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ABSTRACT 

UAVs can flexibly monitor roads and have a broad range of applications in the field of vehicle speed 

estimation and traffic monitoring. However, existing UAV datasets are very limited, especially aerial data 

with vehicle annotations are rare and the coverage of the scene is narrow, which hinders the improvement 

of the performance of data-driven deep learning models. To address these issues, a semi-automated 

process is proposed to reconstruct a real outdoor scene, acquire and generate synthetic training data with 

annotations, and use these data to train deep learning models to improve their vehicle speed estimation 

performance. Our process is divided into four main steps: scene reconstruction, data acquisition and 

annotation, model training, and testing and comparing model performance. This method uses synthetic 

data to overcome the limitations of real data by enriching the training samples with realistic synthetic 

images and highly accurate annotations. Such synthetic images have been proved that they can significantly 

improve the robustness and accuracy of the model. In our experiments, models trained with synthetic 

datasets generalise well to real UAV videos, while models pre-trained with real datasets and fine-tuned 

with synthetic datasets have further improved performance. The results show that synthetic data can 

improve the accuracy of detection and speed estimation of deep learning models. 
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1. INTRODUCTION 

1.1. Background information 

Currently, Unmanned Aerial Vehicles (UAVs) are widely utilised in various fields due to their unique 

advantages, including flexibility, ease of deployment, and cost-effectiveness. In agriculture, they assist 

farmers in precisely monitoring crop growth conditions to optimise farm operations (K. Li et al., 2023) 

(Srivastava & Prakash, 2023). In the realm of safety and surveillance, UAVs are employed for search and 

rescue operations, as well as for inspecting large-scale structures like bridges for structural health 

monitoring(Lapointe et al., 2022). In the field of transport, compared with the relatively fixed and small 

observation area of traditional traffic cameras, the characteristics of drones capable of surveying large 

areas at low cost are more obvious(Tilon & Nex, n.d.). For instance, AI-equipped UAVs automatically 

detect and localise road damage through target detection and localisation in drone imagery(Silva et al., 

2023). Additionally, in the field of traffic monitoring, UAVs have also shown promising applications, 

especially in vehicle speed detection. Acquiring vehicle speeds quickly can provide important information 

for traffic management in order to assist the transport sector in coping with the growing traffic problems 

caused by the increase in the number of vehicles. In the field of traffic monitoring, UAVs have also shown 

promising applications, especially in vehicle speed detection. Acquiring vehicle speeds quickly can provide 

important information for traffic management to assist transport authorities in coping with the increasing 

traffic problems caused by the increase in the number of vehicles. When combined with deep learning 

models, vehicle speed detection using UAVs can be divided into three sub-parts, vehicle detection, vehicle 

tracking and vehicle speed estimation. In order to obtain good results for vehicle speed detection, it is 

mandatory to train and obtain a well-performing deep learning model using sufficient data (Balamuralidhar 

et al., 2021). 

 

Many of the UAV applications mentioned above rely to varying degrees on the corresponding deep 

learning models. In contrast, the performance of deep learning models needs to be improved by training 

them using large amounts of data. (P. Zhu et al., 2022). However, due to local legal restrictions or adverse 

weather conditions, UAVs may be unable to fly into specific areas, resulting in a shortage of adequate 

qualitative data for those regions (Andle et al., 2023). In the latest regulations issued by the European 

Union Aviation Safety Agency (EASA) in 2022 (EUR-Lex - 02019R0947-20220404 - EN - EUR-Lex, n.d.), 

EASA member states will delineate 'UAS geographical zones', which are areas established by competent 

authorities to restrict or exclude drone flights. In the Netherlands, flying over government buildings, 

military terrains, and nature reserves, among others, is strictly prohibited. For lightweight drones, their 

flight altitude above ground level should not exceed 30 meters. As for heavy drones, they must maintain a 

distance of no less than 120 meters from the Earth's surface. Within permissible flight zones, flying 

around railways and roads with speed limits exceeding 60 kilometres per hour is prohibited (Waar Mag Ik 

Niet Vliegen Met Een Drone? | Rijksoverheid.Nl, n.d.). Moreover, for particular points of interest (e.g., 

potholes, cracks, and ruts in road damage detection) (Arya et al., 2022), their occurrence in the 

environment is relatively scarce, leading to data imbalance for training deep learning models. To alleviate 
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the current shortage of datasets and to address data imbalances, synthetic datasets are increasingly seen as 

an acceptable alternative. Generally, synthetic data is considered to be a type of data that is generated by 

computer programs and algorithms to simulate the real world. When real data is lacking, simulated data 

can be considered as a substitute and used to train deep learning model (Y. Lu et al., 2023). However, 

collecting synthetic data can be a challenge in itself. At this point, reconstruction of the synthetic 

environment plays an important role in obtaining synthetic data. Synthetic environments can be digital 

replicas of the real world that reflect the changes in the real world to some extent, simulate rare or 

difficult-to-access scenarios in the real world at a relatively low cost, and provide some interactivity. This 

means that a complete synthetic scene can provide a large amount of compliant synthetic data quickly and 

efficiently (Nikolenko, 2019). 

 

To address these challenges, this thesis develops a semi-automated method for reconstructing real-world 

outdoor scenes in a simulation platform and using these models to generate synthetic UAV images. The 

synthetic images are automatically annotated (e.g. vehicle bounding boxes) and used to train deep learning 

models for vehicle detection and tracking. By using synthetic data to train and fine-tune the deep learning 

models, the accuracy of vehicle detection is improved and more reliable speed estimation is achieved when 

applying the models to realistic data 

 

1.2. Objectives and research questions 

1.2.1. Problem statement 

The data collection challenges for vehicle detection, tracking, and speed estimation in the Unmanned 

Aerial Vehicle (UAV) domain pose a significant obstacle to training deep learning models. In this regard, 

there are two key issues: 

 

1. Lack of ground truth data for vehicle detection and vehicle speed estimation. 

The performance of the deep learning model is highly dependent on the availability of high-

quality ground truth data. In some areas, the necessary training data regarding vehicle detection 

and speed estimation are insufficient due to local regulations or weather conditions. Some 

datasets provide usable resources, but it is still difficult for them to cover all potential points of 

interest. For example, Visdrone (P. Zhu et al., 2022), a UAV dataset collected mainly in Chinese 

cities and villages, may make it difficult to include specific situations in other parts of the world.  

2. Lack of ground truth data for vehicle detection and vehicle speed estimation. 

Existing datasets generally lack sufficient samples of rare or edge scenarios, such as unusual 

traffic conditions, rare weather conditions, or special pavement types (Rahmani et al., 2024). 

Such weaknesses may limit the reliability and accuracy of the models in a variety of realistic 

scenarios. 

3. Lack of solutions for the recreation of existing outdoor scenes in simulation software. 

Accurate and realistic reconstruction of existing scenes is critical for meaningful simulations and 

effective algorithm training. However, current methods are not sufficiently detailed to fully 

replicate outdoor scenes, which leads to discrepancies between simulated environments and 
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reality. For instance, it may be difficult for synthetic data to fully simulate real-world lighting 

and reflective conditions as well as highly enriched textures, which are key factors affecting deep 

learning models in object detection tasks (Bai et al., 2024). Therefore, this discrepancy will 

potentially affect the performance of deep learning methods applied to vehicle detection and 

speed estimation in real-world environments (Y. Lu et al., 2023).  

4. Lack of datasets for information on the dynamics of drones and vehicles. 

Many existing datasets do not contain enough information about the dynamics between the 

UAV platform and the moving vehicle. For example, the height, attitude, and speed information 

of the UAV platform as well as the continuous drastic changes in the background brought 

about by its movement (Ibrahim & Deliba¸so˘, 2021); the changes in the image of the vehicle 

due to the movement of the UAV (perspective, scale) as well as the dragging and blurring of the 

vehicle as it moves (L. Lu & Dai, 2024). The lack of similar data in the training dataset may lead 

to unstable vehicle speed estimation based on UAV images and systematic errors. 

 

1.2.2. Research Objectives 

In order to address the problem of recreating existing outdoor  infrastructure scenarios and training data 

shortage and imbalance and to improve the performance of deep learning models to detect vehicles and 

estimate their speed,  this study consists of the following objectives： 

1 To semi-automatically reconstruct a realistic outdoor environment for generating annotated 

synthetic data. 

⚫ What is the suitable method for the semi-automatic reconstruction of the scenarios in this 

study? 

⚫ How to acquire data with pre- annotated in the reconstructed scene? 

