALNS routes utilize fewer vehicles but also use them more
efficiently.

Time Window Penalties
The ALNS solution incurs the highest penalties for arriving late at the pick-up and delivery locations.
Conversely, the initial solution is more frequently penalized for arriving too early. This is likely as
it starts to plan every request at the start of the week, servicing requests before the time windows
open. The historical routing plan incurs minimal time window penalties for early and late arrivals.
This indicates that the time windows are aligned with the request constraints. The observed variation
suggests that the solution approaches prioritize this metric differently.

Unserved and Partial Requests
The initial solution leaves a total of 4.07% either unserved or partially served. The historical routing
plan has, on average, 20% partial requests. In contrast, the ALNS solution has only 3% unserved
requests. Unlike the historical and initial routing plans, the ALNS solution does not allow partial
servicing during the improvement phase and instead aims to fully satisfy each request. This leads to a
higher total fulfilled demand. Although serving more requests fully incurs more total and potentially
empty distance, the results show that the load factor was not negatively influenced.
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Transferred Requests
The ALNS solution rarely includes transferred requests. The added solution complexity does not
improve the objective components sufficiently to include transfers in the best-found solution. In most
weeks, fewer than 3 transfers are included, with one outlier in week 19, where 24 requests are trans-
ferred. The initial solution requires approximately 35 transfers per data week due to the design of the
heuristic, as was explained in Section 5.2. The historical routing plan uses around 53 transfers per
week.

Full Solution
To compare the solution as a whole, the total objective of the ALNS solution is approximately 128,258,
with a standard deviation of 8%. This shows that the solution is robust when applied to different data
instances. A total improvement of 26% compared to the initial solution and 10% compared to the
historical solution is achieved. The only exception is in week 22, as the ALNS algorithm was unable to
improve upon the historical solution. The ALNS solution has a 7% higher objective value due to a very
high penalty for arriving late and using a relatively high number of vehicles. Moreover, the stacked bar
chart illustrates the relative importance of each objective component per solution type. It is observed
that vehicle penalties dominate the objective value in all three routing solutions, varying between
67% and 81%. This prominence reflects the high weight assigned to vehicle penalties in the objective
function. As a result, vehicle utilization plays a key role in improving routing efficiency. Moreover,
the penalty for arriving late in the historical routing plan is less than 1%, whereas it constitutes 12%
and 5% of the ALNS solution and initial solution, respectively. The empty and total distances have
similar contributions in the three routing solutions, with variations of only 2.6% and 1.3%, respectively.

To conclude, the ALNS algorithm effectively improves the routing performance compared to the
constructive heuristic and the historical routing plan. Although minimizing empty kilometers was the
key priority, the heuristic solution was unable to effectively reduce this compared to the historical plan.
The improvement in the load factor was also marginal and did significantly influence the performance
of the ALNS algorithm. Instead, the key improvement was primarily due to the reduction of the
number of vehicles required. Furthermore, while the improved solution incurs higher time window
penalties and more total and empty distances than the historical routing plan, it can serve more
requests completely rather than partially.

6.6 Scenario Analysis

This section tests different input parameters to analyze the effect on the routing solution. In addition,
Section 6.6 investigates the impact of varying input parameters. These scenario experiments aim to
assess the robustness and adaptability of the ALNS solution approach under different conditions.

6.6.1 Empty Kilometers Weight

The main results indicate that the heuristic provides only a limited reduction of empty kilometers
compared to the historical and initial solutions. To better understand this behavior, a scenario analysis
was conducted in which the weight of the empty kilometers component in the objective function was
varied. The aim is to examine how the routing solutions respond to these changes and to explore trade-
offs with other objective components. While the baseline experiments use a weight of 0.25, this analysis
tests weights {0.01, 0.1, 0.4, 0.65, 0.8} on 4 different data weeks. Full numerical results are provided
in Appendix I.1. Figure 6.3 presents a combined chart illustrating the behavior of the objective
components across the tested weights. The absolute, unweighted number of empty kilometers and the
vehicle penalty are shown as line plots with the right-hand axis. All other objective components are
plotted using the left-hand y-axis. The load factor, representing the ratio of distance traveled with a
load, is included at the bottom of the figure for each weight.
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Figure 6.3: Combined bar and line chart with different empty kilometer weights.

Results show a consistent decrease of the number of empty kilometers as their objective weight in-
creases. This confirms that the heuristic correctly prioritizes empty kilometers as their importance
increases. Together with the decrease of empty kilometers, the total travel distance also decreases as
the weight increases. This indicates that the heuristic does not reduce empty kilometers alone but
shortens the overall routes. As a result, the load factor remains relatively stable across the scenarios.
A notable side effect is the increasing number of unserved requests as the weight increases. This
behavior implies that the heuristic achieves lower total and empty distance by omitting more requests
and suggests a trade-off between service level and operational efficiency. Similarly, the vehicle penalty
decreases with increasing weight. This can also be a consequence of the higher proportion of unserved
requests, as fewer vehicles are required if fewer requests are served. Alternatively, the heuristic may
be able to create more efficient and compact routes. Time window penalties do not show a clear trend
across the weight configurations, thus suggesting that they are either robust to changes in the empty
kilometer weight or not strongly prioritized relative to the other objective components.

6.6.2 Vehicle Utilization

The main results showed that vehicle utilization has a significant impact on the solution quality.
Therefore, these experiments test the impact on the solution quality with different weight assignments
on the use of vehicles. While the baseline experiments use a vehicle weight of 1250 (Section 6.3),
these experiments test the vehicle weights {100, 750, 1750, 2400} across 4 data weeks, totaling 20 ex-
periments. The full results and a summary are presented in Appendix I.2. Figure 6.4 displays a bar
chart with objective components for each vehicle weight. In addition, the absolute number of utilized
vehicles is plotted as a line graph using the secondary axis on the right.

The figure shows a clear trend in which the number of utilized vehicles decreases as the weight of the
vehicle increases. By assigning a higher vehicle penalty weight, the model becomes more cautious in
deploying vehicles. For the highest vehicle weight, the solution requires 4 fewer vehicles compared to
the baseline. However, this reduction also causes the number of unfulfilled requests to increase. With
fewer requests being served, both empty and total distances are also reduced. In contrast, the lowest
weight results in the use of, on average, 6 more vehicles and a higher number of served requests. It
also has a slight increase in empty distance and total distance, by 1% and 3%, respectively. These
findings suggest that a higher service level may lead to routing inefficiencies. An analysis of vehicle
waiting or idle time would provide further insight into potential routing inefficiencies when the vehicle
weight is low. This is currently not accounted for in the objective function. However, this metric was
not available after the experiments were completed.

46 / 77



6 | Experiments & Results Nijhof, E.Y.

Figure 6.4: Bar chart of objectives with different vehicle weights and the line representing the number
of vehicles.

6.6.3 Time Windows

To evaluate the sensitivity of the routing solution to time window constraints, 4 test cases are de-
signed, and each is tested on the same 5 data weeks. This amounts to 20 experiments. The first
scenario categorizes all locations as category A, meaning there is a little time window penalty for
arriving early or late at any of the locations. The second scenario only serves locations as category
B, where arriving before the time window opens incurs small penalties and, after a window closes, a
heavy penalty. In the third scenario, all locations incur substantial penalties for arriving early and
late. The fourth case is a mixed distribution of the time window categories. The ratios in which the
locations are categorized are as follows: (A,B,C) = (0.42, 0.18, 0.4), whereas the distribution in the
baseline experiments is (A,B,C) = (0.8, 0.01, 0.1). The full results and the aggregated data across
the weeks are shown in Appendix I.3. Figure 6.5 illustrates a bar chart of the average values for the
objective components per time window type, and the average total objective is shown on the legend’s
right.

Figure 6.5: Objective components per time window category.

The routing solution with only category A locations yields the lowest average objective compared
to the baseline experiments. It improves the baseline experiments by approximately 15.8% with an
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average of 108,162 and a standard deviation of 5.5%. This improvement is primarily due to a decrease
of late arrival time window penalties. It also shows a lower percentage of unserved requests. Solutions
with category B improve the objective of the baseline experiments of 8.4%. Also, the performance of
the load factor is, on average, 0.03 higher and reaches the solution around 200 seconds faster than in
the baseline experiments. Category C has a high penalty for not serving requests. The data shows
that it only fulfills 20 to 65% of the requests. This leads to reduced vehicle penalties for category C.
However, as the other components are also relatively high, the total average objective of routing solu-
tions with only strict customers are the highest. Additionally, 4 out of 5 experiments were terminated
prematurely due to the time limit. This indicates that the algorithm has difficulties finding repair
mechanisms that can feasibly reconstruct the routes within the hard time window constraints. The
mixed distribution, on average, has a higher objective value of 28% compared to the baseline results.
This is largely caused by early and late time penalties, as well as the increased number of unserved
requests. Notably, these experiments were also cut short due to the time limit.

To conclude, soft time window constraints provide more flexibility to the routing solution. Therefore,
the algorithm can effectively optimize the routes and leave fewer unserved requests. More constrained
time windows lead to worse objective values due to the increased time window penalties. Additionally,
they have longer run times, as the algorithm has more difficulties in finding feasible routing solutions.

