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ABSTRACT

The digitalization of asset management within the architecture, engineering and construction

(AEC) sector is in need of effective methods for the automatic classification of documents. This

study focuses on the development and the evaluation of multimodal document classification

models, utilizing visual, textual, and layout-related information. By using the CRISP-ML(Q)

methodology as well as Neural Architecture Search, we examine various state-of-the-art ma-

chine learning models, and combine them through an iterative development process. The per-

formances of these models are evaluated on two different AEC-document datasets. The results

demonstrate that each of the modalities is useful in classifying the documents, as well as the in-

tegration of the different information types. This study contributes by applying AI techniques,

specifically document classification in the AEC sector, setting the initial step to automating

information extraction and processing for Intelligent Asset Management, and lastly, by com-

bining and comparing multimodal state-of-the-art classification models on real life datasets.
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1
INTRODUCTION

The Architecture, Engineering and Construction (AEC) sector is increasingly embracing digital

technology and data, marking a significant shift brought about by the fourth industrial revolu-

tion. Key developments in this field include the implementation of algorithms for learning from

big data, the enhancement of productivity through the automation of simple tasks using arti-

ficial intelligence (AI), and the application of AI to tackle more complex problems with agents,

bots, and models [6]. With these developments, we can observe the growing importance of

information management. Within the AEC industry, this revolution is known as Construction

4.0 [7]. Specific technologies of construction 4.0 include Building Information Modeling (BIM)

for modeling and simulation, AI solutions, robotics and automation, and the use of sensors.

For asset management applications, this shift enables the digital management of coordinated

assets, known as Intelligent Asset Management (IAM) [8].

IAM offers opportunities, such as the use of digital twins to monitor, analyze, and optimize the

performance of physical assets or processes, or use of sensors for real-time monitoring and

analysis of physical assets [8–10]. The emergence of IAM systems and techniques has intro-

duced a new maintenance strategy named predictive maintenance. Unlike corrective main-

tenance, which is performed after defects are detected, or preventive maintenance, which is

scheduled, predictive maintenance uses data analytics and monitoring to predict when main-

tenance should be performed just in time to prevent issues [11]. Taking this approach further,

prescriptive maintenance involves an AI system recommending actions and decisions based

on predictive maintenance data [12]. In addition, mobile maintenance is gaining importance

[13]. It enables maintenance teams to use mobile devices to receive tasks, log activities, track

parts and inventory, and access asset data while on the job, thus increasing efficiency and im-

proving data quality. This increasing reliance on digital systems imposes the need to extract,

structure, and utilize both existing and historical asset data, much of which has to be extracted

from unstructured documents.

1
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The adoption of IAM presents challenges that require changes in both technological infras-

tructure and asset management processes. The IAM strategy should align with the company’s

digital strategy [14], with a specific focus on data-driven decision making. Adapting to and uti-

lizing the advantages that industry 4.0 brings for asset management allows companies to be

more responsive to the market. Many companies are eager to implement IAM systems to im-

prove their efficiency. However, with the current state of operations in most companies in the

AEC sector, many steps must be taken to digitalize asset management strategies [15].

In the Netherlands, the adoption of digital technologies in asset management is progressing,

but there are still various challenges. According to a report by PwC and Mainnovation in 20231,

39% of companies in Northwest Europe have implemented mobile maintenance, while pre-

dictive maintenance lags behind with only 17% of companies. Other digital trends in asset

management, such as digital twins, augmented reality, and 3D printing, have only been imple-

mented by 8-10% of the companies.

Movares2 is an advisory and engineering firm specialized in infrastructure, mobility, digital

transformations, climate adaptation, energy transition, and circular building. Within their as-

set management team, the goal is to help companies transform their asset management strate-

gies and systems to become more data-driven and digital.

The degree to which companies have transformed to more data-driven asset management dif-

fers by company and asset [8]. The newer and more valuable assets are more likely to have

centralized and accessible data within an asset management system. Older assets often do not

have centralized data, with relevant information scattered across various documents and sys-

tems. To digitalize these assets, the first step is to locate and extract this information. In the AEC

sector, documents have not changed much over the years, although the information technology

around them has made some fundamental changes [16]. Different Intelligent Document Pro-

cessing (IDP) techniques can be applied to process documents and extract information such

as Optical Character Recognition (OCR), Robotic Process Automation (RPA), image processing,

classification, and Natural Language Processing (NLP) techniques [17–19].

Recent developments in IDP have changed the way companies manage their documents. Uti-

lizing AI and Machine Learning (ML), information can be automatically extracted from docu-

ments [18, 19]. OCR is used to extract data from documents, which can then be further pro-

cessed, as described in prior work [20–36]. In addition, ML techniques are utilized to classify,

cluster, and extract information from documents. Finally, RPA is implemented to automate

repetitive tasks and workflows [37].

In asset management, particularly within the AEC industry, various IDP techniques are applied

in different contexts. These include extracting information from engineering drawings, mod-

els, and floor plans through text extraction, object detection, and segmentation [38–47]. Named

entity recognition and NLP techniques are utilized to automate cost estimation in AEC projects

1PwC report on digital trends in maintenance and asset management
2Movares Website

https://www.pwc.nl/nl/evenementen/documents/one-pager-maintenance.pdf
https://movares.com/


RESEARCH QUESTIONS 3

[48], and to enhance the automatic understanding of geotechnical texts [49]. Automatic classi-

fication of asset documents is a crucial first step in digitizing asset information. Without such

classification, relevant data cannot be extracted from the specific document structures of data,

hindering effective use in IAM systems. This way, classification sets the first steps for data-

driven decision-making in the AEC sector.

Document classification has been widely studied using various methods that focus on differ-

ent information modalities, such as textual, visual, and layout data. Over the years, there has

been a notable evolution in these methods. Initially, manually extracted single-modality fea-

tures were used in relatively simple classifiers. However, the influence and application of deep

learning models have increased in recent years [2, 50–53]. In addition, more hybrid models

have been developed and evaluated, utilizing a combination of modalities to achieve superior

classification results [28, 31, 35, 54–57].

Despite extensive research on document classification, most studies have focused on standard

datasets. There is limited research on the classification of AEC-related documents, highlighting

the need for research to optimize the classification of these specific documents. As mostly text-

based classification has been performed in the AEC industry, the remaining modalities are used

for classification, as well as combined into hybrid classification model. The goal of this research

is to find a well-performing classification architecture for AEC asset documents, by evaluating

state-of-the-art document classification architectures. To do so, we find the answers to the

following research questions.

1.1. RESEARCH QUESTIONS

This study aims to develop an effective document classification approach to help automatically

and effectively digitize AEC asset data. The main research question is:

RQ1: How can the digitization of AEC information be improved by constructing a

document classification architecture?

To answer this question, the following subquestions are answered:

• RQ1.1: How do state-of-the-art classification models perform at classification of asset

related documents?

• RQ1.2: How do combinations of document modalities impact the performance of a clas-

sification in terms of accuracy?

• RQ1.3: How can the classification model be best deployed to make the classification

model generally usable to classify AEC documents in the future?

To guarantee a clear and repeatable development process, this research uses two methodolog-

ical frameworks. The Cross-Industry Standard Process for Machine Learning (Quality) (CRISP-

ML(Q)) methodology [4] is used for the iterative development of the classification models,

where we focus on data understanding, quality and evaluation of the models. We automate
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the selection of the optimal model architecture by using Neural Architecture Search (NAS) [58].

Together, these methodologies ensure a systematic and repeatable process.

To address the limitations outlined above, this thesis proposes a classification approach for as-

set management that uses the best-performing (multi-)modal features. The research applies

and evaluates state-of-the-art document classification and machine learning techniques in the

context of the AEC industry, an industry where the application of AI-based IDP is relatively un-

derexplored. Specifically, this study explores multi-modal document classification by compar-

ing various model architectures that combine visual, textual, and layout-based features. Using

two real-world asset document datasets, this study analyzes the impact of modality fusion and

preprocessing techniques on classification performances.

This thesis contributes to both academic research and professional practice. Scientifically, this

study is, to the best of our knowledge, the first study to extensively evaluate such multi-modal

and single-mode classification models in the AEC domain. This way, it addresses a gap in exist-

ing literature by demonstrating how these state-of-the-art models perform in a domain where

document types, technical language, and layout significantly differ from general datasets. In

practice, it offers actionable insights into how organizations in the AEC industry can use ma-

chine learning and information extraction techniques to digitalize legacy asset data, supporting

more efficient and data-driven asset management strategies.

The rest of this thesis is organized as follows: First, we evaluate the latest research in the field,

which we detail in the Systematic Literature Review (SLR) in Chapter 2. We describe the method-

ological frameworks utilized in this research in 3. Chapter 4 covers the experimental setup, fol-

lowed by the presentation of the results in Chapter 5. We link back the found results to our

initial research questions as well as discuss the found results in 6.



2
LITERATURE REVIEW

Within the AEC industry, as in many other industries, information is of great importance. This

industry is highly data-intensive as construction projects produce substantial amounts of doc-

umentation. However, this documentation is not always utilized. Specifically, a vast section of

this data is encapsulated in documents, which are stored throughout different systems in com-

panies and projects. These documents are often structured in different ways, making it difficult

to retrieve information from them. The large volume and complexity of these documents re-

quire an automatic method of retrieving the information.

The first step in this automation is document classification, which is a branch out of many other

intelligent document processing practices [35, 59]. Document classification is the automatic

categorization of documents. In the AEC industry, such categories could be reports, maps, ar-

chitectural drawings, contracts, insurances, schemes, etc. The textual content of some of these

documents is limited, as visual elements may have a more crucial role. Therefore, rather than

document classification in general, this research focuses on document image classification,

where documents are automatically categorized based on their visual features. Furthermore,

multimodal document classification, where different document modalities are used to clas-

sify a document, is deemed relevant to construction document classification as well. Different

modalities could be visual features, textual features, or even layout features, combined into a

hybrid classification model.

From the objective of the review of first evaluating the developments of document image clas-

sification in the AEC industry, and secondly evaluating the document image classification tech-

niques developed and utilized in the last five years, the following research questions emerged.

5
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2.1. RESEARCH QUESTIONS

1. What document classification techniques have been applied specifically in the fields of

the architecture, engineering and construction industries?

2. What document classification methods have utilized been in general in the last five years?

The found document classification techniques utilized in the fields of architecture, engineer-

ing, and construction contribute to an exposition and comparison of the techniques used within

the sector. In this way, we are able to identify and reuse effective techniques while also learning

from past mistakes.

The second objective aims to conduct an extensive exploration of all document classification

techniques, not just within the AEC industry, but across various fields, however, more specifi-

cally in computer science practices. This exploration allows to set out various techniques, and

model architectures that contribute to better classifying systems.

This literature review provides a comprehensive overview of current developments and appli-

cations of document classification in the AEC sector. In addition, it presents an up-to-date

overview of developments in document classification models generally. By identifying gaps

and opportunities in existing literature, it guides future studies and innovations in document

classification. Additionally, this work contributes to the broader fields of machine learning and

AI as well as their application in the AEC sector.

This study is carried out as an SLR based on the procedure proposed by Kitchenham [60]. First,

the scope of the research is laid out. Then we elaborate upon the review methodology, speci-

fying the way the material is collected and selected. In the next chapter, we go further into the

literature by describing the sample of materials found in detail and performing a meta-analysis.

This way, we evaluate the quality and relevancy of the materials. Quality is measured by eval-

uating the source of each article, based on factors such as the reputation of the journal and

the credibility of the authors.We assess relevance by reading the articles and determining how

closely they align with the research topic, based on their focus, approach, and findings. After

that, we go further into the materials to extract and evaluate the information in a structured

way.

2.1.1. SCOPE OF THIS REVIEW

The focus of this review is both document classification in the architecture, engineering and

construction industry, as well as the techniques used for document image classification across

all fields. The AEC industry mentioned involves all companies in the building and engineering

sectors for both infrastructure and buildings. All types of document classification techniques

discussed in this sector have been published in the last five years, as they are deemed to be the

most relevant and recent. The documents used in this sector are generally different from other

sectors; however, similar for various projects and applications in terms of document types [61].

Furthermore, construction documents are often unstructured and come in various formats,
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including both highly textual and visual elements. This diversity complicates classification, as

a single modality will not always yield the most accurate results.

In order to accommodate the classification of these diverse documents, we explore document

image classification and multimodal document classification techniques specifically. We focus

on the last five years to evaluate the utilized methods, which we expect to have been developed

through a process of continuous improvement, therefore increasing performance over time.

In addition to the objective of evaluating only the most recent techniques, a comprehensive

review of the progress that has been made in the field of document image classification from

2001 to 2021 (Liu et al. [1]) was found in the initial state of material collection. As this paper

brings a structured and clear overview of the developments before 2021, we build further upon

this review, and mostly consider the materials published after and thus not covered by Liu et al.

2.2. REVIEW METHODOLOGY

2.2.1. MATERIAL COLLECTION

This section describes the details of the material collection. We specify the keywords used for

the search of the materials and the additional criteria for selection. We base the keywords di-

rectly on the research questions with the aim of finding only materials relevant to these ques-

tions. We retrieve the exact query of keywords through an iterative trial-and-error process

where keywords are added and removed to find the most appropriate search query.

We use Google scholar 1 and Scopus 2 as the search databases for the materials. As the search

results for the searched queries are of a quite large volume for both search queries, the materials

to include have to be further specified upon. Therefore, some inclusion criteria are established.

These criteria ensure that the source materials are of quality, reliable, and relevant. The inclu-

sion criteria are specified as follows:

1. The article is available for free.

2. The article is published in a quality English journal or book.

3. The article is published in the year 2019 (first RQ) / 2020 (second RQ) or later.

The material collection and selection process is illustrated in Figure 2.1. As mentioned in sec-

tion 2.1, we measure the quality of an article by evaluating the source of each article. The eval-

uation is done based on factors such as the reputation of the journal and the credibility of the

authors. We assess the relevancy of an article by reading and determining how closely they align

with the research topic based on their focus, approach, and findings.

FIRST RESEARCH QUESTION

The main goal of the first research question was to find all techniques used and applications

of document classification in the AEC industry. Only including "architecture", "construction",

1Google Scholar
2Scopus Website

https://scholar.google.com/
https://www.scopus.com/
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Figure 2.1: Material Collection & Selection Process

"engineering", or "AEC" with "document classification" in the search query resulted in 18800

results. Architecture, construction, and engineering could all be relevant to other IT applica-

tions as well, e.g. in the sense of constructing a system or building an IT architecture. Therefore,

we needed to add "industry" to the search terms. As we also consider civil engineering appli-

cations relevant, we added the term to the search query as well. For the first research question,

the following query resulted from the keyword specification process:

"document classification" AND ("architecture industry" OR "construction indus-

try" OR "engineering industry" OR "AEC industry" OR "civil engineering")

Searching for this query and applying the third inclusion criterion yield 678 results. By apply-

ing the first and second criteria and after determining which materials are relevant, only 11

research papers remain.

SECOND RESEARCH QUESTION

For the second research question the objective was to find all developments in the field of (au-

tomatic) document classification. The goal is to find what the state-of-the-art models are and

what techniques have been used. First, the query was only specified on "document classifica-

tion", which resulted in many results in text document classification. Document classification

based on text is not irrelevant, however, since construction documents often include drawings

and maps, the visual aspect is also crucial. Therefore, instead of just focusing on text document

classification techniques, we also consider methods that address visual elements.

We decided to focus on both "document image classification", where only the visual aspect is
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used for classification, as well as "multimodal document classification", where multiple modal-

ities, e.g. visual and text, or layout and text, are used for classification, mostly in order to achieve

better classification performance. This resulted in the following search query:

"document image classification" OR "multimodal document classification"

Searching this query and applying the third inclusion criterion results in 1010 search results. Af-

ter initial selection by reading titles and abstracts, we quickly discovered that the two datasets

"RVL-CDIP" and "Tobacco-3482" (see Section 2.3.3) are both used for performance comparison

of the classification models, especially in recent models [3, 26, 27, 29]. As the models provide a

fair comparison, we decided to merely select the papers using either of these datasets to mea-

sure performance, so the new search query became:

("document image classification" OR "multimodal document classification") AND

("RVL-CDIP" OR "TOBACCO-3482")

. From this search and application of the third selection criterion, the number of results amounts

to 339. Two types of less relevant articles are identified: duplicates and articles that discuss the

specified datasets in the related work section without actually performing classification using

the datasets. We exclude these articles from this literature review. By snowballing through the

initially found materials, additional materials are selected. The materials are combined and

inclusion criteria one and three are applied. By filtering the materials to be only in English and

in a quality journal, 38 materials are selected.

2.3. RESULTS

2.3.1. RESEARCH SAMPLE AND META-ANALYSIS

This section aims to further investigate the selected materials. This way, the materials are com-

pared from a meta-level perspective as well as examined on quality. The aim of is to structure

the found literature based on meta information rather than just focusing on the contents. This

high-level overview of the materials is structured by answering the following questions.

1. When were the articles published?

2. What keywords have authors used to categorize the materials?

3. In what journals have the materials been published?

As we only select articles published in the last five years, as part of the inclusion criteria, the

years from 2020 to 2024 are included. The materials for the different research questions are

analyzed separately in order to give a more detailed meta-analysis.

For the first question, the years the materials were published in are analyzed. The number of

articles published each year is plotted against their respective publication years. In Figure 2.2

can be seen that the number of published articles for document classification in AEC applica-

tions has been fairly equal over the last five years. On average, two articles are published in this
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area, which corresponds exactly to the amounts published in three of the five years.

For articles writing on (multimodal) document image classification, an evident increase in the

number of publications can be observed each year. Interestingly, the number of publications in

2021. The decrease in publications in 2024 can be attributed to the time of material collection,

which was around October 2024, after which possibly new materials were published.
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Figure 2.2: Number of Publications per Year

Further, by analyzing the keywords used by the authors to categorize their works, it can be de-

termined what main subjects are discussed, and possibly what techniques are used in the se-

lected research material corpus. Again, in order to separately analyze the keywords for the two

research questions, keyword density word clouds (see Appendix A.1 & A.2) have been created

to visualize the keywords used in the respective areas (see Figure A.1 & Figure A.2). The size of

words is dependent on their "density", i.e. the number of times they were used to describe an

article. Colors and fonts are used independently.

