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Abstract—Cycling is a popular and indispensable mode of
transportation, but there are many traffic accidents involving
cyclists. Predicting cyclist trajectories could prevent accidents
by sharing them with surrounding traffic for timely warnings
and interventions. However, bicycles pose challenges due to
their resource constraints, and existing studies classified future
maneuvers rather than predicting trajectories, lack systematic
comparisons of sensor placement and modality, and used experi-
mentally constrained datasets. This paper introduces two custom
lightweight multi-modal models for cyclist trajectory prediction:
BicycleNet, a Temporal Convolutional Network (TCN), and a
Convolutional Long Short-Term Memory Neural Network (CNN-
LSTM) model. The models are evaluated on unseen cyclists and
new locations using two large, realistic datasets comprising sensor
data from 63 participants, including four inertial measurement
units (IMUs) mounted on the helmet, handlebar, frame, and
pedal, as well as GPS and a forward-facing camera. BicycleNet
achieves an average distance error of 1.86 m and a final distance
error of 3.50 m over a prediction horizon of 5 seconds. Both mod-
els achieved similar prediction accuracy, while BicycleNet uses
3.5× fewer parameters than the CNN-LSTM. To determine an
optimal sensing configuration, an analysis into sensing modality
and IMU placement was carried out, which revealed that the
best single IMU placement is on the pedal, closely followed by
the frame and handlebar, while the helmet performed worst.
Combining all four IMUs with GPS provides the best overall
performance. Lastly, the results show promise for deployment
in real-world collision avoidance applications, with a relative
positional error of 9–17% at 5 seconds into the future.

Index Terms—Ego Trajectory Prediction, Cycling, IMU, GPS,
Camera, Deep Learning, TCN, CNN-LSTM

I. INTRODUCTION

Cycling is a popular mode of transportation in Europe due
to its affordability, sustainability, and health benefits. However,
over the past decade, the number of cyclist fatalities in crashes
remained constantly high, while the number of fatalities of
other modes of transport has decreased between 10% and 40%
[1]. Consequently, it is important to improve cycling safety in
traffic.

Passive protection measures such as helmets and airbags
[2] reduce the risk of serious injuries, but many cyclists
choose not to wear them, and they cannot prevent accidents
from occurring. In contrast, active protection measures such as
collision avoidance systems have been proposed as a solution
to improve traffic safety [3]. In order to prevent crashes,
these systems rely on predicting the future trajectories of
the ego vehicle and nearby traffic participants. Consequently,
trajectory prediction has become an important and substantial
area of research. This prediction task has been studied for
motorized vehicles in structured environments like highways
[4], [5], with more recent literature focused on handling VRUs
in urban environments [6]. These trajectory prediction systems
are particularly important for autonomous vehicle (AV) path
planning, for which there are many proven methods to predict
ego and other traffic participant trajectories in real-time [7].
AVs are equipped with advanced sensors, such as radar,
LiDAR, and cameras to monitor the behavior of surrounding
traffic. These sensors require a line of sight to measure the
motion of other traffic participants, such as bicycles, which can
be obstructed and result in noisy data. Another popular sensing

approach for prediction setups is to use stationary sensors,
such as cameras, to observe a piece of road or intersection
[8], [9]. However, stationary setups also face the same indirect
sensing inaccuracies as AVs.

A more accurate way to measure the motion of cyclists
for trajectory prediction is to place sensors on the bicycle
or cyclist. These bicycle-mounted sensors can measure more
subtle and intricate motion features that can be future ego
path indicators, such as hand gestures, head rotation [10],
paddle movement, and countersteering [11]. Ego bicycle tra-
jectories can then be communicated via vehicle-to-vehicle
(V2V) communication to surrounding vehicles, such as AVs, to
prevent collisions. However, it remains a challenge to transfer
the existing trajectory prediction methods for AVs and the
necessary hardware to bicycles due to their limited capacity to
carry resource-intensive sensing and computing technology.

Existing predictive cycling methods that used bicycle-
mounted sensors were limited in several key ways: they used
a single or a small number of sensors, trained and evaluated
on experimentally constrained datasets, rely on access to
explicit maneuver labels, and/or classified a small set of
future maneuvers rather than predicting trajectories. This work
aims to fill the research gap by proposing two lightweight
trajectory prediction models, designed to integrate multi-modal
data from GPS, a front-facing camera, and IMUs mounted
on the handlebar, frame, pedal, and helmet. The models are
trained and evaluated on two separate large datasets, collected
by the Pervasive Systems research group from a total of 63
participants that cover routes through real traffic. The main
contributions are as follows.

• Multi-Modal Ego Cyclist Trajectory Prediction: This
work proposes two novel models for predicting future
ego cyclist trajectories from multi-modal inputs including
IMU, camera, and GPS data. The first model, BicycleNet,
is a TCN and the second is a CNN-LSTM architecture.
Both models do not require future maneuver labels in the
input as needed by existing work.

• Sensing Configuration Analysis: Evaluation of how
IMU sensor placement and sensing modality affect tra-
jectory prediction, identifying the optimal configuration
for performance.

• Realistic Situation Investigation: Deployment and val-
idation on a large realistic dataset collected in urban
traffic environments, ensuring generalizability to different
cyclists and locations.

The remainder of the paper is structured as follows. Section
II reviews related works that deal with both bicycle-mounted
sensors and deep learning methods. Section III outlines the
methodology. Section IV describes the data collection, in-
cluding the sensing hardware and datasets. The experimental
results are presented in Section V. Section VI discusses the
limitations of the study. Finally, Section VII concludes the
paper.
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TABLE I: Comparison of studies on ego cyclist activity recognition, maneuver prediction and trajectory prediction that use
bicycle-mounted sensors and deep learning.

Study Sensors Task Dataset Model Results

BikeSense [12] IMUs on frame, handlebar, ped-
als, pocket, and backpack

Activity
recognition

Small, 140 m straight road,
experimentally controlled

CNN-LSTM 0.97 F1-score

HeadMon [10] Helmet IMU Maneuver
prediction

Large, campus and city traf-
fic, 20 participants

CNN-LSTM >85% precision, 4s in advance

RideGuard [13] Handlebar IMU Maneuver
prediction

Large, campus and city traf-
fic, 20 participants

CNN-LSTM 94% precision, 5s in advance

[11] IMUs on handlebar and frame Maneuver
prediction

Small, single artificial inter-
section, 20 participants, ex-
perimentally controlled

CNN-LSTM 0.72 F1-score, 0.5s in advance

[14] Front camera, unspecified IMU,
turn signal indicator

Conditional
trajectory
prediction

Medium, 5 hours of cycling,
single participant, city traffic

FCN + CNN,
conditional on
maneuver label

∼ 3.5m final distance error1 (H = 5 s)

BicycleNet
(this work)

Front camera; IMUs on helmet,
pedal, frame, handlebar; GPS

Trajectory
prediction

Large, campus and city traf-
fic, 63 participants

TCN + ResNet 1.86m average distance error, 3.50m
final distance error (H = 5 s), when
using IMU & GPS only

II. LITERATURE REVIEW

This section reviews the existing literature. It begins by
comparing trajectory prediction and maneuver prediction, then
motivates the use of deep learning and introduces two state-
of-the-art model architectures. Next, it discusses limitations
in sensor setups and dataset realism of related work. A
complete overview of cycling studies involving deep learning
and bicycle-mounted sensors is provided in Table I.

