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Executive Summary

This master’s thesis presents research conducted in partial fulfillment of the requirements for the
Master’s degree in Industrial Engineering and Management at the University of Twente. The
research was carried out at Huisman Equipment B.V., a global heavy lifting and construction
equipment manufacturer with expertise in designing, manufacturing, and providing service for
customers in the oil and gas, renewables, leisure, and civil industries. Particularly, the study
focuses on the New Build business line of Huisman Netherlands (HNL), which is responsible for
the realisation of new construction equipment projects.

In line with an Engineer-to-Order (ETO) production strategy, Huisman New Build adopts a
customer order decoupling point (CODP) positioned before engineering. The average project
lead time equals two years due to the early CODP — resulting in low standardisation — and
the high complexity of the projects. This study focuses on the Long-Lead Item (LLI)-driven
critical path, as the Supply Chain department suspects that the absence of forecasting leads to
missed opportunities for earlier procurement of components with excessive lead times (LLIs),
potentially causing significant delays in subsequent phases. To address this issue, this research
aims to evaluate demand forecasting models for generic LLIs — defined as those LLIs that are
not specifically tailored or custom-made for a particular project, but instead are used across
multiple projects over the years — to assess the feasibility of accurately predicting demand
in HNL’s ETO production environment, potentially enabling earlier procurement. The main
research question guiding this study is as follows:

To what extent is it feasible to forecast generic Long-Lead Item (LLI) demand in Huisman
Netherlands (HNL)’s Engineer-to-Order (ETO) production environment, and to what extent

can this enable earlier procurement decisions?

To address this research question, a structured approach was followed to identify relevant LLIs
for earlier procurement and forecasting. First, candidate purchase groups were identified by
selecting purchase groups categorised as ’A’ in an ABC analysis and excluding those that
do not comply with a set of constraints. These constraints ensure adequate data quality
and practical relevance within HNL’s New Build projects. The Analytical Hierarchy Process
(AHP)-express framework was subsequently used to rank the remaining candidate groups,
leading to the bearings purchase group. Within this group, a distinction was made between
project-specific and generic items using another set of constraints based on their usage across
projects, historical demand patterns, and expert interviews. Moreover, generic items which are
not considered LLIs were excluded, as their procurement and delivery are typically not in the
critical path of the project. Consequently, three generic LLIs were selected with the identifiers
LLI-1, LLI-2, and LLI-3. Demand for LLI-1 exhibits neither a statistically significant trend
nor seasonality, whereas demand for LLI-2 and LLI-3 show significant linear trends, but no
significant seasonality. LLI-1 exhibits a lumpy demand pattern, while historical demands for
LLI-2 and LLI-3 are formally classified as erratic but their Coefficient of Variation (CV)2 and
Average Demand Interval (ADI) values are similar to those of LLI-1.

A literature study was conducted to first review existing forecasting techniques, followed by
an evaluation of models that have shown good performance in forecasting lumpy demand.
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Particularly deep learning models have shown promise in irregular demand forecasting tasks
with long time series. However, mixed evidence is available about the relative prominence
of Machine Learning (ML) models and statistical models. Therefore, this study includes a
broad range of both statistical and ML models: Simple Exponential Smoothing (SES), Double
Exponential Smoothing (DES), the Syntetos-Boylan Approximation (SBA), Autoregressive
Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), Temporal Convolu-
tional Network (TCN), and Transformer. The deep learning models are implemented in both
univariate and multivariate variants to assess the value of incorporating external covariate data.
A naive Random Walk (RW) model is included as benchmark model.

A nested cross-validation procedure with rolling-origin-recalibration in the outer loop is
adopted to validate forecasts over a six-month horizon. As an integral part of this approach,
hyperparameters were tuned using the Tree-Structured Parzen Estimator (TPE) on a fixed-size
validation set within the inner loop. The Mean Error (ME), Mean Absolute Error (MAE), and
Mean Absolute Scaled Error (MASE) were used as evaluation metrics. The models were tested
on all available data using time buckets of six months.

Surprisingly, all models struggled to consistently outperform the naive RW benchmark, particu-
larly for LLI-1. For this time series, only SBA outperformed RW in terms of mean out-of-sample
MAE. The statistical SBA model clearly outperformed all others — including complex deep
learning models like LSTM and Transformer — by achieving the lowest out-of-sample MAE,
highest robustness, and minimal bias. SBA achieved a mean ME of -0.830, a mean MAE of
7.178, and a mean MASE of 0.522 (-18.9% compared to the benchmark) out-of-sample. In the
time series of LLI-2, the multivariate Long Short-Term Memory (LSTM) model achieved the
best generalisation to unseen data, followed by its univariate variant and SBA — these were
the only models outperforming the RW benchmark. The multivariate LSTM model achieved
a mean ME of 0.108, a mean MAE of 10.981, and a mean MASE of 0.717 (-3.5% compared
to the benchmark) out-of-sample on this time series. Last, almost all models outperformed
the RW benchmark for LLI-3, with Simple Exponential Smoothing (SES) exhibiting superior
results in terms of mean out-of-sample MAE. On average, it achieved a ME of 7.723, a
MAE of 19.545, and a MASE of 1.194 (-37.4% compared to the benchmark) out-of-sample.
However, we observed substantial variability in forecast accuracy and minor accuracy improve-
ments of the multivariate LSTM compared to the RW benchmark for LLI-2, and high MASE
values and substantial variability of SES for LLI-3. LLI-1 is therefore the most forecastable item.

It is recommended for HNL to evaluate project timelines to determine whether early pro-
curement based on forecasts offers practical benefits. If specific items are identified as
potentially benefiting from forecast-driven procurement, we recommend integrating the ex-
perimental forecasting setup developed in this study into an internal test environment to
further explore the feasibility of forecast-based procurement, and adopt a continued focus
on improving demand predictability. While ML models did not consistently outperform
statistical models in this study, their performance is known to improve with larger and richer
datasets, so it is also recommended to prioritise consistent and detailed data collection. If
forecast-driven procurement is implemented for selected LLIs, inventory policies should be
adapted accordingly. In particular, to effectively manage inventory in forecast-driven pro-
curement, safety stock levels should be calculated based on the MAEs of out-of-sample forecasts.

To improve forecast accuracy and better support future procurement decisions, promising future
research directions are recommended to HNL. First, incorporating different combinations of
covariate data — such as project-related information or macroeconomic indicators — could
enhance deep learning performance. Furthermore, additional model variations — including cross-
learning, hybrid, and ensemble models — potentially improve forecast accuracy and robustness.
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Chapter 1

Introduction

This chapter introduces the research conducted at Huisman Equipment B.V. as part of the
graduation requirements for the Master of Science in Industrial Engineering and Management
at the University of Twente. Section 1.1 provides the research background by introducing the
company where the research is conducted. Section 1.2 identifies the problem perceived by
Huisman Equipment B.V. and formulates the objective of the research. Section 1.3 presents the
research design, including the problem-solving approach (including research questions), research
scope, and intended deliverables. The outline of the study is presented in Section 1.4, where the
problem-solving phases and corresponding chapters are outlined.

1.1 Background and Context

This research is conducted at the Logistics & Warehouse Group of Huisman Equipment B.V.,
hereafter referred to as "Huisman" for brevity. Huisman is a family-owned business with ex-
tensive experience in designing, manufacturing, and providing service for heavy construction
equipment for world-leading companies in the oil and gas, renewables, leisure, and civil indus-
tries. Their product portfolio consists of offshore and onshore cranes for heavy lifting, pipelay
equipment, drilling equipment, wind turbine installation equipment, rock dumping systems,
winches, vessel designs, and specials for example for deep water lowering, skidding and salvage
(Huisman Equipment B.V., n.d.-a). Figure 1.1 depicts examples of Huisman-built products (e.g.,
a tub mounted crane (bottom left), two heavy lift mast cranes (top left), a leg-encircling crane
(bottom right), and a multi-lay pipelay system (top right)).

Figure 1.1: Huisman Equipment B.V. product portfolio

Delivering step changing technical solutions by constantly working on innovative solutions
which add value to the market is the primary goal of Huisman. Their extensive operational
experience in realising high-quality heavy construction equipment is used to deliver innovative

1
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solutions for new projects in mechanical, structural, naval, hydraulic, electrical, and software
engineering (Huisman Equipment B.V., n.d.-b). Equipment provided by Huisman is often a
critical main component, so high-quality solutions and services must be delivered consistently.
Huisman aims to become the industry standard by taking innovation, quality, and safety to
the next level to provide a competitive edge for their global customer portfolio. The company
designs and manufactures custom-built solutions in close collaboration with their customers, so
production, testing, commissioning, and installation facilities are located worldwide to deliver
their custom-built equipment on time on a turn-key basis. Huisman therefore expanded their
engineering and production capacity from their head office in Schiedam, referred to as HNL,
to the Czech Republic, China, and Brazil. Additional local sales, commissioning, engineering,
service, and after sales support is provided by facilities in Houston and Rosenberg (USA),
Bergen (Norway), Enschede (The Netherlands), Perth (Australia), and Singapore.

Huisman consists of three business lines operating in their organisation: Huisman New Build,
Huisman Services, and Huisman Geo. Huisman New Build is the business line working on the
construction of new heavy construction equipment. Huisman Services is responsible for applying
Huisman’s expertise to satisfy the service needs of their customers. This includes training,
repair advice, repairs, spare part delivery, corrective and preventive maintenance, upgrades,
modifications, and re-commissioning. Huisman Geo realises geothermal projects to extract the
potential of geothermal heat and power. This research focuses on the New Build business line
of HNL.

1.2 Problem Identification

Olhager (2010) defines the Customer Order Decoupling Point (CODP) as the point in the value
chain for a product, where the product is linked to a specific customer order. Value adding
processes upstream of the CODP are forecast-driven, while processes downstream the CODP
are driven by customer orders (van Donk & van Doorne, 2016; Olhager, 2010). The CODP
is, by definition, the last stock point along the supply chain (Harfeldt-Berg & Olhager, 2024).
The New Build business line of HNL adopts a CODP before engineering. This aligns with an
Engineer-to-Order (ETO) production strategy as illustrated in Figure 1.2, where dotted lines
represent forecast-driven activities and solid lines indicate customer order-driven processes across
different production strategies. As a result, Huisman New Build does not currently hold stock
for production components, and all procurement and manufacturing activities are triggered by
specific customer orders rather than forecasts.

Figure 1.2: Illustration of production strategies with their corresponding CODPs
(Olhager, 2010)

Additionally, Huisman New Build adopts a concurrent engineering work methodology for its
projects, which stimulates the parallelisation of engineering, procurement, and fabrication tasks
to shorten the project lead time (see Figure 1.3). However, due to the high complexity of these
projects and the customer-driven manufacturing environment, Huisman New Build projects
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typically have a lead time of approximately two years. Introducing forecasting for Long-Lead
Items (LLIs) offers the potential to shift selected procurement activities upstream of the CODP,
making them forecast-driven rather than entirely customer order-driven. This would further sup-
port the concurrent engineering approach by enabling earlier procurement decisions, increasing
parallelisation, and potentially reducing the overall project lead time.

Figure 1.3: Illustration of the concurrent engineering methodology adopted by Huisman

This section relates to the first phase of the Managerial Problem Solving Method (MPSM)
research framework proposed by Heerkens and Van Winden (2021). The problem identification
formulates the problem context by identifying the core problem and research objective.

1.2.1 Problem Statement and Action Problems

To define the problem related to this study, we first map all problems of Huisman with their
causal links in a diagram as illustrated in the problem cluster in Figure 1.4. The problem cluster
is structured from the bottom up, beginning with the root causes and progressing upward to
illustrate the cause–effect relationships. The most downstream problems are defined as action
problems, which are discrepancies between the norm and reality, as perceived by the problem
owner (Heerkens & Van Winden, 2021). The problem cluster reveals the following action prob-
lem:

1. Missed opportunities. Huisman’s Supply Chain department suspects that the absence
of forecasting leads to missed opportunities for earlier procurement of raw materials and
components, potentially causing significant delays in subsequent phases, missed contractual
deadlines, and increased operational costs.
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Figure 1.4: Problem cluster mapping cause-effect relationships at Huisman

This action problem constitutes the discrepancy between norm and reality as perceived by
Huisman. Solving the action problem is the main objective of this research, as Huisman aims
to assess the extent of missed opportunities.

1.2.2 Core Problem and Research Motivation

We select the problems which have no direct causes themselves as core problems to prevent
solving symptoms of a problem instead of the underlying issue itself (Heerkens & Van Winden,
2021). From the problem cluster in Figure 1.4, we identify the following core problems:

1. Low availability of materials. In some cases, low availability of materials — such as steel
plates, pipes, shafts, and profiles — at suppliers cause delays in single parts production.
This may, in turn, delay assembly, finishing, and outfitting, particularly if the project
contains a steel-driven critical path.

2. Basic engineering delays. In some cases, delays in the release of basic engineering specifi-
cations delay raw material procurement and delivery. The resulting unavailability of raw
materials delays single parts production and other downstream manufacturing processes.

3. High demand on limited resources. The number of projects at Huisman has significantly
increased over recent years, placing increased pressure on available production capacity.
This includes both physical resources and skilled personnel required for specialised tasks.

4. Huisman lacks a demand forecast for Long-Lead Items (LLIs). Currently, no forecasting
model is used to obtain insights into future LLI demand. These items are defined as having
replenishment lead times of at least three months, based on expert opinion and historical
data from HNL projects. A team of buyers reactively procures LLIs once basic engineering
is finished, resulting in frequent late deliveries of LLIs. Approximately 34% of all purchase
orders were delivered on or before their planned delivery date over the past four years, 74
days too late on average.

5. Excessive lead times for LLIs. LLIs are characterised by complex engineering, highly
customised production at the supplier, and long lead times of at least three months, causing
their delivery to be a frequent bottleneck of the project execution.
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Heerkens and Van Winden (2021) state that it should be possible to influence the selected core
problem, and the most important core problem should be selected. In accordance with the
problem owner Huisman, we select the following core problem:

Huisman lacks a demand forecast for Long-Lead Items (LLIs).

1.2.3 Research Objective

Given the identified action problem and core problem, we formulate the following research ob-
jective to solve the selected core problem:

This research aims to evaluate demand forecasting models for generic LLIs to assess the
feasibility of accurately predicting demand in HNL’s ETO production environment, enabling

earlier procurement.

1.3 Research Design

This section outlines the research design by formulating the main research question and by
detailing the problem-solving approach, including the research questions addressed in each phase.
Additionally, the scope of the research is listed and intended deliverables to the problem owner
are specified.

1.3.1 Problem-Solving Approach

Heerkens and Van Winden (2021) propose their MPSM, a systematic, adaptable problem-solving
method applicable for problems encountered in all areas of expertise consisting of seven sequen-
tial phases. This research follows this MPSM framework excluding the (final) implementation
step: problem definition, approach formulation, problem analysis, solution formulation, solution
selection, and evaluation. To guide the execution of each phase after the first two phases, where
the global problem and approach are defined, we formulate research questions that systemati-
cally address the key knowledge problems within the research framework. The main research
question guiding this study is as follows:

To what extent is it feasible to forecast generic LLI demand in HNL’s ETO production
environment, and to what extent can this enable forecast-driven procurement?

Problem Analysis

The problem analysis phase of the research framework analyses the perceived problem faced by
the problem owner by researching the core problem of the research. Chapter 2 presents the
problem analysis by providing insights gathered through expert interviews at HNL.

1. What are the current LLI procurement processes at the New Build business line of HNL?

(a) How is a typical HNL New Build project currently initiated and structured?

(b) What factors currently determine when LLI procurement can start within a typical
New Build project?

Research question 1 investigates procurement activities within the overall project execution
process at HNL New Build. Research question 1a examines the entire project execution process,
while research question 1b specifically investigates the LLI procurement process. Analysing
these research questions is crucial in understanding the problem and identifying potential points
of improvement.
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2. Which LLIs are most suitable for earlier procurement through demand forecasting, and
what are their historical demand patterns and lead times?

(a) What are the most suitable LLIs identified for earlier procurement through demand
forecasting in the New Build business line of HNL?

(b) What are the historical demand patterns and average lead times of the identified LLIs?

Research question 2 is crucial for understanding the factors that are essential for developing a
model that aligns with real-world requirements and timelines. It also assesses the feasibility of
early procurement and demand forecasting for the identified LLIs at HNL. Research question 2a
selects the suitable LLIs for earlier procurement, while question 2b analyses their historical lead
times and demand patterns.

3. What are the key requirements for the forecasting model in the HNL use-case?

(a) What is the appropriate forecast horizon for the HNL New Build projects, considering
procurement lead times and project timelines?

(b) What are the appropriate time buckets for the HNL New Build projects, considering
procurement lead times and project timelines?

(c) What is the appropriate aggregation level for the HNL New Build projects, considering
procurement lead times and project timelines?

Research question 3 aims to identify key requirements to set up a forecasting model for the HNL
New Build projects. Specifically, it aims to identify the appropriate forecast horizon (3a), time
buckets (3b), and aggregation level (3c) necessary to align the forecasting model with real-world
procurement decision-making. This ensures the model setup aligns with realistic HNL conditions
and delivers practical insights for real-world procurement decisions.

Solution Formulation

This phase formulates alternative solutions and their desirability by identifying best practices
for similar problems. It provides the foundation for selecting the most appropriate solution.
Solution formulation is addressed in Chapter 3, which comprehensively presents the theoretical
background. Chapter 4 builds on this theoretical background by selecting and specifying the
most suitable solution methods and experimental design in the HNL use-case.

4. What forecasting models does the literature propose for forecasting demand in the HNL
use-case?

(a) What demand and forecasting models exist in literature?

(b) Which forecast models have historically shown good performance in similar condi-
tions?

Research question 4 aims to explore the existing body of literature to identify forecasting mod-
els suitable for the selected LLIs. Following research question 4a, a review of academic peer-
reviewed journals will be conducted to understand demand and forecasting models. In research
question 4b, we research similar use-cases in the current body of literature to identify state-of-
the-art alternative solutions.

5. What metrics are proposed in literature to ensure robust forecasting model evaluation?

Research question 5 formulates state-of-the-art evaluation metrics for robust model assessment
and selection. This analysis will provide a theoretical foundation to guide the selection of
forecasting models tailored to the use-case of HNL.
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6. What forecasting models and configurations are selected for comparative evaluation for
the HNL use-case?

(a) What forecasting models are most suitable for the HNL use-case?

(b) What hyperparameters are identified for the selected models, and how can they be
effectively tuned to optimise forecasting model performance for the HNL use-case?

After having identified state-of-the art forecasting practices in research questions 4 and 5, we
formulate the experimental design tailored to the HNL use-case in research question 6. This
formulation includes the models used for comparison (6a) and hyperparameter tuning (6b).

7. How can forecasts be evaluated and validated to ensure reliable and accurate model selec-
tion for the use-case of HNL?

(a) Which forecast accuracy metrics are most suitable for evaluating forecasting models
in the HNL use-case?

(b) Which validation schemes are most suitable for validating forecasting models in the
HNL use-case?

Research question 7 further details the experimental design by defining the forecast accuracy
metrics (7a) and validation schemes (7b) that will be employed.

Solution Selection

In the fifth phase of the MPSM framework, we select the most suitable solution to the core
problem for the use-case of HNL. Key findings and well-founded conclusions of the experimental
execution are addressed in the numerical analysis of Chapter 5.

8. Which forecasting model performs best for the selected LLIs in the HNL use-case?

(a) How do the selected forecasting models compare in terms of accuracy and robustness
for generic LLIs in the HNL use-case?

(b) What are the optimal hyperparameter values identified through hyperparameter tuning
for the selected forecasting models?

(c) To what extent does covariate data improve the forecast accuracy of the selected fore-
casting models in the HNL use-case?

Research question 8 aims to identify the best-performing and most robust forecasting model
in the HNL use-case. The relative performance of the models is presented following research
question 8a, while optimal hyperparameters are addressed in research question 8b. Research
question 8c focuses on the impact of covariates on the forecasting accuracy.

9. How do the selected models compare in terms of computational complexity?

Research question 10 aims to provide insights into the computational tractability of the selected
models. Insights into the computational tractability are crucial to assess the feasibility of ap-
plying the models in practice, ensuring they align with the decision-making timelines within the
HNL context. It also helps balance forecasting accuracy with practicality - marginal accuracy
gains may not justify the use of computationally expensive models.
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Evaluation

In the final phase of the MPSM framework, a structured evaluation of all research phases is
conducted (Heerkens & Van Winden, 2021). It assesses the extent to which the proposed solution
meets the research objective and addresses the core problem. Chapter 6 pertains to this phase,
summarising the findings and reflecting on the research process.

10. What are the key findings, implications, and recommendations for the problem owner and
further research?

Research question 10 concludes the research by providing holistic, actionable insights for the
problem owner. Additionally, it addresses academic contributions and directions for further
research.

