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Abstract

Deep Neural Networks achieve high accuracy in human activity recognition but often lack
transparency, hindering trust in applications like automated sports officiating. Explainable
AI (XAI) aims to elucidate model decisions, while Explanation Guided Learning (EGL)
seeks to improve model intuition by incorporating explanations into training. This thesis
investigates the efficacy of EGL for activity diving recogntion. We propose and evalu-
ate novel EGL methodologies that leverage optical flow to automatically generate ground
truth attention maps, addressing the common EGL challenge of reliance on manual anno-
tations. Our methods include: 1) an Optical Flow Guided Learning (OGL) approach using
a Dice loss to align model-generated GradCAM attention with optical flow-derived diver
silhouettes; 2) an OGL approach that directly transforms input frames using these diver
masks (Temporal Mask Transform); and 3) a "Right for the Right Reason" (RRR) loss
guided by either GradCAM (RRR + GradCAM) or optical flow-derived attention maps
to penalise misleading input gradients (RRR + OGL). These are implemented on a Slow-
Fast network architecture. Results indicate varying effectiveness among EGL approaches.
The Dice-based method underperformed, likely due to a fundamental mismatch between
GradCAM’s attention and binary segmentation masks. However, the Temporal Mask
Transform method demonstrates 6.67% improvement at the lowest temporal resolution,
and the RRR approach guided by optical flow (RRR + OGL) showed significant improve-
ments, outperforming other augmentation methods at higher temporal resolutions (4.70%
improvement). Experiments with denser temporal sampling in the SlowFast model’s slow
pathway challenged original architectural assumptions of the SlowFast architecture. Our
combined approach performed better than prior work while using approximately 56.0%
fewer computations. This research demonstrates EGL’s potential for enhancing diving
action recognition, underscores the viability of optical flow as a source for ground truth
attention maps.

Keywords: Explanation-Guided-Learning, XAI, Action Recognition, Diving Video Data



Chapter 1

Introduction

Deep Neural Networks have achieved state-of-the-art accuracy in various machine learning
tasks [34, 35], particularly in complex domains such as human activity recognition [7,
45, 15, 10]. These capabilities have enabled AI systems to tackle real-world applications,
demonstrating performance that often matches or exceeds human expertise in specialized
domains.

Building on these successes, AI is being integrated into sports officiating and judging
systems. The evolution started with early statistical applications like the "Moneyball"
approach [20] to real-time judging systems deployed at major competitions. Pioneering
systems like Hawk-Eye [27] established the foundation for computer vision in sports offici-
ating through precise ball-tracking technology for tennis line calls. Contemporary AI sports
judging encompasses automated ball-strike systems in baseball [29], semi-automated off-
side technology in football [11], and judging support systems in gymnastics [22, 13]. Most
recently, experimental AI judging has been introduced for snowboarding competitions at
the X Games [4].

The deployment of AI in sports brings challenges that extend beyond traditional ma-
chine learning applications. Low-latency requirements are important in competitive sports,
where decisions must be rendered in milliseconds to preserve game flow and competitive
integrity. Current systems often "take too long to make accurate decisions or trade speed
for accuracy" [50], with traditional VAR decisions averaging 70 seconds and causing sig-
nificant disruptions to competition flow [11]. Perhaps most critically, the decision-making
processes of these models often remain opaque [23, 34]. This lack of transparency presents
a barrier to trust and adoption in sports officiating.

Explainable AI (XAI) has emerged to address this opacity, offering methods to gen-
erate insights into model predictions [39, 36, 41], often in the form of attention maps
that highlight important regions in the input. These explanations allow humans to assess
whether a model’s reasoning aligns with domain-specific intuition for instance, in diving,
focusing on the athlete’s form and technique rather than irrelevant background elements,
or in gymnastics, correctly identifying the critical body positions that determine scoring.

Building on XAI, Explanation Guided Learning (EGL) aims to proactively instill better
"intuition" into models by incorporating explanations directly into the training process
[34, 35, 40, 12, 14]. EGL frameworks typically augment traditional supervised learning by
optimizing not only for correct predictions but also for appropriate attention or saliency
maps [34, 35, 40, 12, 43, 14], often derived from human annotations or other guiding signals.
This approach is particularly relevant for sports judging applications, where models must
demonstrate accurate predictions but also reasoning that aligns with established judging
criteria and human expertise.

1



And even though, state-of-the-art deep learning models excel on large-scale action
recognition benchmarks such as Kinetics [7, 45, 24, 18]. They often struggle with tasks
that involve complex, fast movements and subtle distinctions—precisely the type of anal-
ysis required in competitive diving, gymnastics, or assessing athletic form [52, 38, 21, 28].
XAI can help reveal the limitations of current models on these tasks, while EGL presents
a potential pathway to enhance both their performance and interpretability for real-time
sports applications. Nevertheless, EGL applications are constrained by the need for addi-
tional expert annotations, which are labor-intensive. This annotation burden may explain
why there have been no works that apply EGL to video action recognition tasks, repre-
senting a significant research gap.

To bridge this gap, this study investigates the application and efficacy of EGL method-
ologies for sports activity recognition, with a specific focus on diving videos from the
Diving48 dataset [21]. We explore novel approaches to EGL, including the use of optical
flow to automatically generate ground truth attention maps, thereby addressing a common
EGL challenge: the reliance on labor-intensive human annotations. This work introduces
and evaluates several EGL strategies: one leveraging a Dice loss to align model-generated
attention (via GradCAM [36]) with optical flow-derived diver masks, another utilizing these
masks to directly transform input frames, and a third applying a "Right for the Right Rea-
son" (RRR) loss [34] to penalize misleading input gradients, guided by either GradCAM
or optical flow-based attention. The research aims to determine how these EGL techniques
impact model performance on diving action recognition, the viability of optical flow as an
attention guide, and the utility of GradCAM within such EGL frameworks. By introduc-
ing EGL to video action recognition and developing automated attention map generation
methods, this approach addresses the scarcity of EGL applications in the video domain,
and the annotation burden that limits the adoption of explanation-guided techniques.

The remainder of this thesis is structured as follows: Chapter 2 surveys fundamental
concepts in action recognition, 3D CNNs, Explainable AI, and Explanation Guided Learn-
ing. The last two sections of Chapter 2 contain brief introductions to Optical Flow Moving
Object segmentation and the Dice loss which are relevant to the methodology. Chapter 3
outlines the core research questions driving this investigation. Chapter 4 details the pro-
posed methodologies, including dataset characteristics, model architecture, the novel EGL
implementations using optical flow and GradCAM, and the evaluation strategy. Chap-
ter 5 presents the experimental results, comparing the different EGL approaches against
baseline models, analysing the impact of various hyperparameters, comparing with state-of-
the-art, and discussing computational costs. Finally, Chapter 6 discusses the implications
and limitations of these findings, and Chapter 7 concludes the thesis with a summary of
contributions and potential directions and recommendations for future research.
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Chapter 2

Related Works

Having established the importance of explanation-guided learning in sports video analysis,
we now examine the foundational work and key developments across multiple relevant
domains. This review begins with action recognition approaches before exploring more
techniques in explainable AI, and the explanation-guided learning framework. Finally, we
examine the fundamental concepts that underpin our proposed methodology.

2.1 Action Recognition

Understanding action recognition is fundamental to this work, as our explanation guided
learning approach builds upon the foundations of video understanding to improve both
performance in the diving activity recognition.

Action Recognition, also known as Human Action Recognition, is a computer vision
task focused on identifying and classifying human activities in video data. The field encom-
passes varying levels of annotation granularity, with some benchmarks providing clip-level
annotations [17, 21, 5, 6], while others offer more detailed segment-level annotations with
multiple labels per clip [38, 52, 28].

The scope of these datasets ranges significantly. Large scale benchmarks like Kinetics
contain a broad spectrum of activities, from everyday tasks such as cooking and cycling to
sports activities like tennis [18]. In contrast, domain specific datasets such as FineGym,
FineDiving, Diving48, and WorkoutForm QA focus on specific activities such as: gym-
nastics, diving, and weight lifting form, respectively. These specialized datasets often go
beyond simple action classification by incorporating quality assessment metrics, including
jury scores and detailed form deviation measurements [38, 52, 28], enabling more nuanced
analysis of human performance and technique.

Contemporary deep learning models attain high accuracy on general action recognition
benchmarks such as Kinetics [7, 45, 15, 10, 24]. However, these architectures struggle with
fine-grained sports datasets that require understanding of complex movements and scoring
criteria. Achieving comparable performance on specialized benchmarks such as FineDiving
and FineGym required more sophisticated architectures with dedicated components for
temporal modeling and motion parsing [38, 52, 53].

This work will focus on the Diving48 dataset [21], which contains 48 unique dive se-
quences. For the model to classify a sequence, it must sample the entire clip to capture the
nuanced acrobatics of diving. This is in contrast to datasets like Kinetics, where activities
such as biking can arguably be classified from a single frame. Diving48 only offers clip-
level annotations, while FineDiving or FineGym also provide segment-level annotations.
However, these fine-grained datasets are considerably smaller. In the interest of achieving
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Figure 2.1: Conceptual representation of 3D CNN architecture showing hier-
archical spatio-temporal feature extraction. This diagram illustrates a simplified
cross-sectional view of a 3D convolutional neural network processing video data
with spatial dimensions (Width × Height) and temporal dimension T . The blue
(first frame) and red (second frame) nodes represent the input video volume with
individual spatiotemporal locations xt,h,w, green nodes show neurons N , and yellow
nodes represent the intermediate feature representations O. The network demon-
strates the fundamental principle of hierarchical feature learning, where low-level
spatiotemporal patterns are progressively combined into higher-level semantic rep-
resentations.

better generalizability, a larger dataset is preferred for this study.
Furthermore, one reason why EGL remains under-explored, especially in video action

recognition, is that it is labour-intensive to create appropriate datasets containing ground
truth attention masks. This work aims to bridge this gap by offering general methods for
EGL that do not require human annotators.

Among the various architectural approaches for video understanding, 3D Convolutional
Neural Networks have proven effective for temporal modeling in action recognition tasks.

2.2 3D CNNs

While action recognition encompasses various approaches, 3D Convolutional Neural Net-
works have emerged as an effective architectures for processing video data. These networks
extend traditional 2D convolutions into the temporal dimension, enabling them to capture
both spatial and temporal features simultaneously.

The ImageNet-1k benchmark, comprising over 1.2 million training images across 1,000
categories [9], posed a significant challenge to early computer vision models. Despite nu-
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merous attempts, meaningful classification accuracy remained elusive until the invention of
deep Convolutional Neural Networks (CNNs). This architectural breakthrough enabled 2D
CNNs to revolutionize image recognition through their ability to learn hierarchical spatial
features. These networks leverage pooling layers and strided convolutions to systematically
expand their receptive field—the spatial extent of input pixels that influence a neural unit’s
activation [31]. This architectural principle of increasing receptive fields proved valuable
beyond spatial analysis, finding applications in temporal modeling where long-range de-
pendencies between data points needed to be captured [47]. This natural progression led
to the development of 3D CNNs for action recognition, where convolutions operate not
only across spatial dimensions but also along the temporal axis of sequential RGB frames.
3D CNNs have been widely adopted for action recognition tasks [7, 45, 15, 10] and have
dominated state-of-the-art performance for several years.

Figure 2.1 shows a conceptual representation of neurons N processing a 3D video
volume xt,w,h

1, with the first frame in blue and the second frame in red. Each neuron
extracts features within its own local 2×2×2 volume, where the outputs O become inputs
to higher-order neurons. In general, lower-order neurons learn to recognise edges, and
other primitive shapes of different orientations. In higher-order neurons, these lower-order
features are combined into higher-level features representing more complex shapes.

