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HTM Aerotec Event-Driven Rescheduling

Management Summary

HTM Aerotec manufactures high-precision components for the aerospace and defence industries. Each
part must meet strict industry standards and undergoes multiple production steps involving both man-
ual labour, performed by operators, and automated labour, executed by machines. Efficient scheduling
is essential for timely delivery, but disruptions such as machine failures, operator illness and emergency
orders frequently cause infeasibilities. Currently, HTM Aerotec lacks a practical and resilient scheduling
solution to address such disruptions in a reasonable time frame.

To mitigate infeasibilities in the production schedule of HTM Aerotec after disruptions, we propose an
event-based rescheduling model using time window expansions. With the proposed model and imple-
mentation, the required manual planning tasks are minimised, and disruptions can easily be mitigated.

Problem identification
In this research, we address the lack of a practical and resilient rescheduling process after disruptions.
Practicality is defined by ease of use for the operator and planners, and short computational runtimes.
The core challenge is the inability to quickly generate feasible schedules after disruptions due to excessive
computation times in the current scheduling system by Van Boxel (2024). Other contributing issues are
limited real-time data, operator availability, and tool constraints. Scheduling in this research context is
complicated by constraints like fixture availability, operator shifts and a varying amount of manual and
automatic labour per product type. To effectively address this, we formulated themain research question
as follows:

How can a scheduling algorithm be effectively designed to mitigate scheduling infeasibilities
after disruptions and minimise tardiness in production schedules for 5-axis machines within a
reasonable time?

Weclassifyourproblemasa single-machine reschedulingproblemwithinaFlexibleMachiningCell (FMC).
Based on our review, only limited research is available on our research problem. Due to the unpredictabil-
ity of our problem, we adopt a reactive scheduling strategy, making event-driven adjustments in response
to disruptions. To manage computational runtime effectively, we incorporate an approach designed by
Kuster et al. (2010), namely expanding time windows, to balance short runtimes and performance. This
makes the approach practical by ensuring short computational runtimes.

Solution design
To solve our research problem, we developed a Mixed Integer Program (MIP). TheMIP is an adapted ver-
sion of the MIP of Van Boxel (2024), as our MIP can be used for rescheduling. The difference in the MIP
thus lies in the set of operations to schedule and the input. Our MIP uses an initial schedule, and the
set of operations to reschedule is based on a time window. Additionally, our MIP minimises schedule
instability and average tardiness. We define a schedule as stable when the sequence of production is un-
changed. Thus, the number of operationsmoved in the sequence of production is the schedule instability.
However, an MIP is still too computationally intensive. Therefore, we designed a best-fit-based insertion
rescheduling strategy. With an insertion strategy, operations to reschedule are inserted in a position in
the production sequence. To determine what the best-fit position is to insert an operation, we first used
a tardiness-stability estimation. This method estimates the stability by calculating the number of opera-
tions moved when inserting the operation at that position plus the estimated tardiness for that position
based on predicted ending times for production. This is an estimation due to computational runtime lim-
its. As a result, the best fit is not always optimal. Therefore, we developed three other methods, which can
find more optimal solutions based on the research context. These are similar timeslot, ratio of hours left,
and the weekly ratio balance method. The similar timeslot method scores potential insertion positions
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based on their similarity, the timing during the day andweek, with the old time slot. The ratio of hours left
is based on the ratio of manual labour compared to the automatic labour hours in the day. This method
scores positions based on how much this ratio corresponds with the manual to automatic labour ratio
of the operation. The last method, the weekly ratio balance method, used the same ratio. However, this
method scores based on the ability of that position to balance the weekly ratio.

The algorithm determines the operations to reschedule based on a time window. All operations which
(partially) fall within this time window are rescheduled. The initial time window is determined by the du-
ration of the disruption. At the end of each iteration, the time window size is expanded by increasing the
upper bound of the time window. This is done based on one of four methods: linear, exponential, loga-
rithmic or percentage-based. This creates an expanded set of operations to reschedule for the following
iteration. The algorithm terminates if the maximal computational runtime or number of iterations has
been reached. Using the expanding time windows, the model can effectively balance between finding
close to an optimal solution while adhering to computational runtime constraints. This model is capable
of effectively finding a new schedule which is feasible after disruptions within a reasonable runtime.

Experiments
We validated the model on two machines with realistic planning data, simulating 30 disruption scenar-
ios. The instances we used have 3921 and 3874 operations to be planned, divided over 251 and 273 days,
respectively. The scenarios generated with these instances have a disruption at a randommoment in the
planning horizon, at which one ormultiple disruptions occur. In these experiments, we tested the best-fit
method, the expanding time window method and the effect of the computational runtime limit. We de-
signed four best-fitmethods: tardiness and stability, similar timeslot, the ratio of hours left and theweekly
ratio balance. First, we showed an insensitivity to the weight parameter 𝜔 for the tardiness and stability
estimation due to the quality of the estimation, which is substantially affected by the presence of shift
constraints. In the absence of the shift constraint, this method can be powerful to balance tardiness and
stability. Among the four methods, the similar timeslot method achieves the best balance between tardi-
ness, stability and utilisation for HTMAerotec. However, in situations where stability is themain concern,
theweekly ratio balancemethod should be considered. The timewindow expansionmethod experiments
revealed that for HTMAerotec, the percentage-basedmethod is preferred due to the balance between tar-
diness and stability. Lastly, for the same reason, a runtime of sixty seconds is chosen. A sensitivity analysis
of the due dates reveals that the only influence can be found in decreased tardiness, which is inherentwith
relaxing due dates. Moreover, the job mix only influences the utilisation of the machines.

The model’s effectiveness is most present for disruptions which occur early in the planning horizon. At
thosemoments, we see a utilisation rate of 75%. This is compared to a reference utilisation of around 90%,
based on the initial schedule prior to the disruption. This schedule is no longer feasible and, therefore, is
used as a theoretical upper bound to benchmark the performance of our model. While the model does
not reach the efficiency of the initial (disruption-free) schedule, it does effectively provide the company
with a feasible schedulewhich adheres to constraints and planning norms. Additionally, when comparing
the model to a manually made schedule, we see that most operations generally considered as night and
weekend tasks are planned during thosemoments, with only small improvements possible. Furthermore,
we concluded that the model is generalisable to other flexible machining cells within similar production
contexts. Also, if disruptions occur at the start of the planning horizon, the percentage-based method is
preferred over the other methods. Lastly, if shift constraints are absent, the tardiness and stability-based
scoring method is suitable.

Conclusions and recommendations
In this research, we present a practical and time-efficient reschedulingmodel for 5-axismachines at HTM
Aerotec. The model is designed to reduce the impact of disruptions, such as machine breakdowns, by
relieving manual work for the planner and providing quick solutions. The model uses percentage-based
expanding timewindows and a similar timeslot-based best-fitmethod to effectively balance schedule sta-
bility and tardiness within a computational runtime limit of sixty seconds. The stability of the method is
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an average of 82 and 59 jobs moved for machines 538 and 539, respectively. Additionally, the tardiness
reached is 5.5 and 0 hours with a utilisation of 61.1 and 41.1%. Disruptions in earlier moments in the time
horizon lead to higher utilisation percentages, averaging at 75%. Thus, experiments show that once the
initial schedule becomes infeasible due to disruptions, the rescheduling model performs effectively. The
model was also tested on a second five-axis machine, showing similar performance and confirming its
applicability to other FMCs within the organisation.

To support implementation, ERP system and fixture database connections were established to support
model executionwith real-time data. Additionally, we recommend that HTMAerotec uses a new schedul-
ingprocess: generate anew initial schedulebi-weekly, and if disruptionsoccur, followastructured reschedul-
ing procedure using the proposedmodel. Furthermore, we recommend involving key stakeholders during
implementation, validating assumptions such as the labour time multiplier, and assessing the impact of
changing this scheduling process. With these steps, we can ensure an effective implementation of the
planning process.
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HTM Aerotec Event-Driven Rescheduling

1| Introduction
1.1 The company

HTM Aerotec, a part of HTM Technologies, specialises in manufacturing high-precision components for
the aerospace and defence industries. Known for its expertise in delivering technically complex and high-
quality products, HTMAerotec focuses onmeeting the specific needs of each client, which can varywidely
depending on project requirements. These parts are custom-engineered, often introducing varying levels
of complexity and risk throughout the production process.

Each new part begins with the creation of a prototype, which undergoes rigorous testing and quality con-
trol to ensure it meets strict industry standards. Once validated, certifications are obtained, and the full
batch can proceed to production. The company employs advanced manufacturing techniques, such as
CNCmachining and additivemanufacturing, to ensure each part meets the required precision. Given the
high variability in part requirements and the need for timely delivery, efficient scheduling is required.

HTM Aerotec’s commitment to quality is reinforced by continuous research and development, ensuring
the company stays ahead of technological advancements in the aerospace and defence sectors. Through
this approach, HTM Aerotec delivers reliable, high-performance components that adhere to the highest
safety and regulatory standards, making it a trusted partner for clients in these demanding industries.

1.2 Problem identification

In the research of Van Boxel (2024), a start was made to bridge the gap between the achieved production
hours of on average 105 and the theoretically possible production hours of 168. This resulted in a static
scheduling algorithm improving the performance of the machines by at least 5%. However, this research
also showed some topics for further research and in some cases, the scheduling algorithmwas infeasible.
Further research should validate the practical feasibility of the proposed solution. As the organisation
responsible for improving machine utilisation and ensuring efficient production planning, HTM Aerotec
is the problemowner in this research. These challenges directly affect the company’s efficiency, workforce
sustainability and service reliability.

1.2.1 Action problem

An action problem is a gap between the norm and the reality (Heerkens & VanWinden, 2017). In this case,
this regards the production hours of the 5-axismachines atHTMAerotec. Thenorm is to produce asmany
hours as possible, with the goal of 140 hours (83%)in aweek, whilemaintaining a feasible workload for the
company’s planners. The goal of 140 hours is 28 hours less than theoretically feasible with the machines.
However, achieving a 100% efficient production schedule is practically infeasible, due to disruptions like
machine breakdowns. Furthermore, the production planning of the 5-axis machines is complicated by
several aspects, including shift times of operators, unique fixtures required for production and the max-
imum number of tools available. This high complexity makes manual planning for the 5-axis machines
laborious, which is a general problem for all similar machines (Slomp & Gupta, 2024). Section 2.5 further
highlights these aspects and how these complicate the planning. In the past years, the machines have
operated on average around 105 hours per week (Van Boxel, 2024). This is a significant gap compared to
the possibilities, considering that 24/7 production theoretically is feasible, as unmanned production is
possible. In the past months, improvements have been made to these production numbers. However,
these improvements still fall below the set target of 83% as can be seen in Figure 1.1. These improvements
have been possible due to elaborate communication between the production manager and planner. The
planner has been required to invest greater effort in creating the schedule and rely more heavily on their
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(a) Machine 538 (b) Machine 539

Figure 1.1: Comparison of Machine Status 538 and 539 in 2024

expertise regarding the products and systems. Consequently, their workload has increased. Without ad-
dressing this issue, the company risks declining production efficiency, increased risk for planner burnout,
and potential disruptions in meeting client demands. Therefore, the action problem is formally defined
as:

HTM Aerotec lacks a practical and resilient scheduling solution to address disruptions of an
initial schedule and bridge the gap between the norm of 168 production hours per week on 5-
axis machines and the current reality of 105 hours.

1.2.2 Core problem

There are multiple causes for the inability to produce full-time without overburdening the planners. The
problem cluster, Figure 1.2, visualises the connected issues, with three core problems in orange and the
chosen core problem in red: machine malfunctioning during unattended periods, lack of real-time ma-
chine data, tool unavailability, and lengthy runtime of the static scheduling algorithm. A core problem is a
problem that doesnot have any (known) cause and therefore is at the coreof the actionproblem(Heerkens
& VanWinden, 2017). Below, these core problems are explained.

The first core problem is the malfunctioning of the machine when operators are not around. Defects and
errors withinmachines are inevitable; evenwith a lot ofmaintenance, these will occur at a certain rate. As
an example, Figure 1.3 shows amoment where the machine broke down during the night, causing down-
time for at least nine hours. To limit downtime, the operator needs to take immediate action to repair the
machine. However, if the operator is not present, e.g. because it is on the weekend or during a break, then
it will take a certain amount of time before the operator knows and solves the issues. This causes longer
downtime for themachines. Due to the stochasticity of thesemachine breakdowns, we do not knowwhen
these breakdowns occur. Therefore, predicting when machines will break down and planning to have an
operator present at those moments is not possible. Thus, this is not the focus of this research.

The second coreproblem is the fact that there is no lifetimedata onmachine status available. This problem
is closely related to themalfunctioning, as themachine status shows to an operator if themachine is mal-
functioning or not, or if it is empty. Because real-time machine data is unavailable to the operator when
off-site, immediate responses are not possible. This again leads to longer downtime of the machines. A
solution is researchingmethods to connect themachines to a system to show the lifetime data of the ma-
chine status. This data can then be used by operators, for example, during weekends. If the data shows
that the machine is down, an operator can go to the company and solve the issue. That would improve
the production times, as machine breakdowns are currently only noted once an operator is present. This
systemwould require a reactive solution approach, as the data will show breakdowns at themoment they
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Figure 1.2: Problem cluster of HTM Aerotec, showing the causes of the action problem

Figure 1.3: Example of failure machine 539 during the night

3



occur.

Next, in the past period, it was found that multiple times the machines were idle due to tool unavailabil-
ity. This issue arises due to delays in toolmaintenance or delivery and a capacity limit in the tool holder of
the 5-axismachines (Section 2.2). Therefore, this influences the resulting schedule, leading to unexpected
delays in production. A connection to the tooling database is possible. However, establishing this con-
nection and obtaining the correct data is outside of the scope of this research. Therefore, this is not the
chosen core problem.

Lastly, Van Boxel (2024) developed a scheduling model to provide the company with a schedule. This
schedule can be used until disruptions occur (e.g. machine failure, change in due dates). This model
is a static single-machine scheduling model; the input used is not stochastic, and the model produces a
schedule for all items to be produced on one machine. However, the model is computationally demand-
ing. Consequently, a new schedule resulting from the model would take too long to compute. As a result,
operators and planners must manually intervene when disruptions occur to adjust and repair the sched-
ule. This problem is shown at the top of the problem cluster. The rescheduling process after disruptions is
discussed in Section 2.1. This process leads to a loss of production hours. Moreover, the workload of the
planners becomes higher in these cases, putting more pressure on the planners. Thus, we can conclude
that there is a need for a reactive approach, improving the current reaction process after disruptions. This
research addresses that problem by exploring an approach that HTM Aerotec can implement in practice.

1.3 Research Design

In this research, we want to find a solution to the selected core problem. To find a solution, we formulate
the research question as follows:

How can a scheduling algorithm be effectively designed to mitigate scheduling infeasibilities
after disruptions and minimise tardiness in production schedules for 5-axis machines within a
reasonable time?

In this research question, multiple parts need to be researched to find an appropriate solution. Therefore,
we set up sub-questions to structure the research process.

1. What does the current scheduling situation look like for the 5-axis machines?
This sub-question has two components.

(a) How is scheduling currently performed for 5-axis machines, and what are the associated con-
straints and challenges?

(b) How does the proposed solution by Van Boxel (Van Boxel, 2024) address these challenges, and
what opportunities does it present for improvement?

The current scheduling situation can give insight into how a solution should be designed. We have
already concluded that a (partially) reactive approach is needed. Further information is needed
to ensure that all constraints and opportunities for a new solution are known. Therefore, this also
serves as the base knowledge needed for sub-questions two and three. The question will be an-
swered using a case analysis, aiming to find the current process and its constraints. Furthermore,
the proposed solution of Van Boxel can give insight into the opportunities for the process of con-
structing schedules, mainly regarding a schedule before disruptions. These questions are answered
in Chapter 2.

2. What classes of scheduling approaches, supported by literature, are effective in accommodating and
recovering from production disruptions?
This question will be answered using a literature review, in Chapter 3. We will look at the literature
to find different classes of scheduling problems and to classify the type of problem in this research.
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Then, this knowledge is used to select appropriatemodels that can react basedondisruptions. Byus-
ing this selection, we ensure that the finalmodel is based on proven scheduling approaches. Hence,
this question is used as a basis for question three.

3. What should a scheduling solution look like to repair a disrupted schedule?
Tomake a suitablemodel, we require a theoreticalmodel including all constraints and assumptions.
Consequently, with this question, we aim to find the mathematical model corresponding to our re-
search problem.

4. How should a scheduling model be designed that can adapt to disruptions within a reasonable com-
putational runtime?
This question aims to identify the parameters and assumptions necessary to construct a feasible
schedulingmodel. Therefore, this question is used to find the required input, the practical assump-
tions needed, and how to provide a feasible schedule within a reasonable runtime. The aim is to
ensure that the scheduling solution is appropriately modelled and aligned with the real-world pro-
cess.

5. What experimental design and validationmetrics are required to optimise and evaluate the solution’s
effectiveness for real-world application?
Whenwe knowhowamodel can be developed, we need to find the appropriate settings for this con-
text. Therefore, experiments areneeded. Thisquestionaims tofind theappropriate experiments and
execute them such that the finalmodel can be used for themachines at the company. Furthermore,
validation metrics are used to ensure that the quality of the solution is at a sufficient level.

6. What technical, organisational, and procedural requirements are necessary to successfully implement
the scheduling algorithm in a production environment?
The goal of this research is to find a solution that can be used by the company. To ensure that the
solution canbeused,weneed to researchwhat is needed for successful implementation. This entails
connections to input data, the front-end used for running the algorithm, and the manner in which
the output is presented.

7. Whatare thekeyfindings, practical recommendations, and future researchopportunities derived from
this study?
Lastly, conclusions are drawn based on the previous sub-questions. These, together with some rec-
ommendations, are given to HTM Aerotec to finally answer the main research question.

1.3.1 Research Scope

At HTM Aerotec, there are many different machines. However, in the main part of this research, only two
of the 5-axis machines are taken into account, numbers 538 and 539. The reason for the choice of these
two machines is that sufficient data is available. Other 5-axis machines do not have performance data.
Furthermore, other machines, in addition to 5-axis machines, are currently not seen as a bottleneck, and
therefore, the total throughput of products in the companywould not increase when looking into the pro-
duction planning of these machines. In the experimentation phase, Chapter 5, we will include the other
5-axis machines of the company to test the generalisation of the proposed model.

Next to that, only the scheduling of these machines is within the scope of this research. Other processes
within the company, like the entire flow of orders coming in, are not taken into account.
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2| Current Situation
This chapter will answer the first sub-question as defined in Section 1.3. The context of the research is
given. The first sub-question is:

What does the current scheduling situation look like for the 5-axis machines?

In Section 2.1, we show the current scheduling process for the machines. Section 2.2 elaborates on the
machine types discussed in this research. Then, Section 2.4 elaborates on the proposed solution of Van
Boxel, which is generating a static schedule using the earliest due date (EDD) dispatching rule for the
initial solution and a tabu search to improve this solution.