1.3.2 Research Scope

In this research, we select the purchase group and SKUs that are most suitable for demand
forecasting and have the potential to benefit from forecast-driven decision-making in procure-
ment processes. The solution method is specifically designed for the New Build business line
of HNL and the conclusions on forecastibility solely apply to the LLIs selected in Section 2.3.
Yet, the solution method is generisable to other items. Given that demand patterns may differ,
it is recommended to repeat the research to evaluate the most optimal models for each generic
item. It is also important to note that this research focuses on assessing the forecastibility of the
selected items, procurement or inventory control decision-making optimisation is not included
in the scope.

1.3.3 Intended Deliverables

Intended deliverables to the problem owner include:

• A recommendation on the most appropriate demand forecasting model for the selected
LLIs, derived from a comparative analysis of alternative models;

• A demand forecasting tool configured to implement the selected forecasting model;

• A comprehensive evaluation of the forecasting performance, based on the application of
historical demand data and relevant evaluation metrics;

• Detailed recommendations for the integration of the demand forecasting tool into HNL’s
operational processes;

• This master’s thesis, which will document the research methodology, findings, and
evidence-based conclusions aimed at addressing the identified challenges.

1.4 Research Outline

This section outlines the research structure, presenting the sequential MPSM phases of the
study, the corresponding chapters in which each phase is addressed, and the research questions
that form its foundation. By mapping the research questions to their corresponding phases and
chapters, the framework ensures a logical progression throughout the thesis. This clarifies how
each part of the study contributes to addressing the overall research objective. Table 1.1 provides
an overview of the MPSM phases with their corresponding chapters and research questions. The
problem definition and approach formulation phases follow the MPSM methodology and are not
driven by specific research questions. For more elaborate descriptions on these phases, refer to
Heerkens and Van Winden (2021).
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Table 1.1: Research Outline

Phase Chapter Research questions

1. Problem Definition 1.2. Problem Identifica-
tion

2. Approach Formula-
tion

1.3. Research Design

3. Problem Analysis 2. Context Analysis 1. What are the current LLI procurement pro-
cesses at the New Build business line of HNL?
2. Which LLIs are most suitable for earlier pro-
curement through demand forecasting, and what
are their historical demand patterns and lead
times?
3. What are the key requirements for the fore-
casting model in the HNL use-case?

4. Solution Formulation 3. Literature Study 4. What forecasting models does the literature
propose for forecasting demand in the HNL use-
case?
5. What metrics are proposed in literature to
ensure robust forecasting model evaluation?

4. Experimental Setup 6. What forecasting models and configurations
are selected for comparative evaluation for the
HNL use-case?
7. How can forecasts be evaluated and validated
to ensure reliable and accurate model selection
for the HNL use-case?

5. Solution Selection 5. Numerical Results
and Discussion

8. Which forecasting model performs best for
the selected LLIs in the HNL use-case?
9. How do the selected models compare in terms
of computational complexity?

6. Evaluation 6. Conclusions and Rec-
ommendations

10. What are the key findings, implications, and
recommendations for the problem owner and fur-
ther research?
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Chapter 2

Context Analysis

This chapter relates to phase 3 of the MPSM framework: Problem Analysis, and — as outlined
in Section 1.4 — research questions 1, 2, and 3 are answered. Section 2.1 details all processes in
the project execution at HNL New Build. The generic LLIs that are in the scope of this study
are selected and specified in Sections 2.2 and 2.3. Moreover, the respective demand patterns are
analysed in Section 2.4.

2.1 Project Execution and Procurement Processes

This section describes the current project execution and procurement procedures for Huisman
New Build projects and identifies typical bottlenecks in the project planning. The labels in
parentheses correspond to activities depicted in Figure 2.1, which visually guides this section
by providing a detailed project exectution overview using BPMN 2.0 notation with labelled
activities.

2.1.1 Project Initiation and Management

The Tender & Concepts department initiates projects upon receiving a request for quotation from
a client. Subsequently, the Concept Engineering team develops a concept design and prepares
the associated documentation (TC2). This includes, but is not limited to, user requirements,
technical specifications, and an initial weight estimate detailed at the part level. It should
be noted that at this stage, the weight estimate is indicative only; it is based on preliminary
design assumptions, with no finalised part codes or detailed component definitions established
yet. The concept design documentation serves as the basis for aligning with the client on the
project scope, specifications, and contract negotiations (TC3-TC5). Upon achieving formal
contractual agreement (TC6), the Tender & Concepts department transfers ownership of the
project—together with all associated documentation—to the Project Management department
(TC7). This department is responsible for the planning, control, and parallel execution of the
multidisciplinary project in accordance with the agreed contractual terms and project objectives
(PM1-PM4).

2.1.2 Engineering and Supply Chain Processes

After project team kick-off (PM3), post-contract engineering (EN1) verifies the complete avail-
ability of concept documentation, thereby supporting engineering activities in accordance with
the contractual agreements. Subsequently, system engineering (EN2) defines the formal system
requirements, including the identification of critical components (i.e., components in the primary
load path, long-lead items, and high-value components). At this stage, exact part numbers or
specifications are not yet determined. However, the identified critical components are prioritised
for further engineering and specification during basic engineering (EN3), particularly LLIs to
mitigate potential risks to the project schedule. After basic engineering, Huisman New Build
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adopts a concurrent engineering paradigm by parallelising engineering, supply chain, manufac-
turing, and field engineering tasks. While the engineering department advances the detailed
and manufacturing design specifications (EN4-EN5) and the software production (EN6), the
supply chain department uses basic design documentation to establish a procurement control
chart (SC1) and initiate sourcing activities (SC2-SC3). At this stage, LLI-procurement is pri-
oritised, followed by the acquisition of raw materials and other components. Last, logistics are
coordinated in parallel for all items (SC4-SC5).

2.1.3 Manufacturing Processes and Project Completion

Once the raw material steel for the project has arrived (SC4) and the manufacturing design is
completed by engineering (EN5), work preparation can start organising fabrication jobs. These
jobs include production, welding, and machining of single parts (M2) and fitting and painting of
components (M3). After the completion of these manufacturing processes, outfitting (M4) can
begin provided all purchased parts (including LLIs) have been delivered. In this phase, com-
ponents, single parts, and procured parts are assembled into an assembly ready for installation
(FE1) and commissioning and testing (FE2). Control systems are also commissioned and tested
once software production (EN6) has completed. When commissioning and testing is completed,
project management closes the project (PM5) by handing over the scope to the Huisman Services
business line.

Figure 2.1: Detailed overview of Huisman New Build project execution processes across
core disciplines.1 The activity shown in bold (labelled SC3) pertains to the procurement
of LLIs and other materials.
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2.1.4 Critical Path Activities

We define critical path activities as tasks forming the longest sequence of interdependent ac-
tivities within a project schedule. These tasks are considered critical because they directly
determine the overall project completion date. The Planning Department at Huisman identifies
the following general categories of project critical paths:

1. Steel-driven critical paths These critical paths arise when the timely availability of raw
materials—most commonly steel—is delayed. Such delays may be caused by engineer-
ing delays (EN3) or transport disruptions (SC4), subsequently delaying manufacturing
activities (M1-M4).

2. LLI-driven critical paths LLI-driven critical paths refer to delays or disruptions in a project
schedule that arise from the sourcing of LLIs—components (SC3-SC4) that require sub-
stantial delivery time due to highly customised production processes at suppliers. Manu-
facturing, particularly outfitting (M4), is delayed when LLIs are unavailable, which sub-
sequently delays project completion.

3. Functional critical paths Fabrication and mobile machining activities (M2-M3) represent
the primary critical tasks in functional critical paths. These processes require specialised
machinery, which may be unavailable when multiple projects are executed in parallel,
potentially resulting in delays to the overall project completion.

2.2 Purchase Group Selection

To ensure data quality and availability, maintain practical relevance, and focus on items with
the highest potential for accurate forecasting, we first select a single purchase group as the scope
of this research. This focused approach also facilitates better domain understanding, which
enables more informed feature engineering and interpretation of forecasting results. This section
outlines the methodology used to identify and select the most appropriate purchase group, which
forms the foundation for determining the most suitable LLIs for early procurement. We first
describe the purchase groups considered as candidates, using an ABC analysis — based on the
assumption that high-value purchase groups are more likely to include LLIs due to their complex
and specialised nature, and because they often contain items used across multiple projects — and
a set of formulated constraints. We then proceed to a comparative evaluation of the candidate
purchase groups to identify and select the most suitable purchase group for forecast-driven
procurement as the scope of this research.

2.2.1 Purchase Group Identification

Huisman’s part archive comprises 287,723 SKUs distributed across 131 distinct purchase groups.
These groups primarily include control systems, cut and machined components, electrical, hy-
draulic, mechanical, and raw material SKUs. The archive also comprises tools, equipment,
consumables, and other parts. We use a dataset containing all part issues recorded from July
2003 to November 2024, including, e.g., issue date, part code, quantity, and transaction type.
The dataset is filtered to exclude issues from Huisman locations other than HNL. An ABC anal-
ysis on the purchase groups, conducted over the past five years, identifies 26 purchase groups
categorised as group A, which contribute significantly to the total procurement costs of HNL.
These 26 purchase groups constitute approximately 20% of all purchase groups and 84% of the
total procurement value of all part issues, as shown in Figure 2.2.

1The process is modelled using the standard BPMN 2.0 notation. For further information, see the official
specification: https://www.omg.org/spec/BPMN/2.0.2/About-BPMN.
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Figure 2.2: Distribution-by-value graph of the purchase groups of HNL based on their
cumulative procurement value from 2020 to 2024

As it is suggested to eliminate enviable alternatives before ranking (de FSM Russo & Camanho,
2015), we further refine the selection of purchase groups by identifying those that are most
relevant to HNL’s operations and production processes while ensuring adequate data quality
for analysis. From the candidate purchase groups categorised as “A” in the ABC analysis, we
exclude those that do not comply with the following set of constraints:

• Purchase groups with SKUs that are easily sourced without impacting project timelines
should be excluded, as they do not affect steel-driven, LLI-driven, or functional critical
paths, which are crucial to project completion;

• The SKUs within the purchase group must be stored in the HNL warehouse;

• The purchase group must consist exclusively of New Build project-related SKUs;

• A consistent unit of measurement must be used within the purchase group;

• The purchase group must consist of distinct part codes, and grouped part codes (i.e.,
part codes representing multiple SKUs) should account for no more than 5% of the total
transactions in the past five years.

We have identified five candidate purchase groups in group A which comply with all constraints:
bearings, gearboxes, hooks, winches, and sheaves. These purchase groups all contain SKUs
related to the LLI-driven critical path.

2.2.2 Purchase Group Ranking

To select the purchase group most suitable for forecast-driven procurement, we compare the
identified purchase groups using the following set of criteria: data, procurement value, and
production criticality. Sub-criteria for the data criterion include data quality and data volume.
Unit SKU procurement value and total purchase group procurement value of the part issues over
the past five years are sub-criteria of the procurement value criterion. Production criticality
is defined as the importance of an SKU in ensuring the timely completion of manufacturing
or assembly processes, where its unavailability may cause significant production delays. The
procurement lead time and the extent to which the delivery of SKUs within a purchase group
are generally located in the critical path of the project timeline are relevant sub-criteria identified
for the production criticality.
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Multiple Criteria Decision-Making

The AHP is one of the most widely used frameworks to support complex multiple criteria
decision-making (Taherdoost & Madanchian, 2023). It is a "theory of measurement through
pairwise comparisons and relies on the judgements of experts to derive priority scales" (Saaty,
2008). AHP requires

(
m
2

)
pairwise comparisons per level, given a total of m elements per level.

Consequently, applying AHP becomes an arduous task as m increases (Tavana et al., 2023).
Tavana et al. (2023) concluded that methods requiring more interaction with experts are less
efficient and produce less acceptable results, as experts are more motivated and attentive in
methods requiring fewer pairwise comparisons and less interaction. Leal (2020) proposed the
simplified AHP-express (best method-AHP), requiring fewer judgement and effort with m − 1
pairwise comparisons per level. Tavana et al. (2023) found a similar ranking using AHP-express
as the traditional AHP in their example, but with far fewer effort and judgement. The AHP-
express framework decomposes the decision-making process into the following steps (Tavana et
al., 2023):

1. Create a hierarchical tree.

2. Determine the best elements of each level. The elements of each level are compared to
other related elements located at a higher level, and the best ones are identified.

3. Determine the preferences of the best element at each level: after interacting with the
decision-maker, determine the preferences of the best criterion (best alternative per
criterion) relative to the other criteria (using the 9-point scale values of Table A.1),
(aBj , j = 1, 2, ...,m).

4. Calculate the local priorities of the criteria and alternatives per criterion by applying
Equation (2.1).

wj =
1/aBj∑m
k=1 1/aBk

, j = 1, 2, ...,m (2.1)

5. Calculate the overall priority of the alternatives.

6. Rank the alternatives.

The AHP-express can be represented in matrix form (Leal, 2020). Table 2.1 provides an overview
of the notation of priorities at different levels within the decision hierarchy, which will be used
to formulate the matrix representation of AHP-express.

Table 2.1: Notation for AHP-express

Symbol Description

cgij Priority of sub-criterion j within criterion i

pascia,j Priority of alternative a for sub-criterion j of criterion i

paca,i Priority of alternative a for criterion i
pci Priority of criterion i for the objective
pa Overall priority of alternative a for the objective

For a decision hierarchy with alternatives a = 1, . . . , na and sub-criteria j = 1, . . . , nsi within
criterion i = 1, . . . , nc, we determine the local priority vectors PSCi for each criterion i and
construct an nc×

∑
i nsi matrix of local priorities of sub-criteria MPSC using Equation (2.2).

We then calculate matrix PASCi of local priorities of alternative a in each sub-criterion j for
each criterion i and group each matrix PASCi by each criterion i in an

∑
i nsi × na matrix

MPASC, as shown in Equation (2.3) (Leal, 2020).
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PSCi =
[
cgi1 · · · cginsi

]
, MPSC =


PSC1 0 · · · 0

0 PSC2 · · · 0
...

...
. . .

...
0 0 · · · PSCnc

 (2.2)

PASCi =

 pasci1,1 · · · pascina,1
...

. . .
...

pasci1,nsi · · · pascina,nsi

 , MPASC =


PASC1

PASC2
...

PASCnc

 (2.3)

After having constructed matrices MPSC and MPASC, We multiply the two matrices to
obtain an nc × na matrix PAC of local priorities of alternatives a for criteria i, as shown in
Equation (2.4). The local priorities of each criterion i are then calculated and used to construct
the nc-dimensional row vector PC in Equation (2.5) (Leal, 2020).

PAC = MPSC ·MPASC =

 pac1,1 · · · pacna,1
...

. . .
...

pac1,nc · · · pacna,nc

 (2.4)

PC =
[
pc1 · · · pcnc

]
(2.5)

We then multiply local priority vector PC and matrix PAC using Equation (2.6) to obtain a
vector of overall priorities of the alternatives for the objective (Leal, 2020).

PA = PC ·PAC =
[
p1 · · · pna

]
(2.6)

Last, we acquire the ranking by sorting vector PA in descending order such that pa1 ≥ pa2 ≥
· · · ≥ pana , where ak denotes the alternative in the kth position of the sorted vector.

Results

In this study, we elicited expert insights from interviews at HNL, applying the 9-point scale
to assign relative importance values. For the full operationalisation of the AHP-express frame-
work, including all scoring and matrix calculations, readers are referred to Appendix A. Ta-
ble 2.2 presents the resulting final ranking for the purchase group selection based on 29 pair-
wise comparisons using AHP-express. By comparison, AHP would have required a total of(
5
2

)
· 6 +

(
2
2

)
· 3 +

(
3
2

)
= 66 pairwise comparisons. The results indicate that the bearings pur-

chase group is the most suitable option based on the identified criteria, followed by gearboxes,
winches, hooks, and sheaves, in descending order of priority. Hence, we select the bearings
purchase group.

Table 2.2: Final AHP-express ranking of the alternative purchase groups

Bearings Gearboxes Winches Hooks Sheaves

pa 0.338 0.234 0.178 0.136 0.113
Rank 1 2 3 4 5
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2.3 Stock-Keeping Unit Selection

In this study, we focus on selecting SKUs (i.e., part codes) within the bearings purchase group
that are classified as “generic”. We define generic SKUs as those items that are not specif-
ically tailored or custom-made for a particular project, but instead are used across multiple
projects over the years. These generic SKU exhibit more stable demand patterns, improving
their potential for accurate demand forecasting. We take a pragmatic approach in identifying
the generic SKUs by formulating the following set of constraints based on their usage across
projects, historical demand patterns, and expert interviews:

• Part codes starting with “9” are excluded, as they represent dummy part codes used for
multiple distinct SKUs;

• The item must be used in more than 40 distinct projects over the past 20 years, ensuring
it is not project-specific;

• To ensure recent use, items must have at least one non-zero demand occurrence in both
2023 and 2024;

• We only include items with an ADI less than 4 and a squared CV of non-zero demand
sizes of less than 5 to filter out highly unstable demand patterns.

Out of the 655 bearings identified as being used historically for HNL New Build projects, only
four were selected as generic bearings. This reflects the ETO approach at Huisman, where
a broad range of bearings with varying technical specifications are required. As a result, the
distribution of monthly non-zero demand occurrences per SKU within the bearings purchase
group, from 2004 to 2024, is highly right-skewed (we do not include this empirical distribution
here for the sake of conciseness, the corresponding cumulative density histogram can be found
under Appendix B). Moreover, we exclude generic bearings which are not considered LLIs since
these bearings are generally not in the critical path of the project (see Section 2.1.4). The re-
maining candidate LLIs — 2002173, 2005480, and 2008960 — all have an average lead time of
approximately five months. The nomenclature of the resulting three identified generic LLIs, in-
cluding their part codes and descriptions, is provided in Table 2.3. For brevity, the selected LLIs
2002173, 2005480, and 2008960 are hereafter referred to as LLI-1, LLI-2, and LLI-3, respectively.

Table 2.3: Nomenclature of the identified generic LLIs

Notation Part Code Description Dimensions

LLI-1 2002173 Cylindrical Roller Bearing 100 × 150 × 67
LLI-2 2005480 Cylindrical Roller Bearing 220 × 300 × 95
LLI-3 2008960 Cylindrical Roller Bearing 140 × 200 × 80

Note: Dimensions are denoted as inner diameter (d) × outer diameter (D) × width
(B) [mm].

2.4 Forecasting Requirements and Demand Patterns

This section defines the forecasting requirements — including time buckets, forecast horizon,
and aggregation level — for the presented use case. Moreover, historical demand patterns of the
identified generic LLIs are evaluated in this section. Appropriate demand models are selected
for each item using statistical tests, and demand patterns are classified to provide context for
the forecasting task.
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2.4.1 Forecasting Requirements and Historical Demand

To enable LLI procurement before basic engineering has completed, we require an aggregation
level at SKU-level, as procurement decisions are made for specific part codes rather than for
aggregated groups. We use a six-month forecast horizon, comprising the five-month lead times
of the generic LLIs and an additional one-month review period, as required by the problem
owner, to ensure the forecasts are actionable for procurement decision-making. Six-month time
buckets are used, as we are interested in the total demand over the forecast horizon and do not
require more granular detail. Figure 2.3 depicts the historical demands of LLI-1, LLI-2, and
LLI-3, aggregated into six-month time buckets.
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(a) Historical Demand for LLI-1
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(b) Historical Demand for LLI-2
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(c) Historical Demand for LLI-3

Figure 2.3: Historical demand time series for the selected LLIs.

2.4.2 Demand Models

Axsäter (2015) describes the constant demand model as the starting point in modelling
underlying demand patterns. Demands xt in period t are represented by random deviations εt
from a relatively stable average a in the constant model. These random deviations εt cannot
be forecast and are assumed to be independent with a mean equal to zero. The trend demand
model extends the constant demand model by including a systematic linear trend using a
variable b representing the systematic increase or decrease per period. If a product’s demand
exhibits seasonality, the trend-seasonal model is used to capture its demand pattern. If we let
Ft denote the seasonal component — a fixed value in the additive model or a scalar multiplier
in the multiplicative model — we obtain additive and multiplicative forms of the trend-seasonal
model, respectively. For a more comprehensive description of demand models, readers are
referred to Axsäter (2015).

To determine a suitable forecasting technique, we need to have some idea of how to model the
stochastic demand (Axsäter, 2015). We evaluate the presence of trend and seasonality in the
historical demand of the three identified LLIs to select appropriate demand models.