6.6.4 Requests Received on Time

From the historical data, it was observed that some of the requests were received late, which is defined
as two days before the opening of their pick-up time window. The aim is to investigate whether these
late requests have complemented the historical routing plan or have worsened the solution quality.
Moreover, it also demonstrates how sensitive each objective component is to change. To test this,
the 25 experiments as in Section 6.5 are executed again but with a filtered set of open request data,
excluding the considered late requests. On average, 7.5% of requests per week were filtered. This
percentage deviates from the 9% stated in Chapter 2 because outsourced requests were excluded
from the filtered dataset used as model input. Figures 6.6 and 6.7 present box plots of the objective
components. For a fair comparison, each metric is normalized by dividing by the total number of
requests available in that week, including unserved requests. The y-axis represents the deviation from
the scenario experiments compared to the baseline experiments. Due to their different scales on the
y-axis, they are plotted in separate figures. Appendix I.4 provides the full results.

Figure 6.6: Box plot of several objective
components deviations relative to the
baseline experiments.

Figure 6.7: Box plot of several objective
components deviations relative to the
baseline experiments.

The results show that empty and total distances have a slight positive deviation when late requests are
excluded. This suggests that removing late requests does not consistently improve the performance
of these metrics. The deviation of both the metrics is in a similar range for each data week due to
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the correlation between the metrics. The load factor’s deviation remains stable around 0, indicating
no significant change to this metric. The vehicle penalty deviation ranges from -11% to 17%. This
implies that the negative deviation does not proportionally decrease the number of vehicles with fewer
requests. Weeks 25 and 30 have a higher vehicle penalty than the baseline experiments, as the solution
has a lower rate of unserved requests compared to the baseline experiments. This could happen if the
algorithm had a more efficient method of incorporating requests that were left unserved in the baseline
experiments. The total objective shows a balanced distribution of deviations, with an average value
slightly above 0 and positive and negative deviations of up to approximately ± 10%. This implies
that removing all late requests slightly degrades the routing performance on average. However, due to
the positive and negative fluctuations, it does not improve or decrease performance consistently. The
second figure illustrates the early and late time window penalties, as well as the unserved penalty.
These components are far more unstable than other components. The early time window penalty
increases by an average of 45% in the scenario experiments, meaning that the scenario experiments
arrive earlier at requests than the baseline experiments. This suggests that the algorithm tends to shift
arrival times earlier when there are fewer requests present. The average of late penalties and unserved
requests penalties is near 0, but they display large fluctuations. Therefore, it is difficult to determine
a trend. Across all metrics, there is no clear relationship between the percentage of removed requests
and the deviation from the baseline experiments. However, time window penalties and the unserved
penalty are more sensitive to changes in the input requests than the empty and total distance and
vehicle penalty metrics.

6.7 Conclusion

This chapter presents the methodology for finding the optimal parameter settings for the ALNS
algorithm, tailored to Nijhof Wassinks routing data. Using these settings, the algorithm’s performance
is compared to that of the constructive heuristic and the historical routing plan. The ALNS algorithm
improves the objective function by 26% compared to the initial solution and 10% compared to the
historical solution. These improvements were mainly caused by the more efficient use of vehicles
rather than improvements in load factor or (empty) distance. Using these experiments as a baseline,
a scenario analysis is conducted to evaluate the effect of varying vehicle use weights, time window
constraints, and the exclusion of late requests. The insights from these analyses form the basis for the
conclusions and recommendations in Chapter 7.
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7| Conclusion, Contributions & Recommendations
This chapter elaborates on the conclusions that can be drawn from the results from the previous
chapter and answers the main research question. Section 7.1 concludes the findings of this paper.
This is followed by the academic and practical contributions in Section 7.2. Section 7.3 details the
limitations of the research. After which, Section 7.2 describes the recommendations to Nijhof Wassink.
Lastly, Section 7.5 concludes with directions for future research.

7.1 Conclusions

The main research question this study aims to answer is: “How can the Dry Bulk Logistics planning of
Nijhof Wassink be optimized in order to reduce empty kilometers?”. Following the research framework
from Section 1.3, the remainder of this section will formulate an answer to this question.

The analysis of the current planning strategy revealed a reliance on manual planning strategies and
the absence of a routing planning optimization tool. Given the complex request, driver, and vehicle
constraints, minimizing empty kilometers manually is highly challenging.

A review of the academic literature helped formalize Nijhof Wassink’s planning problem as a new VRP
variant: the multi-depot, pick-up, and delivery with time windows and transfers (MD-PDPTW-T)
problem. Existing models addressed parts of this formulation but not in its full complexity. While a
mathematical model was formulated to represent the planning problem and its logic, solving it exactly
was proven to be infeasible for realistic problem sizes.

As a result, an Adaptive Large Neighborhood Search heuristic was designed to solve real-scale in-
stances. Although minimizing empty kilometers is a priority, minimizing this alone can lead to unre-
alistic and impractical routing solutions. For example, it can lead to solutions with excessive numbers
of transfers or unserved requests. To counter this, additional objectives, such as vehicle usage and
total distance, were included to promote realistic routing behavior. The flexibility of leaving requests
unserved was necessary to provide the heuristic with sufficient flexibility to explore the solution space.

The applied ALNS heuristic consistently produced more efficient routing plans compared to both the
initial solution from a constructive heuristic and historical routing plan. However, improvements in
empty kilometers were limited, and the load factor, representing the fraction of distance with a load,
remained stable. Moreover, the emissions, which are directly related to the empty and total distance,
have also not shown significant improvement. Notably, the ALNS achieved a significant reduction in
the number of vehicles used, indicating that operational costs can be saved by shifting the focus from
empty kilometers to improved vehicle utilization.

Scenario analysis further confirmed the trade-offs between objective components. Increasing the rele-
vance of empty kilometers reduces empty and total distance but also increases the number of unserved
requests. Similarly, reducing the penalty on vehicle usage increased service level but worsened routing
efficiency. These outcomes highlight the importance of balancing the competing objective components.

In conclusion, the findings of this study show that Nijhof Wassink’s vehicle routing can be effectively
optimized using a heuristic model. While the reduction of empty kilometers is limited under the pro-
posed model assumptions, significant improvement can be achieved through better vehicle utilization.
The findings also highlight a strong interdependence between the objective components. Therefore, it
is essential to strategically prioritize between the components to ensure routing solutions align with
operational priorities.
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7.2 Contributions

7.2.1 Practical Contributions

This study offers several practical contributions. Firstly, it provides an extensive context analysis of
the planning department, which offers insights into the current process and the underlying causes of
planning inefficiencies. Moreover, the ALNS algorithm demonstrates that creating a concept routing
plan with comparable or improved performance to the historical routing plan is possible. Notably, the
algorithm showed that the main KPI, empty kilometers, had limited potential for improvement under
this model’s assumptions. It suggests that another KPI, vehicle utilization, offers more improvement
potential and should be prioritized to optimize routing efficiency. In addition, the proposed algorithm
provides a standardized and faster approach for creating a concept routing plan with improved or
comparable performance. This reduces dependence on current resources and the time-intensive manual
process. In addition, it supports a more consistent and scalable planning approach. For Nijhof
Wassink, it may serve as a first step toward integrating optimization tools into the planning process
and, therefore, supporting more informed and efficient decision-making.

7.2.2 Academic Contributions

This paper contributes to the existing VRP literature by formulating a new variant. In particular, this
paper introduces the multi-depot, pick-up, and delivery problem with time windows and transfers (MD-
PDPTW-T). While individual routing characteristics, such as pick-up and deliveries, time windows,
and transfers, have been studied in prior studies, to the best of my knowledge, no study has combined
all of them into a single model. The mathematical model extends the mathematical notation proposed
by [57] and [50]. It adds a mix of soft and hard time windows, as well as the break requirement for
vehicles. Therefore, this model is more adapted to realistic operational planning. However, due
to the computational challenges of the exact model on a realistic scale, the study advances with a
meta-heuristic approach, namely the ALNS algorithm. Although this algorithm is a well-founded
improvement heuristic for all types of VRP problems, this paper contributes to the literature by
applying an ALNS algorithm with transfers to more locations and with a longer planning horizon
than previously researched. Prior studies have tested the ALNS algorithm with transfers up to 200
locations and with a planning horizon of 9 hours. In contrast, this study uses 670 unique locations
and a planning horizon of 5 days.

7.3 Limitations

While the presented model demonstrates a promising routing performance, this study relies on several
limitations that impact the research’s practical applicability, computational efficiency, and robustness.

The current model does not include several practical constraints in the planning process. For example,
the model does not account for partial request fulfillment, varying driver shift lengths, actual travel
times and distances, and detailed driver rest regulations. These factors can influence route feasibility,
and without them, routing solutions may be impractical or overly optimistic. Moreover, a modeling
decision was made to allow unserved requests. Without this flexibility, many solutions were infeasible,
which severely limited the heuristic’s ability to explore the solution space. Although leaving requests
unserved by outsourcing is common in operational practice, it complicates a direct comparison be-
tween the historical and ALNS solutions.