2.1 Current scheduling process

AtHTMAerotec, each order goes through a similar processwithmultiple phases. This starts with the order
coming in; an order request is made by the client and reviewed by the company. An advantage here is that
around 90% of the orders are known in advance. Thus, order forecasts can be used in production plan-
ning. These forecasts are on the number of items and the due date. These forecasts have a high reliability,
as the differences between these forecasts and actual orders are small. Therefore, up to two years of orders
are known in advance. Once an order is in, the order goes to the order acceptance phase. Here, details
like the due date and product requirements are specified. Using this information, the preparation work
is done. This includes getting a FAI certificate, showing the exact machines and processes one product
goes through. Such a certificate expires if the product has not been produced on that exact process for
over two years. Next, the production planning phase starts. Here, the product is planned together with
other orders. With this planning, the ordermoves to the production phase and finally onto shipment. The
scheduling process that falls within our scope falls under the production planning phase. However, due to
stochastic events likemachine failure, production planning can be disrupted. Subsequently, the planning
can become infeasible, leading to taking additional scheduling steps in the production phase. Therefore,
these two parts of the process are elaborated upon.

Figure 2.1 shows the planning process. Asmentioned, most orders can be forecasted. Therefore, the plan-
ning can be made far in advance with a time horizon of multiple months. Once a new forecast comes in,
this order is planned in available time between other orders or added at the end of the schedule. When
adding a new order to the schedule, always two days of buffer time are used over the entire throughput
time of the order. This planning is currentlymade by the planner in an Excel sheet called the schedule list.
The planner bases this on data from the ERP system, such as production times and order characteristics.
In this list, all orders are sorted by their due date. The schedule list is sent to the productionmanager once
every two weeks, who discusses the list with the operators. Important to note is that the operators are
responsible for the final decision of what orders to produce. Therefore, the final order in which orders are
produced might differ from the made schedule list. Deviations here are usually based on the production
times of products. For example, some products have very short production times and therefore are not
suitable for production during unmanned hours. This is because of the maximum number of products
that can be put in a machine at once. Short production times during unmanned hours would ensure that
the machine is finished before a new shift starts. Therefore, the choice is made to produce orders with
longer production times so that the machine can produce throughout the entire night.

This planning process is disturbed by disruptions. Disruptions fall into one of five categories:

1. Machine failure
Figure 1.1 shows that bothmachines have used the emergency brake, as well as moments where no
program was used. Such a machine status can be caused by machine failure. For example, the pro-
gram used to operate themachine during production has amistake with the starting point, causing
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Figure 2.1: The process of adding new orders to the schedule

the machine to start milling into itself. This type of disruption typically leads to the job being pro-
cessed to be unusable due to incorrect production. Therefore, we can define the start of this disrup-
tion as the start of the processing of the first operation of this job. The end of this disruption is when
the machine is repaired and available for production again.

2. Operator illness
If an operator is ill, this can cause extra downtime for the machines, as no new jobs are put into the
pallet storage. However, due to the interchangeability of operators for differentmachines, the illness
of one operator usually does not lead to extra downtime. This only occurs when multiple operators
are absent. The start and end of this disruption are hence delimited by the time frame during which
enough operators are ill to cause machine downtime.

3. Execution delay
Execution delay of a job or order can occur for multiple reasons. First of all, jobs can require pro-
duction steps on othermachines before being ready for processing at one of the five-axis machines.
If those other machines are behind schedule, jobs on the five-axis machines need to be processed
later than planned. Another reason could be the need to wait for confirmation from the client or
from the quality department. The start of this disruption is marked by the originally planned start
of labour for this job. The end is the estimated moment at which it can be produced again.

4. Material unavailability
Similar to execution delay, material unavailability leads to having to delay the start of processing
jobs on the five-axis machines. This disruption starts and ends in a similar way as the execution
delay.

5. Emergency order
Emergency orders are orders which have a high priority and a tight deadline within a short time
horizon. Thesedonot necessarily disrupt amachineor causedowntime, but dodisrupt the schedule
and planning process, as these need to be planned within a few days. The start of this disruption is
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the moment the emergency order comes in. However, as opposed to other disruption types, this
disruption has no duration.

The process in case of disruptions is shown in Figure 2.2. Once a disruption is noticed, the production
manager is notified. Together with the planner, decisions aremade on changing the production schedule.
Here, some different options exist. First of all, if the agreed-upon due dates with the customers can still
be met, then the production schedule is not changed. This happens either due to a buffer or because the
choice was made to start producing early. The production will continue when the machines are available
again, based on the initially generated schedule. Often, that is not possible. For some orders, there is
the possibility to produce part of the order and deliver the last part at a later point in time. In that case,
the order is split up to free up capacity and ensure that due dates for all orders are met. When choosing
this option, it is important to consider that orders must meet the minimum order quantity. Below this
quantity, there are extra production costs. Another option is to move some orders to another machine.
However, this is a lot of effort and depends on the available FAI certificate. Once a decision is made on
the solution, the planner needs to update the schedule. In the current situation, the planner does this
manually, causing a higher workload. This part of the process is shown in the grey block.

Figure 2.2: The process to deal with disruptions in the schedule (excluding new order arrivals)

2.2 Themachines

As mentioned in Section 1.3.1, only two of the machines are within the scope of this research. These are
5-axis milling machines, shown in Figure 2.3. These machines are highly advanced and can be used for
complex andprecisemachining tasks. The5-axis regards thedirections inwhich the tools canmove. These
are the three linear axes and two rotational axes. Due to thesemovement possibilities, thesemachines are
efficient in producing materials with complex shapes and requirements. The products that HTM Aerotec
produces aremostly parts that require high-precision and complexmachining. Consequently, these parts
require processing by at least one of the 5-axis machines.

Themachines have an automatedpallet handling system. Thismeans that themachine has a storage com-
partment with pallets. On these pallets, the products are placed by an operator. The machine itself can
take a pallet out of the storage compartment and start producing the product in themillingmachine. This
means that the machine can operate without an operator being at the machine. An operator is needed
both to load new products into the storage compartment and to take out finished products, and to ensure
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Figure 2.3: 5-axis milling machine and its pallet storage and tool magazine

Machine # pallets # tools
538 40 228 (192)
539 24 228 (192)

Table 2.1: Machine capacities

that the correct tooling is available in the tool magazine. Both machines have a set capacity for the num-
ber of pallets and tools, which is shown in Table 2.1. In the tool magazine, 3 pockets are always in use for
three specific tools and 33 other pockets are reserved for the most used tools. Therefore, 192 pockets are
remaining in both machines for other tools.

Products are loaded into the machine on pallets. These pallets are small surfaces on which products can
be placed. An operator needs to place products on these pallets. The products themselves cannot be
attached to the pallets, therefore requiring fixtures. A product is clamped on a fixture. The fixture is then
assembled onto the pallet. The way this is done differs per product, and thus, the type of fixture needed
can also differ. Someproducts, therefore, even require dedicatedfixtures. Only a limitednumber of pallets
and fixtures are available. In the case of dedicated fixtures, the number available is even lower than the
general number due to the expenses needed to produce such a fixture.

2.3 Order processing and production considerations

Each order requires multiple parts of information throughout the process, such as the item-specific pro-
gram needed for the machine, production requirements, and estimated runtimes. When an order is re-
ceived, an initial production time calculation is made. A key part of the production times is the manual
labour required, consisting of setup and labour. The setup time is the preparation required before the pro-
duction of an item, including processing the first product. Labour time includes all tasks that need to be
performed by the operator of themachine, including loading and unloading of items and other activities.
These other activities, even though they do not occur at the machine, are included as they are essential
work to keep the production process going. When scheduling production onmachines, the labour hours
that do not occur at the machine should be excluded, as they do not reflect the actual required time. This
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is an adaptation that should be taken into account in the model.

After the initial estimation, the program used in the machine is created, which determines the required
fixtures and tools. Currently, this information is stored acrossmultiple databases, which areGlovia, Team-
center and APM. The company uses an ERP system called Glovia. There, work orders, sales orders and a
lot of other data are stored. Additionally, Teamcenter is a database for drawings, documentation, and pro-
duction information. Fixture and tool information can also be stored there, but the storagemethod differs
for different items. Lastly, APM is a database containing all information on tools (e.g. inventory, which
production steps usewhat tool, etc.). Once an item is produced, this information is provided to operators.
As the information is not stored in one database, this information cannot currently be used in the plan-
ningprocess and thus requires adaptation. InSection6.1wediscuss the required changes for this research.

2.4 Static scheduling using Tabu Search

This entire section describes the research of Van Boxel (2024), who designed a scheduling tool using tabu
search. Van Boxel’s research aimed to optimise scheduling and increase production hours, which aver-
aged 105 hours per week. This research focused on the same two machines, 538 and 539, as described in
Section 2.2. Van Boxel created the schedulingmethod to optimisemachine utilisation, thereby increasing
production hours.

VanBoxel defined the initial schedulingproblemasa single-machine schedulingproblemwithextensions.
He chose the single-machine classification due to the FAI restrictions mentioned in Section 2.1. After ob-
taining an FAI certificate for a product, the product can only be produced on the certified machine. The
initial time investment of obtaining a FAI certificate can be significant. Additionally, rerouting an item
to other machines is a significant disruption in the entire internal supply chain. Therefore, we adopt the
single-machine definition. Extensions in the research of Van Boxel are based on the pallet-handling sys-
tem and follow the methodology used in the paper by Shin et al. (2020). These extensions enabled Van
Boxel to define the problem as a Mixed Integer Linear Programming (MILP) problem. However, the large
instances used at HTM Aerotec caused the runtime of this problem to become excessive. To address this,
Van Boxel categorised the scheduling problem as NP-hard and opted to use heuristics instead of a MILP.
The objective in the research of Van Boxel is twofold. First, he aims to increase the production hours per
week for the machines. The production hours are directly reflected in the makespan, so heminimises the
makespan. Secondly, he aims to minimise the tardiness.

VanBoxel beganbyconstructing an initial schedule. Toachieve this, he researched threedispatching rules:
EDD, multi-factor, and random. The EDD dispatching rule multiplies the job’s due date by a random fac-
tor to calculate a score, scheduling jobs in decreasing order of scores. Multi-factor combines multiple
dispatching rules. In Van Boxel’s research, the due date, number of fixtures available, and total hours con-
tributed to a final score, which again determined the order of scheduling. Lastly, the random dispatching
rule schedules jobs in a random sequence. In his experiments, Van Boxel found that the EDD dispatch-
ing rule produced the best initial schedule. The EDD rule resulted on average in an improvement of the
objective value of 40-50% compared to the other two dispatching rules. In the larger data instances he
used, this was obtained in seven minutes, and the smaller instances in two. He used input from an Excel
file provided by the company’s planners, which contained details on the jobs, their due dates, and related
data.

Van Boxel then used meta-heuristics to improve the initial schedule. He experimented with tabu search
(TS) and simulated annealing (SA), as well as two neighbourhood structures: variable neighbourhood
(VN) and random. Through these experiments, Van Boxel determined that TS combined with a VN struc-
ture yielded the best final schedule. The TS relied on a tabu list to store neighbour solutions. Van Boxel
set themaximumnumber of iterations to 125 and the tabu list length to 10, which significantly influenced
the runtime and the final solution. Using the VN structure, Van Boxel designed operators to progressively
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adapt the schedule, starting with a swap, followed by a move, multiple moves and finally moving all jobs.

Using EDD for the initial schedule andTS for improvement, VanBoxel demonstrated at least a 5% increase
in production hours for both machines compared to real-life performance data. His sensitivity analysis
identified several factors affecting the model’s performance. These factors included operator visits dur-
ing the weekend, shift lengths during the week, and the number of pallets and fixtures. Based on this
analysis, Van Boxel showed that longer operator visits during the weekend and extended weekday shifts
significantly improved performance. He also identified that shorter shifts were undesirable. In the cur-
rent setup, operators’ weekend shift lengths depend on their workload, making shift length a variable to
minimise rather than a constraint.

Van Boxel implemented his solution using an algorithm written in Python. However, at the time of his
research, most employees at HTM Aerotec lacked Python expertise. To address this, Van Boxel created an
Excel interface connected to Python, enabling the company to execute the program. The program gener-
ated a graph indicating when to schedule jobs on bothmachines. Despite its utility, the program required
a long runtime, rendering it unsuitable for handling disruptions. Consequently, the company does not
currently employ this solution due to the infeasibility of its schedules and potential delays. However, the
schedule is an effective initial schedule which could be used in dynamic rescheduling.

In his research, Van Boxel providedmultiple recommendations for further study. Our research aligns with
one of these recommendations: exploring dynamic rescheduling of production planning. This approach
requires real-timemachine data, which is unavailable. However, the Fraunhofer Innovation Platform has
researched digitisation atHTMAerotec. The result of this research is an interfacewhich can be used by the
operators of the machines. The schedule can be imported, and comments can be made on the schedule.
Here, there is the possibility of adding a functionality for rescheduling.

2.5 Process constraints

Theentire planning process is subject tomultiple constraints, concerning both the products and the plan-
ning itself. In Section1.2.1, wediscussed that these constraints can significantly complicate scheduling. In
this section, we discuss the constraints on the entire process and show examples of how these constraints
impact the current scheduling process.

• Employee working hours
Themachines can operate unmanned, but the loading and unloading of themachines, calledman-
ual labour, need to be done by operators. Therefore, those activities can only be done during the
working hours of the employees. The company operates with one shift per day. These shifts are be-
tween 7:00 and 16:00, with a one-hour break in between. On weekends, the shifts are limited to a
maximum duration of three hours for all machines combined, depending on the amount of work
that is needed. Permachine, this comes down to 45minutes. Furthermore, the times depend on the
operator. These employee working hours provide us with a manual-to-automatic labour ratio. This
ratio is the hours of manual labour compared to the total hours of labour (manual plus automatic).
If we look at the available resources in oneweek for our research problem, this ratio is around 24.7%.
This ratio indicates how easily the full potential of automatic production can be used. For example,
if the jobs on a machine have a ratio of 30%, that means that more manual labour is required than
the total shift hours we have. Thus, not all automatic production hours can be utilised.

• Max number of places in machine inventory
The machines both have a fixed number of pallets available in the inventory cell where products
can be placed to be produced. Products are taken from this cell, produced, and then placed back in
this cell. Therefore, the constraint for the number of places in the machine inventory is on finished
products, products still to be produced, and the product currently being produced.

• Number of fixtures available
Fixtures are used to clampproducts on the pallets. Some products require specific fixtures. Further-

11



more, there is a limited number of general fixtures. Therefore, the number of fixtures available for a
product is a constraint.

• Multi-fixturing
Someproducts can be produced together. This is done by putting themon a tower, which is then put
on a pallet. There is a limited number of towers available, and this is only possible for some prod-
ucts. This does not influence the production times, as each product retains the same production
times. However, this does partially relax the pallet inventory constraint by allowing more items in
the machine.

• Release and due dates
Each work order has a given due date which needs to be met. Furthermore, release dates are added
to simulate the preceding steps. If these steps are not finished, the release date is pushed back.

• Production steps within one machine per item
Some products require multiple production steps within one machine. These steps have a specific
order, but these steps are listed as separate jobs. Therefore, these have a precedence constraint.

• Runtime limit
Asmentioned in Section 1.2.1, the company aims for high production hours per week. If reschedul-
ing is needed, for example, due to machine failure, then a new schedule is needed within minutes.
This gives a constraint on the runtime of the rescheduling algorithm. A strict constraint is not set.
However, it should be within a maximum of a fewminutes.

Figure 2.4 illustrates a basic example of a production schedule. We refer to operations using the nota-
tion 𝑂𝑗𝑖, where 𝑗 is the job identifier and 𝑖 indicates the operation number within that job. For example,
𝑂11 is the first operation of job 1, and 𝑂52 is the second operation of job 5. Job identifiers (e.g., 1, 5) are
arbitrary and do not imply any specific processing or scheduling order. In this scenario, we have onema-
chine with two places in the pallet inventory. Furthermore, we have precedence constraints for the items
requiring two production steps, jobs 1 and 5. Each production step first requires manual labour and ma-
chine processing. Figure 2.4(a) shows one of the optimal solutions in terms of makespan if there are no
additional constraints. However, in this solution we can see at for example t=8 there are four pallets in use
(for 𝑂11,𝑂12,𝑂21 and 𝑂41). However, due to limited pallet capacity, in this example, only two operations
can be in the system simultaneously if they have started labour but not yet completed processing. As a
result, any delay between labour and processing occupies a pallet space. Therefore, the first solution is not
feasible anymore when we add this pallet constraint. Building a schedule for this situation can be done
in multiple ways; however, it is already a challenging task to find an optimal one. Figure 2.4(b) shows an
optimal schedule considering only the pallet constraint.

Next, we introducededicatedfixtures. 𝑂11 and𝑂52 require afixture of typeA,𝑂21 typeB,𝑂12 typeC,𝑂31 and
𝑂41 type D and𝑂51 type E. With these dedicated fixtures, the schedule shown in Figure 2.4(b) becomes in-
feasible; operations𝑂11 and𝑂52, which share the same fixture, are in the machine simultaneously. There-
fore, the schedule needs to be adjusted, as shown in Figure 2.4(c). Finally, we introduce a third constraint:
labour shifts, which only allowmanual work between periods 0-8 and 12-20. Again, the previous schedule
becomes infeasible, for instance, the labour of𝑂11 is planned outside of these hours. An updated feasible
schedule is shown in Figure 2.4(d). The hours outside of the shift hours represent the night and weekend
hours at HTM Aerotec, when no operator is present. This basic example demonstrates scheduling com-
plexity when introducing multiple constraints. At HTM Aerotec, the scheduling problem involves many
more items and operations, making scheduling significantly more difficult.
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(a) No constraints

(b) Pallet capacity 2

(c) Pallet capacity 2 and dedicated fixtures

(d) Pallet capacity 2, dedicated fixtures and labour shifts

Figure 2.4: An example of the scheduling complexity with three constraints

13



HTM Aerotec Event-Driven Rescheduling

3| Scheduling approaches
This chapter aims to answer the second research question by using a systematic literature review. The
second research question was defined as follows:

What classes of scheduling approaches, supported by literature, are effective in accommodating
and recovering from schedule disruptions?

3.1 Type of scheduling problem

A job shop scheduling problem is a problem containing multiple products which require processing on
different machines and in different orders (Zheng & Sui, 2019). Therefore, the routing of these items is of
importance. However, in this research, we limit ourselves to the five-axis machines. The parts only need
to be processed by one of these machines. Therefore, we can simplify this problem by omitting the route
before and after thesemachines. The refined scheduling challenge can thus be classified as a parallel ma-
chine problem. As the machines are similar, where only some capacity constraints differ, we can further
specify the machines as identical parallel machines (Kuo & Li, 2024).