In the first word cloud all keywords are included. The words with largest density are Text Min-

ing, Optical Character Recognition, Deep Learning, Machine Learning and Document (Image)

Classification.

Secondly, for (multimodal) document image classification the keywords most dense in use are

Deep Learning, Document Image Classification, Document Classification, Multimodal Classifi-

cation and Convolutional Neural Network. As this word cloud visualizes the keywords used by

a significantly larger number of articles compared to the first word cloud, a threshold of at least

two occurrences was applied.

Lastly, to evaluate the quality of the articles, the journals in which they have been published are

evaluated. For document classification in AEC applications, all journals are different, but the

materials come primarily from journals in the area of information technology and AEC engi-

neering.
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For the articles selected for (multimodal) document image classification, all journals can be re-

garded as in the area of information technology, more specifically in the areas of machine learn-

ing, neural information processing, computer vision, and pattern recognition. From six differ-

ent journals, more than one article is selected. Abbreviated, these journals are the ACMMM 3,

CVPR 4, ICDAR 5, ICPR 6 and IJDAR 7. Furthermore, 10 of the selected articles have been pub-

lished directly on ArXiv 8. As the materials on ArXiv are not peer-reviewed, we should take a

critical stand towards the materials and information in them. To ensure that the Arxiv retrieved

articles are as most reliable as possible, we analyze the authors. The article is removed if the au-

thor is not in academics, has a research-based function in a company, or is not researching data

science or machine learning-related topics regularly. Having applied this filtering step does not

mean that we can neglect the critical view to these articles.

Two tables in which the publication counts per conference/journal are listed are included in

the appendix (see tables B.1 & B.2).

2.3.2. DOCUMENT CLASSIFICATION IN THE AEC INDUSTRY

In the last five years, several articles have been published on various applications of document

classification in AEC applications. This section discusses the details of the applications as well

as the techniques used.

Noteworthy is that most applications of document classification in the AEC industry are pri-

marily based on text classification. Bodenbender et al. [62] classify real estate documents by

primarily using text classification techniques. A range of machine learning algorithms are ap-

plied to the text extracted from building documentation to automate the classification process.

Secondly, Sajadfar et al. [61] use OCR techniques to detect text in construction documents.

They apply a long-short-term memory model, as well as keyword-based methods to classify

the documents. Kim et al. [63] propose a model for classifying construction disaster docu-

ments based on text data. The model is a Convolutional Neural Network (CNN) and the text is

extracted using the Term Frequency-Inverse Document Frequency (TF-IDF) method. Ren et al.

[64], as well as a self-constructed corpus in the field of construction, use a Bi-LSTM model that

uses attention mechanisms for document classification of construction using text classifica-

tion. In 2020, Guha et al. [65] constructed a document classification model for property-related

documents in real estate. The classification model, like Kim et al., uses the TF-IDF vectoriza-

tion for text classification, where the text is extracted using OCR techniques. Sun et al. [66] have

created a framework whose goal it is to help managers have a quicker and easier understand-

ing of key information in construction documents. Again, the TF-IDF algorithm is used to find

the most important information, however, not specifically for document classification. Con-

3ACM Multimedia
4Conference on Computer Vision and Pattern Recognition
5International Conference on Document Analysis and Recognition
6International Conference on Pattern Recognition
7International Journal on Document Analysis and Recognition
8ArXiv

https://2024.acmmm.org/
https://cvpr.thecvf.com/
https://www.icdar.org/
https://icpr2024.org/
https://link.springer.com/journal/10032
https://info.arxiv.org/about/index.html
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struction risks are evaluated by Kang et al. [67] through the use of text mining for unstructured

data in construction project documents and a support vector machine was used for classifi-

cation in order to improve risk management. Lastly, Wang et al. [68] classify defect texts and

simultaneously try to improve the interpretability in construction management decisionmak-

ing by applying SHAP-based interpretability methods. Jacques de Sousa et al. [69] presented a

systematic review of the literature on the developments of artificial neural networks and neu-

ral language processing in the field of text document classification for the budgeting phase of

construction projects. The work mainly deems it necessary to develop datasets in the field

of construction, to be able to further develop automation and classification algorithms in the

field.

As mentioned before, all of these described materials primarily use text mining techniques to

classify construction documents. The TF-IDF technique is used more often, and the different

applications of document classification serve diverse goals. Alongside these materials, a small

number of materials is left, covering other aspects of document classification in the AEC indus-

try.

As this SLR mostly focuses on document image classification, these earlier applications are

taken into regard but not directly applicable to the case of this research. However, two of the

articles found do not only make use of textual features but also include image features. Borst

et al. [70] use natural language processing techniques and an EfficientNet to utilize visual in-

formation in the form of images for document classification. These features are combined into

a hybrid classification approach, that is, a knowledge graph structure is proposed to store the

information found. The classification is based on the graph, which represents the textual and

visual information through its nodes and edges. TechDoc [52] is a multimodal deep learning

architecture that uses textual and visual features. In addition, associations between documents

are taken into the classification as well. The text features are A recurrent neural network learns

the text features while for the image features a CNN is used, and a graph neural network learns

the associations among documents.

In conclusion, the predominant body of document classification developments in the AEC in-

dustry makes use of text mining/classification techniques. Small interest is also peaked in the

addition of visual information, where both applications combine textual and visual features

into a graph representation, which is used as input for the classification. As the aim of further

research is to design a well-performing document image classification model, it is necessary to

evaluate developments outside of the AEC industry as well.

2.3.3. (MULTIMODAL) DOCUMENT IMAGE CLASSIFICATION

Document image classification techniques have been researched for over a decade. First, fea-

tures were mostly handcrafted, and based on mostly document structures and/or visual as-

pects. These models performed well in certain scenarios using research-dependent datasets,

however, the real improvements came with the introduction of deep learning in the area of
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document image classification.

In 2014, Kumar et al. [71] first published a work in which a CNN was used for document image

classification. Before this, features used were mostly related to the structure of a document,

using either template matching or graph matching, or visual features were extracted "manu-

ally". The use of a CNN was motivated by the hierarchical structure of documents, as CNNs

effectively capture and process features from multiple levels as well as different patterns. The

work used the Tobacco-3482 dataset 9, as well as the NIST tax-form dataset 10 to test the clas-

sification performance of the network, and achieved an overall accuracy of 65.35%. This was

a large improvement to the classifications performed before, as the highest accuracy achieved

classifying the Tobacco-3482 dataset without using a neural network was 43.8% [72].

From the rather successful first application of CNNs in 2014, many efforts have been taken to

further improve neural networks for document image classification. Within the next six years,

many networks were constructed, creating more accurate classifications over the years. The

Tobacco-3482 dataset became one of the most used datasets in the research on document im-

age classification. In 2020, a classification accuracy of 99.71% was achieved classifying the

Tobacco-3482 dataset by Bakkali et al. [26], the highest performance accuracy ever reached

classifying this dataset.

In 2015, a subset of the large IIT-CDIP11 dataset was subtracted and used for document im-

age classification. This extracted dataset is called RVL-CDIP12 and is ten times larger than

the Tobacco-3482 dataset, substantiating a more robust foundation for training a classifica-

tion model [2]. Using a CNN, an initial accuracy of 89,8% was achieved. Afzal et al.[51] used

different deep CNNs to train a model on the RVL-CDIP dataset. The highest accuracy of 90.97%

was achieved using a VGG-16 network. Further, the dataset was used for pretraining as well,

improving the classification performance on other smaller datasets, such as the Tobacco-3482

dataset, tremendously.

Even faster than for the Tobacco-3482 dataset, network developments lead to many improve-

ments in the classification accuracy for the RVL-CDIP dataset. In 2020, Bakkali et al.[26] com-

bined visual and textual features in a two-stream neural network. This joint learning approach

outperformed all state-of-the-art networks, as a classification accuracy of 97,05% was reached

classifying the the RVL-CDIP dataset.

In 2021 a comprehensive literature review by Liu et al. [1] was published. In this review, all doc-

ument image classification methods constructed until the moment of writing were compared

in terms of classification accuracy. The specifics of features and networks were described, lay-

ing out the research landscape of document classification. Figure 2.3 shows the classification

accuracies of the classification networks discussed by Liu et al., labeled by the set the networks

9Tobacco-3482 Dataset
10NIST Dataset
11IIT-CDIP Dataset
12RVL-CDIP Dataset

https://www.kaggle.com/datasets/patrickaudriaz/tobacco3482jpg
https://www.nist.gov/srd/nist-special-database-2
https://data.nist.gov/pdr/lps/ark:/88434/mds2-2531
https://paperswithcode.com/dataset/rvl-cdip
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are trained and/or tested on.

Figure 2.3: Model Accuracies for Most Popular Datasets (2000-2020)[1]

DOCUMENT CLASSIFICATION DATASETS

The review by Liu et al. [1] describes two datasets as main benchmarking datasets, the sets

being the ones discussed in earlier section (See section 2.3.3): RVL-CDIP and Tobacco-3482.

Research uses both of these datasets predominantly in research for testing the performance of

document image classification models and therefore also used as the benchmarking datasets

in this literature review.

RVL-CDIP The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing)

[2] dataset consists of a set of training images, validation images, and test images, respectively

consisting of 320,000 images, 40,000 images and 40,000 images. The dataset consists of 16

classes, where every class consists of 25,000 images per class. Examples of classes in the dataset

are letter, form, email, resume, and memo. Examples for each class can be seen in Figure 2.4.

The dataset is a labeled subset of the IIT-CDIP collection, and subtracted specifically for train-

ing new CNNs for document analysis.

Tobacco-3482 The smaller dataset Tobacco-3482 consists of 3482 grayscale images, distributed

over 10 classes. These classes are ADVE, Email, Form, Letter, Memo, News, Notes, Report, Re-

sume, and Scientific. Examples for each class can be seen in Figure 2.5.

DOCUMENT CLASSIFICATION METHOD CATEGORIZATION

As section 2.3.3 highlights, many developments have been done in the field of document image

classification in the last 10 years. Especially using CNNs, rather accurate models have been

constructed.
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Figure 2.4: Sample of RVL-CDIP dataset. Figure by [2]

Figure 2.5: Sample of Tobacco-3482 dataset. Figure by [3]

Liu et al. [1] provide a categorization method of document classification methods, where the

evaluated classification methods were categorized into four categories with subcategories. The

four overarching categories with subcategories being the following:

1. Structural-based Methods

• Template matching-based methods
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• Graph matching-based methods

2. Visual-based Methods

• Handcrafted feature-based methods

• Deep feature-based methods

3. Hybrid Methods

• Textual & visual-based methods

• Textual & structural-based methods

4. Textual-based Methods

The first three method categories are regarded as document image classification methods, dis-

regarding the textual-based methods as those only focus on text retrieved from the documents.

Liu et al. [1] review document image classification methods developed from 2000 to 2020, cate-

gorizing them into the previously discussed (sub)categories. Over the years, the types of classi-

fication methods have evolved: in the first seven years structural-based methods were primarily

used. For the next ten year, handcrafted visual features dominated. In 2014, deep visual fea-

tures began to be utilized, after which the development of hybrid models started rapidly. Until

2021, these hybrid models mainly utilized the textual and visual modalities of documents. In

the subsequent years, improvements in classification models continued within the subcate-

gory, and simultaneously three new subcategories emerged, combining the three modalities in

various other ways. The second predominantly used combination of the modalities is all three

modalities simultaneously, a subcategory not covered by Liu et al.

In terms of performance accuracy, the classification models achieving the highest performance

accuracy by classifying either of the Tobacco-3482 and RVL-CDIP datasets were both developed

by Bakkali et al. [26][27], which combine textual and visual features. As shown in Figure 2.6,

the initial accuracy for models tested on Tobacco-3482 was 43.8%. However, this performance

quickly improved over the years as deep feature-based methods and hybrid methods, which

integrate both visual and textual features, were introduced. Interestingly, the performance ac-

curacies of models using handcrafted visual features and those using deep visual features did

not differ significantly. It was only with the introduction of hybrid models that classification

performance improved significantly.

In order to understand why certain models are able to elevate the classification accuracy to a

higher level, it is important to understand what the different models are built up like, and of

what nature the features on which the classification is based are.

In this literature research, we use the document image classification methods categorization

designed by Liu et al. to categorize the classification methods constructed in the past five years,

in which 2020 overlaps partly with the included methods in the previous work. Additionally,

some of the articles published in 2019 are taken into account as well, as for Tobacco-3482 the
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Figure 2.6: Highest Classification Accuracy per Year for Datasets Tobacco-3482 and RVL-CDIP, combining materials
discussed in this review, and materials discussed by Liu et al. [1]

most accurate accuracy has been achieved in 2019 already, which can be seen in Figure 2.6. The

accuracy for the RVL-CDIP dataset has still improved after 2020 and the state-of-the-art was

constructed in 2023, with an accuracy of 98,94%, using a compressed version of the documents

[3]. However, as can be seen in Figure 2.2, in the years after 2020, many more articles writing

about new classification methods using the RVL-CDIP and Tobacco-3482 as test sets have been

published, even though not necessarily improving on the classification accuracy directly.

We examine the categorization of the classification models as described in the included mate-

rials. The types of networks and networks structures used are discussed in more detail.

For the hybrid, i.e. multimodal, document classification methods, the fusion strategy is evalu-

ated. This fusion structure can either be an early, hybrid or late fusion strategy. When applying

the first strategy, the features are merged and evaluated at once through the neural network.

The other possibility is a late fusion strategy, where the modalities are classified through dif-

ferent network structures, often specifically applicable to the specific modality, after which the

individual classifications are combined into one classification by e.g. averaging, or adding the

classifications. Lastly, fusion methods can be of a hybrid nature, which is often the case for

fusion methods based on an attention mechanism.

All fusion methods found within the discussed materials are listed (see appendix table C.2). For

each fusion method is indicated whether the fusion is either performed early on or at the end of

the classification architecture. For some of the fusion methods, the fusion is done at multiple

steps within the network, therefore indicated as hybrid fusion. Furthermore, the complexity of

the fusion method is indicated, often depending on whether the method is based on attention

mechanisms and/or on adaptivity. The idea in attention mechanisms is to simulate attention

in humans, where people tend to focus on specific points or things rather than a full artefact
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[64]. A fusion strategy based on an attention mechanism generally weighs the importance of

different inputs or different positions in the same input sequence (self-attention) in order to

make a more accurate prediction or decision. In the case of document image classification, the

application of attention mechanisms means generally that feature maps, showing attention,

are applied [32]. Adaptivity of a fusion method is based on whether the fusion function adapts

based on the feature importance, or relatively [25].

Further, in addition to the categorization, network structure evaluation, and fusion strategy, for

each model the pretraining strategy is evaluated. Both visual, as textual, as structural methods

can be improved through having some pre-knowledge, which is delivered through a pretraining

method. The used datasets for pretraining as well as the pretraining tasks, and the improve-

ment in performance that the pretraining brings are discussed.

Not only have optimizations been made in the characteristics described in the previous para-

graph, there has been more attention towards the speed and size of the classification models,

especially for training. Secondly, there is a growing interest and desire towards explainability

in artificial intelligence and machine learning in general. In order to better understand why an

artificial agent or machine learning model predicts or classifies a certain thing in a certain way,

different techniques have been constructed. This review evaluates the methods applied to the

field of document image classification. Lastly, the problem of imbalanced data, which often

tremendously decreases the quality of classifications, has been taken into regards by certain

evaluated classification models.

Textual & Structural-

based Methods (7.9%)

Textual & Visual-based

Methods (39.5%)

Visual & Structural-

based Methods (2.6%)

Textual & Visual &

Structural-based

Methods (29%)

Deep Feature-based

Methods (21.05%)

Figure 2.7: Pie Chart of Subcategorization Division

Using the earlier described categorization method (see Section 2.3.3, the categorization is made

as can be seen in Figure 2.7. Only visual feature-based and hybrid feature-based models are
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included in this review, where the green part of the pie depicts the four kinds of hybrid methods

and the blue part the two appearing kinds of visual feature-based models. The vast majority of

the included materials are hybrid methods, as those have been constructed most in the past 5

years, show the best performance, and the most relevant structures.

Most constructed models in the included materials try to combine textual and visual based fea-

tures, and many try to embed structural features as well. Then, it can also be seen that a visual

feature-based method presumably uses deep feature-based method, rather than handcrafted

features. Table 2.1 shows the specific categorization of materials into the defined subcategories

as well as the developments in the categories over the years. Figure 2.8 shows the classification

accuracies of all the models in the selected materials in the years their article was published,

labeled by their respective category. The lines represent the category averages per year, show-

ing the development in classification accuracy over the years. Figure 2.8 shows that over all the

years the classification accuracies achieved vary widely between 90 - 100%. In 2023 and 2024,

classification models combining all modalities seem to be performing the best, however, the

classification performances of these classifications do not stand out significantly.

Table 2.1: Categorization of materials, which the described classification methods are based upon. Categorization
categories based on Liu et al.[1]

Year Visual Based
(Deep Feature)

Textual &
Visual

Textual &
Structural

Visual &
Structural

Textual & Visual &
Structural

2020 [26],[29],[28] [20] [25],[55]
2021 [73],[32],[30] [74],[75], [76]
2022 [31],[77] [23] [78] [54],[22]
2023 [3],[79],[80],[81] [34],[82],

[83],[36],[33]
[24] [84],[21]

2024 [85],[86],[87],[88] [35] [89] [56]
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In this section, all classification models are evaluated in more detail. In the case a model has a

name, this name is used. Otherwise, the model is referred to by using the authors’ name.

VISUAL-BASED METHODS

The visual-based methods discussed are just 8, all utilizing a deep feature-based approach.

[3, 79–81, 85–88] . The publishing years of these articles vary from 2022 to 2024, and the high-

est classification accuracy was achieved by the DWT-COMP [3] model, namely a classification

accuracy of 98,94%. These deep visual feature-based models can be quite unclear in explaining

why a certain classification was done. In recent years, there has been an increase in research

on explainable document image classification, which is also the aim of a substantial part of the

included materials, namely 5 of the selected articles [80, 81, 85–87].