Assessing the Presence of Trend

Trend significance is assessed by first deseasonalising the demand data, followed by performing
a linear regression t-test. The fitted regression lines for each LLI are shown in Appendix C. The
slopes of the fitted linear regressions are -0.273 for LLI-1, -1.286 for LLI-2, and 0.799 for LLI-3,
reflecting negative slopes for the regression lines of LLI-1 and LLI-2, and a positive slope for
that of LLI-3. To assess whether these slopes indicate statistically significant linear trends, we
formulate the following null hypothesis H0 and alternative hypothesis H1 for the linear regression
t-test:

H0: There is no statistically significant linear trend in the deseasonalised data, i.e., β1 = 0.

H1: There is a statistically significant linear trend in the deseasonalised data, i.e., β1 ̸= 0.

Table 2.4 presents the resulting p-values for the identified LLIs. For LLI-2 and LLI-3, we reject
the null hypothesis H0 at a significance level of 5%, as their p-values are smaller than 0.05.
For LLI-1, we fail to reject H0, as its p-value is greater than 0.05. The linear regression t-test
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therefore indicates that LLI-2 and LLI-3 exhibit a significant linear trend, while LLI-1 does not
show a statistically significant trend in its deseasonalised demand data.

Table 2.4: p-values of the trend significance t-test for the identified generic LLIs

LLI-1 LLI-2 LLI-3

p-value 0.174 3.67e-04 0.014

Assessing the Presence of Seasonality

A similar approach is taken for assessing the presence of monthly seasonality in the underlying
demand patterns: First, we detrend the data to obtain stationary series. Then, we regress the
detrended series on time using one dummy variable for the first six-month period of each year
representing structural differences relative to the second six-month period. A t-test is used to
assess whether the estimated seasonal effect is statistically significant. Since only one dummy
variable is included, an overall F-test for joint significance of multiple seasonal factors is not
required. The hypotheses for the t-test can therefore be formulated as:

H0: Seasonal factors do not significantly reduce the variability of the detrended data.

H1: Seasonal factors significantly reduce the variability of the detrended data.

All individual t-tests result in p-values exceeding the 5% significance level, as depicted in Ta-
ble 2.5. Consequently, we fail to reject the null hypothesis H0 for all selected LLIs. We conclude
that there is no statistically significant evidence of monthly seasonal patterns in the detrended
demand series for any of the identified generic LLIs.

Table 2.5: T-test p-values for the seasonal dummy variable for selected generic LLIs.

LLI-1 LLI-2 LLI-3

p-value 0.968 0.920 0.709

In summary, demand for LLI-1 exhibits neither a statistically significant trend nor seasonality.
The historical demand patterns for the other generic LLIs — LLI-2 and LLI-3 — show significant
linear trends, with a downward trend for LLI-2 and an upward trend for LLI-3, but no significant
seasonality was found. Accordingly, the constant demand model is selected for part code LLI-1,
while the trend demand model is chosen for LLI-2 and LLI-3.

2.4.3 Demand Classification

To complement the demand model identification, we further classify the historical demand pat-
terns of the identified generic LLIs using the categorization framework proposed by Syntetos
et al. (2005). This approach uses threshold values (ADI= 1.32 and CV2= 0.49, where ADI is
the average interval between non-zero demands and CV2 is the squared coefficient of variation
of non-zero demand sizes) for categorisation into four types: smooth, intermittent, erratic, or
lumpy. Demand data are aggregated into 6-month time buckets to calculate the classification
metrics. Figure 2.4 shows a plot of all SKUs in the bearings purchase group mapped according
to their CV2 and ADI values. The red dashed lines indicate the classification thresholds as pro-
posed by Syntetos et al. (2005). The majority of SKUs (484 in total) show intermittent behaviour
(ADI > 1.32 and CV2 ≤ 0.49), while 146 are classified as lumpy (ADI > 1.32 and CV2 > 0.49).
Additionally, 12 SKUs exhibit smooth demand patterns (ADI ≤ 1.32 and CV2≤ 0.49) and five
are classified as erratic (ADI ≤ 1.32 and CV2 > 0.49). Notably, LLI-1 shows a lumpy demand
pattern, indicating highly variable non-zero demand sizes and infrequent demand occurrences.
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Although historical demands for LLI-2 and LLI-3 are formally classified as erratic, their CV2

and ADI values are similar to those of LLI-1 as depicted in Figure 2.4.
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Figure 2.4: Plot of CV² vs ADI for the demand classification of SKUs in the bearings
purchase group. The horizontal and vertical dashed red lines represent the cutoff values
used for the ADI and CV², respectively.

2.5 Findings and Implications

This chapter contributes to Phase 3: Problem Analysis of the research framework. Current
practices at HNL are assessed, detailing the context and requirements of the forecasting task.
It addresses research questions 1, 2, and 3, thereby concluding Phase 3 of the MPSM.

1. What are the current LLI procurement processes at the New Build business line of HNL?

Section 2.1 provides a detailed overview of the end-to-end project execution processess, providing
key insights into operational characteristics that influence procurement decisions. Key findings
include:

• Although engineering and procurement efforts generally prioritise LLIs, procurement can-
not begin until after its basic design finished. During concept and system design phases,
no exact part codes are released for procurement.

• Typically, project critical paths can be classified as: Steel-driven, LLI-driven, and func-
tional critical paths (see Section 2.1.4). Timely procurement of steel and LLIs is therefore a
critical activity in the project execution, and optimising these processes might significantly
reduce overall project lead time.

2. Which LLIs are most suitable for earlier procurement through demand forecasting, and
what are their historical demand patterns and lead times?

This chapter describes the selection process. Within the bearings purchase group, we identify
part codes 2002173 (LLI-1), 2005480 (LLI-2), and 2008960 (LLI-3) as generic LLIs. LLI-1
exhibits a lumpy demand pattern, while historical demands for LLI-2 and LLI-3 are formally
classified as erratic but their CV2 and ADI values are similar to those of LLI-1. LLI-1 follows
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a constant demand model, while LLI-2 and LLI-3 are best characterised by a trend demand
model. All three SKUs have an average lead time of 5 months.

3. What are the key requirements for the forecasting model in the HNL use-case?

Section 2.4.1 describes the forecasting requirements. Key requirements include:

• We require an aggregation level at SKU-level.

• A forecast horizon of six months — comprising the five-month average lead time and an
additional one-month review period — should be used.

• We require six-month time buckets for the historical demand data.
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Chapter 3

Literature Study

This chapter provides the theoretical framework of this study by outlining current best practices
in demand forecasting. General forecasting techniques are reviewed first, followed by an eval-
uation of approaches specifically suited to the characteristics of the presented case study. The
theoretical framework established in this chapter contributes to phase 4 of the MPSM frame-
work — Solution Formulation — by answering research questions 4 and 5. Section 3.1 presents
the concepts of demand forecasting models in existing literature. Moreover, forecast evaluation
metrics are detailed in Section 3.2, and Section 3.3 outlines recent studies with characteristics
similar to the presented use-case to identify state-of-the-art solutions.

3.1 Forecasting Models

Forecasting models can roughly be classified as judgemental (qualitative) forecasting, time series
(extrapolative) forecasting, causal forecasting, and Machine Learning (ML) forecasting (Ali et
al., 2009; Archer, 1980; Liang et al., 2024; Barbosa et al., 2015). Additionally, ensemble fore-
casting combines information and pooles errors by combining outputs from different models and
data from different sources (Wu & Levinson, 2021). Hybrid forecasting integrates conventional
statistical models with advanced ML models to achieve more comprehensive and reliable fore-
casting (Liang et al., 2024). This section explains the concepts of judgemental forecasting, Time
Series Forecasting (TSF), causal forecasting, and ML forecasting and presents widely applied
forecasting models for each forecasting type.

3.1.1 Time Series Forecasting Models

Time series, a class of temporal data objects, is a collection of observations in chronological
order (Fu, 2011). Let Y = {y1, ..., yn} denote a time series. TSF denotes the process of
estimating the future values of Y , yn+h, where h denotes the forecasting horizon (Cerqueira et
al., 2019). It assumes future trends will be similar to historical trends and therefore utilises
statistical methods to capture historical trends to predict future outcomes. Extrapolation of
historical data is the most common approach to obtain forecasts over a short horizon. Typical
for demand forecasting in connection with inventory control is that it is generally not necessary
to implement a time horizon of more than one year (Axsäter, 2015).

Quantitative TSF methods can be grouped into two categories: univariate and multivariate.
Univariate methods refer to approaches that model future observations according to a time
series that consists of single (scalar) past observations recorded sequentially over equal time
increments (National Institute of Standards and Technology, n.d.). Multivariate time series
methods are considered extensions of univariate time series approaches as they consider
additional time series that are used as explanatory variables (Cerqueira et al., 2019). Univariate
and multivariate TSF methods assume that the basic stochastic process has a certain structural
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formation which may be described by a small number of parameters, making them relatively
easy to implement using traditional statistical models ensuring transparency and limited
computational requirements (Gautam & Singh, 2020).

TSF is very suitable in the case of Huisman as it is the most common and important approach
to obtain forecasts for the typically short time horizon of demand forecasting in inventory con-
trol and it is relatively easy to interpret and apply in computerised inventory control systems
(Makridakis et al., 2018). Additionally, TSF can easily update forecasts for thousands of items,
which is useful in connection with practical inventory control (Axsäter, 2015) and extensive
univariate time series data on LLI demand is available.

Simple Exponential Smoothing

SES, or exponentially weighted moving average, uses exponentially decreasing weights over time.
A smoothing factor α ∈ [0, 1] is used to determine how quickly the weights of past observations
decrease exponentially. SES is used to estimate the parameter a for the constant demand
model, as the model is not used when there is a pronounced trend or seasonality (Gardner,
2006; Ostertagová & Ostertag, 2011). This means that the forecast for any τ > t is again the
same. SES is a univariate TSF model. Formally, the updating procedure of SES is formulated
as (Brown & Meyer, 1961):

x̂t,τ = ât = (1− α)x̂t−1 + αxt (3.1)

Rewriting (3.1) yields:

x̂t,τ = ât = α
t−1∑
k=0

(1− α)kxt−k (3.2)

From (3.1), it is apparent that a weight of 1 − α is applied to the most recent forecast, while
a weight of α is assigned to the most recent observation. A smoothing factor α = 0 therefore
implies that we ignore the most recent observation and do not update our previous forecast,
while α = 1 indicates that we take the most recent demand observation as our forecast (Axsäter,
2015). There are no consistent guidelines on the selection of the value of the smoothing factor α
(Ravinder, 2013). However, ad hoc values of α in the range 0.1 to 0.3 are typical in the fore-
casting literature (Gardner Jr, 1985; Montgomery et al., 1990; Barrow et al., 2020). However,
nowadays it is common practice to estimate the value of α by minimising the Mean Squared Er-
ror (MSE) (Barrow et al., 2020; Petropoulos et al., 2022). When starting to forecast in period t,
an initial forecast to be used as x̂t−1 is needed as we see in Equation (3.1). Some simple average
of the average period demand can be used for this. If such an average cannot be determined,
it is possible to start with x̂t−1, as this will not affect the forecast in the long run (Axsäter, 2015).

Equation (3.2) clearly shows that the weights α, (1−α), (1−α)2, ..., (1−α)t−1 are used. Therefore,
x̂t,τ is the exponentially weighted moving average of all past observations because the weights
decline towards zero exponentially (Ostertagová & Ostertag, 2011). Refer to Table 3.1 for an
overview of the notation used in exponential smoothing techniques.

23



CHAPTER 3. LITERATURE STUDY

Table 3.1: Notation for exponential smoothing

Symbol Description

xt Observed value of the time series in period t
a Level, i.e., baseline demand per period t
b Trend, i.e., systematic increase or decrease per period t
Ft Additive or multiplicative seasonal index in period t
x̂t,τ Forecast for period τ > t after observing demand in period t
ât Estimate of a after observing demand in period t

b̂t Estimate of b after observing demand in period t

F̂t Estimate of F after observing demand in period t
α Smoothing factor for the level of the series
β Smoothing factor for the trend of the series
γ Smoothing factor for the seasonal factors

Double Exponential Smoothing

Double Exponential Smoothing (DES), or exponential smoothing with trend, was introduced by
Holt (1957) and extends SES by assuming that demand follows the trend demand model. Since
we are extending SES by including trend, both a and b need to be estimated (Gardner, 2006).
These estimates ât and b̂t are successively updated according to (3.3) and (3.4) using smoothing
factors α ∈ [0, 1] and β ∈ [0, 1] for the level and trend, respectively (Chopra & Meindl, 2007;
Axsäter, 2015).

ât = (1− α)(ât−1 + b̂t−1) + αxt (3.3)

b̂t = (1− β)b̂t−1 + β(ât − ât−1) (3.4)

The estimates ât and b̂t correspond to the period t in which we just observed demand. DES
applies a linear trend to forecast demand for a future period t+ k. For the k-ahead period, we
obtain:

x̂t,t+k = ât + kb̂t (3.5)

In contrast to the SES model (3.1), DES (3.5) results in different forecasts for future periods.
Both updates (3.3) and (3.4) use a weighted average of the observed value and the old estimate
(Chopra & Meindl, 2007). Note that Equation (3.3) is essentially equivalent to the constant
demand model, as both equations update the best estimate for ât in each period. Equation (3.3)
includes trend and considers ât−1 + b̂t−1 as the best estimate for the mean demand in period t.
In (3.4), we use ât− ât−1 as to update the trend, because the average difference between all two
consecutive values of ât should be equal to the trend (Axsäter, 2015). The linear regression (3.5)
then uses the updated values for the level and trend to provide a forecast for period t+ k.

DES uses smoothing factors α and β to assign weights to the most recent observation and the
old estimate for the level and trend, respectively. Axsäter (2015) recommends a relatively low
value for β since errors in the trend may result in significant forecast errors for relatively long
forecast horizons since the trend is multiplied by k in (3.5). Typical values for monthly updates
are α = 0.2 and β = 0.05. A reasonable initial value for ât is to use some estimate of the mean
demand per period. For the trend, we generally use an initial trend of 0 (Axsäter, 2015).

Triple Exponential Smoothing

Triple Exponential Smoothing (TES) is a generalisation of DES since it includes both trend and
seasonality in the forecast (i.e., TES can forecast demand for the additive and multiplicative
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trend-seasonal models). It is also referred to as exponential smoothing with trend and seasonality
or the Holt-Winters method for additive or multiplicative seasonality. In line with SES and
DES, TES is used for univariate TSF. Recall from Section 2.4 that no statistically significant
seasonality was observed in the historical demand patterns of the generic LLIs. We therefore
exclude TES.

Croston’s Method

Croston (1972) shows that using exponential smoothing methods with non-normal (sporadic)
demand patterns almost always produce inappropriate stock levels in stock control systems.
Dealing with intermittent demand is challenging because it involves irregular observations in
time and many zero values. However, intermittent time series have attracted considerable
attention in forecasting literature (Jeon & Seong, 2022). Croston’s TSF method proposed
by Croston (1972) has proven to be superior to other exponential smoothing methods for
intermittent datasets (Syntetos, 2001; Willemain et al., 1994).

Let as before xt denote the observed demand in period t and let α ∈ [0, 1] denote the smoothing
factor for the average interval between positive demands and the average size of the positive de-
mand. Schultz (1987) proposed an additional smoothing parameter β to separate the smoothing
factors for the average interval between positive demands and the average size of the positive
demand. However, this slight modification has not been widely adopted and is therefore disre-
garded in this thesis (Syntetos, 2001). The estimated number of periods between two positive
demands k̂t and the estimated average size of a positive demand d̂t are updated in case of a
positive demand to forecast the demand ât for period t. The variable kt is used to update k̂t and
is defined as the stochastic number of periods between two positive demand (Axsäter, 2015).
Refer to Table 3.2 for the complete notation used in Croston’s method.

Table 3.2: Notation for Croston’s method

Symbol Description

xt Observed value of the time series in period t
kt Stochastic number of periods since the preceding positive demand of period t

k̂t Estimated average number of periods between two positive demands at the end
of period t

d̂t Estimated average size of a positive demand at the end of period t
ât Estimated average demand per period at the end of period t
α Smoothing factor for the average interval between positive demands and the av-

erage size of the positive demand

The updating procedure proposed by Croston (1972) is formally stated as follows:

(i) If xt = 0:

k̂t = k̂t−1

d̂t = d̂t−1

(3.6)

(ii) If xt ∈ Z+:

k̂t = (1− α)k̂t−1 + αkt

d̂t = (1− α)d̂t−1 + αxt
(3.7)
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We obtain the following forecast for the demand per period:

ât = d̂t / k̂t (3.8)

Typical values α ∈ [0, 0.3] tend to be used in practice for Croston’s method (Boylan & Syntetos,
2007). Syntetos (2001) found α = 0.05 to be optimal for the particular dataset. However, there
is no universally optimal value for α.

Despite the theoretical superiority of Croston’s method for intermittent demand forecasting,
empirical evidence suggests modest improvements in forecast accuracy with respect to basic
forecasting models; some evidence even suggests losses in performance (Syntetos & Boylan,
2001). Levén and Segerstedt (2004), among others, proposed a modified Croston method. This
modified Croston method was recommended because of improved performance and practicality.
However, Boylan and Syntetos (2007) identified a statistical weakness of the modified Croston
and state that Croston’s method is generally more accurate than its modification. Syntetos
and Boylan (2001) identified a mistake in Croston’s mathematical derivation of the expected
estimate of demand, contributing to the forecast bias. A modification in Croston’s method
was developed to theoretically eliminate the forecast bias. The bias was empirically tested and
successfully corrected by multiplying the demand per period with a factor (1 − α/2) (Syntetos
& Boylan, 2001). We refer to this modification as the Syntetos-Boylan Approximation (SBA).

Box-Jenkins Techniques

The demand models from Section 2.4.2 assume independent stochastic variations εt. However,
situations exist with positively correlated demand or negatively correlated demand (Axsäter,
2015). Box and Jenkings (1970) have developed forecasting models for correlated stochas-
tic demand variations and other general demand processes. These non-seasonal models are
known as Autoregressive Integrated Moving Average (ARIMA). Common notation for ARIMA
is ARIMA(p, d, q). Here, p is the order of the autoregressive part, d is the degree of first differ-
encing involved, and q represents the order of the moving average part (Axsäter, 2015). Many
specific models (e.g., moving average models, exponential smoothing, autoregressive models) are
special cases of the general ARIMA model (Gilbert, 2005). For instance, SES and DES are
denoted ARIMA(0,1,1) and ARIMA(0,2,2), respectively. The full ARIMA(p, d, q) model, with
x

′
t defined as the differenced series (which may have been differenced more than once), can be

expressed as follows (Hyndman & Athanasopoulos, 2018):

x
′
t = a+ ϕ1x

′
t−1 + ...+ ϕpx

′
t−p + θ1ϵt−1 + ...+ θqϵt−q + ϵt (3.9)

We define ϕ and θ as the autoregressive parameter and moving average parameter, respectively.
For more complicated ARIMA models, the backshift notation is generally preferred. This nota-
tion is obtained by defining backshift operator Bp = xt−p and rewriting Equation (3.9):

(1− ϕ1B − ...− ϕpB
p)︸ ︷︷ ︸

AR(p)

(1−B)dxt︸ ︷︷ ︸
d differences

= a+ (1 + θ1B + ...+ θqB
q)ϵt︸ ︷︷ ︸

MA(q)

(3.10)

Obtaining forecasts using ARIMA is done by iteratively increasing the period and following three
steps for each period until all forecasts are calculated (Hyndman & Athanasopoulos, 2018).

1. Expand Equation (3.10) so that xt is on the left side.

2. Rewrite the resulting equation by replacing t with t+ k.

3. Replace future observations with their forecasts, future errors with zero, and past errors
with the corresponding residuals on the right side of the equation.
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Determining appropriate values for p, d, and q can be complex. Axsäter (2015) states that it
is generally sufficient to consider p, d, q ∈ {0, 1, 2} in practice. This will simplify identifying the
optimal model while still covering a large set of models. However, functions in Python and
R exist to determine appropriate values automatically (Cerqueira et al., 2019; Hyndman &
Athanasopoulos, 2018).

3.1.2 Judgemental Forecasting Models

Judgemental (qualitative) forecasting is commonly used in management science literature if his-
torical data is scarce due to situations without historical precedents such as newly launched
products (Mishra et al., 2022). Additionally, judgemental forecasting plays an important role in
demand forecasting where generally known or anticipated effects of environmental factors on the
demand can be incorporated in the forecasts (M. Lawrence et al., 2006) and in macroeconomic
forecasting (Fildes & Stekler, 2002). Fildes and Hastings (1994) state that subjective forecasting
techniques based on expert opinion are applied more widely than quantitative forecasting tech-
niques in practice despite scepticism of the researcher towards qualitative forecasting in the last
decades. However, judgemental forecasting is increasingly accepted in the past few years and its
techniques are generally implemented in three different ways. First, it is used when quantitative
methods are inapplicable and infeasible as there is no historical data. Second, when data is
available, and forecasts from quantitative forecasting methods are tweaked using judgemental
insights. Last, when judgemental forecasting is used separately from quantitative models to in-
corporate the results from both in a final forecast (Mishra et al., 2022). Therefore, it is generally
implemented in combination with quantitative methods if time series data is available. Zellner
et al. (2021) and M. J. Lawrence et al. (1986) also state that neither TSF nor judgemental
forecasting is universally superior, but the two can complement each other for more accurate
forecasting. However, Makridakis et al. (1993) found few or no differences in forecast accuracy
in the presence of judgemental insights. Additionally, extensive domain knowledge is required in
qualitative forecasting, making it expensive and time-consuming. Another limitation regards the
subjective nature of judgemental forecasting, influencing the reliability of the forecasts (Mishra
et al., 2022). Demand forecasting for inventory control typically concerns a relatively short time
horizon at microeconomic level according to Axsäter (2015). Additionally, extensive univariate
time series data on LLI demand is available at Huisman. Judgemental forecasting is therefore
excluded from this research.