However, as described in Section 2.4, Van Boxel characterises the scheduling problem as a single-machine
FlexibleMachining Cell (FMC) problem. This is due to the FAI requirements, causing a givenmachine per
item. The sameholds in our research, and thusweadopt the simplification to a single-machine scheduling
problem. The FMC generally consists of at least onemachiningmodule, a loading robot and an inventory
for both products and tools (Luo et al., 2022). Many studies on FMC planning and scheduling assume the
presence of a conveyor belt supplying all products (Dawande et al., 2005; Hamasha et al., 2015; Zhou&Lei,
2021). Only in limited research on single machine problems, e.g. of Adil and Shaw (2024) and Shin et al.
(2020), this assumption is not made. In this research, we do not have a conveyor belt with a steady flow
of incoming products. Therefore, the scheduling problem in our research is an extension of the problems
researched in Shin et al. (2020) and Van Boxel (2024). Multiple-machine FMC problems are discussed in
the literature as well. However, in these problems, there is one cell containing multiple machines. Here,
one robot arm transports products to one of the machines in the cell (Dawande et al., 2005; Sethi et al.,
1992). Wehavenot found literature discussingproblems regardingmultiple cells containing onemachine.

3.2 Dynamic scheduling

Production schedules can be generated using different approaches. In theory, different algorithms are
defined to make optimal or near-optimal schedules. Scheduling problems can be solved in three ways:
static, dynamic and active scheduling (Y. Li et al., 2023). Static scheduling is the type of scheduling used by
HTMAerotec and Van Boxel (2024). This type of scheduling is unable to respond to uncertainties, causing
disruptions. In practice, the final production schedule and its execution often deviate from the algorith-
mically generated schedules (Y. Li et al., 2023; Lou et al., 2012). Several factors contribute to these devi-
ations. According to Vieira et al. (2003), the most common include operator decisions, machine failures,
and other disruptions, such as those occurring at HTMAerotec. This type of uncertainty can be defined as
dynamic events. Dynamic scheduling or rescheduling (Holguin Jimenez et al., 2024; Wu et al., 2025) takes
these disruptions into account and can repair a mistake or change in the schedule.

In the literature, there are many similar definitions of dynamic scheduling and rescheduling. Figure 3.1
shows the structure used in our research. In the paper of Vieira et al. (2003), dynamic scheduling is de-
fined as a scheduling method which does not generate or use an existing schedule. However, they also
mention other papers referring to dynamic scheduling with a definition using schedules. Sligting (2024)
positions his research within the framework of Vieira et al. (2003) as a static, deterministic rescheduling
environment using predictive-reactive strategies and focusing on schedule repair methods. Our research
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Figure 3.1: Scheduling strategies

has a similar environment and focus.

In contrast to the research of Vieira et al. (2003) and Sligting (2024), we define dynamic scheduling as
the handling of dynamic events during the scheduling process. Van Boxel (2024) categorises dynamic
scheduling into three categories: reactive, predictive-reactive and robust pro-active scheduling. He de-
fines the reactive approach as responding to disruptionswhen they occur, without having an initial sched-
ule. A predictive-reactive strategy elaborates on this, starting with an initial schedule. Then, after a dis-
ruption, this schedule is repaired (Tighazoui et al., 2021; Vieira et al., 2003). The robust pro-active strategy
makes a schedule accounting for the disruptions beforehand (Shariatmadari & Nahavandi, 2020), conse-
quently eliminating the need to react after disruptions. Schedule robustness is a method to build slack
into the schedule, therebyminimising the impact of dynamic events (Wojakowski &Warzolek, 2014). Van
Boxel (2024) showed how including robustness changes model behaviour. Including robustness changes
the definition of his work to a robust, proactive method according to these definitions.

We deviate from these definitions due to the semantics in these definitions. In a scheduling context, the
term ”predictive” suggests the prediction of dynamic events. Therefore, we define predictive schedul-
ing as generating initial schedules based on predictions of dynamic events. Hence, we do not classify
the inclusion of robustness as predictive. Reacting then occurs when the schedule becomes infeasible.
Rescheduling is defined by Holguin Jimenez et al. (2024) as adjusting an initial schedule based on the oc-
currence of dynamic events. While rescheduling is commonly classified under dynamic scheduling, we
can also argue that rescheduling should be defined as static scheduling. This is possible when the dis-
ruptive event has already occurred and full information is available. In such cases, the dynamic nature is
resolved, and the scheduling tasks occur without uncertainty, making the problem static. However, the
complete resolution of the dynamic nature is virtually impossible as uncertainty and changes are ongoing
in real-world settings. Therefore, we adopt the classification commonly used in the literature. Thus, the
process of rescheduling falls within the scope of dynamic scheduling and, more precisely, is an aspect of
reactive scheduling.

Reactive strategies are particularly valuable when proactive or predictive scheduling is complicated by
limited data availability or unknown parameters to define stochastic processes (Lou et al., 2012). The
problem in this research requires responding to disruptions after their occurrence. Furthermore, we are
unable to define the stochastic process of the dynamic events. However, as a result of the research of
Van Boxel (2024), we do have an initial schedule to work with, which includes schedule robustness. This
initial schedule has some limitations that render it infeasible to use. When combining thiswith reschedul-
ing, these infeasibilities could be seen as disruptions. Accordingly, in this research, we adopt a reactive
scheduling strategy.
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3.3 Solution approaches

In this section, we review different solution approaches for rescheduling. We review event-driven and
periodic rescheduling, analyse repairmethods and define performancemeasures for rescheduling strate-
gies.

3.3.1 Event-driven and periodic rescheduling

Within rescheduling, three different strategies are possible regarding when to start the rescheduling pro-
cess. These are event-driven, periodic orhybrid (Vieira et al., 2000). Event-driven rescheduling is a strategy
where certain events trigger the reschedulingprocess. Examples are jobarrivals, surpassing a threshold for
the queue length or machine failure. This strategy can effectively handle the arrival of sudden events, but
can also lead to frequent rescheduling. Periodic rescheduling has set periods after which the rescheduling
process is started. These periods are of a set length. Periodic rescheduling gives stability to the schedule.
However, the arrival of sudden events is handled poorly. The hybrid strategy uses a combination of both,
where each period triggers the rescheduling process as well as certain events.

Table 3.1 shows that eleven articles use an event-driven strategy. Within these articles, different types of
events are mentioned as being able to trigger rescheduling. Examples are new order arrivals, due date
changes or priority changes. Only one article in the literature uses periodic rescheduling. This is done by
Pfund and Fowler (2017), who also compare this strategy to event-driven. They conclude that a periodic
rescheduling strategy is most useful at the beginning of a scheduling horizon, whereas event-driven out-
performs at moments later in the scheduling horizon or where the variability is larger. They refer to the
variability of processing time, but we generalise this to the variability of the process, as machine break-
downs could be seen as causing high processing times. Nine out of twenty use a hybrid strategy, therefore
partially using the periodic strategy. The reasoning for the use of this strategy is explained by these arti-
cles as taking the benefits of both periodic and event-driven strategies. It gives the stability of periodic
rescheduling while giving the option for handling sudden events.

In this research, we do not require periodic rescheduling. We can use the model proposed by Van Boxel
(2024) to periodically schedule all operations. Therefore, we opt for an event-driven strategy to effectively
accommodate the arrival of sudden events. The possible frequent rescheduling and thus often changing
schedule is an aspect which we need to minimise. We further explain measures to handle this in Sec-
tion 3.3.3.

Table 3.1: Overview of articles and the discussed repair strategies

Article Scheduling Type Applied Strate-
gies Key takeaway

Elmaraghy et al.
(1998) Event-Driven GA, dispatching

rules

Due to requiring fast response times,
dispatching rules are a good option
for rescheduling compared to GA

Henning and
Cerdá (2000) Event-Driven Interactive

Scheduling

The time to make the schedule was
reduced by almost eight hours,
schedulers welcome maintaining
control and input over the process

Kuster et al. (2010) Event-Driven Insertion-based The local rescheduling is a good strat-
egy for large, complex problems

J. Palombarini and
Martínez (2012) Event-Driven DRL

This approach requires extensive
simulation but is a good strategy
providing stability and low tardiness

Continued on next page...
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Article Scheduling Type Applied Strate-
gies Key takeaway

Hamzadayi and
Yildiz (2016) Event-Driven

Complete
rescheduling (SA
and DR based)

SA-based complete rescheduling
outperforms DR based

G. Li et al. (2017) Hybrid

Right Shift, Com-
plete reschedul-
ing, Insertion-
based

Hybrid outperforms periodic if many
urgent tasks arrive

Pfund and Fowler
(2017)

Periodic, Event-
Driven LRH+

Periodic rescheduling is most suit-
able at the start of the planning hori-
zon and/or with low variability, oth-
erwise event-driven is more suitable

Baykasoğlu and
Karaslan (2017) Event-Driven GRASP

Event-driven outperforms periodic
rescheduling, GRASP is a suitable
rescheduling strategy

Baykasoğlu et al.
(2020) Event-Driven Order review

release (ORR)

Using ORR, more orders can be ac-
cepted compared to using dispatch-
ing rules

Wang et al. (2020) Hybrid GA The improved GA performs better
and is faster than a simple GA

H. Zhang and
Zhang (2020) Hybrid

Multi-level based
dynamic schedul-
ing

Using rolling time windows, this is
suitable for complex, highly chang-
ing environments

J. A. Palombarini
and Martinez
(2019)

Event-Driven DRL

The approach uses knowledge of re-
sults of repair operations but is based
on aQ-network,making it unsuitable
for complex environments

Liang et al. (2019) Hybrid GA A rolling time-window is effective in
hybrid rescheduling strategies

B. Zhang et al.
(2023) Event-Driven

Complete
rescheduling,
GA

GA has better stability than baseline
and right-shift strategies, and total
costs decrease if stability is consid-
ered in rescheduling

Ghaleb and
Taghipour (2023) Event-Driven Modified SA

The proposed SA outperforms dis-
patching rules and iterated greedy
approaches. However, the runtime
limit was set at 2 hours

Liu et al. (2023) Hybrid (partial) MILP

Good solutions in terms of stability,
makespan, and tardiness. However,
due to the use of MILP, it is unsuit-
able for large, complex instances

Cheng et al. (2022) Hybrid Insertion-based,
GA

A rolling time-window strategy is
useful in rescheduling, collabora-
tion between human and machine
rescheduling is effective

Yan et al. (2024) Hybrid (R/D)RL
The DRL model gives fast solutions,
with high quality. However, imple-
mentation is complex

Continued on next page...
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Article Scheduling Type Applied Strate-
gies Key takeaway

Usman Nisar et al.
(2024) Hybrid Exact, GA, GRASP

Exact is only possible for very small
instances, GA is suitable when fast
solutions are required, GRASP out-
performs both

This research Event-Driven
Insertion-based,
time window
expansion

Due to a large, complex environ-
ment, requires strategies with short
runtime

3.3.2 Repair methods

Variousmethods exist to repair a schedule during rescheduling. Table 3.1 provides an overview of the type
of repair methods used by articles. The most straightforward method is the right shift. Here, all jobs are
moved up the timeline to accommodate the rescheduling triggering event. This method is easy to imple-
ment but often does not result in efficient schedules. Nevertheless, this approach is commonly used as
a baseline in studies developing more advanced repair methods (e.g. G. Li et al. (2017)). Insertion-based
strategies share similarities with the right-shift approach. The articles describing insertion-based strate-
giesmostly insert new order arrivals, or take the jobs that have changed details and insert those at feasible
places. This can be combined with a right shift to make the insertion feasible. Orders can be inserted into
the schedule using various heuristics; first-fit, best-fit and worst-fit are examples of such strategies. Best-
fit heuristics aim to place operations in the smallest available time gaps they can fully occupy, minimising
idle time and improving overall efficiency. This approach is different fromafirst-fitmethod, which assigns
an operation to the first available position that meets its constraints. First-fit is computationally simpler,
however, it can lead to suboptimal scheduling because earlier operationsmay be placed inefficiently. This
leaves gaps that do not align well with future operations. Best-fit ensures that gaps are utilised optimally,
reducing overall idle time and increasing schedule efficiency. In contrast, worst-fit adopts the opposite
method of the best-fit method by always choosing the position that leaves the most idle time.

Kuster et al. (2010) extend the insertion-based strategies by using an expanding time window. An initial
time window is calculated, within which all events are rescheduled. Then, they expand the time window
anddo this process again, until some stopping criterion (for example, amaximumruntime) becomes true.
Time-window expansion can be achieved through three different approaches: linear, exponential, and
logarithmic. In a linear expansion scheme, the time windows increase by a constant amount in each iter-
ation,maintaining uniform step sizes (see equations 3.1, 3.2, obtained fromKuster et al. (2010)). 𝑙0 and 𝑢𝑜
are the initial lower and upper bounds of the time window. 𝑡𝑐 is the current time, and 𝑡ℎ is the end of the
planning horizon. 𝑀 is the maximum number of time window expansions. As a result, we have Δ𝑙𝑚 and
Δ𝑢𝑚, which are the amountswithwhich the bounds change in iteration𝑚. In contrast, an exponential ex-
pansion scheme results in step sizes that grow exponentially with each iteration. This approach prioritises
moments closer to the original time window, as initial expansions are smaller, while later expansions be-
come significantly larger. On the other hand, a logarithmic expansion scheme emphasises moments fur-
ther from the original time window. This occurs because the initial step sizes are relatively large, but their
rate of increase diminishes over time, leading to a progressively slower expansion rate. In addition to these
strategies defined by Kuster et al. (2010), we propose a percentage-based expansion strategy. This strategy
expands the size of the time window by a set percentage, therefore having exponentially increasing step
sizes over time. This strategy is easier to comprehend compared to the exponential strategy. Moreover,
in our context, we fix the lower bound at the current time due to the nature of disruptions. These adap-
tations to themethods ofKuster et al. (2010) highlight keydistinctions to adapt our research toour context.
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Δ𝑙𝑚 = 𝑙0−𝑡𝑐
𝑀 (3.1)

Δ𝑢𝑚 = 𝑡ℎ−𝑢0
𝑀 (3.2)

Another method is complete rescheduling, which is mostly used in cases where either the problem in-
stance is small or there is sufficient solving time. The latter occursmostly in periodic rescheduling, where,
at the end of a rescheduling period, sufficient time can be taken to run the model. A genetic algorithm
(GA) evolves a population of solutions, selecting the fittest and applying mutation and crossover to find
new solutions. This process is done until some stopping criterion becomes true. Wiendahl and Garlichs
(1994) were one of the first to show the effectiveness of GAs in scheduling. This is later improved with, for
example, local search (Wang et al., 2020), rolling windows (Liang et al., 2019), and collaboration between
human and machine (Cheng et al., 2022). The Lagrangian Relaxation Heuristic (LHR+) (Pfund & Fowler,
2017) is used to combine schedulingwith the dispatching of AGVs, which therefore is not of interest to our
research. Some forms of reinforcement learning, like deep reinforcement learning (DRL) and relational
reinforcement learning (RRL), are used as a smart way to optimise scheduling problems without leading
to long computational times. However, reinforcement learning techniques are complex to implement.
A modified simulated annealing (SA) algorithm is used by Ghaleb and Taghipour (2023). The normal SA
is adapted to only partially reschedule. Lastly, Henning and Cerdá (2000) distinguish themselves within
the rescheduling literature by combining human and computer knowledge. They show a dashboard to
the operator giving feasible scheduling solutions and their results. With this dashboard, the operator can
decide on the way to repair the schedule. They believe that this strategy ensures that operator knowledge
and practical implications can be integrated into the rescheduling process.

In this research, we choose a local rescheduling strategy. We use expanding time windows to decide on
the jobs to reschedule and use an insertion-basedmethod to repair the schedule. We chose the insertion-
basedmethod due to its simplicity in implementation, combined with short computational runtimes. As
opposed to Kuster et al. (2010), we do not change the lower bound of the time window. In this research,
the lower bound is fixed at the current time due to the type of disruptions that occur. Therefore, we only
expand the time window using the upper bound.

3.3.3 Rescheduling performance

The main objective of this research is to minimise tardiness. However, when introducing event-driven
rescheduling, we determined that this can lead to many changes in the schedule. Moreover, when intro-
ducing rescheduling, some performancemeasures for the rescheduling strategy become essential. There-
fore, in this section, we review rescheduling performance measures.

To begin, Van Boxel (2024) incorporates schedule robustness in his solution to give a higher likelihood
of feasibility in practice. Van Boxel (2024) defines schedule robustness as the inclusion of a buffer as a
percentage of the operation-specific production time. This causes the initial schedule to have a higher
resilience. This schedule robustness presents in the form of a buffer in the planning, so the makespan is
slightly higher. Van Boxel (2024) suggests further research regarding the impact of schedule disruptions
on performance. In this research, the addition of schedule robustness in the initial schedule remains sig-
nificant. In Section 3.3.1, we conclude that partial rescheduling ismost likely to result in a worse schedule
than complete rescheduling. However, complete rescheduling is only possible at limited moments. Fur-
thermore, in practice, regularly needing to reschedule can have a large impact on the rest of the company
and the supply chain within the company. Therefore, schedule robustness can help ensure that the need
for partial rescheduling is limited and the schedule used in practice is close to optimal. Van Boxel has con-
ducted a sensitivity analysis on the level of robustness to include. The results showed that only a five per
cent robustness would already increase the objective value by almost eight per cent. Therefore, in imple-
mentation, the level of robustness should be analysed to find an optimal balance between objective value
and the number of times rescheduling is needed.
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Beyond the aspect of scheduling robustness, there are performance metrics relevant to rescheduling.
These are different from general scheduling objectives like makespan. The performance measures have
the goal of measuring the impact of rescheduling on the process. One importantmetric is scheduling sta-
bility. The scheduling instability, or nervousness, can be defined as the total deviation of the new sched-
ule after rescheduling compared to the initial schedule (Qiu et al., 2024; Vieira et al., 2003). This deviation
takes on many different forms, from due date changes and quantity changes to schedule changes (Pu-
jawan, 2004). Stability and robustness are distinct concepts; while robustness aims to prevent disruptions
by incorporating buffers, and enhancing the schedule’s resilience, stability is a performancemeasure used
after disruptions occur to assess howwell the schedule adapts. Cowling and Johansson (2002) define a ba-
sic formula, shown in Equation 3.3, to calculate the schedule stability based on starting and completion
times. The input of this formula is the model, or process,𝑀 , the initial and reactive scheduling strategies
𝑆𝑠𝑡𝑎𝑡𝑖𝑐 and 𝑆𝑟𝑒𝑎𝑐𝑡 and lastly the information 𝐸 arriving at time 𝑡. Furthermore, 𝑡𝑖 is the starting time, 𝐶𝑖 is
the completion time,𝐷𝑖 is the maximum possible disturbance, and 𝛼 is a weight factor or cost of the dis-
turbances. In this notation, the disturbance is defined as a cost variable, where it canbe the cost of delay in
terms of time or the cost of outsourcing. The decision for the value of𝐷𝑖 depends on the product, but this
can be outsourcing, delaying or cancelling the order. Al-Hinai and Elmekkawy (2011) propose a similar
measurement but uses weighted stability by dividing by the total number of operations. These measure-
ments of stability take into account the deviation of processing times. However, Narayanan and Robinson
(2010) identifies two other types of stability: the number of jobs rescheduled divided by the total number
of jobs, and the time of the setup of one product family divided by the total number of product families.
Similarly to the first, stability can also be measured by the deviation in processing sequence (Blackburn
et al., 1985). In our research context, the processing sequence is important due to the nature of the sup-
ply chain surrounding the machines we are rescheduling. Therefore, we will define schedule stability as a
schedule where the sequence of production is stable.