Most existing predictive cycling research has focused on
maneuver prediction, rather than trajectory prediction, but
there is a key distinction between these two tasks. Maneuver
prediction, as in [10], [11], and [13], outputs one of several
predefined classes such as ‘left turn’ or ‘straight’, whereas
trajectory prediction outputs a time window of future spatial
points. The advantage of trajectory prediction over maneuver
prediction is that the extent and timing of the maneuver are
apparent from the future spatial points. This helps to detect
potential dangers such as collisions more precisely. One study
has addressed ego cyclist trajectory prediction using a con-
ditional imitation learning (CIL) approach [14]. Their model
is given the future maneuver class as input, obtained from
a turning indicator, and uses class-specific output branches.
This dependence on predefined intent limits the model’s ap-
plicability in real-world scenarios where the cyclist’s intent
is not explicitly indicated (e.g. when no turning indicator is
used). For that reason, this work will focus on direct trajectory
prediction without CIL, to capture both the timing and extent
of cyclist maneuvers, and to make predictions without relying
on future maneuver labels.

A recent survey on trajectory prediction methods for au-
tonomous vehicles [7] highlights that deep learning models
outperform traditional physics-based and probabilistic models
for trajectory prediction, especially in complex scenarios.
This shows the promise of deep learning for ego cyclist

1The FDE was not explicitly reported in [14], instead it was estimated
from four maneuver-specific line graphs showing the distance error of their
best model over the prediction horizon.

trajectory prediction, but deploying such models on bicycles is
challenging due to resource constraints, which are an important
consideration in model design. One model architecture that has
shown its capability for the cycling maneuver prediction task
is CNN-LSTM, which is a combination of the convolutional
neural network (CNN) and long short-term memory (LSTM)
layer, such as the one used in HeadMon [10]. The main benefit
of this architecture is that it is quite computationally inexpen-
sive, referring to the use of convolutional layers. However, the
architecture also contains LSTM and attention layers, which
form a bottleneck in terms of computational efficiency. This
architecture has also been adopted in several other studies [11],
[12], [13], which is why a custom CNN-LSTM architecture is
included as one of the models in this work. Moreover, a com-
petitor model to CNN-LSTM is the Temporal Convolutional
Network (TCN), which is a type of CNN that uses causal 1D
convolutions to capture long-term time dependencies. TCNs
offer similar (and sometimes better) performance with lower
memory usage and faster inference [15] [16], making them
especially suitable for resource-constrained setups such as
bicycles. For that reason, the second custom model included in
this work, called BicycleNet, uses a TCN-based architecture.

To gain insight into cyclists, recent research has investigated
the deployment of inertial measurement units (IMUs) on
bicycles. An IMU combines an accelerometer and a gyroscope
to measure acceleration and angular velocity, each in three
dimensions. IMUs offer the benefit of being light-weight, low-
cost, and energy-efficient and are widely used for human
activity recognition [17], which implies their potential in a
cycling context. Table I shows that IMUs have been placed on
the frame, handlebar, pedals, and helmet, to classify behav-
iors (such as braking, coasting, or turning [12]) and predict
maneuvers [10], [11], [13]. One study incorporated a multi-
modal setup, combining an IMU with a camera and a turn in-
dicator [14] for CIL-based trajectory prediction. These studies
demonstrate that bicycle-mounted sensors can be effective, but
none of the studies systematically compare sensor placements
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and modalities. One contribution of this work is a systematic
comparison of sensor placement and modality to identify an
optimal sensing configuration.

Furthermore, data realism and model evaluation strategies
vary strongly across related work. Ranging from controlled
or single-location environments [11], [12] without traffic in-
teractions, to realistic routes through urban traffic with many
participants [10], [13], as detailed in Table I. Adding to that,
the training and testing set split is typically performed based on
participant id (as in [11]) or location (as in [14]), or, in some
cases, left unspecified (as in [10], [13]). These approaches
risk spatial and/or participant leakage, making it difficult to
assess how well models generalize to unseen locations and
new cyclists, which is crucial for real-world deployment. For
that reason, this work uses two datasets with a total of 63
participants, each recorded on a different route with a different
set of participants. This enables an evaluation of the model
with both a location-based and participant-based train-test
split, ensuring realistic performance assessment without data
leakage.

In summary, several key limitations in existing research
persist. First, maneuver prediction has been extensively ex-
plored, but trajectory prediction remains understudied, with
only one prior work [14] addressing it under the restrictive
condition of future maneuver labels. Second, sensor place-
ments and modalities have not been systematically compared,
which is important to determine an optimal sensing setup
for resource-constrained bicycles. Third, most studies rely on
experimentally constrained datasets or use train-test splits that
leak location or participant information, limiting real-world
applicability. This work addresses these gaps by proposing
two novel models that perform multi-modal unconditional
trajectory prediction, one based on the TCN architecture and
one based on the CNN-LSTM architecture. The models are
validated on realistic datasets with an analysis to optimize
sensor configuration to enable efficient cyclist collision avoid-
ance.

III. METHODOLOGY

This section describes the methodology for ego cyclist tra-
jectory prediction, which is based on deep learning. The data
processing pipeline is presented, which covers model input
and output design, IMU feature extraction, normalization, data
augmentation, and detailed model architectures.

A. Model Input & Output

The model takes as input multi-modal sensor data from
GPS, n IMUs (with n ≥ 1), and a forward-facing RGB
camera, all mounted on a bicycle. These inputs are combined
into a time window (tp − W, tp] of duration W seconds at
the current point in time tp. The configuration of a time
window and its parameters can be seen in Figure 1. A window
contains time-series data from GPS and IMU collected over
the past W seconds, and a single camera image at tp. More
precisely, it consists of Wi = W · fimu IMU timesteps and
Wgp = W · fgps GPS timesteps of the past trajectory, where

Time

Window Start

Prediction Horizon

tptp - W

Present

Detection Window

tp + H

Horizon End

Past GPS (lat, lon, v)
at 1 Hz

n IMUs (ax, ay, az, gx, gy, gz)
at 200 → 25 Hz

Future GPS (lat, lon)
at 1 Hz

Camera image

W = 5 s H = 5 s

Fig. 1: Time window parameters.

Region of Interest crop

Datetime redacted

350px

576px

20% 20%

30%

5%

Fig. 2: Image region of interest crop example.

fimu and fgps denote the sampling rates of the IMU and
GPS sensors, respectively. A combined IMU object is created
by stacking the dimensions of n IMUs, each recording 6
dimensions (ax, ay, az, gx, gy, gz), having shape (6n,Wi). A
GPS object is created which contains the latitude, longitude,
and velocity of the past trajectory, which is of shape (3,Wgp).
The IMU and GPS objects, along with the image object, are
passed to different input branches of the model, as shown later
in Section III-E.

For a time window, only a single image is captured at
tp. This is less computationally expensive than processing
multiple frames, and the most recent frame contains the most
relevant information about the future path. Including additional
frames in a time window might be redundant as the dynamics
of the bicycle are already captured by the IMU and GPS.
Subsequently, the image from the camera is scaled and cropped
to retain the most important information for predicting the
future trajectory, mainly the road layout, while filtering out
parts such as the sky and nearby buildings that do not add
any value. The image is scaled to 540×960 and cropped by
removing 20% from both the left and right sides, 30% from the
top, and 5% from the bottom. An illustration of this cropping
procedure is shown in Fig. 2. After cropping, an image object
is left with shape (3, 350, 576), corresponding to the three
RGB channels and spatial dimensions.

The ground truth corresponding to a time window is the
future GPS trajectory during the prediction horizon (tp, tp+H]
of duration H seconds. This trajectory contains only latitude
and longitude (not velocity), resulting in Wgf = H · fgps
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future GPS timesteps. The resulting ground-truth trajectory
therefore has shape (2,Wgf ). Moreover, IMU data is not
used for positional ground truth in this work, because the
urban dataset (see Section IV-B) only contains accelerometer
(with the effect of gravity) and gyroscope measurements,
without any reference to absolute position. Estimating the
position from IMU requires double integration, which leads
to significant drift over time that cannot be corrected without
reference sources such as compass readings.