2 To improve the vehicle speed estimation performance of deep learning model by training with 

synthetic data. 

⚫ Can deep learning models trained and fine-tuned with synthetic datasets be generalised to 

real-world scenarios in the vehicle speed estimation task? 

⚫ To what extent will vehicle speed estimation performance be improved after fine-tuning 

using synthetic data? 
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2. RELATED WORK 

This section will present existing work in the areas of vehicle speed detection using drones, synthetic data 

generation methods, and the application of synthetic data in augmenting deep learning models for traffic-

related tasks. 

 

2.1. Vehicle Speed Detection 

Vehicle speed detection typically involves three key steps: vehicle detection, vehicle tracking, and speed 

estimation.  

2.1.1. Vehicle Detection 

Deep learning-based vehicle detection methods for UAVs can be broadly divided into one-stage and two-

stage algorithms (Carranza-García et al., 2020). Two-stage algorithms divide vehicle detection into two 

steps. Firstly, generating candidate regions (called region proposal). This step identifies potential regions in 

the image that may contain objects, thus allowing the algorithm to narrow down the search to specific 

regions of interest. In the second stage, these candidate regions are classified to determine whether they 

contain vehicles or other objects. This approach ensures higher detection accuracy as the object 

classification task is performed on a smaller, finer set of candidate regions. The two-stage approach 

typically performs well in situations where detection accuracy is critical but may be slower compared to the 

one-stage approach. 

 

Two-stage algorithms are typically based on R-CNNs (Girshick et al., 2013). For example, by introducing 

a new anchor generation method based on vehicle speed and using Q-squared penalty coefficient 

optimisation, i.e., optimising the first step to improve the performance of the Faster R-CNN model when 

the vehicle is occluded or when the speed varies considerably (Cui et al., 2019). Another study also 

improved the model's vehicle detection performance by improving the first step by suggesting the entire 

input image and a set of objects instead of each region(Yin et al., 2022).  

 

One-stage methods, such as YOLO (Redmon et al., 2016), This method processes the entire image at 

once, skipping the region proposal stage and performing object detection in a single step. One-stage 

methods are faster than two-stage methods because they do not need to generate region proposals before 

classification. However, compared to two-step methods, their accuracy may be insufficient, especially 

when dealing with smaller or overlapping objects (Carranza-García et al., 2020).  
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Figure 1: One-stage detection architecture of RetinaNet and Two-stage detection architecture of Faster R-CNN 

(Carranza-García et al., 2020) 

 

YOLO, in particular, is widely used in vehicle detection tasks due to its speed and accuracy. A recent study 

applied meta-heuristic algorithms to optimise YOLO by independently optimising the hyperparameters of 

the YOLO model using the Grey Wolf Optimiser (GWO), the Artificial Rabbit Optimiser (ARO) and the 

Chimpanzee Leader's Selection Optimisation (CLEO) in order to detect the vehicle's performance under 

adverse weather conditions such as fog and heavy rain (Özcan et al., 2024). In addition, due to its 

lightweight nature, YOLO can run on edge devices, especially UAVs, and a model of YOLO specifically 

designed to be mounted on UAVs is already available. Aero-YOLO is a lightweight version of YOLOv8 

designed for UAV-based vehicle detection. The model combines GSConv and a stochastic attention 

mechanism to enhance the detection and extraction of small vehicle features in aerial imagery and is 

evaluated on the UAV-ROD and VisDrone2019 datasets, which confirms its improved accuracy and 

speed of the vehicle and pedestrian detection (Shao et al., 2024). As of this writing, the latest version, 

YOLOv8, is currently the most advanced and can process video frames in real-time, extracting features to 

detect vehicles efficiently (Reis et al., 2023; Terven & Cordova-Esparaza, 2023).  

 

2.1.2. Vehicle Tracking 

The framework for vehicle tracking has been divided into two categories: non-detectable tracking and 

detectable tracking (W. Luo et al., 2021). Undetectable tracking requires manual setting of the initial 

tracking target and is currently only applicable to tracking targets that have already been specified. Most of 

the mainstream vehicle tracking methods are implemented based on detection tracking (B. Yang et al., 

2020), which involves first detecting target table objects on frames with video decomposition, extracting 

features that includes target edges, shapes, colours, textures, optical flow and HOG (Histogram of 

Oriented Gradients) (Abdallah et al., 2022; Dhatbale et al., 2021), centre of mass or borders in the image, 
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and then tracking the target by matching the feature points or regions with other frames (Aishwarya & 

Kulkarni, 2021). 

 

Fast R-CNN (Ren et al., 2015) and YOLO (B. Yang et al., 2020) are the most commonly used target 

detectors in this method, thanks to their fast detection speed, and then using the corresponding matching 

algorithms, such as Re-identification (RE-ID) (Lin et al., 2019) and intersection over union (IOU) (Wu et 

al., 2022), to match feature points from different frames to achieve the vehicle tracking process. In 

addition to tracking by comparing features between frames, deep learning models can be used to predict 

(Zarindast & Sharma, 2023) the position of the vehicle based on the detection results of the first frame 

using some motion regression algorithms such as the Hungarian algorithm and the Kalman filter (Tyagi et 

al., 2023), and then updating the position based on the detection results. This makes this approach more 

real-time and relatively less computationally expensive. The classical models based on this idea are 

DeepSORT (Wojke et al., 2018) and MOSSE (Dardagan et al., 2021). 

 

DeepSORT (Deep Simple Online Realtime Tracking) is an extension of the SORT (Simple Online 

Realtime Tracking) algorithm that enhances its tracking performance by integrating deep learning 

capabilities into the SORT algorithm. Combining DeepSORT as a tracker with YOLOv5 (as a detector) 

facilitates real-time traffic management through efficient vehicle detection and vehicle tracking.  

 

 
Figure 2: Vehicle tracking based on DeepSORT algorithm (K. Li et al., 2023) 

 

The authors and others demonstrated superior tracking performance by testing DeepSORT on BDD100K 

and PASCAL datasets (K. Li et al., 2023). MOSSE (Minimum Output Sum of Squared Error) Target 

tracking is achieved by calculating the correlation through the filter, and the position of the largest 

response in the returned output response is the centre of the desired target (Huo et al., 2022). In another 

study on traffic monitoring, MOSSE, due to its nature of running on the CPU, enabled it to not interfere 

with target detection algorithms running on the GPU and was able to achieve good accuracy at higher 

execution speeds on a UAV platform (Balamuralidhar et al., 2021). 
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2.1.3. Speed Estimation 

Vision-based vehicle speed estimation is based on vehicle detection and vehicle tracking. After the 

detection and tracking are done, the focus of vehicle speed estimation then shifts to obtaining the variable: 

metre-to-pixel ratio (scale factor), which is the distance to the part of reality corresponding to each pixel. 

For different camera systems (monocular and stereo camera systems), the method of obtaining the scale 

factor varies.(Llorca et al., 2021).  

 

In the stereo vision system, the acquisition of scale factor relies on parallax calculation. For two cameras in 

the stereo vision system that capture feature points in the image of the same scene are matched, the 

parallax of the corresponding points in the image is calculated, then the depth information of the image is 

obtained based on the parallax and the baseline of the camera, and finally, the scale factor is obtained by 

the relationship between the depth information (the distance in the real world) and the position of the 

pixels in the image (Jiang et al., 2019). When the scale factor is obtained, the estimate of vehicle speed can 

be converted to the number of pixel points per unit time of vehicle movement in the video or image when 

knowing the frame rate of the video or the exact timestamp of the image(Jiang et al., 2019). The stereo 

vision system can directly acquire the 3D depth information of the scene, and the scale factor for velocity 

estimation can be directly determined by calculating the depth of the object and the pixel movement, with 

a higher accuracy compared to the monocular system (Llorca et al., 2021). For example, this study of 

speed estimation based on a stereo vision system can achieve a speed estimation error of less than 10 per 

cent at speeds of up to 30km/h (Jiang et al., 2019). Another study achieved a maximum error of -3.24 per 

cent in the estimation of single-vehicle speed at about 46km/h (L. Yang et al., 2019). 