Furthermore, at each convolutional layer, the effective receptive field of the neuron
increases. If we imagine another neuron that connects to all the outputs O, this neuron’s
receptive field would span the entire 3×3×3 volume (if we also extend our input tempo-
rally). These concepts are what make CNNs so effective for image recognition, and why
this logic can also be extended to video action recognition. By stacking layers of neurons
that hierarchically process inputs, we eventually reach a sufficient receptive field that spans
the image size or video sequence. However, there are limitations to the size of the receptive
field, since most video recognition models are trained on 16-128×224×224 (T ×H ×W )
inputs [7, 10].

Even though the theoretical receptive field can grow to any size by adding more layers,
this too has limitations. In [26], the authors show that convolutions suffer from locality
bias by demonstrating that the true receptive field was much smaller than the theoretical
receptive field for 2D CNNs. This is probably why many papers use lower temporal reso-
lutions of 16, 64, and 128 frames [7, 45, 10]. Adding more layers also has limitations in its
own right, deeper networks suffer from vanishing gradients [31], therefore, its not possible
to infinitely stack layers. Furthermore, there are computational constraints as 3D CNNs
are 8 times more expensive to compute than 2D CNNs.

For this work, we must acknowledge the existence of vision transformer architectures;
a superior architecture [3, 24, 49]. However, we opted to use 3D CNNs since they provide
smaller models that are computationally cheaper. This choice aligns with the experimental
nature of this work, as smaller models allow for more experimentation within our restricted
compute budget. Finally, this work emphasizes exploring better methods for training action
recognition models rather than breaking benchmark scores, since these methods are general
and can be applied to stronger and larger architectures if they prove beneficial.

Therefore, this work focuses on 3D CNNs due to their more favourable computational
requirements. In particular, we use the SlowFast architecture, a 3D CNN designed to
mimic the human retinal system to achieve state-of-the-art performance that competes
with newer vision transformers [10, 3, 49].

1In reality, the input for RGB video contains an additional channel dimension c. However, for clarity,
the channel dimension was omitted for clarity.
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Figure 2.2: Diagram of the SlowFast network’s principle behind the slow (top) and
fast (bottom) pathways. The slow path uses a lower frame rate T , but has higher
channel depth C, suitable for processing stable scene elements such as textures,
colours, and lighting conditions. Motion changes often occur faster than changes
in the identity of the subject performing those motions. Therefore, perceiving
motion effectively requires higher frame rates Tα, and lower channel depth Cβ
(β = 1

8). Cross-connections after each block fuse the temporal features with the
spatial features.

2.2.1 SlowFast

The SlowFast architecture is inspired by the human retinal system. The authors observed
that the retina uses different cell types (M- and P-cells) operating at varying spatial and
temporal resolutions, with P-cells emphasising spatial information and M-cells capturing
higher-fidelity temporal data. Motion changes often occur faster than changes in the
identity of the subject performing those motions. Therefore, perceiving motion effectively
requires higher frame rates Tα. For example, consider a diver performing a somersault
from a diving board: the diver’s skin colour and swimsuit that determine their identity in
the scene remain unchanged, while the rapid motion changes from the somersault require
high temporal resolution to capture accurately.

Accordingly, the SlowFast model (Figure 2.2) has separate spatial and temporal convo-
lution pathways. The spatial convolutions run at high spatial resolution but apply strong
temporal stride, while the temporal convolutions process frames at a lower stride. Simi-
larly, the spatial/slow pathway’s convolutions have higher channel depth, allowing this path
to capture more complex features. Cross-connections after each block fuse the temporal
features with the spatial features. This design allows the temporal pathway to operate at
only 20% of the total compute, as fewer channels are required compared to jointly process-
ing the spatial and temporal dimensions. The SlowFast architecture has shown improved
performance on video action recognition tasks [10].

The relative temporal stride and channel depth are controlled by the parameters α and
β respectively. Therefore, if the base temporal resolution is T , then the slow path processes
T frames, while the fast pathway processes Tα frames. In similar fashion, β controls the
channel depth: for any layer Ci in the slow pathway, the fast pathway will have a channel
depth of Ciβ, where β is a fraction (for example 1

8). In [10], the authors show that on the
Kinetics benchmark they achieve the best performance with an α of 8. The present work
challenges this claim as we found models to perform better at α = 4. Lowering α increases
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the temporal resolution, which we theorise allows the model to process temporally complex
motion patterns within the slow pathway’s higher channel depth convolutions.

While 3D CNNs provide an effective foundation for video understanding, their complex
architectures make it difficult to determine whether they learn appropriate features or rely
on spurious correlations a critical concern that explainable AI methods can address and
that forms the foundation for explanation guided learning approaches that actively steer
models toward learning the right features during training.

2.3 Explainable AI

For a simple model, such as a linear model, the best explanation is the model itself [25].
However, for complex models, the original model is often too complex to serve as an
explanation. Therefore, we need to resort to using simpler explanation models as proxies.
XAI methods help create simpler, more interpretable models from complex ones.

Furthermore, while supervised deep learning exposes metrics like loss and accuracy,
these are insufficient, as models may memorize the training dataset, leading to poor gen-
eralizability [23]. Moreover, models have been shown to take shortcuts, relying on con-
founding information in the data rather than genuine features for classification [40, 34, 12].
Confounders in a dataset are regions of the image the model uses to classify some input
that are often unrelated to the class itself [37, 12]. This highlights the need for tools that
help humans understand how deep learning models make decisions. The research field
dedicated to addressing these issues is referred to as Explainable AI (XAI).

XAI can help clarify model decisions through simplified explanation models. This is
crucial in domains where trust and transparency are vital, such as healthcare, finance, and
autonomous systems. These explanations also promote broader user adoption by making
AI models more interpretable [25]. By uncovering how decisions are made, XAI can also
help identify and mitigate bias, ensuring models do not perpetuate societal inequities.

Furthermore, XAI assists in debugging models by revealing weaknesses, such as over-
reliance on irrelevant features or ’shortcuts’. Correcting these shortcuts can significantly
improve model performance by reducing overfitting and increasing generalizability [34, 40,
43, 12]. For example, in activity recognition models, identifying misleading features that
contribute little to classification can help improve the model’s robustness to unseen data.

Though XAI can provide insight into model behaviour, these explanations are only
simplified representations of what occurs inside the model. Models can still rely on con-
founding features that are not identifiable through XAI alone [40]. Therefore, it is impor-
tant to exercise caution when utilizing XAI explanations. Additionally, XAI methods can
be computationally expensive. For example, methods like SHAP require multiple passes
through the model to explain a single example [25, 47, 43].

2.3.1 Explainable AI Methods

A common way to interpret image classifiers, or action recognition models, is through
saliency maps, or attention maps, which are used interchangeably. There are different
ways to obtain attention maps. A common method is Gradient Class Activation Map,
(GradCAM) [36]. GradCAM weights model’s activations in the final convolutional layer
by the gradients with respect to the final layer [36]. This can be loosely interpreted as
where - and in case of action recognition, also when - the model was looks. And how much
it influenced the classification of a particular class. Figure 2.3 shows a series of frames from
the GradCAM output from a person performing diving acrobatics. In this figure you see
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that the heatmap is changing in colour and intensity. With blue representing very little
attention, and red very high attention. As the dive progresses, the colour shifts from green,
to yellow to red. This visualisation shows the model paid most attention to the middle 4
frames, and at the position of the diver. The fifth frame has the highest attention values
as the divers are in mid somersault. This GradCAM visualisation closely aligns with ’our
own’ intuition on when and where models should look.

Figure 2.3: This figure shows a series of frames from the GradCAM output for
two people performing diving acrobatics. The attention map is displayed using a
colour map that ranges from blue-red; red meaning more attention. The attention-
maps changes over time, and the last frame shows a curious artifact in the bottom
right corner. These images where generated using an SlowFast network network
[10], trained on the Diving48 dataset [21]. The GradCAM implementation from
[36]

Local Interpretable Model-agnostic Explanations (LIME) on the other hand, is an
model agnostic model explanation method [39, 34]. LIME focuses on explaining individual
predictions. It approximates the behaviour of the complex model by learning a simpler
model. The simpler model is fitted with slightly perturbed inputs. LIME runs these
perturbed samples through the model. Then a simple model (linear regression) is fitted
with the inputs of the model and the outputs of the model. This simple model can then
show which features had the most influence on the original prediction[39, 34]. Generating
new examples, and fitting linear model to each training example can be computationally
expensive, especially if you want explain the entire training set[34].

SHapley Additive exPlanations (SHAP) is another model agnostic method [43, 47]. It
is a unified framework for interpreting model predictions by attributing a score to each
feature, representing its contribution to the final outcome. SHAP measures a feature’s
importance by evaluating how the prediction changes when the feature is included or
excluded [43]. Shapley values are calculated by averaging the marginal contributions of a
feature across all possible subsets of features, ensuring a fair and consistent allocation of
importance. If excluding a feature leads to a large change in the prediction, the feature
has a relatively large impact; conversely, if there is little change, the feature has a minimal
effect on the model’s decision.

SHAP can be applied to any input domain, including images, text, and numeric data

8



[43]. In the image domain, SHAP perturbs regions of pixels (e.g., masking certain areas)
and analyses the model’s output changes to determine the importance of different pixel
regions. This results in an importance map, similar to methods like GradCAM and LIME.
Unlike GradCAM, SHAP can identify which features reduce accuracy on the final output
[47]. This makes SHAP quite versatile, as it can pinpoint features that boost a prediction
but also those that reduce it.

However, SHAP is computationally expensive, as it requires multiple forward passes
through the network to assess each feature’s contribution, which grows exponentially with
the number of features.

2.3.2 Explainable AI for 3D CNNs

Explainable AI for 3D CNNs is a relatively under-explored area of research. Earlier meth-
ods adopted saliency maps and GradCAM on streams of images, but they often overlooked
the contribution of the temporal kernel in 3D convolutions, although it has been shown
that motion plays a small yet significant role in classifying activities [7]. Recent works
have incorporated the temporal axis in 3D convolutions to better explain the contribution
of motion to activity classification.

These are some common methods to give an explanation for why a model classified
a certain samples. All of the examples fall under the umbrella of attention maps. These
methods are sometimes also referred to as saliency maps, or activation.

One notable approach is Saliency Tubes, created by [41], a gradient-based activation
method that maps the activations from the final convolutional layer back to the input,
highlighting the regions that most influenced the model’s decision. This method is similar
to GradCAM but adds temporal filters to the activation map. Due to the high dimension-
ality of the convolutional layer (T×H×W×D), where T is the temporal axis, H and W are
the spatial axes, and D are the channels, the authors applied a threshold (τ) to filter out
low activations that contribute little to the final classification. By adopting gradient-based
filtering, they were able to quantify the contribution of motion to classification.

In another work, [16] proposed a selective relevance map, which uses derivative-based
filtering to remove low or near-constant activations in saliency maps. This technique results
in a map that only exposes activations corresponding to motion, thus helping to isolate
regions of interest based on movement.

In addition to saliency-based approaches, occlusion-based methods provide another way
to identify which parts of the model contribute to its decisions. A common technique is to
occlude the object of interest and observe whether this changes the output. [46] developed
such a method for RGB video streams. One challenge with video inputs is that objects are
often in motion, so occlusion creates a "tube" that tracks the object over time. To address
this, they tracked the object of interest and adjusted the position of the occluded region
using optical flow. Optical flow quantifies the motion between two frames through motion
vectors, and these vectors were used to adjust the occlusion in each frame.

Price et al. (2021) [30] employed SHAP (SHapley Additive explanations) to quantify the
temporal contribution of individual frames to the model’s decision-making process. Their
methodology generated frame-wise SHAPley values, revealing the temporal dynamics of
positive and negative influences throughout the video sequence. This temporal attribution
analysis provided insights into which segments of the activity most significantly influenced
the model’s final classification.

While XAI methods help us understand model decisions post-hoc, a more proactive ap-
proach involves incorporating explanations directly into the learning process. This leads us
to Explanation-Guided Learning (EGL), which leverages explanations during model train-
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ing to improve both performance and interpretability. Furthermore, explanation guided
learning remains under explored for action recognition tasks, making it essential to under-
stand the motivation behind this approach and its general framework before examining
specific applications to video understanding.