In table 2.2 more than just the articles focusing on a visual-based method are included. Only

five of the included articles in the table write solely about a visual-based method [3, 79, 81,

86, 88], and other included methods write about a method using multiple modalities, however

comparing it to a visual-based baseline model, of which the performance has been included

in the table. Some of the XAI models have not been included in the table as their objective

was not primarily a high classification accuracy [80, 85], therefore not fairly comparing to the

other models. The classification accuracies obtained using those baseline models have been in-

cluded in the table. The articles using these baselines are discussed in their respective modality

section.

Table 2.2: Classification Accuracies achieved classifying RVL-CDIP and Tobacco-3482 for Visual-based methods

Model/Author RVL-CDIP Tobacco-3482
pretrained on
RVL-CDIP

Tobacco-3482

Bakkali et al. [26] 96.25%1

Bakkali et al. [27] 91.45%
Ferrando et al. [29] 92,31% 94,04% 85,99%
EDNets [30] 95,89% 95,25%
Zingaro et al. [28] 97,67%
DiT [79] 92,69%
VLCDoC [82] 92,64% 89,73%
GlobalDoc [34] 92,58%
DocXclassifier [81] 94.17% 95,57% 90,14%1

DWT-CompCNN [3] 98,94% 92,04%
Sajol et al. [88] 92.25%1

DocXplain [87] 93.89% 94.71%
DocXclassifier [86] 94.19% 95.71% 90.29%
1 Pretrained on ImageNet

We discuss three papers that use a solely visually-based document classification model, fo-

cusing primarily on classification accuracy. All three methods have a substantially different

approach, using a transformer-based approach [79], a CNN approach [88], and an approach
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substantially different from all of the papers discussed in this review; a method based on dis-

crete wavelet transform, which is further explained in the next section. This section describes

the details of the three models one by one.

DiT (Document Image Transformer) [79] is a self-supervised pretrained model designed for

general document AI tasks. The model preprocesses images of text documents by resizing

them to 224 x 224 and then splitting the images into sequences of non-overlapping 16 x 16

patch embeddings. A transformer-based model is used as the backbone of DiT, where these

image patches are processed through a stack of transformer-blocks. The use of multi-head at-

tention allows the model to focus on different parts of the image simultaneously. The model

is pretrained on the extensive IIT-CDIP dataset, which contains 42 million document images.

Fine-tuning is performed on four different benchmarks, one being image classification. For

this task, an average pooling layer is used, and classification is carried out using a simple linear

classifier.

Another deep feature-based approach is adopted for the classification model designed by Sajol

et al. [88]. They use ConvNeXt V2 [90], a high-performing deep CNN model and adapt it for doc-

ument image classification. The research shows that pretraining on imagenet13 can yield sig-

nificant benefits for the performance. Several state-of-the-art models are compared in terms of

performance, where ConvNext V2 proofs to be the best performing. The ConvNeXt architecture

is a response to the introduction of Vision Transformers (ViT), which quickly started to outper-

form the earlier often used ConvNet architectures. The ConvNextv2, consequently, is the next

iteration of the architecture. The ConvNeXtv2 architecture consists of a fully masked autoen-

coder framework and a new Global Response Normalization (GRN) layer, which is added to the

earlier designed ConvNeXt architecture. This is done to enhance inter-channel feature compe-

tition. For the task of document image classification, this ConvNeXtv2 architecture performs

rather competitively.

DWT-CompCNN [3] utilizes a substantially different method to classify the images, namely by

extracting wavelet coefficients from JPEG 2000 compressed document images. The model uti-

lizes Discrete Wavelet Transform (DWT) to break down the image into different frequency com-

ponents. Discrete wavelet transform is a mathematical technique that is used to transform a

signal, in this case a image, into different frequencies. These frequencies can capture informa-

tion about spatial and frequency elements. An important benefit of DWT is that it can speed up

the classification, while keeping the quality of images high. The frequencies captured are both

high-frequency details as well as low-frequencies. This model comes close to a visual-based

model using handcrafted features, as the initial extraction of wavelet coefficients can be seen

as a way of handcrafted feature extraction.

XAI in document image classification In order to overcome the lack of transparency and in-

terpretability in the deep learning document classification models, research has been done

13Imagenet Website

https://www.image-net.org/
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where techniques are proposed for making deep learning document classification models more

transparent and interpretable. This field of research is fairly newly developing, and all of the

published materials have been published in the last two years (2023 and 2024). Moreover, Sai-

fullah et al. appear to be leading this field, having authored 4 out of the 5 published articles

[81, 85–87]. This section goes over the five proposed XAI techniques for document image clas-

sification from the 5 last years.

One of the first XAI techniques designed for document image classification is designed by Sai-

fullah et al; DocXClassifier [81] uses a ConvNeXt architecture [91] to extract visual features from

the input document images. The most relevant parts of the images are highlighted through a

feature selection process by using feature importance maps. This way, the model is made more

interpretable instantly, as these importance maps show what the model assumes is relevant for

the classification. An addition to this article is made a year later by the same authors [86], by

further improving the interpretability of the model. A new improved model is created by inte-

grating so-called feature pyramid networks, which are used to create feature maps at multiple

scales within the architecture in order to improve feature maps quality and accuracy.

DocXplain [87] utilizes a fairly similar approach, as it similarly segments a document image

into foreground and background segments, and assigns feature importance to the elements.

This way, a model-agnostic attribution-based explainability method is presented, specifically

for document image classification.

Fronteau et al. [80] present a technique that helps explaining models, but also improves the

robustness of classification models. Their paper on adversarial robustness in document im-

age classification models evaluates the effect of adversarial attacks on document classification

models. Adversarial attacks are input in a machine learning purposely designed to perturb the

models’ predictions, e.g. by inputting data that resemble a certain class. Previous research

focuses on various types of adversarial attacks as well as defenses. They are the first ones to

research adversarial attacks in document image classification. They design defenses that mini-

mize the effect of the attacks, and in this way improve the robustness of ResNet50 and Efficient-

NetB0 model architectures, which are frequently used model architectures in document image

classification.

Lastly, Saifullah et al.[85] analyze the interpretability of state-of-the-art deep learning models

that are used for document image classification. The popular interpretability method DeepSHAP

is used for an approach that aims to present more interpretable explanations, as well as coun-

terfactual explanations. This way, the most important document features can be analyzed. The

article shows that many state-of-the-art models classify documents based on irrelevant fea-

tures in the data, and learn counterintuitive document representations. These discoveries lead

to the belief that analyzed models need improvements, as the models seem to learn shortcuts

rather than really relevant classification information.
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HYBRID METHODS

A total of 29 articles proposing hybrid/multimodal document classification models are selected

from the last five years. In general machine learning literature, a hybrid classification model is

a model which uses two or more machine learning algorithms to classify the input [92]. In

this research, the hybridity of the described machine learning models stems not only from the

number of machine learning algorithms used into the final classification architectures, but also

from the combination of different modalities in the features used for classification. The iden-

tified modalities are textual, visual and structure, i.e. the language used, image features, and

the layout of a document. As previously categorized, the materials can be classified into four

distinct subcategories, where one of the categories (visual & structural-based) has not yet been

identified by Liu et al [1]. Of all methods, 11 methods use all of the three modalities, 12 use just

the textual and visual modality, 3 use a combination of textual and structural modalities, and

just one uses the unique combination of visual and structural-based methods. The methods

are evaluated per combination of modalities.

Textual & Visual-based Methods The 12 textual & visual-based methods are discussed in the

following section. Something that almost all of the networks have in common is that the text of

the images is extracted by utilizing OCR techniques by all of the models. Although most of the

models employ Bidirectional Encoder Representations from Transformers (BERT) or fastText

for text encoding, there is a clear variation in how visual features are processed and how the

fusion of the textual and visual features is performed. First, we discuss all methods using OCR

to extract the document text. We separate the materials based on the text encoder that is used;

a BERTbased encoder [26, 27, 29, 31, 32, 34–36, 82] or a fastText encoder[28, 30]. The first nine

papers discussed use a BERTbased text encoder to encode text extracted using OCR techniques,

followed by two papers that use a fastText text encoder. Only one of the included papers in this

section uses a non-OCR based text extraction method [33], which is discussed last. Table (2.4)

shows the characteristics of the models, where the text elaborates on the model specifics.

Using a BERTbased encoder The BERTbased encoder tries to understand the context of words

in a sentence by looking at the words around it. BERTbased models are trained on a large text

corpus and can be used for many different natural language processing tasks. For text classifi-

cation, BERT is most often used by pre-processing the text into subword units, for which vector

representations are created that consequently are encoded. These encodings are then fed into

classification layers to predict text categories [93].

Bakkali et al. [26] present a deep cross-modal network that integrates textual and visual con-

tent extracted from document images. They compare three ways to combine the two modality

branches, of which a function where features are added directly, maintaining the same dimen-

sionality results in the most accurate classification, performs the best. The proposed model

was tested using the Tobacco-3482 dataset and achieved the highest performance accuracy of

all the discussed papers.
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Table 2.3: Classification Accuracies achieved classifying RVL-CDIP and Tobacco-3482 for Textual & Visual-based
methods

Model/Author RVL-CDIP Tobacco-3482
pretrained on
RVL-CDIP

Tobacco-3482

Zingaro et al [28] 93,6% 90,5%%
Bakkali et al. [26] 99,71%
Bakkali et al. [27] 97,05%

Ferrando et al. [29] 94,9% 89.47%1

EDNets [30] 97.81% 96.95%
EmmDocClassifier [31] 95,48% 95,7% 90,3%

EAML [32] 97,7% 98,57%
Structextv2 [33] 94,62%
GlobalDoc [34] 94,04%

VLCDoC [82] 93,19%
Krithika et al. [35] 93.3%1

Voerman et al. [36] Imbalanced
dataset used,
so not a fair com-
parison

1 Pretrained on ImageNet

Table 2.4: Visual-Textual Model Comparison for models where the text modality is handled through OCR extraction
and a BERTbased or fastText encoder

Model/Author Text En-
coder

Visual Modality Feature Fusion

Bakkali et al. [26] BERT NASNet-Large Superposing Function
Bakkali et al. [27] BERT NASNet-Large Average Ensembling Method

Ferrando et al. [29] BERT EfficientNet Average Weighted Ensembling
EmmDocClassifier [31] BERT EfficientNet-B0 Equal Concatenation

EAML [32] BERT Inception-ResNet-V2 Self-Attention-based fusion
GlobalDoc [34] RoBERTa ViT-B/16 Cross-Modal Attention-based Fusion

VLCDoc [82] BERT ViT-B/16 Cross-Modal Attention-based Fusion
Krithika et al. [35] BERT VGG16 Simple Concatenation

Voerman et al. [36] BERT VGG16 Attention-based Fusion
Zingaro et al. [28] fastText MobileNetV2 Weighted Concatenation

EDNets [30] fastText EfficientNet Multi-View Deep Autoencoder

In the same year, the authors published another paper in which a model having a rather similar

structure was described, however, now tested on the RVL-CDIP dataset [27]. The novelty of

this paper, compared to the earlier one, is the comparison of backbone neural networks and

word-embedding methods, for the framework branches of the two modalities image and text,

respectively. Two late fusion methodologies have been adopted, after which the classification is

performed using a SoftMax layer. The best performing configurations of the model conclude to

a heavyweight NasNet-large model as the backbone neural network for the image modality and

the BERTbase model for the text modality, both tested as single-modality models. Merging the
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streams by using an average ensembling method - a method rather similar to the method used

in their previous paper - boosts the performance of both single-modality models significantly.

Both Ferrando et al. [29] and EmmDocClassifier [31] try to speed up the training process. Fer-

rando et al. [29] propose configurations to accelerate training, and have designed a more effi-

cient classification framework. Multiple GPUs are utilized to speed up the pretraining process.

EmmDocClassifier [31] aims to find the actual benefit of pretraining using RVL-CDIP when us-

ing Tobacco-3482 as test set. They argue that only training using Tobacco-3482 would save

time. As can be seen in table 2.3 does pretraining however really improve the performance.

Further, they focus on improving the textual stream by incorporating a hierarchical attention

network (HAN). The HAN divides the text in both sentences and words. Consequently, BERT is

used to encode the text. The two modalities are combined to give an improved performance

accuracy over earlier models.

The previous articles primarily utilize rather simple summation and multiplication methods

to fuse the models and features at later stages in the process. EAML (ensemble self-attention-

based mutual learning network for document image classification) [32], GlobalDoc [34] and VL-

CDoc [82] take a more hybrid fusion approach. EAML is designed to use a self-attention-based

fusion module, and GlobalDoc and VLCDoc fuse the features through cross-modal attention-

based modules.

The self-attention-based fusion module in the EAML model is used as a middle fusion block

in the ensemble trainable network. The intermediate features from the middle blocks of the

modality branches are taken into the attention block. Here, a combined fusion attention map

is created by combining the attention maps of the final features with the attention maps of the

intermediate features.

The cross-modal attention encoder models the inter-modality (between image regions and text

sequences) and intra-modality (within image regions and within text sequences) relationships.

Additionally, both GlobalDoc and VLCDoc use a vision transformer encoder (ViT) to process

the visual modality. The model by Krithika et al. [35] uses a vision transformer encoder as

well. The vision transformer encoder architecture is based on the standard Transformer model

which is primarily applied to text. ViT’s apply the transformer architecture to image patches

and treat them as sequences of tokens [94].

GlobalDoc uses a RoBERTa encoder, which is an optimized encoder based on the BERT en-

coder. Further, the model uses three pretraining objectives, of which two are of a cross-modal

nature, and one only pretrains within the modalities.

Lastly, Voerman et al. [36] study different solutions to the document image classification prob-

lem. The first studied solution is a multimodal neural network with an attention model and an

adapted loss function. The network is composed by combining the best performing evaluated

networks for the respective modalities. This solution performs better than the state-of-the-art

approaches for imbalanced cases, however, in other cases it performs worse, e.g. incomplete-
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ness of the data or for weak classes. The second solution uses a cascade of systems, classifying

documents after different stages based on the confidence of the classification. This model has

been created based on the idea that there might be issues such as few-shot learning and in-

completeness, therefore allowing the classification to learn further and improve specialization

of the model.

Using a fastText encoder The fastText model is a designed by Facebook’s AI research (FAIR)

lab and is developed to understand and classify text. Just like BERTbased models, fastText mod-

els are trained on large text corpora and can be used for many different natural language pro-

cessing tasks. For text classification, fastText breaks texts into words and sub-words units as

well, which are tokenized. Additionally, out-of-vocabulary words are handled by breaking them

down into character n-grams, which are sequences of characters used to capture patterns at

the character level. These tokens are converted into vector representations. The encodings are

based on averaging the character n-grams rather than focusing on the context of words. Con-

cluding, fastText generally performs better at handling out-of-vocabulary words and capturing

sub-word information [95].

Zingaro et al. [28] propose a deep learning framework for multimodal side-tuning for multi-

modal document classification. The model uses a MobileNetV2 architecture for the base model

with locked weights. Two side models are constructed: a MobileNetV2 architecture for the im-

age modality and a fastText model for the text modality. Both the base model and side model for

the image modality are pretrained on ImageNet, while the weights for the text modality are ran-

domly initialized. The three models are fused by summing the results from the three models,

on which the classification is based.

EDNets [30] propose a multi-view deep representation learning approach that combines tex-

tual and visual information, which is extracted using an EfficientNet model. The fusion of the

text and visual modalities is achieved through a multi-view deep autoencoder (MDAE). The

contributing part of the model is the multi-view feature learning stage. In this part of the net-

work, the multimodal features are combined through concatenation, where the goal is to find

a shared multi-view representation, on which the final classification is based.

Using a non-ocr text extraction technique Another network using attention mechanisms for

the fusion of features is Structextv2 [33]. This is not directly a classification model, but a doc-

ument image pretraining framework, aiming to overcome the shortcomings of OCR based text

extraction. The pretraining is performed using two different pretraining tasks. One focuses

on masked image modeling (MIM), where some pixels, patches, or latent representations are

masked, which the model has to predict. The other one focuses on masked language modeling,

which is similar to the MIM task but instead masks parts of the text. This way, both visual and

textual features are combined simultaneously. For the further process of document image clas-

sification, a CNN for visual feature extraction and a Transformer for semantic feature extraction

are utilized. Feature maps are created from the features, which are fed into a final linear layer.
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This layer, combined with a SoftMax activation function, predicts the label of the document

image. This pretraining approach in combination with the classification architecture achieve a

competitive performance accuracy with state-of-the-art models.

Textual & Structural-based Methods The following classification methods do not use the vi-

sual modality to classify documents and do therefore do not belong to the field of document

image classification. As they do focus on combining multiple modalities for classification, they

are still deemed relevant for this literature research. The layout modality can be captured in

different ways, but in most cases either the position of text parts is captured by OCR extraction

[20], or different sections within a document are localized [24], such as a title or a paragraph.

Most models combining the textual & structural modalities do not only focus on document

classification, but are created to perform multiple document processing tasks [20, 23, 24, 77].

The features and the fusion strategy are compared in table 2.6, where we can see that all text is

encoded using some kind of BERTbased text encoder (RoBERTa and BART are encoder based on

BERT), and attention mechanisms are predominantly used to fuse the features. We go further

into the model specifics.

Table 2.5: Classification Accuracies achieved classifying RVL-CDIP and Tobacco-3482 for Textual & Structural-based
methods

Model/Author RVL-CDIP
LayoutLM [20] 94,42%

LiLT [23] 95,62%
Kim et al. [77] 95,3%

GVdoc [24] 87,50%
UDOP [21] 96%

Table 2.6: Textual-Structural Model Comparison

Model/Author Textual Modality Layout Modality Feature Fusion
LayoutLM [20] OCR & BERT Bounding Box Posi-

tions
Self-Attention Mech-
anism

LiLT [23] OCR & RoBERTa Bounding Box Posi-
tions

Bi-directional Atten-
tion Mechanism

Kim et al. [77] Swin Transformer
& BART

Swin Transformer Multi-Head Self-
Attention

GVDoc [24] OCR & BERT Bounding Box Posi-
tions

Graph Representa-
tion

UDOP [21] OCR Word Bounding Box
Positions

Unified Vision, Text
and Layout Encoder

LayoutLM [20] pretrains a model for document image classification based on both text and

layout information, namely position embeddings of text bits in the document and image em-

beddings of parts of the documents. The model is pretrained on the IIT-CDIP dataset. Lastly, it

is fine-tuned on different tasks, of which one being document classification.