3.1.3 Causal Forecasting Models

Conventional univariate TSF models generally neglect potential causal relationships between
the dependent variable and independent variable (Luo et al., 2024). In the presence of causal
relationships, historical data can become unrepresentative for future values (Axsäter, 2015).
Causal forecasting models incorporate the relationship between the dependent variable and one
or multiple independent variables in quantitative models. Variables that are believed to be the
drivers of the outcome are used as inputs for the models to forecast dependent variables (Ali et al.,
2009). By incorporating influences of external factors that are highly correlated with the demand,
causal forecasting can account for changes in the environment or market conditions that affect
the outcome. The statistical risk, which refers to the performance of a forecasting model in terms
of its accuracy in forecasting future value values based on historical data, and causal risk, which
involves the performance of the model in forecasting the effect of changes in the independent
variables on the dependent variable, of a model can differ significantly even when assuming causal
sufficiency. Causal implications of causal forecasting methods in literature therefore remains
largely unexplored (Vankadara et al., 2022) and applications of causal forecasting techniques are
very limited (Axsäter, 2015). Causal forecasting is considered complex as it requires extensive
theory, domain knowledge, experimental data, and careful consideration when formulating causal
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models (Green & Armstrong, 2015). Incorporating explanatory variables into the forecast proved
effective in the M5 competition Makridakis et al. (2022). However, rather than traditional
regression models, ML models were used to capture complex relationships between variables.

3.1.4 Machine Learning Forecasting Models

In contradiction to statistical models, ML models explicitly evaluate the spectrum or the
covariance of the stochastic process, maintaining its empirical structure (Gautam & Singh,
2020). These models attained prominence over the last decade as opposed to statistical models
(Gautam & Singh, 2020). However, scant and mixed evidence is available their relative perfor-
mance in terms of accuracy and computational requirements and more comparison is required
for meaningful comparison (Makridakis et al., 2018). Cerqueira et al. (2019) confirms this and
states that it is advisable to include both TSF types to ensure completeness of the experimental
setup. An inherent limitation of ML models relative to traditional statistical ones is that they
are unable to generalise from small datasets (Cerqueira et al., 2019). However, in larger time
series, ML has proven to be effective for demand forecasting (Caroleo et al., 2024; X. Zhu et
al., 2021; Kim et al., 2020). Particularly the inherent sparsity in intermittent series renders the
statistical TSF methods impractical to generate accurate forecasts (Karthikeswaren et al., 2021).

Bernard (2021) distinguishes between three ML paradigms: Supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning is a subset of ML and learns a
mapping between a set of input variables and an output variable and applies this mapping
to predict the outputs for unseen data in classification or regression problems (Cunningham
et al., 2008). Classification problems require a discrete value for the output variable, while
regression problems result in a continuous value. Unsupervised learning predicts the unseen
data by exploring underlying patterns without using labelled data (Ghahramani, 2004). Last,
reinforcement learning aims to find an optimal sequence of actions which optimises the expected
reward by rewarding or penalising desired or undesired behaviours, respectively (Sutton &
Barto, 2018). Primarily regressive supervised learning models are applied in literature, where
the observed demand represents the input variable and the forecast demand represents the
output variable in the context of demand forecasting.

Supervised ML methods contain a large set of algorithms that are continuously improv-
ing (Nasteski, 2017). Many supervised ML methods, particularly Artificial Neural Networks
(ANNs), have been proposed as an alternative to statistical ones (Makridakis et al., 2018).
Despite mixed evidence, Rosienkiewicz (2013) reported dominance of ANN for spare part de-
mand forecasting-characterised by lumpy demand patterns — and Carmo and Rodrigues (2004);
Gutierrez et al. (2008) found that ANN models, even under a relatively simple network topol-
ogy, generally outperform traditional TSF methods in irregular demand processes. However,
Bengio et al. (2017) showed that deep learning networks are generally more accurate than shal-
low neural networks. Liu and Wang (2024) state that deep learning models have shown the
ability to improve the accuracy of specifically univariate and multivariate time series forecasts.
This is confirmed by numerous studies (Avinash et al., 2024; Makridakis et al., 2023; Maleki et
al., 2024; Taib et al., 2025). Deep learning, a subset of ML, uses neurally inspired deep neural
networks to model complex patterns and representations in data, enabling computers to perform
cognitive tasks such as image recognition, natural language processing, and TSF with high ac-
curacy (Cichy & Kaiser, 2019). Deep neural networks are formally ANNs with more than three
layers, i.e., more than one hidden layer (Sze et al., 2017). Figure 3.1 depicts a Venn diagram of
ML-related concepts and classes (Janiesch et al., 2021).
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Figure 3.1: Venn diagram of ML concepts and classes (Janiesch et al., 2021)

Liu and Wang (2024) differentiates between four deep neural network architectures that are
used in TSF: Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs),
transformers, and Multilayer Perceptrons (MLPs).

Multi-Layer Perceptrons

A general architecture of ANNs comprises an input layer, one or more hidden layers, and an
output layer each containing multiple neurons. Each neuron in the hidden layers and output layer
receives a weighted sum of its input values and performs a functional operation on the weighted
input values using a non-linear activation function. The ANN can therefore derive a non-linear
relationship between the input layer and output layer (Hoffmann et al., 2022). Commonly
used activation functions are depicted in Figure 3.2, including the sigmoid, hyperbolic tangent,
Rectified Linear Unit (ReLU), leaky ReLU, and Exponential Linear Unit (ELU) (Sze et al.,
2017).
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Figure 3.2: Non-linear activation functions

While many ANN structures exist, the standard model used in TSF is the feedforward neural
network or MLP (Muhaimin et al., 2021). In MLPs all computations are performed sequen-
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tially using the outputs of the previous layer and are propagated to the next layer as shown in
Figure 3.3a. Note that the figure depicts fully connected layer, where all weights are non-zero.
These type of ANNs have no memory, so the output for an input is always the same irrespective
of the sequence of inputs previously given to the network. Let f(·) denote some non-linear ac-
tivation function. We denote x ∈ Rm, U ∈ Rm×k, and bh ∈ Rk as the input activations, weights
connecting the input layer and hidden layer, and the bias vector of the hidden layer, respectively
if we assume m input neurons and k neurons in the hidden layer (Sze et al., 2017). Vector h ∈ R
contains the activation of the neurons in the hidden layer and is computed as (Sze et al., 2017):

h = f(U · x+ bh) (3.11)

For n neurons in the output layer with activation function g(·), weights connecting the hidden
layer and output layer W ∈ Rk×n, and bias vector of the output neurons bo ∈ Rn, we obtain the
output vector y ∈ Rn:

y = g(W · h+ bo) (3.12)

A limitation of MLPs is that they do not fully exploit the underlying structure often present in
the data in applications such as computer vision, natural language processing and forecasting
Benidis et al. (2022). Furthermore, the MLP architecture requires a fixed input and output size,
as the number of neurons in the input and output layers must be predefined. This makes MLPs
impractical for forecasting tasks, which typically require varying input and output sizes Benidis
et al. (2022). Next, we describe the more complex RNN, CNN, and transformer, which use basic
MLPs as an integral part of their architecture.

Recurrent Neural Networks

By analogy, RNNs extend the standard MLP to include memory capabilities to allow long-term
dependencies to affect the output. It utilises the output of stage t − 1 as information for state
t in the hidden layer as depicted in Figure 3.3b. RNNs can be applied to a variety of temporal
processes and are therefore frequently applied to explore time series (Shafi et al., 2023). As in
the MLP, the hidden layer and output layer comprise the activation function. With hidden-to-
hidden recurrent connections parameterised by weight matrix V , RNN can be mathematically
represented as (Shafi et al., 2023):

ht = f(V · ht−1 + U · xt + bh) (3.13)

yt = g(W · ht + bo) (3.14)

RNNs are powerful for modelling sequential data, but they suffer from potential information
loss or vanishing gradient problems (Zhang et al., 2023). Specifically with long sequences,
relevant information from earlier time steps in a sequence may get diluted over time. Vanishing
gradient problems are encountered while training ANNs during backpropagation. In gradient-
based learning methods for training, weights are updated proportional to the gradient value
after each iteration. This gradient value can become extremely small, preventing the network
from updating its weights. This may stop the ANN from training (Basodi et al., 2020).
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(a) Multilayer Perceptrons (MLPs) (b) Recurrent Neural Networks (RNNs)

Figure 3.3: Illustration of the MLP and RNN architectures

Long short-term memory Schmidhuber and Hochreiter (1997) proposed the LSTM model
to overcome the potential information loss or vanishing gradient problems inherent to RNNs.
LSTM is a kind of RNN capable of effectively modelling long-term dependencies between
different time steps in sequence by introducing a gating mechanism (including one input gate,
one forget gate, and one output gate) to control the information stored in the cell state, i.e.,
the memory of the architecture, as depicted in Figure 3.4 (Kiefer et al., 2021; Liu & Wang, 2024).

At any time t, the LSTM architecture receives input vector Xt ∈ Rn×d, previous hidden state
vector Ht−1 ∈ Rn×h, and previous cell state vector Ct−1 ∈ Rn×h, where we denote n as the
number of samples in a batch, h as the number of cells in the hidden layer, and d as the number
of inputs (Zhang et al., 2023). The forget gate helps keep the most relevant information and
forget irrelevant information from Xt and Ht−1 with weights Wxf and Whf , respectively by using
a sigmoid activation function σ. The forget gate outputs the following (Zhang et al., 2023):

Ft = σ(XtWxf +Ht−1Whf + bf ) (3.15)

The input gate It quantifies the importance of the candidate cell by using a sigmoid activation
function as shown in Equation (3.16). Candidate cell state C̃t is a proposed update to the cell
based on the current inputs XT and the previous hidden states Ht−1. It is computed by applying
the hyperbolic tangent (tanh) activation function to a weighted combination of inputs as shown
in Equation (3.17) (Zhang et al., 2023).

It = σ(XtWxf +Ht−1Whf + bf ) (3.16)

C̃t = tanh(XtWxc +Ht− 1Whc + bc) (3.17)

The output gate Ot combines the current inputs Xt and the previous hidden states Ht−1 using
the sigmoid function to generate the output vectors for the current period and to determine the
next hidden states Ht as shown in Equation (3.18). The current output Ot and the long-term
memory Ct are used to update the hidden states as shown in Equation (3.19), where ⊙ refers to
the element-wise Hadamard product operator (Zhang et al., 2023).

Ot = σ(XtWxo +Ht− 1Who + bo) (3.18)

Ht = Ot ⊙ tanh(Ct) (3.19)
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The cell state Ct determines what information to carry over to the next period by adding the
Hadamard product of the forget gate Ft and the previous cell state Ct−1 and the Hadamard
product of the input gate It and the candidate C̃t as shown in Equation (3.20).

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (3.20)

Figure 3.4: Illustration of the LSTM architecture

Convolutional Neural Networks

The CNN is a feedforward ANN capable of extracting features from data with convolution
structures (e.g., images, videos, audio, time series) using convolution and pooling operations (Li
et al., 2021; Liu & Wang, 2024). This type of ANN is commonly applied in classification problems
(Borovykh et al., 2017). CNNs replace the weighted sums from the ANN with convolutions of
local connections for feature extraction in the convolution and pooling layers and uses a fully
connected layer to produce the output (Nguyen et al., 2019). A group of local connections can
share the same weight, effectively reducing the parameters (Li et al., 2021). The advantage
of using CNN-based models for TSF tasks is in feature extraction, which becomes particularly
evident in multivariate cases (Liu & Wang, 2024). The general CNN architecture comprises an
input layer, convolution layers, pooling layers, fully connected layers, and an output layer as
shown in Figure 3.5, where each layer generates a successively higher-level abstraction of the
feature map (Sze et al., 2017).

Figure 3.5: Illustration of the CNN architecture (Nguyen et al., 2019)
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Convolution layer The convolution layer, as displayed in Figure 3.6, comprises a set of
convolution kernels, or filters, which slide over a predefined fixed-size window on the feature map
passed by the input layer (e.g., a time series or an image) to extract various adjacent feature tiles
sequentially (Cong & Zhou, 2023). A weighted sum using element-wise Hadamard multiplication
is then computed of each feature tile using the same set of weights, i.e., a convolution kernel,
for every channel (Sze et al., 2017). This operation, called a convolution, is used to generate a
higher-level abstraction feature map. Non-linear activation functions are then typically applied
after each convolution layer (Sze et al., 2017) and feature maps from each filter are reassembled
to acquire a new tensor. Mathematically, we formulate the convolution operation including
activation function as (Cong & Zhou, 2023):

xlj = f l(ulj) (3.21)

ulj =
∑
i∈Mj

xl−1
i ∗ klij + blj (3.22)

Here, xlj represents the output feature map of channel j in convolution layer l, f l(·) denotes some
activation function of convolution layer l, and ulj is the net activation of channel j in convolution
layer l. Additionally, let Mj denote the subset of feature tiles sampled by the sliding window
of channel j. Last, klij and blj of convolution layer l represent the convolution kernel matrix
from input feature map i to output feature map j and the bias of the output feature map j,
respectively (Cong & Zhou, 2023).

Figure 3.6: Working diagram of the convolution layer (Cong & Zhou, 2023)

Pooling layer The pooling or downsampling layer reduces the dimensionality of a feature map
by acting as a subsample layer. This layer downsamples the input feature maps of each channel
independently by implementing max or average pooling, reducing the network parameters and
ensuring a more robust network to small variations (Nguyen et al., 2019). The stride of the
pooling refers to how much the pooling window shifts across the input feature map. Pooling
typically occurs on non-overlapping receptive fields, i.e., a stride equal to the size of the receptive
field (Sze et al., 2017). Figure 3.7 displays a max and average pooling example with a two-by-two
receptive field and stride two adopted from (Sze et al., 2017).
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(a) Feature map (b) Max pooling (c) Average pooling

Figure 3.7: Max and average pooling example (Sze et al., 2017)

Fully connected layer The fully connected layer converts the multi-dimensional tensor for-
mat into the final output format and resembles the hidden layer of the MLP (Cong & Zhou,
2023). Recall that the hidden layers of MLPs obtain the output by applying an activation func-
tion to the weighted sum of the input activations. In univariate TSF, the fully connected layer
is typically used to generate one-dimensional regression information (Mehtab & Sen, 2022).

Transformers

Transformers, like many other ANNs for sequence transduction, have an encoder-decoder struc-
ture as depicted in Figure 3.8. This means that an encoder maps an input sequence of continuous
or symbol representations to a sequence of continuous representations. Given these encoder out-
put representations, a decoder then generates an output sequence (Vaswani et al., 2017). The
encoder and decoder of transformer-based models are composed of N (N = 6 in the original
Transformer) identical layers which consist of multi-head self-attention and position-wise fully
connected feedforward ANN sub-layers. Each decoder layer also inserts a third sub-layer be-
tween the self-attention and fully connected layer, which is a multi-head self-attention mechanism
applied to the the output of the encoder stack (Vaswani et al., 2017; Wen et al., 2022).
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Figure 3.8: Illustration of the Transformer architecture (Vaswani et al., 2017)

Self-attention A self-attention mechanism assigns weights to different elements of a sequence
when generating an output sequence. It allows input interactions to determine the importance
of the information (Zhang et al., 2023). Self-attention uses the vectors query (Q), key (K),
and value (V ) as input for the softmax function to calculate the importance of the current
input relative to other inputs in the previous sequence, which is referred to as the self-attention
score. The softmax activation function defined as softmax(zi) = ezi∑N

j=1 e
zj

is an extension of the

sigmoid function for multi-class classification and produces a vector of probabilities. With key
dimensionality dk, we compute the score matrix as (Vaswani et al., 2017; Zhang et al., 2023):

A(Q,K, V ) = softmax(
QKT

√
dk

)V (3.23)

This scaled dot product represents a single attention function. However, Transformer uses h
parallel attention layers with different, learned linear projections WQ

i ∈ Rdmodel×dq , WK
i ∈

Rdmodel×dk , and W V
i ∈ Rdmodel×dv which is referred to as multi-head attention (Vaswani et al.,

2017; Q. Zhu et al., 2023). Here, we define dmodel as the input dimensions. The output of
the multi-head attention mechanism is given by the concatenation of each self-attention head
i ∈ [1, ..., h] (Vaswani et al., 2017). Note that we use WO ∈ Rhdv×dmodel and · as concatenation
operator in Equation (3.25) (Hao et al., 2021).

Hi = A(QWQ
i ,KWK

i , V W V
i ) (3.24)

MultiH(Q,K, V ) = [H1, · · ·, Hh]W
O (3.25)

Transformers uses multi-head attention in the encoders, where the keys, values, and queries
come from the output of the previous layer in the encoder (Vaswani et al., 2017). It is also used
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in the decoders to allow each layer in the decoder to attend to information in the sequence up
until the current position. Since Transformer processes inputs in parallel, a masked multi-head
attention block in the decoder is used which ensures that the autoregressive property is preserved,
i.e., future outputs depend only on previous positions in the sequence without accessing future
(illegal) information. Masking out illegal connections is done by setting all input values of the
softmax activation function corresponding to illegal connections to −∞ (Vaswani et al., 2017).
Last, Transformer uses multi-head attention in "encoder-decoder attention" layers. Here, the
memory keys and values are delivered by the encoder, while the queries originate from the output
of the previous decoder. Multi-head attention is used here to enable each position in the decoder
to consider all positions from the entire input sequence (Vaswani et al., 2017).

Feedforward networks The fully connected feedforward networks in each layer are applied
to each position of the sequence separately and identically (Vaswani et al., 2017). The inputs
X to the neural network are first transformed linearly using weight matrix W1 and bias vector
b1: X → XW1 + b1. The transformed function is then used as input for the ReLU activation
function, which replaces negative values with zero and introduces non-linearity to the model.
The activation function output then undergoes a second linear transformation using another
weight matrix W2 and bias vector b2. We obtain as output (Wen et al., 2022):

FFN = ReLU(XW1 + b1)W2 + b2 (3.26)

Positional encoding Positional encodings are added to the input embeddings of the encoder
and decoder to model the sequence information, since Transformer does not contain recurrence
or convolution (Wen et al., 2022). Vaswani et al. (2017) generate a unique vector for each
position in the sequence, where each dimension of the positional encoding corresponds to a
sinusoid. The even-indexed elements of the positional encoding vector use a sine function, while
the odd-indexed elements use a cosine function:

PE(k,2i) = sin(
k

n2i/dmodel ) (3.27)

PE(k,2i+1) = cos(
k

n2i/dmodel ) (3.28)

Here, k ∈ [0, ..., L− 1] represents the position of the token in the sequence, and i ∈ [0, ..., dmodel
2 ]

refers to the dimension index of the positional encoding vector. This sinusoidal positional en-
coding was adopted by Vaswani et al. (2017) with n = 10, 000 to enable model extrapolation to
longer sequences than those encountered during training.