 

 
Figure 3: Example of a stereo vision system that calculates vehicle speed by detecting and matching licence plate 

feature points, where the left side is the vehicle speed calculation process, and the right side is a sample result of the 
matching of licence plate feature points (L. Yang et al., 2019). 
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Since there is only one camera in the monocular vision system, it is not able to derive the depth 

information and obtain the scale factor directly through parallax as in binocular vision. When the target 

scene conforms to homography properties, such as a straight and flat road surface, the scale factor can be 

obtained by a relatively simple linear perspective transformation (T. Huang, 2018). At this point, the 

estimation of speed will remain as a calculation of the number of pixel points of the detected vehicle 

moving between frames (Gunawan et al., 2019). It can also be used to assist in obtaining the scale factor 

when the size of some objects in the input video or picture is known. For instance, when the size of the 

licence plate is known and the frame rate of the video is constant, the distance between the licence plate 

and the camera can be inverted from the size of the licence plate in the image when the internal and 

external orientation parameters of the camera are determined (Vakili et al., 2020). Another case in point is 

the uniform grid lines on the road, which can be used to help generate a virtual reference plane that 

corresponds exactly to the grid lines for estimating vehicle speed (Kim et al., 2018). In addition, inserting 

lines of intrusion or regions of interest (ROIs) in the input video or image is also a common approach. 

For example, this study inserted a line of incursion into the target area, at which point the speed estimate 

would be converted from counting pixel points to the number of frames required for the target vehicle to 

pass through the line of incursion (Javadi et al., 2019). If multiple equidistant intrusion lines are set up 

connecting the two sides of the road at realistic distances, the vehicle speed problem can also be converted 

to the time it takes to reach the next intrusion line from one line since the distance between the intrusion 

lines is known (Dahl & Javadi, 2019). ROIs are used in a similar way to equidistant intrusion lines, in that 

the distance from the start point to the end point of the ROI is fixed, and the estimated vehicle speed can 

be obtained by the time the vehicle takes from the start to the end (Shaqib et al., 2024). 

 

 
Figure 4: Example of Intrusion Lines (left) (Javadi et al., 2019) and ROI (right) (Shaqib et al., 2024) 

 

2.2. Synthetic Data 

Synthetic data has become an increasingly popular tool in the current field of deep learning (Nikolenko, 

2019). Synthetic datasets are usually considered to be data that are not obtained through direct observation 

and are simulated by computer programs or algorithms to generate. Synthetic datasets were first used in 

1989 in autonomous driving (Pomerleau, 1989) and optical flow analysis (Little & Verri, 1989) and have 

evolved with the development of computer vision technology. Compared with real data, synthetic data can 

usually provide enough data for training, and some synthetic data are capable of automatic labelling, which 

will greatly improve the efficiency of creating datasets and significantly reduce the cost. 
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2.2.1. Methods for creating synthetic data 

The creation of synthetic data can be accomplished in a number of ways, each of which is appropriate for 

a particular type of application. One method involves the use of a scenario generator, a piece of software 

or tool specifically designed to create or simulate specific environments and things. It allows the user to 

create the desired virtual environment by specifying parameters and constraints (Musgrove et al., 2014). 

For example, Infinigen, a library of procedural rules and utilities built on Blender. It generates assets 

programmatically, enabling infinite variations and combinations using stochastic mathematical rules, and 

generates images using Blender rendering (Raistrick et al., 2023). Another approach is programming, 

where synthetic data are generated directly by algorithms, such as in early optical flow analyses (Little & 

Verri, 1989), programmatically generated synthetic image data that met the requirements were used to test 

and validate the validity of the model.  

 

 
Figure 5: A set of images generated by Infinigen containing the main rendering image (a), and for it the high-res 

mesh (b), readily yields Depth (c), Surface Normals (d), Occlusion Boundaries (e), Instance Segmentation masks (f), 
2D bounding boxes (g), 3Dbounding boxes (h). In addition, rendering metadata: Optical Flow (i), material 

parameters (j), Lighting Intensity (k) and Specular Reflection (l) are also included (Raistrick et al., 2023) 

 

In recent years, the use of digital content creation (DCC) tools has gained increasing importance due to 

the ability to generate controlled labelled data. Digital Content Creation (DCC) generally refers to the 

creation of digital assets such as 2D/3D graphics, animation, video, sound, etc., and DCC tools are 

software programmes that help users to produce digital assets efficiently. Currently popular DCC tools are 

3ds Max, Blender, Maya or After Effects. In a study of domain randomised 3D rendering to generate 

composite data, Blender was used to perform 3D rendering to produce high quality composite images 

(Tang & Jia, 2023). Compared to traditional DCC tools for creating and rendering high-quality static 

scenes, game engines are better at interactive real-time rendering. Game engines such as Unity and Unreal 

Engine are often used to create synthetic environments due to their real-time rendering capabilities and 

integrated physics engines that can simulate real physical interactions (Pollok et al., 2019). In this study of 

the use of synthetic data to improve the performance of target detection algorithms, the authors obtained 

diverse training data by varying the texture of the target, the camera height and angle, and the illumination 
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of the background in the Unreal engine (Damian et al., 2023). The Unity Perception package is an open-

source toolset for generating synthetic datasets for CV tasks based on the Unity engine implementation. It 

extends Unity's editing components and functionality that allows Unity to directly generate annotated 

datasets (Borkman et al., 2021).  

 

 
Figure 6: A set of images generated by Unity Perception, containing 2D Bounding Boxes (top left), 3D Bounding 

Boxes (top right), Instance Segmentation (bottom left), Semantic Segmentation (bottom right) (Borkman et al., 2021) 

 

Simulators (e.g. Airsim or CARLA) are applications designed to create realistic environments for specific 

purposes, such as simulating vehicle movement in autonomous driving and drone flight. This is usually 

done in combination with a game engine, which provides customised parameters that allow the simulator 

to simulate the physical properties of a virtual space more closely to the real thing by means of a physics 

engine integrated with the game engine. Simulators can also be used to produce synthetic data, and this 

CARLA-based study has generated an instance-based and accurately labelled pedestrian dataset through an 

inverse projection pipeline (Lyssenko et al., n.d.).  

 

 
Figure 7: A set of images generated by Carla (top) (Dosovitskiy et al., 2017) and Airsim(bottom) (Shah et al., 2017) 
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Generative Adversarial Networks (GANs), on the other hand, are a newer approach to generating 

synthetic data. GANs consist of two neural networks, a generator that generates data samples that are 

close to the real one and a discriminator that determines whether the data is real or generated by the 

generator (Figueira & Vaz, 2022). After continuous adversarial training GANs can generate sufficiently 

realistic data that can enhance the diversity of the current dataset. Currently in the field of medical 

imaging, the datasets generated by GANs have been shown to improve the overfitting phenomenon 

caused by the lack of data (Eilertsen et al., 2021). 

 

2.2.2. Scene Reconstruction 

2.2.2.1. Traditional Methods 

A 3D scene reconstructed from a 2D image is an important way to obtain synthetic data. Traditional 3D 

reconstruction methods are mature and widely used, and the key lies in acquiring depth information 

(Dawn & Biswas, 2019). They can be classified into active and passive methods (Aharchi & Ait Kbir, 

2020). Active methods use a light source or active sensors to obtain depth information during the 

reconstruction process, such as structured light technology, which obtains depth information by projecting 

a light pattern onto an object to measure its surface geometry (Geng, 2011). TOF (Time of Flight) laser 

methods, which are commonly used in LIDAR systems, compute the depth information as a measurement 

of the time it takes for a laser pulse to reflect off the object and return to the sensor (Chua et al., 2016). In 

contrast, passive methods do not rely on active illumination and depth information is obtained through 

image features. For example, multi-view stereo vision (MVS) (Q. Zhu et al., 2021) techniques can calculate 

depth by analysing the geometric relationships between multiple camera views of the same 

object.(Furukawa & Ponce, 2010). In addition, another widely used method is Structure from Motion 

(SfM), which usually does not need to obtain the camera parameters in advance, and this method can 

simultaneously obtain the camera parameters and scene information data by analysing the feature points in 

the image sequence, which makes the SfM method less costly and has decimetre-level accuracy (Westoby 

et al., 2012). Thus, the SfM algorithm is widely used in UAV image processing and large-scale scene 

reconstruction. A study conducted in France used the SfM method to reconstruct the historic old town of 

the city of Bordeaux, with an error of less than 5 cm on the case of the Porte de Bourgogne 

reconstruction(Pepe et al., 2022).  

 

2.2.2.2. Deep Learning Methods 

With the development of deep learning, research and exploration of 3D reconstruction using deep 

learning methods has become increasingly active, although traditional reconstruction methods from 2D 

images to 3D are still dominant. Current popular approaches to 3D scene reconstruction using deep 

learning mainly include Convolutional Neural Networks (CNNs), Generative Adversarial Networks 

(GANs), and 3D reconstruction using implicit representations.  