The benefit and novelty of LiLT [23] over LayoutLM is that it can be used for understanding
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structured documents without requiring English text in it. All earlier document classification

models that focus on text have been pretrained on merely English language. LiLT however, is

language-independent. A bidirectional attention complementation mechanism is utilized to

accomplish the cross-modality interaction of the used modalities. The model learns to under-

stand the layout structure of documents during pretraining from monolingual documents and

then utilizes this knowledge to fine-tune on multilingual documents.

In contrast with models discussed earlier, Kim et al. [77] try to classify document images based

on text without using an OCR-based technique. The proposed model is a Transformer-based

model called Donut (Document Understanding Transformer). The input image is split into

non-overlapping patches, to which a Swin Transformer is applied. A Swin Transformer is a

type of vision transformer that breaks down images into smaller patches and combines these

patches into feature maps. Because it focuses on smaller parts of images, it can process images

faster. This Swin Transformer consists of a multi-head self-attention module and a two-layer

multi-layer perceptron. The combined patches are fed into a decoder, where the encoded em-

bedded input is decoded using the so-called BART model. The model learns to read texts from

the document by pretraining it on large corpora. Lastly, it is learned how to understand the text

by fine-tuning the model.

Another approach for processing the combination of textual and layout information is com-

bining both in a graph representation. This approach is taken by GVdoc [24] , where in this

graph representation edges represent spatial relationships between the different regions of the

document. The combined features are fed into a graph neural network, which is pretrained for

three different tasks (Masked Language Modeling, Masked Position Modeling and Cell Position

Prediction). Furthermore, the model is tested for robustness to out-of-distribution data as well

as identifying out-of-domain data. Two different metrics are used in the graphs as well, where

the combination of both metrics grants the best performances.

Another proposal for a unified framework using a transformer-based architecture to combine

textual and layout features is UDOP (Universal Document Processing model) [21]. This model

utilizes textual and spatial correlation and proposes a vision-text-layout transformer that is

used in the newly introduced UDOP model. The features are fused in the input stage using a

transformer encoder and decoded in the VTL decoder, which consists of a text-layout decoder

and a vision decoder. This vision decoder focuses mostly on spatial-textual information in the

image, which is why this model is assigned to the textual-structural models. UDOP performs

competitively however does not outperform the SOTA models.

Table 2.7: Classification Accuracies achieved classifying RVL-CDIP and Tobacco-3482 for Visual & Structural-based
methods

Model/Author RVL-CDIP Tobacco-3482
Kaddas and Gatos [78] 92,95% 80,64%
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Visual & Structural-based Methods The combination of the visual and structural modali-

ties, is a unique one in document classification. Kaddas & Gatos [78] propose a method that

combines visual-based with structural-based features. These layout features are based on text

blocks, paragraphs, lines, words, and symbol segmentation results. These features are extracted

in the pre-processing stages. The visual features are handled through a ResNet50 backbone

model. Further, the layout information capturing the different levels of segmentation are each

handled through an individual segment level branch. The deeper, i.e. more detailed the seg-

ment level is, the more layers are used to grasp the segment. The different segment levels are

combined with the visual document information through an average pooling layer, and classi-

fied using a SoftMax function. No explicit pretraining is used for improving the performance of

the model.

Textual & Visual & Structural-based Methods Lastly, fourteen classification architectures us-

ing the three identified modalities altogether have been proposed. Again, most of these models

use OCR techniques to extract text and layout features. Generally, layout/structural features

are being captured through coordinates of specific sections within the documents, e.g. text

sections, titles, images. The way these coordinates are captured and handled is different for

each of the discussed papers. A significant part of these models use a LayoutLM-based [20] or

LayoutLM-influenced architecture. Furthermore, graph representations are increasingly being

utilized in these proposed architectures.

Table 2.8: Classification Accuracies achieved classifying RVL-CDIP and Tobacco-3482 for Visual & Textual &
Structural-based methods

Model/Author RVL-CDIP Tobacco-3482
DocFormer [73] 96,17%

SelfDoc [25] 93,81%
MGDoc [96] 93.64%

Bi-VLDoC [97] 97,12%
UDoc [74] 93,64%

Pramanik et al. [54] 93,36%
LayoutLMv2 [55] 95,64%

Mahajan et al. [83] 97,30% (using LayoutLMv2)
LayoutLMv3 [22] 95,93%

Ali et al. [84] 95,87%
Hamed et al. [56] 83,24%
Xiong et al. [76] 93,45%

Mandivarapu et al. [75] 77,5%
Shilpa and Soma [89] 98,77%

In table 2.9, the ways the different modalities are processed are and the feature fusion method

are set apart. Almost all of the models use optical character recognition to extract the text from

the documents, and consequently use some encoder to tokenize, embed and encode the text.

In order to capture the visual modality, a backbone CNN is used. Generally, the structural fea-

ture is captured through bounding boxes at either word, text segment, object or page level.
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Table 2.9: Visual-Textual-Structural Model Comparison

Model/Author Textual Modal-
ity

Visual Modal-
ity

Layout Modal-
ity

Feature Fusion

Docformer [73] OCR & Word-
piece Tokenizer

ResNet50 Word Bound-
ing Box Coordi-
nates

Multi-Modal
Self-Attention

SelfDoc [25] OCR &
sentence-
BERT

Regions-of-
Interest Detec-
tion with Faster
R-CNN

Object Bound-
ing Box Coordi-
nates

Modality-
Adaptive Atten-
tion

MGDoc [96] OCR & BERT ResNet50 Bounding Box
Positions at
Word-, Region-
, and Page-level

Cross-Modal
Attention

BiVLDoc [97] OCR &
RoBERTa-
Large

Mask R-CNN
trained on Pub-
LayNet

Bounding
Boxes & Anchor
Box Represen-
tations

Transformer
Layer (Bi-
directional
Text-Image
Self-Attention)

UDoc [74] OCR & Hi-
erarchical
Transformer
Encoder

ConvNet Text & Image
Features ex-
tracted based
on docu-
ment regions
(Regions-of-
Interest)

Gated Cross-
Attention

Pramanik et al. [54] OCR & Long-
former

ResNet50 &
FPN

Bounding Box
Positions

LongFormer
Encoder

LayoutLMv2 [55] OCR & Word-
piece Tokenizer

ResNeXt-FPN Text Section
Bounding Box
Positions

Spatial-Aware
Self-Attention

LayoutLMv3 [22] OCR &
RoBERTa

Vision Trans-
former

Segment Level
Layout Position

Multimodal
Transformer

Ali et al. [84] OCR &
RoBERTa

Vision Trans-
former

Segment Box
Positions

Multi-Head
Cross Attention

Xiong et al. [76] OCR & BERT ResNet50 /
VGG19

Text Block Co-
ordinates

Graph Repre-
sentation

Mandivarapu et al. [75] OCR &
Word2Vec

Pretrained
VGG16

Region Bound-
ing Boxes Pre-
trained on Pub-
LayNet

Graph Repre-
sentation
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DocFormer [73] is of an encoder-only transformer architecture, where the features are com-

bined in a multimodal self-attention layer. The input consists of the visual and textual features

individually, but also combined with spatial features (visual-spatial and language-spatial). The

model is pretrained using different types of pretraining tasks. The SoftMax function is applied

first separately for the modalities, and then combined into one classification.

SelfDoc [25] tries to overcome overly fine granularity by focusing on large segments rather than

individual words. A document object detector using Faster R-CNN is used to annotate bound-

ing boxes for semantically meaningful components, and to find significant components, where

in this case the model detects text blocks, titles, lists, tables and figures. The output features are

fused in the fine-tuning phase through modality-adaptive attention. Sample-dependent atten-

tion weights are applied to the two modalities. In this way, the importance and influence on

the classification of the different features can be adapted per document. By multiplying these

weights with the score of the respective modality and combining these through a linear additive

function, a sigmoid activation function makes the final classification.

MGDoc [96] also tries to improve performance by focusing on a different level of granularity. In

contrast to SelfDoc [25], it does not overlook fine granularity, but it tries to capture information

from the different levels of granularity. They argue that the relation between content at these

different granularity levels, e.g. words, regions, and pages, is very important for document un-

derstanding tasks. As previous models mostly use only one granularity level for document un-

derstanding tasks, MGDoc proposes to combine the different levels of granularity into a unified

text-visual encoder.

Where MGDoc focuses on different levels of granularities, Bi-VLDoC [97] focuses on bidirec-

tional relations between the modalities through a so-called bidrectional hybrid-transformer.

This technique allows the model to pay attention to visual and textual parts of a document

in both forward- and backward directions. Specifically, the model uses bi-directional vision-

language supervision. This combination should contribute to a cross-model feature extraction

encoder. The architecture of the model is constructed by first inputting the three modalities

separately into the bidirectional vision-language hybrid-attention module. The representation

generated through this module is then utilized for pretraining tasks and downstream docu-

ment intelligence tasks. Image pretraining on the Bi-VLDoc is done utilizing the extensive IIT-

CDIP dataset. For the pretraining of the textual and layout features are done, respectively, using

RoBERTa-Large and PubLayNet14.

The work proposing UDoc (Unified pretraining Framework) [74] puts more attention towards

the pretraining of the classification model. The model tries to learn from cross-modal contextu-

alized embeddings. Finally, the classification is made by computing the element-wise product

between visual and textual representations, which is averaged over all sentences/regions.

The main focus of Pramanik et al. [54] is to classify long multimodal documents. They com-

14PublayNet Dataset

https://developer.ibm.com/exchanges/data/all/publaynet/t
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bine information on the modality level with the information available per page level for PDFs

with multiple pages. The inputs are encoded using the Longformer network architecture[98], a

specific encoder for long documents. The longformer encoder generates sequence representa-

tions for the documents. The features used are based on page numbers, sequences of tokens,

bounding boxes, and page images.

LayoutLM-based architectures LayoutLMv2 [55] utilizes the earlier constructed LayoutLM

[20] model (see section 2.3.3), and builds upon it by also incorporating the visual aspect of

images rather than just textual and layout information. The different features are combined in

the pretraining stage through a multimodal transformer model. A spatial-aware self-attention

mechanism is integrated into the transformer architecture. In the pretraining stage, different

pretraining tasks are performed. Compared to the first LayoutLM model, as well as other SOTA

models at that time, LayoutLMv2 has an improved performance.

Mahajan et al. [83] try to improve the classification performance of LayoutLMv2 [55] by ap-

plying a novel combination of image preprocessing techniques, since they recognize that OCR

does not always perfectly extract all of the included text. First, a grayscale conversion is ap-

plied using cvtColor, secondly smoothing and blurring is performed in order to cut down on

the amount of detail and noise in an image, thirdly the images are segmented using adaptive

thresholding, where all pixels with intensities higher than the threshold are set to the same fore-

ground value, and a null value is assigned to the remaining pixels. Lastly, a bitwise operation

is done to divide the image’s foreground and background in images. These operations cause

the texts in an image to be more clear and, therefore, easier for OCR techniques to extract. Per-

forming these preprocessing techiques improves the LayoutLMv2 results from an accuracy of

93.07 to 97.3%.

The LayoutLMv3 [22] architecture is also an improved version to the earlier developed Lay-

outLMv2 [55]. One of the adaptations in LayoutLMv3 is the adoption of segment-level layout

position, where layoutLMv2 captured the focus on a finer granularity, namely the word-level

layout positions. Similarly to its predecessor model, LayoutLMv3 uses base and large model

sizes. Furthermore, LayoutLMv3 uses a simplified architecture compared to LayoutLMv2 by us-

ing patch embeddings, in a vision transformer-like model, rather than a CNN backbone model

as used by LayoutLMv2. The performance in terms of classification accuracy of layoutLMv3

improves compared to LayoutLMv2.

Both Ali et al. [84] and Hamed et al. [56] take inspiration from the LayoutLMv3 model [22].

The architecture proposed by Ali et al. [84] propose a transformer-based model that combines

features from the three modalities for different document analysis tasks, one being document

classification. The model consists of a text-embedding layer, patch embeddings (visual) layer,

position (layout) encoding, multi-head attention based encoder, and decoder layers, through

which all of the information is encoded and decoded. The classification is performed through

a linear transformation layer and then classified through a SoftMax activation function.
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Hamed et al. [56] take a different a different approach by focusing on finding the balance be-

tween efficiency and performance. An early exit strategy is proposed for which the goal is to

achieve a pareto-optimal balance between the performance and efficiency. The LayoutLMv3

model is utilized, and intermediate classifiers are placed at different parts of the network to

explore earlier and more efficient classification.

Graph Representations Xiong et al. [76], Mandivarapu et al. [75] and Shilpa and Soma [89]

like GVDoc (see section 2.3.3) present a graph convolutional network to learn the three modal-

ity features. Mandivarapu et al. [75] specifically focus on proposing a more efficient document

image classification model, while combining the three modalities. Utilizing all information

leads to a large amount of data needing to be processed and therefore to a decrease in the

speed of the model. Graph representations should address this problem by using a more effi-

cient representation of the data. The nodes represent the features of image and text, and the

edges the structural information such as location of the objects. Both the model by Xiong et

al. [76] and the model by Mandivarapu et al. [75] do not necessarily improve the SOTA models

in terms of performance as measured by the accuracy metric; however, the models do improve

significantly in terms of training speed.

Shilpa and Soma [89] have designed their graph-attention-driven model (GAD-DTL) with a

dual-tune learning system. This dual-tune learning system uses two learning techniques to

enhance the model’s performance, the first one capturing the relationships between different

elements within the document. The second learns the features on itself, without taking the

relationships into account. Semantic region embeddings are found within document images,

where textual and spatial information is combined, along with captured visual information.

The features are combined through an adaptive fusion layer, in which different weights are as-

signed to the features based on their importance for a specific document. This graph-attention-

driven model achieves the highest performance accuracy in this category of textual, visual &

structural-based methods.

SUMMARY

After learning about all these specific applications of document image classification, we can

evaluate which methods have been used and at what frequency. This section goes into the

different parts of the methods, specifically discussing the architectures used for the different

modalities, the methods for fusing the features, and how the classification is done. Then, the

different pretraining strategies are discussed, followed by fine-tuning practices. Lastly, different

techniques are applied to improve training efficiency, and therefore are discussed.

Architectures for handling visual features In document image classification methods, visual

features are typically extracted using deep learning techniques. For this purpose, both CNNs

and transformer-based models are employed. The four most commonly used architectures are

ResNet, VGG16, Vision Transformer (ViT-B/16), and EfficientNet. In addition, models based on

MobileNet and NasNet have been used, although less frequently.
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Architectures for handling textual features Most of the models discussed use an optical char-

acter recognition (OCR) tool to retrieve the text from the documents, the most used tool being

Tesseract OCR [99]. The extracted text needs to be understood in order to compare it; therefore,

encoder tools such as BERTbased encoders and fastText [100] are used to encode the text in doc-

uments. Numerous different versions of BERTbased encoders are used; the standard BERT [93],

RoBERTa [101], BART [102], and lastly a sentence-based BERT encoder. Furthermore, a more

efficient and lighter language encoder is fastText [100]. Overall, the function of these language

encoders is comparable. All transform the retrieved textual data into vector representations

that capture semantic meaning, enabling comparison and classification of documents.

Architectures for extracting layout features The methods used to extract layout features can

be divided into the following four categories, each capturing layout details in a different way.

• Capturing 2D position of objects

• Graph representation

• Subdividing the document in patches

• Using pretrained layout extracting methods (R-CNN & PublayNet)

Feature fusion methods Although the modalities are generally extracted individually, a fu-

sion of the features is required to benefit from all the modalities at once. The characteristics by

which the feature fusion methods can be characterized are the following. The characterization

of all feature fusion methods applied in the discussed models can be seen in Table C.2.

• Moment of fusion (early/hybrid/late)

• Complexity of fusion

• Involvement of attention mechanism

• Staticity/Adaptivity of fusion method

Pretraining Most high-performing models utilize some form of pretraining. Language en-

coder models for the textual modality are typically pretrained. However, models for the visual

modality are not always pretrained. Many visual models are based on ImageNet weights, which

is a pretrained model in a sense. Although ImageNet is a model trained to recognize a collec-

tion of objects that may not perfectly align with the document classes, it still provides a valuable

starting point in many cases. More pretraining is conducted for some models using the RVL-

CDIP dataset, which is more closely related to document classification. Various pretraining

tasks are utilized, focusing on different granularities and ways to understand text and images,

as well as finding the relation between modalities.

Improving the efficiency For the development of models, not only performance has been the

goal. The objective of making deep learning models more efficient has been a widely emerging



GAPS IN THE LITERATURE & FUTURE RESEARCH 35

development in the area, for document image classification practices as well. In the materials

discussed, several methods of making models more efficient have been designed. First, Effi-

cientNet is used by Borst [70], EDNets [30], and EmmDocClassifier [31]. Ferrando et al. [29]

aim to decrease the computational time as one of the main goals, and therefore make use of Ef-

ficientNet and utilize parallel systems, i.e. multiple GPUs to speed up the pretraining process.

By utilizing an early exit strategy to achieve a balance between performance and efficiency,

Hamed et al. [56] aim to make a more efficient model. Lastly, graph representations are also

used to make the classification model more efficient [24, 75, 76, 89].

2.4. GAPS IN THE LITERATURE & FUTURE RESEARCH

2.4.1. APPLICATION OF DOCUMENT IMAGE CLASSIFICATION TO THE AEC INDUSTRY

Through the evaluation of articles published on the subject of document classification in the

AEC industry, we found that the applications to date focus mainly on text mining / classification

practices. The previous researchers mostly used text to understand the differences between

different documents, applying the results to various cases in the industry [61, 62, 65–68]. As

for some of the cases the use of text classification is a fairly logical and useful decision, not for

all applications in the AEC industry this is assumed to be most useful. Especially in the case

where a document set consists of textual as well as rather visual documents such as maps or

drawings, or specific documents that vary in layout, only evaluating the documents based on

the textual information does not always make the most accurate classification. Furthermore,

many document classification models based on textual features are based on OCR techniques

[26, 29, 30, 34, 35, 61, 65], which is not always the most reliable source of information, as often

not all words can be extracted completely correctly [77].

The combination of these two shortcomings, as well as the developments of research on doc-

ument image classification and multimodal document classification in the general research

fields, requests more research on document image classification models and multimodal doc-

ument classification models for AEC projects. The first step in research would be to evaluate

whether better performing classification models could be constructed and what these archi-

tectures would look like.