Furthermore, the algorithm is limited by the computation time of the heuristic for two main reasons.
Firstly, each iteration has a duration of a few seconds, depending on the selected operators and the
number of transfers. To achieve quality solutions on a real problem scale, many iterations are required.
Second, due to the synchronization constraint of the transfers, request insertions must be sequentially
assessed. Specifically, if a vehicle route that, at some point in time, also participates in transferring a
request is altered, the complementing vehicle route must be updated simultaneously. This is necessary
to avoid a mismatch of requests at the transfer station. The slow search process can limit the model’s
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scalability and practical applicability. To manage the computation complexity, the current repair is
limited to evaluating a set of promising insertion positions. This approach improves runtime but risks
overlooking potential insertion positions and limits the heuristic to exploit the entire solution space.

Another limitation is the parameter tuning. Due to the large number of configurable options and the
computational complexity, not all algorithmic parameters were tuned as extensively. As a result, the
current parameter configuration may not reflect the optimal settings for the heuristic. Moreover, the
weights used in the objective function were tuned empirically to balance trade-offs between the ob-
jective components. While this resulted in efficient solutions, the scenario analysis showed that small
changes in vehicle weight led to notable changes in request fulfillment, total, and empty distance. This
suggests that the model is sensitive to parameter settings, which may compromise the robustness of
the heuristic and the consistency of its solutions.

Lastly, the results showed that very few requests were transferred in the routing solutions. This sug-
gests that either the transfer-based operators cannot function efficiently or transfers are not beneficial
to the routing solutions. However, the cause of the limitation has not been tested and remains unclear.

7.4 Recommendations

Based on the findings in this study, several recommendations are proposed for Nijhof Wassink to
enhance routing efficiency and support the transition towards more data-driven planning.

The key finding of the study concerns the limited reduction of empty kilometers. Although the model
improved overall routing efficiency, the reduction of empty kilometers in the improved solutions was
limited, and the load factor remained stable. This indicates that, under current assumptions, the
model was unable to find a better assignment of requests to vehicles. Instead, the historic solutions
were improved due to a reduction in vehicle usage. In other words, the model solution can serve the
same number of requests with fewer vehicles. This indicates a potential underutilization of vehicles in
the historical routing plans. It is, therefore, recommended that further analysis be conducted to verify
this. If so, Nijhof Wassink may have the opportunity to take on an additional workload without need-
ing more resources, ultimately increasing operational efficiency. Due to the potential improvement
of vehicle usage, it is advisable to shift the focus from reducing empty kilometers to more efficiently
utilizing vehicles.

If reducing empty kilometers remains a priority, further analysis is recommended on the impact of
outsourcing strategies. The scenario analysis indicated that minimizing empty kilometers may result
in a higher number of unserved requests. Since outsourcing was excluded from the model’s scope,
it aims to serve as many requests as possible without specifically optimizing requests that could be
handled more efficiently if outsourced. Further research could examine the effects of selectively out-
sourcing certain requests on empty kilometers and service levels.

This study successfully presented a model that creates concept routing plans based on the available
resources and requests at the start of the week. However, it is not yet suitable for operational use for
two main reasons. First, the model cannot yet account for all practical constraints, such as varying
driver shift lengths and cleaning requirements. Second, the current planning process is not yet mature
enough to support this level of automation. Currently, no system is in place to support planners during
the decision-making process of the planning. To bridge this gap, planners need time to be gradually
introduced to data-driven planning decisions. Current initiatives, such as cleaning suggestions and
next-location advice, are promising starting points. In parallel, the ALNS model should be expanded
to incorporate more operational constraints. Ultimately, the aim is to integrate both the ALNS model
and tools into a unified system that supports the full planning process. In the future, it may serve as
a robust concept planning tool and can potentially even support real-time planning decisions.
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At this stage, the ALNS algorithm is best suited to support tactical and strategic decision-making
without interfering with the operational planning process. On this level, it may contribute in two ways.
Firstly, it can support the post-analysis of historical data. In this case, the model’s assumption that
the requests are known at the start of the week is already satisfied. Examples could be the customer’s
cost-effectiveness or impact on the network density. Second, it may support forward-looking decisions.
It can, for example, support the tender process. Currently, the tender decisions are based on historical
data and the current workload. However, if historical data is outdated or missing, there is no tool
to simulate the effect on the transport network. The algorithm can fill this gap if given an average
weekly workload. Additionally, it can support strategic decisions such as upscaling or downsizing the
number of vehicles or evaluating the impact of each depot location. These contributions can provide
a robust and data-driven basis for decision-making. For these applications, it is essential that the
algorithm roughly mimics the actual planning behavior. In particular, an assessment is recommended
to understand why the model consistently uses fewer vehicles than the current manual routing plans.

Finally, some pointers for the operational planning can be given based on the scenario analysis. It
showed that flexible time windows significantly improve routing flexibility and efficiency. However,
customers are increasingly demanding hard time windows, which can pose challenges to the routing
flexibility of Nijhof Wassink. It is advisable to delay the booking of time slots where possible or, if
required by the customer, make agreements carefully to ensure feasibility. Next to the time windows,
no consistent relationship is found between declining late requests and the overall solution quality. It
is advised to analyze these late requests case-by-case and only accept them if they can improve the
current routing plan without increasing empty kilometers or causing time violations.

7.5 Future Research

Although the proposed model provides a foundation for solving vehicle routing problems, several op-
portunities for future research exist to enhance the model’s performance and operational applicability.

Future work could explore the use of different programming software for faster performance, such as
C++. Or it could develop methods that support parallel computation while ensuring the synchro-
nization of requests during transfers. Faster computation improves both computational efficiency and
scalability and allows the repair phase to explore a broader solution space.

Further improvements can focus on systemic parameter tuning. Methods such as grid search or meta-
optimization could be used to refine the weights in the multi-criteria objective and other algorithm
parameters. In addition, a more detailed statistical analysis of the solution quality and runtime behav-
ior can provide deeper insight into the model’s effectiveness and limitations. For example, analyzing
vehicle idle time may reveal relevant routing insights and highlight areas for improvement.

Given the limited use of transfers in the ALNS solutions, future work could investigate the effective-
ness of the transfer mechanisms. This may include refinement of the existing operators or designing
new ones.

To increase the model’s applicability in real-world operations, several modeling extensions are pro-
posed. Allowing partial request fulfillment could further improve vehicle utilization and empty kilo-
meters. Supporting dynamic changes, such as new or canceled requests, and relaxing the requirement
for vehicles to return to their depot can make the model more applicable for re-optimization during
the week.
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B Planning Process Flowchart
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C Literature Review Overview

Article VRP variant Solution methodTW PDP MD TTP MT B T Other
Baldacci et al., 2010 [1] ✓ ✓ ✓ Column-and-cut generation
Bent & Hentenreyk, 2006 [2] ✓ ✓ Two-phase with simulated annealing and large neighborhood search
Cattaruzza et al., 2016 [6] ✓ ✓ Release dates Hybrid genetic algorithm
Chiang and Russel, 1996 [8] ✓ Simulated annealing

Chu et al., 2017 [9] ✓ Split delivery,
stochastic travel time Simulation-based method

Cordeau et al., 2001 [10] ✓ ✓ Tabu search
◦ Cortés et al., 2010 [11] ✓ ✓ ✓ ✓ Branch-and-cut
Cortes & Suzuki, 2020 [12] ✓ ✓ Split delivery Two-stage simulated annealing
Crevier et al., 2007 [13] ✓ ✓ Three-phase with tabu search, adaptive memory and integer programming
◦ Danloup et al, 2018 [14] ✓ ✓ ✓ ✓ Large neighborhood search and genetic algorithm (separate)
Derigs et al. 2013 [17] ✓ ✓ Two-phase with local search and large neighborhood search
Friedrich & Elbert, 2022 [21] ✓ ✓ Adaptive large neighborhood search
Gerdessen, 1996 [23] ✓ -
Ho et al., 2008 [25] ✓ Genetic algorithm
Huang et al., 2024 [27] ✓ ✓ Branch-and-price-and-cut
Koch et al., 2018 ✓ Loading constraints Adaptive large neighborhood search
Lehmann & Winkenbach, 2024 [35] ✓ ✓ ✓ Two-echelon Adaptive large neighborhood search with exact MILP
Lin et al., 2011 [36] ✓ ✓ Simulated annealing
Liu, 2010 [37] ✓ ✓ Two-phase greedy algorithm
◦ Lyu and Yu, 2023 [38] ✓ ✓ ✓ ✓ Mixed integer linear programming
• Masson et al., 2013 [39] ✓ ✓ ✓ ✓ Adaptive large neighborhood search
Mingozorri et al., 1999 ✓ MILP with variable reduction algorithm
Montané and Galvão, 2006 [41] ✓ Simultaneous PDP Tabu search
Nanry & Barnes, 2000 [43] ✓ ✓ Tabu search
Pessoa et al., 2019 [47] ✓ ✓ ✓ Branch-and-cut-and-price
Del Pia & Filippi, 2006 [16] ✓ Variable neighborhood descent
Pisinger & Ropke, 2007 [48] ✓ ✓ Adaptive large neighborhood search
◦ Rais et al., 2014 [50] ✓ ✓ ✓ ✓ MILP
Ropke & Cordeau, 2009 [53] ✓ ✓ Branch-and-cut-and-price
• Sampaio et al., 2020 [57] ✓ ✓ ✓ ✓ Adaptive large neighborhood search
Semet & Taillard, 1993 [58] ✓ Tabu search
Vidal et al., 2013 [60] ✓ ✓ ✓ Hybrid genetic algorithm
Villegas et al., 2013 [61] ✓ ✓ Large neighborhood search
Pemberthy et al., 2019 [46] ✓ ✓ Two-phase with GRASP and ILS
Wang et al., 2015 [62] ✓ ✓ Simultaneous PDP Parallel simulated annealing
• This research ✓ ✓ ✓ ✓ Adaptive large neighborhood search
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D Additional Information Illustrative Example

This table includes additional defined parameters for the illustrative example in Section 4.1. These
can be used to find the optimal solution.