2.4 Explanation-Guided Learning

When a person is asked to classify an animal, the person will likely look at the colour
or texture of the fur, the shape of its ears, or any other distinguishing features. Where
the surroundings play a minimal role; is there grass or snow? In other words our decision
should be invariant to the environment. We want our deep learning models to have this
same intuition. When training data is limited in variety, models tend use ’clever tricks’ in
order to beat the accuracy high score [40]. For example, it could deduce that snow corre-
lates with polar bears. Explanation-Guided Learning (EGL) addresses this limitation by
incorporating additional objectives into the model’s loss function, ensuring that the model
jointly optimises its predictions and explanations, which in turn improves generalisability
[14]. And prevent models from relying on confounding factors [12].

The algorithm operates as follows: A model is trained on a dataset consisting of inputs
x with corresponding labels y and explanations A. These explanations A are included as
part of the training set, and are often created by a human annotator. During the training
process, the model generates its own explanations Â, which can be produced using methods
such as LIME or GradCAM [12].

There are typically two approaches for incorporating explanations into the training
pipeline: 1) augmenting the loss function by adding a term that measures the distance be-
tween the ground truth explanation A and the generated explanation Â, and 2) augmenting
the data by masking undesired regions of the image [12].

In [12] the authors showed that EGL prevents models from relying on confounding
factors. Yet, they also showed that some of the models they tested where insensitive to the
quality of the annotation. Meaning the model improved regardless of the annotation qual-
ity. This lack of sensitivity to feedback quality raises questions about the reliability of EGL
across different model architectures. Intuitively, we would expect a model’s performance
to degrade with incomplete feedback and improve with comprehensive feedback.

2.4.1 The Explanation-Guided Learning Framework

This section examines the Explanation Guided Learning Framework introduced by [14],
which provides a theoretical foundation for incorporating explanation-based learning into
contemporary deep learning architectures. Understanding this framework is crucial as
it establishes the mathematical and conceptual groundwork for augmenting traditional
supervised learning with explanation guidance.

Gao et al. (2024) [14] establish a foundation for Explanation Guided Learning through
a framework. Their formulation, expressed in Eq 2.1, captures the essential components
and interactions within EGL systems. The architectural implementation of this framework
is illustrated in Figure 2.4, which provides a visualization of the mathematical relationships
and data flow described by Eq 2.1.

In the EGL framework, X, Y , and A are the respective inputs, labels, and annotations
(often a saliency map). f(X,Y ) represents the deep learning model, and Lpred denotes the
loss with respect to the model’s predictions. This first term represents a standard machine
learning objective. The second term, starting with alpha, introduces g(f(X,Y ), where g
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is an explainer that generates an explanation Â, often a saliency map, from the model
f(X,Y ). The ground truth explanation, A.

Lexp is the explanation loss, and Ω is the regularisation term that tracks an inherent
property of the explanation. α and β control the influence of these respective terms. The
explanation loss Lexp is an additional signal to help model identify important cues. An
example of this could be a human-created attention map Â, where Lexp(g(f(X,Y ), Â))
has to maximise the overlapping area between the generated explanation Â and the A.
Thereby, steering the model towards a set of parameters that look at patterns in the area
of the attention map.

min Lpred(f(X,Y )) + αLexp(g(f(X,Y ), A)) + βΩ(g(f(X,Y ))) (2.1)

Figure 2.4: X,Y are the labeled dataset and serve as an input to the model
f(X,Y ). The model produces Ŷ as an output. For each X,Y the explainer
g(f(X,Y )) generates an explanation Â for the model f(X,Y ). Finally, Ŷ , Y, Â,
and A serve as input to the Loss. Here A is a human generated explanation, often
an attribution map.

In summary, EGL incorporates human-provided explanations into the model’s objective
function with the goal of achieving better test performance and improved generalisability.
These explanations, often derived from human annotations, ensure that the model’s de-
cisions align with interpretable features. However, EGL faces a major challenge due to
the reliance on handcrafted annotations, which can be difficult to scale and may introduce
subjectivity [34, 35, 14]. Thus implementers should be wary when building EGL models
as it may yet introduce additional biases.

2.4.2 Examples of Explanation-Guided Learning

In [43], the authors describe two methods for using model explanations to aid learning.
Both methods utilize SHAP to identify the most significant features for classifying the
current sample. The first method employs SHAP to mask areas that contribute to mis-
classification. The assumption here is that a model’s incorrect prediction is due to an
incorrect explanation. Therefore, by using the explanation to mask those areas and re-
training the model, the model can learn the correct features. This approach is based on
two assumptions: first, that the label y is correct for the sample x, and second, that the
model’s explanation accurately reflects the features it used to classify the sample x. This
method can be viewed as a form of feature selection, as masking part of the input is effec-
tively selecting which parts of the image to use. The second method uses SHAP to reweigh
specific examples in the loss function, creating a weighted loss function wi · L. Here, L
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represents the loss, and wi is the weight assigned to a specific example. The reasoning is
that when a sample xi is misclassified, penalising the model with wi will cause the model’s
loss to react more strongly during back propagation. This gives the model a chance to find
a new parameter set that better the maps xi to yi.

In Ross et al. (2017) [34], the authors propose a method for explaining and regularis-
ing deep neural networks by selectively penalising input gradients through an additional
regularisation term in the loss function. This regularisation term is based on annotations
A ∈ 0, 1. This regularisation term imposes a soft inductive bias on regions marked by
A. Discouraging large gradients in annotated regions, while allowing the model flexibility
to use these regions as needed. The authors did not rely on human annotations but in-
stead used an approach that iteratively modifies the annotations to generate a spectrum
of models. These models are evaluated to determine which best aligns with the intended
behaviour. In a follow-up paper, the authors improved their approach by using human
annotations, and GradCAM instead of LIME [35].

Selvaraju et al. (2019) [37] addresses a model’s reliance on language priors for visual
question and answering tasks. Their research highlighted a critical issue where models
exhibited bias towards common linguistic associations rather than actual visual evidence
for instance, automatically classifying bananas as yellow despite an image clearly depicting
an green, unripe banana. This demonstrated how models often default to statistical priors
rather than processing visual information accurately. Their approach enhanced the loss
function’s sensitivity to specific image regions through human-guided attention mapping,
leading to improvements in visual question answering performance [37]. However, while
their method reduced the reliance on language priors, they were not able to completely
eliminate these biases [37].

All previous methods used input gradients or model estimates to propagate back to the
input space as explanations [40]. However, these methods do not reveal the internal con-
cepts the model uses to make its final decision. In "Right for the Right Concept" [40], the
authors developed a neural symbolic concept learner that jointly optimises for both visual
and symbolic input. To this end, they introduced a new dataset containing information
such as colour and shapes. They found that the model indeed relied confounding informa-
tion on concepts that are not identifiable through visual explanations alone. By providing
feedback at the semantic level, they were able to improve the model’s performance and
generalisability.

This concludes our introduction to explanation-guided learning. As previously stated,
explanation-guided learning faces major challenges as it relies on additional hand-crafted
annotations. Other works address this limitation by omitting ground truth annotations al-
together. However, none have attempted to address this limitation directly by automating
the creation of ground truth attention maps, which is something this work aims to explore
in addition to methods that do not use ground truth annotations. Lastly, to our knowledge
none of previous works have applied EGL to the video action recognition task.

Having established the theoretical foundations of explanation-guided learning and its
limitations, it becomes crucial to examine the datasets available for sports action recogni-
tion tasks. The choice of dataset significantly impacts both the feasibility of applying EGL
methods and the potential for developing automated annotation approaches, particularly
in the context of action understanding.
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2.5 Datasets

Kinetics stands as one of the most comprehensive human action recognition datasets in the
field [18]. The original version, Kinetics-400, contains approximately 300,000 videos span-
ning 400 distinct action labels, with each clip lasting approximately 10 seconds [18]. The
dataset encompasses a diverse range of human activities and interactions, from everyday
actions like bike riding and handshaking to sports activities such as tennis. Following the
success and widespread adoption of the original dataset, the authors released two signifi-
cant expansions. Kinetics-600 introduced an additional 200 action categories [5], followed
by Kinetics-700 [6], which further expanded the label space. These updates not only in-
creased the number of action categories but also implemented improved data collection
processes, enhancing the overall quality and reliability of the dataset. The largest critique
on this dataset, that for many classes only few frames are needed from the sequence to
classify the activity.

Diving48 is a competitive diving dataset containing approximately 18,000 videos with
48 unique dive sequences. Figure 2.5 illustrates all the unique dive sequences present in
the Diving48 dataset. Each sequence is defined by three components: 1) Takeoff: The
initial moment when the athlete launches from the diving board. 2) Flight: The aerial
phase where the athlete performs complex maneuvers including somersaults and twists. 3)
Entry: The final phase where the diver enters the water in a specific position

While these components are fundamental to each dive sequence, it’s important to note
that Diving48 only provides coarse-grained labels, meaning individual components within
the dive sequence are not separately annotated. The Diving48 dataset was designed to train
action recognition models in the absence of confounding information. This design choice
was motivated by the dataset’s uniform background across all videos. Unlike other ac-
tion recognition datasets where background elements might inadvertently influence model
predictions, Diving48’s consistent setting forces models to focus exclusively on the diver’s
movements and form for sequence classification, eliminating potential noise from varying
backgrounds.

WorkoutForm QA is another AQA datase, but focused on the form of different weight
lifting exercises [28].

All datasets discussed thus far have coarse-grained annotations, where each clip has a
single label. In contrast, fine-grained action recognition datasets can have multiple labels
per clip, with each action demarcated by specific start and end frames. A notable example
is FineGym, a fine-grained action recognition dataset in the domain of gymnastics that
provides temporal annotations at both the action and sub-action level. FineGym imple-
ments a three-level semantic hierarchy [38]. At the coarsest level, it describes events within
gymnastics, where each event consists of one or more sets, and each set is described by mul-
tiple elements. This hierarchical structure was specifically designed to investigate action
recognition models’ ability to learn and understand complex sequential patterns. Notably,
the authors demonstrated that state-of-the-art models which performed well on coarse-
grained datasets like Kinetics struggled to achieve comparable performance on FineGym,
highlighting the increased complexity of fine-grained action recognition [38]. Building upon
their work with FineGym, the same authors developed the FineDiving dataset [52]. While
FineDiving maintains a similar approach to fine-grained temporal annotations, it intro-
duces an important additional feature: jury scores. This inclusion enables models to not
only recognize actions but also optimize for quality assessment [52], making it particularly
valuable for developing comprehensive sports analysis systems.
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Figure 2.5: This diagram (taken from Li et al. [21]) shows all the possible dive
sequences in the Diving48 dataset. Each dive is identified by a starting position,
followed by a somersault(s) and twist(s), and finishing with a flight position. The
final node (diamond) shows the assigned class identifier.

2.6 Optical Flow Motion Segmentation

Previous works such as I3D [7] leverage optical flow frames in a dual-path architecture, in
which two I3D models are trained. One is trained on RGB video and the second is trained
on optical flow frames. In [7] the authors should that including optical frames enhanced
performance, demonstrating the inherent value of optical flow. In contrast, this work
aims to leverage optical flow frames to perform moving object segmentation—optical flow
motion segmentation. The premise of optical flow motion segmentation is to automatically
separate video frames into different groups, where each group contains pixels or regions
that belong to objects moving in the same way [1]. Such segments appear to be good truth
attention masks, which is relevant to the present work.

This work leverages FlowSAM for optical flow motion segmentation, which builds upon
the work of Segment Anything (SAM) by prompting through optical flow frames for mov-
ing object segmentation [19, 51]. SAM segments a target image’s scene through a prompt
encoder. In the original work, the SAM prompt encoder was trained on points and bound-
ing boxes. Thereby, you could point to an object in the scene and that object would then
be segmented from the background.