 

Convolutional Neural Networks (CNN) have been widely used in computer vision. In image processing, 

CNN has a significant advantage that it can directly use the image as input, obtain the features in the 

image to complete the matching in order to deduce the depth information and complete the 



USING SYNTHETIC DATA TO IMPROVE THE PERFORMANCE OF UAV-BASED VEHICLE DETECTION AND SPEED ESTIMATION MODELS 

12 

reconstruction of the 3D scene (H. Luo et al., 2024). Deep learning methods are not in conflict with 

traditional 3D reconstruction methods, on the contrary, the mutual participation of these two methods 

can improve the accuracy and efficiency of reconstruction from 2D images to 3D. For example, in this 

study of 3D scene reconstruction using the MSV method, CNNs are used to extract features from images 

at multiple scales and infer a depth map, which improves the efficiency of scene reconstruction and 

performs well in situations such as occlusion of targets and drastic changes in camera viewpoints 

(Abdullah, 2024). Another related study demonstrates the additional advantage of CNNs to generate 

scenes with semantic segmentation. By using incomplete 3D reconstructions and their corresponding 

labelled 2D RGB-D images for training, the model proposed in this study can generate high-quality 

reconstructed scenes with 3D semantic segmentation directly from 2D images without 3D annotations 

over the long training period (J. Huang et al., 2023). 

 

 
Figure 8: Architecture of Siamese networks (Khamis et al., 2018), where two CNNs with shared weight are used to 

extract features from stereo images(H. Luo et al., 2024) 

 

Generative Adversarial Network (GAN) can output relatively high-quality 3D reconstruction results with 

its adversarial training strategy, that is., the generator completes the reconstruction from a 2D image to a 

3D scene while the discriminator is responsible for evaluating the realism of the generated results 

(Samavati & Soryani, 2023). A notable example is GAN2Shape, an unsupervised 3D reconstruction 

method. It uses an ellipsoid as the initial image and renders pseudo-samples with unrefined shapes under 

multiple viewing angles and illumination conditions via a differentiable renderer. Next, the GAN is used to 

invert the original image corresponding to each pseudo-sample and the viewpoints and illumination 

conditions in which it is placed to optimise the 3D shape. After performing these steps iteratively, the final 
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GAN2Shape can generate fine-grained 3D shapes from a single image in an unsupervised situation (Pan et 

al., 2020). 

 

 
Figure 9: GAN2Shape generates 3D shape from a single image (Pan et al., 2020) 

 

3D reconstruction using an implicit representation treats the representation of the 3D scene as a 

continuous function rather than discrete, which allows the method to fit the function through a neural 

network to infer the desired reconstructed 3D shape. Currently popular implicit representations of 3D 

reconstruction are Neural Radiation Field (NeRF) with 3D Gaussian splatting. NeRF treats the 3D scene 

as a continuous volumetric field and obtains a free view of the 3D reconstructed target by using a deep 

neural network to map the 3D spatial coordinates obtained from camera ray sampling in a 2D image with 

the camera's viewpoint to RGB and density values. A study. demonstrated that NeRF can generate high-

precision 3D reconstruction from coefficients of a 2D image scenes (Mildenhall et al., 2020). Different 

from NeRF, 3D Gaussian Splatting represents the whole scene by a series of consecutive ellipsoids with 

Gaussian distributions, each of which contains parameters such as position, colour and transparency, and 

these ellipsoids are rasterised to complete the rendering and to obtain a new view to complete the 3D 

reconstruction (Kerbl et al., 2023). In addition, 3D Gaussian Splatting can also be applied with outdoor 

large-scale scene reconstruction, for instance., GauU-Scene, a large-scale scene reconstruction benchmark 

of more than 1.5 km 2 done on the publicly available dataset U-Scene using 3D Gaussian Splatting, which 

confirms the effectiveness of the method for large-scale scenes (Xiong et al., 2024). 

 

There are several well-established software packages that support the reconstruction of 3D scenes from 

2D images, among which the popular ones using traditional methods are RealityCapture, AliceVision 

(Samavati & Soryani, 2023), 3DF Zephyr; and Lumi AI (NeRF), which uses deep learning methods. 

 

2.2.3. Training Deep Learning Models with Synthetic Data 

2.2.3.1. Related cases 

The use of synthetic data for training deep learning models is starting to become commonplace, and the 

performance of synthetic datasets has been partially validated. For example, UnrealGT (Pollok et al., 

2019), a research paper on generating ground truth datasets using the Unreal Engine, presents a 

framework for generating synthetic test data using the Unreal Engine. With synthetic data generation, large 

amounts of images and metadata can be extracted directly from a virtual scene, which can then be 

customised to meet the specific needs of an algorithm or use case. The paper evaluates their framework by 

generating synthetic test data and using that data to train and evaluate CNN as well as V-SLAM algorithms 

for target detection. The evaluation shows that the synthetic data they generate can be used as a substitute 

for real data, and it can be used in the fields of UAVs and autonomous vehicles. In addition, Sven Burdorf 
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et al. (Burdorf et al., 2022) also investigated the differences between deep learning models trained with 

synthetic data and those trained with real data. The study proposed a power-law-based evaluation method 

to quantify the actual amount of data that can be saved by using synthetic data from a mixed dataset. The 

results show there is no significant difference in performance between pre-training with fine-tuning and a 

training strategy that uses a composite dataset with a proportion of real data between 5% and 20%. 

Furthermore, this study shows that adding synthetic data can help improve object detection performance 

even with a small percentage of real data. 

 

2.2.3.2. Existing Synthetic UAV Datasets 

A substantial number of synthetic datasets have already been created and put into use. For example, "Mid-

Air" (Fonder & Van Droogenbroeck, 2019) is a dataset that simulates UAV flight postures using Airsim 

and renders images through the Unreal Engine, and covers different seasons, weather and lighting 

conditions. Sim2Air (Barisic et al., 2022) is a publicly available synthetic dataset that can be used for UAV 

target detection, which uses Blender for model creation and rendering, with randomly assigned textures 

for reality-based shapes. In addition, another study (Xing & Tzes, 2023) proposed a diffusion model-based 

approach using text and masks as inputs to generate synthetic images via a diffusion model and specifically 

created a usable synthetic dataset. 

 

 
Figure 10: The MidAir dataset contains data showing different climate settings. The top row shows the four 

simulated weather conditions. The bottom row illustrates the seasonal conditions (Fonder & Van Droogenbroeck, 
2019) 
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3. METHODOLOGY 

 

3.1. Dataset Description 

Three datasets will be used in this study, VisDrone-Dataset, External dataset and Synthetic dataset, where 

Synthetic dataset will be collected in this study. 

 

3.1.1. VisDrone-Dataset  

VisDrone2019 dataset contains sub-databases for five different tasks: object detection in images; object 

detection in video; single-target tracking; and multi-target tracking with crowd counting. The entire 

database contains 288 video clips, 261,908 frames and 10,209 still images, as well as accurately annotated 

ground truth data. This research will mainly use the first sub dataset in order to train a deep learning 

model for object detection. 

 

 
Figure 11: Example of the VisDrone dataset 

 

3.1.2. External Dataset  

External dataset is a collection of videos and images of the study area Road Boerderijweg with vehicle 

speed ground truths and bounding boxes; it contains 18 videos with ground truth vehicle speeds and 260 

original images with vehicle bounding boxes. This dataset will be used primarily to test and examine the 

model performance. 
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Figure 12: Example of the External dataset 

 

3.1.3. Synthetic Dataset 

The synthetic data will be collected in the synthetic environment reconstructed in this study and is 

expected to contain approximately 10,000 images and their corresponding label files. This dataset will be 

primarily used to train and fine-tune the target detection capabilities of the deep learning model.  

 

3.1.4. Study Area 

Road Boerderijweg is the object to be reconstructed in this study. It is approximately 440 metres long and 

is located on the campus of the University of Twente, with a motorway in the centre and cycle lanes on 

both sides. The legal maximum travelling speed on this road is 50km/h. The synthetic dataset will be 

acquired from the scene reconstruction of this study area. 

 

 
Figure 13: Study Area 

 



USING SYNTHETIC DATA TO IMPROVE THE PERFORMANCE OF UAV-BASED VEHICLE DETECTION AND SPEED ESTIMATION MODELS 

17 

3.2. Research Methods 

This section highlights and discusses in five subsections the main steps of this study, as well as the 

methodological routes and software used for each step. The first subsection discusses the reconstruction 

of the synthetic environment; the second subsection discusses the acquisition of synthetic data; the third 

section discusses the training and fine-tuning of the deep learning model using real and synthetic data; the 

fourth section discusses the estimation of vehicle speed and compares the performance of deep learning 

models trained using different data. 