B. Feature Extraction: IMU Integration

As an optional step, the change in angle and velocity
over a time window can be included as additional features.
These quantities indicate how much the bicycle has rotated
or accelerated in the last few seconds, which might help the
model better capture overall movement patterns. From visual
inspection of plots, these changes often provide a clearer sense
of trajectory than raw accelerometer and gyroscope signals,
especially when trying to understand maneuvers such as turns
or braking. Using Equation 1, the change in angle ∆θi around
axis i is computed as the integral of angular velocity gi over
time.

∆θi =

∫ tp

tp−W

gi dt (1)

When the bicycle is moving, the angular velocity measured
by the gyroscope reflects the bicycle’s rotational movement,
which is 0 when stationary. In the case of acceleration, if effect
of gravity is also measured, it needs to be removed before
integrating. The average acceleration āi is estimated over the
entire recording to approximate the gravity component. Using
Equation 2, the change in velocity ∆vi along axis i is then
computed as:

∆vi =

∫ tp

tp−W

(ai − āi) dt (2)

The original IMU object of shape (6n,Wi) can then be
extended by stacking these features to obtain an updated IMU
object of shape (12n,Wi).

C. Normalization

This subsection describes how a time window and its ground
truth are normalized for deep learning, ensuring that all input
features contribute equally during training and improving
model convergence. Firstly, all raw IMU dimensions are
individually normalized using z-score (see Equation 3), with
the standard deviation σ estimated across the entire training
dataset and the mean µ estimated from the specific recording
to which the time window belongs, to account for slight IMU
orientation differences that affect the gravity vector. For the
angle and velocity features derived from the IMUs, µ and σ
are computed after generating all time windows, since these
features depend on the chosen window size W . Also, the
velocity feature of the past GPS data is normalized using z-
score, with µ and σ estimated across the whole training set.

z =
x− µ

σ
(3)

6.85885
6.85890

6.85895
6.85900

Longitude

52.23625

52.23630

52.23635

52.23640

52.23645

52.23650

52.23655

52.23660

52.23665

La
tit

ud
e

tp W

tp

tp + H

Future
Past

(a) Raw trajectory

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

y

tp W
tp

tp + H
Future
Past

(b) Normalized trajectory

Fig. 3: Normalization of past and future GPS trajectories of a
time window.

Secondly, images are normalized using z-score, where each
of the three RGB channels is normalized independently using
the mean and standard deviation estimated across the entire
training set. Third, the normalization of the past and future
GPS trajectories (latitude, longitude) consists of several steps.
A time window’s combined past and future GPS data is
first converted from geographic coordinates to metric UTM
coordinates. The combined trajectories are centered at the
origin by subtracting the current point in time tp, which is
the last point of the past trajectory. The current heading is
estimated as the angle between the last two points of the past
trajectory and used to rotate the coordinate system so that
the cyclist’s current heading aligns with the x-axis. Finally,
the scaling factor s (see Equation 4) is applied so that the
magnitude of the trajectory is normalized based on the average
cycling speed vavg (in m/s), the number of points, and the GPS
sampling rate fgps. The result of the trajectory normalization
strategy is shown in Figure 3.

s =
1(

vavg · Wgp+Wgf

fgps

) (4)

D. Data Augmentation

To improve the generalization and robustness of the model,
data augmentation is applied during training. The augmen-
tations are applied probabilistically to normalized data upon
batch retrieval. The following list shows the data augmenta-
tions applied specific to each sensing modality.

• GPS: Random scaling is applied to both the past and
future GPS trajectories with a probability of 0.4 and
a scaling range of ±8%, and Gaussian noise (standard
deviation 0.01) is added to the past GPS trajectory with
a probability of 0.4.

• IMU: All IMU data (including integrated signals) are
scaled with a probability of 0.4 and a scaling range of
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±8%. Additionally, Gaussian noise (standard deviation
0.08) is added to each IMU signal with a probability of
0.5.

• Image: Gaussian noise with a standard deviation ran-
domly sampled between 0.04 and 0.11 is added with
a probability of 0.5. Images are also randomly resized
(with padding or cropping to maintain resolution) with a
probability of 0.4 and range of ±10%.

E. Trajectory Prediction Deep Learning Models

Two custom models are proposed: one based on the tempo-
ral convolutional network architecture, called BicycleNet, and
another based on a CNN-LSTM architecture. The models are
compared in terms of predictive performance and computa-
tional efficiency in the experimental results section.

1) CNN-LSTM: The CNN-LSTM architecture has shown
its capability in predictive cycling studies, as instances of this
architecture are used in [10], [11], [12], and [13]. Unlike those
studies, this work designs an architecture to support trajectory
prediction and to handle multiple input modalities. The CNN-
LSTM model designed by this work can be seen in Figure 4.
Each input modality has their own branch. The IMU branch
is exactly the model of HeadMon [10]. It consists of two
1D convolutional layers (Conv1D) with kernel size 7. The
first layer has 16 channels, and the second has 4 channels.
Each convolution is followed by a ReLU activation and a
1D maxpooling operation with kernel size 2. The features are
then passed through an LSTM layer with 64 hidden units. An
attention layer is applied to the LSTM output, followed by a
dropout layer with a rate of 0.5. The IMU branch output is
produced by a dense layer that maps the 64-dimensional input
to an output of size 2H = 10. In addition, the GPS branch is a
smaller CNN-LSTM model. It starts with a 1D convolutional
layer with kernel size 3 and 5 output channels, followed
by a ReLU activation. The features are passed through an
LSTM with 16 hidden units. The last time step of the LSTM
output is taken and passed through a dropout layer with a
rate of 0.3. Finally, a dense layer maps the output to the
desired size 2H . The camera path consists of an untrained
ResNet-18 model [18] whose final dense layer is removed
and replaced by a small fully connected network. ResNet-18
was chosen for its lightweight design, suitability for resource-
constrained setups, and it experimentally showed the deepest
and earliest training convergence compared to other popular
image backbones. ResNet’s 512-dimensional output is passed
through a dropout layer (p = 0.2), followed by a dense
layer reducing it to 256 dimensions, another dropout layer
(p = 0.2), and finally a dense layer that projects to 2H . After
that, the output of the three different modality branches is
concatenated along one dimension and passed through a fully
connected network consisting of three layers with 64, 32, and
2H neurons, respectively. The output is then reshaped, after
which the predicted trajectory is obtained, having the shape
(H, 2).

2) BicycleNet: BicycleNet is based primarily on the Tem-
poral Convolutional Network (TCN) architecture [15], and also

includes Time-Distributed Dense (TDD) layers and ResNet-
18. The TCN architecture was chosen for its low memory
usage and fast inference, as it avoids bottleneck layers such
as LSTMs and attention mechanisms, making it ideal for real-
time use on resource-constrained devices like bicycles. The
model architecture of BicycleNet is shown in Figure 5. If
no activation function is specified, then the linear activation
function is used. The IMU and GPS data are each passed
through a separate TCN model, which consists of residual
blocks that apply 1D causal convolutions. A residual block can
be seen in Fig. 6, which is taken directly from [15]. A block
is specified by the following parameters: kernel size, number
of channels in/out, dropout, and dilation. In the Figure of the
BicycleNet architecture, the configuration of residual blocks
is specified in each TCN rectangle. For example, the TCN
that processes the IMU data consists of 5 residual blocks, all
having 10 channels. In each TCN, the dilation rate is set to
2l, where l is the block index starting at 0, which means that
the dilation doubles each block. Furthermore, an important
concept is the receptive field, which is defined as the range
of input visible by a single neuron at the output of a TCN.
This is directly affected by the number of layers, kernel size,
and dilation. For a constant kernel size k and dilation rate
2l, the receptive field R can be calculated using Equation 5.
The receptive field of the IMU branch TCN is 125 timesteps
matching Wi and the receptive field of the GPS branch TCN
is 7 timesteps encapsulating Wgf .