𝑆(𝑀,𝑆static,𝑆react,𝐸,𝑡) =
𝑛

𝑖=1

min{𝛼(|𝑡𝑖−𝑡′𝑖|+ |𝐶𝑖−𝐶 ′
𝑖|),𝐷𝑖} (3.3)

3.4 Conclusion

In this chapter, we answer the second research question. We classify the problem as a single-machine
scheduling problem in a Flexible Machining Cell (FMC) without the assumption of a conveyor belt. Our
focus is on disruptions that require using 5-axis machines for production. By omitting the routing before
andafter the5-axismachines,wecan simplify thisproblem fromanextended job shop toa single-machine
scheduling problem. We take a dynamic scheduling approach to handle disruptions, using a predictive-
reactive scheduling strategy. Using an initial schedule as input, wemake adjustments (rescheduling) after
disruptions occur. We chose this approach because disruptions in this research are unpredictable, and
defining a stochastic process is not feasible. Rescheduling is thus key to adjusting the schedule based on
real-time events.

Next, we determine the rescheduling trigger, choosing between event-driven, periodic or hybrid. A need
for periodic rescheduling is eliminated by the use of the model proposed by Van Boxel (2024), and there-
fore, we select an event-driven strategy. From our literature research, we find that complete rescheduling
generally will give the best results, but comes with a long runtime. In the case of event-driven reschedul-
ing, this is not feasible due to the requirement of a short runtime. There, we choose an insertion-based
local rescheduling strategy with an expanding time window. The insertionmethod is best-fit, as this opti-
mises the objective of the problem.

Finally, we assess the rescheduling performance. We can conclude that schedule robustness is essential
in limiting the need for event-driven rescheduling. Therefore, in the initial schedule, we will include some
robustness. In the implementation phase, we need to find a balance between the robustness level of the
initial schedule and the need for rescheduling. Additionally, scheduling stability can support our research
in the experimental phase. In our research, we define a schedule as stable when the sequence of produc-
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tion is unchanged.

In conclusion, based on the literature, we choose an event-driven, insertion-based rescheduling method
with an expanding time window to effectively manage disruptions in a flexible machining cell problem.
By balancing initial schedule robustness with the need for rescheduling, we aim to enhance scheduling
stability while minimising machine switches and order splits, ultimately ensuring a more resilient and
efficient production process.
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HTM Aerotec Event-Driven Rescheduling

4| Solution Design
In this chapter, we present the design of the proposed solution, outlining the data requirements, assump-
tions, and methodologies used. This chapter addresses the third and fourth research questions:

3. What should a scheduling solution look like to repair a disrupted schedule?
4. How should a scheduling model be designed that can adapt to disruptions within a reason-
able computational runtime?
time?

Webeginbyexplaining thenecessary inputdata in Section4.1. Next, Section4.2discusses the key assump-
tions that guide themodel. In Section 4.3 we present aMixed Integer Program (MIP) designed to optimise
scheduling. Then, in Section 4.4, we develop a repair heuristic based on the MIP, which is further refined
into a comprehensive rescheduling process in Section 4.5.

4.1 Input data

This section elaborates on the input data required for our model.

• Initial schedule
Our model starts with an initial schedule generated using the solution by Van Boxel (2024), as ex-
plained in Section 2.4. As noted in Section 1.2.2, this model is unsuitable for rescheduling due to its
long computational runtime. However, it is feasible to use it for generating an initial schedule, since
this can be computed in advance while production continues based on the existing schedule. Once
the new initial schedule is ready, operators can switch over. The schedule is a list of operations with
corresponding starting and ending times of the setup, labour and processing per separate opera-
tion. Therefore, one row corresponds to a specific operation of a job. The order in this list allows us
to assign an index to each operation, which we use in Section 5.1.2. Using this schedule reduces the
planners’ workload while maintaining a high-quality baseline.

• Emergency order information
If an emergency order comes in, we require information on the type of job and its characteristics.
This information includes the item number, due date, amount, work order (WO), WO line and item
description. Table 4.1 shows an example of the required input.

• Reason for rescheduling
The cause of disruption affects themodel’s constraints and optimisation. As a result, the initial time
window is determined by the reason for rescheduling, which we include as an input in our model.
There are five reasons for rescheduling, detailed in Section 2.1:

1. Machine failure
2. Operator illness
3. Emergency order
4. Execution delay
5. Material unavailability

• Start and duration of the disruption
To ensure that the model can correctly identify what part of the initial schedule was finished and
from what moment on the machine can produce again, the duration of the disruption is needed.
How these times are obtained is explained in Section 2.1.

Figure 4.1 illustrates how our model interfaces with the solution approach of Van Boxel (2024). In the
diagram, blue represents inputs, green indicates outputs, and yellow denotes outputs from the approach

Buursema, K.
June 20, 2025
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Item WO WO Line Description Quantity Due date Setup time Labour time Run time
7123 2364 1 Component A 47 27-05-2025 2 [hrs] 5 [min] 25 [min]

Table 4.1: Example of the input required for an emergency order.

Figure 4.1: The interaction between input and output of the approaches by Van Boxel (2024) and us

by Van Boxel (2024) that serve as inputs for ourmodel. The figure also highlights the relationship between
the schedule list and the initial schedule. In the schedule list, each row corresponds to an entire order
and may contain a larger quantity. In contrast, the initial and repaired schedules describe operations
individually, so multiple rows may relate to a single job. This distinction is made using a unique job key
assigned to each operation.

4.2 Assumptions

In this section, we describe the needed assumptions for our model.

• Deterministic processing, labour and setup times
Processing, labour, and setup times are fixed and do not vary. Therefore, we can assume that these
times are deterministic.

• Materials are available
We assume that materials are always available for production orders. Material shortages are treated
as disruptions. Therefore, in themodel, we can omitmaterial availability constraints and only adapt
release dates for rescheduling in case of such a disruption.

• Shift times
Themachines can only be loaded and unloadedwhen operators are available. We assume operators
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are always available during the week between 7:00 and 16:00, excluding breaks (9:00-9:15, 12:00-
12:30 and 14:00-14:15). Weekend shifts are flexible, with a maximum duration of 45 minutes be-
tween 9:00 and 15:00. This assumption is valid because unavailability (e.g. due to illness) can be
seen as a disruption.

• Dedicated fixtures
Some job families require dedicated fixtures. Fixtures are job-family specific and cannot be shared
between different job families.

• Setup and labour times occur separately from processing times
Job setup is completed before labour time begins. Furthermore, the finish time of labour time does
not have to align directly with the start time of the processing of that job. However, once labour has
occurred, that item does occupy a pallet position.

• Tool availability
In Section 1.2.2, we discussed the tool availability constraint. As it is outside of our scope to connect
to the tool database, we follow the assumption used by Van Boxel (2024), treating tools as always
available. In moments that a tool is unavailable, we can count this as a disruption due to material
unavailability; therefore, enabling rescheduling to generate feasible schedules.

4.3 Mixed-Integer Program

In our research problem, we assume we have a fixed schedule. In this problem, disruptions lead to the
infeasibility of the original schedule. We consider disruptions classified into five reasons, as discussed
in Section 4.1. To answer the third research question, we formulate an MIP to use for rescheduling the
initial schedule after such disruptions. We adapt the mathematical model of Van Boxel (2024), which is a
static single-machine FMC, to fit with rescheduling. The main adaptation lies in the set of operations to
reschedule. We define this as the set of operations which fall within a time window, whereas Van Boxel
(2024) defines this as all operations on the schedule list. Furthermore, we have a difference in objectives.
Thismodel aims tominimise twoobjectives: (1) schedule stability𝑆, defined as thenumber of jobs that are
moved in the sequence of production compared to the initial schedule (see Section 3.3.3), and (2) average
tardiness, defined as the average number of days by which products are delivered late. Therefore, we have
amulti-objectivemodel. OurMIP is based on expanding timewindows, as explained in Section 3.3.2. This
is needed for the solution approach and is further explained in Section 4.4.

4.3.1 Notation

We define the set of operations to reschedule, 𝑂[𝑙0,𝑢𝑚], as the operations that fall within the initial time
window [𝑙0,𝑢𝑚], determined by the disruption reason. This includes all operations that are planned com-
pletely or partially within this time window, either with setup, labour, or processing. The initial time win-
dow is the minimum number of operations that require rescheduling due to the disruption, resulting in
the shortest computational runtime required to reconstruct a feasible schedule. Then,weexpand this time
window and therefore regenerate the schedule with more operations included in rescheduling, resulting
in better solutions. The time window expands in each iteration𝑚, until a maximum computational run-
time of 𝜏𝑚𝑎𝑥 or the maximum number of expansions𝑀 has been reached.

A job 𝑗may consist of multiple operations𝑂𝑖𝑗 , all of which are performed on the samemachine. Each op-
eration requires manual setup and labour before processing, with a given setup time 𝑆𝑖𝑗 and labour time
𝐿𝑖𝑗 . The setup of an operation entails preparing the machine by putting in the correct parameters. This
only occurs once per operation, so if multiple products of the same item are made, the setup only has to
be done once. The labour time entails fixing products on pallets and putting them in the machine. These
tasks are performed by an operator on the machine. Once setup and labour are complete, the machine
begins processing the job, with a processing time 𝑃𝑖𝑗 . Switching between jobs within the machines hap-
pens automatically and only requires a set pallet changing time. Each job has a given release date 𝑅𝑗 and
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due date𝐷𝑗 .

The complete list of notation we use is as follows:

Subscripts

𝑖 operation index
𝑗 job index
𝑝 pallet index
𝑚 time window index

Sets

𝐽[𝑙0,𝑢𝑚] All jobs (partially) within time window [𝑙0,𝑢𝑚]
𝑂[𝑙0,𝑢𝑚] Set of all operations (partially) within time window [𝑙0,𝑢𝑚]

𝑂𝑖𝑗 Operation 𝑖 of job 𝑗
𝑃 Set of pallets

𝑄[𝑙0,𝑢𝑚] Set of all production orders within time window [𝑙0,𝑢𝑚]
𝐹𝑖𝑗 Setup family of operation 𝑖 of job 𝑗

Parameters

𝑂𝐵𝑤𝑒𝑒𝑘 Operator begin time during the week
𝑂𝐸𝑤𝑒𝑒𝑘 Operator end time during the week

𝑂𝐵𝑤𝑒𝑒𝑘𝑒𝑛𝑑 Operator begin time during the weekend
𝑂𝐸𝑤𝑒𝑒𝑘𝑒𝑛𝑑 Operator end time during the weekend

𝜔 Objective weights
𝑁𝑗 Number of operations needed on job 𝑗
𝑃𝑖𝑗 Processing time of operation 𝑖 of job 𝑗
𝑆𝑖𝑗 Setup time of operation 𝑖 of job 𝑗
𝐿𝑖𝑗 Labour processing time of operation 𝑖 of job 𝑗
𝐷𝑗 Due date of job 𝑗
𝑅𝑗 Release date of job 𝑗
𝑊 Change time of pallets

𝐷𝐹𝑖𝑗 Dedicated fixtures for operation 𝑖 of job 𝑗
𝐻 Large positive number
𝑀 Maximum number of time window expansions
𝑐 The first job that should be rescheduled

Δ𝑢𝑚 The value with which the upper bound increases at iteration𝑚
(𝑙0,𝑢0) Initial time window with lower bound 𝑙0 and upper bound 𝑢𝑜

Decision variables

𝑥𝑖𝑗𝑝 Binary variable, 1 if operation 𝑖 of job 𝑗 is planned on pallet 𝑝, 0 otherwise
𝑦𝑜𝑙𝑑𝑖𝑗𝑖′𝑗′ Binary variable, 1 if operation 𝑂𝑖𝑗 is planned before 𝑂𝑖′𝑗′ before rescheduling
𝑦𝑛𝑒𝑤𝑖𝑗𝑖′𝑗′ Binary variable, 1 if operation 𝑂𝑖𝑗 is planned before 𝑂𝑖′𝑗′ after rescheduling
𝑧𝑖𝑗𝑖′𝑗′𝑝 Binary variable, 1 if operation 𝑂𝑖𝑗 is planned before 𝑂𝑖′𝑗′ on pallet 𝑝

𝑎𝑖𝑗 Binary variable, 1 if operation 𝑂𝑖𝑗 is rescheduled
𝑠𝑠𝑡𝑎𝑟𝑡𝑖𝑗 Start setup time of operation 𝑂𝑖𝑗
𝑠𝑒𝑛𝑑𝑖𝑗 End setup time of operation 𝑂𝑖𝑗
𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗 Start labour time of operation 𝑂𝑖𝑗
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𝑙𝑒𝑛𝑑𝑖𝑗 End labour time of operation 𝑂𝑖𝑗
𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 Starting time of operation 𝑂𝑖𝑗
𝑡𝑒𝑛𝑑𝑖𝑗 Ending time of operation 𝑂𝑖𝑗

(𝑙0,𝑢𝑚) Extended time window with variable upper bound 𝑢𝑚
𝑆 The total number of jobs moved
𝑇𝑖𝑗 Tardiness of operation 𝑂𝑖𝑗

4.3.2 Objective function

The objective function, which can be found in Equation 4.1, consists of two parts. The first part is the
instability of the schedule, defined by the number of changes in the sequence of production,multiplied by
weight𝜔. We use this measure in the objective function, as modifications to the schedule of onemachine
can propagate through the internal supply chain. The interdependence of machines causes scheduling
complexity, and thus, schedule stability is important. The second part is on the average tardiness of the
schedule, multiplied by 1−𝜔. This is calculated by adding the tardiness of all operations and dividing this
by the total number of operations. We use the regenerated schedule of the comingweek to calculate these
values instead of only the rescheduled time window, such that we can compare the initial schedule with
the repaired schedule.

Min 𝜔∗𝑆 +(1−𝜔)∗⎛
⎝
1
|𝑂| ∗

𝐽

𝑗

𝑁𝑗

𝑖
max ⒧0,𝐶𝑖𝑗 −𝐷𝑗⒭⎞

⎠
(4.1)

4.3.3 Constraints

Themodel is subject to a series of constraints, which are elaborated upon in this subsection.

𝑃

𝑝
𝑥𝑖𝑗𝑝 = 1 ∀𝑖, 𝑗 (4.2)

𝐽∖{𝑗}

𝑗
𝑦𝑜𝑙𝑑𝑖𝑗𝑖′𝑗′ = 1 ∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.3)

𝐽∖{𝑗}

𝑗
𝑦𝑛𝑒𝑤𝑖𝑗𝑖′𝑗′ = 1 ∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.4)

𝑧𝑖𝑗𝑖′𝑗′𝑝+𝑧𝑖′𝑗′𝑖𝑗𝑝 = 𝑥𝑖𝑗𝑝 ∗𝑥𝑖′𝑗′𝑝 ∀𝑝 ∈ 𝑃,∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.5)

Constraint 4.2 ensures that all jobs and corresponding operations are planned. Then, Constraints 4.3 and
4.4 ensure that all jobs have a preceding job, before and after rescheduling. Constraint 4.5 ensures prece-
dence within pallets, consequently also restricting the planning of a maximum of one job at a time per
pallet.

𝑠𝑠𝑡𝑎𝑟𝑡𝑖𝑗 ≥𝑅𝑗 ∀𝑖, 𝑗 (4.6)
𝑠𝑒𝑛𝑑𝑖𝑗 = 𝑠𝑠𝑡𝑎𝑟𝑡𝑖𝑗 +𝑆𝑖𝑗 ∀𝑖, 𝑗 (4.7)
𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗 ≥ 𝑠𝑒𝑛𝑑𝑖𝑗 ∀𝑖, 𝑗 (4.8)
𝑙𝑒𝑛𝑑𝑖𝑗 = 𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗 +𝐿𝑖𝑗 ∀𝑖, 𝑗 (4.9)

𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 ≥ 𝑙𝑒𝑛𝑑𝑖𝑗 ∀𝑖, 𝑗 (4.10)
𝑡𝑒𝑛𝑑𝑖𝑗 = 𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 +𝑃𝑖𝑗 ∀𝑖, 𝑗 (4.11)

The following set of constraints sets the start and ending times for setup, labour and processing for each
operation. First, Constraint 4.6 ensures that all jobs are only started once the release date of the job is
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reached. Constraint 4.7 sets the ending time for setting up an operation. Constraint 4.8 sets the starting
time of labour based on the ending time of setting up an operation. Constraint 4.9 sets the ending time of
labour, and Constraint 4.10 sets the processing starting time based on this. Lastly, Constraint 4.11 sets the
ending time of an operation.

𝑠𝑒𝑛𝑑𝑖𝑗 = 𝑠𝑒𝑛𝑑𝑖′𝑗′ ∀𝑖, 𝑗 ∶ 𝐹𝑖𝑗 =𝐹𝑖′𝑗′ (4.12)
𝑡𝑒𝑛𝑑𝑖′𝑗′ ≥ 𝑡𝑒𝑛𝑑𝑖𝑗 +𝑃𝑖′𝑗′ +𝑊−(1−𝑌𝑖𝑗𝑖′𝑗′)∗𝐻 ∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.13)
𝑙𝑠𝑡𝑎𝑟𝑡𝑖′𝑗′ ≥ 𝑡𝑒𝑛𝑑𝑖𝑗 −(1−𝑧𝑖𝑗𝑖′𝑗′𝑝)∗𝐻 ∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.14)
𝑡𝑒𝑛𝑑𝑖𝑗 ≤ 𝑙𝑠𝑡𝑎𝑟𝑡𝑖+1,𝑗 ∀𝑗,𝑖 = 1, ..., (𝑁𝑗 −1),𝑁𝑗 > 1 (4.15)
𝑙𝑠𝑡𝑎𝑟𝑡𝑖′𝑗′ ≥ 𝑙𝑒𝑛𝑑𝑖𝑗 ∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.16)

Next, we define the starting and ending times of each variable for preceding jobs. Constraint 4.12 is re-
garding the setup time for a family of jobs. This is always zero, and therefore, the ending of setup times for
preceding operations within the same family is equal. Constraint 4.13 sets the ending time of a following
job based on the ending time of its predecessor, its processing time and the required pallet change time.
Constraint 4.14 ensures that an operation only starts labour once its preceding operation on the same pal-
let is finished with processing. Constraint 4.15 ensures that the required labour for an operation is only
started once the preceding operation of the same job is finished. Lastly, Constraint 4.16 ensures that the
labour for an operation is finished before starting labour for the next job.

𝑃

𝑝
𝑥𝑖𝑗𝑝 ≤𝐷𝐹𝑖𝑗 ∀𝑖, 𝑗 (4.17)

Constraint 4.17 ensures that the total amount of pallets a product can be planned on does not exceed its
corresponding fixture availability.