Node from Time window Service time Node to
O P1 P2 P3 D1 D2 D3 T

O - - - 2.00 4.12 2.24 6.32 2.24 4.12 6.00
P1 [1,3] 2 2.00 - 2.24 1.00 4.47 1.00 2.24 4.00
P2 [10,12] 2 4.12 2.24 - 2.83 3.61 2.00 2.00 2.24
P3 [0,5] 2 2.24 1.00 2.83 - 4.12 2.00 2.00 4.12
D1 [16,20] 1 6.32 4.47 3.61 4.12 - 5.00 2.24 2.00
D2 [16,19] 1 2.24 1.00 2.00 2.00 5.00 - 2.83 4.12
D3 [5,10] 1 4.12 2.24 2.00 2.00 2.24 2.83 - 2.24
T - - 6.00 4.00 2.24 4.12 2.00 4.12 2.24 -
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E Pseudocode Initial Solution

The initial solution is constructed by assigning the set of requests, denoted as Requests. Each request
r ∈ Requests is defined by a pick-up location p(r) and a delivery location d(r). Furthermore, a set
of vehicle routes, denoted as VehicleRoutes, is an input parameter. At the start, this contains all
available vehicles, with each vehicle route starting at its predefined depot. The output is a set of
vehicle routes containing all requests and each starting and ending at the depot.

Algorithm 2 Construct Initial Solution
1: Input: Requests, VehicleRoutes
2: Output: VehicleRoutes
3: Initialize Unassigned ← Requests
4: Initialize PartiallyAssignedRequests ← []
5: Sort Unassigned based on earliest opening time window
6: Shuffle vehicle IDs of VehicleRoutes
7: while Unassigned ̸= ∅ do
8: IsAssigned ← False
9: r ← first request of Unassigned

10: TryTransfer ← TransferRandomly()
11: if TryTransfer then
12: Choose transfer station t based on smallest detour distance
13: Choose v1 ∈ VehicleRoutes with weighted randomness (inversly proportional to detour

distance)
14: Choose v2 ∈ VehicleRoutes based on the least time difference with v1
15: if (p(r), t) ∈ v1 and (t, d(r)) ∈ v2 Feasible then
16: Insert pick-up and transfer of r on v1
17: Insert transfer and delivery of r on v2
18: IsAssigned ← True
19: Break
20: end if
21: end if
22: if not IsAssigned then
23: for v ∈ VehicleRoutes do
24: if (p(r), d(r)) ∈ v is Feasible then
25: Insert pick-up and delivery of r on route of vehicle v
26: IsAssigned ← True
27: Break
28: end if
29: end for
30: end if
31: if not IsAssigned then t ← ChooseTransferStation() based on least detour distance
32: for v ∈ VehicleRoutes do
33: if (p(r), t) ∈ v is Feasible then
34: Insert pick-up and transfer of r on v
35: Add r to PartiallyAssignedRequests
36: IsAssigned ← True
37: Break
38: end if
39: end for
40: end if
41: VehicleRoutes ← ReturnToDepot()
42: end while
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F Pseudocode Operators

The destroy operators require a vehicle routing solution, denoted Scurrent and RB respectively. They
return a destroyed routing solution, Sdestroyed and an updated requests bank RB. Upon which the
repair operators require the destroyed routing solution and the request bank as returned by a destroy
operator. The repair operator then returns a new routing solution and an updated request bank,
denoted as Snew and RB. Additionally, index v is used to indicate a vehicle route in a routing
solution.

F.1 Destroy Operators

Algorithm 3 Random destroy (DO1)

1: Input: Scurrent, RB
2: Output: Sdestroyed, RB
3: PotentialRequests ← Filter requests without transfers
4: RemovedRequests ← Randomly select DOD requests
5: Sdestroyed ← Remove RemovedRequests from Scurrent
6: Sdestroyed ← Update the arrival times
7: RB ← Add RemovedRequests

Algorithm 4 Greedy destroy based on time window penalties of requests (without transfer) (DO2)

1: Input: Scurrent, RB
2: Output: Sdestroyed, RB
3: RequestTimePenalties ← Find current time window penalties per request without transfer
4: RemovedRequests ← Select DOD requests with worst time window penalties
5: Sdestroyed ← Remove RemovedRequests
6: Sdestroyed ← Update the arrival times
7: RB ← Add RemovedRequests

Algorithm 5 Greedy destroy based on vehicle route (without transfers) with worst load factor (DO3)

1: Input: Scurrent, RB
2: Output: Sdestroyed, RB
3: VehicleLoadFactors ← Find load factor per vehicle route without transfers
4: RemovedVehicles ← Select a vehicle based on load factor, low load factor is highest probability.
5: Sdestroyed ← Remove the chosen vehicle route
6: Sdestroyed ← Update arrival times
7: RB ← Add RemovedRequests
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Algorithm 6 Greedy destroy based on highest synchronization time at transfer station (DO4)

1: Input: Scurrent, RB
2: Output: Sdestroyed, RB
3: TransferStationInfo ← Find transferred requests and their synchronization times in Scurrent
4: if TransferStationInfo = None then
5: Skip operator, because no transfers in solution
6: end if
7: SelectedTransfer ← Select transfer station proportional to cum. sync. time
8: RemovedRequests ← Select DOD requests at SelectedTransfer proportional to sync. time
9: Sdestroyed ← Remove RemovedRequests

10: Sdestroyed ← Update arrival times
11: RB ← Add RemovedRequests

Algorithm 7 Cluster removal based on proximity and temporal overlap (DO5)

1: Input: Scurrent, RB
2: Output: Sdestroyed, RB
3: RelatedRequests ← Find related requests based on date and location
4: RemovedRequests ← Randomly select at most DOD

2 RelatedRequests proportional to relatedness
5: Sdestroyed ← Remove RemovedRequests
6: PartialVehicleRoutes ← Update arrival times
7: RB ← Add RemovedRequests

Algorithm 8 Random removal of requests with long travel time (DO6)

1: Input: Scurrent, RB
2: Output: Sdestroyed, RB
3: PotentialRequests ← Filter requests without transfers
4: PotentialRequests ← Sort travel distances
5: RemovedRequests ← Select DOD PotentialRequests proportional to travel distance
6: Sdestroyed ← Remove RemovedRequests
7: Sdestroyed ← Update arrival times
8: RB ← Add RemovedRequests
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F.2 Repair Operators

Note that x and y are some integer value, to limit the search space and improve computational
efficiency.

Algorithm 9 Random insertion (RO1)

1: Input: Sdestroyed, RB
2: Output: Snew, RB
3: PotentialRequests ← Randomly select DOD

2 requests from RB
4: for request ∈ PotentialRequests do
5: Inserted ← False
6: for v ∈ Sdestroyed do
7: Positions ← Find insertion positions in v
8: for position ∈ Positions do
9: CandidateRoute ← Insert request at position

10: Feasible ← Check feasibility of v ▷ Includes check of dependent vehicles
11: if Feasible then
12: Snew ← Update vehicle routes
13: Inserted ← True
14: Break
15: end if
16: if Inserted then
17: RB ← Remove request
18: Break
19: end if
20: end for
21: end for
22: end for

Algorithm 10 Greedy detour insertion (RO2)

1: Input: Sdestroyed, RB
2: Output: Snew, RB
3: for request ∈ RB do
4: LeastDetourCost ← ∞
5: Inserted ← None
6: for v ∈ Sdestroyed do
7: Positions ← Find insertion positions in v
8: for position ∈ Positions do
9: CandidateRoute ← Insert request at position of route v

10: Cost ← Find detour distance incurred by request insertion
11: if Cost < LeastDetourCost then
12: Skip ▷ Not the best, so skip early
13: end if
14: Feasible ← Check feasibility of CandidateRoute
15: if Feasible then Snew ← Update vehicle routes Inserted ← True
16: end if
17: end for
18: if Inserted then
19: RB ← Remove request
20: end if
21: end for
22: end for
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Algorithm 11 Regret-2 based on empty distance (RO3)

1: Input: Sdestroyed, RB
2: Output: Snew, RB
3: while RB ̸= do
4: for request ∈ RB do
5: Best ←∞, SecondBest ←∞
6: CandidateVehicles ← Select x vehicles with most empty kilometers and empty vehicles
7: for v ∈ CandidateVehicles do
8: CandidatePositions ← Select y lowest detour insertion in route v
9: for position ∈ CandidatePositions do