2.4.2. EXPLAINABILITY AND INTERPRETABILITY

Section XAI in document image classification (2.3.3) describes practices aimed at enhancing

the transparency, explainability, and interpretability of document image classification mod-

els. With the rapid developments in explainable AI, numerous techniques have been designed

and experimented with. The application of existing XAI techniques, as well as the design of

new methods specifically tailored to document image classification, could significantly benefit

the development of document image classification models. Several XAI techniques designed

specifically for document image classification have already been developed [80, 81, 85–87].

However, further research, particularly into XAI techniques for multimodal document classi-

fication would be beneficial. In this way, more trust would be instantiated between users and
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stakeholders in these models, as decision-making becomes more understandable.

2.4.3. EFFICIENCY AND SCALABILITY

The application of deep learning models requires a lot of computational power, which increases

with the complexity of the model and the volume of training data [29]. This results in extended

training times and an increased amount of computational power necessary. With the addition

of different modalities, the data processed by the model expands, causing the model to need

even more time and power to train. Research has explored various methods to improve the

efficiency of document classification models, as described in section Improving the efficiency

(2.3.3). Despite these practices, training (multimodal) document image classification models

remains time-consuming and computationally intensive [29, 31]. Therefore, further research is

essential to improve efficiency in this area.

2.4.4. HANDLING IMBALANCED DATA

The datasets used in this research are rather balanced, as they have been curated and specif-

ically designed for classification purposes. In real life projects, datasets are often not as bal-

anced, causing challenges in model performance and accuracy. Imbalanced datasets might

lead to biased predictions, as the model will likely predict the majority classes for more doc-

uments in than minority classes, as it has learned more about the majority classes [24, 36].

This problem asks for solutions using additional techniques such as resampling, data augmen-

tation or specifically designed algorithms to address this problem. More research on imbal-

anced datasets for document image classification could help identify most evident problems

and techniques to overcome the results of imbalanced datasets.

2.4.5. PRETRAINING AND TRANSFER LEARNING ON DOMAIN-RELATED DATASETS

In general, we have seen an improved performance of classification models after being pre-

trained on another dataset [26, 29, 31, 35, 81, 82, 86, 88]. The effectiveness of pretraining de-

pends significantly on the relatedness of the documents of the pretraining with the documents

being classified in the end. Both ImageNet [26, 29, 35, 81, 88] and the RVL-CDIP [31, 82, 86]

dataset have been used during the pretraining process. As ImageNet consists of general images

of objects, and the RVL-CDIP dataset of rather general categories of documents, these datasets

might not always be relevant to AEC documents. Future research should design a dataset more

relevant to AEC and construction documents, and possibly a pretrained model could be con-

structed that could be widely used in the industry.



3
METHODOLOGY

After building a foundation on the subject of multi-modal document image classification by

means of an SLR, the retrieved knowledge is used to find a solution to the overall research goal.

An ML design research is carried out to find the best contribution to the lack of document

classification solutions in AEC asset management.

Two main methodologies were followed in this research; the first being CRISP-ML(Q) [4], a

methodology specifically designed for ML research projects. CRISP-ML(Q) builds upon the

widely used Cross-Industry Standard Process for Data Mining (CRISP-DM) [103] methodol-

ogy, a methodology that describes the general data science lifecycle. CRISP-ML(Q) adapts the

CRISP-DM methodology to address the complexity and iterative nature of ML development.

The CRISP-ML(Q) methodology was introduced in 2021 to better guide ML development pro-

cesses, and give more support for quality assurance, better meet business expectations, and

post-deployment monitoring [4], something where CRISP-DM is lacking. After its introduction,

CRISP-ML(Q) has been widely adopted in both academic and industrial contexts [104, 105].

Secondly, the Automated Machine Learning (AutoML) methodology is utilized [104, 106]. This

methodology aims to make ML models more accessible and understandable by non-experts, as

it automates time-consuming and complex ML tasks. In this section, we describe the way the

constructed classification models are validated and evaluated.

3.1. CROSS-INDUSTRY STANDARD PROCESSING FOR MACHINE LEARNING

(QUALITY )
The CRISP-ML(Q) methodology consists of six broad phases, which consequently consist of

substeps, as demonstrated in Figure 3.1. The broad stages conclude to business & data under-

standing, data preparation, modeling, evaluation, deployment and lastly monitoring & mainte-

nance. This study focuses primarily on the first four phases. While deployment and monitoring

37
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are discussed conceptually, they are not fully implemented. Given that these steps are a signif-

icant part of the CRISP-ML(Q) methodology’s contribution compared to CRISP-DM, one might

argue that using CRISP-ML(Q) over CRISP-DM is excessive. However, the detailed steps out-

lined for each of the methodological phases provide a more comprehensive contextual frame-

work for our research and future application of the resulting models, as it addresses ML specific

concerns and configurations. For the same reason, we elaborate on each of these steps, even

though not all steps are followed.
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Figure 3.1: Phases & Tasks as Described in the CRISP-ML(Q) Methodology [4]
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In addition to updating the CRISP-DM methodology, CRISP-ML(Q) [4] incorporates quality as-

surance measures. Before each step within the methodology, the requirements and constraints

are defined. Furthermore, the methodology specifies and instantiates the included tasks, iden-

tifying all possible risks that could affect the success of the ML application. During each phase,

to ensure a quality outcome, one should design a mitigation strategy for the identified risks.

3.1.1. BUSINESS & DATA UNDERSTANDING

In the first phase, our primary objective is to discover and define the business problem and the

resulting objectives. We then translate these business objectives into ML objectives. During this

step, we design the requirements for the ML solution, establish its success criteria and evaluate

its feasibility. Lastly, we collect and evaluate the required data in terms of its quality. In the

remainder of this section we describe the steps in of the Business & Data Understanding phase

in more detail.

One can capture the success criteria at three levels, namely business success criteria, ML suc-

cess criteria, and lastly economic success criteria. These criteria help set goals and define when

to deliver the ML product. The feasibility of the ML project should be evaluated in terms of

different factors; applicability of ML technology, legal constraints, and requirements of the ap-

plication. Further, the required data is collected and analyzed. An important consideration

during the data collection is that the data collection should be an iterative process, where data

can change or be updated over time. Version control of the data is essential to ensure repro-

ducibility and data quality. Ensuring data quality is essential not only during later iterations

of data collection but throughout the entire process. The CRISP-ML(Q) methodology guaran-

tees quality by first describing and exploring the data, and then defining the requirements that

specify the expected conditions of the data, where a domain expert should be involved. This

way possible biases can be mitigated beforehand. Data that does not meet these requirements

should either be excluded or amended to comply.

The final step in the methodology to ensure data quality is data verification, which ensures

that all data meets the defined requirements. Additionally, this step aims to mitigate the risk of

insufficient representation of extreme cases by using data exploration techniques to evaluate

the data distribution.

3.1.2. DATA PREPARATION

Once all data is collected and its quality is ensured, the data should be prepared for the model-

ing phase. Just as data collection should not be a static phase, data preparation is a rather itera-

tive phase as well. Anywhere in the process, data can be further adapted to better fit the model

and ML objectives if necessary. We discuss four main steps in the data preparation phase, cov-

ering the selection, cleaning, construction, and standardizing of data.

First, data selection is subdivided into three tasks, the first being feature selection. It is best

practice to select only the features that are necessary as the more features that are selected, the
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more data samples are necessary. By selecting as few features as possible, we try to prevent

the curse of dimensionality. Features should be selected not only based on the model and the

dataset, but also with input from domain experts to mitigate the risk of potential biases.

In addition to feature selection, data can be selected and filtered based on objective quality

criteria. If a data sample does not satisfy the designed criteria, it should be excluded from the

data set.

Then lastly, the data should be evaluated in terms of it’s balancedness. Different sampling

strategies could be used to improve balance in the case of unbalanced classes. Oversampling

can be used to increase the importance of the minority classes, however, it increases the risk

of overfitting on the minority class. Contrastingly, the majority class can be undersampled by

removing data points from it. This should be done rather carefully as the characteristics of the

data need to be kept and biases should not be introduced through this process. By comparing

the results of both strategies, the risk of bringing biases into the model is reduced.

The next step within the data preparation phase is cleaning the data, where both the data is

filtered in order to reduce noise in the data and secondly, data is imputed in order to work with

a complete dataset, which could be done using various techniques and strategies. Again, the

model performance should be compared between the different imputation strategies in order

to decide upon the best-fitting one.

Although data construction and standardization can be important steps in data preparation,

and specified as explicit steps in the CRISP-ML(Q) methodology as well, they were not per-

formed in this study.

Constructing data is part of the data preparation process as well. New features could be derived

from existing ones in order to engineer features that are more relevant to the model objectives.

Further, new data can be constructed through data augmentation, where transformations are

done on the data, such as applying rotations, adding noise or by augmenting the data on meta-

level.

Lastly, data standardization could be applied. Some ML tools require specific data files or input

types, to which data has to be converted before being able to perform ML practices. Addition-

ally, applying normalization helps overcoming biases and achieves convergence at a faster rate.

3.1.3. MODELING

The decision on which modeling technique to use is determined by the combination of busi-

ness objectives and ML objectives, the data, and the project’s boundary conditions. The re-

quirements and constraints designed should help filter which models to build and compare.

Factors that help decide what model to utilize could be, among others, performance, robust-

ness, scalability, explainability, and model complexity. In addition to requirements and con-

straints for the model, literature research on similar problems could be beneficial for model

selection as well, as the literature could provide information about previous applications, and
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possible benefits and downfalls of the specific model in the specific setting.

The ML models can be evaluated on various measures. In addition to the performance of

the model, many other measures could be relevant. Examples of relevant measures, similarly

to factors guide model decision, could be robustness, explainability, scalability, resource de-

mands, and model complexity. The way these measures are weighted and assessed depends on

the specific application. No single model performs perfectly for all problem classes; a special-

ized model for a specific task will always perform better. Adapting a model towards a specific

task, however, always requires domain knowledge as it brings the risk of incorporating false

assumptions and biases.

Training the model depends on the learning problem, where various settings can be optimized.

The objective of the application defines how to evaluate the model performance, the optimizer

defines how to adapt the parameters of the model to improve, and regularization can be utilized

to reduce the risk of overfitting. Cross-validation can be used to optimize the hyperparameters

and to test the generalizability of the model. As labeling data is very time-consuming, perform-

ing unsupervised or semi-supervised pretraining could speed up the process. Transfer learning

could be applied to reuse the weights established through another ML practice.

Multiple models can be trained individually, after which the results can be combined. In this

way, the various models can account for each other’s errors, increasing the confidence in the

prediction as well. In general, it is complex to exactly reproduce ML models due to non-convex

and stochastic training procedures, as well as randomized data splits. Therefore, reproducibil-

ity has been split down to two levels; method reproducibility and result reproducibility. In ad-

dition, the modifications and details of the model should be documented to improve overall

reproducibility.

3.1.4. EVALUATION, DEPLOYMENT AND MONITORING & MAINTENANCE

A model is evaluated based on the goals, requirements, and criteria designed. In general, a

model is evaluated by validating its performance. Additionally, the robustness of the model

is important to ensure that the model performs similarly for other data samples and test sets,

as well. By increasing the explainability of the model, finding errors is supposedly easier and

might introduce strategies to further improve the model. Additionally, increased explainability

might help increase trust and user acceptance.

After evaluation and finalization of the ML model, the model can be deployed. The way this is

done depends on the designated field of application. Five main concerns should be evaluated

in order to initiate the best deployment; what hardware would be most suitable and model

evaluation under production, assuring user acceptance and usability, minimizing the risks of

unforeseen errors, and lastly what specific strategy of deployment to employ.

Once the ML model is operational, improvements might be necessary and performance viola-

tions could occur. The main violations include non-stationary data distribution, where shifts
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Figure 3.2: Neural Architecture Search (adapted from [5])

in features or labels may occur. Changes in data structure or content could violate the model’s

performance over time. Additionally, the hardware on which the model is deployed may dete-

riorate over time. Therefore, hardware performance should be monitored and updated if nec-

essary. Lastly, system updates might change circumstances on which the data is dependent,

as well as the model itself. After the deployment of the model, monitoring its performance to

recognize possible violations is crucial. If such events occur, the model must be updated to

comply with the new conditions.

3.2. AUTOMATED MACHINE LEARNING

AutoML has been a highly researched topic with significant developments from the introduc-

tion of AutoML [107] in 2014 to now. AutoML involves the process of automating the process

of applying ML to real-world problems [106]. Tasks such as data preprocessing, feature se-

lection, model selection, hyper-parameter tuning, and model evaluation are the focus of this

discipline. These tasks are often rather time-consuming and complex during the development

of ML models [108, 109]. AutoML aims to speed up and simplify the development of ML appli-

cations, making them more accessible, even to non-experts.

3.2.1. NEURAL ARCHITECTURE SEARCH

NAS is the process of automating architecture engineering, one of the steps often used to au-

tomate ML. It generally designs architectures that perform better than human-designed ar-

chitectures [58]. NAS has three main focuses; search space, search strategy and performance

estimation strategy, as illustrated in Figure 3.2.
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The search space includes identifying which types of architectures are suitable as the final de-

sign, where incorporating prior knowledge about architectures can be beneficial. This search

space can be very large or even unbounded. The search strategy describes how to explore the

search space in order to find the most fitting and best performing architecture. Lastly, the per-

formance estimation strategy decides which method is used to retrieve a performance measure.

The most desired measure in this sense would be the performance of the model on unseen data.

To retrieve this measure, we train each model and validate it using unseen data. Through this

process, the final optimal architecture (see Figure 3.2) is found in terms of the defined perfor-

mance measure.

3.3. MACHINE LEARNING MODELS

This research uses different applications of ML models, which are described in further detail in

this section. The foremost type are classification models. In addition, OCR is used to extract text

from document images. This section further describes the ML models and techniques used.

3.3.1. OPTICAL CHARACTER RECOGNITION

OCR techniques allow us to recognize characters of handwritten and printed text from an image

without using the human ability to read [110]. OCR does not always perfectly extract text, as

its performance and accuracy are highly dependent on the quality of the input document or

image. Distortion and/or noise in images often degrade the performance and accuracy of OCR

techniques.

3.3.2. CLASSIFICATION MODELS

This research distinguishes between different data modalities used for classification. ML mod-

els utilizing computer vision, natural language processing, and document layout analysis are

evaluated and combined. All models share the common objective of classification. Classifica-

tion is a supervised ML task, where a model is trained to categorize data into predetermined

categories based on previously seen related data [111]. This section discusses the selected clas-

sification models for each data modality.

VISION BASED CLASSIFICATION MODELS

This research evaluates five different CNN architectures for image classification. We select the

selected architectures based on the literature review (see Chapter 2). These architectures vary

in size, structure, and performance, which we discuss in chronological order in this section.

VGG16 VGG16 is a CNN architecture developed by the Visual Geometry Group at the Univer-

sity of Oxford [53]. The architecture was introduced in 2014 and is known for its simplicity and

depth, consisting of 16 layers; specifically 13 convolutional layers, and 3 fully connected layers.

The model has achieved good performance results in document classification [35, 36, 75, 76] as

well as image classification [112–119].
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ResNet50 ResNet50 is a variant of the Residual Network (ResNet) architecture, but consists of

50 layers [50]. The model is a CNN architecture developed by Microsoft research in 2015. With

ResNet50 the concept of residual connections was introduced, where the model learns the resid-

ual functions, which are essentially the difference between the output of a layer and its input,

and which maps the input to the desired output. This way, the problem of vanishing gradients,

which hinders the training of deep networks by diminishing the gradients exponentially when

they propagate backwards, has been tried to overcome in ResNet through the use of shortcut

connections between layers [50]. ResNet50 has been trained on large datasets, achieving state-

of-the-art results in document classification [54, 73, 76, 96], as well as image classification in

general [112–119].

Inception-ResNet-V2 Inception-ResNet-v2 is a hybrid CNN architecture that utilizes the strength

of the inception models and combines it with residual connections as designed for the ResNet

architectures [120]. The architecture was introduced by Google in 2016 and significantly im-

proves training speed and stability. The models is designed to be both deep and wide, in order

to be able to capture complex patterns in data. Inception-ResNet-V2 has demonstrated state-

of-the-art performance on various document image classification applications [27, 32]. The

architecture is mostly effective for tasks that require high computational efficiency and accu-

racy [121–123].

MobileNetV2 MobileNetV2 is a CNN architecture designed for mobile and resource-constrained

environments [124]. The architecture was introduced in 2018 by Google and builds upon the

earlier introduced MobileNet (V1) by incorporating an inverted residual structure and linear

bottlenecks. Compared to this earlier version, MobileNetV2 significantly reduces the number of

operations and memory required, while maintaining a high performance. Various researches

show a high performance in image classification [114, 125], as well as document image classi-

cation specifically [28, 57].

EfficientNet-based Models EfficientNets are CNNs developed through balancing the depth,

width, and resolution of the network, instead of by developing a CNN in a fixed resource bud-

get, after which it is scaled for better performance [126]. EfficientNet was found through NAS

in 2019 and generally achieved better performances than state-of-the-art networks at the time.

EfficientNets are generally smaller in size than other state-of-the-art models. The model ar-

chitecture ranges from version B0 to B7, where B0 is the base model. This first base model is

scaled to the next version each time by applying the compound scaling method, which increas-

ingly improves the models’ ability to handle more complex data.

TEXT BASED CLASSIFICATION MODELS

This research evaluates various models for text classification, including four BERT-based mod-

els and different classification models using a TF-IDF-based input. These models were selected

based on the literature review (see Chapter 2). The capabilities of each model are elaborated
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on further in this section.

BERT-based Models BERT is a transformer-based model that has achieved state-of-the-art

performance in many natural language processing tasks [93]. BERT uses a deep neural net-

work architecture and is pretrained on a large text dataset. It performs well in understanding

the context of words by considering their surroundings, making it very effective for (sequence)

classification tasks.

Robustly Optimimized BERT approach (RoBERTa)[101] builds upon the BERT architecture by

improving the pretraining process. The model was trained for longer duration, with larger

batch sizes and more data. These improvements enable RoBERTa to perform exceptionally

well in various NLP tasks such as sequence classification.