3.2 Forecast Evaluation Metrics

Hyndman (2006) defines four types of forecast evaluation metrics: scale-dependent metrics pro-
vide a forecast error on the same scale as the data, percentage error metrics are scale-independent
and are therefore used to compare forecasts between different time series, relative-error metrics
are scale-independent errors which are divided by the error of some benchmarking method, and
scale-free metrics normalise errors to allow comparison across different time series. Lolli et al.
(2017) state that a single accuracy measure is generally not sufficiently informative on the dif-
ferent dimensions of the error and suggest using different accuracy measures. Three accuracy
measures are therefore proposed in this section.
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3.2.1 Scale-Dependent Errors

Scale-dependent metrics are useful when comparing different methods applied to the same time
series, but should not be applied, for example, when comparing different methods across time
series with different scales (Hyndman & Koehler, 2006). The MSE is one of the most commonly
used scale-dependent metrics and it measures the degree of difference between the actual value
and forecast value of the model (Liu & Wang, 2024). It is sensitive to outliers as it penalises
larger prediction errors more severely since all errors are squared (Chopra & Meindl, 2007).
Therefore, (Hyndman, 2006) proposes the Mean Absolute Error (MAE) and we include it to
measure the error relative to the observed values and for assessing accuracy on a single series as
it is easiest to understand and compute. We denote n as the number of data points available
in-sample. MAE is calculated as the arithmetic mean of the absolute errors:

MAE =
1

n

n∑
t=1

|xt − x̂t| (3.29)

A limitation of the MAE recommended by Hyndman and Koehler (2006) is that it does not show
whether the model systematically overpredicts or underpredicts as it regards absolute values. To
give an indication of underestimation or overestimation of the forecast, we introduce the Mean
Error (ME) to complement the former (Doszyń, 2022):

ME =
1

n

n∑
t=1

(xt − x̂t) (3.30)

3.2.2 Percentage Errors

Percentage error metrics such as the Mean Absolute Percent Error (MAPE) and symmetric Mean
Absolute Percent Error (sMAPE) are scale-independent and can therefore be used to assess the
forecast accuracy across multiple time series. However, these metrics have the disadvantage of
attaining infinite or undefined values for, e.g., intermittent demand patterns (Hyndman, 2006).
Percentage error metrics are therefore not advised if the data contains zeros or small values
(Hyndman, 2014). These type of metrics are therefore not used in this study.

3.2.3 Relative Errors

Relative-error metrics divide each error by the error obtained using some benchmark method
(e.g., random walk or naive method). An advantage of such metrics is their interpretability,
as it measures the improvement of the proposed method relative to the benchmark method
(Hyndman & Koehler, 2006). However, relative-error metrics are not used as they may become
infeasible as it would involve division by zero if the forecast errors of the benchmark method are
zero (Hyndman, 2006).

3.2.4 Scale-free Errors

Hyndman and Koehler (2006) argue that other studies regarding forecast error metrics overlook
some fundamental problems and propose the scale-free error metric Mean Absolute Scaled Error
(MASE). MASE scales the forecast error based on the in-sample MAE from the random walk
(naive) method. MASE is scale-independent and can therefore be used to compare methods
across multiple time series. The value of MASE is less than one if it is computed for a more
accurate forecast than the average one-step random walk method. Conversely, it is greater than
one if the proposed method produces less accurate forecasts than the average one-step random
walk forecast (Hyndman & Koehler, 2006). We obtain (Makridakis et al., 2020; Zhang et al.,
2023):
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MASE =
1

n

∑n
t=1 |xt − x̂t|

1
n1−1

∑n1
t=2 |xt − xt−1|

(3.31)

MASE can be used to compare forecast methods in single series and across multiple series, it
cannot give infinite or undefined values, and it is symmetric (Hyndman, 2006). Hyndman and
Koehler (2006) state that it should become the standard accuracy metric for comparing forecasts
across multiple time series. Hyndman (2006) also suggests the use of MASE for all forecasting
situations, methods, and all types of series. In line with Hyndman (2014), we use MASE for
forecast accuracy performance comparison.

3.3 Related Work

Intermittent and lumpy demand patterns are very common in real-world datasets, e.g., in heavy
machinery, respective spare parts, aviation service parts, electronics, maritime spare parts,
automotive spare parts, and retailing (Gutierrez et al., 2008; Kiefer et al., 2021; Willemain et
al., 1994). Croston (1972) concluded that conventional exponential smoothing methods were
not particularly well suited for intermittent time series forecasting. He was the first to propose a
method aiming to overcome the difficulties of intermittent demand by using separate estimates
of the non-zero demand size and demand interval between two consecutive non-zero demand
events. Empirical studies have shown superior performance of Croston’s proposed method over
conventional methods (Levén & Segerstedt, 2004; Syntetos & Boylan, 2001; Willemain et al.,
1994; Zhang et al., 2023). Syntetos and Boylan (2001) concluded that Croston’s method is
biased and presented SBA as a corrected version to overcome the forecast bias and increase
the forecasting performance. Gutierrez et al. (2008) and Şahin et al. (2013) provide empirical
evidence of SBA’s superior forecasting performance over Croston’s method and SES using
real-world datasets of lumpy spare part demand of an aircraft maintenance, repair and overhaul
company and an electronics distributor, respectively.

Fattah et al. (2018) successfully apply ARIMA to forecast future erratic demand in a food
manufacturing company. Luochen and Hasachoo (2021) compare various statistical models for
forecasting irregular demand in pharmacy operations and find that Croston’s corrected SBA
method performs best on a erratic and lumpy datasets.

Gutierrez et al. (2008) were, to the best of our knowledge, the first to apply ANN modelling
to lumpy demand forecasting. The study applied a simple three-layered MLP with two input
nodes: (1) the demand at the end of the immediately preceding period and (2) the number of
periods separating the last two non-zero demand transaction at the end of the immediately
preceding period. The MLP architecture trained on all 24 univariate time series together by the
backpropagation algorithm also comprises three neurons in a single hidden layer and an output
node representing the one-step-ahead predicted demand value. Gutierrez et al. (2008) concluded
that ANN models are generally superior to traditional TSF models in forecasting lumpy demand.

While Croston’s method significantly outperforms the three-layered MLP in a multi-step ahead
forecasting study by Kiefer et al. (2021), other studies by Babai et al. (2020), Hoffmann et al.
(2022), Lolli et al. (2017), Mukhopadhyay et al. (2012), and Şahin et al. (2013) report superior
results for erratic and lumpy one-step ahead demand forecasting using a simple feedforward
MLP using backpropagation, based on the study by Gutierrez et al. (2008) compared to
Croston-based methods and a RNN in the latter study. Amin-Naseri and Tabar (2008) report
good results of a simple RNN structure with eight input variables using the backpropagation
training algorithm for forecasting one-step ahead lumpy spare part demand, outperforming the
basic MLP structure.
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Abbasimehr et al. (2020) and Kiefer et al. (2021) report superior forecasting performance of
LSTM in their respective studies. Kiefer et al. (2021) found that a single hidden layer LSTM
model outperforms a LSTM with two hidden layers for forecasting intermittent and lumpy
demand across all types, while Abbasimehr et al. (2020) successfully uses a two-hidden-layer
LSTM for forecasting non-linear, non-stationary demand after grid search hyperparameter
optimization.

Mirshahi et al. (2024), in their 2-step CNN-based approach, applied two separate CNNs to
forecast real-world intermittent time series demand for optimised supply chain management.
An initial CNN is used as a binary classifier to predict demand occurrence, while a second
CNN estimates the demand size. Although limited empirical evidence was found in the erratic
and lumpy TSF domain, Bai et al. (2018) state that CNN-based models should be included in
sequence modelling studies.

Zhang et al. (2023) was, to the best of our knowledge, the first to empirically test the effectiveness
of Transformer in forecasting of intermittent demand of an airline spare parts provider. The
results showed that Transformer outperforms Croston’s method, SBA, and state-of-the-art ANN
architectures including MLP, RNN, and LSTM. Helgesson and Laszlo (2023) successfully applied
Temporal Fusion Transformer, a transformer-based model introduced by Lim et al. (2021), for
multi-horizon forecasting using Cross-Learning (CL) on clusters of homogeneous time series.

Table 3.3: Overview of Erratic and Lumpy Demand Forecasting Literature

Paper
Time seriesa

Frequencyb Normalisation CL Model Horizonc Forecast measure(s)U M

Abbasimehr et al. (2020) ✓ M Min-max LSTM 26 sMAPE, RMSE
Amin-Naseri and Tabar (2008) ✓ M Min-max RNN 1 MAPE, MASE, PB
Babai et al. (2020) ✓ M MLP 1 sME, MSE, MASE
Fattah et al. (2018) ✓ M ARIMA 10 ME
Gutierrez et al. (2008) ✓ D MLP 1 MAPE, PB, RGRMSE
Helgesson and Laszlo (2023) ✓ D Z-score ✓ TFT 48 ME, MAE, PB
Hoffmann et al. (2022) ✓ M MLP 1 MAPE
Kiefer et al. (2021) ✓ D Z-score Croston 28 MASE, SPEC
Lolli et al. (2017) ✓ W MLP 1, 3, 5 MAPE, ME/A
Mirshahi et al. (2024) ✓ W Min-max CNN 1 MAE, RMSE
Mukhopadhyay et al. (2012) ✓ D MLP 1,5 MAPE, MdRAE,

RGRMSE, PB
Şahin et al. (2013) ✓ M Min-max MLP 1 GMAMAD/A
Luochen and Hasachoo (2021) ✓ D SBA 90 MSE
Zhang et al. (2023) ✓ W Min-max Transformer 1 ME, MAE, RMS,

MAPE, MASE, PB

This paper ✓ ✓ 6M Min-max 1 ME, MAE, MASE
a U=Univariate, M=Multivariate.
b t=t-minute interval, H=Hourly, D=Daily, W=Weekly, M=Monthly, 6M=Six-Monthly, Y=Yearly. c In same units as frequency.

Table 3.3 summarises related work concentrated on erratic and lumpy demand forecasting
for short-to medium horizons using real-world datasets. Despite extensive research on TSF
in general, limited literature is available on TSF for erratic and lumpy demand patterns in
real-world datasets. We observe that although many complex deep neural network architectures
have outperformed statistical models, Croston-based methods occasionally outperform these
state-of-the-art approaches. As no single best practice emerges from the literature, we include
a diverse set of statistical models and complex ML architectures in our experimental setup to
ensure a comprehensive comparative evaluation.

Although some evidence suggests CL to improve forecast accuracy (Montero-Manso & Hyndman,
2021), limited empirical evidence is found in related literature. Based on Table 3.3, min-max
normalisation is the most commonly applied data pre-processing technique before feeding the
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data into the ML models.

3.4 Findings and Implications

This chapter provides the theoretical framework of the research — forming the foundation of
Phase 4: Solution Formulation — by detailing best practices in the demand forecasting domain.
Moreover, studies with similar characteristics to the presented use-case are reviewed to identify
potential solution formulations. Accordingly, research question 4 and 5 are answered.

4. What forecasting models does the literature propose for forecasting demand in the HNL
use-case?

An analysis of forecasting techniques is given in Section 3.1. Particularly univariate and multi-
variate statistical TSF models and deep neural networks were found to be suitable for the HNL
use-case. Since we found mixed and scant evidence in literature (see discussion in Section 3.1.4),
we include a broad and diverse set of statistical and deep learning models to ensure a meaningful
comparative analysis as proposed by Cerqueira et al. (2019). Section 3.3 similarly highlights the
absence of a clear consensus, further supporting the inclusion of a broad range of models for a
meaningful evaluation. We particularly concentrated on two exponential smoothing methods,
Croston-based methods, ARIMA, and three classes of deep neural networks — RNNs, CNNs,
and transformers – due to their prominence in TSF tasks relative to shallow ML models.

5. What metrics are proposed in literature to ensure robust forecasting model evaluation?

In Section 3.2, we evaluated forecast evaluation metrics. It is advised in literature to apply
multiple metrics, as a single accuracy measure is not sufficiently informative. Key findings from
this section include:

• The ME is proposed to give an indication of underestimation or overestimation of the
forecast.

• The former should be complemented by the MAE to give an indication of the average
magnitude of forecast errors regardless of the direction.

• Moreover, the scale-independent error metric MASE is proposed as metric to compare
accuracy across multiple time series.
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Experimental Setup

Given the established theoretical framework in Chapter 3, this chapter formulates the experimen-
tal setup that guides the solution selection for the presented use-case. As outlined in Section 1.4,
research questions 6 and 7 — related to Phase 4: Solution Formulation — are addressed. A high-
level overview of the experimental setup is provided in Figure 4.1, which visually summarises the
flow from time series inputs through model application, validation, and hyperparameter tuning.
Section 4.1 outlines the data preprocessing steps adopted in this study. Moreover, Section 4.2
details the implemented forecasting models, while Section 4.3 outlines the procedures used to
evaluate their performance. Last, hyperparameter tuning is addressed in Section 4.4.

3 Time Series
{LLI-1,LLI-2,LLI-3}

See Section 4.1

8 Forecasting Models
{RW, SES, DES, SBA, ARIMA,

LSTM, TCN, Transformer}
See Section 4.2

25 Nested Cross-Validation Folds*

See Section 4.3

200 Hyperparameter Tuning Trials
Excluding RW and ARIMA. See Section 4.4

(a) Univariate TSF

3 Time Series
{LLI-1,LLI-2,LLI-3}

See Section 4.1

3 Forecasting Models
{LSTM, TCN, Transformer}

See Section 4.2
DUMMY TEXT

25 Nested Cross-Validation Folds*

See Section 4.3

200 Hyperparameter Tuning Trials
See Section 4.4

(b) Multivariate TSF

Figure 4.1: Experimental setup summary for univariate (a) and multivariate (b) TSF
model validation. *LLI-1 and LLI-3 used 25 folds; LLI-2 used 26 folds.

4.1 Data Collection and Preprocessing

This section outlines the data collection and preprocessing steps for both univariate and multi-
variate forecasts. It covers the demand data (target variable) in Section 4.1.1, and the covariate
data used in multivariate forecasting in Section 4.1.2. In line with the findings from Chapter 3,
we normalised all time series using the min-max normalisation algorithm, given by:

xnormalised =
x−min(x)

max(x)−min(x)
(4.1)
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4.1.1 Demand Data

We use a demand dataset comprising all part issues recorded from July 2003 to November 2024,
including, e.g., issue date, part code, quantity, and transaction type. The given dataset of
historical part issues includes part codes that replaced earlier part codes associated with the
same unique SKU. Consequently, all part codes were mapped according to their description
column in the dataset, which identifies potential replacements, and the original part codes for
each SKU were used. Next, all part issues are aggregated into time buckets of six months and we
impute missing values with zero. The data is filtered based on the selected LLIs, HNL, and part
issues for the New Build business line. We remove periods of zero demand preceding the first
non-zero value, as these represent times when the respective items were not yet in use. Including
them would introduce an unrepresentative demand pattern, potentially distorting model training
and evaluation. This results in 39 data points for LLI-1 and LLI-3, and 40 for LLI-2.

4.1.2 Covariate Data

This section details the covariate data used as input for the multivariate forecasting models,
including temporal and project-related data within the ETO environment of HNL. Since the
Darts implementations of LSTM, Temporal Convolutional Network (TCN), and Transformer
only support past covariates (i.e., covariates known only into the past), all covariate data is
implemented accordingly.

Temporal Encodings

Temporal encodings are added to provide the multivariate models with contextual time in-
formation that potentially helps capture demand patterns. Specifically, we include three fea-
tures: the calendar year, a binary half-year indicator (0 for January–June time buckets, 1 for
July–December time buckets), and the relative position of each period in the time series — all
normalised using min-max normalisation. A visual representation of the temporal encodings can
be found in Appendix D.

Project-related Data

Project-related covariates are included to reflect the project-based operational context of HNL
driving demand. We first define a classification scheme to group projects by type based on
the equipment type produced (see Appendix E). Subsequently, we collect data on all historically
contracted projects, including their start dates, assigned project class, and the estimated number
of sheaves required during the concept design phase. Since the three forecasted bearing LLIs
are primarily used within sheave assemblies, we assume that the estimated number of sheaves
may be indicative of future bearing demand. The data is then aggregated into six-month time
buckets, yielding two covariates per period per project class: the number of projects and the
total number of sheaves summed over all signed projects within that period. Last, we normalise
all project-related data using min-max normalisation.

4.2 Model Specification and Development

This section outlines the models evaluated in this study to address the HNL forecasting task.
A naive Random Walk (RW) model is included as a simple, interpretable benchmark to contex-
tualize the performance of more complex statistical and ML models and to assess the inherent
predictability of the time series. Following the findings from Chapter 3 — in line with the
"no free lunch" theorem, which states that no algorithm is universally superior in all scenarios
(Wolpert & Macready, 1997) — multiple statistical and ML models are evaluated for the HNL
use-case. We develop these models using the Darts API, an open-source ML Python library for
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end-to-end TSF tasks (Herzen et al., 2022). Refer to Section 3.1 for an overview of model archi-
tectures. Moreover, for a description of the hyperparameter tuning methods and configuration
spaces, refer to Section 4.4.

4.2.1 Benchmark Model

Beck et al. (2025) highlights the importance of including a simple benchmark model for com-
parison against more complex fitted models to gain insights into the inherent predictability of
highly volatile time series. In this study, we adopt the naive RW model, which simply sets all
forecasts to be the value of the previous observation (Hyndman & Athanasopoulos, 2018). The
benchmark model involves no parameters and is applied exclusively in the univariate forecasting
case.

4.2.2 Statistical Models

This study includes two exponential smoothing methods, the Croston-based SBA, and ARIMA,
which are traditionally used for univariate forecasting and are applied exclusively to univariate
time series in this study.

Exponential Smoothing

Chapter 2 indicates that two selected time series exhibit significant trend without seasonality,
whereas the third series shows neither a significant trend nor seasonality. We therefore use
conventional SES and DES models, which assume constant and linear trend demand models,
respectively (see Section 2.4.2 for these demand models). We use the ExponentialSmoothing
class from the Darts library, which is essentially a wrapper around Statsmodels’ Holt-Winters’
exponential smoothing implementation. Note that the SES and DES models are obtained by
configuring the trend and seasonal components of the ExponentialSmoothing class accord-
ingly. Optimal values for the smoothing factors α and β are determined using hyperparameter
optimisation. Additionally, hyperparameter optimisation determines whether a damped trend
component should be included, where the damping factor ϕ is automatically induced during
model fitting.

Syntetos-Boylan Approximation

We implement the Croston-based SBA in our comparative evaluation, as it corrects the bias
of Croston’s method and has proven to be a superior statistical method in forecasting sporadic
demand. The model is custom-developed in Python for the univariate forecasting case, with its
smoothing factor α determined through hyperparameter optimisation.

Autoregressive Integrated Moving Average

For the widely applied ARIMA in TSF, we automate the configuration of optimal p, d, and q
values using AutoARIMA in Darts, which is based on the AutoARIMA class from the Statsforecast
package. We adopt minimisation of Akaike’s Information Criterion corrected (AICc), which is
the default behaviour in the model class. Moreover, Hyndman and Khandakar (2008) use the
AICc in their algorithm for automatic ARIMA modelling, which was also proposed by Hyndman
and Athanasopoulos (2018).

4.2.3 Machine Learning Models

This study also includes three ML models — LSTM, TCN, and Transformer — which are applied
to both univariate and multivariate forecasting tasks. We use the default Adam optimiser for
training all ML models, as proposed by (Kingma & Ba, 2014).
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Long Short-Term Memory

To overcome the potential information loss or vanishing gradient problems inherent to RNNs (see
Section 3.1.4), we include the RNN-based architecture LSTM. The model is implemented using
Darts’ RNNModel class with the model parameter set to "LSTM", which is built on the PyTorch
library. For multivariate forecasting with past covariates, we use Darts’ BlockRNNModel class
configured as an LSTM, enabling the incorporation of additional input series beyond the target
variable. Obtaining good performance with LSTM networks is not a simple task, as it involves
the optimisation of multiple hyperparameters (Reimers & Gurevych, 2017). A detailed list of
hyperparameters tuned — based on the optimised approaches by Abbasimehr et al. (2020) and
Reimers and Gurevych (2017) — is given in Section 4.4.

Temporal Convolutional Network

TCN is a CNN-based architecture adapted to the TSF domain. It uses convolutions in the
temporal dimension, enabling the architecture to automatically learn temporal and spectral
features without information "leakage" from future to past (Bai et al., 2018; Pelletier et al., 2019).
The model is implemented using the TCNModel class from the Darts library, which use dilated
convolutions that enable an exponentially large receptive field by progressively increasing the
spacing between kernel elements at each layer (Bai et al., 2018). The dilated convolutions enable
the model to capture long-term dependencies. As described in Section 4.4, 10 hyperparameters
of the TCN architecture are optimised using hyperparameter tuning.

Transformer

Despite the introduction of a gating mechanism, LSTM may have difficulties interpreting long
input sequences because of its sequential data processing nature (Zhang et al., 2023). Besides
TCN, we therefore also apply the state-of-the-art Transformer, a deep learning model introduced
by Vaswani et al. (2017). It is implemented using Darts’ TransformerModel, which is based on
PyTorch’s Transformer class. In line with Equation (3.26) and the original formulation by
Vaswani et al. (2017), we use ReLU as the activation function within the feedforward layers of
the Transformer architecture. We tune the hyperparameters listed in Section 4.4 for each time
series and for both univariate and multivariate TSF tasks.

4.3 Validation Procedure and Model Evaluation

This section outlines the model selection and model evaluation procedures adopted in the exper-
imental setup of this study. Section 4.3.1 presents the validation procedure adopted to obtain
a robust estimate of each model’s forecast accuracy, while Section 4.3.2 details the evaluation
metrics that are applied to calculate the forecast errors.