𝑂𝐵𝑤𝑒𝑒𝑘 ≤ 𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗 mod 24 ≤ 𝑂𝐸𝑤𝑒𝑒𝑘−𝐿𝑖𝑗 ∀𝑖, 𝑗 ∶ 
𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗
24 mod 7 < 5 (4.18)

𝑂𝐵𝑤𝑒𝑒𝑘𝑒𝑛𝑑 ≤ 𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗 mod 24 ≤ 𝑂𝐸𝑤𝑒𝑒𝑘𝑒𝑛𝑑−𝐿𝑖𝑗 ∀𝑖, 𝑗 ∶ 
𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗
24 mod 7 > 5 (4.19)

𝑂𝐵𝑤𝑒𝑒𝑘 ≤ 𝑠𝑠𝑡𝑎𝑟𝑡𝑖𝑗 mod 24 ≤ 𝑂𝐸𝑤𝑒𝑒𝑘−𝑆𝑖𝑗 ∀𝑖, 𝑗 (4.20)


𝑠𝑠𝑡𝑎𝑟𝑡𝑖𝑗
24 mod 7 < 5 ∀𝑖, 𝑗 (4.21)

This set of constraints ensures that we adhere to operator availability. First, Constraint 4.18 ensures that
labour is only started during working hours on weekdays, whereas 4.19 does the same for the weekend.
Constraint 4.20 ensures that setup is doneduringoperator availability in theweek, Constraint 4.21 restricts
the model from having setup starting in the weekend.

𝑢𝑚 =𝑢𝑚−1+Δ𝑢𝑚 ∀𝑚∖{0} (4.22)

In this set of constraints, we define the time window. Constraint 4.22 defines the time window upper
bound based on the preceding bounds, therefore impacting the set of jobs to reschedule, 𝐽[𝑙0,𝑢𝑚]. All jobs
that are either completely or partially planned within that time window in the initial schedule are part
of 𝐽[𝑙0,𝑢𝑚]. The parameter with which this bound changes, Δ𝑢𝑚, is determined based on either a linear,
exponential or logarithmic expansion scheme. In Section 5.3 we show these equations and perform ex-
periments to determine which scheme should be used.
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𝑎𝑖𝑗 ≥ 𝑦𝑛𝑒𝑤𝑖𝑗𝑖′𝑗′ +𝑦𝑜𝑙𝑑𝑖𝑗𝑖′𝑗′ ∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.23)
𝑎𝑖𝑗 ≥ 𝑦𝑜𝑙𝑑𝑖𝑗𝑖′𝑗′ +𝑦𝑛𝑒𝑤𝑖𝑗𝑖′𝑗′ ∀𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝑂 ∶ 𝑂𝑖𝑗 ≠𝑂𝑖′𝑗′ (4.24)

𝑆 =
𝐽

𝑗

𝐼

𝑖
𝑎𝑖𝑗 (4.25)

𝑡𝑒𝑛𝑑𝑖𝑗 ≤𝐷𝑗 +𝑇𝑖𝑗 ∀𝑖, 𝑗, (4.26)
These constraints set the variables used for the objective function. Constraints 4.23 and 4.24 set the value
of 𝑎𝑖𝑗 to 1 if the sequence of operations is different after rescheduling. Constraint 4.25 then sets the total
schedule stability. Constraint 4.26 sets the tardiness of each job based on its ending time and due date.

𝑥𝑖𝑗𝑝,𝑦𝑜𝑙𝑑𝑖𝑗𝑖′𝑗′ ,𝑦𝑛𝑒𝑤𝑖𝑗𝑖′𝑗′ ,𝑧𝑖𝑗𝑖′𝑗′𝑝,𝑤𝑖𝑗𝑖′𝑗′𝑝,𝑎𝑖𝑗 ∈ 𝔹 ∀𝑖, 𝑗,𝑝 (4.27)
𝑠𝑠𝑡𝑎𝑟𝑡𝑖𝑗 , 𝑠𝑒𝑛𝑑𝑖𝑗 , 𝑙𝑠𝑡𝑎𝑟𝑡𝑖𝑗 , 𝑙𝑒𝑛𝑑𝑖𝑗 , 𝑡𝑠𝑡𝑎𝑟𝑡𝑖𝑗 , 𝑡𝑒𝑛𝑑𝑖𝑗 ,𝑇𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 (4.28)

𝑙0,𝑢𝑚 ≥ 0 ∀𝑚 (4.29)

Lastly, we have the sign constraints for all variables (Constraints 4.27-4.29).

4.4 Solution approach

In the previous section, we already determined that we use the model of Van Boxel (2024) to generate an
initial schedule. If any disruptions occur, we require a rescheduling approach. The MIP of the previous
section provides us with a basis for this model, showing the objective and all required constraints. A pos-
sible solution approach would be to solve the MIP for the remaining period until a new initial schedule
is generated. However, in Section 2.5, we discuss that HTM Aerotec has a computational runtime limit of
a few minutes. Hence, we cannot use the MIP as it will take too long. Therefore, to answer the fourth re-
search question, taking into account computational runtime, we use a repair heuristic based on a best-fit
insertion and expanding time windows to solve our rescheduling problem.

The repair heuristic is organised into three hierarchical stages. The Main Algorithm oversees the overall
rescheduling process and identifies the set of jobs requiring rescheduling. It first delegates to the Re-
pair Sub-procedure, which updates the schedule based on the placements determined by the Best Fit
Procedure. The best-fit procedure computes the optimal insertion points, the points in the sequence of
operations, for all affected operations within the operation sequence. Once the repair sub-procedure is
complete, the control returns to themain algorithm, whichmay expand the timewindow if themaximum
computational runtime or number of iterations has not yet been reached. The time window defines the
jobs which are rescheduled; all jobs which (partially) fall within this window are included in rescheduling.
Therefore, expansion of this timewindow results in a larger set of jobs to reschedule. More expansions can
thus potentially lead to better solutions, as this providesmore flexibility in optimising the schedule for the
changed situation. In the next section, we first discuss the computational runtime. Then, in the following
sections, wewill provide a detailed description of the individual algorithms and their respective functions
within the rescheduling process.

4.4.1 Computational runtime

First, we discuss the computational runtime in more detail. At HTM Aerotec, the problem instances are
very large, sometimes containing over 4000 operations to be performed by onemachine over tenmonths;
about 200 operations per week. These large problem instances result in long computational runtimes de-
pending on how many operations are rescheduled. However, the number of operations within a certain
period and the total length of the planned period vary largely over time. Therefore, determining computa-
tional runtimes and the number of operations to reschedule is not straightforward. For this, first, we con-
sider the time horizon we are rescheduling. The planning department updates the initial schedule weekly
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Figure 4.2: An example of a time window and an expansion for a disruption from 𝑡 = 6−8

if significant disruptions occur. Consequently, rescheduling beyond oneweek is unnecessary, as the plan-
ning department will intervene with a new schedule if further disruptions arise. Thus, the rescheduling
algorithm only needs to adjust operations within a 168-hour window from themoment of disruption, en-
suring that the schedule remains feasible and aligned with real-world planning cycles. In the algorithms,
we calculate this as the total rescheduled production hours𝑃𝑡𝑜𝑡𝑎𝑙. To furtherminimise the computational
runtime, the number of operations to reschedule should beminimised. Contrarily, to accurately calculate
the effect and best solution, the number of operations to reschedule should be maximised. To effectively
balance this trade-off, we chose to use expanding time windows. This approach allows us to control the
computational effort required to solve our problem instance.

4.4.2 Main algorithm

TheMainAlgorithmpresents thepseudocode for ourmain reschedulingprocedure. This algorithm follows
the notation introduced in Section 4.3.1. Here,𝑀 represents the maximum number of allowed iterations
(or time window expansions), and the parameters 𝑙𝑜 and 𝑢0 define the initial lower and upper bounds
of the time window. These parameters correspond with the start and end of the disruption as explained
in Section 2.1. The left graph in Figure 4.2 shows an example of such an initial time window. The algo-
rithm begins by extracting all relevant information regarding the disruption, such as its type, duration,
and the first job that must be rescheduled. Subsequently, the algorithm determines the disruption start
time based on the first affected job. The next line calculates the initial time window based on the disrup-
tion type. In the case of an emergency order, we have an initial timewindowwith size zero, where the only
job to reschedule is the emergency order.

Algorithm 1Main Algorithm
1: procedureMAINREPAIRALGO(disruption information, operator hours)
2: Extract key parameters from disruption information
3: Set disruption_time← start of disrupted operation
4: Initialise [𝑙0,𝑢0] based on disruption type
5: while runtime <max runtime and iterations <𝑀 do
6: Identify operations to repair in the current time window
7: if Disruption type == emergency job then
8: Append all operations of emergency job to operations to repair
9: Reschedule using (Repair Sub-procedure)
10: Expand time window bounds ([𝑙0,𝑢𝑚])
11: Compute total and maximum tardiness
12: Compute objective (Equation 4.1)
13: return tardiness, objective value and repaired schedule
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With this information, the code enters a while loop. In each iteration, the algorithm identifies all opera-
tions that fall within the time window and that thus require repair. In Figure 4.2, these jobs are green. It
then adds the emergency job if the disruption type is an emergency order. With this list of operations, the
schedule is repaired using the Repair Sub-procedure. This results in a schedule with a time horizon of 168
hours. Then, the time window is expanded for the next iteration. An example of such an expanded time
window and its corresponding jobs is shown in Figure 4.2. In the case of an emergency order, the first ex-
pansion is the expansion of one hour, after which the normal expansionmethods are used. This is needed
due to the initial window size of zero in those cases. This while loop continues until either the maximum
runtime or themaximumnumber of iterations𝑀 is reached. Once the loop terminates, the total tardiness
of all operations and the maximum tardiness are calculated, and the objective value is computed. These
results, together with the repaired schedule, are the output of the algorithm.

Figure 4.3 provides a visual example of one iteration of this algorithm. This example is a small and simpli-
fied version of the problem instances at HTMAerotec, where the number of operations daily can be up to
ten times as large andmore constraints are present (e.g. manual labour required for each operation, ded-
icated fixtures, etc.). In the original schedule, we have five itemswith a total of nine operations to be com-
pleted over one day. Each row represents a specific operation, and the horizontal axis shows the timeline
from hour 1 to 24. The green lines show the insertion positions, meaning where in the sequence of opera-
tions an operation could be inserted. These positions are determined taking into account the sequence of
all other operations, which are the red blocks. Thus, the time at which they start is not important for the
insertion point. At hours 1 and 2, the machine is unavailable, as indicated by the black disruption blocks.
However, in the original schedule, the first operation of job 1 is planned during this disruption (shown
as the striped “disrupted” block). This makes the original schedule infeasible and requires rescheduling
of that operation. The rescheduled operation can be placed anywhere in the sequence. However, if it is
placed after its dependent operation, e.g. second operation of the same job, we also need to reschedule
that operation to maintain schedule feasibility. The insertion positions are then determined again using
the red blocks, but now starting after the first operation. Hence, if the first operation is rescheduled at
position 3 and the second operation is scheduled immediately after, that would be insertion position 1
for the second operation. Below, we discuss three possible solutions and their implications, of which the
Best-Fit algorithm would choose the best option:

1. The disrupted operation is inserted at the first position of the sequence, immediately after the dis-
ruption ends (at hour 3), as indicated by the orange ”operation to reschedule” block for the resched-
uled operation. This pushes all subsequent operations backwards in time. The advantage of this
solution is that we only reschedule one operation, resulting in maximised stability of the overall
schedule. However, other operations are delayed, which could result in tardiness if we violate due
dates.

2. Here, the disrupted operation is inserted into the second position in the sequence (now starting at
hour 6). However, because its second operation was originally scheduled first, it must be moved as
well to maintain the correct order. We insert the second operation at the second position (starting
at hour 13), both shown in orange. This solution moves two operations, decreasing the schedule
stability compared to the first solution. However, this solution may result in lower tardiness (e.g., if
item 2 has a due date around hour 9).

3. In this case, the first operation of item 1 is moved to the eighth available position (starting at hour
20), and the second operation is placed immediately afterwards at position 1 (hour 23), maintaining
the precedence constraint. This solution has the same stability as the second solution. However,
depending on the due dates of the other items, this solution might result in lower tardiness.

The right graph in Figure 4.2 shows an expanded timewindow, based on the initial timewindowon the left
graph. This expansion is performedusingoneof four strategies: linear (Equation4.30), exponential (Equa-
tion 4.31), logarithmic (Equation 4.32), or percentage based (Equation 4.33). At the end of each iteration,
these equations are used to determine the step size with which we increase the upper bound of the time
window. This results in an increasing size of time windows each iteration. Figure 4.4 shows an example of
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Figure 4.3: Example of a disrupted schedule due tomachine failurewith three possible repaired schedules.
𝑡 is expressed in hours.
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how the size of the time window is affected over time per method. There, we can see a larger expansion at
the start for the logarithmicmethod, while the percentage-basedmethod starts with the smallest window
and ends with the largest. The corresponding equations determine the step size with which the upper
bound𝑢𝑚 increases. In these equations, 𝑡ℎ is the total time horizon and𝑚 is the current iteration. For the
expansion, only one of these three strategies is used. In Section 5.3, we perform experiments to find the
most suitable expansion method.

Δ𝑢𝑙𝑖𝑛𝑒𝑎𝑟
𝑚 = 𝑡ℎ−𝑢0

𝑀 ∀𝑚,𝑐 (4.30)

Δ𝑢𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙
𝑚 =𝑚

log(𝑡ℎ−𝑢0)
log(𝑀) ∀𝑚,𝑐 (4.31)

Δ𝑢𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐
𝑚 = log(𝑚)∗ 𝑡ℎ−𝑢0

log(𝑀) ∀𝑚,𝑐 (4.32)

Δ𝑢𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒
𝑚 = 𝑏∗(𝑢𝑚−𝑢𝑜) ∀𝑚 (4.33)

4.4.3 Repair algorithm

In the Main Algorithm, we use the Repair Sub-procedure to reschedule the operations in 𝑂[𝑙0,𝑢𝑚] and up-
date all corresponding start and end times. This repair algorithm starts with a part of the initial schedule,
which is up to the point where the schedule is disrupted. Then, iteratively, one by one, operations are
added in a determined sequence, calculating corresponding processing times. We will call this partial so-
lution the working solution. The Repair Sub-procedure begins by calling the Best Fit Procedure, which
determines the optimal insertion positions for each operation in 𝑂[𝑙0,𝑢𝑚]. These insertion positions and
the sequence we will use in this algorithm are determined based on the order in which the machine pro-
duces. As an example, in Figure 4.3 in the original schedule, the first in the sequence is the disrupted
operation, then the second operation of item 1, then the operation of item two and so on. The insertion
points are marked with green lines, which are between every operation. The Best-Fit algorithm chooses
insertion positions for all operations in 𝑂[𝑙0,𝑢𝑚] and, based on these insertion positions, this repair algo-
rithm determines the new sequence and the corresponding production times.

After retrieving all insertion positions, the algorithm iterates over all affected operations in 𝑂[𝑙0,𝑢𝑚]. For
each operation, it retrieves the position to which it should be moved. Next, the algorithm identifies up
to what position the working solution has been updated. Then, a loop begins to bridge the gap between

Figure 4.4: An example of the size of the time window over time per method
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the working solution and the position in which the current operation should be added. In other words, if
the working solution is not yet updated up to the insertion point of the current operation, all preceding
operations of the sequence should be added first. In this loop, the algorithm sequentially adds operations
from the sequence using the UPDATESOLUTION procedure. This loop terminates either when the required
insertion position is reached or when the working schedule reaches the maximum time horizon of one
week (168 hours). Once the schedule is updated up to the insertion position, the operation requiring
rescheduling is added to the solution. Again, if the time horizon has reached 168 hours, the algorithm
terminates. Once all operations in𝑂[𝑙0,𝑢𝑚]are rescheduled, the algorithmchecks if any operations from the
initial sequence can still be added. If the working solution is still within the time horizon, a final loop adds
the remaining operations sequentially until either all operations are added or the time horizonmaximum
has been reached. Finally, the algorithm returns the updated solution.

Algorithm 2 Repair Sub-procedure
1: procedure REPAIRALGORITHM(operations_to_plan, operator hours)
2: operations_to_plan← CALCULATE_BEST_FIT(operations_to_plan)
3: for operation in operations_to_plan do
4: position← best-fit position for operation
5: last_updated← current end of updated schedule
6: for operation_j = last_updated + 1 to position do
7: Extract operation_j from initial solution
8: UPDATESOLUTION(operation_j)
9: if current schedule time horizon ≥ 168 then
10: return solution
11: UPDATESOLUTION(operation)
12: if current schedule time horizon ≥ 168 then
13: return solution
14: last_original← final position in initial solution
15: last_current← final position in current solution
16: if last_original > last_current and current schedule time horizon < 168 then
17: for operation_j = last_current + 1 to last_original do
18: Extract operation_j from initial solution
19: UPDATESOLUTION(operation_j)
20: if current schedule time horizon ≥ 168 then
21: return solution
22: return solution

4.4.4 Best-Fit algorithm

The final procedure, Best Fit Procedure, determines the optimal position in the sequence for reschedul-
ing an operation. As discussed in Section 4.4, several strategies exist for determining this position. Among
these, we adopt a best-fitmethod, which aims tominimise the objective function (Equation 4.1) by select-
ing the position that offers the best trade-off between schedule stability and tardiness, while considering
machine constraints. The algorithm first calculates the best insertion position for all jobs to reschedule.
This results in a new sequence of jobs, which is used to construct the new production schedule. There-
fore, our algorithm is considered to be greedy. As the objective function (Equation 4.1) is a minimisation
problem, here also the minimal score is the optimal score.

One important constraint to consider in the best-fit algorithm is the precedence constraint. Some jobs
require multiple operations in a pre-determined order. If an operation is rescheduled, we always need to
ensure that its successors are scheduled later. If the operation is rescheduled before its successors, we do
not require rescheduling of the successors. Hence, the set of jobs to reschedule can be expandedwith suc-
cessors based on the insertion position of a preceding operation. We call these successors dependencies.
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Algorithm 3 Best Fit Procedure
1: procedure CALCULATE_BEST_FIT(operations_to_plan)
2: for operation in operations_to_plan do
3: for position = operation_index to next 50 positions do
4: if operation has subsequent operations then
5: Find dependent operations before position
6: Add to dependencies, increment nr_jobs_to_move
7: Calculate tardiness at current position
8: calculate score
9: Record score, position, and dependencies in score_records
10: for operation in operations_to_plan do
11: operation_scores← scores for this operation from score_records
12: Choose the entry with the minimum score
13: Extract best_location, dependencies
14: Add best_location to operation_moves
15: for dependant_operation in dependencies do
16: Set dependent_operation position on the best position after best_location
17: for operation in operation_moves do
18: Update operations_to_planwith new location
19: Sort operations_to_plan by location
20: return operations_to_plan

The Best Fit Procedure consists of three main loops. The first loop iterates over each operation in 𝑂[𝑙0,𝑢𝑚].
For each operation, the algorithm evaluates the next hundred positions in the sequence at most. At HTM
Aerotec, up to 200operations eachweekare reached. We limit the algorithm to thenext hundredpositions,
asmoving an operation further back in the schedule leads to excessive tardiness. Additionally, this further
decreases the computational runtime of our algorithm. At each potential position, it identifies any depen-
dent operations thatmust bemoved due to precedence constraints; these are stored as dependencies. The
number of required moves and the expected tardiness at that position are used to calculate a score. To
find the true best fit for each position, the entire schedule should be generated, and the total tardiness
and stability should be calculated. However, generating a schedule takes a long computational runtime.
Therefore, we use estimations to calculate the score. Estimations of the tardiness and stability can lead
to suboptimal insertion positions, especially taking into account constraints such as shift times. There-
fore, we have three other scoring methods which are adapted based on the constraints of our scheduling
problem. The four scoring methods are:

1. Tardiness andmoves
This method reflects the objective function, balancing two goals: minimising tardiness (𝑇𝑖𝑗) and
limiting the number of moves (𝑎𝑖𝑗). The parameter 𝜔 determines their relative importance. This
method estimates the tardiness of the next fifty jobs by dropping all constraints except shift hours.
Then, the scoring formula is defined as:

𝑠𝑐𝑜𝑟𝑒𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 =𝜔∗𝑎𝑖𝑗 +(1−𝜔)∗𝑇𝑖𝑗 (4.34)

2. Similar timeslot
Thismethod assumes that the original scheduling time is near-optimal and prioritises rescheduling
to a similar time. It accounts for differences between weekdays and weekends, which vary in avail-
ablemanual labour hours. The score increases with greater deviation in labour or production times,
in three cases:

• Both the operation and position fall on weekdays or both on weekends: compare only labour
times.
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• One is scheduled on the weekend and the other at night: compare labour and production
times.