To address the limitations of BERT and RoBERTa in handling non-English text data [127, 128],

two Dutch BERT-based tokenizers/models were developed: BERTje [127] and RobBERT [128].

These models are based on the BERT and RoBERTa architectures, respectively. Both models

are trained on large Dutch datasets and achieve state-of-the-art performance in various NLP

tasks in Dutch. Although comparisons between the two models are limited, De Bruyne et al.

[129] report a better performance for RobBERT in classifying emotions, and Rietberg et al. [130]

report a better classification performance for BERTje in classifying diagnosis goals in medical

reports.

Term Frequency-Inverse Document Frequency based Models TF-IDF is a statistical mea-

sure used to assess the importance of a word in a document relative to a collection of docu-

ments [131]. The measure is rather simple, but powerful for text classification and information

retrieval. The measure is calculated for each word by multiplying its term frequency by its in-

verse document frequency. This approach highlights words that are important in a document

but not common across the corpus. Using this feature, classification can be performed with

various models, such as logistic regression, support vector machines, and random forests [132].

LAYOUT BASED CLASSIFICATION MODELS

For the layout modality models, we utilize one general type of models; transformer-based mod-

els, where spatial information from documents is extracted using visual and layout informa-

tion.

Transformer-based Models LayoutLM is a transformer-based model designed for document

understanding tasks, utilizing both textual and layout information [20]. It aims to improve nat-

ural language processing tasks such as form understanding and receipt recognition. It does so

by utilizing the spatial dimensionality of text elements to understand the document structure.

Specifically, LayoutLM uses the bounding-box coordinates of words or word groups to achieve

this. Building on this foundation, LayoutLMv2 [55] incorporates additional visual features and

better captures the relationships between text and layout through an improved pretraining ob-
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jective. This improvement allows to model to better understand and process documents, es-

pecially documents that are visually rich. LayoutLMv2 integrates text, layout and visual in-

formation into one transformer-backbone and improves pretraining, making the model more

efficient. Further improving the capabilities of the model, LayoutLMv3 [22] includes visual fea-

tures next to the textual and layout information. Again, the pretraining tasks are improved,

making it the most advanced LayoutLM model.

In addition to these models, the Language-Independent Layout Transformer (LiLT) [23] ad-

dresses the limitation of language dependency in layout models. LiLT can be pretrained on

documents in a single language and then fine-tuned on other languages, making it very usable

for multilingual document understanding.

Lastly, Universal Document Processing (UDOP) [21] is a model that unifies text, image, and

layout modalities for various tasks, including document classification. UDOP utilizes a Vision-

Text-Layout Transformer to integrate these different types of information to optimally classify

documents.

3.4. MODEL VALIDATION & EVALUATION

3.4.1. VALIDATION METHODS

To prevent overfitting, instead of using a simple train-test split for validation, each model is

validated using cross-validation [133]. Cross-validation is a widely used technique in ML and

statistics for model validation and selection. It is commonly used in ML research practices.

Using k-fold cross-validation, the data is split into multiple k folds. Each fold is used as a test set

once, while the remaining folds are used for training [134]. This mitigates the risk of selecting

a non-representative test set, which would heavily influence the test performance. We aver-

age the performance metrics retrieved through these different training processes to provide a

more robust validation result, less dependent on any single train-test split. In this way, we can

compare model architectures, pre-processing steps, and hyperparameter changes without re-

lying too heavily on the selected data. Finally, a separate test set, which was not used during

the cross-validation process, is held out for the final evaluation of the models to evaluate the

specific class accuracies achieved.

3.4.2. PREDICTIVE PERFORMANCE METRICS

The performance measures used primarily to evaluate the performance of the classification

models are classification accuracy, recall, precision, and F1 score. These metrics are widely

used in the literature to evaluate classification models [135].

For each of the classes, we can define four types of predictions in terms of correctness; True

Positive, True Negative, False Positive, False Negative. True positive entails the predictions that

correctly predict that the outcome is part of the specific class, say Class A. True negative con-

sequently entails the predictions that correctly predict that the outcome is not part of Class A.
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Then, false positive entails the outcomes that are incorrectly predictions as part of Class A, and

the outcomes in false negative are actually in Class A, but incorrectly predicted to not be part of

it [134–136]. Equations 3.2, 3.3 and 3.4 respectively, define the metrics of recall, precision, and

the F1-score.

Accuracy = True Positives

True Positives + False Positives + True Negatives + False Negatives
(3.1)

Recall = True Positives

True Positives + False Negatives
(3.2)

Precision = True Positives

True Positives + False Positives
(3.3)

F1 Score = 2 ·Recall ·Precision

Recall+Precision
(3.4)

In other words, accuracy measures how often an ML model correctly predicts outcomes (Equa-

tion 3.1). Recall measures whether a model can find all instances within a specific class (3.3).

Precision measures how often the model is correct in predicting the target class (3.2, and lastly,

the f1 score finds a balance between the recall and precision measures (3.4).

As the model classifies 7 different classes, it is a multi-class classification model. Instead of

the metrics designed for binary ML cases, the metrics are retrieved per class and can be aver-

aged to measure the complete model performance [136]. These averages can be retrieved on a

micro-, macro-, or weighted level. The micro average is most suitable for a balanced dataset as

it computes a global average where each instance is treated as equally important. In the case of

a balanced dataset, all classes weigh equally. The macro average does compute the metric for

each class independently and then takes the unweighted mean of the metrics. This means that

each of the classes contributes equally to the final metric, regardless of how many instances a

certain class contains. Lastly, weighted average is similar to macro average in the sense that it

computes the metric per class, but weighs each class’s contribution by the number of instances

per class [135]. In this study, we use weighted average to compute the metrics for the tests on

dataset 1, and the macro average on dataset 2. In addition to the averaged metrics, we con-

sider the class-based metrics to be important as well, as we strive for a balanced performance

between the document classes.



4
EXPERIMENTAL SET-UP

As described in the previous chapter, this research adheres to the CRISP-ML(Q) methodology

(see Section 3.1). Initially, we establish a comprehensive understanding of the business case

and the provided data to ensure the objectives of the optimal classification model are well-

defined. Figure 4.1 illustrates the more specific research design. It shows that that during the

second, third, and fourth phases, we incorporate a particularly iterative approach, integrating

a neural search-like strategy (see Section 3.2.1).

As this research focuses on integrating various features and model architectures into one opti-

mal document classification model, the design and construction of the machine learning mod-

els are performed repeatedly and iteratively, focusing on different modalities and model set-

tings. We refer to this sequence of phases as the Iterative Model Development Process (see Fig-

ure 4.1). For each specific research objective, we go through this iterative process, where, based

on the model’s performance related to the set objectives, further iterations might be performed

for that particular modality or setting. Figure 4.2 shows the specific steps taken within the iter-

ative model development process for each objective. Then, after finding multiple architecture

options, the NAS cycle (Section 3.2.1) is followed to find the best performing architecture for

the specific modality.

Figure 4.1: Adoption of the CRISP-ML(Q) Methodology
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Figure 4.2: Detailed Experimental Set-up Document Classification



DOCUMENT CLASSIFICATION 51

Once we have tested and optimized all modalities and settings on dataset 1, we create the final

model by combining the different feature architectures, as illustrated by the Merging/Fusing

the Separate Modality Models objective in Figure 4.2. We test each of the models on dataset 2

through direct inference to measure and validate the generalizability of the model. We combine

the results from the evaluations on both dataset 1 and 2 and decide which is in that sense the

best performing model, using the metrics described in Chapter 3. This research aims to find

a model architecture that can be further trained or applied to new datasets. We describe the

way this model should be deployed, for which measures are designed to monitor and maintain

the model, addressing the final phase of the CRISP-ML(Q) methodology. However, the primary

focus of this research is on the iterative model development process, where various modalities

and settings are explored.

4.1. DOCUMENT CLASSIFICATION

Figure 4.1 illustrates the abstract steps in each of the phases of the CRISP-ML(Q) methodology

(see 3.1), with a focus specifically on the iterative model development process, which includes

data preparation, modeling and evaluation. Figure 4.3 illustrates the iterative model develop-

ment process specifically for the development of the document classification model. We show

the more detailed steps in Figure 4.2, as referred to as phase specific subtasks. The complete

model construction setup is divided into five parts: the first being the general part from which

each of modality-based models benefit; the relabeling of the data, extracting the visual, tex-

tual and layout features. For each of the visual, textual, and layout-based phases, we perform

a modality-focused data analysis, prepare the modality data accordingly, and lastly, train and

evaluate the selected models. We take the best performing single-modality models and fuse

them in the last phase; Merging/fusing the Separate Modality Models. We do not include the last

part of this research explicitly in the experimental set-up as it follows less of a step-wise plan,

describes how the model should be deployed, and what further steps might be necessary.

The following section provides more details of the set-up designed for the complete document

classification experiment. It begins with a description of the dataset used and is followed by

a detailed discussion of the iterative model development process. Finally, we discuss how the

final model should be deployed, monitored, and maintained. We evaluate the performance of

the final model on a different dataset by fine-tuning and testing it on a second dataset, different

from the dataset used for initial training.

4.1.1. BUSINESS & DATA UNDERSTANDING

BUSINESS UNDERSTANDING

The model we aim to create is a document classification model for asset management doc-

uments, specifically within the AEC sector. This model will help automate the organization

of documents and serve as an initial step in applying IDP techniques in asset management,

paving the way to IAM. Previous research on IDP in the AEC sector has primarily focused on

text-based processing methods. However, literature on document classification indicates that
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Figure 4.3: Iterative Document Classification Model Development Process

image-based classification yields excellent results, as do models utilizing multi-modal features.

Many documents in asset management are drawing- or image-based, lacking substantial text

that a model could utilize. Therefore, we aim to evaluate multiple modality-based classification

models and test multi-modal classification models to determine which architecture best suits

the problem of asset management document classification.The introduction (see Chapter 1)

and the literature review (see Chapter 2) further detail the business understanding.

DATA COLLECTION

The data used consists of various types of documents, mainly in PDF format. However, text files

and images are also included as these can be converted to PDF and/or PNG format. The data is

sourced from the company’s storage space and originates from two different asset management

cases. Samples of the different document classes included in the datasets have been demon-

strated by Figure 4.41. Since the datasets originate from real cases, we do not delve further into

the specific sources and contents of the data.

Table 4.1: Dataset 1 Contents

Class Num. of document pages

Received Dataset Prepared Dataset

Cross-Section Drawing 50 89

Detail 51 62

Photo 50 57

Installation Diagram 49 94

Floor plan 50 54

Report 57 174

Table 46 152

1With Floor Plan as retrieved from CubiCasa5k and Photo as retrieved from Wikipedia

https://github.com/CubiCasa/CubiCasa5k
https://nl.wikipedia.org/wiki/Demka-spoorbrug
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Figure 4.4: AEC Asset Management Document Classes

Dataset 1 The first dataset consists of documents in seven different classes. These seven cat-

egories were established by the company. We depict the number of document pages per class

in Table 4.1. The documents that are initially labeled by the company are denoted as Received

Dataset. However, since more unlabeled documents are available for this case, we extend and

improve this dataset through a curation and labeling process, of which the result is denoted as

Prepared Dataset in Table 4.1.

The curation and labeling process begins with a thorough analysis of the documents and es-

tablishing an understanding of the document classes. Rough definitions and specific charac-

teristics of the classes are defined through conversations with domain experts. In this research,

we focus on document images that in most cases correspond to the entire document. How-

ever, multi-page documents might contain multiple document categories, which are split into

the correct categories per document page to expand the training dataset. The dataset is then

filtered to ensure that only documents aligning with the specified category definitions are in-

cluded. After relabeling the initial dataset, we add samples by labeling the available unlabeled

documents, following the same constructed category definitions. As a result, the dataset grows

from 353 to 682 document pages.

As Dataset 1 is imbalanced, we start the model training by selecting an even number of docu-

ment pages from each category, a technique known as random undersampling [137]. Specifi-

cally, we select the minimum class size, which is 54 in this case, for each class. In this way, we

ensure that both the training and test sets are balanced. This approach is chosen because of its

simplicity and the ability to balance the classes all at once.
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Table 4.2: Dataset 2 Contents

Class Num. of docu-

ment pages

Cross-Section Drawing 154

Detail 20

Photo 234

Installation Diagram 21

Floor plan 31

Report 424

Table 46

Dataset 2 To evaluate the ability to correctly classify an unseen dataset, we use dataset 2.

The data in this dataset originates from a different company and asset management case. This

dataset is labeled in subcategories that do not directly correspond to the categories used dataset

1. Therefore, we relabel the dataset using the defined class definitions. Dataset 2 is used to test

the trained models through direct inference on Dataset 2. This dataset is also heavily imbal-

anced, as shown in Table 4.2.

4.1.2. ITERATIVE MODEL DEVELOPMENT PROCESS

This section further describes the specific phases and steps within the iterative model devel-

opment process (see the beginning of this chapter, Chapter 4). As a general part of the mod-

eling process applies to each of the modalities, we first describe these general regards. Then,

for each of the modalities, we describe the data preparation, modeling, and evaluation phases

separately.

MODELING

We find the optimal architecture using a neural architecture search-like approach, for which

the search space, the search strategy, and the performance estimation strategy are defined be-

fore starting the search process. This approach is, in terms of the defined steps, rather similar to

the quality assurance cycle defined by CRISP-ML [4]. We combine both methodologies to au-

tomate the model definition while ensuring quality outcomes. The requirements & constraints

of the model are defined first, which the search space must meet. Next, we determine how to

explore the search space, a process carried out in the initiate step & task. Finally, the choice of

the quality assurance method is made in the performance estimation strategy phase. A crucial

part of the quality assurance cycle includes the identification and mitigation of risks, which is

not considered in the NAS cycle. These steps are primarily aimed at overcoming possible bi-

ases, overfitting, and a possible lack of reproducibility. We address these considerations before

starting the NAS cycle in order to minimize these risks as much as possible.

For each search cycle, performance estimation is based on accuracy, recall, precision, and F1-

score, both per class and overall, as achieved through k-fold testing - metrics that are generally
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used in machine learning model evaluation [135]. The model that achieves the highest overall

metrics is selected.

Defining the Model Requirements The general requirements for selecting the final model de-

pend on its classification performance, as well as the training possibilities, and are summarized

below. Ideally, classification accuracy, recall, precision, and F1 score above 90% are achieved for

both dataset 1 and dataset 2, to ensure a reliable classification model [135]. Most of the classifi-

cation models included in the SLR achieve metrics around this 90% threshold, demonstrating

that it has been achieved by state-of-the-art classification models (see Chapter 2). Further, the

final model should comply with the following two requirements.

1. The model should be best performing in terms of accuracy, recall, precision and F1 Score

in comparison to the other models for the corresponding datasets.

2. The model should be trainable on either an i7 CPU or 1 GPU - NVIDIA Tesla V100.

Defining the Risks We identify a set of general risks that apply to each of the substeps within

the iterative model development process, along with their mitigation strategies. First, to ad-

dress class imbalance and avoid prediction bias towards majority classes, we apply random un-

dersampling. Each class contains at least 54 and up to 190 document pages, therefore making

it essential to balance the classes. After random undersampling, the data is split up in a train,

test, and validation set. The training set consists of 43 document pages, the validation set of 6

and the test set of 11 document pages per category.In order to prevent over- and underfitting

we use an early stopping mechanism that stops training once the validation loss stops improv-

ing. Each visual modality model is trained for 150 epochs, utilizing an early stopping callback

that begins at 50 epochs and has a patience of 15 epochs. This approach prevents the model

from unnecessary training time, but also mitigates the risk of overfitting by stopping training

once validation performance does not improve [138], and is a generally used technique in re-

lated research [24, 31, 35]. To ensure that the model generalizes well to new data, we evaluate

it on a related external dataset. This concern is taken into account by various state-of-the-art

document classification models as well [34, 87, 139]. To make sure the training is scalable and

efficient, all experiments are executed on an NVIDIA Tesla V100 GPU.

4.1.3. ESTABLISHING THE BASE MODEL

Since all the included models are CNN-based, as identified and selected through our literature

review, our aim is to compare their results to a self-constructed traditional machine learning

model that uses manually extracted document features. We conduct an exploratory data anal-

ysis to identify distinctive features that differentiate between classes, based on previous doc-

ument classification research using handcrafted features [140, 141]. We then transform these

features into a dataset that we classify using a logistic regression model. We aim to incorporate

features from each of the three modalities into the base model.
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4.1.4. ESTABLISHING THE VISUAL MODALITY COMPONENT

DATA PREPARATION

For the image modality, we follow two main preparation steps. First, we resize the document

images to the dimensions required by the model to be trained [50, 53, 120, 124, 126]. Secondly,

we prepare an augmented dataset [27, 142]. Since some images in the dataset are tilted or

upside-down, we explore whether adding rotated versions of these images enhances model

performance. Each image in the dataset is rotated 90°, 180°, and 270°. We add these rotated

images to the training and testing set. As we aim to maintain a balanced dataset, we select 54

images from each of the classes using random undersampling. Similarly for the augmented

dataset, we select the exact same images, but augmented, resulting in a dataset of 216 images

per class.

MODELING

Based on the defined requirements and constraints, the search space is filled. The specific

CNNs models are based on well-performing models from previous research (see Chapter 2).

We list the specific contents of the search space in Table 4.3.

Table 4.3: Visual Modality Search Space

Model Settings Options/Details

Neural Network Architectures EfficientNetB0, MobileNetV2, ResNet50, VGG16,

Inception-ResNet-V2

Pretraining ImageNet Weights

Image Augmentation Rotation

The search strategy is defined by combining the options in the search space in a specific way, as

described in this section. The first step involves evaluating the impact of applying pretrained

weights to the models. Since ImageNet weights are commonly implemented as a parameter in

CNN models [22, 26, 31, 86, 88], this provides a straightforward method to assess their effect. We

compare the performance of each of the models with and without these weights. Subsequently,

we apply the setting that yields the best classification results to later models. Finally, we incor-

porate the augmented images into the training and testing sets for the third experiment. This

experiments tests the impact of data augmentation on the performance of all neural networks,

investigating whether augmentation and dataset size affect the performance of the different

architectures.

1. Evaluate Impact ImageNet Weights on Model Performance

2. Evaluate Neural Network Architecture Performances

3. Evaluate Impact Image Augmentation

The risks associated with this search space and strategy align with the risks identified earlier.