R = 1 + (k − 1)

L−1∑
l=0

×2l (5)

Moreover, TDD layers are used to extract features individually
at each timestep by applying a dense layer across the channel
dimension. A TDD layer does not mix information across
timesteps, only across channels/features within each timestep.
For each TDD layer, the number of channels in (Cin) and out
(Cout) is indicated in Figure 5. Together, the TCN residual
blocks and TDD layers maintain the temporal structure and
sequence length of the time-series data in the first half of the
model. This allows the model to reason on temporal structure,
which is a key aspect of this architecture. The last step of the
GPS branch is a linear interpolation from Wgp to Wi, after
which the IMU and GPS channels are concatenated and passed
to a small fusion network. The ‘IMU & GPS Fusion’ network
consist of three TDD and one dense layer. The TDD layers
here combine the channels of the two modalities, reducing
eventually to only 2 channels for x and y position. The dense
layer reduces the window size Wi to the prediction horizon
of H = 5s. The camera path is identical to that used in the
CNN-LSTM model, where a single image is passed through
an untrained ResNet-18 whose final dense layer is replaced
by a small fully connected network with dropout that outputs
2H features. The image branch output is then concatenated
with the output of the fusion network. The last step is a
fully connected network, after which the predicted trajectory
is obtained, having shape (H, 2).
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Fig. 4: Custom CNN-LSTM model for trajectory prediction with multi-modal input. The feature extraction of the IMU and
GPS mainly consist of 1D non-causal convolutions and LSTM. The IMU input branch is the model from HeadMon [10].
Camera input is processed through ResNet-18 [18].

n IMUs
Shape: (6n x Wi)
(ax,ay,az,gx,gy,gz)

GPS
Shape: (3 x Wg)

(lat,lon,v)

TCN
C = [10,10,10,10,10]

Kernel size = 5
Dropout = 0.4
Dilation = 2l

TCN
C = [6,4]

Kernel size = 3
Dropout = 0.0
Dilation = 2l

TD
D

C
in  = C

out  = 10
TD

D
C

in  = C
out  = 4

Linear
Interpolate

From
 W

g  to W
i

Shape:
(14 x Wi)

C
oncat

C
hannels

TD
D

C
in  = 14, C

out  = 20

R
eLU

(if cam)

(if no cam)

D
ense

in = W
i , out = H

TD
D

C
in  = 20, C

out  = 10

TD
D

C
in  = 10, C

out  = 2

Predicted
Trajectory

Shape: (H, 2)

Camera Image
Shape: (3 x 350 x 576) ResNet-18

Flatten

Shape:

(4H x 1)

C
oncat

D
ense

in = 4H
, out = 32

R
eshape

D
ense

in = 32, out = 2H

IMU & GPS Fusion

D
ense

in = 512, out = 256

D
ense

in = 256, out = 2H

D
ropout
p = 0.2

D
ropout
p = 0.2

Shape:

(2H x 1)

Fig. 5: Custom trajectory prediction model with multi-modal input, referred to as BicycleNet. Features from the IMU and
GPS input are extracted using temporal convolutional networks, which consist only of residual blocks (see Figure 6). Time-
distributed dense layers are used to combine the IMU and GPS modalities. Camera input is processed through ResNet-18 [18].

IV. DATA COLLECTION

This section describes the datasets that were used to evaluate
the methods. Two separate rounds of data collection have
been conducted by the research group Pervasive Systems of
the University of Twente, each having the same hardware
sensing configuration. Subsection IV-B describes dataset 1, the
urban dataset, which was used to train and validate the model.
Subsection IV-C describes dataset 2, the campus dataset, which
was used to test the model.

A. Sensor Hardware on the Bicycle

To collect data from participants, a helmet and a medium
sized women’s electric city bicycle were equipped with a cam-
era, a GPS, and four IMUs. The mounting orientation of each
sensor can be seen in Figure 7. A Nokia C32 smartphone (P )
was mounted on the handlebar to record latitude, longitude,
and speed of the GPS at a sampling rate of fgps = 1 Hz.

For dataset 1, the phone was running a custom application to
record the GPS variables, while for dataset 2, the application
‘Phyphox’ was used. Also, an Akamduman Action Camera
(C) was mounted facing forward on the handlebar to record
the cyclist’s point of view at a resolution of 1920×1080 and 30
frames per second. In addition, Inertia ProMove Mini inertial
measurement units were placed on the handlebar (IHB), frame
(IF ), pedal (IP ), and helmet (IHM ) each recording three-axis
accelerometer and three-axis gyroscope data at a sampling rate
of 200 Hz.

All devices were manually time-synchronized by this work,
because each device has its own internal clock. The four
IMUs were automatically synced via an Inertia Gateway
device and therefore share a common clock. Synchronization
between GPS, IMU, and camera was achieved by performing a
left–right–left shake of the handlebar at the beginning of each
recording. The motion of the shake exhibits distinct features,
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Fig. 6: A residual block from the TCN architecture. This
Figure is taken directly from [15]. The parameters of one
residual block are: kernel size, number of channels in/out,
dropout, and dilation.

such as a start and end point, and clearly defined maximum
left and right orientations, which appear in all sensors and
can be used to align their timelines. Specifically, the shake
was visible in the handlebar IMU (IHB), the video footage
from the front-facing camera (C), and, in the urban dataset,
the phone’s onboard accelerometer (P ). By manually aligning
these features across modalities, a common time zero was es-
tablished. Due to the difference in software used on the phone,
a slightly different approach was used for the campus dataset,
where GPS heading was aligned with compass readings from
IHB . A detailed explanation and visualizations of the time-
synchronization process can be found in Appendix A.

Using the aforementioned data collection setup, two sepa-
rate datasets were collected, each with a different route and set
of participants. Before the ride, participants were instructed
to follow all standard traffic and safety rules during the
experiment. They were not given any information that could
influence or bias their natural cycling behavior. The bicycle
saddle and helmet were adjusted to each participant’s comfort.
Although there was no imposed speed limit during the ride, the
built-in motor assistance of the e-bike was limited to 25 km/h.
Participants had the option of using motorized assistance, but
some chose not to use it.

B. Dataset 1: Urban (Training & Validation Sets)

The collection of this dataset was conducted by mem-
bers of the Smart Connected Bikes project of the Pervasive
Systems research group of the University of Twente [19].
Three instrumented bicycles were developed following the
sensor configuration presented in the previous subsection. Data
collection was carried out with 42 participants cycling in an
urban environment during April and May 2024. Each partici-
pant used one of the three instrumented bicycles. Participants

Fig. 7: The bicycle and helmet that were used for data
collection equipped with camera (C), phone (P ), and four
IMUs (IHM , IHB , IF , IP ). The mounting orientation of the
IMUs and their individual coordinate systems are denoted
using vectors.

ranged from 20 to 80 years of age, included both males and
females, and had varying levels of cycling experience ranging
from a few months to several years. The recordings were made
between 10 am and 6 pm and each participant cycled the
route shown in Fig. 8 between one and three times in a row,
depending on their desired level of participation. The route is
4.0 km long, covers a diverse range of traffic scenarios, and
takes about 12 minutes on average to complete. To navigate
the route, a second phone was mounted on the handlebar
which displayed the route in the application ‘Komoot’. The
route starts on the university campus, passes through a park,
crosses Hengelosestraat (a major arterial road) and continues
alongside it, passes through urban living and shopping areas in
the district Twekkelerveld, and finally returns to the university
campus. This route consists of 16 unique turns and many in-
tersections. In total, the route was traversed 94 times, resulting
in 18 hours and 36 minutes of cycling data. The dataset is split
into the training and validation set using an 80/20 ratio, based
on participant id.