• All other combinations: weigh labour time differences more heavily, with production time as
a secondary factor.

Variables: ℎ𝐿
𝑖 and ℎ𝐿

𝑝 are the hours at which labour for the operation and position is scheduled,
respectively. ℎ𝑃

𝑖 and ℎ𝑃
𝑝 refer to their production hours. 𝑑𝐿𝑖 and 𝑑𝐿𝑝 are the corresponding weekdays.

𝑠𝑐𝑜𝑟𝑒𝑠𝑎𝑚𝑒_𝑡𝑖𝑚𝑒 =
⎧⎪⎪
⎨⎪⎪⎩

|ℎ𝐿
𝑖 −ℎ𝐿

𝑝| if (𝑑𝐿𝑖 < 6∧𝑑𝐿𝑝 < 6)∨(𝑑𝐿𝑖 ≥ 6∧𝑑𝐿𝑝 ≥ 6)
|ℎ𝐿

𝑖 −ℎ𝐿
𝑝|+ |ℎ𝑃

𝑖 −ℎ𝑃
𝑝 | if (𝑑𝐿𝑖 ≥ 6∧ℎ𝑃

𝑖 >OE𝑤𝑒𝑒𝑘)∨ (𝑑𝐿𝑝 ≥ 6∧ℎ𝑃
𝑝 >OE𝑤𝑒𝑒𝑘)

2|ℎ𝐿
𝑖 −ℎ𝐿

𝑝|+ |ℎ𝑃
𝑖 −ℎ𝑃

𝑝 | otherwise
(4.35)

3. Ratio of hours left
Thismethod compares themanual-to-automatic labour ratio 𝑟𝑖 of the operationwith the remaining
ratio at the target position 𝑟𝑝 until the start of the next shift. The goal is to align the characteristics
of the job with the availability of remaining resources, such that we can fully utilise the production
hours of the machines:

𝑠𝑐𝑜𝑟𝑒𝑟𝑎𝑡𝑖𝑜_𝑙𝑒𝑓𝑡 = |𝑟𝑖−𝑟𝑝| (4.36)

4. Weekly ratio balance
This finalmethod evaluates whether the operation’smanual/automatic labour ratio 𝑟𝑖 is higher than
the overall weekly average 𝑟𝑟 . If so, the algorithm prefers a position with a lower ratio 𝑟𝑝; otherwise,
it prefers a higher one. This encourages balancing labour usage across the week:

𝑠𝑐𝑜𝑟𝑒𝑟𝑎𝑡𝑖𝑜_𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 =
⎧
⎨
⎩
𝑟𝑝 if 𝑟𝑖 > 𝑟𝑟
1−𝑟𝑝 otherwise

(4.37)

In the second loop, the algorithm again iterates over all operations in 𝑂[𝑙0,𝑢𝑚]. For each operation, it se-
lects the recorded position with the minimum score. This is the best-fit location for that operation. All
dependent operations are assigned a position immediately after the main operation to maintain prece-
dence. The third and final loop updates the array 𝑂[𝑙0,𝑢𝑚] with the new position assignments, including
dependencies. The result is sorted by position. The final output is a dictionary, which will be used in the
repair heuristic.

4.5 Proposed Rescheduling Process

The initial (re)scheduling process, illustrated in Figure 2.1 and Figure 2.2, puts a lot of manual labour on
the planning department. By implementing a model to generate updated schedules automatically, this
manual effort can be substantially reduced. However, the integration of this model requires adaptation
to the (re)scheduling process. In the initial process, the initial schedule was manually constructed and
adapted once new orders arrived. We eliminate the manual labour by using the model proposed by Van
Boxel (2024) to generate an initial schedule. This model should be used to generate a new schedule bi-
weekly, such that disruptions always occur in the early stages of the planning horizon. Thismaximises the
efficiency of the reschedulingmodel. Once the initial schedule becomes infeasible due to any disruption,
the reschedulingmodel should be used. Thisway, a feasible schedule is availablewithin a reasonable time.

Using the proposed model requires changes in the rescheduling process. Figure 4.5 shows the proposed
rescheduling process. In the figure, we can see that all involved parties can be the first to notice a dis-
ruption within the process. If an operator notices this, he can immediately verify the type of disruption
according to Section 4.1, and use the rescheduling algorithm at the machine. The operators are the ones
to use the algorithm, as they have all the input information and are the ones who require a quick solution
to ensure that the machine utilisation stays at the aimed level. Therefore, they can immediately update
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Figure 4.5: The proposed rescheduling process

the schedule list and start with the production of other parts. This way, the downtime in those cases is
limited, as production continues while the planning department checks the planning for due date feasi-
bility. After starting with the new schedule list, the operator informs the productionmanager, who in turn
informs the planner. If one of the other involved parties notices the disruption, they notify the planner
first. The planner can then use and check the newly found schedule list, especially for meeting due dates.
If the planning is accepted, they send this to the operator. However, if due dates are not met, they discuss
the implications with the sales department. Based on this, they decide if the newly found planning is suf-
ficient or if other actions should be taken. Such actions include splitting up an order or pushing back the
due dates of certain customers. With this decision, the sales department can update the deadlines and
release dates. Then, the planner updates the schedule list and sends this to the operator.

4.6 Conclusion

In this chapter, we have addressed the third and fourth research questions by developing a scheduling
solution that can respond effectively to disruptions. Initially, we proposed an MIP that identifies and
reschedules operations within a defined time window. This model minimises job movement and tardi-
ness while satisfying all operational constraints, such as operator availability. To ensure compatibility
with the algorithm and the production process, we adjusted the input data structure.

While theMIPprovides a theoretical foundation, it is impractical for real-time implementation as the large
number of constraints results in high computational demands. Consequently, we developed a reschedul-
ing approach inspired by theMIPmodel but adapted using expanding time windows and heuristic repair
strategies. We proposed four time window expansion strategies, three of which are adapted from Kuster
et al. (2010). Rescheduling is performed using a best-fit insertion algorithm that evaluates positions in
the existing schedule based on four scoring strategies: tardiness and stability, similarity of timeslots, the
ratio of hours left and the weekly ratio balance. This approach enables fast and effective schedule repair
with maximised stability. With this model, we have a scheduling solution and a model able to repair the
schedule after disruptions within a reasonable time.
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5| Experiments
In this chapter, we aim to answer the fifth sub-question from Section 1.3:

What experimental design and validation metrics are required to optimise and evaluate the
solution’s effectiveness for real-world application?

In this chapter, we identify andanalysemultiple experiments to answer thequestion. Section5.4discusses
the weigh-off between a longer runtime and the objective value. In Section 5.3, we discuss the method of
expansion for the time windows. Section 5.5 analyses the differences between the performance of the
initial and manual schedule versus after rescheduling. Lastly, in Section 5.8, we conclude on the findings
of this chapter.

5.1 Problem Instances and Experiments

For all experiments, we use two different initial problem instances, resulting in two initial schedules for
experimentation. We choose one instance permachine in our scope. For all experiments except generali-
sation, the instances ofmachines 538 and 539 are used. Then, in Section 5.7weuse the other two instances
to demonstrate how the proposed models perform on the other 5-axis machines. Due to the large plan-
ning horizon, represented by the column ’Time horizon’ (showing the number of days left before the last
order needs to be completed), we can assume that these instances represent an averagemix of item types
and characteristics. We use these instances to run the model of Van Boxel (2024), resulting in the initial
schedule we require as input, as mentioned in Section 4.1. We use these schedules in combination with
the scenarios, explained in Section 5.1.2, to simulate disruptions over the entire time horizon.

Machines 538 and 539 have a significantly higher workload compared tomachine 533. Furthermore, ma-
chine 538 has many items closer to the current date, and more space later in the time horizon. On the
contrary, machine 539 has an evenly spread workload. This is of importance when looking at the objec-
tive value. HTM Aerotec accepts orders based on a lower utilisation rate than the utilisation rate of the
initial schedule. Therefore, over time, possible tardiness is decreased. This trend is shown in Figure 5.1.
That graph shows example output of our model, based on a tardiness and stability best fit method and a
linear timewindow expansionmethod. The y-axis shows the tardiness of the schedule per scenario, where
the x-axis is increasingly sorted based on the initial breakdownmoment. These breakdownmoments are
spread across the entire time horizon, where scenario 27 is a disruption at the 60th operation, while sce-
nario 0 is a disruption at operation 3671. As machine 538 has a slightly higher workload, and especially
in the beginning, a higher risk for tardiness, it is likely that the objective value for machine 538 is higher
than the value of machine 539. A further difference between these instances lies in the type of jobs, or
the job mix, which are included. Different jobs require different amounts of labour, setup and runtime.
Therefore, the manual-to-automatic labour ratio, explained in Section 2.5, differs.

5.1.1 Experiment overview

Table 5.1 provides an overview of the experiments conducted in Sections 5.2 up to and including 5.6. Each
experiment is conducted independently, varying only one factor at a time (see the column ’Options’)while
keeping all others constant (column ’Experiment settings’). Based on these experiments, we conclude the
optimal best-fit method. Then, with the chosen best-fit method, we experiment and conclude on the
expansion method. Lastly, we experiment with the maximum computational runtime using the chosen
best-fit and expansion method. Using these insights, we compare the solution approach to the initial
schedule and manual schedule to conclude the performance of our approach. Then, we conduct a sensi-
tivity analysis on due dates and jobmix to assess how schedule flexibility and variations inmanual labour
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Figure 5.1: Tardiness of the schedule per scenario andmethod sorted on the initial disruption moment

requirements impact the model’s performance. The due date experiments are done by changing the due
dates obtained from the input. Thenormal due dates are the due dates aswere set byHTMAerotec in their
planning. To experiment, we set all due dates one or two weeks later, therefore creating more room in the
schedule. The job mix experiments are based on the manual-to-automatic labour ratio. By changing that
ratio, we can simulate a different job mix. To reach different ratios, we multiply the labour times with a
factor between 0 and 1, decreasing the ratio.

5.1.2 Scenario sampling

The rescheduling algorithm has varying performance. This is due to the type of disruption and the tim-
ing and original duration of the time window. Hence, it is necessary to assess numerous scenarios. For
a realistic approximation of the algorithm’s effectiveness, an infinite number of scenarios would be ideal,
such thatwe can evaluate all possible disruptions. However, that is not feasible considering the practically
possible runtime. Therefore, we need to find a balance between a large enough number of scenarios and
a reasonable runtime. A general rule of thumb that is used in theory is a scenario set of 30. We adopt this
rule and thus choose a scenario set of 30 per instance. Using the results of all 30 scenarios, we calculate
the average performance and use that to evaluate all experiments.

To generate different scenarios, we need to define probability distributions for the disruptions. Unfortu-
nately, there is limited data on the disruptions at HTM Aerotec. Therefore, we will estimate distributions
and parameters based on the literature and estimations fromproductionmanagers. For each scenario we
will generate, based on these distributions, we will determine if that disruption occurs for each of these
three. If none of the disruption types occur based on the distributions, we regenerate a scenario. That
means that in one scenario, one or multiple disruptions can occur.

• Machine failure
We assume that the machines have reached a constant failure state, where the failure rate does not
depend on time. Based on this assumption, we can use the exponential distribution, which is a
commonly used distribution for machine failure (Chakrabarty et al., 2016). To estimate the failure
rate, we use historical data from the machines as we also used in Figure 1.1. From this, we can
see that machines 538 and 539 have a total rate of machine non-availability due to machine failure
of approximately 4.7% and 5.2%, respectively. Therefore, the failure rates for both machines are
approximately 0,0006. We assume themachine failure’s duration, or the repair time, takes a normal
distribution with a mean of 85 hours and a standard deviation of 24 hours.

• Operator illness
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Experiment Options Experiment settings

Best-Fit

1. Tardiness andmoves These experiments are run with a linear
expansion method and a maximum
computational runtime of 60 seconds.

2. Similar timeslot
3. Ratio of hours left
4. Weekly ratio balance

Expansion method

Linear We run these experiments with the best-fit
method as found in the previous experiment.
Furthermore, we use a maximum computational
runtime of 60 seconds.

Exponential
Logarithmic
Percentage-based

Runtime

10 seconds In these experiments, we use the best-fit and
expansion method as found in the previous
experiments.

30 seconds
60 seconds
120 seconds

Sensitivity Analysis Options Experiment settings and goal

Due dates
Original due dates This experiment investigates the impact of

relaxed due dates on model performance.Moving original due
dates to one week later
Moving original due
dates to two weeks later

Job mix Range from 0.1 to 1 with
increments of 0.1

In this experiment, we change labour times using
a multiplication factor. This experiment aims to
analyse the impact of different job mixes.

Table 5.1: An overview of all experiments

In Section 2.1, we note that downtime of machines due to operator illness requires the absence of
multiple operators, which does not occur frequently. We assume a similar distribution and rate as
for the machine failure, as this probability is not time-dependent. The duration of this disruption
differs from themachine failure case. We assume a normal distributionwith amean of 48 hours and
a standard deviation of five hours.

• Emergency order, execution delay andmaterial unavailability
For these three disruption reasons, the companyplanners assumea 20%possibility that one of these
occurs each day. There, the probability for which of those three is equal for all three. Hence, we take
a 0.2 probability that one of these occurs. If so, we randomly take oneof these three. For the duration
of the disruption, the emergency order has no duration. For the execution delay and the material
unavailability, we assume a normal distribution with a mean of 10 hours and a standard deviation
of 3 hours.

The moment at which the disruption occurs is generated randomly by choosing an index from the initial
schedule. Using these probability distributions and indices, we generated thirty scenarios per instance.
Figure 5.2 shows how the scenarios are distributed over the scenario types and the indices. The disrup-
tion index corresponds with the first operation in the initial schedule at which the disruption occurs. A
complete overview of the generated scenarios can be found in Appendix A.

5.2 Best-Fit method

Thebest-fitmethodaims todetermine theoptimalposition in the sequence that results in thebest schedul-
ing outcome. In this section, we evaluate four scoringmethods and their respective formulas, as outlined
in Section 4.4.4.

First, weanalyse thevalueof theweightparameter𝜔onschedulingperformancewhenusing the tardiness-
stability estimation method. The parameter 𝜔 balances our multi-objective: schedule stability and esti-
mated tardiness. A value of 1 prioritises stability exclusively, while a value of 0 bases the score entirely

39



(a) Type (b) Index

Figure 5.2: Overview of the number of scenarios per disruption type and index

on the estimated tardiness. We hypothesised that lower values of 𝜔 would result in lower tardiness at the
expense of stability. However, Figure 5.3 shows minimal differences between the values of 0, 0.5 and 1.
Moreover, these differences do not follow a consistent trend. For example, scenario 5 has a lower tardi-
ness for weight 0, while scenario 28 has a lower tardiness for weight 1. This contradiction to the hypothesis
can be explained by the limitations of our tardiness estimation. As described in Section 4.4.4, we estimate
tardiness based on a simplified model which only evaluates 100 operations and considers shift hours as
the only constraint. Furthermore, this model evaluates the tardiness based on inserting one job into the
initial schedule. However, when inserting multiple jobs, these influence each other’s tardiness. As the
number of jobs to reschedule increases, the local estimation becomes less accurate as the influence of
interdependence between jobs increases. This interaction and the limited constraints result in an estima-
tion which can deviate heavily from the actual tardiness.

To analyse the influence of the interdependence of jobs and the quality of the estimation, we performed
additional experiments. We constructed an instance in which the shift constraint was removed. This can
significantly improve the tardiness estimate, as the interdependence between inserting operations does
not result in potentially inserting operations during off-shift hours, causing downtime. With this exper-
iment, we found a significant influence of the weight factor 𝜔. An 𝜔 of 1, focusing on stability, provides
us with an average tardiness of 4.05 hours and zero moved operations. However, an 𝜔 of 0, thus focus-
ing on tardiness, provides us with an average tardiness of 0.75 hours and 25 moved operations. This is
an improvement of 81.5% for tardiness. Therefore, we conclude that the accuracy of the tardiness esti-
mation, and thus the effectiveness of this best-fit method, is heavily influenced by the presence of shift
constraints. When shift constraints are removed or when shifts are significantly extended, the impact of
interdependent operations on the estimation decreases, leading to more reliable tardiness estimates. In
such contexts, our tardiness-stability estimation best fitmethod can be powerful forminimising tardiness
while balancing stability. Moreover, this insight suggests that improvement of the estimationmethod, ac-
counting for the interdependence and complex constraints, can broaden the applicability of thismethod.
However, such improvements will likely increase computational runtimes.

Next, we compare the four methods of determining the score for the best fit. Figure 5.4 shows boxplots
comparing the four methods in terms of schedule stability, tardiness, and utilisation. Figure 5.4(b) only
presents data from machine 538, as machine 539 has zero tardiness across all methods. This is due to its
more evenly distributed workload, as explained in Section 5.1. This workload distribution also explains
the lower utilisation rate of machine 539. Additionally, the general trend of decreasing tardiness over the
initial planning horizon, as mentioned in Section 5.1, is reflected in the utilisation pattern of machine
538. Specifically, Figure 5.5 shows a decrease of 10% average decline in utilisation across the planning
horizon (scenarios are increasingly sorted based on their moment of breakdown in the initial planning)
for all methods combined. This indicates that schedules generated earlier in the planning horizon, where
due dates are tight, require higher utilisation tomeet deadlines. Regarding schedule stability, the method
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Figure 5.3: Tardiness of each scenario with different 𝜔

using the weekly balance ratio, designed to balance manual and automatic labour, performs well. How-
ever, both the tardiness and utilisation of this method are lacking. In terms of tardiness, we see that the
methods based on tardiness and stability and the similar timeslot performwell. The first of the two, based
on tardiness and stability, slightly outperforms the second in terms of stability, but the utilisation rate of
the similar timeslotmethod is better. Themethod based on the ratio of hours left has a poor stability score
and tardiness.