Notably, the risk of scalability applies to this modality as the size of the images quickly makes
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the model slower, and more complex architectures worsen this issue. This issue causes Out-Of-

Memory issues. In this study, the models are trained using an NVIDIA Tesla V100 GPU that runs

on Azure Machine Learning services.

4.1.5. ESTABLISHING THE TEXTUAL MODALITY COMPONENT

DATA PREPARATION

First, we extract text from the document images using OCR. As various OCR tools are avail-

able, we conducted a comparative analysis to evaluate their performance. This analysis, which

includes PyTesseract, EasyOCR, Keras OCR, and Azure OCR, is detailed in the appendix (see

Appendix D). Azure OCR emerged as the best performing OCR, and thus we use it for text ex-

traction.

Figure 4.5: Text Cleaning Process

After extraction, we clean the data. Although most multi-modal document classification mod-

els do not explicitly describe their text cleaning process, text classification in AEC does deem

the cleaning process to be important [48, 61, 66]. The two cleaning phases are illustrated in

Figure 4.5, and defined as follows. First, the initial cleaning of the text is done by removing all

words that consist only of punctuation marks. All words that have only one or two characters

are removed. Finally, Dutch tokenizer BERTje [127] goes over the remaining words and tries to

tokenize the words. As it is a Dutch tokenizer, it will only recognize Dutch words or parts of

Dutch words. Words that the tokenizer cannot process are removed. Secondly, we remove the

company name from the text data, so that the model does not learn the company name, nor

relates it to any of the classes. After these steps, we have derived Textset 1. Lastly, the Dutch

stopwords dataset, as made available by the Natural Language Toolkit 2 is used to remove stop-

words from the texts. With these steps, we derive Textset 2. The datasets are both used for

evaluation on the various text classification architectures. This cleaning process is in line with

previous research performing tokenizer-based text classification [143].

2NLTK Website

www.nltk.org
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MODELING

The search space for the textual modality focuses primarily on preprocessing and classification

approaches. Table 4.4 denotes the search space.

Table 4.4: Textual Modality Search Space

Model Settings Options/Details

Preprocessing Technique Text set 1 (Cleaned Text), Text Dataset 2 (Without Stopwords)

Tokenizer BERTbased Encoding, RoBERTabased Encoding, Dutch BERTbased

Encoding, Dutch RoBERTabased Encoding, TF-IDF

Classifier Tokenizer Related Classifier, Simple Deep Learning Model (for

TF-IDF)

We use four different tokenizers for text tokenization, and their corresponding sequence classi-

fication models are used to classify the texts. The BERT- and RoBERTa-based tokenizer/classifiers

where selected as they have shown good classification in various previous researches [20, 22,

24–27, 29, 31, 32, 34–36, 55, 76, 77, 82, 84, 96, 97]. Research using Dutch models has shown im-

proved classification performance compared to English-based models, which is why we apply

the Dutch versions of the models as well [127–129]. Throughout the remainder of this thesis, we

refer to BERTje as the Dutch BERT model, and RobBERT as the Dutch RoBERTa model. A more

detailed description of the tokenizers is provided in Section 3.3.2. For each model, we evaluate

the performance on both Textset 1 and Textset 2.

In addition to the pretrained tokenizers, we evaluate Term-Frequency - Inverse-Document-

Frequency (see Section 3.3.2), as widely used in AEC text document classification [63, 65, 66],

as well as various other text classification applications[68, 131, 132, 144]. We use a simple CNN

model to classify using the TF-IDF data, as resulted as the best performing model for both and

. TThis simple CNN model was compared to various traditional classification models. More

details on this comparison have been included in the appendix (see Appendix F).

4.1.6. ESTABLISHING THE LAYOUT MODALITY COMPONENT

DATA PREPARATION

To retrieve the input required for the layout-based models, the text and corresponding bound-

ing boxes must be extracted from the documents. For this, we use the OCR that performs best

in the OCR analysis (see Appendix D). The data is saved in a json file from which the bounding

boxes and text are extracted. These are tokenized and encoded using the model-corresponding

tokenizer. These tokenizers are of a textual-layout or even a textual-vision-layout transformer

type and extract the information needed for the layout-based encoding tasks. Before tokeniza-

tion and encoding, the bounding boxes are normalized and scaled to match the input require-

ments.
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MODELING

The existing approaches for classifying documents using layout-related features are always

combined with textual- or visual-based features [20–23, 25, 55]. The search space consists gen-

erally of transformer-based models that performed well in literature and that have a model

available in the Huggingface hub3 (see Table 4.5). From the literature review (see Chapter 2),

we find that LayoutLM-based models [20, 22, 55] generally perform well accuracy-wise. Fur-

thermore, the UDOP [21] model and the LiLT [23] model achieve state-of-the-art results. The

search space consists of these modality-combining models, and the search strategy involves

sequentially training and evaluating each of these models.

In the literature review, we identified graph-based models as a different strategy to classify doc-

uments using layout features. However, graph-based models have not yet achieved state-of-

the-art classification performance and are therefore left out of this study.

Table 4.5: Layout Modality Search Space

Model Settings Options/Details

Layout-Modality Based Model LayoutLM, LayoutLMv2, LayoutLMv3, UDOP, LiLT

4.1.7. ESTABLISHING THE FEATURE FUSION APPROACH

Once we have established the best performing classification architecture for each of the modal-

ities (Sections 4.1.4 , 4.1.5 and 4.1.6), the aim is to find the optimal fusion method. During this

phase, we evaluate the performances of the models for the different modalities to select the

models to be fused. Since the models tested for the layout modality are already multi-modal,

we only fuse the best performing textual and visual models. The requirements and constraints

outlined in Section 4.1.2 align with those of this phase.

The search space consists primarily of late-fusion methods, namely weighted ensemble, simple

concatenation, and self-attention-based fusion. These fusions are selected because they have

shown good performance in previous research (see Chapter 2) [20, 26, 26, 27, 29, 32, 35, 73, 97,

145]. The weighted ensemble, simple concatenation, and self-attention-based fusion models

can all be categorized as late fusions. However, The LayoutLM models utilize an early fusion

method as the modalities are fused into one single encoding at the beginning of the classifica-

tion process. The UDOP and LiLT models employ a hybrid fusion strategy, as the data is fused

multiple times throughout the classification process.

3Huggingface Website

https://huggingface.co/
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Figure 4.6: Weighted Ensemble Architecture

WEIGHTED ENSEMBLE FUSION

In this fusion, as illustrated in Figure 4.6, each included single-modality model generates a pre-

diction, typically outputted as logit values, with as many nodes as there are classes. The class

with the highest logit value is usually selected as the classified label, as these logit values repre-

sent the confidence of the model in predicting a certain label [146]. In the weighted ensemble

fusion we establish, these prediction logits are concatenated using dynamic weights. The initial

weights are determined based on the previous performance of the included models, with higher

weights assigned to models that perform better in earlier tests. The weights are trained, as well

as the individual models throughout the training process. The resulting logits are then classi-

fied through a final classification layer where the prediction logits from the individual models

are multiplied by the retrieved weights. This weighted ensemble approach, used by several

previous works in multi-modal document classification [26, 27, 29], attempts to improve the

overall classification performance by leveraging the strengths of individual models.
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Figure 4.7: Simple Concatenation Architecture

SIMPLE CONCATENATION FUSION

As demonstrated in Figure 4.7, the individual models first extract their respective features in this

concatenation model. Each modality model has its own layers, including input, hidden, and

output layers, similar to several other models using a simple concatenation fusion [26, 35, 145].

The outputs from these individual modality models are concatenated in a concatenation layer,

leading to the final classification via a softmax activation function.

The key difference between the weighted ensemble fusion and the simple concatenation fu-

sion is that in the weighted ensemble model, predictions are made by the included individual

models, whereas in the simple concatenation model, the output features of the two models are

concatenated before making a prediction. Additionally, the weighted ensemble fusion applies

weights based on model performance, while the simple concatenation model fuses the feature

outputs equally.



DOCUMENT CLASSIFICATION 62

Figure 4.8: Self-Attention Based Fusion

SELF-ATTENTION BASED FUSION

The attention mechanism in machine learning, generally used in computer vision and NLP ap-

plications, is based on the human visual attention system. Human visual attention is defined

as the ability to dynamically restrict processing to a subset of the visual field [147]. The atten-

tion mechanism in neural networks attaches a layer of weights to the input data that identifies

the most important features in the data, overcoming the focus on irrelevant features that di-

minish the generalization ability of the model. Through neural networks, the attention mech-

anism learns further which parts of the input data to focus on. Self-attention is a variant of

the attention mechanism and computes a representation of a sequence by relating different

positions to the sequence itself, reducing dependence on external information [148]. In neural

networks, attention is computed by weighted layers to define which parts of the data sample to

focus on, often denoted as feature maps or attention maps. Computing these maps as well as

integrating them with the other layers of the model is computationally much more expensive
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than weighted ensemble fusion and simple concatenation fusion. Our implementation of the

self-attention based fusion is illustrated in Figure 4.8. This fusion is based on the self-attention

based fusions as applied in earlier research [20, 32, 73, 97].

4.1.8. EVALUATION & ESTABLISHING DEPLOYMENT GUIDELINES

Within this last phase, we evaluate which model performs best in terms of both test perfor-

mance and generalizability on a new dataset. For this best performing model, we evaluate

which steps need to be taken in order to deploy it, considering the final classification perfor-

mance results as well as the situation in which the model is to be used. We provide guidelines

for ensuring and maintaining classification quality, following the deployment and monitoring

& maintenance steps as described in Chapter 3.



5
RESULTS

To better understand the data we aim to classify, we first conduct an exploratory data analy-

sis. This analysis is performed separately for each modality, focusing on their specific char-

acteristics. Additionally, we analyze inter-class similarity and intra-class compactness. One

of the main findings from these data analyses is that for all modalities the Photo class stands

out the most for different characteristics (E.1,E.3,E.4,E.5,E.6,E.8,E.9). Specifically, Photo docu-

ments exhibit lower brightness (E.3), more variation in the most dominant colour (E.4), and a

higher entropy (E.5), indicating a more complex structure. Additionally, Photo documents con-

tain fewer words (E.6) but use more unique words (E.7). For images of the Photo class, OCR

detects significantly fewer bounding boxes (E.8), and the average area of these bounding boxes

is approximately seven times larger than that of other classes (E.9). Furthermore, we observe

that documents in the Report class are generally of portrait format, while documents in the In-

stallation Diagram class are typically in landscape format (E.2). The other classes vary more in

format. We include the detailed data analysis in the appendix (see Appendix E).

5.1. MULTIMODAL DOCUMENT CLASSIFICATION MODEL

This section outlines the classification performances of the various models as described in the

experimental setup (see Chapter 3 & 4), categorized by modality.

As we balance the data using random undersampling, the stochasticity of training a deep learn-

ing model increases [149]. Alongside other factors such as random weights and the optimiza-

tion algorithm, we need to account for it in the model evaluation. To do so, we train each

model using 5-fold cross-validation, a widely used validation approach used in previous studies

on document classification as well [29, 31, 134], where the average classification performance

metrics are recorded to compare performance between models.

In order to better understand the predictive behavior of the classification models in terms of

64
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the model classes, we evaluate the performance per class specifically, using one standard test

set. For this purpose, we use the first (approx.) 20% of files per class - where "first" refers to

the first files when sorting them alphabetically - as a standard test set. This more static testing

approach, which allows comparing different models in the exact same training, validation, and

testing set, is similar to the approach taken in many of the studies evaluated in the literature

review (see Chapter 2) [26, 27, 32, 34, 82, 86, 88]. We then retrain the model using the optimized

settings and parameters. Since these test results are not averaged, direct conclusions cannot

be drawn. However, these confusion matrices allow us to compare classification performance

across different classes within the standard test set. In the appendix, we include the visual-

ized classifications of the best-performing classification models on this standard test set (see

Appendix G.1).

5.1.1. BASE MODEL

The initial model we construct is the baseline for comparison with the other models we de-

velop. This model is built by manually extracting features that we further analyze in the ex-

ploratory data analysis (see Appendix E). These features are of various modalities, incorporat-

ing visual, textual, and layout characteristics. The specific features are listed in Table 5.1.

For the visual features, we extract several attributes: the number of different colors in the image,

the aspect ratio (width-to-height ratio), brightness, contrast between the brightest and darkest

colors, and the number of edges (pixels where the color changes drastically) in the image. Addi-

tionally, we identify the most dominant color and calculate the image entropy, which measures

the variability of pixel intensities and, in this way, captures the complexity of images.

For the textual features, we extract the total number of words per document and the number of

unique words. Furthermore, we use a library of words relevant to document categories, identi-

fied through exploratory data analysis (see Section E). We examine whether each of the words

from the library is present in the document texts.

The layout modality is incorporated into this base model by determining the number of bound-

ing boxes per document and calculating the average area of these bounding boxes per docu-

ment. Additionally, we extract the number of tables that can be extracted using the Img2Table1

package, which is a simple Python package trained to recognize tables in images.

1Img2Table Github

https://github.com/xavctn/img2table
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Table 5.1: Base Model Features

Textual Features Visual Features Layout Features

Number of Different Words
Number of Different

Colours

Number of Bounding

Boxes

Total Number of Words Aspect Ratio

Average Area of

Bounding Boxes (in

pixels)

Contains "detail", "scale", "view",

"section", "floor plan", "drawing", "wall

view", "scheme", "connection diagram",

"list", "table", "report", "ymvk"

Brightness
Number of

Recognized Tables

Image Contrast

Edge Density

Dominant Colour

Image Entropy

The architecture selected for the base model is a multinomial logistic regression classification

model utilizing the "lbfgs" solver. The model achieves a classification accuracy and recall of

84.74%, while achieving a precision and F1-score of 84.65% and 84.23%, respectively. As the

model was trained, validated and tested on balanced datasets, the resulting values for accu-

racy and recall are equal. We include these metrics in the figures where the performance of the

other models is compared (see Figures 5.2, 5.3, 5.4, 5.5, 5.6). This classification performance is

comparable to the performances of other handcrafted feature-based models described in pre-

vious research [1, 140, 141]. Although various handcrafted features achieve substantive per-

formance, they are eventually surpassed by deep learning-based models. Furthermore, we

evaluate the performance of the retrained model on the standard test set, where we see that

classes Cross-Section Drawing, Installation Diagram, and Report are predominantly predicted

correctly. Class Table, however, is frequently misclassified as Report. Figure G.1 (included in the

appendix) visualizes the prediction on the test set for one fold.

5.1.2. IMAGE MODALITY

As specified in Section 4.1.4, the model architectures being examined for the visual modality

are the CNN architectures MobileNetV2, ResNet50, VGG16, Inception-ResNetV2 and Efficient-

NetB0. As each of the CNN architectures desires a specific input shape, we reshape the docu-

ment to the required shapes [50, 53, 120, 124, 126].

Figures 5.1 and 5.2 present the performance metrics of the CNN models. First, we evaluate

the results of not applying the ImageNet weights in the classification model compared to us-

ing ImageNet weights, of which the classification performance metrics are shown in Figures

5.1 and 5.2. In this way, we evaluate whether pretraining the models on non-directly related

datasets supports the performance of the classification models. We generally observe an in-

crease in performance when applying ImageNet weights. The improvement in model perfor-
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mance varies per model; MobileNetV2 benefits the most from applying ImageNet weights, with

about a 55% increase, followed by VGG16 with approximately 44%, and ResNet50 with around

27%. Inception-ResNet-V2 appears to be less dependent on ImageNet weights, showing only

about a 7% increase in performance. Interestingly, the performance of EfficientNetB0 worsens

with the application of ImageNet weights. Comparing these results to the base model, we ob-

serve that only Inception-ResNet-V2 outperforms the base Model, even though slightly, achiev-

ing an average accuracy, and recall of 85.41%, an average precision of 87.65%, and an average

F1-score of 86.6%. ResNet50 closely follows in classification performance with an accuracy, re-

call, and F1-score of 82.34%, and precision of 84.06%. The model is followed by VGG16 and

MobileNetV2 which achieve performance metrics around 70%. For each of the visual models,

except EfficientNetB0, the precision is highest among the model performance metrics. The

precision captures the average number of correctly predicted positive instances out of all in-

stances that the model predicted as positive, showing that the selected models are particularly

well in correctly identifying relevant documents for each of the classes. Since these models

are all convolutional neural networks, it is not feasible to determine the exact reasons why one

outperforms the other. However, we can analyze their architectures and the specific types of

problem and datasets where they excel in classification.
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Figure 5.1: Dataset 1 Classification Performances (Image Modality - Without ImageNet Weights)
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Figure 5.2: Dataset 1 Classification Performances (Image Modality - With ImageNet Weights)

MobileNetV2 and VGG16 are rather lightweight network with less parameters and a smaller ca-

pacity to learn complex data from scratch [53, 124]. Because of this, pretraining the model on

other datasets, ImageNet in this case, provides stronger starting weights for the models. Even

though ImageNet images are not directly related to document images, the weights help to rec-

ognize simple information in images, helping models to converge faster.

In contrast, deeper networks such as Inception-ResNet-V2 and ResNet50, with their deeper and

more complex architectures involving residual connections, are able to learn more complex

features from scratch [50, 120]. Even though they still do benefit from transfer learning, they

rely less on the ImageNet weights than the simpler lighterweight models.