FlowSAM extended the SAM model by training an additional prompt encoder for opti-
cal flow frames [51], thereby allowing moving object segmentation using optical flow frames.
FlowSAM operates in three modes: 1) FlowI-SAM uses optical flow frames for moving ob-
ject segmentation; 2) FlowP-SAM combines RGB and optical flow; and 3) FlowT-SAM uses
optical flow prompts to temporally match segments in a sequence. This solves temporal
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continuity errors in sequences of segments.
By leveraging FlowSAM’s ability to automatically segment moving objects from optical

flow frames, this work addresses a critical limitation in explanation-guided learning: the
need for manually annotated ground truth attention masks. The segmented diver masks
generated through optical flow motion segmentation provide an automated alternative to
human annotation, enabling the application of EGL methods to sports action recognition
without the labour-intensive process of creating hand-crafted explanations.

2.7 Dice Loss

This loss function is typically applied in the context of medical image segmentation. The
Dice loss excels at segmenting anatomical structures, tumors, organs, and lesions in medical
images like MRI, CT scans, and X-rays [42, 54]. It’s especially valuable because medical
segmentation often involves highly imbalanced datasets where the target region is much
smaller than the background [42, 54]. Unlike cross-entropy loss, Dice loss naturally handles
imbalanced datasets without requiring manual weight adjustments [42, 54]. This makes
it ideal for scenarios where the positive class represents a small fraction of pixels. For
example, a dataset where positive pixels represent only 1% of the image, cross-entropy
loss is dominated by the 99% background pixels. Even if the model predicts all pixels
as background, it achieves 99% accuracy. Dice loss, however, would be 0 because there’s
no intersection between predicted and true positive regions. Furthermore, Dice loss is
sometimes used alongside other losses to improve mask quality and boundary precision
[54, 2].

The Dice Loss, as defined by Eq 2.2, takes the intersection between the predicted area
P and ground truth area T and scales it by the sum of these respective areas. The Dice
coefficient Dice(P, T ) = 2|P∩T |

|P |+|T | produces a value in the range [0, 1], with 1.0 being a perfect
match and 0 indicating no overlap. To use this as a loss function for training deep neural
networks, the Dice loss is computed as DiceLoss = 1−Dice(P, T ), ensuring that lower loss
equals better performance.

LDice(P, T ) = 1− 2|P ∩ T |
|P |+ |T |

(2.2)

As discussed, Dice loss is widely used in medical image segmentation due to its effec-
tiveness with imbalanced datasets. This work adapts Dice loss for attention alignment
within the EGL framework, which is well-suited to our application. The positive masks
representing our divers occupy significantly fewer pixels than the background, creating the
class imbalance scenario where Dice loss excels. Additionally, Dice loss has been com-
bined with other loss functions in previous work, making it an ideal component for our
multi-objective optimization approach.

Based on the review of relevant literature and available datasets, we list several gaps
in the present research. Namely, the application of EGL on video action recognition tasks,
and lack of datasets that contain ground truth saliency maps. The following research
questions address gaps in current approaches to sports action recognition, with particular
focus on integrating EGL with diving video analysis.
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Chapter 3

Research Questions

Studies have shown that EGL possesses the ability to revise model behaviour when it uses
confounding features [12, 35, 34, 40, 43]. To the best of our knowledge, none have inves-
tigated action recognition datasets such as Diving48 in the context of EGL. Furthermore,
there exists a significant gap in addressing the central limitation in EGL, which is the
lack of ground truth saliency maps. The present study aims to address these gaps with
following research questions:

1. Q1: How effectively does Explanation Guided Learning improve performance on fine-
grained action recognition tasks? Most existing EGL studies focus on image classifi-
cation. This question directly evaluates EGL’s transferability to video action recog-
nition.

2. Q2: Can optical flow-derived segmentation masks serve as effective ground truth
explanations for video-based EGL without human annotation? This addresses the
scalability challenge of EGL by investigating whether automatically generated masks
from optical flow can replace costly human-annotated explanations while maintaining
learning benefits.

3. Q3: To what extent does constraining model attention to align with ground truth diver
segmentation masks improve both classification accuracy and explanation quality?
This examines whether attention alignment approaches can simultaneously optimise
for correct predictions and meaningful attention patterns that correspond to the
actual subject of interest in the domain of action recognition.

4. Q4: How do different explanation guidance approaches (attention alignment vs. in-
put masking vs. gradient penalisation) compare in their effectiveness for fine-grained
action recognition? This evaluates the relative merits of three distinct EGL strate-
gies: Dice loss for attention alignment, direct input transformation through masking,
and Right for the Right Reason gradient penalisation, to determine which approach
best leverages optical flow-derived explanations.

To address these research questions systematically, we propose a methodology that
combines multiple approaches. This methodology builds upon existing work while intro-
ducing novel techniques specifically designed for diving video classification.
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Chapter 4

Methodology

This section outlines the proposed methodology for improving action recognition models
through Explanation-Guided Learning (EGL) on the Diving48 benchmark.

This approach consists of three main phases: first, establishing a baseline action recog-
nition model; second, implementing and evaluating two distinct EGL methods; and third,
conducting performance analysis.

The methodology is structured as follows:

• Section 4.1 presents a detailed analysis of the Diving48 dataset [21], our chosen
benchmark for competitive diving action recognition

• Section 4.2 describes the architecture and implementation details of our deep learning
model

• Sections 4.3 and 4.4 introduce four novel EGL methods designed to enhance model
performance and interpretability

• Section 4.5 details our evaluation strategy, which assesses both model performance,
and attention map quality

• Section 4.6 describes the data augmentation and pre-processing pipeline.

4.1 Dataset

The model will be trained and evaluated on the Diving48 dataset [21], which presents
unique challenges in action recognition due to its complex sequential diving manoeuvrers.
Each dive classification requires the model to comprehend and analyse an intricate sequence
of movements, making it an ideal benchmark for testing sophisticated action recognition
capabilities. This work makes use of the second version of the Diving48 dataset which
exclude some samples that have been miss labelled, this is also the reason class 30 is
missing in 4.1.

Diving48 offers several distinct advantages over other prominent action recognition
datasets such as Kinetics-400:

• Short Duration: Diving48 clips are short, around 4 seconds, in contrast to the sig-
nificantly longer sequences found in Kinetics-400 and FineGym [18, 38]. This brevity
facilitates more efficient training cycles, particularly valuable given computational
resource constraints.
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Figure 4.1: This figure shows the distribution for the class labels of the Diving48
dataset [52]. The plot includes the mean class label count (µ = 361.64) and ±
1 standard deviation (σ = 303.31). The distribution for the Diving 48 dataset is
fairly unbalanced, as indicated by the variance σ. This means we should investigate
whether the model can perform better with a balanced dataset compared to the
default - the unbalanced dataset.

• Sequential Complexity: The sport of diving inherently requires the model to an-
alyze complete action sequences for accurate classification. Unlike simpler actions in
other datasets (such as waving, bike riding, or swimming) that can often be iden-
tified from a single frame, diving classifications demand comprehensive temporal
understanding.

The Diving48 dataset suffers from a class in balance. Figure 4.1 shows this class in
balance clearly. Considering that the entire dataset contains approximately 16K samples,
then the top 4 classes make up almost half the dataset. Furthermore, we showed that there
is a strong correlation between the number of samples and the individual class accuracy
as shown in A.1.

4.2 Model

The SlowFast-50D network [10] serves as our primary model for action recognition. This
architecture processes input videos represented as tensors X ∈ RC×T×H×W , where C = 3
represents RGB channels, T denotes the temporal resolution (number of frames), and H×
W specifies spatial dimensions (typically 224×224 for training and 256×256 for testing).
The model function f(X, θ) maps these input tensors to class predictions through learned
parameters θ.

This architecture achieves competitive performance within its computational constraints
through efficient temporal filter design [10]. Notably, the network demonstrates superior
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computational efficiency, operating at one-fifth the cost of comparable R(2+1)D architec-
tures [45, 10]. This computational advantage is particularly relevant given our project’s
limited computing resources and the need for rapid experimental iterations.

For our implementation, we utilize the SlowFast-50 variant pre-trained according to
the specifications outlined in the original work [10]. This configuration represents the
most compact model in the SlowFast family while maintaining favorable computational
characteristics compared to other 3D CNN architectures [10], establishing our baseline for
further experimentation.

4.2.1 GradCAM Implementation

Two of our methods—described in Sections 4.3.2 and 4.4—rely on attention maps generated
using GradCAM [36]. We adapt this technique to the SlowFast architecture by generating
attention maps along both spatial and temporal dimensions.

Traditionally, GradCAM produces attention maps by computing gradients of class out-
puts with respect to activations in the final convolutional layer. In our SlowFast implemen-
tation, this corresponds to the 5th residual block, which serves as the last convolutional
layer in our network architecture. Therefore, this work uses the 5th layer’s activations. We
generate separate GradCAM attention maps for both the slow and fast pathways of the
network, producing a predicted attention maps Â ∈ R1×Ts×H×W , and Â ∈ R1×T×H×W .
Where T is the temporal resolution for the fast pathway and Ts = T/α, for the slow
pathway. Section 4.3.2 explains why these two attention maps are important.

4.3 Optical Flow Guided Learning

The essence of this work lies in finding generalisable explanation guided learning methods.
The theoretical framework for EGL is fairly straightforward: additional annotations from
which deep learning models can learn better representations. Previous works focused on
obtaining human-generated ground truth explanations such as attention maps. However,
these authors concluded that the time and energy requirements for generating such annota-
tions present an intractable problem for sufficiently large datasets [34, 35, 14]. The ability
to automatically create ground truth explanations is therefore an important challenge to
address.

One observation unique to video data is that divers, or more generally objects, appear
naturally segmented from the background in optical flow frames. Figure 4.2 reveals strik-
ing similarities between optical flow representations and the attribution maps previously
discussed in Figure 2.3. In Figure 4.2, we can clearly observe the silhouettes of divers per-
forming their acrobatics. This visual correspondence motivates the core premise of Optical
Flow Guided Learning, which proposes utilizing optical flow frames as the ground truth
explanation. We believe that, with sufficient pre-processing, these optical flow frames can
be transformed into annotations for use in the EGL framework, making them ideal attri-
bution maps. However, it should be noted that compression artifacts present in the source
videos get exacerbated in the optical flow frames, as shown in Figure 4.2. As a result, the
ground truth attention maps quality can be poor at times.

This work proposes two novel approaches to EGL that use optical flow frames to obtain
ground truth labels: 1) the Dice-based approach (4.3.2) and 2) the Transform approach
(4.3.3). However, before discussing the specifics of these methods, let us first address how
diver ground truth attention maps are obtained from optical flow frames.
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Figure 4.2: This figure displays two sample frames from the Diving48 dataset.
The figure displays for frames from a single dive sequence. For each frame we display
a RGB video frames top-left, optical flow frames, top-right, candidate masks bottom
left, and diver binary masks bottom right. These samples should give the reader an
impression of the quality of the dataset, and outputs from the pre-processing steps.
In Appendix A.2 you can find an extended version of this figure, containing more
example frames.

4.3.1 Ground Truth Attention Maps

Figure 4.3 presents our pre-processing pipeline for obtaining diver ground truth Attention
Maps A. This approach leverages moving object segmentation, a computer vision task that
separates moving objects from the background. We employ FlowSAM [51], a moving object
segmentation deep learning technique developed as an extension to Segment Anything [19].
FlowSAM enhances SAM’s capabilities by allowing prompting with optical flow frames,
which guide the model to segment objects in motion.

The pipeline works as follows: an RGB video X is encoded into an optical flow video
stream Xof using RAFT [44]. Next, both X and Xof are processed by FlowSAM to generate
candidate masks Mc, which are ordered by depth layers as classified by the model. Finally,
a function f(Mc) determines the most likely diver mask by focusing on the central vertical
region of the frame (one-third of the total width, centred) and identifying the most promi-
nent mask ID among the first three depth levels. Specifically, it counts the occurrences of
each mask ID in this central region and selects the one with the most pixels. If no suitable
mask is found, an empty mask is returned. This heuristic works well for diving videos
because divers are consistently positioned in the centre of the frame and typically appear
in the foreground layers, making them easily distinguishable from background elements.