 

 
Figure 14: Overall Workflow 

 

3.2.1. Scene reconstruction 

Scene reconstruction is the first step in creating a synthetic environment for training deep learning models. 

The process involves acquiring aerial imagery, generating a 3D mesh and refining the mesh to address 

quality issues, as well as setting realistic lighting conditions and integrating dynamic actors (vehicles and 

vegetation) to further enhance the scene.  

 

 
Figure 15: Scene Reconstruction Workflow 

 

Images were captured using a DJI Phantom 4 Pro V2.0, with its high-resolution on-board camera that 

suitable for generating 3D meshes and texture. Since the study area can be considered as a rectangle, 
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double grid flight pattern was used, consisting of two vertically orthogonal flight paths within the planning 

area (study area) at an altitude of 50 metres, with 80% overlap between the images, to ensure full coverage 

of the study area (Torres-Sánchez et al., 2018).  

 

PIX4D is a commercial photogrammetric software for reconstructing scenes from acquired images. Pix4D 

uses the structure from motion (SFM) to feature-matched camera positions and orientations based on 

overlapping images and then uses multi-view stereo (MVS) to generate a dense point cloud before 

generating a 3D mesh (Koutalakis et al., 2024). This SFM-based approach utilises multi-view geometry to 

accurately reconstruct the 3D structure of the scene (Firdaus & Rau, 2017). Its output (3D mesh with 

textures) provides the necessary content for the creation of the synthetic environment. 

 

The study area, characterized by the presence of vegetation, buildings, asphalt pavement, and dynamic 

objects (e.g., vehicles, pedestrians), introducing occlusions, low-texture surfaces, and inconsistencies in the 

point cloud due to moving objects which in turn causes inconsistencies in the point cloud. These factors 

resulted in defects in the initial 3D mesh, such as holes, spikes, and overly smoothed regions (Haala et al., 

2015). To address these issues, meshes and associated textures were imported into Blender, an open-

source 3D modelling software with advanced editing capabilities. Using Blender's mesh editing tools, 

manual adjustments were made to fill in holes, remove spikes and correct areas of excessive smoothing to 

obtain a mesh that more accurately represents the study area.  

 

 
Figure 16: Example of manually adjusting a 3D mesh. On the left is the preliminary 3D mesh, on the right is the 

refined 

 

The refined mesh was imported into Unreal Engine 5 (UE5) to complete the synthetic scene. Unreal 5 is 

an open-source game engine with a powerful rendering and physics engine that can be used to simulate 

drones and ground transportation systems (Shah et al., 2017). Unreal 5 is also geo-aligned, which means 

that it is possible to get real-world geographic coordinates in a composite environment. By adding the 

CesiumGeoreference actor to the scene, the CesiumGeoreference actor maps global geographic 
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coordinates based on WGS84 into Unreal Engine’s local coordinate system. In this case, other assets in 

the scene will get a geographic coordinate that corresponds to the real world.  In this project, Cesium for 

Unreal was used to provide scene lighting. This plugin for the Unreal 5 engine has a sophisticated 

location-based sunlight simulation, ideal for providing near-realistic lighting conditions for synthetic 

outdoor environments. Use the CesiumSunSky function under the Cesium plugin to set the lighting to 

simulate 9 April 2024 at 1500 hours (DST) and adjust the shadows to reflect real-world conditions. 

Vegetation and vehicles were added to the scene using UE5's asset library, adding a total of 31 vehicles. 

The vehicles were animated using the blueprint system so that they could follow preset routes on the 

roads in the scene to simulate a realistic scene suitable for acquiring deep learning training data. 

 

3.2.2. Acquisition of Synthetic Data 

Obtaining a synthetic dataset is a critical step in accomplishing deep learning model training. This mainly 

includes acquiring the image data from the built synthetic environment and completing the bounding box 

annotation of the image data. 

3.2.2.1. Image Data Capture 

In order to simulate the images obtained from the flight of an unmanned aerial vehicle (UAV), the camera 

character is integrated into the compositing environment developed in Unreal Engine 5 (UE5). The 

camera is mounted on a slide component and is set to traverse a predefined trajectory that simulates the 

UAV's flight path. the Movie Render Queue (MRQ) plug-in in UE5 is used to record video from the 

camera's point of view. the MRQ is configured to render two simultaneous pipelines: the main RGB 

pipeline, which captures the scene inside the camera's view cone, and a custom rendering pipeline, which 

generates a mask specific to the vehicle by isolating it from the background. vehicle-specific masks by 

isolating the vehicle from the background. This two-channel setup ensures pixel-level correspondence 

between RGB frames and masked frames. 

 

A custom stencil layer was activated in the UE5 project to enable vehicle masking. Each vehicle role is 

assigned a unique stencil value (1 to 40) that is rendered as a different colour in the custom channel, 

excluding background elements. In order to support subsequent bounding box extraction, vehicle masks 

require highly distinguishable colours. Assuming a scene with up to 40 vehicles, 40 unique colours need to 

be defined in the HSV colour space with constraints on hue (H: 0-255), saturation (S: 0.75-1.0) and value 

(V: 0.75-1.0). The greedy algorithm maximises the Euclidean distance between these colour points, thus 

ensuring separation and minimising overlap (Glasbey et al., 2007). The generated HSV values are mapped 

to stencil values and rendered as RGB colours in a custom channel. MRQ then renders the RGB and 

mask pipelines using a synchronised sequence of frames, ensuring a one-to-one correspondence between 

the frames of the two pipelines. 
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Figure 17: The generally Rendering Pipeline used in this study 

 

3.2.2.2. Bounding Box Generation 

The bounding box annotations were generated using Python and the OpenCV library, which provides 

powerful contour detection and bounding box functions that are well suited for high contrast masked 

images. However, since UE5 is unable to fully separate the main render pipeline from the custom render 

pipeline, this has resulted in post-processing effects of the main pipeline being introduced into the custom 

pipeline, which has resulted in noise in the colours of the vehicle masks in the masked images and the 

number of vehicles (and the resulting unique colours) differing from frame to frame. These issues need to 

be resolved by quantifying the colours in the masked images. 

 

The colour quantification of the masked images is implemented by means of the k-means clustering 

algorithm (Thompson et al., 2020). First, the number of unique vehicle colours is determined by 

converting each masked image (UE5 outputs images in RGB colour space) to HSV colour space, where 

the H-channel mainly affects colour differentiation. The histogram of H-values is calculated, and the 

number of different peaks plus 1 peak for the background estimates the total number of unique colours. 

This value served as the k parameter for the k-means clustering algorithm, which is able to accommodate 

different numbers of vehicles in different frames. K-means quantifies the image colours, reclassifying 

similar colours in the masked image into a uniform colour to match the number of vehicles, ensuring that 

each vehicle is represented by a single colour. Separate masks are created for each colour (each vehicle) 

identified by k-means in addition to the background, and OpenCV’s morphological operations are used to 

filter out noise and connect nearby blocks of colour representing the same vehicle.  
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Figure 18: Example of color quantization 

 

The contours are detected in a separate mask for each vehicle using OpenCV's findContours function, 

which saves information about the contours' position in the image in YOLO format and ensures that they 

are paired with their respective synthetic RGB frames. 

 

3.2.3. Training and Fine-Tuning of The Deep Learning Model 

In this study, YOLOv8n (You Only Look Once, version 8 nano), the smallest and fastest version of the 

YOLOv8 family, was selected for its efficiency on devices with limited computational resources, such as 

UAVs (Terven & Cordova-Esparza, 2023). Two datasets were used: the VisDrone dataset, an open-source 

collection of UAV-captured images, and a custom synthetic dataset, as detailed in Section 4.2. For each 

dataset, the YOLOv8n model was trained from scratch. Training was performed on a laptop with an 

NVIDIA RTX 3060 graphics card, using a batch size of 16, a learning rate of 0.01, and running 100 

epochs per dataset. 

 

Subsequently, fine-tuning was performed by training each model on an alternate dataset: models initially 

trained on VisDrone were fine-tuned using the synthetic dataset and vice versa. The training parameters 

were kept constant. All four generated models, two from initial training (VisDrone training and synthetic 

training) and two from fine-tuning (VisDrone to synthetic and synthetic to VisDrone) were saved for the 

following performance evaluation. 