4.3.1 Validation Procedure

To validate the forecasting models, we employ cross validation — a statistical method for
evaluating and comparing learning algorithms by dividing the data into separate training and
testing sets (Refaeilzadeh et al., 2009). However, traditional cross-validation with random splits
becomes problematic for TSF tasks due to the temporal dependence between observations, i.e.,
no independent and identically distributed (i.i.d.) data. Cross-validation with random splits
that do not respect the temporal ordering of the series may cause information "leakage" from
future to past, leading to over-optimistic performance estimates.

As "a nested cross-validation procedure provides an almost unbiased estimate of the true error"
(Varma & Simon, 2006), we use nested cross-validation to estimate the prediction errors of
the forecasts. This validation method uses an inner cross-validation loop — which partitions
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the outer training set into an inner training set and a fixed-size validation set — to perform
hyperparameter tuning, while an outer cross-validation is used to compute an estimate of the
error on unseen, out-of-sample data using the best-found hyperparameters for each fold (Varma &
Simon, 2006). To respect the temporal dependence in the data, we use rolling-origin-recalibration
(Bergmeir & Benítez, 2012) — also referred to as rolling-origin evaluation (Tashman, 2000) —
in the outer loop of the nested cross-validation procedure. Forecasts for a fixed horizon are
performed by successively moving observations from the out-of-sample test set to the in-sample
training set, and changing the forecast origin accordingly (Bergmeir & Benítez, 2012). The
model is recalibrated for each forecast to include all available data in the training set, and
the evaluation metrics are averaged across all outer loops to obtain a robust measure of the
forecast accuracy. This validation approach, illustrated in Figure 4.2, ensures optimal use of all
available data while overcoming the main limitation of time series hold-out cross-validation —
also referred to as fixed-origin evaluation in literature — where a single arbitrary split is made
in the time series, and characteristics of the selected forecast origin might heavily influence
evaluation results (Bergmeir & Benítez, 2012).

Figure 4.2: Illustration of the nested cross-validation procedure (Paik et al., 2023)

The Darts API requires a minimum training set size of 10 data points. Accordingly, the initial
inner training set in the first fold consists of 10 observations. To reflect the average project
duration of approximately two years, we fix the validation set to four observations (i.e., two
years), ensuring that hyperparameters are tuned over the full demand cycle of typical projects.
This results in an initial outer training set size of 14. Each test set comprises one observation,
as we aim to evaluate one-step-ahead forecast performance on unseen data. With 39 data points
for LLI-1 and LLI-3 and 40 data points for LLI-2, this results in 25 validation folds for LLI-1
and LLI-3 and 26 validation folds for LLI-3 as depicted in Figure 4.1.

4.3.2 Evaluation Metrics

In line with the findings from Chapter 3, we apply the ME, MAE, and MASE to evaluate
the accuracy of the forecasts. The ME metric gives an indication of the underestimation or
overestimation of the forecast, while the MAE provides an indication of the average magnitude
of the forecast errors. Last, MASE is applied to enable comparison across time series. This
metric is scale-independent, it cannot give infinite or undefined values, and it is symmetric.
Additionally, it was used during the M4 competition (Makridakis et al., 2020). The evaluation
metrics are calculated within each fold, and we obtain a final estimate of the forecast accuracy
by averaging the results across all folds. Moreover, the standard deviations across folds are
calculated to assess the consistency and robustness of the models. We use the L1 loss function
in the training procedure of our models, i.e., we minimise the MAE.
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4.4 Hyperparameter Tuning

As an integral part of the nested cross-validation procedure, we tune each forecasting model’s hy-
perparameters within the inner loop. In each fold, the model is trained on the inner training set,
and the loss function is optimised on the validation set. Formally, hyperparameter optimisation
in a minimisation problem is defined as follows (Watanabe, 2023):

xopt ∈ argmin
x∈X

f(x) (4.2)

Here, xopt denotes the optimal hyperparameter configuration, x a candidate hyperparameter
configuration, X the configuration space comprising all possible hyperparameter inputs, and
f(x) the objective (or loss) function to be minimised. The optimisation algorithm adopted in
this research is the Tree-Structured Parzen Estimator (TPE), which is detailed in Section 4.4.1.
Moreover, the configuration spaces of the forecasting models are assessed in Section 4.4.2.

4.4.1 Optimisation Algorithm

We adopt the optimised TPE implementation from Watanabe (2023) using the
CustomizableTPESampler class, a Bayesian optimisation method widely used in recent
hyperparameter tuning frameworks. Bayesian optimisation uses an acquisition function to
iteratively search for xopt, balancing the algorithm’s degree of exploration and exploitation
(Watanabe, 2023).

The TPE algorithm — detailed in Algorithm 1 (Watanabe, 2023) — initially evaluates Ninit

random samples, and stores the initial observations in a set D. Then, using quantile threshold
γ defined by Γ, we partition past observations into a better subset D(l) and a worse subset
D(g) to build two Probability Density Functions (PDFs). TPE then samples Ns candidate
hyperparameter configurations from the better group, and determines the configuration with
the best acquisition function value (Watanabe, 2023). This configuration is then evaluated
against the objective function and added to observations D. This process is repeated until a
stopping criterion is reached. In the remainder of this section, we detail the TPE used in this
study. For a comprehensive overview of alternative TPE parameters refer to Watanabe (2023).

Algorithm 1: Tree-structured Parzen Estimator (TPE)
Data: Initial parameters: Ninit (initial samples), Ns (candidate samples), Γ (quantile

function), W (weight function), k (kernel function), B (bandwidth function)
Result: Best configuration found
Initialise: D ← ∅

1 for n = 1 to Ninit do ▷ Initialisation
2 xn ← RandomSample()
3 yn ← f(xn) + ϵn ▷ Evaluate objective function
4 D ← D ∪ {(xn, yn)}
5 while NOT stopping_criteria do ▷ Stopping criteria
6 Compute γ ← Γ(N) with N := |D| ▷ Splitting algorithm
7 Split D into D(l) and D(g)

8 Compute {wn}N+1
n=0 ←W (D) ▷ Weighting algorithm

9 Compute b(l) ← B(D(l)), b(g) ← B(D(g)) ▷ Bandwidths
10 Build p(x|D(l)), p(x|D(g)) using Eq. (5) ▷ Kernel function
11 Sample S := {xs}Ns

s=1 ∼ p(x|D(l))
12 Pick xN+1 := argmaxx∈S r(x|D) ▷ Acquisition function
13 yN+1 := f(xN+1) + ϵN+1 ▷ Evaluate objective function
14 D ← D ∪ {(xN+1, yN+1)}
15 return Best configuration in D
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Stopping Criteria

A drawback of our validation procedure (see Section 4.3.1), particularly in combination with
the use of deep learning models, is its computational complexity, as each fold requires complete
retraining of the model. To ensure our experiments remain computationally tractable, we adopt
a pragmatic approach and use 50 trials (i.e., iterations) as the stopping criterion.

Splitting Algorithm

The TPE algorithm splits observations D into the better subset D(l) and the worse subset D(g)

using quantile function Γ. Careful selection of the quantile function is crucial, as it balances
between exploration and exploitation. A lower value of γ reduces the cardinality of the better set
D(l), encouraging the algorithm to focus on the most promising areas (i.e., exploitation), whereas
a larger value includes more configurations in D(l), ensuring a broader search (i.e., exploration).
We adopt a simple linear quantile function given by:

Γ(N) = β1 = 0.15 (4.3)

This implies γ = 0.15. Each iteration, we therefore partition the top 15% of D into D(l), while
the rest is assigned to D(g). This quantile function was found to generalise the most in the study
by (Watanabe, 2023), and is therefore applied in this study.

Weighting Algorithm

The weighting algorithm W in the TPE algorithm assigns weights to each observation in D
for the PDFs. In line with the findings of Watanabe (2023), we use the expected improvement
weighting algorithm by setting the weight strategy to EI. The advantage of this algorithm,
compared to others, is its ability to consider the ranking of observations in the better subset
D(l) (Watanabe, 2023). Note that the weights sum up to 1 for both subsets.

Bandwidths and Kernel Function

To estimate the PDF, we use a Gaussian kernel (Watanabe, 2023):

g(x, xn|b) :=
1√
2πb2

e−
1
2
(x−xn

b
)2 (4.4)

This kernel function is used to build the PDFs for subsets D(l) and D(g), with the bandwidth
control parameter b determined using the hyperopt heuristic. After having determined b, we
use so-called magic clipping to optimise the bandwidth. Magic clipping parameters include
the minimum bandwidth bmin and the exponent α for the magic clipping algorithm. For more
details on the applied magic clipping, refer to Watanabe (2023). Watanabe (2023) strongly
recommends using a multivariate kernel, which considers the entire vector of hyperparameters
at once when determining the probability density, to enhance the performance. Therefore, we
set multivariate to True.

Acquisition Function

Once the PDFs for D(l) and D(g) are constructed, TPE uses an acquisition function r(x|D) to de-
termine the potential of a hyperparameter configuration. The acquisition function computes the
density ratio between the PDFs of the better subset D(l) and the worse subset D(g) (Watanabe,
2023):

r(x|D) := p(x|D(l))

p(x|D(g))
(4.5)

47



CHAPTER 4. EXPERIMENTAL SETUP

This ratio indicates the probability that a given configuration is included in the better subset
D(l). The TPE algorithm then selects the configuration candidate with the maximum den-
sity ratio, balancing exploration and exploitation. High density values for p(x|D(l)) increase
the density ratio, encouraging configurations similar to those that previously performed well
(exploitation). Conversely, low densities p(x|D(g)) indicate that the configuration is uncommon
among poor performing configurations, which also increases the density ratio, thereby promoting
less frequently observed configurations (exploration).

4.4.2 Configuration Spaces

To guide the hyperparameter optimisation algorithm TPE, we define the search space for each
hyperparameter as the domain of the dth hyperparameter, denoted by Xd ⊆ R. For a model
with D tunable hyperparameters, the hyperparameter configuration space X is therefore defined
as the set of all potential hyperparameter configurations X1 ×X2 × · · · ×XD (Watanabe, 2023).
In this section, we specify the individual search spaces Xd for each hyperparameter, thereby
defining the overall configuration space X from which the TPE algorithm (see Section 4.4.1)
selects candidate configurations to solve the minimisation problem defined in Equation (4.2).

Statistical Models

For the statistical TSF models SES, DES, and SBA a limited number of hyperparameters are
involved. Based on findings in Chapter 3, there are no consistent guidelines on the selection
of the smoothing factor α, but values between 0 and 0.3 are typical in forecasting literature
across the three models. We therefore define the search space of the smoothing factor as α ∈
[0, 0.3]. For the smoothing factor for the trend in DES, relatively low values are recommended
in literature (see 3.1.1), and typical values of β are approximately 0.05. To allow exploration
during hyperparameter optimisation, we do not restrict the TPE algorithm to only low values
for β. Instead, we define the search space of the trend smoothing factor as β ∈ [0, 0.2]. Note
that we use the AutoARIMA class in Darts, which automates the parameter tuning process for
ARIMA.

Machine Learning Models

For the batch size hyperparameter, defined as the number of samples used to update the
model’s weights in a single iteration, researchers generally apply a batch size in the range of 2
to 128 by trial and error (Hwang et al., 2024). Due to the irregular and lumpy demand patterns
in this study, we exclude smaller batch sizes to ensure that the model captures broader patterns
in the data, rather than overfitting to noise from occasional demand spikes. Therefore, for all
deep neural networks, we consider the batch sizes {16, 32, 64, 128} within the search space.
The dropout rate is used to regularise the neural networks by randomly excluding a fraction of
neurons. This overcomes the problem of overfitting by forcing the models to be more robust
and not overly dependent on a small subset of neurons. Park and Kwak (2017) empirically
test different regularisation methods, and find optimal values for the standard dropout method
within the range [0, 1]. Therefore, this represents our search space for the dropout rate for
all ANNs. The number of epochs is defined as the number of passes the learning algorithm
makes over the entire training dataset during the training process. Afaq and Rao (2020) state
that there is no universal optimal number of epochs, and the optimal number of epochs differ
per dataset. Since we adopt an expanding-window validation scheme, our training data starts
relatively small and is complex in later folds. We therefore adopt a broad search space for the
number of epochs in each ANN: [20, 200]. Given the absence of seasonality in each of the time
series and the long lead times inherent to the ETO environment, we adopt a broad lag range
of 1 to 13 months to capture medium- to long-term temporal dependencies in the data. Last,
we adopt learning rates — which determines the extent to which the model is updated after
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each training iteration — in the interval [1e−5, 1e−1] for all ANNs, ensuring the TPE algorithm
can comprehensively explore learning rates. Since we use a broad search space for the number
of epochs, we adopt a relatively broad search space for the learning rate to enable quicker
convergence in configurations with fewer epochs and more stable convergence for configurations
with more epochs.

For all model-specific hyperparameters, we take an ad hoc approach by selecting relatively
broad search spaces compared to optimal values in literature. Consequently, we enable the TPE
algorithm to comprehensively evaluate the configuration space. Table 4.1 details the search
space for all tuned hyperparameters of the deep learning models, along with their respective
notations in the Darts library.

Table 4.1: Hyperparameter Search Spaces

Shared Search Spaces Model-Specific Search Spaces

Shared Hyperparameters Search Space TCN Hyperparameters Search Space

Batch Size batch_size {16, 32, 64, 128} Dilation Base dilation_base [2, 4] ∩ Z
Dropout dropout [0.1, 0.3] Filters num_filters {32, 64, 128, 256}
Epochs n_epochs [20, 200] ∩ Z Kernel Size kernel_size [2, 5] ∩ Z
Lag Size input_chunk_length [1, 13] ∩ Z Weight Normalisation weight_norm {True, False}
Learning Rate lr [1e−5, 1e−1]

LSTM Hyperparameters Search Space

Neurons hidden_dim [1, 100] ∩ Z
Layers n_rnn_layers [1, 3] ∩ Z

Transformer Hyperparameters Search Space

Attention Heads nhead {1, 2, 4, 8}
Decoder Layers num_decoder_layers [1, 6] ∩ Z
Dimensionality d_model {32, 64, 128, 256}
Encoder Layers num_encoder_layers [1, 6] ∩ Z
Hidden Layer Size dim_feedforward {128, 256, 512, 1024, 2048}

4.5 Findings and Implications

This chapter concludes Phase 4: Solution Formulation of the MPSM framework by formulating
the experimental setup of the study and addressing research questions 6 and 7. This provides
the foundation for Phase 5: Solution Selection.

6. What forecasting models and configurations are selected for comparative evaluation for
the HNL use-case?

Section 4.2 outlines the models included in the experimental setup of this study. This selection
comprises two exponential smoothing models, a Croston-based method, ARIMA, and three
deep neural networks. Findings from Chapter 3 form the foundation of the model selection.
Moreover, Section 4.4 presents the hyperparameter tuning process adopted in the experimental
setup, including the optimisation algorithm and the defined configuration space. Last, it is
important to note that the data is preprocessed as described in Section 4.1.

7. How can forecasts be evaluated and validated to ensure reliable and accurate model selec-
tion for the HNL use-case?

A comprehensive description of the evaluation and validation procedures adopted in this study
is provided in Section 4.3. Due to the temporal dependence inherent in time series data, careful
selection of validation procedures is essential to prevent information "leakage" from future to
past, leading to over-optimistic performance estimates. As detailed in this section, a nested
cross validation procedure with rolling-origin-recalibration is adopted in this research, and the
ME, MAE, and MASE are used as evaluation metrics.
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Chapter 5

Numerical Results and Discussion

This chapter executes the experimental setup as described in Chapter 4 and presents the numer-
ical results contributing to phase 5 of the MPSM framework: Solution Selection. As outlined
in Section 1.4, research questions 8 and 9 are addressed. Section 5.1 details the performance of
the forecasting models on LLI-1, LLI-2, and LLI-3, and Section 5.4 outlines the computational
complexity of the validation procedure for all models.

5.1 Univariate Forecasting Performance

This section presents the numerical results following the experimental execution of the univariate
models (see Figure 4.1a). The 6-month ahead forecasting performance of the models outlined
in Section 3.2 is evaluated on each of the identified generic LLIs, as summarised in Table 2.3.
We focus primarily on MAE in this section, since we are interested in the magnitude of fore-
cast errors; ME reflects only bias direction, while MASE is more suited for comparisons across
different time series.

5.1.1 Performance Evaluation: Long-Lead Item 1

The mean performance across all validation folds is presented in Table 5.1. We observe a
negative in-sample bias (ME) for SES, DES, ARIMA, and Transformer, whereas the other
models exhibit positive in-sample biases, indicating a tendency to underestimate the training
data for those models. Out of sample, most models show more significant negative biases,
suggesting a general tendency to overpredict unseen demand. This is mainly caused by
significant demand peaks in the training data, which distort the ME, as depicted in Figure 5.1.
Particularly, the deep learning models tend to react sharply to the zero demand occurrences and
sporadic demand peaks. However, they often fail to match the peaks, resulting in substantial
forecast biases. Conversely, the statistical models produce smoother forecasts, leading to smaller
forecast biases on average — with the exception of ARIMA, which significantly overestimates
demand as depicted in Figure 5.1.

Interestingly, all models perform better out-of-sample than in-sample on this dataset. This
seems counter-intuitive, as one would expect a better fit to the training data than to unseen
data. This occurs because the time series begins with highly volatile demand (see Figure 5.1),
which consistently affects the expanding training window used in the walk-forward cross-
validation across all validation folds, leading to poor in-sample performance. However, as the
series stabilises over time, the models benefit from more consistent data in the (fixed-size) test
set, resulting in better out-of-sample performance.

ARIMA and TCN exhibit in-sample MASE values greater than 1, indicating worse average
training fit than the one-step naive forecast. The exponential smoothing methods, SBA, LSTM,

50



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSION

and Transformer show improved average in-sample fit to the one-step naive baseline of MASE.
In terms of mean in-sample MAE, particularly ARIMA and TCN indicate poor average training
fit. Moreover, we observe considerably better out-of-sample performance than the in-sample
one-step naive MASE baseline for all models, as reflected by MASE values significantly less
than one. This is primarily due to the training data containing more extreme fluctuations and
demand peaks than the test data, leading to relatively higher in-sample errors. In terms of
out-of-sample MAE, we observe the worst performance for TCN, Transformer, and ARIMA.
Interestingly, SBA is the only model outperforming the RW benchmark — which ranks second
— on this time series in terms of out-of-sample MAE. As expected, SES outperforms DES both
in-sample and out-of-sample, which aligns with the absence of a significant linear trend in the
demand pattern of LLI-1, as identified in Section 2.4.2.

Table 5.1: Mean Performance of the Univariate Models on the LLI-1 dataset

In-Sample (µ) Out-of-Sample (µ)

Model ME MAE MASE ME MAE MASE Rank

RW 0.104 15.176 1.000 0.000 8.720 0.644 2
SES -3.751 12.557 0.861 -2.296 9.089 0.631 3
DES -7.513 14.481 0.992 1.340 9.564 0.655 4
SBA 0.918 11.299 0.774 -0.830 7.178 0.522 1
ARIMA -7.381 14.938 1.022 -6.865 10.417 0.706 6
LSTM 5.967 13.310 0.935 3.296 9.676 0.690 5
TCN 5.042 15.571 1.083 2.544 14.049 0.910 8
Transformer -3.163 12.374 0.889 -4.224 10.768 0.739 7

Note: Model rankings are based on mean out-of-sample MAE; the best-performing model
considering mean out-of-sample MAE is shown in bold font.

Table 5.2 presents the standard deviations across all validation folds for all evaluation metrics,
providing insights into the robustness and consistency of the models. In-sample, SBA exhibits
the lowest variability in terms of MAE, while the RW benchmark the highest. We observe the
lowest out-of-sample MAE for SBA, indicating the most stable prediction accuracy. ARIMA
also exhibits relatively robust out-of-sample MAE performance, despite its comparatively poor
average performance. The RW benchmark, DES, and LSTM show comparative and relatively
moderate out-of-sample robustness, whereas the other ML models — particularly TCN — exhibit
significant out-of-sample MAE variances. This indicates more inconsistent errors from the ML
models across validation folds relative to the statistical models on this time series.
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Table 5.2: Standard Deviation of the Performance of the Univariate Models on the
LLI-1 dataset

In-Sample (σ) Out-of-Sample (σ)

Model ME MAE MASE ME MAE MASE Rank

RW 1.373 5.246 0.000 11.798 7.947 0.623 5
SES 3.407 2.448 0.108 10.453 5.652 0.458 3
DES 2.609 2.891 0.131 12.764 8.559 0.602 6
SBA 5.718 2.268 0.104 8.935 5.385 0.485 1
ARIMA 2.120 2.910 0.120 9.643 5.621 0.411 2
LSTM 10.021 4.742 0.347 11.901 7.673 0.615 4
TCN 11.261 4.996 0.311 20.767 15.504 0.770 8
Transformer 5.341 3.378 0.287 13.564 9.267 0.653 7

Note: Model rankings are based on out-of-sample MAE standard deviation; the
best-performing model considering out-of-sample MAE standard deviation is shown in

bold font.
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Figure 5.1: Graphical representation of demand forecasts from univariate statistical
(a) and ML models (b) for LLI-1

5.1.2 Performance Evaluation: Long-Lead Item 2

Table 5.3 presents the mean performance metrics across cross-validation folds. With the
exception of DES and TCN, all models exhibit negative out-of-sample bias (ME), indicating
that these models tend to overestimate demand on unseen data. Figure 5.2 illustrates the
actual demand and corresponding forecasts. We observe high demand peaks in the training
data followed by relatively low demand sizes for LLI-2. Consequently, we observe negative
biases for most models. Moreover, ARIMA fails to stabilise quickly after the sudden decrease
in demand around 2012, leading to significant overestimation during that period as the model
slowly adjusted to the observed demand pattern. Last, particularly the ML model Transformer
exhibits significant negative bias, and thus tends to overestimate the test data. SBA and LSTM
are the only models exhibiting lower bias than the RW benchmark.