This approach leaves a lot of uncertainty about whether the correct mask is chosen
by the algorithm. For example, background objects could be misclassified as foreground
objects. Furthermore, the raw pixel count of the central object can be misleading due to
poor mask quality. There is also limited temporal coherence between masks; whilst RAFT
attempts to match masks temporally, this is not always effective. Therefore, this selection
approach is not particularly robust, though it is sufficient for the purposes of this work.
More sophisticated implementations are considered in our discussion section.

Moreover, the quality of these masks is quite poor at times. The poor quality is likely
a result of compression artefacts in the source data, which become more noticeable during
fast motion. This is evident when there is very little motion on camera—the quality of the
diver masks and optical flow frames is very crisp.
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Figure 4.3: This figure features our pre-processing pipeline, which takes an input
rgb video X, and converts into a binary mask A. The pipeline starts by encoding
our input X, into a Optical Flow Xof using RAFT [44]. In the next stage, the
(X,Xof) pair is used as an input to FlowSAM [51] - a moving object segmentation
model, that uses optical flow as a prompt. FlowSAM outputs multiple candidate
masks Mc, which are filtered by the f(M) to find the most likely binary mask
sequence A for the diver.

FlowSAM offers three distinct input methods; this work uses FlowP-SAM, which com-
bines RGB and optical flow to generate segmentation masks. Three key parameters control
the trade-off between segmentation quality and computational cost.

The gridside parameter controls the number of prompt points uniformly sampled per
frame. We used a gridside of 20, following the default configuration set by the original
authors. The max objects parameter determines the number of segments that FlowSAM
proposes. We selected 10 objects, though a lower value would be preferable for compu-
tational efficiency. However, experimentation with smaller values revealed that the diver
would occasionally be misclassified as background and subsequently excluded from segmen-
tation. Therefore, we chose to allow more object proposals to provide greater flexibility in
our mask selection algorithm.

The third parameter is gaps, which controls the temporal frame intervals used for
optical flow computation. The original authors implemented a preprocessing step that
generates optical flow at multiple gap sizes and found that prompting FlowSAM with
multiple gaps significantly improves performance [51]. They recommend using gaps of 1,
-1, and 2, -2. However, this approach requires generating multiple sets of optical flow
frames at different temporal intervals, substantially increasing computational overhead.
Therefore, we chose to use only a gap size of 1 to balance performance with computational
efficiency. Using the full multi-gap approach represents a promising direction for future
work to possibly improve segmentation accuracy.

4.3.2 Dice

Before describing our implementation, we examine whether GradCAM attention maps
and segmentation masks are theoretically compatible. GradCAM creates attention maps
by looking at which features the model considers most important for classification, while
segmentation masks simply outline the entire shape of objects. More specifically, while
GradCAM also highlights relative temporal importance, the attention maps treat every
frame as equally important. These two approaches highlight different things, which sug-
gests they may not align well together - something our experiments confirm.

Figure 4.3 illustrates our Dice-based approach to Optical Flow Guided Learning. This
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method leverages the diver masks obtained through the preprocessing steps described ear-
lier to guide the model’s attention mechanism.

The process begins with an input video frame X, which is passed through our SlowFast
network augmented with GradCAM to generate an attention map Â. This attention map
represents the model’s current focus areas when making predictions. Simultaneously, we
utilize the ground truth diver mask A derived from optical flow processing as described
in Section 4.6.2. This binary mask serves as the ideal attention target that we want our
model to learn.

During training, the model receives a tuple (A, Â,O, Y ), where: A is the ground truth
diver mask (binary segmentation). Â is the model-generated attention map from Grad-
CAM. O is the model’s output prediction. And Y is the ground truth class label. Our loss
function combines two components:

L = αLDice(A, Â) + βLce(O, Y )

The Dice loss component is defined as:

LDice(A, Â) = 1− 2|A ∩ Â|
|A|+ |Â|

Where LDice is the Dice similarity coefficient loss that measures the overlap between
the ground truth mask and the generated attention map, encouraging the model to focus
on the correct regions of interest. Lce is the standard cross-entropy loss for classification.
The hyperparameters α and β control the relative importance of each loss component.

So far we have treated Â and as a single attention map. However, as described in
Section 4.2.1, we actually produce two separate attention maps: one for the slow path way
and another for fast pathway. This allows us to calculate the loss for the two pathways
separately. By applying our loss to both pathways, we ensure that gradients flow through
and influence the entire architecture, rather than affecting only a single pathway. This
approach allows the model to make adjustments to both temporal (slow path) and motion
(fast path) based on the respective attention maps.

By jointly optimizing for both accurate classification and attention alignment with the
diver’s actual position, the model learns to focus on relevant features while improving its
predictive performance.

4.3.3 Temporal Mask Transform

Our Transform approach offers a more straightforward method for explanation guided
learning. As illustrated in Figure 4.5, this technique leverages the pre-processed diver
attention masks A to segment RGB video frames X through a simple masking operation
M ·X.

The core concept is simple: by applying the binary mask to the original frame, we
create a masked image MX where only the pixels corresponding to the diver region retain
their values, while background pixels are set to zero (black). This transformation forces
the model to attend exclusively to the relevant subject area, as all contextual information
outside the diver silhouette is eliminated.

We implement this segmentation transformation as a configurable pre-processing step
with a predefined probability, complementing standard augmentations such as random
cropping, random horizontal flipping, and normalization (described in Section 4.6.2). This
probabilistic application provides a balance between learning from fully segmented inputs
and maintaining contextual information when necessary.
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Figure 4.4: Diagram of the Dice-based Optical Flow Guided Learning approach.
The model processes rgb video X through SlowFast+GradCAM to generate atten-
tion map Â, while using ground truth mask A, from optical flow pre-processing step
4.3.1. These are combined with classification outputs (O, Y ) in the loss function
L = αLDice(A, Â) + βLce(O, Y ) to jointly optimize for accurate classification and
attention localization.

By constraining the visual information available to the model, we facilitate learning of
important features directly related to the diver’s movements, and posture.

4.4 Right for the Right Reason Learning

This section describes our application of the right-for-the-right-reason loss Lrrr, introduced
by Ross et al. (2017) [34]. The theoretical foundation for this method was discussed in
Section 2.4.

As shown in Equation 4.1, the Lrrr loss function penalizes gradient magnitudes within
specific regions of an input sample X, marked by a binary attention map A ∈ {0, 1}T×H×W ,
where ŷn represents the predicted probability for class n. This approach imposes a soft
inductive bias on the model by discouraging reliance on features in regions marked by A,
while still allowing the model flexibility to use these regions when necessary for correct
classification.

Lrrr = λA
∂

∂X

N∑
n=0

log(ŷn)2 (4.1)

We designed two methods for obtaining the ground truth attention maps needed for
this approach:

The first method, illustrated in Figure 4.6, uses GradCAM-derived attention maps. As
shown in the diagram, an RGB video frame X is processed through a SlowFast+GradCAM
network, producing both class probabilities O and an attention map Â. This attention
map undergoes thresholding (t > Â) to create a binary mask A. When applied in the loss

23



Figure 4.5: Diagram of the Transform OGL approach. This method leverages, at-
tention masks obtained through 4.3.1, to mask the diver silhouette for a RGB video
X. Segmenting is performed as pre-processing step with a configurable probability.
This allows the model to learn relevant features in the presence of bad ground truth
attention masks.

function, this approach penalizes the model for focusing on regions that fall within the
thresholded attention area.

Importantly, we collect statistics on individual samples across training iterations and
apply this penalty selectively to the Nth percentile worst-performing samples—those con-
sistently misclassified by the model. The rationale is that persistent misclassification likely
indicates the model is focusing on incorrect features. By applying the binary mask penalty
to these specific challenging samples, we force the model to explore alternative visual
features that might lead to correct classification. Furthermore, this targeted penalty effec-
tively increases the model’s attention on these difficult samples during training, potentially
improving overall robustness.

For the second method, we utilize the diver masks obtained through optical flow pro-
cessing (described in Section 4.3.1) but invert them—transforming previously black pixels
to white and vice versa. This inverted mask effectively penalizes high gradients in regions
outside the diver, encouraging the model to focus specifically on the subject rather than
background elements or contextual cues.

Both approaches implement the core principle of the Lrrr loss: guiding the model to
make correct predictions based on relevant visual features rather than spurious correlations
or background context.

4.5 Evaluation

To assess the performance of our proposed methods, we conducted a series of experiments
evaluating both classification accuracy and attention quality. We report test scores for
several baseline models and our proposed approaches across different temporal resolutions
T (16, 32, and 64 frames).

For classification performance, we measure top-1 accuracy on the test set to evaluate
how effectively each method recognizes the 48 distinct diving classes. This metric allows
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Figure 4.6: Diagram of the Right for the Right Reason Learning (RRR) approach.
This approach revolves around the RRR Loss function - Lrrr = λA ∂

∂X

∑N
n=0 log(ŷn)2

penalises high gradient magnitude in regions marked by A ∈ 0, 1 (a binary mask).
The mask A is obtained by processing a RGB video X, and subsequently applying
a threshold t > Â.

us to directly compare the benefit of our OGL, and RRR Learning approaches against
standard SlowFast implementations without attention guidance.

For our Dice-based approach, we perform an additional evaluation focused on attention
map quality. Specifically, we quantify how well the model’s GradCAM attention maps Â
align with the ground truth diver masks A derived from optical flow. We measure this
alignment using two metrics:

1. Intersection over Union (IoU): This metric calculates the ratio of the overlap area to
the union area between the generated attention map and the ground truth mask, providing
a strict measure of spatial alignment.

2. Dice coefficient: Consistent with our training objective, we report the Dice similarity
score between GradCAM outputs and ground truth masks, which measures the overlap
while being less sensitive to small spatial displacements than IoU.

4.6 Training Setup

For this work, several models will be trained under varying configurations, such as Right for
the Right Reason Learning (Section 4.4 and Optical Flow Guided Learning 4.3. However,
some configuration options remain constant, which will be discussed presently. Each model
is trained for 100 epochs using Stochastic Gradient Descent (SGD) as the optimizer with
a base learning rate of 0.1, weight decay of 0.0001, and momentum of 0.9.

The training run starts with learning rate warmup for the first 100 loader batches Bl -
more on what this means later. Beginning at a learning rate of 0.01, the warmup gradually
scales the learning rate up to the base learning rate of 0.1. Models are trained with varying
numbers of frames T sampled per video, using values of 16, 32, and 64. Cross-entropy serves
as our loss function. To account for class imbalance, we employ weighted cross-entropy
where each class’s weight is inversely proportional to its frequency in the training data.
Specifically, the weight for class i is calculated as wi = 1 − ni

N for i ∈ {0, 1, ..., 48}, where
N is the total number of samples in the training dataset, and ni is the number of samples
belonging to class i.

The batch size is set to B = 256. For completeness, a distinction must be made between
batch size (B) and loader batch size (Bl). The loader batch size Bl represents the number
of samples that fit into GPU memory at once. Meanwhile, the batch size B represents

25



the total number of samples the model processes before the optimizer performs an update
step.

To perform mini-batch SGD on batch sizes that don’t fit into GPU memory, we choose
a smaller Bl that fits into memory, where B is a multiple of Bl. At each iteration, the loss
is scaled by B

Bl
before the backward pass. This gradient accumulation approach allows us

to effectively train with larger batch sizes than would normally fit in GPU memory. In
practice, this should have little to no effect on the final outcome compared to training with
the full batch at once, but is included for reproducibility purposes.

4.6.1 Dynamic Temporal Stride

We uniformly sample T frames from a video x which has Nx frames. In practice, we sample
every ⌈Nx/T ⌉ frames, starting at frame zero, where ⌈·⌉ denotes the ceiling function.