C. Dataset 2: Campus (Testing Set)

A second round of data collection was conducted with 21
new participants using only one instance of the bicycle on
the University of Twente campus in May 2024 by I. Kaniščev
[20]. The participants consisted of males and females who
were all students, which means a narrower distribution in both
age range and level of experience compared to dataset 1. Each

7



Fig. 8: Route of the urban dataset, which is divided into the
training and validation set. The route starts and ends on the
University of Twente campus in Enschede and passes through
the district Twekkelerveld. Each participant cycled this route
up to three times clockwise.

participant cycled the rectangle shape route shown in Figure
9, which is located fully within the university campus. The
route first consists of two laps counterclockwise, a u-turn, and
finally two laps clockwise, resulting in a total distance of 4.6
km containing a total of 16 turns. No map was displayed and
participants were told to memorize the route, so that they did
not have to look down to the handlebar for navigation. The
start, u-turn, and finish points are all at the same location. In
addition, the route contains fewer intersections and less traffic
compared to the urban dataset. On average, it took participants
12 minutes to cycle the whole course, making a total of 4 hours
and 9 minutes of cycling data, which makes up the testing set.

V. EXPERIMENTAL RESULTS

This section presents the experimental setup and results.
First, the training procedure and evaluation method are de-
scribed. Then, the results are shown for the sensing config-
uration analysis in terms of IMU placement, IMU feature
extraction, and sensing modality. Finally, BicycleNet and the
CNN-LSTM are compared in terms of predictive performance
and suitability for real-time use.

A. Training Setup & Parameters

This subsection describes the parameters that define the
model input and output as well as the setup that was used to

Fig. 9: Route of the campus dataset, which is used as the
testing set. Each participant cycled the rectangular lap twice
counterclockwise and twice clockwise. The route is fully
located within the University of Twente campus.

train the deep learning models. First of all, the window size W
is fixed to 5 seconds, as it captures early maneuver preparation
while offering a good balance between performance and com-
putational resources, as shown in [10] and [13]. The prediction
horizon H is also set to 5 seconds, as motivated in [14].
This allows enough time for downstream assistance systems
to react (e.g., a 4-second warning [21]) while still maintaining
high accuracy and avoiding the uncertainty of longer horizons.
The sampling rate of the IMUs (fimu) is sampled at 25
Hz, as it offers a good trade-off between preserving relevant
motion information, suppressing high-frequency road noise,
and maintaining computational efficiency, as shown in [10] and
[13]. A GPS sampling rate (fgps) of 1 Hz is used, reflecting
the typical rate available on smartphones such as the one used
in the datasets.

Following that, the 42 participants from the urban dataset
(see Section IV-B) were randomly split (depending on the
seed) into 33 for training and 9 for validation, following
an approximate ratio of 80/20. The 21 participants from the
campus dataset (see Section IV-C) were exclusively used for
the testing set. To extract samples from the recordings, the
sliding window method was employed with an overlap of 3
seconds (60%) between consecutive windows. The samples
within each set were randomly shuffled. In total, there are
33, 042 combined training and validation samples, and 7, 382
testing samples. Secondly, the optimization of the hyperpa-
rameters and selection of the loss function were performed
through experimentation where the performance metrics on
the validation set were evaluated. Several loss functions were
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experimented with, these include: mean squared error (MSE)
loss, velocity loss, cosine similarity tangent loss, and their
various combinations. The loss selected from experimentation
is the MSE loss, as it was found to have the smoothest training,
best/earliest convergence, and lowest distance error on the val-
idation set. In addition, the Adam optimizer was used with an
initial learning rate of 0.001 and the batch size was set to 80.
The models were trained for 45 epochs, corresponding to the
point at which the validation loss converged. For each training
run, the model with the lowest validation loss across the
epochs is selected for evaluation on the testing set. Following
that, the seed was set for all random operations (excluding data
augmentation). Doing so allows for comparable experiments,
as for example the model weights are initialized in the same
way and the same validation set is used in each run. Runs are
repeated 12 times with different seeds to add significance to
the results.

Training was conducted on a single compute node from the
high-performance cluster (HPC) of the University of Twente
due to the large size of the dataset. The compute node consists
of an NVIDIA Tesla L40 GPU with 48 GB of dedicated video
memory (VRAM) and 256 GB of system memory (RAM). The
computational bottleneck is image data, which is significantly
larger compared to IMU and GPS data. To optimize storage
and to fit into system memory, the images were stored in
float16 format, while all other data remained in float32. Since
the original images are 8-bit integers, converting them to
float16 introduces negligible loss in precision compared to
float32. The full dataset is approximately 170 GB, which
would have been nearly twice as large if the images had been
stored in float32. For faster training, the entire dataset is loaded
into the system memory of the node, as lazy loading was found
to be considerably slower in practice.

B. Model Evaluation

This subsection describes the distance-based metrics used
to assess the model’s trajectory prediction performance. Given
an actual and predicted future trajectory, the average distance
error (ADE) measures the mean Euclidean distance between
the two trajectories across the prediction horizon H , as shown
in Equation 6. This metric captures how well the model tracks
the overall shape of the trajectory.

ADE =
1

H

tp+H∑
t=tp

|p̂t − pt| (6)

Here, p̂t is the predicted position and pt the ground truth
position at time step t. ADE is then aggregated across all
samples in the test set to compute the average performance.
Additionally, the final distance error (FDE) is computed, which
considers only the last point of the predicted trajectory. This
is shown in Equation 7.

FDE = |p̂tp+H − ptp+H | (7)

FDE is especially important in scenarios where the final posi-
tion is more critical than the intermediate steps. For example,
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Fig. 10: Comparison of the IMU sensor placements. Bicy-
cleNet with only the IMU input branch was trained on different
IMU inputs. The average distance error (ADE) and final
distance error (FDE) over a horizon of 5s are reported on
the testing set.

when the model is used for decision-making or interaction
planning, where reaching the right endpoint matters most. Both
ADE and FDE are reported in meters and strongly depend
on the prediction horizon H . A longer prediction horizon
typically results in higher errors due to the compounding error
in motion. Lower ADE and FDE correspond to more accurate
model predictions.

C. IMU Placement

To measure the contribution of each IMU sensor placement,
the BicycleNet model with only the IMU input branch was
trained on different IMU input configurations. The configura-
tions that were evaluated include each IMU individually and
all four IMUs combined. The training process was repeated 12
times with different random seeds for each configuration and
the results were averaged. Recall that changing the random
seed affects both the training/validation split and the weight
initialization. ADE and FDE were computed on the test set,
and the error bars indicate the standard deviation between the
runs.

Figure 10 shows the result of the IMU comparison ex-
periment. It can be seen that there is a similar pattern for
ADE and FDE across different input configurations, which
makes sense as they are correlated metrics. The three single
IMU configurations of pedal, frame, and handlebar offer
similar performance. There is no significant single best IMU
placement, but an IMU placed only on the pedal offers the
lowest ADE of 2.25 ± 0.09 m. Using the pedal IMU might
improve model predictions for stopping and slowing-down
situations, which involve longitudinal motion. Following that,
the frame and handlebar IMUs potentially improve the model
predictions in leaning and steering maneuvers, which involve
lateral motion. Furthermore, the IMU on the helmet is the
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Fig. 11: Feature extraction of the different IMUs. BicycleNet
with only the IMU input branch was trained on different
IMU inputs with and without feature extraction obtained from
integration (velocity and angle). The average distance error
(ADE) over a horizon of 5s is reported on the testing set.

least accurate, having a relatively high ADE of 3.07 ± 0.11
m. This might be caused by cyclists looking around while
cycling straight and not entering a turning maneuver (a false
positive turn is detected), which can occur around intersec-
tions. The effectiveness of the helmet IMU might become more
apparent when combined with other IMU placements, which
can prevent this type of trajectory uncertainty. For example,
if the cyclist is looking around but is still pedaling, it likely
indicates that they are continuing straight rather than initiating
a turning maneuver. Lastly, combining all IMUs provides the
best performance with an ADE of 2.01 ± 0.05 m. Each IMU
placement captures different aspects of the cyclist’s behavior,
such as pedaling activity, steering dynamics, and head gaze.
The model is able to extract features across IMU placements
(inter-IMU features), increasing the accuracy of the prediction.