10: CandidateRoute ← Insert request at position of route v
11: Feasible ← Check feasibility of CandidateRoute (with dependencies)
12: if Feasible then
13: Cost ← Calculate empty kilometers cost after insertion
14: Best, SecondBest ← Update best and second best insertion cost if needed
15: end if
16: end for
17: Regret ← Compute regret (second best insertion cost - best insertion cost)
18: Bestvehicle ← Save the best vehicle, position
19: end for
20: end for
21: ChosenRequest ← Choose request with highest Regret
22: if No more insertions found then
23: Break
24: end if
25: Snew ← Insert ChosenRequest in BestVehicle corresponding to best insertion cost
26: RB ← Remove ChosenRequest
27: end while
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Algorithm 12 Regret-2 based on time windows (RO4)

1: Input: Sdestroyed, RB
2: Output: Snew, RB
3: while RB ̸= do
4: for request ∈ RB do
5: Best ←∞, SecondBest ←∞
6: CandidateVehicles ← Select x vehicles with most empty kilometers and empty vehicles
7: for v ∈ CandidateVehicles do
8: CandidatePositions ← Select y lowest time window penalty due to insertion in route v
9: for position ∈ CandidatePositions do

10: CandidateRoute ← Insert request at position of route v
11: Feasible ← Check feasibility of CandidateRoute (with dependencies)
12: if Feasible then
13: Cost ← Calculate empty kilometers cost after insertion
14: Best, SecondBest ← Update best and second best insertion cost if needed
15: end if
16: end for
17: Regret ← Compute regret (second best insertion cost - best insertion cost)
18: Bestvehicle ← Save the best vehicle, position
19: end for
20: end for
21: ChosenRequest ← Choose request with highest Regret
22: if No more insertions found then
23: Break
24: end if
25: Snew ← Insert ChosenRequest in BestVehicle corresponding to best insertion cost
26: RB ← Remove ChosenRequest
27: end while
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Algorithm 13 Best transfer insertion (RO5)

1: Input: Sdestroyed, RB
2: Output: Snew, RB
3: for request ∈ RB do DirectInsertion, Cost ← Check if direct insertion is possible
4: if DirectInsertion = False then
5: Score ← Calculate objective value for the best possible insertion in v ∈ Sdestroyed
6: end if
7: end for
8: CandidateRequests ← Choose top x requests, sorted by descending Cost
9: for request ∈ CandidateRequests do

10: Transfer ← Find transfer station proportional to detour distance
11: Vehicles1 ← Find top y vehicles for pick-up - transfer ▷ Feasible and least insertion cost on

route
12: Vehicles2 ← Find top y vehicles for transfer - delivery ▷ Feasible and least insertion cost on

route
13: for v1 ∈ Vehicles1 do
14: CandidateRoute1 ← Insert request in route v1
15: Feasible ← Check feasibility of CandidateRoute1 (with dependencies)
16: if Feasible then
17: Route1 ← Save vehicle route
18: ChosenVehicle1 ← Update vehicle with least insertion cost
19: end if
20: end for
21: for v2 ∈ Vehicles2 do
22: CandidateRoute2 ← Insert request in route v2
23: Feasible ← Check feasibility of CandidateRoute2 (with dependencies based on ChosenVe-

hicle1)
24: if Feasible then
25: Route2 ← Save vehicle route
26: ChosenVehicle2 ← Update vehicle with lowest synchronization time
27: end if
28: end for
29: if BestCost1 not ∞, BestCost2 not ∞ then
30: Snew ← Update routes with insertion of request at ChosenVehicle1 and ChosenVehicle2
31: RB ← Remove request
32: end if
33: end for
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G Parameter Tuning Results

This appendix presents the experiments conducted to tune the parameters of the algorithm. The
tuning of the simulated annealing parameters, Tinit, Tend, c and L, is shown in Appendices G.1, G.2,
and G.3. The experiments for ALNS specific parameters, DOD and ρ, are displayed in Appendix
G.4. The excecution time is given in seconds. Experiments with a run time of 1800 seconds were
terminated due to the time limit.

G.1 Parameter Tuning Simulated Annealing - Iteration 1

SA1 Tinit Tend c L
Total
obj.

Empty
dist. Dist. Early

penalty
Late
penalty LF Nr.

vehicles
Unserved
req. (%)

Time
(s)

1 7000 50 0.95 10 0.0473 0.2544 0.3437 0.0326 0.1377 0.76 69 2.10 744
2 3000 100 0.99 10 0.0554 0.0879 0.0397 0.1295 0.3665 0.76 67 2.73 1772
3 5000 100 0.95 20 0.1252 0.2859 0.3721 0.1110 0.2965 0.76 70 1.93 1525
4 3000 100 0.95 20 0.1925 0.4812 0.5361 0.1311 0.4522 0.75 71 1.37 1102
5 5000 50 0.95 20 0.2076 0.4446 0.6185 0.1403 0.3642 0.75 72.5 1.00 1222
6 7000 50 0.90 10 0.2348 0.4341 0.3543 0.0983 0.5161 0.75 71 2.00 349
7 5000 50 0.90 10 0.2387 0.3828 0.3427 0.0416 0.9825 0.76 68.5 2.73 262
8 5000 100 0.90 10 0.2662 0.6033 0.4608 0.0562 0.7094 0.76 70 2.73 247
9 5000 100 0.95 30 0.3114 0.6914 0.8345 0.0889 0.4538 0.74 73 1.62 1800
10 3000 50 0.90 20 0.3252 0.6578 0.7249 0.1630 0.4263 0.75 74 1.37 451
11 3000 10 0.95 10 0.3254 0.3593 0.5704 0.2663 0.0720 0.76 77.5 1.00 1063
12 3000 100 0.90 20 0.3301 0.6075 0.6912 0.1632 0.4617 0.75 74 1.37 423
13 7000 50 0.99 20 0.4102 0.4922 0.5085 0.3323 0.7088 0.76 74 2.10 1804
14 5000 10 0.99 10 0.4642 0.5373 0.7206 0.5240 0.4227 0.76 78 1.12 1800
15 7000 100 0.95 10 0.4822 0.3153 0.4280 0.4395 0.3798 0.77 78.5 1.37 924
16 7000 10 0.99 30 0.5638 0.6383 0.6672 0.2846 0.8585 0.76 77 1.62 1800
17 7000 100 0.99 20 0.6125 0.6455 0.5976 0.5700 0.7783 0.76 77 1.51 1800
18 7000 100 0.99 10 0.7228 0.5071 0.5209 0.5901 0.4789 0.78 84 1.49 1800

Table 1: Results of simulated annealing parameter tuning experiments iteration 1 (SA1).

G.2 Parameter Tuning Simulated Annealing - Iteration 2

SA2 Tinit Tend c L
Total
obj.

Empty
dist. Dist. Early

penalty
Late
penalty LF Nr.

vehicles
Unserved
req. (%)

Time
(s)

1 6000 60 0.95 10 0.1346 0.3672 0.2935 0.3224 0.1835 0.76 68.5 2.23 1300
2 4000 80 0.975 15 0.2052 0.3152 0.2732 0.3092 0.3008 0.76 68.5 2.23 1418
3 5000 100 0.95 20 0.2300 0.4478 0.6199 0.1978 0.2127 0.75 72 1.12 1294
4 5000 60 0.925 10 0.2885 0.3212 0.3559 0.1803 0.4804 0.76 69.5 2.23 383
5 5000 60 0.95 10 0.3109 0.4123 0.3122 0.2286 0.5459 0.75 68.5 2.48 607
6 4000 100 0.975 15 0.3638 0.4739 0.5113 0.1267 0.1636 0.74 71.5 2.73 878
7 6000 80 0.95 15 0.4129 0.6540 0.7446 0.6578 0.1924 0.75 73 1.00 1298
8 5000 100 0.975 10 0.4206 0.4058 0.6010 0.4545 0.5517 0.76 72.5 1.12 1270
9 5000 80 0.975 15 0.4329 0.3539 0.5194 0.2184 0.5162 0.75 70 2.10 1388
10 4000 100 0.925 15 0.4340 0.4944 0.4988 0.5072 0.3402 0.76 70.5 2.23 475
11 4000 100 0.975 10 0.4464 0.3145 0.3713 0.5347 0.1411 0.76 72 2.10 1123
12 4000 100 0.95 20 0.4955 0.5098 0.7235 0.4727 0.4634 0.75 73 1.00 1445
13 4000 60 0.975 20 0.5330 0.7299 0.6691 0.3020 0.4980 0.73 72 1.98 1800
14 4000 80 0.925 15 0.5489 0.5000 0.4967 0.1668 0.3657 0.74 72.5 2.73 300
15 5000 80 0.975 20 0.5556 0.3662 0.5391 0.6180 0.4074 0.77 74 1.62 1800
16 6000 80 0.95 20 0.6103 0.5615 0.8955 0.5555 0.4368 0.76 74.5 0.87 1691
17 6000 100 0.975 20 0.7680 0.5377 0.8845 0.5633 0.5702 0.75 75.5 1.24 1800
18 6000 60 0.975 20 0.8385 0.4661 0.6574 0.7304 0.7627 0.76 75 1.49 1800

Table 2: Results of simulated annealing parameter tuning experiments iteration 2 (SA2).
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G.3 Parameter Tuning Simulated Annealing - Iteration 3

SA3 Tinit Tend c L
Total
obj.