This approach addresses a key limitation in standard action recognition, since sampling
at a fixed stride can omit significant portions of the video content. For instance, sampling
at a 4×16 interval would cause the model to miss a substantial number of frames. Since the
model needs the complete sequence to classify actions like diving, it’s crucial to observe
frames across the full temporal range of the video. Additionally, sampling a consistent
number of frames (T ) enables efficient batch processing during training.

However, even with uniform sampling, we remain restricted to a fixed subset of frames.
To further increase sampling diversity, we randomly offset the starting point by applying
a shift t to each frame index i, where t is randomly sampled from the range [0, ⌈Nx/T ⌉].
The actual frame indices selected become (i · ⌈Nx/T ⌉ + t) for i ∈ {0, 1, ..., T − 1}. This
randomization shifts the entire regular sampling pattern, allowing us to access frames that
would otherwise be missed by the fixed interval sampling. Here, T consistently represents
the number of frames to be sampled, and Nx represents the total number of frames in the
video.

4.6.2 Augmentation & Pre-processing

The data processing pipeline implements separate augmentation strategies for training and
evaluation to ensure both effective learning and reproducible results. This pre processing
pipeline is typical for action recognition tasks [7, 10], though it contains two notable addi-
tions, namely: 1) RandAugment, and 2) OGL Transform.

During training, we apply the following sequence of preprocessing steps:

1. Pixel values are scaled to the range [0,1]

2. Random short side scaling with minimum=256 and maximum=320 pixels to maintain
aspect ratio

3. Random crop to 224 × 224 pixels

4. RandAugment, if applicable - see Section 4.6.3, [8]

5. OGL Transform, if applicable - see Section 4.3.3

6. Normalize the RGB pixel values around µ = [0.31, 0.47, 0.5] and σ = [0.2, 0.2, 0.23]

7. Random horizontal flip with 50% probability

For evaluation, we use a more deterministic approach to ensure consistent results:

1. Pixel values are scaled to the range [0,1]
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2. Short side scaling to 320 pixels

3. Center crop to 256 × 256 pixels

4. Normalisation using the same µ and σ values as in training

4.6.3 RandAugment

RandAugment is a preprocessing technique that applies random augmentations to training
data, consistently shown to improve model performance [8]. These augmentations include
translation-xy, shear-xy, contrast adjustments, rotation, and other transformations. We
used the implementation from the PyTorchVideo Python package.

We hypothesized that these diverse augmentations might simulate some generalization
benefits typically gained from larger datasets. Since RandAugment transforms each sample
uniquely, a smaller dataset effectively becomes more varied during training, potentially
achieving generalization properties similar to those of larger datasets.

Unfortunately, RandAugment could only be applied to the baseline models, not to
the attention-guided approaches. This limitation stems from technical constraints in the
PyTorchVideo library, which does not provide sufficient control over transformation pa-
rameters. For our attention-guided methods, precise alignment between input frames and
ground truth attention maps is critical, requiring synchronized transformation parameters
that the library couldn’t guarantee.
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Chapter 5

Results

This section presents a comprehensive evaluation of the proposed Explanation Guided
Learning methods compared to baseline approaches described in Chapter 4). In Section
5.2 we investigate some unexpected performance characteristics of our Dice based approach.
Section 5.3 evaluates influence of the λ and worst performer percentile, on the right-reason
based approaches. The following section compares our methods with the SoA on the
Diving48 benchmark were we make two interesting observations about temporal sampling
and the temporal resolution of our model (Section 5.4). This chapter concludes by analysing
model complexity in terms of GFLOPs and training cost, Sections 5.5, and 5.6 respectively.

5.1 Model Comparison

This analysis examines performance across multiple temporal resolutions and contrasts
our methods with standard augmentation techniques transfer learning approaches, and
advanced augmentation strategies like RandAugment (described in Section 4.6.2). We
evaluate seven distinct model configurations, each representing different learning and aug-
mentation strategies to the diving classification task, as described below:

• Vanilla 4.2: Our baseline SlowFast network trained from scratch without any addi-
tional techniques or pre-training.

• Vanilla + Kinetics 4.2: The SlowFast network initialized with pre-trained weights
from the Kinetics dataset, leveraging transfer learning to improve performance.

• RandAug + Kinetics 4.6.3: Extends the Kinetics pre-trained model with Ran-
dAugment data augmentation to increase sample diversity during training.

• OGL + Dice 4.4: Our Optical Flow Guided Learning approach that uses the Dice
loss to align model attention with diver silhouettes derived from optical flow, initial-
ized with Kinetics pre-trained weights.

• OGL + Transform 4.3.3: The transform-based variant of our optical flow method
that directly masks input frames based on diver silhouettes, initialized with Kinetics
pre-trained weights.

• RRR + GradCAM 4.4: Implements the Right for the Right Reason approach
using GradCAM-derived attention maps to guide the model’s focus, initialized with
Kinetics pre-trained weights.
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Figure 5.1: Plot showing training configurations at temporal resolutions T along
the x-axis and their accuracies along the y-axis.

• RRR + OGL 4.4: Combines Right for the Right Reason with optical flow-derived
attention maps instead of GradCAM, initialized with Kinetics pre-trained weights.

It’s important to note that the Vanilla configuration is the only method that does not
use pre-trained Kinetics weights.

Figure 5.1 and Table 5.1 present a comprehensive comparison of model performance
across different temporal resolutions (T ∈ {16, 32, 64, 128}). The baseline SlowFast model
("Vanilla") demonstrates the lowest performance, achieving only 0.473 accuracy at T = 32.
Adding Kinetics pretraining ("Vanilla + Kinetics") substantially improves performance,
reaching 0.679 at T = 32 and 0.688 at T = 64. This confirms the value of transfer learning
from larger action recognition datasets, even when the target domain is specialized.

RandAugment combined with Kinetics pretraining ("RandAug + Kinetics") demon-
strates the strongest overall performance trajectory, particularly at higher temporal resolu-
tions. This configuration achieves 0.541 at T = 16, 0.664 at T = 32, 0.765 at T = 64, and
peaks at 0.842 with T = 128, the highest performance across all methods. This validates
our hypothesis that strong augmentation provides generalization benefits that approximate
those of larger datasets.

Our proposed Optical Flow Guided Learning approaches show variable performance.
The Dice-based method ("OGL + Dice") performs poorly at T = 16 with only 0.470 ac-
curacy, lower than even the baseline model. This suggests the approach struggles to align
attention maps effectively with limited temporal information. In contrast, the Temporal
Mask Transform approach ("OGL + Transform") shows strong performance at T = 16
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Method T=16 T=32 T=64 T=128
Vanilla - 0.4732 - -
Vanilla + Kinetics 0.525 0.678 0.688 -
RandAug + Kinetics 0.541 0.663 0.765 0.842
OGL + Dice 0.470 0.657 - -
OGL + Transform 0.591 0.665 0.740 -
RRR + GradCAM 0.533 - - -
RRR + OGL 0.537 0.694 0.812 -

Table 5.1: Performance comparison across different methods and temporal resolu-
tions (T ). The best overall performance is highlighted in bold. Values are rounded
to 4 decimal places for readability.

with 0.592 accuracy—the highest among all methods at this resolution—outperforming
RandAug + Kinetics. At higher resolutions, this method maintains competitive perfor-
mance with 0.665 at T = 32 and 0.740 at T = 64.

The Right for the Right Reason methods demonstrate interesting temporal scaling
behaviour. The GradCAM variant ("RRR + GradCAM") achieves 0.534 accuracy at
T = 16, while the optical flow variant ("RRR + OGL") shows remarkable improvement
with temporal resolution. Starting at 0.537 for T = 16, it substantially outperforms other
methods at T = 32 (0.695) and T = 64 (0.812). The Temporal Mask Transform method
achieved a 2.47% improvement over the "Kinetics + RandAug" approach and a 5.06%
improvement over "Vanilla + Kinetics".

Temporal resolution proves to be a critical factor across all models. Performance consis-
tently improves as the number of frames increases, with the most dramatic gains observed
in the RandAug + Kinetics configuration, which improves by approximately 0.30 in accu-
racy from T = 16 to T = 128. Similarly, RRR + OGL shows exceptional scaling, improving
by 0.27 from T = 16 to T = 64.

The influence of temporal resolution highlights the importance of capturing sufficient
motion information for accurate diving classification. While methods perform similarly at
T = 16 (ranging from 0.470 to 0.592), the performance gap widens considerably at higher
resolutions, where methods better equipped to leverage temporal information demonstrate
superior performance. This suggests that the temporal dynamics captured at higher frame
rates are crucial for distinguishing between similar diving techniques.

In the interest of time, we conducted most experiments at temporal resolution T = 16,
with only select configurations evaluated at higher resolutions. Training these models is
computationally intensive, with a single experiment requiring several days to complete.
This constraint is particularly significant for the RRR and OGL methods, which involve
second-order gradients that substantially slow the back-propagation process compared to
other approaches. These computational constraints are explored further in Section 5.6.

The strong performance of OGL + Transform at T = 16 and the exceptional scaling
of RRR + OGL at higher temporal resolutions demonstrate the potential of optical flow-
guided approaches, while the poor performance of the Dice-based method warrants further
investigation to understand the underlying limitations.

5.2 Dice Loss Evaluation

This section evaluates the characteristics of the Dice loss in terms of the Dice factor and
IoU. Furthermore, we investigate the influence of hyperparameters α and β on test accu-
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Figure 5.2: Impact of α parameter on model performance and attention align-
ment. (a) α vs. Accuracy shows a sharp improvement when increasing α from 0
to 0.25 (prioritizing cross-entropy loss), followed by performance plateau with fur-
ther increases. (b) α vs. IoU and Dice Factor reveals consistently low attention
alignment metrics across all α values, even when the Dice component is heavily
weighted in the loss function (α = 0.25). This suggests a fundamental incompati-
bility between GradCAM-generated attention maps and binary segmentation masks
as learning targets, rather than simply an issue of loss weighting.

racy, IoU, and Dice factor values. Our primary goal is to develop a clear understanding of
why the Dice-based approach underperforms, examining whether the issue stems from loss
function weighting, fundamental misalignment between GradCAM attention and ground
truth masks, or inherent limitations in using binary segmentation masks as attention tar-
gets.

Recall that α and β control the contribution of the Cross-entropy and Dice loss compo-
nents respectively. As shown in Figure 5.1, the OGL + Dice method had a negative effect
on final performance. To understand this behavior better, we examined varying values of
α ∈ {0, 0.25, 0.5, 0.75} with β = 1− α.

Figure 5.2 illustrates the influence of α on test performance, IoU, and Dice factor. When
α = 0.0, the cross-entropy loss is effectively disabled, leaving only the Dice loss for training.
In this configuration, test accuracy drops to nearly zero (0.0418), just slightly above random
guessing. This makes intuitive sense - without cross-entropy loss, the model lacks the
signal needed to learn class distinctions. When α is increased to 0.25, accuracy improves
dramatically to 0.478. However, further increases to α yield no additional performance
improvements.

Notably, as seen in Figure 5.2b, the IoU and Dice factor values remain between 0.0 and
0.1 regardless of changes to α. This is particularly surprising for lower values of α (e.g.,
α = 0.0), where we would expect significantly higher Dice factor and IoU values since the
Dice component receives more weight in the loss function and should send a stronger signal
to the model to align its attention maps with ground truth masks. However, we see the
opposite, as α becomes higher we observe a small increase in IoU and Dice factor.

These consistently low values across all α settings indicate that our method for learning
from GradCAM is fundamentally flawed - the model is not successfully aligning its attention
maps with the ground truth segmentation masks even when the loss function heavily
prioritizes this alignment.
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Figure 5.3: Temporal comparison of attention maps across four consecutive frames
from a diving sequence. Top row: GradCAM attention maps generated by our
model, with blue indicating low activation and red indicating high activation. Bot-
tom row: Corresponding ground truth diver segmentation masks derived from opti-
cal flow, with white indicating diver presence. Note how the model correctly ignores
the first frame (minimal GradCAM activation) where no significant action occurs,
despite the diver’s presence in the segmentation mask. This temporal misalign-
ment between classification-relevant features and diver presence explains why the
Dice loss provides counterproductive training signals.