Similar to the forecasts for LLI-1, all models perform better out-of-sample than in-sample. This
is again due to the highly volatile demand at the start of the time series (see Figure 5.2), which
consistently affects the expanding training windows. The test sets, on the other hand, lie in
more stable periods, allowing for stronger out-of-sample performance.

Interestingly, the RW benchmark achieves the lowest in-sample MAE, indicating the best fit to
the training data, followed closely by LSTM, then SBA, TCN, SES, DES, Transformer, and,
finally, ARIMA, which fits the training data significantly worse compared to the other models.
Although SBA does not achieve the best fit to the training data, it generalises best to unseen
data, achieving the lowest out-of-sample MAE among all models. Along with LSTM, it is the
only model to outperform the RW benchmark in terms of out-of-sample MAE. In line with
the significant trend identified in Section 2.4.2, DES outperforms SES in terms of out-of-sample
MAE, ranking fifth and sixth respectively. ARIMA shows the worst performance among all
models, ranking eighth.
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Table 5.3: Mean Performance of the Univariate Models on the LLI-2 dataset

In-Sample (µ) Out-of-Sample (µ)

Model ME MAE MASE ME MAE MASE Rank

RW -6.387 17.271 1.000 -0.962 11.885 0.743 3
SES -16.566 21.180 1.225 -5.944 13.013 0.740 6
DES -16.366 22.827 1.327 3.152 12.739 0.751 5
SBA -10.763 19.095 1.126 -4.453 11.193 0.662 1
ARIMA -21.761 30.051 1.738 -8.461 16.682 0.916 8
LSTM 0.864 17.356 1.029 -0.749 11.677 0.695 2
TCN -7.057 19.391 1.159 1.673 12.533 0.747 4
Transformer -15.445 22.872 1.376 -5.681 14.719 0.839 7

Note: Model rankings are based on mean out-of-sample MAE; the best-performing model
considering mean out-of-sample MAE is shown in bold font.

The standard deviations of MAE, presented in Table 5.4, provide insight into the robustness
and consistency of each model’s performance across validation folds. We observe the highest
in-sample standard deviations for LSTM and ARIMA, indicating significant variability in how
well the models fit the training data across validation folds. Conversely, the other statistical
models, TCN, and Transformer show more robust in-sample performance. Out-of-sample, SBA,
LSTM, and DES show the most consistent performance, whereas the RW benchmark, ARIMA,
and Transformer exhibit the least consistent errors among all models. SBA achieved the lowest
out-of-sample mean MAE (see Table 5.3), indicating strong generalisation. Additionally, its
standard deviation ranks first among all models, suggesting relatively superior robustness across
validation folds. The Transformer model shows the least robust out-of-sample performance.

Table 5.4: Standard Deviation of the Performance of the Univariate Models on the
LLI-2 dataset

In-Sample (σ) Out-of-Sample (σ)

Model ME MAE MASE ME MAE MASE Rank

RW 3.973 4.208 0.000 19.054 14.924 1.074 6
SES 5.477 5.456 0.116 17.872 13.616 0.805 4
DES 9.754 5.416 0.148 17.677 12.654 0.869 3
SBA 6.611 3.478 0.151 15.246 11.268 0.788 1
ARIMA 8.075 8.029 0.219 21.529 16.026 0.900 7
LSTM 14.329 7.191 0.465 16.804 12.106 0.859 2
TCN 14.304 6.221 0.391 18.819 14.138 0.964 5
Transformer 8.223 5.309 0.352 21.786 17.037 0.957 8

Note: Model rankings are based on out-of-sample MAE standard deviation; the
best-performing model considering out-of-sample MAE standard deviation is shown in

bold font.
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(a) Forecasts by statistical models
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Figure 5.2: Graphical representation of demand forecasts from univariate statistical
(a) and ML models (b) for LLI-2

5.1.3 Performance Evaluation: Long-Lead Item 3

Table 5.5 provides a summary of the average forecast error metrics on the LLI-3 time series
across all cross-validation folds. We find that all models — excluding the RW benchmark —
exhibit a positive out-of-sample bias (ME), indicating a general tendency to underestimate the
target series. Particularly SBA shows a relatively high positive bias both in- and out-of-sample
compared to the other models, whereas the exponential smoothing models produce relatively
unbiased forecasts on the out-of-sample data.

The statistical models — excluding the naive RW benchmark — perform relatively well on the
LLI-3 dataset, with four of the lowest out-of-sample MAE values observed. Interestingly, despite
the significant trend identified in Section 2.4.2, the SES model outperforms DES. This can be
attributed to the lumpy demand pattern of the time series. While DES tries to capture the
underlying trend, sporadic demand shifts can lead to unstable trend estimates, resulting in more
volatile forecasts than SES. In contrast, SES offers more stable predictions by smoothing out
these irregular changes as it only includes a level component, as illustrated in Figure 5.3. While
LSTM performs best in-sample in terms of MAE — suggesting that the model fits the training
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data relatively well — forecasts on the unseen data have a relatively high MAE, indicating poor
generalisation. Moreover, we observe poor performance from TCN, which fails to effectively fit
the training data, resulting in the worst out-of-sample forecasts among all models. Notably, it is
the only model that is outperformed by the RW benchmark on this dataset. SES outperformed
all models out-of-sample, despite not achieving the best in-sample performance.

Table 5.5: Mean Performance of the Univariate Models on the LLI-3 dataset

In-Sample (µ) Out-of-Sample (µ)

Model ME MAE MASE ME MAE MASE Rank

RW 1.264 16.762 1.000 -0.080 27.120 1.641 7
SES 2.001 13.028 0.793 7.723 19.545 1.194 1
DES -1.634 13.619 0.828 4.830 20.086 1.227 2
SBA 5.145 12.369 0.750 9.566 20.235 1.221 3
ARIMA 2.641 13.230 0.811 6.540 20.364 1.261 4
LSTM 3.876 12.267 0.725 6.416 22.138 1.379 6
TCN 1.333 13.301 0.742 9.198 28.259 1.604 8
Transformer -2.649 13.679 0.792 5.816 21.154 1.246 5

Note: Model rankings are based on mean out-of-sample MAE; the best-performing model
considering mean out-of-sample MAE is shown in bold font.

Table 5.6 reports the standard deviation of forecast error metrics across all cross-validation folds
for each model, providing insights into the consistency and reliability of model performance. In
general, the statistical models — SES, DES, SBA, and ARIMA — exhibit relatively low variabil-
ity in both in-sample and out-of-sample MAE, indicating more consistent and stable forecasting
performance across cross-validation folds when compared to the ML models. ARIMA demon-
strates the lowest in-sample standard deviation, while DES the lowest out-of-sample standard
deviation, indicating superior robustness. In contrast, we observe substantial out-of-sample
variability for RW and TCN, confirming their unstable fit to the training data. In addition to
having the worst mean performance, these models also show the highest variance in forecast
errors across cross-validation folds, indicating it are the least robust and reliable models overall
for this time series. Figure 5.3 confirms with visually more smoothed forecasts that statistical
models prioritise level and trend over short-term fluctuations, in contrast to the more volatile
outputs of ML models.
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Table 5.6: Standard Deviation of the Performance of the Univariate Models on the
LLI-3 dataset

In-Sample (σ) Out-of-Sample (σ)

Model ME MAE MASE ME MAE MASE Rank

RW 1.440 4.952 0.000 42.157 32.275 2.041 7
SES 2.845 3.098 0.068 29.803 23.788 1.600 2
DES 2.845 3.216 0.071 30.462 23.405 1.589 1
SBA 3.066 3.222 0.069 30.057 24.197 1.626 4
ARIMA 3.100 3.032 0.077 30.926 24.177 1.655 3
LSTM 6.035 5.589 0.201 33.005 25.306 1.740 6
TCN 5.749 9.779 0.396 43.050 33.754 1.879 8
Transformer 8.838 7.914 0.255 32.466 25.305 1.643 5

Note: Model rankings are based on out-of-sample MAE standard deviation; the
best-performing model considering out-of-sample MAE standard deviation is shown in

bold font.
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Figure 5.3: Graphical representation of demand forecasts from univariate statistical
(a) and ML models (b) for LLI-3

5.2 Multivariate Forecasting Performance

This section presents the numerical results following the experimental execution of the multivari-
ate models (see Figure 4.1b). These multivariate models incorporate project-related covariate
time series and temporal encodings, as detailed in Section 4.1.2. The 6-month ahead forecasting
performance of the multivariate ML models, as outlined in Section 3.2, is evaluated on each
of the identified generic LLIs. Again, we focus primarily on MAE in this section, since we are
interested in the magnitude of forecast errors.

5.2.1 Performance Evaluation: Long-Lead Item 1

Table 5.7 summarises the average forecast error metrics on the LLI-1 time series across all cross-
validation folds. While the LSTM model shows the best in-sample fit among all (univariate and
multivariate) models, no improved mean out-of-sample performance is observed for the multi-
variate models compared to the univariate models. Notably, TCN is the only model showing
an out-of-sample improvement, despite exhibiting a poor in-sample fit. The model significantly
overestimates training demand, producing inflated fitted values and resulting in large in-sample
errors. This suggests that the model struggles to use the past covariates effectively. Trans-
former, on the other hand, shows poor performance across both settings. Overall, none of the
multivariate models prove competitive with the best-performing univariate models on this time
series.

Table 5.7: Mean Performance of the Multivariate Models on the LLI-1 dataset

In-Sample (µ) Out-of-Sample (µ)

Model ME MAE MASE ME MAE MASE Rank

LSTM 6.774 10.696 (-19.6%) 0.757 -0.328 10.862 (+41.6%) 0.758 1
TCN -47.889 60.578 (+289%) 4.110 -3.507 11.448 (-18.5%) 0.765 2
Transformer -3.263 16.548 (+33.7%) 1.188 -3.070 13.311 (+23.6%) 0.911 3

Note: The percentages in parentheses indicate the relative MAE difference compared to
the univariate version of each model.

58



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSION

Table 5.8 confirms the inflated in-sample fitted values for TCN, reflected in its large standard
deviation. While the multivariate LSTM shows competitive robustness in-sample, its out-of-
sample MAE standard deviation indicates poor generalisation relative to its univariate variant.
Transformer shows no benefit from the covariate data in this dataset, based on both in-sample
and out-of-sample MAE mean and standard deviation. Figure 5.4 visually confirms the unstable
out-of-sample predictions of Transformer, with pronounced peaks.

Table 5.8: Standard Deviation of the Performance of the Multivariate Models on the
LLI-1 dataset

In-Sample (σ) Out-of-Sample (σ)

Model ME MAE MASE ME MAE MASE Rank

LSTM 4.619 2.494 (-47.4%) 0.214 14.377 9.424 (+22.8%) 0.649 2
TCN 42.003 43.077 (+762%) 2.527 13.852 8.551 (-44.8%) 0.637 1
Transformer 6.381 6.724 (+99.1%) 0.591 19.421 14.471 (+56.2%) 0.919 3

Note: The percentages in parentheses indicate the relative MAE standard deviation
difference compared to the univariate version of each model.

2004 2007 2010 2013 2016 2019 2022 2025

0

20

40

60

80

100

Year

D
em

an
d

[p
cs

]

Target
TCN
LSTM
Transformer

Figure 5.4: Graphical representation of demand forecasts from multivariate ML models
for LLI-1

5.2.2 Performance Evaluation: Long-Lead Item 2

The average forecast error metrics on the LLI-2 time series is depicted in Table 5.9. We observe
poor in-sample fit for TCN and Transformer relative to their univariate variants, suggesting
that the covariates do not improve fit. However, Transformer generalises better out-of-sample
compared to the univariate Transformer model, while TCN does not show any improvement.
LSTM, on the other hand, already showed competitive performance in the univariate case and
now benefits further from the covariates, achieving the best performance among all univariate
and multivariate models on the LLI-2 time series. In addition to improved out-of-sample MAE,
it also produced the most unbiased estimates of unseen demand.
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Table 5.9: Mean Performance of the Multivariate Models on the LLI-2 dataset

In-Sample (µ) Out-of-Sample (µ)

Model ME MAE MASE ME MAE MASE Rank

LSTM 4.074 15.541 (-10.5%) 0.926 0.108 10.981 (-6.0%) 0.717 1
TCN -67.331 74.818 (+286%) 4.666 -6.964 17.746 (+41.6%) 1.049 3
Transformer -11.842 23.497 (+2.7%) 1.463 -4.038 13.889 (-4.7%) 0.837 2

Note: The percentages in parentheses indicate the relative MAE difference compared to
the univariate version of each model.

The standard deviations in Table 5.10 indicate unstable predictions for the multivariate TCN
model, confirming its poor performance on this time series. Transformer shows reduced robust-
ness in-sample but is more consistent out-of-sample than its univariate variant, though still not
competitively stable. Last, multivariate LSTM not only improves mean MAE, but also shows a
significant increase in in-sample robustness. Out-of-sample, it is slightly less robust but remains
moderately competitive.

Table 5.10: Standard Deviation of the Performance of the Multivariate Models on the
LLI-2 dataset

In-Sample (σ) Out-of-Sample (σ)

Model ME MAE MASE ME MAE MASE Rank

LSTM 10.274 4.316 (-40.0%) 0.269 17.178 13.211 (+9.1%) 0.989 1
TCN 56.025 54.066 (+769%) 3.428 24.244 17.926 (+26.8%) 1.160 3
Transformer 9.494 7.863 (+48.1%) 0.589 20.287 15.329 (-10.0%) 1.109 2

Note: The percentages in parentheses indicate the relative MAE standard deviation
difference compared to the univariate version of each model.
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Figure 5.5: Graphical representation of demand forecasts from multivariate ML models
for LLI-2

5.2.3 Performance Evaluation: Long-Lead Item 3

The inclusion of covariate data leads to reduced in-sample mean MAE values for LSTM and
Transformer, but it does not lead to improved performance on unseen data in terms of mean
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MAE. The opposite is true for TCN on this time series, which shows poor in-sample fit but ben-
efits from covariates out-of-sample, achieving better generalisation than its univariate variant.
However, the multivariate TCN model still fails to achieve competitive out-of-sample perfor-
mance on the LLI-3 time series, as it is outperformed by all univariate models except the RW
benchmark and its own univariate variant. We conclude that none of the multivariate models
are competitive with the best-performing univariate models on the LLI-3 series.

Table 5.11: Mean Performance of the Multivariate Models on the LLI-3 dataset

In-Sample (µ) Out-of-Sample (µ)

Model ME MAE MASE ME MAE MASE Rank

LSTM 6.508 12.144 (-1.0%) 0.739 6.077 25.485 (+15.1%) 1.481 2
TCN -20.756 36.386 (+174%) 2.360 3.443 23.480 (-16.9%) 1.487 1
Transformer -0.494 14.556 (+6.4%) 0.869 8.503 28.245 (+33.5%) 1.632 3

Note: The percentages in parentheses indicate the relative mean MAE difference
compared to the univariate version of each model.

Table 5.12 reports the standard deviation of forecast error metrics across all cross-validation folds
for each model. Despite more consistent in-sample MAE values for LSTM and Transformer, and
more consistent out-of-sample MAE values for TCN, none of the models demonstrate improved
robustness over the most robust univariate models. This again indicates that the formulated
covariates offer no advantages on this time series.

Table 5.12: Standard Deviation of the Performance of the Multivariate Models on the
LLI-3 dataset

In-Sample (σ) Out-of-Sample (σ)

Model ME MAE MASE ME MAE MASE Rank

LSTM 4.288 4.480 (-19.8%) 0.208 45.306 37.948 (+50.0%) 2.196 3
TCN 24.807 25.185 (+158%) 2.090 33.840 24.611 (-27.1%) 1.681 1
Transformer 5.381 6.333 (-20.0%) 0.246 41.319 31.333 (+23.8%) 1.862 2

Note: The percentages in parentheses indicate the relative MAE standard deviation
difference compared to the univariate version of each model.
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Figure 5.6: Graphical representation of demand forecasts from multivariate ML models
for LLI-3

5.3 Forecastibility Comparison

This section assesses the relative forecastability of the three generic LLIs by focusing on
out-of-sample MASE values. As a scale-independent metric, MASE allows for comparison
across time series, regardless of the absolute magnitude of demand (see Section 3.2). In addition
to the MASE values, we also consider model performance relative to the naive RW benchmark.
The extent to which models are able to outperform this baseline provides insight into how
easy or difficult it is to capture patterns in each time series — and thus into the relative
forecastability of each LLI.

Figure 5.7 presents the out-of-sample MASE values for the best-performing model in terms of
out-of-sample MAE and the RW benchmark for each LLI. The results reveal notable differences
in forecastability:

• LLI-1 is the most forecastable item, with the best model achieving a mean MASE of
0.522 — notably lower than the benchmark value of 0.644. This considerable performance
improvement (-18.9%) suggests that there are learnable patterns in the time series that the
model is able to exploit. Moreover, the relatively low standard deviation in MASE across
validation folds indicates that the model’s performance is consistent and robust for this
item compared to the other LLIs. As illustrated in Figure 2.4, this LLI exhibits the lowest
CV of positive demand sizes, supporting its forecastibility despite a higher ADI compared
to LLI-2 and LLI-3.

• LLI-2 shows relatively moderate forecastability, with the best model reaching a MASE of
0.717, compared to 0.743 for the benchmark. While this performance improvement (-3.5%)
is modest — especially relative to LLI-1 — it still suggests the presence of some predictable
structure in the time series. However, the improvement over the naive RW benchmark is
minimal, and the relatively high standard deviation across validation folds indicates poor
robustness.

• LLI-3 appears significantly less forecastable. The best model obtains a MASE of 1.194,
while the RW benchmark reaches a much higher value of 1.641. Interestingly, this con-
stitutes the largest performance gain over the naive RW benchmark (-37.4%) among the
three LLIs. However, the overall magnitude of the error remains high — with both MASE
values well above 1 — suggesting that forecasts are still worse than using a one-step naive
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approach on the training data. This, combined with the relatively large variation across
validation folds, indicates that LLI-3’s time series contains fewer consistent or exploitable
patterns, making it inherently more difficult to forecast accurately. This is caused by
pronounced peak demands, as illustrated in Figure 2.3c.
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Figure 5.7: Comparison of mean (µ) and standard deviation (σ) of out-of-sample MASE
values between the best-performing model and the naive RW benchmark for each LLI.

5.4 Computational Complexity

As mentioned in Section 4.4.1, a drawback of our validation procedure is its computational
complexity. This section reports the computational times for our experiments to provide insights
into the complexity of the validation procedure and the relative computational times of the
forecasting models. Note that these computational times relate to the entire validation process,
which estimates the expected generalisation performance of a model. This is not the compu-
tational time required to obtain a forecast in practice, as the validation procedure effectively
simulates how each model would have performed if it had been used historically. Experiments
were run on a server with an AMD EPYC 7713 64-core CPU, with 3.675 GHz and 1 TB of RAM.

Table 5.13 presents the average computational time (in hours) per model across all LLIs. This
includes the full experiments, including nested-cross validation with rolling-origin-recalibration
and hyperparameter tuning, where 200 trials were used as the stopping criterion. Unsurprisingly,
the simple naive benchmark RW is the least computationally expensive, as it has no parameters
to optimise. Among the remaining models, we observe the lowest average computational time
for ARIMA, which employs AICc for automatic modelling using AutoARIMA, and therefore does
not require TPE hyperparameter tuning. DES requires slightly more computational time than
SES and SBA due to the inclusion of a trend component, requiring optimisation. Moreover, the
deep learning models — LSTM, TCN, and Transformer — incur substantially higher compu-
tational costs due to their complex architectures. Particularly Transformer requires significant
computational time, likely because this model benefits greatly from parallel processing due to
its self-attention mechanism, which is not adopted in this study. Interestingly, the multivariate
versions of LSTM and TCN require less computational time. This indicates that for these mul-
tivariate models, less complex neural network architectures are found to perform best on the
validation set relative to the univariate models. The multivariate Transformer requires slightly
longer computational time during nested cross-validation than its univariate variant.
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Table 5.13: Average computational time (in hours) per model for the nested cross-
validation procedure, including hyperparameter tuning, averaged across all LLIs

Univariate Models Multivariate Models

Model Time (hrs) Model Time (hrs) Model Time (hrs)

RW 0.001 ARIMA 0.019 LSTM 5.713

SES 0.481 LSTM 10.222 TCN 5.379

DES 0.546 TCN 7.854 Transformer 19.617

SBA 0.493 Transformer 19.546

5.5 Findings and Implications

This chapter concludes Phase 5: Solution Selection of the MPSM framework by performing the
experimental execution and discussing the numerical results, addressing research question 8 and
research question 9.