Empty
dist. Dist. Early

penalty
Late
penalty LF Nr.

vehicles
Unserved
req. (%)

Time
(s)

1 5500 100 0.94 18 0.1352 0.3358 0.3563 0.1196 0.6067 0.76 68.5 2.10 1028
2 5000 90 0.95 18 0.1471 0.3669 0.3345 0.2107 0.5577 0.76 68.5 2.10 1800
3 5000 100 0.95 15 0.1674 0.3576 0.3285 0.1133 0.5378 0.76 68.5 2.36 958
4 5500 90 0.96 18 0.1807 0.7445 0.7453 0.3188 0.3274 0.75 70.5 1.00 1377
5 5000 110 0.95 15 0.1818 0.3283 0.3138 0.1909 0.5649 0.76 68.5 2.36 935
6 4500 110 0.95 12 0.2093 0.1158 0.1872 0.0842 0.8816 0.76 67.5 2.73 628
7 5000 110 0.94 15 0.2257 0.2795 0.2416 0.3750 0.5073 0.76 69.75 1.80 872
8 5500 100 0.95 15 0.3043 0.5307 0.4793 0.2615 0.4035 0.76 70.5 1.87 1200
9 5500 100 0.96 12 0.3093 0.5251 0.4747 0.2289 0.6398 0.75 69 2.36 1048
10 5000 90 0.96 15 0.3458 0.8283 0.7550 0.3761 0.5350 0.74 70.5 1.24 1184
11 4500 90 0.96 12 0.4051 0.5281 0.5618 0.6678 0.2560 0.76 71.25 1.93 942
12 5500 100 0.96 18 0.4088 0.6375 0.6634 0.0593 0.3275 0.76 71.5 1.87 1634
13 4500 100 0.94 15 0.4137 0.6894 0.6051 0.4085 0.6128 0.74 70 1.98 727
14 5000 100 0.95 12 0.4582 0.5502 0.5596 0.1869 0.5396 0.75 70 2.73 640
15 4500 90 0.94 12 0.4952 0.3825 0.5311 0.6307 0.2156 0.77 73.5 1.24 764
16 5500 90 0.95 12 0.6138 0.2760 0.2013 0.5080 0.9805 0.76 70.5 2.24 765
17 4500 110 0.96 12 0.7514 0.5976 0.6834 0.6594 0.4742 0.76 74 1.37 1045

Table 3: Results of simulated annealing parameter tuning experiments iteration 3 (SA3).

G.4 Parameter Tuning ALNS Parameters

ALNS DOD ρ
Total
obj.

Empty
dist. Dist. Early

penalty
Late
penalty LF Nr.

vehicles
Unserved
req. (%)

Time
(s)

1 0.1 0.35 0.0883 0.1562 0.5023 0.1461 0.1951 0.76 70 1.62 905
2 0.1 0.7 0.0946 0.3134 0.3877 0.1369 0.2472 0.74 69.5 1.63 904
3 0.2 0.9 0.1099 0.4875 0.3789 0.1544 0.2195 0.75 68.5 2.49 1450
4 0.15 0.1 0.1435 0.2188 0.3963 0.1278 0.2338 0.76 70 2.00 1594
5 0.2 0.35 0.1775 0.2011 0.2740 0.1161 0.6211 0.76 68.5 2.23 1221
6 0.15 0.35 0.2451 0.2938 0.3888 0.0537 0.6065 0.75 69.5 1.87 1601
7 0.05 0.1 0.2730 0.0718 0.3802 0.6401 0.3729 0.76 71.5 1.37 562
8 0.15 0.7 0.2742 0.2784 0.4613 0.1948 0.4018 0.75 71 1.75 1349
9 0.1 0.1 0.2827 0.1387 0.5490 0.2787 0.3750 0.76 71 1.74 1164
10 0.05 0.7 0.2851 0.4268 0.8607 0.1874 0.3778 0.75 72 1.00 576
11 0.05 0.35 0.2934 0.2592 0.4924 0.3132 0.4787 0.76 71 1.51 571
12 0.2 0.7 0.3448 0.5578 0.4996 0.0598 0.6368 0.75 70.5 1.87 1183
13 0.2 0.1 0.3892 0.0941 0.4288 0.4204 0.6039 0.76 71 1.86 1800
14 0.15 0.9 0.4375 0.4158 0.5746 0.3335 0.7288 0.74 71.5 1.38 732
15 0.1 0.9 0.6426 0.3857 0.7422 0.5606 0.2724 0.76 75 1.49 1111
16 0.05 0.9 0.7346 0.5227 0.5000 0.1944 0.5000 0.74 73.5 2.73 228

Table 4: Results of parameter tuning experiments DOD and ρ.
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H Experiment Results

Week Solution Total obj. Empty dist. Dist. TWearly TWlate LF Nr. veh. Req. unser. (%) Partial req. (%) Nr. transfers Imp. w.r.t. init. (%) Imp. w.r.t. hist. (%)

W1
Initial 163827 19540 9655 9152 4555 0.73 92 3.28 4.39 35.20
Historical 145552 11925 8620 2033 475 0.72 86 - 17.79 60.00
ALNS 129506 15988 9381 1828 7559 0.73 73 1.75 0.00 -20.95 -11.02

W2
Initial 170993 21869 10447 7583 4620 0.72 95 3.73 3.10 31.90
Historical 152673 13552 9284 5370 717 0.71 88 - 20.39 67.00
ALNS 136259 17418 10262 950 9878 0.74 77 0.74 0.00 -20.31 -10.75

W3
Initial 175831 20442 9776 15489 6475 0.74 97 1.46 4.38 37.30
Historical 145487 11156 8327 3483 1271 0.73 85 - 18.89 56.00
ALNS 133662 16075 9426 2067 8845 0.74 75 1.76 3.00 -23.98 -8.13

W4
Initial 163854 17993 8836 13369 7606 0.74 87 4.33 5.75 37.30
Historical 142758 10504 7978 1972 1054 0.74 88 - 23.89 60.00
ALNS 128603 13842 8352 2276 14633 0.75 66 3.89 2.00 -21.51 -9.92

W5
Initial 157569 16918 8542 8047 6312 0.77 88 4.78 3.54 29.80
Historical 150625 10217 7708 5946 3004 0.73 86 - 24.06 54.00
ALNS 113996 12978 8224 2167 9628 0.76 64 0.58 0.00 -27.65 -24.32

W6
Initial 184241 23620 10839 15335 6722 0.70 99 2.00 5.13 43.00
Historical 157715 12563 9200 7531 2172 0.73 90 - 16.32 71.00
ALNS 149759 17547 10331 3465 10167 0.74 83 2.07 3.00 -18.72 -5.04

W7
Initial 162540 18300 8838 13253 5324 0.74 88 3.95 4.27 33.00
Historical 140793 9972 7615 2583 623 0.74 65 - 20.27 46.00
ALNS 114895 11986 7646 954 10559 0.77 59 5.48 0.00 -29.31 -18.39

W8
Initial 186530 22302 10853 15048 7076 0.73 99 3.89 3.89 36.30
Historical 148994 11955 9342 5450 2247 0.74 81 - 18.25 71.00
ALNS 136031 16067 9555 1929 9981 0.75 72 4.14 2.00 -27.07 -8.70

W9
Initial 179730 21048 10164 17511 5208 0.73 97 2.50 5.30 39.30
Historical 150431 11004 8645 7528 2005 0.75 84 - 18.07 63.00
ALNS 140861 16408 9957 4041 9456 0.75 78 1.73 0.00 -21.63 -6.36

W10
Initial 184234 21220 10258 17016 7265 0.73 98 3.20 4.56 40.50
Historical 149097 10853 8683 6107 2205 0.75 83 - 16.75 53.00
ALNS 141308 15413 9484 1430 15231 0.76 75 2.91 3.00 -23.30 -5.22

W11
Initial 166682 19567 9300 13772 5294 0.72 92 1.79 4.60 35.20
Historical 144144 9832 7764 5809 1989 0.75 82 - 16.62 52.00
ALNS 122458 12736 8032 711 11978 0.76 64 4.60 0.00 -26.53 -15.04

W12
Initial 160945 18240 8832 13796 8452 0.73 84 3.65 3.45 28.50
Historical 130985 9812 7546 1074 53 0.74 81 - 16.96 57.00
ALNS 110421 11431 7489 1219 14032 0.76 59 1.46 0.00 -31.39 -15.70
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Week Solution Total obj. Empty dist. Dist TWearly TWlate LF Nr. veh. Req. unser. (%) Partial req. (%) Nr. transfers Imp. w.r.t. init. (%) Imp. w.r.t. hist. (%)

W13
Initial 162822 16955 8412 14265 4590 0.75 85 6.75 5.61 35.90
Historical 138413 10066 7767 1435 395 0.74 73 - 19.94 52.00
ALNS 113625 12142 7683 905 9895 0.76 60 4.56 0.00 -30.22 -17.91