These results suggest that adding the Dice loss as a secondary objective negatively
impacts overall performance. To understand why, we can examine the GradCAM outputs
Â and the diver ground truth masks A in Figure 5.3. The figure shows a sequence of Grad-
CAM outputs and segmentation masks across four frames. In the first frame, activations
are minimal in the GradCAM output (blue regions), while the corresponding ground truth
mask shows significant diver presence (white regions). This disparity yields a high loss
value for this particular frame. From a XAI perspective, these GradCAM frames are good
explanation, as the model has correctly learned not to focus on initial frames where no
significant action occurs. Only in the second and third frames do we see increasing Grad-
CAM activations that better align with the diving action, and our own understanding of
when and where a model should look. This misalignment demonstrates how the Dice loss
can provide counterproductive signals, effectively penalizing the model for correctly ignor-
ing non-informative frames and instead forcing it to attend to all frames where a diver is
present, regardless of action relevance.

5.3 Right for the Right Reason

We evaluated two key parameters: the penalty strength (λ) and the worst performer
percentile threshold for sample selection. For λ optimization, we fixed the worst performer
percentile at 10; for percentile optimization, we set λ = 0.1.

Table 5.2 shows that increasing λ had minimal or slightly negative effects on per-
formance, with λ = 0.01 yielding the best results (53.4% accuracy). Higher λ values
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also caused training instability in both loss and accuracy. Ross et al. [34] recommended
λ = 1000.0 to balance the Right Reason loss magnitude with cross-entropy loss, but our
diving dataset required substantially lower values. Similarly, varying the worst performer
percentile showed limited impact, with the 20th percentile performing marginally better
(51.4% accuracy).

The core premise of this method — allowing models to discover alternative explana-
tions by penalizing structurally misclassified samples — did not translate to improved test
accuracy when using GradCAM attention maps. This provides further evidence of a funda-
mental disconnect between GradCAM’s apparent representations and its actual function,
consistent with our findings in Section 5.2 regarding the mismatch between ground truth
diver masks and GradCAM attention.

However, optical flow-derived masks showed promise in other contexts. The RRR +
OGL method (Figure 5.1) achieved accuracy improvements of 3.14% and 4.70% at T = 32
and T = 64 respectively, despite a slight decrease at T = 16. Similarly, the OGL +
Transform method’s positive performance at T = 16 suggests these diver masks contain
valuable information, even if the attention-based alignment approach proves ineffective.
Therefore, these diver ground truth attention masks together with the RRR Loss serve as
a good soft inductive bias.

Parameter Accuracy (%) Setting
Lambda (λ) Values

λ = 0.01 53.4 -
λ = 0.1 49.4 -
λ = 0.5 48.9 -
λ = 1.0 49.9 -

Worst Performers Percentile
10th percentile 49.4 λ = 0.1
20th percentile 51.4 λ = 0.1
30th percentile 49.4 λ = 0.1

Table 5.2: Right for the Right Reason (RRR) hyperparameter evaluation re-
sults on Diving48. The table shows accuracy results for different lambda penalty
strengths and percentile thresholds for selecting worst-performing samples to apply
the penalty.

5.4 Comparison with SoA

Table 5.3 presents a comparison of our model against state-of-the-art architectures on the
Diving48 dataset [21, 3, 49]. Our implementation of the SlowFast network (highlighted
in bold) demonstrates performance that exceeds both TimeSformer and the original Slow-
Fast implementation. However, direct comparisons warrant careful interpretation due to
variations in evaluation protocols and differences in architectural complexity. Notably, our
implementation utilizes fewer parameters. More precisely, SlowFast-R50 with 50 convolu-
tional layers, whereas the comparison SlowFast-R101 employs a deeper 101-layer architec-
ture as reported by Bertasius et al. (2021) in their TimeSformer paper. Indicating, our
method is a substantial improvement since far fewer parameters are used.

The third column reports the temporal resolutions (T ) the models were trained at.
Note that, for the SlowFast architectures we report the slow/fast temporal resolutions re-

33



spectively. The general trend is that higher temporal resolutions yield greater performance,
as indicated by our own results 5.1.

Two key factors differentiate our approach from the SlowFast-R101 16×8 imple-
mentation: First, we double the slow pathway’s temporal resolution from 16 to 32 frames,
and second, we employ our dynamic temporal stride sampling method described in Section
4.6.1. Our superior performance despite using a smaller backbone (R50 vs. R101) suggests
that temporal resolution in the slow pathway plays a more critical role than model depth
for diving classification. This finding is particularly noteworthy given that diving sequences
feature rapid movements that would theoretically benefit from the fast pathway’s higher
frame rate processing. The performance gap may indicate that while the fast pathway
captures motion efficiently, it may lack sufficient channel capacity to fully interpret the
complex temporal patterns in diving sequences. This interpretation aligns with our ob-
servation that increasing temporal resolution in the "spatial-focused" slow pathway yields
better performance gains than simply scaling up model depth. The original SlowFast paper
assumes that temporal features require fewer channels than spatial features. However, for
highly technical activities with complex and rapid motion patterns this may not hold, as
the fast pathway lacks representation capacity.

The lower performance of methods reported in Li et al. (2018) asks for examination
within the context of the Diving48 dataset’s design objectives. The authors intentionally
constructed this benchmark to minimize environmental cues that could be exploited by
deep learning model, creating what they termed "a controlled environment" where models
must focus on temporal action dynamics rather than contextual shortcuts [21]. This design
philosophy stands in contrast to other action recognition datasets where incidental features
(e.g., background, equipment, clothing) often correlate strongly with action classes, poten-
tially enabling models to achieve high accuracy without truly understanding the temporal
dynamics of the actions themselves.

Method Accuracy (%) T

TSN (RGB)[21] 16.77 N/A
TSN (Flow)[21] 19.64 N/A
TSN (RGB+Flow)[21] 20.28 N/A
C3D [21] 11.51 8
C3D [21] 16.43 16
C3D [21] 21.01 32
C3D [21] 27.60 64
TimeSformer[3] 74.90 8
TimeSformer-HR[3] 78.00 16
TimeSformer-L[3] 81.00 96
SlowFast-R101 16x8 [3] 77.6 16/128
SlowFast-R50 32xτ∗ (Ours) 84.2 32/128
BEVT [49] 87.2 N/A

Table 5.3: Comparison of action recognition accuracies, and temporal training
resolution T across different architectures on Diving48 cited from different publica-
tions [21, 3, 49]. Ours in bold is comparable to what reported in the Bertarius et
al (2021) in the TimeSformer paper. BEVT is the best and current SoA, in terms
of performance for Diving48. Note that for the SlowFast architecture we report the
slow and fast temporal resolutions respectively.
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Figure 5.4: Accuracy/Complexity trade-off across methods and temporal resolu-
tions. The horizontal axis shows computational complexity in GFLOPs, while the
vertical axis shows classification accuracy on Diving48. Our RandAug+Kinetics
model at T = 64 achieves comparable accuracy (0.765) to SlowFast-R101 16x8,
from Bertasius et al (2021) [3] (0.776), while requiring only half the computational
resources. At T = 128, our model reaches 0.842 accuracy, significantly outper-
forming prior work. This improvement can be attributed to our denser temporal
sampling in the slow pathway. The OGL + Transform and RRR + OGL methods
show competitive performance at lower temporal resolutions and computational
costs.

5.5 Accuracy/Complexity Trade-off

Figure 5.4 visualizes the accuracy-complexity trade-off across our models and temporal res-
olutions. The results for Diving48 from Bertasius et al.’s (2021) were included to highlight
the effectiveness of our methods. Our "RRR + OGL" model demonstrates exceptional
efficiency, achieving 0.812 accuracy at T = 64 with only 132.84 GFLOPs, compared to
Bertasius et al.’s (2021) model which requires 234 GFLOPs to reach a 0.776 accuracy.
While our method only uses approximately 56.0% fewer computations. Our model at
T = 128 achieves 0.842 accuracy at 265.69 GFLOPs, representing a significant 6.6% im-
provement over prior work. At lower computational budgets, our Temporal Transform
method achieves 0.592 accuracy with just 33.21 GFLOPs (T = 16), while our "RRR +
OGL" approach reaches 0.695 accuracy at 66.42 GFLOPs (T = 32). These results demon-
strate that our approach not only improves classification performance but does so with
substantially better computational efficiency, highlighting the effectiveness of our tempo-
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ral sampling strategy, and random augmentations. Even though the presented methods
show favourable inference cost. They are much more costly in terms of training time.

Method Hours/Epoch
Vanilla 0.236
RandAug 0.289
RRR + GradCAM∗ (T = 16) 0.467
Temporal Mask Transform 0.603
RRR + Temporal Mask 0.911
OGL + Dice 1.183

Table 5.4: Comparison of hours per epoch performance across different methods.
Ordered from shortest to longest. The tests where recorded at T = 32, on a single
NVIDIA L40 GPU. The RRR + GradCAM∗ (T = 16) row was recorded at T = 16,
since there were no runs at T = 32 for this method. Therefore, the time was doubled
to give an estimate of this method T = 32. Our methods impose a significant
additional training cost, this training cost can mostly be attributed to second order
gradients, and additional IO costs of loading the ground truth attention masks from
disk.

5.6 Training Cost

Table 5.4 presents the training cost of the different methods explored in this work expressed
hours/epoch. The EGL based approaches - "RRR + GradCAM", "Temporal Mask Trans-
form", "RRR + Temporal Mask", and "OGL + Dice" - impose significant training cost
over the non-EGL based approaches - "Vanilla", and "RandAug". The additional training
cost can mostly be attributed to second-order gradients during backpropagation in the Dice
and RRR loss approaches. The LRRR in Eq 4.1 contains a gradient term ∂

∂X

∑N
n=0 log(ŷn)2

as part of the loss function itself. During the forward pass, computing this loss requires cal-
culating gradients with respect to the input X, which creates a computational graph where
gradient operations become nodes. Subsequently, during the backward pass, computing
∂Lrrr
∂θ (where θ represents model parameters) requires differentiating through these embed-

ded gradient computations. This creates higher-order gradients - gradients of gradients
- making the backward pass significantly more computationally expensive, approximately
tripling the training time compared to standard loss functions.

Furthermore, reading temporal masks from disk adds significant IO overhead, as demon-
strated by the "Temporal Mask Transform" timing. This explains why "OGL + Dice"
performs worst in terms of training time, as it combines both second-order gradients in
the loss function and disk-based mask loading. The "RRR + GradCAM" method takes
approximately twice as long as the "Vanilla" method. However, this does not present the
complete picture, since we only apply the RRR loss to 10% of samples. Therefore, "RRR
+ OGL" provides a more realistic estimate of the computational cost imposed by the RRR
loss when applied more broadly.

The substantial training time penalties caused by second-order gradients make the
EGL loss functions explored in this work computationally impractical for large-scale ap-
plications, highlighting a critical limitation that must be addressed in future research.
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This concludes the results section. While the Dice-based approach did not yield the an-
ticipated improvements, our investigation provided valuable insights into the challenges of
aligning attention mechanisms with segmentation-based guidance. The RRR-based meth-
ods demonstrated performance comparable to the baseline, and notably, the OGL Trans-
form approach showed meaningful performance gains. Furthermore, we demonstrated that
the dynamic temporal stride sampling strategy combined with increased slow pathway
temporal resolution enabled our model to outperform larger SlowFast architectures de-
spite using fewer computations. The next chapter presents the discussion and conclusions,
where we analyse the limitations of our approaches, theorise about the underlying causes,
and propose directions for future research that could address these challenges.
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Chapter 6

Discussion

Our investigation reveals insights about the application of EGL to action video action
recognition. While the primary hypothesis regarding Dice-based attention alignment proved
incorrect, this negative result provides important theoretical insights. In contrast, the
"OGL + Transform" method achieved a 6.67% improvement over "RandAug + Kinet-
ics" at lowest temporal resolution. Similarly, the "OGL + RRR" method improved upon
the baseline at temporal resolutions of 32 and 64 frames. Moreover, this approach re-
quired far fewer computation compared to much larger SlowFast models. The Temporal
Mask Transform ("OGL + Transform") approach did not show the same scaling behavior
as "RRR + OGL", performing worse at higher temporal resolutions, when compared to
"RandAug + Kinetics". This suggests that the soft inductive bias imposed by RRR is
superior to masking features altogether, especially when mask quality is poor. Together,
these methods demonstrate the efficacy of optical flow as ground truth masks in the EGL
framework, though they represent strong feature engineering that contradicts the premise
of autonomous feature discovery. Nevertheless, FlowSAM generated useful attention masks
despite notable artifacts in some frames (Figure 5.3) and the unsophisticated diver mask
identification method described in Section 4.3.1. However, there are several other factors
that could explain these results.