From these results, we conclude that the preferred scoring method heavily depends on the scheduling
context. In situations where the quality of the tardiness estimation is low, inherently stable scoringmeth-
ods are more reliable; therefore, the tardiness and stability estimation method should not be used. While
other situations can benefit from this method. Additionally, in environments where utilisation is impor-
tant due to bottlenecks, like at HTM Aerotec, the similar timeslot method proves best in balancing the
tardiness with utilisation. Within the production process of HTM Aerotec, the 5-axis machines are the
bottleneck. Therefore, maintaining a high utilisation rate and low tardiness on these machines is of high
importance. Other machines have buffers. Therefore, in discussion with the production manager, we
conclude that a method which outperforms others on tardiness and utilisation is preferred. Hence, we
conclude that themethod characterised by planning in a similar timeslot is the best solution. However, in
possible future situations where these machines are not a bottleneck and other machines might not have
the buffer to change planning easily, it would be worthwhile to consider the method based on the weekly
ratio balance.
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(a) Stability (b) Tardiness

(c) Utilisation

Figure 5.4: Boxplots of the stability, tardiness, and utilisation of the schedule per method
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Figure 5.5: Average utilisation of the methods for machine 538 sorted on the initial breakdownmoment

5.3 Time window expansion

After each iteration, the timewindow is expanded. The timewindow determines the operations which are
rescheduled, and thus, the expansionmethod influences howmany jobs are rescheduled. In the previous
section, we used the linear expansion method. In Section 3.3.2, we discussed four methods of time win-
dow expansion: linear, exponential, logarithmic and percentage-based. The formulas for expanding the
upper bound can be found in Equations 4.30, 4.31, 4.32 and 4.33. As shown in Figure 4.4, different meth-
ods have larger expansions in early iterations (e.g. Logarithmic), while others have larger expansions in
later iterations (e.g. percentage-based). We analyse these different methods to find which method best
fits our scheduling problem. Figure 5.6 shows boxplots of the stability (a), tardiness (b) and utilisation
(c) per expansion method. Again, the tardiness only includes data for machine 538, as the schedules for
machine 539 do not result in any tardiness.

Overall, the differences between methods are minor. Notably, the logarithmic method decreases the sta-
bility without a significant improvement in tardiness. The percentage-based method has a favourable
balance, resulting in a more stable schedule and tardiness. The utilisation, shown in Figure 5.6(c), shows
no substantial differences, although we can see a slightly lower average for the linear method onmachine
539 and a larger variability for the percentage-based method on machine 538. Again, we analysed these
graphs with the production manager and operations manager. We concluded that the percentage-based
method ismost suited forHTMAerotec in its current situation, due to the lowestmaximumvalue. In cases
where stability is important, this does not differ, as in terms of stability, this method performs similarly
to the other methods. This conclusion shows the importance of operational practicality. Moreover, it un-
derlines the dependence on the context.

When examining the performance of the model when using the percentage-based method, we see an av-
erage utilisation of 63.5% and 41.1% for machines 538 and 539, respectively. On average, this leads to 106
and 69 production hours weekly. Especially, the production hours of machine 539 here are lacking, as in
the past, themachines have produced 110 hours on average. However, as already discussed in Section 5.1
and Section 5.2, this can be due to themoment of disruption in some specific scenarios. Figure 5.7 shows
the utilisation rates per scenario, sorted on the moment of disruption. In that graph, we can see that for
machine 538, the utilisation rate is significantly higher when rescheduling early in the planning horizon.
Formachine 539, this is not the case. Again, this can be explained by themore evenly spreadworkload and
absence of tardiness. HTM Aerotec will regenerate an initial schedule every two weeks, which therefore
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(a) Stability (b) Tardiness

(c) Utilisation

Figure 5.6: Boxplots of the stability, tardiness, and utilisation of the schedule per method

means that the disruption always occurs in those early stages of the schedule. Out of the thirty scenarios
we sampled, this is the case for ten. The average utilisation of these onmachine 538 is 74.9%, which is 126
weekly production hours. Hence, we can conclude that the performance of the model and the average
production hours reached are higher than the average outcome of our experiments if used with a regu-
larly updated initial schedule. Therefore, at HTM Aerotec with realistic scenarios, we can conclude that
the model is capable of achieving acceptable production targets. On the other hand, if rescheduling is
required near the end of the planning horizon, the model performs noticeably worse. This suggests that
for late-disruption scenarios, alternative ormoredynamic reschedulingmodelsmaybemore appropriate.

In conclusion, while performance differences between expansion methods are relatively minor, as also
shown in Section 5.2, this analysis reveals that the effectiveness of each method is sensitive to the tim-
ing of the disruption and the workload distribution. The percentage-basedmethod is well-suited to HTM
Aerotec’s scheduling context, where disruptions occur early in the planning horizon. However, this ap-
proachmay not generalise well without adaptation. To extend the applicability, future research should be
done to see how these context dependencies can be eliminated.
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Figure 5.7: Utilisation of the percentage-based method sorted on the initial breakdownmoment

5.4 Maximum runtime

Themaximum runtime determines the number of iterations the algorithm can run. Therefore, this limits
the number of time window expansions and consequently the number of operations which are resched-
uled. A longer runtime, therefore, might lead to worse stability. The decrease in stability with longer com-
putational runtimes is primarily caused by the increased number of operations that are rescheduled with
a more extended time window. As our best-fit method does not penalise sequence changes, operations
are moved freely, thus increasing the instability. This is in contrast with our objective, as we want to min-
imise instability. Contrarily, the tardiness and utilisation may become better the more operations are
rescheduled. Therefore, we need to find a balance between improved tardiness and decreased stability
using the computational runtime. Figure 5.8 demonstrates this trend for all three metrics. We can see
that our model has only slight differences in both tardiness and utilisation based on the runtime. When
looking at the differences in performance between a runtime of 10 and 120 seconds for machine 538, we
can see a clear imbalance. As the number of operations increased by around 60%, the tardiness decreased
by only 17%. Between 60 and 120 seconds, these percentages are 30% more operations moved and 10%
decreased tardiness. This imbalance shows that an increased runtime should only be considered if the
cost of tardiness is significantly higher than the cost of schedule instability. When looking at the practical
implementation of themodel, discussions with the operator and productionmanager reveal that stability
is valued because of the reduction in coordination. Therefore, for HTM Aerotec, we conclude that a max-
imum computational runtime of 120 seconds has too high a stability decrease.

The differences between ten, thirty and sixty seconds are small. However, lower tardiness and higher util-
isation are always preferred. Furthermore, from discussions with the operators, productionmanager and
operations manager, we concluded that a runtime of sixty seconds would be sufficient. Additionally, the
time an operator gains by running the algorithm ten seconds instead of sixty seconds is negligible com-
pared to the work they do. Therefore, we conclude that a runtime of sixty seconds is the best setting for
HTM Aerotec. As we performed the previous experiments with a maximum computational runtime of
sixty seconds, this means that the average tardiness, utilisation and stability are identical to those dis-
cussed in Section 5.3. Future improvements of the model could include stability thresholds, limiting the
runtime if this threshold is reached.
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(a) Stability (b) Tardiness

(c) Utilisation

Figure 5.8: Boxplots of the stability, tardiness, andutilisationof the schedule permaximumcomputational
runtime

5.5 Comparison to the initial andmanual schedule

To assess the effectiveness of the rescheduling approach, we compare its performance with both the ini-
tially generated andmanually constructed schedules. This comparison enables us to evaluatewhether the
model resolves disruptions more effectively.

Utilisation data based on our input data for the manually constructed schedules is not available. How-
ever, we can compare scheduling logic through product timing. At HTM Aerotec, a rule of thumb is used:
operations with a processing time of less than an hour are scheduled during shifts (day work), while oper-
ations exceeding two hours are allocated to night or weekend hours. Intermediate durations are assigned
flexibly. Ourmodel does not enforce these rules explicitly. A detailed analysis of the schedules reveals that
at least 70% of the night and weekend work is done outside of shift hours, in some scenarios even 100%.
This generally aligns with the manual planning. However, we can also see some products with very short
processing times, like fiveminutes, being produced during those hours, while during the day some opera-
tions with longer processing times (e.g. 45minutes) are planned. This can result in lower utilisation rates,
as themachine accumulates less runtime overall, potentially leaving it without any scheduled operations
before the next shift begins. Based on these findings, we conclude that ourmodel does partially alignwith
themanuallymade schedule, but it does have some differences. Furthermore, we can conclude that there
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Figure 5.9: The difference between the initial schedule utilisation and repaired schedule utilisation for
both machines

is room for improvement in our model, as swapping products with longer production times to produce
outside shift hours would increase machine utilisation.

Next, we compare the utilisation of the initial schedule. For this, we calculate the utilisation of the corre-
sponding week in that initial schedule. This serves as a baseline, as the machines should be able to reach
this utilisation when no disruptions have occurred. Figure 5.9 then shows the difference in utilisation,
which is the initial utilisation minus the utilisation of the rescheduled schedule. The vertical axis repre-
sents this difference, and the horizontal axis is sorted by the timing of the disruption. A smaller difference
implies that the reschedulingmodel performs (more) similarly to the initial schedule. In the graph, we can
see that ourmodelmaintains a high utilisation formachine 538, particularly when disruptions occur early
in the planning horizon. This supports earlier conclusions that the performance is better when reschedul-
ing at the start of the timehorizon. In contrast, the performance ofmachine 539 consistently showshigher
differences, therefore showing that our model has a large performance difference from the initial sched-
ule. This occurs especially when the schedule is not as tight in terms of due dates. Furthermore, while the
initial utilisation is above the goal of 83%, our proposed model averages 75% when rescheduled early in
the planning horizon. From this, we can conclude that the use of the initial schedule is preferred over the
use of our model.

Another point of interest is the difference in performance between scenarios that have comparable dis-
ruption moments. For example, we can see a 20% difference between the first and second scenario of
machine 538. These differences are due to the timing of the disruption. Scenarioswhich have breakdowns
at the start of the night or during the weekend have a lower utilisation because the model must wait until
the start of a shift. We assumed disruption durations based on probability distributions which do not take
into account working hours. For instance, if a breakdown is resolved at 11:00 on a Saturday, production
only resumes on Sunday at 10:00, leading to an additional 23 hours of inactivity due to shift constraints. In
reality, such downtime would have already been inherent in the duration of the disruption and therefore
would not contribute to extra downtime in the manual planning.
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(a) Stability (b) Tardiness

(c) Utilisation

Figure 5.10: Boxplots of the stability, tardiness, and utilisation of the schedule with delays in the due dates

5.6 Sensitivity analysis

In this section, we aim to find out how the algorithm behaves under different circumstances than those
usedduring thepreviousexperiments. Thebiggestdifferencespossible inour researchcontext are changes
in due dates and job mix. In Section 5.6.1 we analyse the influence of due dates, and in Section 5.6.2 we
discuss the influence of the job mix.

5.6.1 Due dates

At the timewe obtained the data to generate the initial schedule, HTMAerotec was already behind sched-
ule. As a result, the due dates in our problem instance are tight, with some items already past their due
date. However, as illustrated in Figure 5.1, the high utilisation of the machines in the initial schedule sug-
gests thatHTMAerotec is likely to get ahead of schedulewithin a fewmonths. This effectively corresponds
to a shift in due dates compared to the current situation. Since our objective function is partially based on
tardiness, and thus indirectly influenced by due dates, it is important to analyse how changes in the due
dates affect the performance of our approach.

As mentioned in Section 5.1, for the due date experiments, we use the same instances as before, but we
modify the due dates of jobs. The due dates were shifted by one and two weeks later. This results in more
flexibility and lower tardiness in the initial and repaired schedules. Figure 5.10 presents the boxplots for
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the stability, tardiness and utilisation of the schedules. As expected, we can see a clear decrease in the
average tardiness as due dates are postponed, with a 70% and 80% decrease when postponing one and
two weeks, respectively. This is intuitive, as longer due dates allowmore operations to be scheduled with-
out violating the due date constraint. Strikingly, we see a modest decrease of 2% in utilisation for both
machines. We can explain this by the added slack due to relaxed due dates. This allows the initial model
to prioritise other objectives, and thus also changes the behaviour in rescheduling. However, this small
reduction is not significant to the overall performance of the model. Additionally, the impact on the sta-
bility of our model does not show a clear trend. When looking specifically into the performance of single
scenarios, we see that some have improved stability, while for others, this is significantly decreased. From
this, we conclude that the stability of the rescheduling model is mostly governed by other factors, such as
the disruption timing.

From these observations, we conclude that extended due dates do improve the tardiness, but do not sig-
nificantly impact the model’s performance in terms of stability or utilisation. As the tardiness improve-
ment is inherent to relaxed due dates, we conclude that due dates do not have a significant impact on the
performance of the model.

5.6.2 Job mix

The jobmix refers to the variety of items to be produced and their associated labour and processing times.
Different job mixes lead to varying utilisation rates for the machines in the initial schedule, as a higher
proportion of manual labour reduces flexibility within the available shift hours. The current job mix re-
quired a set percentage of manual labour hours. Less flexibility occurs when these percentages increase,
given that the total available manual labour hours is set. We analyse how such variations in the job mix
affect the performance of our solution approach.

To analyse the behaviour of our algorithm with different job mixes, we perform experiments by varying
the multiplication factor of the labour times from 0.1 to 1. This factor adjusts the weight of labour hours
compared to automatic hours. We generate ten different initial schedules, each corresponding to a dif-
ferent factor, and run our model for each. In general, the average tardiness over these initial schedules
decreases as the multiplication factor decreases. However, as the model made by Van Boxel (2024) has
some randomness, this is not always the case. The results after rescheduling are therefore partially influ-
enced by randomness in the initial schedules.

Figure 5.11 illustrates the stability and utilisation per labourmultiplication factor ofmachine 539. In these
graphs, we do not see any clear trends when changing the multiplication factor. This suggests that the
labour multiplication factor does not have a significant impact on the performance of our model for this
machine. Figure 5.12 shows the stability, tardiness and utilisation of machine 538 per multiplication fac-
tor. Again, tardiness and stability do not show a clear trend. However, the graph regarding utilisation does
show a decline of 10% when increasing the labour factor. This is consistent with expectations. Increasing
the labour time per operation shifts the balance between labour and automatic hours, making it more
likely that the required number ofmanual tasks to have a similar utilisation cannot be performed, causing
more downtime for the machines.

We conclude that the labour factormainly impacts the utilisation. This impact highlights the dependency
between shift hours and automation.

5.7 Generalisation to other machines

In our model, we incorporate machine-specific constraints such as dedicated fixtures, limited pallet stor-
age capacity, and fixed pallet switching times. It is designed for an FMC with a pallet handling system.
Consequently, the model can be applied to other machines that have similar characteristics. Figure 5.13
shows the performance of themodel when used formachine 533. There, we can see that the utilisation for
this machine lies above 70% on average, with good stability. This is a higher score compared to machines
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(a) Stability (b) Utilisation

Figure 5.11: Boxplots of the stability, tardiness, and utilisation of the schedule with different jobmixes for
machine 539

(a) Stability (b) Tardiness

(c) Utilisation

Figure 5.12: Boxplots of the stability, tardiness, and utilisation of the schedule with different jobmixes for
machine 538
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538 and 539. If we look at the tardiness (Figure 5.13(c)), we see a similar trend for machine 533 as for the
other machines: after a certain period, the model is ahead of schedule and thus no tardiness occurs any-
more. As demonstrated by its application to machine 533, the model is also adaptable to settings where
themachining cell includes twomachines, sharing a commonpallet storage system. This adaptability can
be extended to configurations involving additional machining cells with minimal adjustments.

Besides immediate practical generalisation, we can look at the logic and approachweused in this research
for broader applicability. The percentage-based time window expansion is effective in settings where dis-
ruptions occur at the start of the planning horizon. This suggests that themodelmay performwell in con-
texts where rescheduling occurs frequently, requiring flexibility. However, the effectiveness of the scoring
methods heavily depends on specific problem constraints. The scoring method based on tardiness and
stability is expected to perform better in contexts without shift constraints, whereas the shift-time-based
method performs well in contexts with strong job dependencies and shift constraints.

In summary, while the model was developed within a specific industrial setting, its main logic and ap-
proach provide a foundation that can be extended to a broader class of flexible machining environments.
The successful generalisationwill depend on the degree towhich these environments share key character-
istics with the HTMAerotec context, particularly in terms of scheduling constraints. These results suggest
that the logic of this model is not specific to the exact configuration of our machines, but depends on
operational context.

5.8 Conclusion

In this chapter, we addressed the fifth research question by conducting a series of experiments to validate
the proposed solution and assess model effectiveness. We developed problem instances for machines
538 and 539 that vary slightly in size, time horizon and job mix. These variations allowed us to evaluate
model performance across diverse scenarios. Additionally, we introduced an instance for machine 533 to
test the generalisability of the model beyond the initial experimental scope. The experiments focused on
three points: the best-fit method, the expansionmethod and themaximum computational runtime. Fur-
thermore, we conducted a sensitivity analysis to explore the influence of varying due dates and jobmixes.

The weight parameter 𝜔 does not significantly impact the tardiness and stability-based scoring method.
This is largely due to limitations in the estimation method. Among the four scoring methods, the simi-
lar timeslot method achieves the best balance between tardiness, utilisation and stability. Therefore, this
is the preferred method. However, in contexts where stability is a higher priority, we recommend con-
sidering the weekly balance ratio method, as this method maintains better stability. Our findings indi-
cate that the choice of time window expansion method has a limited impact on performance metrics.
The percentage-based method offers the best balance between stability and tardiness, therefore making
it the most suitable for HTM Aerotec. The effectiveness of the model is most present when disruptions
occur early in the planning horizon. This aligns well with the scheduling frequency of HTMAerotec. How-
ever, late disruptions show a reduction in the performance of the model, hence suggesting that other ap-
proaches are required in those cases. Using this method, we see a higher average utilisation rate of 74.9%,
when updating the initial schedule regularly. Lastly, we analysed the maximum computational runtime
of the model. We showed that longer runtimes slightly improve the tardiness and utilisation, but signifi-
cantly reduce schedule stability. Differences between 10, 30 and 60 seconds are minor, but a runtime of
60 seconds yields better performance in terms of tardiness without overburdening the operators. Thus, a
60-second runtime offers an effective balance between performance and operational practicality. Future
model improvements could include stability thresholds.

We conducted a sensitivity analysis to analyse the impact of duedates and the jobmix onourmodel. Shift-
ing the due dates results in a large decrease in tardiness, as expected. However, the stability and utilisation
do not exhibit a clear trend. We conclude that the stability and utilisation of the schedule are mostly gov-
erned by other factors, and thus, the due dates do not have a significant impact. From the analysis of the
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(a) Stability (b) Utilisation

(c) Tardiness

Figure 5.13: Boxplots of the stability, tardiness, and utilisation of the schedule with delays in the due dates
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job mix, we conclude that this mainly influences the utilisation of the machines. The stability and tardi-
ness are not influenced heavily. This highlights the dependency on shift hours and automation.