 

3.2.4. Vehicle Speed Estimation and Model Performance Comparison 

This section describes the methodology for estimating vehicle speeds using a pipeline that integrates 

vehicle detection, tracking and speed calculation. Four YOLOv8n models, trained and fine-tuned as 

described in Section 3.2.2, are used with the ByteTrack algorithm to process the test video, which enables 

performance comparisons to be made with known vehicle speeds. 

 

The vehicle speed estimation pipeline consists of three interrelated components: vehicle detection, 

tracking and speed calculation. Vehicle detection is performed using four YOLOv8n models, each trained 
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and fine-tuned on a combination of the VisDrone and Synthetic datasets, as described in Section 3.2.3. 

Tracking is implemented using ByteTrack, a multi-target tracking algorithm that employs Kalman filtering 

to predict target trajectories and uses the Hungarian algorithm to correlate detections with trajectories (Y. 

Zhang et al., 2022). Unlike conventional trackers that prioritise high-confidence detection boxes, 

ByteTrack associates all detection boxes, enhancing the robustness of low-score detection. Speed 

estimates are derived from positional changes between frames.  

 

 
Figure 19: Vehicle Speed Estimation workflow 

 

The test video, taken from an external database, depicts a vehicle travelling from east to west at a constant 

speed of 15km/h, captured by a UAV flying in the same direction at a fixed altitude of 50 metres above 

the vehicle and recorded at 30 frames per second (fps). The trained and fine-tuned YOLOv8n model 

processes each frame individually to detect the vehicle, and the resulting bounding box is fed into 

ByteTrack for tracking throughout the sequence. 

 

Vehicle speed estimation is achieved by analysing the positional displacement between successive frames. 

For each detected vehicle, the geometric centre of its bounding box is represented as the vehicle's position 

in the current frame, mathematically represented as: 
Equation 1 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑒𝑛𝑡𝑟𝑒 = (
𝑥0 + 𝑥1

2
,
𝑦0 + 𝑦1

2
) 

where (𝑥0, 𝑦0) represents the top-left corner and (𝑥1, 𝑦1) represents the bottom-right corner of the 

bounding box. The pixel displacement is then determined by calculating the Euclidean distance between 

the centres of the bounding boxes (P_d) in consecutive frames:  
Equation 2 

𝑃𝑑 = √(𝑥𝑐 − 𝑥𝑝)
2
+ (𝑦𝑐 − 𝑦𝑝)

2
 

Where (𝑥𝑐 , 𝑦𝑐), (𝑥𝑝, 𝑦𝑝) denote the centre of detection bounding box of the current and previous frame, 

respectively. It should be noted that YOLOv8n uses an image format in which the pixel coordinate origin 

of the image is located in the upper left corner of the image, which also means that when the centre of the 

detection bounding box is shifted horizontally to the left relative to the previous frame, the value of P_d is 

negative. Given the fixed altitude and orthogonal view of the UAV, the Ground Sampling Distance 

(GSD) is derived from the camera's sensor size, focal length, and flight altitude and is determined to be 

0.016519 metres per pixel. The actual displacement between frames is calculated by multiplying the pixel 

distance by the GSD, and the vehicle speed (V) in metres per second is calculated as: 
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Equation 3 

𝑉 = 𝑈 − (
𝑃𝑑 × 𝐺𝑆𝐷

𝑓
) × 𝐹 

where f is the frame interval, which is the frame difference between the two detected frames; GSD is the 

ground sampling distance; F is the video frame rate; and U is the UAV speed.  

 

 
Figure 20: Schematic diagram of how to calculate the speed of a vehicle, the values of the parameters are fictitious. 

 

Each of the four YOLOv8n models (VisDrone training, synthetic training, VisDrone to synthetic fine-

tuning, and synthetic to VisDrone fine-tuning) was independently integrated into the pipeline. The 

estimated speeds of each model were compared to known vehicle speeds to evaluate their performance. 
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4. RESULT 

This section presents the results of the study and is divided into four subsections corresponding to the 

methodological steps outlined in the Research Methodology section. These subsections detail the results 

of scene reconstruction, synthetic data acquisition, deep learning model training and fine-tuning, and 

vehicle speed estimation and model performance comparison. 

4.1. Scene reconstruction 

The result of the scene reconstruction is an Unreal 5 (UE5) project containing a mesh body of the study 

area reconstructed by Pix4D from aerial images captured by DJI Phantom 4 Pro V2.0 and refined by 

Blender, 31 animated vehicles and vegetation from the UE5 asset library. This project also integrates the 

cesium plugin to freely adjust solar lighting to reflect real world conditions. Figure 10 provides a rendering 

of the final synthesised scene, demonstrating the realistic integration of the dynamic Actor and lighting, 

suitable for generating synthesis training data. 

 

 
Figure 21: Rendering of a composite scene in an Unreal Engine project 

 

4.2. Acquisition of synthetic data 

A synthetic dataset generated from the UE5 environment that captures changes in vehicle position, 

lighting conditions and camera angles. It contains 10,172 training sets, 1,396 validation sets and 2,759 test 

sets, totalling 14,327 images with a resolution of 1920x1080 pixels. All images are labelled with their 

corresponding yolo format labels, as well as RGB masks with drawn bounding boxes for rendering. Figure 

11 shows a sample RGB image and a sample mask image demonstrating the clear separation of the vehicle 

from the background. 
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Figure 22: Final image (top left), masked image (top right), Final image with bounding box (bottom right), masked 

image with bounding box (bottom right) 

 

4.3. Training and Fine-Tuning of The Deep Learning Model 

The performance of the YOLOv8n model was evaluated with four sets of controlled experiments 

(train43-train46) with different training strategies. These models include Train43, which was trained from 

scratch using a custom synthetic dataset; Train44, which was trained from scratch using the VisDrone 

dataset containing real UAV images; Train45, which was pre-trained using the synthetic dataset and fine-

tuned on the VisDrone dataset; and Train46, which was pre-trained using the VisDrone dataset and fine-

tuned on the VisDrone dataset pre-training and fine-tuning on the synthetic dataset. All models are trained 

for 100 epochs on NVIDIA RTX 3060 GPUs with an image size of 640×640 pixels and a learning rate of 

0.000298. Table 1 summarises the validation metrics, including the precision and recall for IoU thresholds 

of 0.5 (mAP50) and 0.5 to 0.95 (mAP50-95).  

 
Table 1: Validation Metrics for YOLOv8n Model  

Model mAP50 mAP50-95 precision recall train/box_loss train/cls_loss 

train43 0.96 0.87 0.99 0.92 0.37 0.22 

train44 0.77 0.51 0.86 0.67 1.1 0.58 

train45 0.77 0.51 0.87 0.68 1.07 0.56 

train46 0.96 0.87 0.99 0.92 0.35 0.21 

 

Train43 has a mAP50 of 0.960 and a mAP50-95 of 0.872, with a precision and recall of 0.987 and 0.915, 

respectively, which is significantly higher than that of Train44 (mAP50 of 0.766 and mAP50-95 of 0.506, 

with a precision and recall of 0.861 and 0.670, respectively). The synthetic model (Train43) maintained 

high precision at all confidence thresholds, whereas the VisDrone-trained model (Train44) showed a larger 
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decrease in precision at higher confidence levels. This reflects the robust detection performance of the 

model on the synthetic dataset in the restricted region, while the model trained from scratch on the real 

dataset (Train44) exhibits relatively poor performance due to the complexity of the real-world data. Fine-

tuning improves performance: Train45 is fine-tuned on VisDrone after synthetic pre-training, and mAP50 

reaches 0.771 and mAP50-95 reaches 0.512, which is slightly higher than Train44, with precision and recall 

improving to 0.866 and 0.676. Train46, fine-tuned on the synthetic dataset after VisDrone pre-training, 

maintained an mAP50 of 0.960 and improved mAP50-95 to 0.874, with precision and recall of 0.990 and 

0.916. The precision-confidence and mAP50 with mAP50-95 curves are displayed as visualised in Figure 

12. These results suggest that pre-training with synthetic data followed by fine-tuning using real data 

improves the performance of real-world detection (Nowruzi et al., 2019). Correspondingly, fine-tuning the 

real data model using synthetic data maintains high accuracy in the synthetic environment. 

 

 
Figure 23: mAP50 with mAP50-95 curves and Precision-confidence curves 

 

4.4. Vehicle Speed Estimation and Model Performance Comparison 

The speed estimation performance of the four YOLOv8n models was evaluated on a test video in an 

external dataset depicting a vehicle that is expected to travel at approximately 15 km/h, captured by a 

UAV travelling in the same direction as the vehicle, at a fixed altitude of 50 metres and at a frame rate of 

30 frames per second (fps). 