8. Which forecasting model performs best for the selected LLIs in the HNL use-case?

Section 5.1 detailed the cross-validated performances of all models on each of the generic LLIs.
Key findings include:

• Outperforming the demand forecast from the naive RW benchmark proved surprisingly
difficult for LLI-1, with only SBA outperforming the RW benchmark in terms of mean
out-of-sample MAE. Notably, the complex LSTM, ARIMA, Transformer and TCN exhib-
ited poor average performance. Moreover, the RW benchmark, DES, and the ML models
— particularly TCN — showed lower robustness across validation folds compared to the
other statistical models. In addition to achieving the lowest average out-of-sample MAE,
SBA also exhibits the highest robustness across validation folds and remains relatively un-
biased. Last, none of the multivariate models prove competitive with the best-performing
univariate models on this time series.

• For LLI-2, the multivariate LSTM model exhibited the best in-sample fit and generalised
the best to unseen data, achieving the best out-of-sample MAE. The multivariate LSTM
was, along with its univariate variant and SBA, the only model to outperform the RW
benchmark in terms of out-of-sample MAE. The multivariate TCN exhibited the highest
out-of-sample MAE of all models, followed by ARIMA. In terms of robustness, SBA
and univariate LSTM demonstrated the most consistent out-of-sample errors, whereas
the multivariate variant of TCN showed the least robustness across validation folds. The
multivariate LSTM model — which achieved the best mean out-of-sample performance —
exhibited relatively moderate robustness.

• SES achieved the best forecasting performance for LLI-3, outperforming all other mod-
els in both in-sample and out-of-sample MAE. SES was followed by DES and SBA in
terms of out-of-sample MAE. This suggests that despite the presence of a trend, SES
outperformed DES, likely due to its more stable estimates in the erratic demand pattern.
ARIMA also delivered competitive performance, while all univariate and multivariate ML
models showed poor generalisation in terms of out-of-sample MAE. All models except the
univariate TCN and multivariate Transformer outperformed the RW benchmark in terms
of out-of-sample MAE, indicating that it was relatively easy to outperform on this LLI.
Moreover, DES and SES showed the most robustness in forecast errors, while the RW
benchmark and ML models, particularly multivariate LSTM and univariate TCN, exhib-
ited significantly higher variance, indicating less consistent performance across validation
folds.
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9. How do the selected models compare in terms of computational complexity?

As expected, the naive RW benchmark was the least computationally expensive, as it requires no
parameter optimisation. Among the remaining models, ARIMA had the lowest average runtime,
since AutoARIMA selects parameters automatically using AICc, without requiring TPE-based
hyperparameter tuning. SES and SBA were also relatively efficient, while DES took slightly
longer due to the additional trend component. In contrast, the ML models — LSTM, TCN,
and Transformer — incurred substantially higher computational costs due to their complex
architectures and expensive tuning procedures. Transformer was the most computationally
expensive model overall, likely because this model benefits greatly from parallel processing due
to its self-attention mechanism, which is not adopted in this study.
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Chapter 6

Conclusions and Recommendations

This section concludes the research by addressing the final phase of the MPSM framework —
Evaluation — related to research question 10. It presents the key findings, implications, and
recommendation for the problem owner and further research, and concludes by answering the
main research question:

To what extent is it feasible to forecast generic LLI demand in HNL’s ETO production
environment, and to what extent can this enable forecast-driven procurement?

Section 6.1 summarises the key findings of this study, and Section 6.2 outlines practical, action-
able recommendations for the problem owner. The main academic and practical contributions
are presented in Section 6.3. Last, Section 6.4 discusses the limitations of the research and
proposes future research directions.

6.1 Conclusions

A team of buyers reactively procures LLIs once basic engineering is finished, resulting in
frequent late deliveries of LLIs. Approximately 34% of all purchase orders were delivered on or
before their planned delivery date over the past four years, 74 days too late on average. This
research aimed to evaluate demand forecasting models to assess the feasibility of accurately
predicting demand for generic LLIs in HNL’s ETO production environment, potentially enabling
earlier procurement. We identified three potentially suitable generic bearing LLIs for earlier
procurement, referred to as LLI-1, LLI-2, and LLI-3 for brevity. To support timely procurement
decision-making, a forecast horizon equal to six months — comprising the five-month average
lead time and an additional one-month review period — was used for each generic LLI, with
time buckets of six months.

A literature study provided insight into existing demand forecast models. Although demand
forecasting has been studied extensively over the past decades, mixed and limited evidence is
available about the relative performance of statistical and ML models in terms of accuracy and
computational requirements. However, numerous studies have shown that deep learning models
are generally more accurate than shallow ML models. Therefore, this study included a broad
range of both statistical and deep learning models: SES, DES, SBA, ARIMA, LSTM, TCN,
and Transformer, which were compared against a simple naive RW benchmark. In addition,
multivariate variants of the ML models were implemented using covariate data, including
temporal encodings and project-related features. Specifically, the number of signed projects
and the estimated number of sheaves per class per period were used as past covariates.

A nested cross-validation approach was adopted in this study to obtain unbiased estimates of
forecasting accuracy. Key findings of this study include:
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• The best-performing model varied by time series. For LLI-1, the statistical SBA model
clearly outperformed all others — including complex deep learning models like LSTM
and Transformer — by achieving the lowest out-of-sample MAE, highest robustness, and
minimal bias. SBA achieved a mean ME of -0.830, a mean MAE of 7.178, and a mean
MASE of 0.522 out-of-sample.

• LLI-2 was best forecasted by the multivariate LSTM, which showed the lowest bias and
best out-of-sample performance, although it was less robust than SBA and its univariate
variant. The multivariate LSTM model achieved a mean ME of 0.108, a mean MAE of
10.981, and a mean MASE of 0.717 out-of-sample on this time series.

• For LLI-3, SES delivered the most accurate and robust forecasts despite the item’s erratic
demand, outperforming all other models in terms of out-of-sample MAE. On average, it
achieved a ME of 7.723, indicating relatively unbiased forecasts on unseen data, a MAE
of 19.545, and a MASE of 1.194 out-of-sample.

• LLI-1 is the most forecastable generic LLI, with the best-performing model (in terms of out-
of-sample MAE) showing a notable improvement over the naive RW benchmark in terms
of out-of-sample MASE (-18.9%), along with the lowest mean and standard deviation of
MASE.

• In contrast, LLI-2 shows only a modest improvement over the benchmark in terms of out-
of-sample MASE (-3.5%) and suffers from poor robustness due to higher variability across
validation folds.

• LLI-3 demonstrates the largest performance gain over the RW benchmark in terms of
out-of-sample MASE (-37.4%), but both its high MASE values and substantial variability
indicate limited forecastability, driven by pronounced peak demands and fewer exploitable
patterns in the time series.

These results indicate that the feasibility of forecasting generic LLI demand in HNL’s ETO
production environment is mixed and highly dependent on the characteristics of the specific
LLI. However, it proved surprisingly difficult to consistently outperform the simple naive RW
benchmark. Since the objective is to evaluate the extent to which accurate demand predictions
can be realised in HNL’s ETO production environment, enabling earlier procurement, we con-
clude that forecast-based procurement is only conditionally viable. While particularly LLI-1
show promising predictive potential, others exhibit high variability or minimal gains over simple
naive benchmarks. Therefore, any implementation of forecast-driven procurement should be-
gin with the identification of items that consistently demonstrate both high forecast accuracy
and practical value for early procurement — that is, items for which earlier availability has
the potential to reduce overall project lead times. This should be supported by improved data
collection and further model refinement.

6.2 Recommendations

Given the insights obtained in this study, we recommend the following practical actions and
considerations for HNL:

• Evaluate project timelines to determine whether early procurement based on forecasts
offers practical benefits. If the replenishment lead time is shorter than the time between
the initiation of procurement and actual usage in the manufacturing process, the item is
not on the project’s critical path, and forecast-based procurement may not be necessary.
It is recommended to collect more granular data on the exact timing of part usage within
projects, as this information was not available in the current study but is essential to
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determine whether a part lies on the project’s critical path. Without such data, it is not
possible to reliably assess the practical value of early procurement or its potential to reduce
overall project lead times.

If specific items are identified as potentially benefiting from forecast-driven procurement based
on the above evaluation, we recommend the following actions to support its successful imple-
mentation:

• Integrate the experimental forecasting setup developed in this study into an internal test
environment to further explore the feasibility of forecast-based procurement, and adopt a
continued focus on improving demand predictability. Refer to Section 6.4.2 for detailed
future research directions.

• Prioritise consistent and detailed data collection — including project-related data (e.g.,
project timelines, project attributes) and part-specific demand data — as ML models
depend heavily on adequate historical data availability to deliver accurate forecasts and
support future procurement decisions. While ML models did not consistently outperform
statistical models in this study, their performance is known to improve with larger and
richer datasets, suggesting potential future benefits as data availability increases.

• If forecast-driven procurement is implemented for selected LLIs, inventory policies should
be adapted accordingly. To effectively manage inventory in forecast-driven procurement,
safety stock levels should be calculated based on the observed forecast accuracy. Specifi-
cally, using the MAE of out-of-sample forecasts, safety stock can be set using the MAE and
an appropriate Z-score corresponding to the desired service level if we assume normally
distributed forecast errors. This approach ensures safety stock reflects the variability in
forecast errors, providing a buffer to mitigate stockouts in the erratic ETO production
environment.

6.3 Main Contributions

This section presents the key contributions of the study from both an academic and a practical
perspective. Contributions to scientific literature are outlined in Section 6.3.1, and practical
contributions to HNL are given in Section 6.3.2.

6.3.1 Academic Contributions

This study advances state-of-the-art demand forecasting models for three generic LLIs. Although
demand forecasting has received considerable attention in the literature, few studies addressed
erratic and lumpy demand forecasting in an ETO setting. Key academic contributions include:

• A framework for identifying the most suitable items for early procurement in an ETO
setting by ranking purchase groups with AHP-express and selecting generic LLIs based on
a set of constraints.

• Objective and unbiased empirical evidence providing insights into the performance of sta-
tistical and deep learning one-step-ahead forecasting models in highly irregular demand
environments, including a fair benchmark.

6.3.2 Practical Contributions

This study contributes to practice by identifying the most promising and impactful items for
forecast-based procurement and by presenting an extensive evaluation of demand forecasting
models in HNL’s ETO environment, providing insights into the forecastibility of these items.
The research offers promising directions to potentially realise practical applicability, and provides
a structured experimental setup to support potential future forecasting efforts.
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6.4 Limitations and Future Research

This section presents the limitations and future research directions of the study. Research
limitations are outlined in Section 6.4.1, and future research directions to HNL are given in
Section 6.4.2.

6.4.1 Research Limitations

Historical part issue data is used as and regarded as demand data. However, this may not fully
reflect actual demand patterns, as part issues in the historical data do not necessarily align
with the moments when the demand originally occurred. Last, this research is limited to state-
of-the-art individual univariate and multivariate models, hybrid and ensemble models are not
included.

6.4.2 Future Research Directions

This section details key future research directions that could address the limitations of this study
and contribute to further improvements in forecast accuracy. These directions aim to further
improve the forecasts to achieve real-world applicability.

• The current study researched univariate and multivariate forecasting models. Future re-
search could explore the potential benefit of incorporating different combinations of co-
variate data into the multivariate models — such as project-related data, macroeconomic
indicators such as oil prices, or gross wind energy capacity installed, or supplier-related
data — into the forecasting models. This is particularly promising for deep learning mod-
els, which typically benefit from large amounts of input data to learn complex patterns
and improve prediction accuracy.

• Future research could explore additional model variations and hybrid approaches to en-
hance the forecast accuracy. Moreover, combining predictions through ensemble models
might complement the strengths and weaknesses of individual models, potentially improv-
ing forecast accuracy and robustness.

• CL could be applied to the deep learning models to investigate the potential of CL mod-
els. Adopting effective strategies for extracting information from large datasets into the
forecasting models may lead to improved performance over traditional forecasting models.

• To reduce the computational complexity of the validation procedure, substantial improve-
ments can be expected through GPU acceleration and parallel processing. Future research
could investigate these approaches to enable more efficient model validation, facilitating
the exploration of larger configuration spaces, more complex models, and increased hyper-
parameter optimisation.
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Appendix A

AHP-express ranking

A.1 Scoring Scale

Table A.1: Scale of relative importance for pairwise comparison in AHP (Saaty, 1977)

Intensity of
Definition Explanationimportance

1 Equal importance Two alternatives contribute equally to the ob-
jective

3 Moderate importance Experience and judgement slightly favour one
alternative over the other

5 Strong importance Experience and judgement strongly favour one
alternative over the other

7 Very strong or demon-
strated importance

An alternative is favoured very strongly over an-
other; its dominance is demonstrated in practice

9 Extreme importance The evidence favouring one alternative over an-
other is of the highest possible order of affirma-
tion

2, 4, 6, 8 Intermediate values These intensities of importance are used when
compromise is needed

Reciprocals Values for inverse com-
parison

If alternative i has one of the above nonzero
numbers assigned to it when compared with al-
ternative j, then j has the reciprocal value when
compared with i

A.2 Scoring Methodology

We use the nomenclature defined in Table A.2 for the alternative purchase groups.

Symbol Purchase group

A1 Bearings
A2 Gearboxes
A3 Hooks
A4 Winches
A5 Sheaves

Table A.2: Nomenclature of the alternatives in AHP-express
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The priority vectors PSCi for all i ∈ {1, 2, . . . , nc} and PC are calculated based on expert
judgments provided by the decision-maker, the supply chain manager of Huisman Equipment
B.V., using the 9-point scale depicted in Table A.1 to assign relative preferences to sub-criteria
and criteria, respectively. Conversely, the priority matrices PASCi for all i ∈ {1, 2, . . . , nc}
calculate their priorities using both quantitative data and expert judgment to assign relative
preferences. To assign these relative preferences of the alternatives for the sub-criteria within
the criteria data, procurement value, production criticality, and operational criticality, we use
the following approaches:

• Data: The data quality of the alternatives is assessed by comparing their percentage
of transactions with a dummy part code and their percentage of transactions with an
invalid (i.e., empty or ≤ 0) quantity and unit purchase price. The empirical absolute
Complementary Cumulative Distribution Function (CCDF) in Figure A.1 evaluates the
data volume for the alternatives.

• Procurement value: For the SKU procurement value sub-criterion, we use the box plots
in Figure A.2 to compare the average purchase price per transaction of the alternatives.
The secondary y-axis in the figure shows the total procurement costs for each alternative
over the past five years, which is used to compared the alternatives based on the total
grouped procurement value sub-criterion.
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Figure A.1: Empirical absolute
CCDF of the number of SKUs with
more than x transactions for each al-
ternative purchase group

Figure A.2: Box plots of the average
SKU procurement prices per transac-
tion and total procurement costs for
each alternative purchase group over
the past five years

• Production criticality: For the critical path sub-criterion, we use expert opinion of
the decision-maker to compare the extent to which each alternative is generally located
in the critical path of a project. We use procurement lead time data in Figure A.3 to
compare the alternatives for the lead time sub-criterion, as long procurement lead time
cause operational challenges for Huisman projects.
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Figure A.3: Distribution of individual replenishment lead times for all purchase orders,
grouped by alternative purchase group

A.3 Assigned Preferences and Priority Calculations

All resulting relative preferences of the alternatives for each sub-criterion are depicted in Table
A.3. Based on expert judgement, we also assign the relative priorities of the sub-criteria and
criteria in Table A.4 and A.5, respectively.

SC1,1 A1 A2 A3 A4 A5

A4 5 4 2 1 3
pasc1a,1 .09 .11 .22 .44 .15

(a) Data quality sub-criterion

SC1,2 A1 A2 A3 A4 A5

A1 1 7 9 7 4
pasc1a,2 .61 .09 .07 .09 .15

(b) Data volume sub-criterion

SC2,1 A1 A2 A3 A4 A5

A4 7 3 5 1 5
pasc2a,1 .08 .18 .11 .53 .11

(c) SKU value sub-criterion

SC2,2 A1 A2 A3 A4 A5

A2 3 1 7 2 4
pasc2a,2 .15 .45 .06 .22 .11

(d) Purchase group value sub-criterion

SC3,1 A1 A2 A3 A4 A5

A1 1 1 2 5 7
pasc3a,1 .35 .35 .18 .07 .05

(e) Critical path sub-criterion

SC3,2 A1 A2 A3 A4 A5

A2 4 1 4 3 3
pasc3a,2 .12 .46 .12 .15 .15

(f) Lead time sub-criterion

Table A.3: Priority calculation of the alternatives for the sub-criteria
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C1 SC1,1 SC1,2

SC1,2 2 1
cg1j .33 .67

(a) Data criterion

C2 SC2,1 SC2,2

SC2,1 1 5
cg2j .83 .17

(b) Procurement value
criterion

C3 SC3,1 SC3,2

SC3,1 1 3
cg3j .75 .25

(c) Production criticality
criterion

Table A.4: Priority calculation of the sub-criteria within each criterion

C1 C2 C3

C1 1 5 1
pci .45 .09 .45

Table A.5: Priority calculation of the criteria

A.4 Final Priority Calculations and Alternative Ranking

After assigning all relative preferences, we calculate the relative priorities using Equation (2.1).
The relative priorities are used to construct matrices MPSC and MPASC, and we multiply
the two to obtain matrix PAC using Equations (2.2)-(2.4). We obtain the following matrices:

MPSC =

0.333 0.667 0 0 0 0
0 0 0.833 0.167 0 0
0 0 0 0 0.750 0.250

 (A.1)

MPASC =



0.088 0.110 0.219 0.438 0.146
0.607 0.0870 0.067 0.087 0.152
0.076 0.178 0.107 0.533 0.107
0.150 0.449 0.064 0.225 0.112
0.352 0.352 0.176 0.070 0.050
0.115 0.462 0.115 0.154 0.154

 (A.2)

PAC = MPSC ·MPASC =

0.434 0.094 0.118 0.204 0.150
0.088 0.223 0.100 0.482 0.108
0.293 0.379 0.161 0.091 0.076

 (A.3)

Last, we multiply the 3-dimensional row vector PC with 3 × 5 matrix PAC, i.e., we calculate
the weighted sum of the priorities of the alternatives for each criterion (given in the columns of
the PAC matrix) using the priorities of the criteria in the PC vector as weights:

PC =
[
0.455 0.091 0.455

]
(A.4)

PA = PC ·PAC =
[
0.338 0.234 0.136 0.178 0.113

]
(A.5)
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Appendix B

Non-zero Monthly Demand
Distribution for Bearings

0 20 40 60 80 100

0.70

0.80

0.90

1.00

Number of months with non-zero demand per SKU

C
um

ul
at

iv
e

de
ns

it
y

Figure B.1: Empirical cumulative distribution of the number of months with non-zero
demand per SKU in the bearings purchase group from 2004 to 2024
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Appendix C

Fitted Regression Lines from Linear
Regression t-test
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(a) Fitted linear regression trends for LLI-1
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(b) Fitted linear regression trends for LLI-2
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(c) Fitted linear regression trends for LLI-3

Figure C.1: Fitted linear regression trends for the historical demand time series of the
selected LLIs, used to assess the presence and direction of long-term demand trends.
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Appendix D

Temporal Encodings for Multivariate
Forecasts
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Figure D.1: Graphical representation of the normalised temporal encodings for multi-
variate forecasting
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Appendix E

Project Classification Scheme for
Project-related Covariates

Table E.1: Project classification scheme used to structure project-related covariates by
equipment type in the multivariate forecasting models.

Project Classification Scheme

ClassID Description ClassID Description

1 Pedestal Mounted Crane 8 PTC/Ringer Crane
2 Heavy Lift Mast Crane 9 Automated Stacking Crane
3 Offshore Mast Crane 10 Overhead/Gantry Crane
4 Knuckle Boom Crane 11 Pile Gripper
5 Tub Mounted Crane 12 Drilling Equipment
6 Leg Encircling Crane 13 Pipelay Equipment
7 Hybrid Boom Crane 14 Other
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