W14
Initial 185257 20214 9240 19287 12266 0.72 93 4.53 6.08 39.00
Historical 141438 11696 8182 2528 282 0.71 83 - 21.33 67.00
ALNS 134735 13642 7892 2601 21600 0.74 62 6.13 0.00 -27.27 -4.74

W15
Initial 182675 18913 9357 16557 8148 0.74 93 7.14 5.27 38.00
Historical 142913 10808 8535 2296 24 0.75 84 - 19.18 35.00
ALNS 131509 13143 8296 1330 19240 0.75 64 4.86 0.00 -28.01 -7.98

W16
Initial 176411 17637 8464 18145 9290 0.74 90 5.85 5.56 36.40
Historical 134218 10386 7738 1050 44 0.73 76 - 18.42 50.00
ALNS 127740 12561 7621 2792 25017 0.74 59 3.51 0.00 -27.59 -4.83

W17
Initial 180643 16971 8783 18213 9826 0.76 89 8.72 5.11 31.90
Historical 134348 9969 8144 1190 45 0.76 73 - 19.83 46.00
ALNS 128619 13351 8430 2913 18924 0.76 64 2.79 0.00 -28.80 -4.26

W18
Initial 173951 17093 8513 17940 7656 0.76 87 8.16 4.36 30.50
Historical 139921 11108 8119 627 68 0.73 73 - 25.22 45.00
ALNS 124433 12275 7935 3835 19888 0.77 62 1.78 0.00 -28.47 -11.07

W19
Initial 191297 21183 9820 17367 10751 0.72 94 7.52 3.88 33.80
Historical 144781 12284 8733 2300 215 0.72 85 - 17.83 53.00
ALNS 137073 15282 8911 4500 17130 0.75 71 1.29 24.00 -28.35 -5.32

W20
Initial 161569 15813 8103 13174 8828 0.76 84 6.37 4.21 30.50
Historical 137871 10371 7614 1112 25 0.73 81 - 23.10 45.00
ALNS 115450 11451 7193 900 18656 0.76 55 4.97 0.00 -28.54 -16.26

W21
Initial 174652 18169 8717 16640 8126 0.73 87 7.62 6.26 38.10
Historical 138816 11378 8115 1707 116 0.72 82 - 19.39 41.00
ALNS 121719 14001 8224 2805 13939 0.74 63 2.22 0.00 -30.31 -12.32

W22
Initial 193976 20650 10207 18408 12362 0.74 98 5.42 2.91 30.70
Historical 140940 10850 8624 2530 187 0.75 86 - 20.42 59.00
ALNS 150830 13826 8846 5286 24872 0.78 74 2.88 0.00 -22.24 7.02

W23
Initial 168513 17665 8825 15160 6864 0.75 88 5.82 4.80 34.70
Historical 136854 10701 7901 1930 72 0.73 79 - 20.74 43.00
ALNS 123808 12844 8264 4272 12428 0.77 66 1.99 0.00 -26.53 -9.53

W24
Initial 170731 17373 8702 15638 7269 0.75 88 6.79 4.36 31.00
Historical 141373 11668 8391 2436 128 0.72 81 - 21.10 46.00
ALNS 122128 12327 7790 2251 15011 0.76 61 4.91 0.00 -28.47 -13.61

W25
Initial 157028 16799 8465 12918 7895 0.76 84 3.55 1.76 23.00
Historical 143265 10927 8043 1657 139 0.73 75 0.00 20.60 42.00
ALNS 117011 12556 7622 2661 19421 0.75 59 0.60 - 0.00 -25.48 -18.33

Table 5: ALNS results across all weeks.
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H.1 Aggregated Experiment Results

Objective
components ALNS Initial ALNS impr

wrt init (%) Historical ALNS impr
wrt hist (%)

Total obj. Mean 128258 173460 -26.06 142976 -10.29
St. dev. (%) 8.46 6.10 - 4.28 -

Empty dist. Mean 13892 19060 -27.12 11022 26.03
St. dev. (%) 13.02 10.57 - 8.32 -

Dist. Mean 8514 9278 -8.23 8265 3.01
St. dev. (%) 10.49 8.58 - 6.28 -

Early penalty Mean 2403 14923 -83.89 3107 -22.65
St. dev. (%) 51.69 20.55 - 67.44 -

Late penalty Mean 14719 7551 94.92 782 1782.15
St. dev. (%) 33.98 28.18 - 116.01 -

Load factor Mean 0.75 0.74 2.27 0.73 -2.76
St. dev. (%) 1.59 2.19 - 1.62 -

Nr. vehicles Mean 66.60 90.91 -26.74 81.20 -17.98
St. dev. (%) 10.89 5.25 - 7.08 -

Unserved req. (%) Mean 2.94 4.91 -40.07 - -
St. dev. (%) 54.77 41.50 - - -

Partial req. (%) Mean - 4.50 - 19.82 -
St. dev. (%) - 22.92 - 11.85 -

Nr. transfers Mean 1.48 34.43 -95.70 53.36 -97.23
St. dev. (%) 318.71 12.56 - 17.86 -

Table 6: Performance initial, historical and ALNS routing solutions.
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I Scenario Analysis

I.1 Empty Kilometer Weight Analysis

Below the full experiments of the varying of the empty kilometer weights are presented. The asterisk
marked (*) weight is the weight from the baseline experiments. Note that the empty distance column
presents the absolute number of empty kilometer, without scaling it with the weight, for a clean
comparison between the different weight configurations.

Week Weight Total obj. Empty dist. Dist. TWearly TWlate LF Nr. veh. Req. unser. (%) Nr. transfers Time (s)

W1

0.01 105657 57572 8479 1133 10969 0.74 64 2.47 0 1428
0.1 108948 56145 8464 1221 7899 0.75 65 2.47 0 1402
0.4 132102 54845 8199 1701 12515 0.76 65 3.56 0 1116
0.65 140970 56424 8575 1637 8082 0.75 66 1.92 0 1217
0.8 143524 53262 8230 973 8461 0.75 63 2.47 0 1179
0.25* 117777 57270 8488 1652 8069 0.75 65 2.19 0 1115

W2

0.01 121845 68935 10458 1400 8797 0.75 78 1.46 0 1006
0.1 133315 66309 10443 2607 10635 0.78 80 1.46 0 999
0.4 148467 65889 10446 1313 10852 0.76 78 0.97 0 989
0.65 167810 64661 9947 5005 11329 0.76 78 0.97 0 877
0.8 174114 63248 10038 2694 9534 0.77 77 2.43 0 972
0.25* 143506 65934 10256 3045 10973 0.77 79 1.95 0 1049

W3

0.01 123907 68444 10272 2184 7267 0.75 80 1.73 0 1243
0.1 132056 68161 10330 2590 7820 0.75 80 2.23 0 1313
0.4 142386 60382 9018 1399 9316 0.75 70 5.45 14 768
0.65 149906 53273 8605 1550 10374 0.76 67 5.45 0 710
0.8 156454 53239 8583 1532 10248 0.76 66 5.45 0 731
0.25* 137695 63618 9891 2899 8750 0.76 77 1.98 0 1209

W4

0.01 122656 60973 9217 1472 13857 0.76 72 3.64 0 889
0.1 133507 62875 9761 3423 12037 0.76 78 2.18 0 1090
0.4 145520 57660 9129 828 13249 0.76 71 5.10 0 839
0.65 162654 58962 9111 1324 14644 0.75 71 5.10 0 481
0.8 169128 54189 9192 1479 13356 0.78 73 5.10 0 673
0.25* 146110 61175 9193 2829 15544 0.76 75 4.61 19 972

Table 7: Full results with different empty kilometer weights.

Weight Total obj. Empty dist. Dist. TWearly TWlate LF Nr. veh. Unser. (%) Nr. transfers Time (s)
0.01 Mean 118516 63981 9606 1547 10223 0.75 73.5 2.32 0 1141

St. dev. (%) 6.29 7.60 8.38 25.12 24.23 0.94 8.47 36.31 0.00 18.30
0.1 Mean 126957 63373 9749 2460 9598 0.76 75.75 2.08 0 1201

St. dev. (%) 8.20 7.23 8.06 32.14 18.83 1.61 8.26 18.05 0.00 13.55
0.4 Mean 142119 59694 9198 1310 11483 0.7575 71 3.77 3.5 928

St. dev. (%) 4.34 5.37 8.75 23.94 13.26 0.57 6.53 46.77 173.21 14.52
0.65 Mean 155335 58330 9059 2379 11108 0.755 70.5 3.36 0 821

St. dev. (%) 6.79 6.99 6.12 63.91 21.23 0.66 6.69 57.94 0.00 32.67
0.8 Mean 160805 55985 9011 1669 10400 0.765 69.75 3.86 0 888

St. dev. (%) 7.38 7.46 7.61 37.76 17.52 1.46 7.94 36.69 0.00 22.68
0.25* Mean 136272 61999 9457 2606 10834 0.76 74 2.68 4.75 1086

St. dev. (%) 8.15 6.79 7.16 21.35 26.98 0.93 7.28 41.67 173.21 8.00

Table 8: Aggregated results of different empty kilometer weight scenarios

I.2 Vehicle Weight Analysis

Below the full experiments are presented. The experiment in week 4 for weight 750 failed before any
of the stopping criteria was met, due to an error in the search process. The asterisk marked (*) weight
is the weight from the baseline experiments.
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Week Weight Total obj. Empty dist. Dist. TWearly TWlate LF Nr. veh. Req. unser. (%) Nr. transfers Time (s)