For instance, the temporal nature of diving videos creates a fundamental mismatch
between our static segmentation masks and dynamic diving actions. As shown in Figure
5.3, high GradCAM activations appear primarily during acrobatic manoeuvrers, while our
ground truth masks lack temporal specificity, marking the diver’s presence regardless of
action relevance. This creates competing optimization objectives: Dice loss pushes toward
uniform attention on the athlete, while cross-entropy loss promotes selective attention on
discriminative temporal features. The inability to satisfy both objectives simultaneously
could explain why varying loss weights had little effect on attention alignment. This finding
aligns with our prediction that GradCAM and our ground truth attention maps maybe
fundamentally misaligned; see section 4.3.2.

Furthermore, additional tests reveal (Figure 5.2b) that changing β (the Dice loss con-
tribution) had no effect on attention map alignment metrics, pointing to fundamental
misalignment between the model’s GradCAM outputs and ground truth attention maps.
While GradCAM produces interpretable visualizations of model attention, it only provides
a simplified representation of the model’s internal state and may not align with the model’s
actual internal representations.

To solve this misalignment, future work could enhance the attention-based approach
by jointly predicting segmentation masks and diving classes, transforming the output from
ŷ ∈ R1×48 to ŷ ∈ R1×T×H×W×48 by adapting UNet to video data [33]. This approach would
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be particularly valuable for fine-grained action recognition benchmarks like FineDiving [52]
and FineGym [38], where dive actions are segmented change within a video sample.

The Temporal Mask Transform approach offers a practical alternative to complex
attention-based methods, while demonstrating the efficacy of targeted segmentation masks.
However, these masks contain artifacts from macro blocking in source videos—segmentation
quality deteriorates during rapid movement while remaining crisp during minimal motion.
The simplistic mask selection algorithm also requires improvement. Future work could ad-
dress these limitations by: 1) adopting newer versions of the Segment Anything Model, 2)
utilizing higher-quality source data with fewer encoding artifacts, and 3) exploring textual
prompting through CLIP to select proper masks [32, 48]. Combining textual prompts’
expressiveness could unlock guiding models to learn human-object interactions in complex
environments.

This work also makes an interesting observation about assumptions made by Feichten-
hofer et al. [10]. For the SlowFast architecture they proposed that the fast pathway requires
fewer channels while the slow pathway needs lower temporal resolution. Our findings chal-
lenge this assumption, as increasing the slow pathway’s temporal resolution significantly
improved performance (Figure 5.4). More precisely, our "RRR + OGL" approach achieves
and accuracy of 0.812 compared to 0.776, at reduction of 56% computations. This suggests
that the fast pathway may lack sufficient channel depth to encode complex motion pat-
terns in competitive diving. While the original SlowFast channel capacity likely suffices for
simpler movements in datasets like Kinetics, domains featuring rapid, technical motions
may benefit from architectural adjustments. Future work could investigate whether similar
improvements emerge in other fast-motion domains such as skateboarding and gymnastics.
Moreover, future work could confirm our suspicion that the fast pathway lacks channel
depth to capture complex motion patterns in diving acrobatics, by increasing the fast
pathway’s channel depth.

This work also suffers the curse of working with high-dimensional data and limited
resources, imposing significant computational constraints. These constraints and training
cost limited evaluation of EGL methods at higher temporal resolutions. While we ex-
plored alternative XAI approaches like LIME and SHAP, these proved computationally
intensive for video data [39]. Furthermore, the proposed EGL approaches proved to be
computationally expensive due to second-order gradients. Future work could explore more
efficient attention mechanisms, such as incorporating a U-Net style segmentation branch
that allows the model to directly predict diver segmentations for each frame, thereby elim-
inating the computational overhead of GradCAM attention while enabling the model to
explicitly demonstrate its own spatial attention patterns. Additionally, future work could
focus on optimizing these methods for high-dimensional temporal data, making advanced
explanation techniques more practical for RGB video applications.
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Chapter 7

Conclusion

This work addressed fundamental questions about the effectiveness of Explanation Guided
Learning for action recognition in sports video analysis. This chapter concludes by review-
ing the four research questions from Section 3, providing practical recommendations for
future research directions, and highlighting the significant contributions this work makes
to the fields of explainable AI and video understanding.

Q1: How well does EGL improve performance on diving action recognition tasks?
EGL’s performance varies significantly based on implementation: while the Dice-based
approach underperformed, the Temporal Mask Transform ("OGL + Transform") method
achieved a 6.67% improvement over "Kinetics + RandAug" at T = 16. However, the
most notable improvement is that of "RRR + OGL". Which performs better than our
baseline methods across all temporal resolutions. Specifically, "RRR + OGL" achieves a
2.47% improvement over "Kinetics + RandAug" and 5.06% improvement over "Vanilla +
Kinetics", when averaged across temporal resolutions. This demonstrates EGL’s potential
while highlighting its sensitivity to implementation details.

Q2: Can optical flow-derived segmentation masks serve as effective ground truth ex-
planations for video-based EGL without human annotation? This work created a novel
approach using FlowSAM that derives diver masks from optical flow frames, providing
an automated method for generating ground truth attention maps without the need for
human annotators. Thereby addressing an important gap which limits the adoption for
EGL. While the generated masks are of limited quality, especially during fast motion. And
the simplistic mask selection algorithm requires improvement. The auto-generated masks
proved effective in multiple contexts: the Temporal Mask Transform approach showed
strong performance improvements at lower temporal resolutions, and the "RRR + OGL"
method outperformed traditional augmentation techniques at higher temporal resolution.
Although applying attention masks constitutes a form of feature engineering, these masks
can still serve a valuable purpose in specialized domains such as sports, where fast infer-
ence time is crucial for adoption in real-time applications. This work demonstrated the
potential for significantly smaller models to outperform models that require twice the com-
putations, by training smaller models using EGL. Thus, despite limitations in mask quality
and selection algorithms, our optical flow-derived masks demonstrated clear potential as a
scalable alternative to human annotation for video-based EGL applications.

Q3: To what extent does constraining model attention to align with ground truth diver
segmentation masks improve both classification accuracy and explanation quality? The at-
tention alignment approach using Dice loss revealed fundamental challenges in constraining
model attention to match segmentation masks. Despite varying loss weights (α values from
0.0 to 0.75), IoU and Dice factor metrics remained consistently low (0.0-0.1), indicating
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that the model failed to align its GradCAM attention patterns with ground truth diver
masks. This failure most likely stems from a temporal mismatch between GradCAM and
the ground truth masks. GradCAM naturally focuses on discriminative action moments
during acrobatic manoeuvres, while segmentation masks uniformly highlight diver pres-
ence regardless of action relevance. The competing optimization objectives—Dice loss
promoting uniform attention on the athlete versus cross-entropy loss encouraging selec-
tive temporal attention—created irreconcilable conflicts that prevented effective learning.
These findings reveal that static segmentation masks may be fundamentally incompatible
with the dynamic attention patterns required for temporal action recognition.

Q4: How do different explanation guidance approaches (attention alignment vs. input
masking vs. gradient penalisation) compare in their effectiveness for fine-grained action
recognition? The three EGL strategies demonstrated different levels of effectiveness. At-
tention alignment through Dice loss proved least effective, suffering from the temporal
mismatch issues described above and consistently underperforming across all temporal
resolutions. Input masking via the Temporal Mask Transform ("OGL + Transform") ap-
proach showed strong performance at lower temporal resolutions T = 16, achieving the
highest accuracy among all methods at this setting, but lacked the scaling behaviour ob-
served in other approaches. Gradient penalisation through "RRR + OGL" emerged as the
most promising approach, demonstrating consistent improvements over baseline methods
at T = 32 and T = 64, with 3.14% and 4.70% accuracy gains respectively. The RRR
approach’s soft inductive bias proved superior to hard masking, particularly when mask
quality was imperfect, allowing the model to selectively utilize relevant features while avoid-
ing complete feature elimination. However, RRR is limited by high training costs induced
by second-order gradients. These results suggest that gradient penalisation provides the
most effective balance between guidance and model flexibility for action recognition tasks.
Yet they impose significant training cost, making it difficult to recommend.

Additionally, experiments with denser temporal sampling strategies in the slow path-
way revealed important insights about the SlowFast architecture’s design assumptions.
Decreasing the slow pathway’s temporal resolution by reducing α improved performance
across all methods, challenging the original architectural premise that lower temporal res-
olution suffices for the slow pathway. These findings suggest that while the fast pathway’s
limited channel depth remains appropriate for datasets containing simpler motion patterns
like Kinetics, domains featuring complex, technical movements such as competitive diving
require higher temporal resolution in the slow pathway to capture the nuanced motion
dynamics essential for fine-grained action recognition.

7.1 Recommendations

People interested in applying EGL to video action recognition should take away the follow-
ing insights. First, avoid using methods that include second-order gradients in the compute
graph. For example, our Dice-based approach and our application of the RRR Loss from
Ross et al. (2017) [34] show that training is 2-4 times slower compared to our baseline.
This effect was not highlighted in the existing literature, likely due to the use of more "toy-
like" datasets where these computational costs are less noticeable on modern hardware.
These effects become exacerbated due to the high-dimensional nature of video data. While
this work demonstrates the efficacy of auto-generated ground truth attention maps, the
quality remains poor. This is mostly constrained by compression in the source data and a
rather simple diver selection algorithm. Upon inspection of another diving dataset called
FineDiving, it is clear that it contains higher quality video with fewer artifacts, though it
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has fewer training examples [52]. Future work should also investigate the effect of upgrad-
ing to a newer version of Segment Anything and including CLIP for textual prompting
[32, 48]. Specifically, CLIP could unlock moving object segmentation relevant objects to
the domain. For example, in basketball, it could be prompted to segment the ball, hoop,
and players. Therefore, combining FlowSAM with CLIP could be a powerful method for
generating ground truth attention masks without the need for human annotators.

This work makes several contributions to the field: 1) the first application of EGL to
sports action recognition, 2) novel automated attention map generation using optical flow,
3) incompatibilities between spatial segmentation and temporal attention, 4) comparative
analysis establishing gradient penalisation as the most effective EGL strategy for video
tasks, and 5) architectural insights challenging established assumptions about temporal
resolution requirements in temporally challenging domains such diving.

These contributions advance our understanding of EGL’s applicability to video tasks
while identifying critical areas for future research, particularly in developing explanation
methods that respect the temporal dynamics essential for action recognition.
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Appendix A

Supplementary Figures

Figure A.1: This figure shows the the number of samples vs the accuracy on
the training split. In essence this shows the expected behaviour as more samples
reduce variance in the performance [31]. Furthermore, more samples also give higher
accuracy. Interesting, is that beyond 600 samples the accuracy does not increase
that much.
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Figure A.2: This figure displays several sample frames from the Diving48 dataset.
The figure displays for frames from a single dive sequence. For each frame we display
a RGB video frames top-left, optical flow frames, top-right, candidate masks bottom
left, and diver binary masks bottom right. This figure is an extended version of
Figure 4.2
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