D. IMU Feature Extraction

The IMU placement comparison experiment is expanded
by including the angle and velocity features extracted from
the IMUs (using integration as described in Section III-B).
For each individual IMU and for all IMUs combined, three
configurations are compared: raw IMU signals, integrated
features, and a combination of both. Figure 11 shows the
ADE on the testing set, averaged over 12 runs of the IMU-
only BicycleNet model, where error bars represent the standard
deviation across runs. The plot shares the light blue bars with
the previous experiment (Figure 10), which corresponds to the
ADE of the raw IMU configurations. Like before, the pedal is
the best single IMU placement overall, achieving the lowest
ADE in each of the three categories: raw, integrated, and
raw+integrated. From the orange bars, it is derived that only
using integrated features as model input shows an increase
of roughly 30% or more in ADE compared to only using
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Input modality comparison of BicycleNet

Fig. 12: Comparison of different sensing modality configura-
tions of BicycleNet. The average distance error (ADE) over a
horizon of 5s is reported on the testing set.

raw IMU data. Moreover, for single IMU setups except for
the helmet, the green bars show that raw+integrated IMU
features show a slight increase in ADE compared to using
only the raw IMU data. However, this is not the case when
combining all IMUs, where raw and raw+integrated features
do not show any significant difference in performance. This
suggests that individual IMU sensor setups do not benefit from
the feature extraction of angle and velocity, as raw+integrated
data generally results in worse performance compared to raw
data alone. Also, for the setup using multiple IMUs, the
raw+integrated data do not provide a noticeable improvement
over raw data alone. For the final configuration of the model,
the raw data from all IMUs are used without additional feature
extraction.

E. Sensing Modality

In this subsection, a performative comparison is made
between the different sensing modalities of IMU, GPS, and
camera. Multiple training runs were conducted with Bicy-
cleNet for each possible combination of the three modality
input branches. Figure 12 shows the ADE on the testing set,
averaged over 12 runs of the BicycleNet model trained on
different input configurations, where error bars represent the
standard deviation across runs. The best performing combina-
tion of modalities is IMUs+GPS, achieving an ADE of 1.88 ±
0.11 m, showing a clear improvement over using IMUs or GPS
individually. GPS captures global movement trends and pro-
vides a broad situational context, such as the beginning or end
of a turn, and gradual speed changes. On the other hand, IMU
data captures more fine-grained motion patterns, such as the
pre-maneuver indicators described in AppendixB. Together,
the modalities give a comprehensive view of a cyclist’s motion
pattern, resulting in a strong model performance. Following
that, GPS alone performs worse than IMU alone, indicating
that while GPS provides useful global context, it lacks fine-
grained motion details. Adding the camera to IMU and GPS
(IMUs+GPS+Cam) does not improve performance (1.89 ±
0.06 m), suggesting that image input does not contribute
to what is already captured by the motion sensors. In fact,
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combining the camera with just the IMUs (IMUs+Cam) shows
a significant drop in performance compared to the IMUs
alone, showing that the image input adds uncertainty and may
confuse the model. Moreover, the camera alone performs the
worst (5.45 ± 0.48 m), with a high ADE and a large variance.
These findings suggest that the image branch of the model
may fail to extract general road layout information. The lack
of performance when using camera input is further discussed
in Section VI.

F. BicycleNet vs. CNN-LSTM

In this subsection, the BicycleNet model is compared to
the CNN-LSTM model in terms of trajectory prediction per-
formance and computational efficiency. For comparison, both
models were trained without the image branch, meaning the
input is just IMUs+GPS, without additional feature extraction.

Figure 13 shows the distance error across the prediction
horizon for both models. It can be seen that BicycleNet
achieves an FDE of 3.50 ± 0.07 m, and CNN-LSTM reaches
3.55 ± 0.05 m. BicycleNet achieves a slightly (but not
significantly) lower FDE. This indicates that the causal con-
volutional (TCN-based) BicycleNet performs as well as the
CNN-LSTM model, which combines convolutional layers with
LSTM. Furthermore, a distance error of 3.5 m at 5 seconds
into the future is quite promising for collision avoidance
applications. Considering that cyclists typically travel at 15–27
km/h (covering roughly 20–38 m in 5 seconds), a 3.5 m
deviation corresponds to a relative error of approximately
9–17%. Combined with a conservative 1-second processing
time, a 4-second advance warning to the cyclist could yield a
potential safety benefit of up to 98%, as demonstrated in [21].

Interestingly, the BicycleNet model performs on par with
another study [14] that relies on conditional imitation learning
(CIL), which assumes access to maneuver labels through a
turning signal indicator. That study was also able to improve
model performance by using an image captured by the front-
facing camera. Their (IMU+Cam) CIL model achieves an FDE
of 3.5 m. In contrast, the model presented here predicts without
access to maneuver labels and without using the camera and
still achieves a comparable FDE of 3.5 m, suggesting that the
model successfully anticipates cyclist turns.

1) Timing and Memory Benchmarks: This paragraph de-
scribes the experiment performed to measure real-time suit-
ability of the models. Table II shows the results of the
experiment. The mean inference time over 200 forward passes
of a model is reported in milliseconds (ms), along with the
throughput as the number of samples that can be predicted
per second and the VRAM usage of the GPU. The inference
batch size is set to 1, as this is likely to be used for real-world
deployment on a single bicycle. From Table II it is seen that
both BicycleNet and the CNN-LSTM model are lightweight
and suitable for real-time use on edge devices. When using
only the IMU and GPS branches, the models are extremely
small. BicycleNet with 7,816 parameters is 3.5 times smaller
than the CNN-LSTM model with 27,237 parameters, resulting
in less memory usage. The inference timings are very low on
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Fig. 13: BicycleNet and CNN-LSTM models testing set dis-
tance error across the prediction horizon when trained the
modalities IMUs+GPS (without additional feature extraction).
The average distance error (ADE) and final distance error
(FDE) are denoted in the plot.

the high-end GPU for both models, especially for CNN-LSTM
which achieves 0.93 ms per forward pass, compared to 1.74
ms for BicycleNet. This difference is due to BicycleNet having
more layers, resulting in more sequential processing. In short,
BicycleNet achieves comparable performance to that of the
CNN-LSTM model while using 3.5× less parameters.

VI. DISCUSSION

The effectiveness of BicycleNet and the custom CNN-
LSTM model was demonstrated in the results section. How-
ever, some limitations were identified. This section discusses
the study’s limitations in detail and describes potential im-
provements.

First, the helmet-mounted IMU performed worse than the
other IMU placements in terms of trajectory prediction perfor-
mance, which contrasts with the findings of HeadMon [10],
which demonstrated the effectiveness of the helmet IMU for
maneuver prediction. This discrepancy might be attributed to
cyclists looking around without initiating a turning maneuver,
differences between the task of predicting maneuvers (clas-
sification) and predicting trajectories (regression), as well as
differences in dataset composition in terms of class balancing.
This research project did not balance the different types of
maneuver to train the trajectory prediction models and instead
included all available samples. In contrast, HeadMon [10] used
a subset of samples for the ‘cycling straight’ class, potentially
missing cases where the cyclist looks around while cycling
straight. The training route consists of many intersections and
other traffic scenarios where looking around is crucial for
cycling safety, even when cycling straight. This could explain
the lack of performance of the helmet IMU, since the cyclist
may look around without initiating a maneuver. Moreover, the
participants in the training set had to look at a map displayed
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TABLE II: Inference timings and memory usage of the trajectory prediction models. The batch size is set to 1 and data
processing, transformation, and initialization steps are excluded from the timings. The utilized GPU for this experiment is the
‘NVIDIA RTX 4070 SUPER’. The mean of 200 forward passes is reported with standard deviation.