 

Table 2 summarises the performance comparison results of the four models. As a special note, the truth 

(ground truth) speeds of all models are computed based on the same video frames as the speed estimation 

task to ensure data source consistency. 
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Table 2：Performance comparison results for the four models 

Model Training Scenario MSE RMSE MAE 
Average speed 

(Estimation) 

Average speed 

(Ground 

Truth) 

Estimated 

deviation 

rate 

Train 43 Synthetic only 26.72 5.17 3.82 14.19 17.36 -18.27% 

Train 44 VisDrone only  29.94 5.47 4.17 13.46 17.19 -21.68% 

Train 45 Synthetic → VisDrone  27.60 5.25 3.99 13.68 17.18 -20.40% 

Train 46 VisDrone → Synthetic 26.37 5.13 3.81 13.99 17.20 -18.67% 

 

The results of the model performance comparisons showed that all models systematically underestimated 

the true speed, with a mean estimate ranging from 13.46 to 14.19 compared to the true speed of 

approximately 17.03 km/h. Among the four training scenarios, the model pre-trained with VisDrone and 

fine-tuned based on synthetic data (Train46) had the lowest Mean Absolute Error (MAE) of 3.809, closely 

followed by the model trained using only synthetic data (Train43) with a MAE of 3.8156. The model 

trained only based on VisDrone data (Train44) has the highest MAE of 4.1737, while the model pre-

trained based on synthetic data and fine-tuned based on VisDrone data (Train45) has an intermediate 

MAE of 3.9868. The RMSE with estimated speeds reflects the same results. Train46 performs the best, 

having the lowest REMS value and the speed estimate closest to the ground truth, Train43 and Train45 

follow in that order, while Train44 performs the worst, with an RMSE of 5.4719 (the highest) and the 

largest difference between the speed estimate and the ground truth value. The difference in speed 

estimation performance of the models generally matches the difference in target detection performance of 

the models in the previous section. 
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5. DISSCUSION 

This chapter discusses the performance of the 4 models with the limitations of the vehicle speed 

estimation study, and potential improvements. 

5.1. Limitation 

This section discusses the limitations of the methodology and results of the speed estimation study and 

the possible causes of these problems. 

 

5.1.1. Systematic errors in speed estimation results 

In the speed estimation experiments, all the models tended to underestimate the average speed of the 

vehicles in the test videos, and it is possible that this systematic error is due to the occlusion of the targets 

in the test environment, which significantly affects the accuracy of the pixel displacement (P_d). In the 

speed estimation experiments, all the models tended to underestimate the average speed of the vehicles in 

the test videos, and it is possible that this systematic error is due to the occlusion of the targets in the test 

environment, which significantly affects the accuracy of the pixel displacement (P_d). The velocity 

formula： 𝑉 = 𝑈 − (
𝑃𝑑×𝐺𝑆𝐷

𝑓
) × 𝐹 used in this study has a velocity （V） that is very susceptible to the 

P_d value, which is affected by the accuracy of the detection bounding box. In the test scenario, the 

vehicle is travelling from east to west and the UAV is flying parallel to the vehicle in the same direction. 

Ideally, the target vehicle is approximately positioned in the centre of the frame and produces a small 

horizontal displacement to reflect its motion relative to the UAV. This means that the P_d value is also 

theoretically very small most of the time. However, some of the roads in the test video were affected by 

vegetation occlusion, and the target detection frame could not accurately fit the target vehicle contour. 

The figure below shows the detection frame and the change of its centre point position due to the 

occlusion. As shown in the figure, the occlusion of vegetation leads to an unexpected vertical shift of the 

centre point of the target detection frame between frames.  
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Figure 24: Vegetation occlusion causes shift in the centre point of the target detection edit box 

 

Since the application of this formula assumes that the trajectories of the target vehicle and the UAV are 

parallel, changes in the vertical displacement of the centroid are incorrectly assumed by this formula to be 

in the direction of the vehicle's forward motion, which is the change in the horizontal direction of the 

centroid, leading to an inflated P_d value and consequently a lower velocity estimate V. These 

underestimated velocities are ultimately reflected in the average (estimated) speed, resulting in a 

systematically low estimate of V. 

 

5.1.2. Inaccurate Speed Estimation Results 

The accuracy of the speed estimates was also lacking, with Mean Absolute Errors (MAE) ranging from 

3.81 to 4.17 and Root Mean Square Errors (RMSE) ranging from 5.13 to 5.47. This could be caused by 

tracking errors. The velocity estimation pipeline used in this study relying on ByteTrack for target tracking, 

which uses Kalman filtering and the Hungarian algorithm to correlate detection frames across frames. 

However, in the presence of occlusions, small targets, or fast-moving vehicles, ByteTrack's performance 

may degrade, resulting in misassociations or lost trajectories (Y. Zhang et al., 2022). Such errors directly 

affect the calculation of the P_d value, leading to inaccurate speed estimation. Inaccurate velocity 

estimation caused by tracking problems is also a common problem in UAV-based target velocity 

estimation. In addition to this, the calibration of the Ground Sampling Distance (GSD) also introduces 

errors. The conversion of pixel displacement to actual distance depends on an accurate GSD, and since 

this experiment assumes that the height of the UAV is constant, a fixed GSD value (1.34146 cm/px) is 

used. However, any small change in the UAV altitude and potentially lens distortion introduces systematic 

errors and leads to larger errors in the derived metric of velocity estimation. Fixed GSD values cannot 

cope with this challenge, while using accurate GSD calibration can minimise the error that occurs when 

converting pixel displacements to actual distances, and thus ensure the accuracy of speed estimation (J. Li 

et al., 2019). Model architectural constraints may be another reason affecting the performance of speed 

estimation. YOLOv8n is a lightweight model in the YOLOv8 family optimised for efficiency, and 

although it may be suitable for edge devices with limited computing resources, its ability to accurately 

detect targets in complex environments is at a disadvantage compared to the other models in the family 
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(Sohan et al., 2024). For detection of moving vehicles in complex environments, especially in occluded 

environments, more robust architectures may be required. 

 

5.1.3. Dataset Design and Its Influence on Model Performance 

The design of the synthetic dataset may have introduced bias into the speed estimation results. Models 

trained or fine-tuned on synthetic data (e.g., Train43 and Train46) performed well in both speed 

estimation and detection metrics, possibly due to the automatically generated, highly consistent bounding 

box of the dataset. Since the speed estimation algorithm in this study is calculated based on the cross-

frame displacement of the centroid of the target's detection box, and the consistency of the detection box 

is important for maintaining target identification during tracking, this directly affects the accuracy of the 

speed estimation (Wojke et al., 2018). On the contrary, real datasets like VisDrone may introduce 

bounding box errors in the training set due to manual labelling, which may explain why Train44 

(VisDrone only) versus Train45 (synthetic dataset pre-training, VisDrone fine-tuning) did not take the 

advantage in terms of detection and speed estimation. In addition to this, although the synthetic dataset is 

not real, its scenarios are reality-based and highly similar to the test data, which carries a potential risk of 

overfitting. 

 

5.2. Improvements 

This section focuses on several possible improvements proposed to address the limitations mentioned in 

the previous section. 

 

5.2.1. Reduce Systematic Errors 

In the previous section it was considered that the main reason for the general underestimation of the 

speed of the target vehicle by the four models was the unexpected vertical displacement of the centre 

point of the target detection box due to occlusion. A potential solution is to use only the horizontal 

component of the pixel displacement. Since the UAV can be considered to be flying horizontally parallel 

to the target vehicle in the test conditions of this study, discarding the displacement on the vertical 

component of all frames avoids the effect of vertical offset due to occlusion, thus providing a more 

accurate speed estimate. Another possible approach is to compute the displacement vector of the target 

vehicle. By calculating the change in the position of the centre point of the target vehicle in successive 

frames, the vector of the current frame is obtained, which in turn can approximate the forward direction 

of the target vehicle. Accordingly, the displacement of the target vehicle relative to the UAV in the 

forward direction can be known, avoiding the risk of vertical drift of the centre point and obtaining more 

accurate data. 