W1

100 47370 16705 10124 3607 5234 0.76 82 1.75 0 1049
750 89667 12699 8298 764 7656 0.78 67 5.01 0 565
1750 155496 13149 8352 952 7542 0.76 66 5.01 0 427
2400 196762 13411 8365 1321 7665 0.76 65 5.01 0 307
1250* 129506 15988 9381 1828 7559 0.73 73 1.75 0 1301

W2

100 46054 16889 9989 2419 8358 0.75 79 0.25 0 1037
750 97840 17370 10193 1053 8723 0.75 78 0.98 0 912
1750 176917 18253 10329 2010 9326 0.73 78 0.25 2 476
2400 224233 16608 9873 1501 9851 0.75 76 1.97 2 756
1250* 136259 17418 10262 950 9878 0.74 77 0.74 0 1034

W3

100 45279 15847 9793 2979 5259 0.77 79 1.76 0 1060
750 91567 14744 9019 2150 7904 0.76 71 2.27 0 883
1750 159996 14427 8860 2034 9925 0.76 69 2.02 0 1073
2400 211305 14931 9088 1629 12156 0.75 70 2.77 0 1047
1250* 133662 16075 9426 2067 8845 0.74 75 1.76 3 1272

W4

100 49726 14441 8693 1185 11107 0.76 68 4.17 0 1205
1750 155284 14288 8423 1635 12438 0.75 64 3.61 0 579
2400 195007 13321 8181 908 10997 0.75 64 4.44 0 917
1250* 128603 13842 8352 2276 14633 0.75 66 3.89 2 964

Table 9: Full results with different vehicle weights.

Weight Total obj. Empty dist. Dist. TWearly TWlate LF Nr. veh. Unser. (%) Nr. transfers Time (s)
100 Mean 47107 15970 9650 2548 7489 0.76 77 1.98 0 1088

St. dev. (%) 3.58 6.05 5.85 35.02 32.64 0.93 6.93 70.83 0 6.26
750 Mean 93025 14938 9170 1322 8094 0.76 72 2.75 0 787

St. dev. (%) 3.75 12.80 8.52 45.14 5.63 1.63 6.31 61.03 0 19.97
1750 Mean 161923 15029 8991 1658 9808 0.75 69.25 2.72 0.5 639

St. dev. (%) 5.47 12.82 8.86 26.38 17.88 1.63 7.73 65.40 173.21 40.20
2400 Mean 206827 14568 8877 1340 10167 0.75 68.75 3.55 0.5 757

St. dev. (%) 5.74 9.20 7.52 20.32 16.32 0.58 6.93 34.68 173.21 36.91
1250* Mean 132008 15831 9355 1780 10229 0.74 72.75 2.04 1.25 1143

St. dev. (%) 2.35 8.09 7.24 28.36 26.12 0.96 5.70 56.40 103.92 12.81

Table 10: Aggregated results of different vehicle weight scenarios.

I.3 Time Window Analysis

An error occured in the experiment in week 5 and the mixed category due to an error in the search
process. The experiment did not produce usable results and was excluded from the aggregated table.

Week Category Total obj. Empty dist. Dist. TWearly TWlate LF Nr. veh Req. unser.(%) Nr. transfers Time (s)

W1

A 110686 13790 8847 446 103 0.77 70 0.00 0 958
B 118485 13454 8780 433 9568 0.77 69 0.00 0 948
C 200008 3467 1196 9634 4461 0.78 25 75.19 10 1800
AC 154609 15624 8635 3251 19599 0.73 68 11.28 0 1509
Base 129506 15988 9381 1828 7559 0.73 73 1.75 0 1301

W2

A 117477 15012 9387 460 118 0.76 74 0.00 0 919
B 129310 16333 9652 451 10374 0.74 74 0.00 0 697
C 183420 1787 508 5340 2035 0.82 11 78.62 0 1800
AC 183307 19647 10463 6961 21987 0.71 85 8.85 18 1800
Base 136259 17418 10262 950 9878 0.74 77 0.74 0 1034

W3

A 107844 13594 8718 426 105 0.76 68 0.00 0 768
B 116187 12824 8564 422 9377 0.78 68 0.00 0 1037
C 189640 2450 775 7206 210 0.94 16 80.10 0 1800
AC 156893 14037 8040 2283 26782 0.75 63 13.60 0 832
Base 133662 16075 9426 2067 8845 0.74 75 1.76 3 1272

W4

A 105111 13536 8515 459 101 0.76 66 0.00 0 647
B 114458 13373 8483 442 8410 0.77 67 0.00 0 808
C 211764 13038 5462 19153 54861 0.68 57 26.67 7 1114
AC 165275 15056 8506 5881 26582 0.74 71 11.39 0 1800
Base 128603 13842 8352 2276 14633 0.75 66 3.89 2 964

W5

A 99690 12407 8061 375 98 0.78 63 0.00 0 671
B 109803 12658 8111 376 9908 0.77 63 0.00 0 1045
C 216591 13551 5176 14862 44752 0.67 61 35.94 1800
Base 113996 12978 8224 2167 9628 0.76 64 0.58 0 953

Table 11: Full results of different time window categories.
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Category Total obj. Empty dist. Dist. TWearly TWlate LF Nr. veh. Unser.(%) Nr. transfers Time (s)
A Mean 108162 13668 8706 433 105 0.77 68.20 0 0 793

St. dev. (%) 5.46 6.06 4.97 7.28 6.81 1.04 5.44 0 0 16
B Mean 117649 13728 8718 425 9527 0.77 68.20 0 0 907

St. dev. (%) 5.52 9.75 5.90 6.22 6.86 1.77 5.20 0 0 15
C Mean 200285 6858 2624 11239 21264 0.78 34.00 59.30 4.25 1663

St. dev. (%) 6.30 77.05 84.38 45.26 110.81 12.76 61.58 38.96 103.07 16
AC Mean 165021 16091 8911 4594 23738 0.73 71.75 11.28 4.50 1485

St. dev. (%) 6.84 13.24 10.36 41.30 12.91 2.02 11.38 14.92 173.21 27
Base Mean 128405 15260 9129 1858 10109 0.74 71.00 1.74 1.00 1105

St. dev. (%) 6.01 10.60 8.28 25.70 23.76 1.37 7.18 67.68 126.49 14

Table 12: Aggregated results of different time window categories.

I.4 Requests Received on Time

Each of the columns are in percentage deviation from the baseline experiments.

Week Dist. Empty dist. TWearly TWlate LF Unserv. penalty Vehicles penalty Req reduced (%)
W1 -6.03 -11.58 51.51 -12.53 2.74 24.93 -2.66 -8.52
W2 -10.24 -10.05 94.94 -33.62 0.00 81.37 -6.72 -8.11
W3 -3.75 -4.42 -14.47 -14.63 0.00 57.54 -4.43 -9.32
W4 2.34 5.24 -36.03 -3.39 0.00 12.15 -3.14 -10.83
W5 7.10 6.91 26.30 -29.93 1.32 258.31 7.17 -2.32
W6 3.96 5.98 -37.24 55.23 0.00 -17.88 3.04 -5.29
W7 5.78 7.13 51.20 -22.96 -1.30 -56.02 6.21 -9.04
W8 6.34 3.87 44.22 28.41 1.33 -63.00 4.85 -4.62
W9 -4.18 -2.91 -18.97 32.40 0.00 165.69 -1.97 -3.22
W10 5.60 3.11 386.95 -26.57 2.63 -64.33 17.00 -6.55
W11 6.67 10.20 124.03 17.67 -1.32 -39.49 8.91 -8.18
W12 3.61 7.25 23.36 -2.02 -1.32 29.06 2.08 -7.02
W13 -0.46 1.97 229.51 13.58 0.00 -38.30 0.55 -8.83
W14 4.88 6.60 46.10 -10.69 1.35 -44.10 8.87 -6.67
W15 6.99 10.01 125.25 -0.99 0.00 -72.19 10.63 -5.37
W16 -7.20 -11.49 -26.93 -11.39 4.05 44.30 -6.45 -7.60
W17 1.69 2.45 45.63 -10.42 1.32 -26.08 3.95 -5.31
W18 -1.44 2.09 -18.95 -18.94 0.00 -8.52 -4.39 -8.90
W19 -5.27 -6.80 -68.60 7.59 1.33 177.19 -11.41 -6.20
W20 11.16 17.38 100.48 7.98 -1.32 -67.66 13.97 -9.06
W21 -0.12 -2.17 31.93 26.26 1.35 9.06 2.14 -8.31
W22 8.44 9.26 -55.35 -3.69 -1.28 -42.28 0.10 -5.50
W23 0.44 2.62 -77.85 36.14 -1.30 59.64 -6.88 -10.51
W24 9.00 14.66 63.99 32.60 -1.32 -42.94 6.02 -7.23
W25 0.45 -1.16 39.06 -3.21 1.33 69.76 1.67 -11.64

Table 13: Full results of scenarios without late requests
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