Model Modalities
(input branches)

#Parameters Inference Time (ms)
(mean ± std)

Throughput
(samples per
second)

VRAM Usage (MB):
model + remaining

BicycleNet IMU, GPS 7,816 1.74 ± 0.08 549 0.03 + 9.30
CNN-LSTM IMU, GPS 27,237 0.93 ± 0.31 1208 0.10 + 16.43

on the phone to navigate the route, whereas this was not the
case for participants in the testing set. Frequent looking down
at the phone could introduce noise, thereby decreasing the
performance of the helmet IMU.

Second, the camera input underperformed, which could be
due to either the architecture of the image branch or the
nature of the data. Despite testing several CNN backbones
for the image branch, no configuration improved over the
ResNet model. This suggests a limitation in the extraction of
generalizable features from the images. This is in contrast to
previous work [14], which reported improvements when using
the camera image for conditional trajectory prediction. One
potential cause is that the camera’s pitch angle (vertical tilt)
was inconsistent across participants and bicycles due to imper-
fect mounting and road vibrations. There was roughly a ±20°
variability in the height of the horizon in an image. As a result,
the road layout appears inconsistently across training samples,
with parts sometimes occluded. Another potential cause is
overfitting to the training route. Additionally, many scenarios
include cycling behind other cyclists, interacting with traffic,
unexpected u-turns, or even cycling on the sidewalk to avoid
a road blockage. These scenarios make it difficult to extract
meaningful clues for the future trajectory from the image. A
potential improvement is the inclusion of road segmentation,
lane detection, and/or object detection as a preprocessing
step for a trajectory prediction model. In this way, existing
generalized knowledge of traffic images can be transferred to
the trajectory prediction model to prevent overfitting to route-
specific features. In addition, dynamic understanding of the
past trajectory could be improved by including multiple frames
in the model input stage and adapting the model camera branch
accordingly.

Third, several limitations are identified that stem from the
data processing pipeline. One limitation is that time synchro-
nization between the different sensors (IMU, GPS, and cam-
era) was performed manually as a post-processing step after
data collection, based on aligning measurements of a handlebar
shake. This method can introduce a random misalignment
error of up to ± 500 ms that is different for every recording,
which could limit the model’s ability to learn time-correlated
features across modalities. While this may not critically affect
the GPS (1 Hz) or the camera (single frame), it could still
introduce noise. In future work, a more robust solution would
be to perform (automatic) real-time synchronization before a
recording is started. Following that, the method of obtaining
the angle and velocity has the limitation of being relative

to the starting point of a time window. This means that the
model lacks information about the absolute velocity and angle
of the cyclist, for example the absolute angle of the pedal
IMU is unknown. A potential improvement is to obtain the
absolute angle and velocity during data collection by recording
the compass and quaternions of the IMUs. Additionally, the
acceleration was recorded with the effect of gravity included,
which could be removed in future setups to isolate the cyclist’s
motion. Furthermore, the current system is constrained to
predicting at 1 Hz, due to the GPS sampling rate. Also, GPS
itself can be an inaccurate source of positional ground truth, as
it is subject to random errors of up to several meters that might
limit the achievable model performance. A more accurate
approach is to use localization methods of higher frequency
and better accuracy, such as position tracking using visual-
inertial odometry or high-precision RTK-GNSS systems.

VII. CONCLUSION

This paper introduced a novel cyclist trajectory prediction
method that incorporates multi-modal input from GPS, IMUs,
and a camera. Two custom models were proposed in this
work: BicycleNet, based on the temporal convolutional archi-
tecture, and a CNN-LSTM model. The models were trained
and evaluated on a large and diverse dataset collected from
multiple participants cycling in a real urban environment.
When configured with only IMU and GPS input branches, both
models achieved comparable performance, with BicycleNet
requiring less memory because it has 3.5x fewer parameters.
BicycleNet achieved an average distance error of 1.86 m and
a final distance error of 3.50 m over a prediction horizon of
5 s. This level of accuracy was shown to be promising for
collision avoidance applications, due to a relative positional
error of 9–17% at 5 seconds into the future. An analysis
of IMU sensor placement showed that an IMU placed on
the pedal achieved the best single-IMU trajectory prediction
performance, closely followed by the frame and handlebar
placements, while the helmet-mounted IMU performed the
worst. The helmet IMU was likely less reliable due to frequent
head movements that are not associated with future maneuvers.
Combining multiple IMU placements enabled the model to
extract inter-IMU features, improving trajectory prediction
performance. Moreover, including GPS sensor data of the
past trajectory along with the combined IMU data showed
the best performance compared to all the other possible com-
binations of modalities. Also, the camera input consistently
did not improve prediction performance. Lastly, the models
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are lightweight and fast enough for real-time inference on
resource-constrained setups such as bicycles.

A. Future Works

In real-world traffic scenarios, blind spots and the sudden
appearance of unexpected objects are common. Understanding
the trajectory intentions of surrounding vehicles can be crucial
to help prevent potential collisions. One promising application
lies in Vehicle-to-Everything (V2X) communication for bicy-
cles [22], which enables efficient short-range communication.
Using V2X, a cyclist’s predicted trajectory can be broadcast
in real time to nearby vehicles, allowing them to respond
appropriately or issue warnings to their drivers. For instance,
when a collision is predicted, a safety mechanism such as
automatic braking via an e-bike’s motor could prevent it. In
cases where a collision is unavoidable, a deployable helmet
airbag could be activated to minimize injury.

Beyond that, advanced bicycle-mounted sensing systems
like the one presented in this work could also be used to
assess rider behavior and condition. For example, indicators
of fatigue, intoxication, stress, or inexperienced riding could
be detected and used to tailor real-time riding assistance or
restrict bicycle operation.

Finally, future work could explicitly detect pre-maneuver
indicators, such as head checking, countersteering, and stop
pedaling (as discussed in Appendix B), and integrate them
into a model to improve trajectory prediction performance.
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APPENDIX A
TIME SYNC DEVICES: HANDLEBAR SHAKE

This appendix describes how the three sensing modalities
of IMU, GPS, and camera were synced in time. The syncing
was performed in a manual post-processing manner, because
the different sensors were not all connected to a shared device
that handles automatic syncing during data collection. The syn-
chronization method for the urban dataset is described, which
relies on the motion of a handlebar shake. The synchronization
of the campus dataset follows a similar approach, but with one
key difference, which is described in the last subsection.

Each sensing modality uses a different clock. The four
IMUs were connected to an Inertia Gateway device, which
automatically syncs the four IMUs using its clock. GPS data
was recorded using the phone, which also had its internal
accelerometer enabled (only in the urban dataset). The front-
facing camera simply recorded video and also uses its own
clock. To achieve synchronization between the devices, a
left-right-left shake of the handlebar was performed at the
beginning of each recording. The motion of the shake has
distinct features that are captured by each device. These
features include a start and end point, as well as clearly defined
maximum left and right orientations. By marking the device-
specific timestamps at which these features occur in each
recording, the time offset between the clocks can be calculated
as the mean difference between the corresponding points. The
time axis of each device is then shifted accordingly, so that
the shake event aligns across devices and effectively defines
a common time zero. The more distinct timestamps that are
labeled for a recording, the more accurate the syncing. The
following subsections cover each device individually and show
visualizations of the handlebar shake captured by each device.