Additionally,wecompared themodel’sperformancewithboth the initial andmanually constructed sched-
ules. When comparing the model to the manually constructed schedules, we can conclude that at least
70% of the night andweekend operations are planned during thosemoments. While there is room for im-
provement, this does show that ourmodelmostly adheres to the rules of thumb used inmanual planning.
Moreover, we conclude that our model consistently has lower utilisation rates than the initial schedule.
Hence, using the initial schedule when possible is preferred. However, we also conclude that our model
includes downtime, which in practice would be inherent to the planning, thus giving a bias to our results.

Lastly, we analysed the generalizability of the model. Comparison with the results of machine 533 reveals
that the model is adaptable to other FMC configurations, with multiple machines in one cell. Further-
more, we conclude that the percentage-based time window expansion method is effective if disruption
often occurs at the start of a planning horizon. However, the characteristics of the scheduling context
heavily influence the performance. Moreover, when shift constraints are absent, a scoring method based
on tardiness and stability proves more effective than time-based approaches.
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6| Implementation
In this chapter, we outline the implementation requirements. We do this by answering the sixth sub-
question from Section 1.3:

What technical, organisational, and procedural requirements are necessary to successfully im-
plement the scheduling algorithm in a production environment?

In Section 6.1 we discuss the data required as input for the model. Section 6.2 explains how the model
should be used.

6.1 Data availability

To ensure that the model can function properly and output a feasible schedule, the input information
should be correct. As mentioned in Section 2.3, the company does not always keep track of all of the re-
quired input information or does not store this in uniformplaces for all orders. VanBoxel (2024) described
methods that would greatly reduce the time needed to look up this input. During the implementation
phase of this research, we added information to the ERP system to ensure that this input (e.g. dedicated
fixtures and multi-fixturing) is available at the correct places. Additionally, to complete the required in-
put, an overviewwasmade of all fixtures required for all items in production. This overview stores per item
what fixtures are required for production per machine and how many of these fixtures are available. Es-
pecially in the case of dedicated fixtures, this is important, as these are a constraint on howmany of those
items can be planned in parallel on the machines. The company should keep this overview up-to-date if
new dedicated fixtures are made for new items.

The model is adapted to ensure it can run either using information directly from the ERP system, as well
as a schedule list as proposed by Van Boxel (2024). The information from Glovia is obtained using an
API connection. This produces multiple data frames, which are then transformed and filtered to obtain
the needed information. This transformation results in data frames which are of the same format as the
schedule list. Therefore, only loading the data differs, making the code used for data transformation easy
to understand, such that the company can update this easily when needed.

6.2 Using themodel

In Section 4.5, we discussed the entire rescheduling process. In this process, we require the planner to use
the solution of Van Boxel (2024), and the operator to use our proposed solution. Therefore, in this section,
we first explain how themodel of Van Boxel (2024) can be used and how the adapted output of the model
should be interpreted. Then, we explain how our rescheduling approach can be used by the operator.

Over the past months, together with the Fraunhofer Innovation Platform, HTM Aerotec has been work-
ing on designing a prototype used at the machines to keep track of what items have been produced and
the quantity. The prototype includes an interface that accesses the schedule list, and where operators can
keep track of the quantities producedper item. Themainpage of the interface canbe found inAppendix B.

As mentioned in Section 6.1, we adapted the model of Van Boxel (2024) to enable it to build the initial
schedule directly from data in the ERP system. For this, the script HOMEFILE.PY needs to be run. Once
the model is finished running, the schedule is automatically written to a cloud from where the prototype
can extract it. The prototype will be adapted such that from the interface, the schedule can be loaded,
showing operators exactly which items should be produced and when. The output has a similar format
to Table 6.1. The file shows in the first three columns the item and operation number, and description,
respectively. These columns provide information for the operator. The fourth column shows what part of
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Item Operation Description Type Start time End time
1 1 product A Setup 7:00 8:10
1 1 product A Labour 8:10 8:14
1 1 product A Run 8:14 8:47
2 1 product B Labour 8:14 8:35
2 1 product B Run 8:47 10:31
1 2 product A Labour 8:35 8:59

Table 6.1: An example of the output from the algorithm

that operation the operator needs to perform. This can either be setup, labour or run. Setup means that
of that item and operation, no other product has beenmade yet. Therefore, the operator needs to put the
correct settings in the machine and has to prepare the machine. Labour is about ensuring that products
are fixed on pallets and then put into themachine. For the lines that are producing, the operator does not
have to do anything. There, the machine will automatically run. The operator can follow the file from top
to bottom to find what steps should be taken at what moment in time.

To run the reactive model we designed, the operator can click on the button ’Regenerate schedule’. The
interface will open a new page. There, the reason for rescheduling can be selected and the expected du-
ration can be included. These are the input values as explained in Section 4.1. Then, the operator can
run the model. The resulting schedule has the same format as shown in Table 6.1. This schedule auto-
matically replaces the schedule initially used in the prototype. Therefore, the interface can be used in the
samemanner as with the initial schedule. This page of the interface still has to bemade. We discussed the
requirements and input fields, and the button has already been added as can be seen in Figure 1.

6.2.1 User acceptance

Due to limitations in the approval of our ethics review, we have not been able to conduct formal user ac-
ceptance tests (e.g., interviews, questionnaires). However, we gathered feedback through conversations
with the production manager, operator and planner. These discussions reflected a general positive view
on the proposed solution. During these conversations, the involved users recognised the added value and
expressed interest in the implementation of the solution. Moreover, we have discussed the implementa-
tion plan and steps required to ensure alignmentwith other processes within the company. Initial steps of
thisplanhavealreadybeen taken, includingmakinga list of requiredandwantedchanges in theprototype.

While this form of validation for user acceptance is informal, it provides a strong indication that the tool
aligns with the needs of the company. The support of management and the first steps taken towards im-
plementation increase the likelihood of adoption. This initial acceptance forms a solid foundation for
further development and integration. Additionally, this early engagement from key users is essential for
long-term adoption and process integration.

55



HTM Aerotec Event-Driven Rescheduling

7| Conclusions & Recommendations
In this last chapter, we aim to answer the final sub-question and the main research question of this re-
search. The final subquestion is:

What are the key findings, practical recommendations, and future research opportunities de-
rived from this study?

Section 7.1 discusses the conclusions and answers the main research question. Then, in Section 7.2 we
discuss recommendations for the company based on this research. Next, Section 7.3 discusses the limita-
tions of this research and provides topics for future research. Lastly, in Section 7.4 we discuss the scientific
and practical contribution of this research.

7.1 Conclusions

Disruptions such as machine breakdowns can severely impact production efficiency. This research ad-
dressed the need for reactive scheduling strategies to mitigate such disruptions in a practical and time-
efficientmanner. We aimed to solve the core problem, whichwas the long runtime of the current schedul-
ing algorithm. Running this algorithm after disruptions would take too long. To address this challenge,
we formulated the following research question:

How can a scheduling algorithm be effectively designed to mitigate scheduling infeasibilities
after disruptions and optimise production time in production schedules for 5-axis machines
within a reasonable time?

This algorithm reschedules operations within a time window, based on a best-fit position within a se-
quence. Identifying which position is the best fit is done by finding positions that were originally sched-
uled during a similar period. To effectively decide the length of the time horizon, and thus the number
of jobs we reschedule, we implemented the use of expanding time windows using a percentage-based
method. Themodel expands the time window for each iteration until the computational runtime limit of
sixty seconds is reached. Using these settings, the model has the following performance:

• Stability: The model limits changes in the schedule, reaching an average stability of 82 and 59 jobs
moved for machines 538 and 539, respectively.

• Tardiness: The model reaches an average tardiness of 5.5 hours per operation at machine 538, and
machine 539 has zero tardiness.

• Utilisation: The average utilisation rate is 61.1% and 41.1%, leading to 103 and 70 production hours
for machines 538 and 539, respectively. However, scenarios where disruption occurred in the early
stages of the planning horizon reach an average utilisation of 75%, leading to 126 hours.

Based on the utilisation metric, we concluded that using the initial model is preferred. However, our
rescheduling approach does perform sufficiently well in cases where the initial model is infeasible due
to disruptions. Additionally, we concluded that the best fit and expanding time window methods should
be context dependent; planning constraints and the moment of disruption influence the performance
of these metrics. In the current situation at HTM Aerotec, the settings using the similar time slot and
percentage-based methods are preferred. The performance is moderately affected by differences in due
dates and the jobmix; only the tardiness is decreasedwhenduedates are relaxed. Theothermetrics donot
signify a clear trend and thus do not impact the model performance. We did conclude that there is room
for improvement, as the schedules do not always have themost efficient division in operations done dur-
ing and outside shift hours.
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To evaluate the generalisability of the model, we tested it on another five-axis machine with a different
configuration. The model gave similar performance levels, thus suggesting that the approach is gener-
alisable to other FMCs with different configurations. Additionally, the percentage-based time window
expansion method is effective when early planning horizon disruptions occur frequently, while scoring
methods to determine the best fit are shift-dependent.

To ensure the effectiveness of the proposed model, the required input data should be available. For this,
we updated the ERP system and built a connection to this system with our model. Additionally, we pro-
pose a new rescheduling process. In this process, every two weeks, a new initial schedule is generated. If
a disruption occurs, causing the initial schedule to become infeasible, then our rescheduling process is
a guide to obtaining an effective schedule within a reasonable time. Furthermore, we outlined how the
model can be used, such that the implementation of the model is eased. These implementation efforts
include the addition of fixture data to the ERP system, the development of an API-based data connection,
and integration with a prototype interface used by operators. By aligning model inputs with ERP data
structures and enabling real-time data flow, the model becomes usable in daily operations with minimal
manual effort.

In conclusion, theproposedmodel effectively addresses themain researchquestionbyenabling fast reschedul-
ing. The model balances computational efficiency, performance and practical feasibility, therefore offer-
ing a practical solution for HTM Aerotec’s production process.

7.2 Recommendations

Based on the conclusions drawn, we make the following recommendations to HTM Aerotec to maximise
the practical impact of this research:

• Implement the proposed scheduling process
Implementing the schedulingprocess, using themodel of VanBoxel (2024) andourproposedmodel,
will reduce the workload for the planning department and lead to more efficient utilisation of ma-
chine capacity. This will reduce the bottleneck at the five-axis machines.

• Evaluate the model with operators, planners and the production manager
Implementing the model will change the daily workflow for operators, planners and the produc-
tionmanager, andmay reveal unforeseen practical challenges. Therefore, we recommend involving
these employees early on in the implementation process. Regular evaluation and feedback mo-
ments can help identify necessary adjustments.

• Evaluate the impact of implementing the proposed model
Theproposedmodel influences the schedulingof other processes andmachines. The improvements
on the five-axis machines may result in a reallocation of scheduling pressure to subsequent oper-
ations or machines. In this research, this impact is not evaluated or taken into account. Without
this perspective, improvements in the scheduling of the 5-axis machines may shift the bottleneck
to other operations. Therefore, an evaluation of this impact is required to prevent a potential ripple
effect.

• Provide clear instructions for the use of the prototype interface
Theprototype interfaceenablesoperators to interactwith thegenerated schedules and initiate reschedul-
ing in case of disruptions. To ensure successful adoption, we recommend providing clear instruc-
tions for operators.

With these recommendations, we aim to ensure the successful implementation and long-term adoption
of the model within HTM Aerotec. Additionally, these recommendations aim to increase alignment be-
tween planning assumptions and operational reality. By taking these steps, HTM Aerotec can maximise
the impact of this research on its production efficiency.
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7.3 Limitations and future research

In Chapter 4, we present a model based on literature, and Chapter 5 shows the required parameters and
settings and validates the performance of the model. However, our research does have limitations and
presents possibilities for further research. To improve practical efficiency, we address these below.

• Evaluate other repair algorithms
In this research, we chose a basic insertion-based algorithm. This choice was based on literature
(Section 3.3.2), runtime constraints and because of its simplicity in implementation. Other algo-
rithms, like GA, could result in a better schedule, but this would be at the cost of computational
runtime and is more complex. This would increase the difficulty for HTM Aerotec to maintain the
algorithm and implement it. However, this trade-off should be evaluated against the improved ef-
ficiency to be able to conclude if our choice for a faster and easier solution outweighs the loss of
efficiency.

• Extend the scope to the internal supply chain
Currently, the solution approach focuses on a single machine. This optimises planning for one ma-
chine, but could cause the shift of the current bottleneck to other parts of the production process.
To address this, the scope of the research should be extended to include the entire internal supply
chain. This would turn the scheduling problem into a job-shop scheduling problem, as explained
in Section 3.1, and would allow for better coordination and alignment of the complete production
flow.

• Validate model performance with real-world data
The experimental analysis in this research relies on scenario-based simulations. These scenarios are
generated using estimated stochastic parameters, which may not fully reflect the real production
process. Therefore, further analysis of the actual production data is required to validate the model’s
performance and its practical effectiveness.

• Tool constraints
During this research, we investigated the possibility of including tool constraints. This requires ac-
cess to the databasewhere all information on tools is stored. This is a possibility; however, establish-
ing this connection within the time frame of this research was not possible. Therefore, this model
does not completely reflect all constraints as they occur in reality. Adding this connection would
improve our model’s validity.

• Solution choices
In discussionwith the operators and productionmanager, we concluded that they have preferences
in the production sequence. These preferences vary and depend on the specific items. Therefore, it
might be beneficial to provide the user of the proposed planning tool withmultiple schedules. From
these schedules, theuser can then choose thepreferred schedule. In ourmodel, only one schedule is
outputted. Therefore, further research could look into howdifferent schedules should be generated.

Addressing these limitations in future research will help to improve the robustness, realism, and effec-
tiveness of the scheduling model. In practice, extending the scope of the planning process could be a
substantial benefit for HTM Aerotec. Furthermore, in the scientific field, model validation with actual
data will expand the base of our model.

7.4 Scientific and practical contribution

In this section, we highlight the scientific and practical contributions of this research. This research offers
both a scientific contribution to the scheduling literature and practical value for industrial implementa-
tion, particularly in the context of flexible manufacturing cells (FMCs). To our knowledge, this is the first
study to design and validate a reactive rescheduling model specifically for FMCs, integrating expanding
time windows with strict computational runtime constraints. Moreover, we have proposed a percentage-
based time window expansion method. This method expands time windows with a set percentage based
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on the current time window size, therefore distinguishing itself with easier comprehension and imple-
mentation. Moreover, we designed four scoring methods to calculate the best insertion position. These
methods can be used in insertion-based heuristics, where the Best-Fit method is used. Lastly, we eval-
uated the model’s generalisability by applying it to other FMCs with varying configurations within HTM
Aerotec, showing the broader applicability of the proposedmodel, using the percentage-based time win-
dow expansion and time-slot-based best-fit approaches.

The practical contribution consists of three parts. First, we identified and implemented necessary adap-
tations to enable the integration of the model by Van Boxel (2024) into the production environment at
HTM Aerotec. These include modifications in the ERP system, an updated fixture inventory, and a direct
connection between the model of Van Boxel (2024) and the ERP system. This integration, along with the
implementation of our rescheduling model, reduces the manual planning effort. Furthermore, the in-
tegration with a prototype interface allows operators to initiate rescheduling independently, enhancing
the flexibility and responsiveness of planning processes. The implementation of the proposed scheduling
process also establishes a structured process andhelps formalise and standardise scheduling procedures.
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Appendices

A Scenario overview

Table 1 and Table 3 provide an overview of the scenarios used in the experiments, as elaborated upon
in Chapter 5. The scenario numbers correspond with the scenario numbers used in that chapter. The
column ’Index’ refers to the first position in the sequence of the initial schedule from which the schedule
is disrupted.

Scenario Index Type Duration [hrs]
0 2794 Execution delay 8.33
1 2466 Operator illness, Emergency order 48.64, 0.00
2 1597 Machine Failure 95.48
3 771 Material unavailability 12.21
4 1846 Operator illness 51.36
5 703 Material unavailability 11.84
6 899 Operator illness 52.52
7 946 Material unavailability 9.21
8 1857 Machine Failure 135.15
9 1607 Execution delay 13.51
10 503 Execution delay 4.94
11 2307 Material unavailability 10.07
12 857 Material unavailability 9.49
13 1852 Execution delay 7.04
14 348 Operator illness 41.12
15 1107 Machine Failure, Execution delay 87.33, 10.21
16 835 Material unavailability 9.67
17 2632 Emergency order 0.00
18 1511 Material unavailability 13.27
19 573 Material unavailability 11.29
20 1515 Execution delay 9.44
21 620 Machine Failure 70.90
22 2572 Operator illness 50.19
23 2624 Operator illness 54.40
24 1712 Machine Failure 72.21
25 1108 Operator illness 52.18
26 2488 Execution delay 13.77
27 99 Machine Failure 91.89
28 1157 Machine Failure, Emergency order 73.27, 0.00
29 151 Material unavailability 10.47

Table 1: Disruption scenarios with the type and duration for machine 538
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Scenario Index Type Duration [hrs]
0 298 Emergency order 0.00
1 1661 Operator illness 52.82
2 1986 Operator illness 51.08
3 680 Operator illness 45.07
4 1562 Machine Failure 76.46
5 2110 Operator illness 49.54
6 1039 Execution delay 12.01
7 1419 Machine Failure 108.77
8 476 Operator illness 40.94
9 472 Execution delay 15.67
10 546 Material unavailability 14.12
11 1051 Execution delay 14.69
12 519 Emergency order 0.00
13 69 Emergency order 0.00
14 1423 Execution delay 8.41
15 1422 Operator illness 57.73
16 2206 Operator illness 51.88
17 1366 Operator illness 48.4
18 560 Material unavailability 9.20
19 227 Operator illness 45.93
20 838 Execution delay 6.94
21 1681 Machine failure 56.12
22 917 Operator illness, Execution delay 47.0, 8.47
23 428 Execution delay 13.65
24 1622 Execution delay 13.21
25 173 Execution delay 9.80
26 1498 Material unavailability 6.64
27 1381 Execution delay 9.59
28 1652 Execution delay 8.09
29 368 Execution delay 7.32

Table 2: Disruption scenarios with the type and duration for machine 539
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Scenario Index Type Duration [hrs]
0 105 Operator illness 45.59
1 222 Material unavailability 7.21
2 91 Material unavailability 7.71
3 67 Material unavailability 9.06
4 43 Machine Failure 53.62
5 285 Material unavailability 11.34
6 39 Material unavailability 8.50
7 70 Execution delay 12.05
8 139 Operator illness 55.35
9 341 Operator illness, Emergency order 50.69
10 8 Machine failure 52.88
11 114 Machine failure 74.93
12 218 Execution delay 6.98
13 19 Emergency order 0.00
14 119 Execution delay 10.52
15 102 Material unavailability 10.72
16 284 Material unavailability 9.28
17 166 Material unavailability 10.34
18 333 Operator illness 48.55
19 229 Machine failure 112.08
20 96 Operator illness 52.24
21 203 Execution delay 10.97
22 346 Operator illness 46.63
23 33 Material unavailability 7.55
24 344 Machine failure 94.88
25 325 Material unavailability 6.27
26 22 Operator illness 49.10
27 167 Machine failure 93.84
28 26 Machine failure 53.71
29 54 Operator illness 45.91

Table 3: Disruption scenarios with the type and duration for machine 533
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B Prototype interface

Figure 1: Main dashboard page of the prototype developed by the Fraunhofer Innovation Platform
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