 

5.2.2. Improve Speed Estimation Accuracy 

As mentioned in Section 5.1.2, the performance of ByteTrack may be degraded in the presence of 

occlusion, small targets, or fast-moving vehicles, and replacing ByteTrack with a tracker that performs 
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better in occlusion conditions, such as Deepsort, is an option. Compared with ByteTrack, DeepSort can 

better deal with occlusion environments, and it can handle the problem of target occlusion and tracking 

breaks by fusing the appearance features, re-identifying and recovering the target trajectory after the 

occlusion or the brief loss of the target, which improves the continuity and robustness of tracking (Wojke 

et al., 2018). In addition, projects combining DeepSort with YOLO models as well as are widely used (Bin 

Zuraimi & Kamaru Zaman, 2021). The use of dynamic, precisely calibrated GSDs instead of fixed GSDs 

can also improve the accuracy of vehicle speed estimation. Using a UAV-mounted sensor to obtain its 

real-time attitude and coordinates, and calculating the GSD value accordingly, can reduce the error 

introduced by changes in the UAV's altitude and attitude to a certain extent. Replacing the YOLOV8n 

with a more powerful model from the same family, for instance, YOLOv8m or YOLOv8l, could also 

potentially improve the accuracy of speed estimation by improving the accuracy of target detection. 

 

5.2.3. Model Training and Dataset Design Improvements 

For the VisDrone dataset, data enhancement and preprocessing can be performed on the dataset during 

training, such as random cropping, expanding, horizontal flipping, random scaling, etc. as well as colour 

dithering (brightness, contrast, saturation adjustment). Such processing can enhance the recognition ability 

of the single-stage detector (YOLOV8n) for complex backgrounds and small targets (Z. Zhang et al., 

2019). For synthetic datasets, to avoid the potential risk of overfitting, data generated in other synthetic 

scenes can be introduced to increase the diversity of the training data. 
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

This study develops a practical pipeline for semi-automatically reconstructing realistic outdoor scenes and 

generating synthetic images with annotations. Image data were acquired using a UAV, and a highly realistic 

scene was created by using a combination of well-established commercial and open-source software: 

Pix4D, for the preliminary generation of high-resolution 3D mesh; Blender, for the manual refinement of 

the mesh to correct for imperfections (holes, spikes); and Unreal Engine 5, for the combination of 3D 

mesh and dynamic actors, as well as the application of geo-referenced lighting conditions to create a near-

realistic environment. In this synthetic scene, vehicles are placed along the road and animated to simulate 

real traffic situations. The image data was captured by a virtual camera simulating a UAV flight along a 

predetermined flight path. A two-channel rendering process was used: an RGB channel for the scene and 

a mask channel to set a unique colour for each vehicle. This setup ensures pixel-level correspondence 

between the RGB frames and the vehicle masks. A contour detection procedure using OpenCV is then 

performed to automatically extract bounding box annotations from the mask channels. In summary, a 

suitable scene reconstruction method was found and based on this a synthetic dataset (over 10,000 

images) was generated which contains accurate, pre-annotated bounding boxes for each vehicle. 

 

The results show that synthetic data can significantly improve UAV-based vehicle speed estimation 

models. We trained four YOLOv8n detection models under different scenarios: (1) using only synthetic 

data; (2) using only VisDrone (real) data; (3) synthetic pre-training followed by fine-tuning using 

VisDrone; and (4) VisDrone pre-training followed by synthetic fine-tuning. The model trained on 

synthetic data (Train43) achieves very high detection accuracy (mAP50 ≈ 0.96), with precision and recall 

of about 0.99/0.92, which is much higher than that of the model based on real data (Train44, mAP50 ≈ 

0.77). Notably, the same level of detection performance was achieved by a model pre-trained on real 

images after fine-tuning the synthetic data (Train46, mAP50 ≈ 0.96). The results were similar when it 

came to vehicle speed estimation on real UAV test videos: the Train46 model (VisDrone→synthesis) 

performed the best, achieving the lowest mean absolute error (MAE ≈ 3.81m/s), closely followed by the 

synthetic-only model (MAE ≈ 3.82m/s). In comparison, the VisDrone-only model had a MAE ≈ 4.17 

m/s. Thus, fine-tuning using synthetic data reduces the velocity estimation error by approximately 10%. 

These findings confirm that training and fine-tuning with synthetic datasets can well improve the 

performance of deep learning models for vehicle speed estimation. 

 

Overall, both research objectives established were achieved. A semi-automated workflow was developed 

to reconstruct a realistic outdoor scene and generate a synthetic dataset with accurate labelling. This 

dataset improves the performance of the deep learning model; training and fine-tuning using the synthetic 

dataset has higher detection accuracy and more accurate speed estimation. Although the synthetic 

environment is a highly simplified representation of the real scenario, the synthetic scene is still highly 

matched to the test scenario, and thus there is a potential risk of overfitting. Nonetheless, the current 



USING SYNTHETIC DATA TO IMPROVE THE PERFORMANCE OF UAV-BASED VEHICLE DETECTION AND SPEED ESTIMATION MODELS 

33 

findings still indicate that synthetic data can effectively enhance the performance of vehicle speed 

estimation algorithms. 

 

6.2. Research Questions & Answers 

1.1 What is the suitable method for the semi-automatic reconstruction of the scenarios in this study? 

In this study, the synthetic scene reconstruction of the study area was reached by combining the use 

of UAV imagery data with well-established commercial and open-source software. This semi-

automated approach (photogrammetry - manual editing - game engine simulation) proved to be 

effective: it allowed a fast and cost-effective reconstruction, keeping the geometry of the real scene 

while allowing fine-adjustments and dynamic elements. The final synthetic environment reproduces 

the real road and supports data generation. In summary, the appropriate approach is to generate a 3D 

mesh using Pix4D, then perform manual mesh correction in Blender and simulate it in UE5. 

 

1.2 How to acquire data with pre- annotated in the reconstructed scene? 

Acquire synthetic images by applying a virtual camera in UE5 that moves on a preset track and 

captures synchronised RGB and split-mask images using the Movie Render Queue. This two-channel 

rendering ensures that the RGB image and the corresponding colour mask image are captured in 

parallel for each frame. To generate the annotations, the mask images were post-processed using 

Python: K-mean clustering was applied to merge the vehicle colours, and OpenCV outline detection 

was used to extract a tight bounding box around each vehicle. This approach ensures that each 

composite frame is paired with an accurate object label. Through this process, this study generated 

over 10,000 images with bounding box labels in the reconstructed scene. 

 

2.1 Can deep learning models trained and fine-tuned with synthetic datasets be generalised to real-world 

scenarios in the vehicle speed estimation task? 

This was evaluated and tested by training the YOLOv8n detector under four scenarios (synthetic only, 

real only (VisDrone), synthetic → real fine-tuning, real → synthetic fine-tuning) and then going 

through a consistent speed estimation process on real UAV speed videos. The results show that the 

model using synthetic generalises well to real test environments, and that the model pre-trained with 

synthetic data is more accurate than the model trained with only realistic data. 

 

2.2 To what extent will vehicle speed estimation performance be improved after fine-tuning using 

synthetic data? 

The performance of the speed estimation was improved by fine-tuning using synthetic data. The mean 

absolute error was reduced from 4.17 km/h to 3.81 km/h, a reduction of 0.36 km/h (about 8.7%) in 

absolute terms. The relative error was also reduced from -21.73% to -18.70%, a reduction of 3.03%. 

These improvements prove that the synthetic training data enhances the estimation accuracy of the 

modes. Overall, the performance of vehicle speed estimation was improved by about 8%. 
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6.3. Recommendations for future work 

Based on the results of the current study, there are the following recommendations to address the 

limitations of the study and extend its applicability. A much-needed improvement is to reduce the 

occlusion-induced errors in speed estimation by adjusting the calculation of pixel displacements. For 

example, calculating a displacement vector centred on the vehicle, or using only the horizontal component 

of pixel displacement to avoid vertical bias caused by foliage occlusion. It is also recommended to upgrade 

the tracking component: replacing ByteTrack with a more powerful tracker such as DeepSort (which 

incorporates appearance features and re-identification) can reduce identity switching due to tracking loss 

in case of occlusion. Additionally, implementing dynamic GSD calibration using real-time UAV attitude 

data to adjust the pixel-to-distance conversion can also improve the accuracy of velocity estimation, 

especially in the case of changes in UAV altitude or attitude. In terms of synthetic data, in order to prevent 

overfitting, future work should focus on extending the scene diversity by introducing more variations in 

lighting, weather, texture and traffic situations, which will help the model to generalise to different 

environments. Finally, experimenting with larger detection models (YOLOv8m or YOLOv8l) to further 

improve detection accuracy and thus speed estimation accuracy. By exploring these directions, subsequent 

research could enhance the quality of synthetic datasets and the accuracy as well as reliability of UAV-

based vehicle speed models. 
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