A. Camera

Figure 14 shows the shake of the handlebar captured by
the camera. The camera recorded video at 30 frames per
second, allowing for precise timestamp selection at which
the handlebar-mounted camera starts and stops moving. The
human error in selecting these timestamps is estimated to be
at most 3 frames, corresponding to 100 milliseconds.

B. IMU Handlebar

Figure 15a shows the shake of the handlebar recorded by the
IMU on the handlebar at 200 Hz. To find the distinct features
of the handlebar shake, the accelerometer data from the IMU
is plotted, as this is also available on the phone, which did not
have a gyroscope enabled. The axis that measures the shake
the most is ay , which corresponds to the left-right movement
along the handlebar. The human error due to manual selection
of points is estimated to be around 80 ms. The error of syncing
is reduced if more distinct points are selected for a single
shake.

C. Phone Accelerometer (Urban Dataset)

The phone accelerometer was only enabled during the data
collection of the urban dataset. Figure 15b shows the shake of

Fig. 14: The handlebar shake for syncing the devices captured
by the camera. Three snapshots illustrate key moments in the
motion: the start, the leftmost point, the rightmost point, and
the end of the shake.
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(a) Handlebar shake captured by the IMU on the handlebar at 200
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(b) Handlebar shake captured by the phone’s accelerometer at 10 Hz
(urban dataset only).

Fig. 15: The handlebar shake as captured by the IMU and
phone accelerometer, used to align device clocks during post-
processed synchronization.

the handlebar recorded by the phone accelerometer at 10 Hz.
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The coordinate system used by the phone is different from that
of the IMU on the handlebar. The ay axis of the handlebar
IMU roughly aligns with the −ax axis of the phone. The
human error due to manual selection of points is estimated
to be around 100 ms.

D. IMU Compass and GPS Heading (Campus Dataset)

The campus dataset requires a slightly different approach
to sync the devices in time. Similarly to the urban dataset,
the camera and IMU clocks are aligned by matching the
movement of the handlebar shake at the start of a recording.
However, only for the data collection of the campus dataset
the accelerometer of the phone disabled, but the compass of
the IMU was enabled.

To sync the GPS with the other devices, the GPS heading
of the phone was aligned with the compass heading of the
IMU on the handlebar. The heading of the IMU compass is
estimated using Equation 8. This method assumes that the
IMU is level with the ground and uses only the horizontal
components of the Earth’s magnetic field. Specifically, cx
and cy represent the magnetometer readings along the local
horizontal axes (e.g., forward and lateral directions). The
heading angle θ indicates the direction in which the sensor
is facing relative to magnetic north.

θ = tan−1

(
cy
cx

)
(8)

Figure 16 shows the GPS and IMU heading during a 50 second
window of the ride. A moving average of the IMU is included
to more easily match distinct features between the modalities,
because the IMU is sampled at 200 Hz and the GPS is sampled
at only 1 Hz. The cyclist is mostly going straight, but makes
noticeable changes in his heading, which can be detected in
both the IMU and GPS. These events are marked with a red dot
and a number. Like in the case of the handlebar shake, these
distinct features can then be used to align the clocks of the
Inertia Gateway and the phone. Since the Inertia Gateway can
still be synced with the camera through the handlebar shake,
the syncing process is complete for the campus dataset.

There are some inaccuracies with the method of aligning
based on heading. Firstly, in Figure 16 there is a noticeable
difference in the scaling on the y-axis between the modalities.
This is likely due to the assumption of the IMU to be in a
plane tangent to Earth’s surface, but it is actually mounted
at an incline on a bicycle that moves. In addition, the time
window needed to align the IMU and GPS based on heading
is much larger than when aligning using the handlebar shake
because the GPS sampling rate is 1 Hz. This makes it more
difficult to find features that can be precisely matched. To
offset this, multiple points are selected along the ride to ensure
good syncing. The human error is expected to be somewhere
between 200 and 500 ms.
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(b) IMU compass heading during the same time window, sampled at
200 Hz and smoothed with a moving average.

Fig. 16: GPS and IMU compass heading signals used for
time synchronization in the campus dataset. Distinct heading
changes that match in both graphs are marked with numbers.
These enable alignment despite differences in sampling rates
and sensor mounting.
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APPENDIX B
PRE-MANEUVER INDICATORS

In this appendix, an experiment is described in which pre-
maneuver indicators are identified. These indicators serve
as explainability for the models by revealing why future
trajectories can be predicted using bicycle mounted sensors. It
is important for cyclists to plan and anticipate several seconds
ahead in order to follow traffic rules and ensure safety in their
environment. This behavior is shown through physical cues in
the cyclist’s motion, referred to as pre-maneuver indicators.
There are three types of pre-maneuver indicators that will be
showcased here, these include: head checking, countersteering,
and stop pedaling. Examples are taken from the urban dataset,
described in Section IV-B. To identify indicators, plots of the
angular velocity of the Z axis of the gyroscope (gz) are made
of IHM , IP , and IHB . The angle obtained from integrating
gz using Equation 1 is also shown in the plots.

Figure 17a reveals that cyclists perform head-turning checks
prior to turn maneuvers as measured by IHM . This is easy
to understand, as it is imperative for a cyclist to observe
the surroundings before making a change in trajectory. The
duration, extent, and number of these head checks likely
depend on the extent of the upcoming turn. In this example,
the cyclist performs three head checks, including one where he
looks over his shoulder for almost two seconds before entering
a relatively long turning maneuver of almost four seconds. In
particular, HeadMon [10] uses only an IMU on the helmet for
the classification of upcoming maneuvers with 85% accuracy
four seconds before the maneuver.

Furthermore, Figure 17b shows that cyclists often stop
pedaling before initiating a turn, as captured by IP . In this
example, pedaling stops approximately four seconds before
a right turn, with acceleration occurring midway through the
turn. This suggests that the action of stopping to pedal can
serve as a pre-maneuver indicator. However, this action might
not occur before all turns, as gradual or non-intersection turns
may not require deceleration.

Another pre-maneuver indicator is countersteering as mea-
sured by IHB that is shown in Figure 17c. A countersteer
occurs shortly before a turn as a preparatory action. In the
example, the cyclist first steers left before entering a right
turn. A cyclist consciously or subconsciously performs a
countersteer to place their center of mass inside the curve of
a turn [23]. The extent can be small or large, depending on
the speed through the turn. Notably, [11] uses only an IMU on
the handlebar to classify upcoming maneuvers with significant
accuracy 0.5 seconds before the maneuver.

Additionally, the pre-maneuver indicators can appear before
a variety of maneuvers, like stopping completely or making a
u-turn. The three examples shown here are likely only a subset
of a broader range of ways cyclists prepare for the upcoming
trajectories. Other pre-maneuver indicators may exist, such
as slight braking, small handlebar movements, or shifts in
body posture, as mentioned in RideGuard [13]. This motivates
the use of deep learning, which can learn to recognize these

and even more nuanced pre-maneuver indicators. Indicators
may also vary between cyclists, influenced by factors such as
experience, age, or individual riding style. Sometimes, a cyclist
can show indicators, even when cycling straight, resulting in a
wrong indication of the future maneuver (i.e., false positive).
To combat this, different indicators can be combined through
multiple IMU placements, to reduce uncertainty and improve
trajectory prediction performance.
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(a) Cyclist performs three checks with the
head before a left turn, as measured by IHM
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(b) Cyclist stops pedaling before a right turn
and speeds up again, as measured by IP
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(c) Cyclist performs a countersteer to prepare
for a right turn, as measured by IHB

Fig. 17: Instances of the pre-maneuver indicators: head check-
ing, stop pedaling, and countersteering. Each plot shows the
gyroscope z-axis angular velocity from an IMU sensor and the
corresponding angle change over time from integration. Each
example is performed by a different participant.
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