EfficientNet is designed as a lightweight model family, with different variants (B0-7) that scale

up in size and complexity. In this study, we use the B0 version, which has less ability to handle a

smaller amount of parameters and learn complex patterns in data compared to more advanced

versions. EfficientNetB0 takes longer to learn data in more complex problems, especially when

trained from scratch. Pretraining the models on ImageNet weights adds parameters, which

EfficientNetB0 can only handle to a limited extent [126]. This result is reflected by the study

constructing EmmDocClassifier as well, where an EfficientNetB0 does not improve through

pretraining either [31]. In contrast, Ferrando et al. [29] train and test a hybrid model using an

EfficientNet as well as a BERT model. Their hybrid model using an EfficientNet does improve

through pretraining, however no specific version of EfficientNetB0 is detailed, and it is possible

that a more improved version does benefit from pretraining.
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These found results are generally reflected by previous research as well. Sajol et al. [88] compare

different models using ImageNet pretraining compared to their ConvNext2 model. We do not

test this model in our research, however in complexity - based on number of parameters - the

Inception-ResNet-V2 is most similar to this model. In the study, the ConvNextV2 outperforms

the other less complex models, similar to our Inception-ResNet-V2. Afzal et al. [51] evaluate

both document pretraining as well as ImageNet pretraining for four different models of which

we only test 2 - namely ResNet50 and VGG16. Comparably to what we find, both models im-

prove through the application of ImageNet weights.
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Figure 5.3: Dataset 1 Classification Performances (Image Modality - Augmenting)

DATA AUGMENTATION

Data augmentation is often performed to increase the size of the training dataset and improve

model generalization [150]. As the dataset with which we work is rather small, augmentation

is a logical step. As some of the document images in the dataset are already rotated, we apply

rotation-based augmentation by rotating each image rotated by 90◦, 180◦ and 270◦, and in-

cluding these new images to the training, validation, and test sets. Figure 5.3 shows that adding

augmented images improves the performance of the MobileNetV2, ResNet50 and Inception-

ResNet-V2 models. However, augmentation does not lead to performance improvement for the

EfficientNetB0 and VGG16 models. This could be attributed to model complexity and capacity:

more complex models like Inception-ResNet-V2, ResNet50 and MobileNetV2 are more flexible

to learn from augmented data, helping these models to generalize better and reduce overfit-

ting. Lighterweight EfficientNetB0 and VGG16 struggle to effectively capture complex classes,

resulting in augmented images being perceived primarily as noise. For all models that benefit,
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an improvement of approximately 10% is observed in performance metrics. The augmented

models are run using the same number of epochs and the same early stopping mechanism.

However, on average, they converge 10-20 epochs later in the training process, suggesting that

they need more iterations to fully make use of the augmented data. Various of the previous

studies make use of data augmentation in different forms in their preprocessing process, how-

ever do not evaluate the effect of augmentation [26, 51]. The study introducing DocXClassifier,

on the other hand, evaluates more aggressive augmentation techniques and finds that they of-

fer slight improvements in performance [51].

TESTING ON THE TEST SET

As Inception-ResNet-V2 with augmentation achieves the best classification performance, we

train the model again and test it on the testset. The prediction on the standard test set shows

that the Inception-ResNet-V2 model predicts the Photo class most accurately for this test set,

while it performs the least accurate for the Cross-Section Drawing class, as it seems to confuse

it with the Detail, and Floor Plan classes. Furthermore, it seems to find the Table class closely

related to the Report class, since it only incorrectly predicts the samples to be of that class.

5.1.3. TEXTUAL MODALITY

The classification models that we evaluate in this section are trained using two differently pre-

processed datasets, diversified in the manner that they are cleaned up, following the text clean-

ing process as illustrated in Figure 4.5. From this cleaning process Textset 1 and Textset 2 emerge,

as illustrated in Figure 4.5. The evaluated models are, as included in the textual modality search

space (see Table 4.4), a TF-IDF-based model, the BERTbased model, RoBERTabased model and

their Dutch variations.

TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY

Term Frequency - Inverse Document Frequency is merely a feature and not directly connected

to a specific classification model. Traditionally, TF-IDF is used with classical classifiers such

as Support Vector Machines, Decision Trees, Gradient Boosting, Logistic Regression, Random

Forest, KNeighbors and Naive Bayes [132]. Recently, however, simple CNNs are used in combi-

nation with the TF-IDF feature as well [144, 151]. In a comparative analysis where we evaluate

a number of traditional machine learning models as well as a simple CNN model (see Appendix

F), we discover that only a simple CNN surpass the base model in performance. No significant

difference in performance between the Textset 1 and Textset 2 can be observed as both achieve

accuracy, recall and F1 score of 88.71%, and a precision of approximately 90%.



MULTIMODAL DOCUMENT CLASSIFICATION MODEL 71

bert-
base

bert-
base

-d
utc

h

ro
berta

-b
ase

ro
berta

-d
utc

h

TF-ID
F

0

20

40

60

80

100

85.31
88.97 87.5 88.24 88.71

85.31
88.97 87.5 88.24 88.71

85.73
89.4 87.9 88.95 90.23

85.1
89 87.54 87.89 88.71

Sc
o

re
in

Pe
rc

en
ta

ge

Accuracy
Recall
Precision
F1 Score

Figure 5.4: Dataset 1 Classification Performances (Text Modality - Clean)
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Figure 5.5: Dataset 1 Classification Performances (Text Modality - Without Stopwords)
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TOKENIZER BASED MODELS

Furthermore, we assess the classification performance of tokenizer-based models on both Textset

1 and Textset 2 (see Figures 5.4 and 5.5). The tokenizer models perform comparably to the

TF-IDF model on Dataset 1, but show a decrease in performance on Textset 2. Among these

models, the two Dutch tokenizer models achieve the best performance, closely followed by

RoBERTabase, with BERTbase model following behind. The RoBERTa architecture builds upon

BERT model by, among other improvements, optimizing training procedures and using a larger

dataset [101]. These optimizations contribute to an improved performance of RoBERTa com-

pared to BERT, not only within the scope of this case in broader applications as well [143, 152].

Given that the texts we are classifying are in Dutch, it is unsuprising that models pretrained

on Dutch texts (bert-base-dutch and roberta-dutch) slightly outperform their English counter-

parts, a finding also supported by previous research [127, 128].

TESTING ON THE TEST SET

The TF-IDF model and Dutch RoBERTabase model are retrained to be tested on the standard

test set, which provides further insight into the prediction behavior. Both models perform opti-

mally for the Photo class and perform relatively well for the Detail class. The TF-IDF model also

performs well for the Floor Plan class, but shows confusion among the other classes, particu-

larly predicting Cross-Section Drawing as Detail or Floor Plan. Misclassifications between the

Detail and Floor Plan classes indicate a similarity between these samples. However, the Report,

Installation Diagram and Table classes are misclassified into various classes without showing

any clear patterns. These predictions are visualized by Figures G.3 and G.4 in the appendix.

The RoBERTa model shows even less consistency in its misclassifications (Figure G.4). Only

the Detail class shows a prediction pattern similar to the TF-IDF model, with samples being

misclassified as Floor Plan.

5.1.4. LAYOUT MODALITY

For the layout modality, we evaluate the LayoutLM, LayoutLMv2, LayoutLMv3, LiLT, and UDOP

models, which are further detailed in the experimental set-up (see Section 4.1.6). Figure 5.6

demonstrates the classification performances of the layout-based models. The figure evidently

exhibits the best performance for the LayoutLMv2 model. Interestingly, the LayoutLMv2 model

performs better than its descendant LayoutLMv3. The original LayoutLM performs the worst

of all models, illustrating the added value of incorporating visual features. The decreased per-

formance for the LayoutLMv3 model suggests that LayoutLMv2 is better suited for our data,

possibly caused by differences in the model, such as the backbone architecture, the pretraining

objectives, or the tokenization methods used.

The LiLT and UDOP models perform well compared to the LayoutLM model, but do not surpass

LayoutLMv2. It should be noted that LiLT only uses textual and layout information, as well

as the relation between them, but does not incorporate visual information [23]. Despite this,

LiLT achieves results that are relatively close performance results to the evaluated models that
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incorporate all three modalities.

These results contrast with the classification performance in literature, where LayoutLMv3 and

the UDOP model generally perform best [22, 25] compared to the other models used in this

research. Possible reasons include that the commonly used RVL-CDIP dataset better fits these

models, or that our chosen hyperparameters and training settings are not optimal for training

those specific architectures.
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Figure 5.6: Dataset 1 Classification Performances (Layout Modality)

TESTING ON THE TEST SET

Next, as with the other models, we retrain the best-performing classification model using the

optimal settings identified through cross-validation and evaluate it on our standard test set.

LayoutLMv2 in this case (Figure G.5) correctly classifies all samples in the Photo class. Classes

Detail and Report are correctly classified in most cases. Similarly to the TF-IDF model (see the

confusion matrix in Figure G.3), misclassifications for the Cross-Section Drawing, Detail, and

Floor Plan classes occur only within this trio. Misclassified samples of the Installation Diagram

class are classified as Cross-Section Drawing, Floor Plan, and Report. The Report and Table

generally misclassify into each other as well.

5.1.5. BEST PERFORMING MODELS

After evaluating and comparing the modality-specific models, we compare their classification

performance. Figure 5.7 shows the classification performance metrics as retrieved through the

averaged cross-validation processes for the base Model, Inception-Resnet-V2, RoBERTa Model,
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Model VSD Detail Photo Installation
Diagram

Floor Plan Report Table

Base Model 82% 64% 100% 73% 73% 91% 27%
Inception-ResNet-V2 55% 82% 100% 73% 82% 82% 64%

TF-IDF Model 27% 91% 100% 55% 91% 55% 27%
Dutch RoBERTa 55% 82% 100% 64% 27% 36% 18%

LayoutLMv2 50% 91% 100% 55% 73% 91% 55%

Table 5.2: Class Accuracies Testing on Dataset 1

Dutch BERT, Dutch RoBERTa Model, TF-IDF Model and finally the LayoutLMv2 model. The

best-performing model is the Inception-ResNet-V2 model, closely followed by ResNet50, to

which the text-based Dutch BERT, TF-IDF, and Dutch RoBERTa models follow. Interestingly,

the model that combines multiple modalities does not perform as well as the single modal-

ity models. Since the best models for each modality surpass the base model in performance,

we can conclude that each modality is more suitable for classifying the documents than the

handcrafted features. More specifically however, Inception-ResNet-V2 and ResNet50 signifi-

cantly outperform the textual- and hybrid layout-based models, indicating that visual features

are most leading in classifying these documents.

These results do not fully align with recent research, where hybrid models that combine multi-

ple modalities generally outperform models based only on visual or textual features [22, 23, 27,

32, 55, 73, 77, 153]. The strong performances of Inception-ResNet-V2 and Dutch BERT models

are somewhat consistent with literature, as the state-of-the-art EAML integrates an Inception-

ResNet-V2, and a BERT model via a self-attention fusion [32]. The EAML paper demonstrates

that, even though the feature fusion performs best, the image and text models do not differ

significantly in performance from the fused model.

Comparing the models in terms of their predictions on the standard test set (see Table 5.2),

we observe that class Photo is generally classified well by each of the five models. For this de-

tailed misclassification analysis, we selected the best-performing model from each category:

one convolutional neural network (CNN) model (Inception-ResNet-V2), one tokenizer-based

model (Dutch RoBERTa), the TF-IDF model, and the LayoutLMv2 model. The ResNet50, BERT

Dutch, and RoBERTa models were not included in this specific analysis. Dutch RoBERTa is

selected for this analysis instead of Dutch BERT as it shows better performance in terms of gen-

eralizability (see next section). There’s not a second class directly following in terms of correct

classifications. We do observe that classes Cross-Section Drawing, Detail, and Floor Plan gen-

erally misclassify as each other, showing a similarity in each of the modalities. Comparably, but

less obvious, especially for the textual modality, class Table generally misclassifies as Report ex-

hibiting a possible relatedness as well. For further details, the specific confusion matrices have

been included in the appendix (see Appendix G.1).
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Figure 5.7: Best Performing Models. Models marked with * indicate those that use multi-modal features
Black line represents the Base Model (Accuracy Recall = 84.74, Precision = 84.65, F1 Score = 84.23)

DIRECT INFERENCE ON DATASET 2

To further analyze the performance of these classification models, we perform direct inference

on our second dataset, measuring the generalizability of the models on new datasets. We first

train the models on the whole dataset, selecting a balanced number of samples from each class

by using random undersampling to make sure the model does not become biased to more

prevalent classes, and using 10% of the dataset as the validation set, using the same training

settings as constructed for the earlier training processes. The test set (as described in Section

4.1.1) is used entirely and the test results are illustrated in Figure 5.8.

Testing the best-performing models on dataset 2 generally results in a significant decrease in

classification performance. Interestingly, the precision of the classification stands out above

the other metrics. This is likely due to the imbalance in the test set, as the Report class is preva-

lent and the models are generally able to identify it (see Tables 5.2 and 5.3). For this text, we

are using macro-averaged metrics rather than weighted-averaged metrics, meaning that if the

metrics were weighted-averaged instead of macro-averaged, the metrics would have mostly

been reflecting the largest classes [136]. The Photo class is relatively well identified in dataset 2

by each of the models, although there is still room for improvement. For the other classes, the
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Model VSD Detail Photo Installation
Diagram

Floor Plan Report Table

Inception-ResNet-V2 47% 15% 67% 71% 42% 74% 35%
TF-IDF Model 49% 5% 56% 24% 3% 70% 43%

Dutch RoBERTa 1% 0% 65% 95% 52% 75% 35%
LayoutLMv2 49% 5% 56% 24% 3% 70% 43%

Table 5.3: Class Accuracies Testing on Dataset 2

class-accuracies vary, but the Detail class is hardly recognized by all models.

Specifying the classification down to the specific classes models predict correctly, we observe

that Inception-ResNet-V2 and LayoutLMv2 perform relatively well for classes Photo, Installa-

tion Diagram, and Report (as illustrated by Figures G.2 & G.5 in the appendix). The TF-IDF

model performs best in predicting the Photo and Report classes, while the RoBERTa model per-

forms best in classifying the Photo and Table classes.

The image-based models demonstrate the highest classification performance in this new dataset,

indicating a higher ability to generalize. However, since each of the classification performances

of the models is 20 - 30% lower than for Dataset 1, this indicates that the models have picked

up specific characteristics of Dataset 1, which might not be apparent in Dataset 2. This shows

that training the models on additional training data is required to make the model more gener-

alizable to new cases.

The confusion matrices for this section have been included in the appendix (see Appendix G.1).

From these tests, we can conclude that the models as trained on Dataset 1 are not directly gen-

eralizable to Dataset 2, as they classify between ∼ 40% and ∼ 60% of the samples correctly.

However, the most generalizable models of the five are the Inception-ResNet-V2, ResNet50, the

RoBERTa Dutch model, the TF-IDF model, and the LayoutLMv2 model, with classification ac-

curacy, recall, precision, and F1-scores varying between 51% and 70%.
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Figure 5.8: Direct Inference on Dataset 2

5.1.6. FEATURE FUSION

In the previous sections, we examined the performance of individual models. From the best-

performing models, the Inception-Resnet-V2, ResNet50, TF-IDF model, RoBERTa, and the Dutch

versions of the BERT and RoBERTa models utilize a single modality, while the base model

and LayoutLMv2 already incorporate multi-modal features. The Inception-ResNet-V2, TF-IDF

model and Dutch RoBERTa models show the best performance on Dataset 1, as well as best

generalizability when testing on Dataset 2. Therefore, we evaluate the effect of fusing these

models into multi-modal fusion models.

To do this evaluation, we use three different fusion methods: weighted ensembling, simple con-

catenation, and self-attention-based fusion. These methods are derived from previous research

[26, 28, 29, 31, 32, 35]. More details about multi-modal model architectures can be found in the

literature review (see Chapter 2) or in the categorization of feature fusions in literature table in

the appendix (see Appendix C.2). The specific fusion methods as well as the full architectures

that we use for this evaluation are described in Section 4.1.7.

For each of the fusion methods, we make the combination between the image mode and the

text mode, as these are the modalities represented by the three selected single-modality mod-



MULTIMODAL DOCUMENT CLASSIFICATION MODEL 78

els. The two combinations of multi-modal features that we fuse in the different fusion models

are (1) Inception-ResNet-V2 combined fused with TF-IDF and (2) Inception-ResNet-V2 fused

with the Dutch RoBERTa model. We use the non-augmented Inception-ResNet for the fusion

models, as training the model takes less computational time and resources to purely evaluate

the fusion results.

As described, we follow the model requirements that we have outlined in Section 4.1.2, spec-

ifying that the model should be trainable on an i7 CPU or a single NVIDIA Tesla V100 GPU.

During model training, we discover that the self-attention model using the RoBERTa model

for the text modality is too computationally demanding for our available resources. The self-

attention fusion model should provide us with insights into the performance of a more hybrid

fusion method compared to the late fusion methods. Consequently, the results obtained from

the less computationally intensive TF-IDF fusion model are still deemed relevant and, there-

fore, included in this section.
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Figure 5.9: Fusion TF-IDF
1: TF-IDF Model (Accuracy & Recall = 87.73)
2: Inception-ResNet-V2 (Without Augmentation) (Accuracy & Recall = 85.41)

Figure 5.9 shows the classification performance of the fusion models that combine the TF-IDF

textual model and Inception-ResNet-v2 for the visual features. The black lines represent the

classification performance of the Inception-ResNet-V2 model and the TF-IDF model that were

trained in the same settings (see Figures 5.2 and 5.8). However, only the simple concatenation

model slightly outperforms the TF-IDF model. The Inception-ResNet-V2 model is surpassed

by the self-attention fusion model as well, showing added value in combining the textual and

visual characteristics of the data.
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Figure 5.10 demonstrates the classification results for the weighted ensemble and simple con-

catenation fusion models that fuse the Dutch RoBERTa model and Inception-ResNet-V2. We

observe that Inception-ResNet-V2 benefits significantly from feature fusion in the weighted

ensemble model, which only slightly outperforms the Dutch RoBERTa model. The simple con-

catenation model performs comparably with the Inception-ResNet-V2 model without any fea-

ture fusion.
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Figure 5.10: Fusion Dutch RoBERTa
1: Dutch RoBERTa (Accuracy & Recall = 88.24)
2: Inception-ResNet-V2 (Without Augmentation) (Accuracy & Recall = 85.41)
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Figure 5.11: Fusion TF-IDF on Dataset 2
1: Inception-ResNet-V2 (Without Augmentation) (Accuracy & Recall = 60.8)
2: TF-IDF Model (Accuracy & Recall = 56.13)
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Figure 5.12: Fusion Dutch RoBERTa on Dataset 2
1: Inception-ResNet-V2 (Without Augmentation) (Accuracy & Recall = 60.8)
2: Dutch RoBERTa Model (Accuracy & Recall = 50.78)

Figures 5.11 and 5.12 illustrate the performance of the fusion models directly inferencing on
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Dataset 2. None of the TF-IDF-based fusion models surpass the fused models in terms of classi-

fication performance on Dataset 2. The weighted ensemble fusion model does outperform the

original Dutch RoBERTa model on Dataset 2, despite only slightly outperforming it on Dataset

1. Overall, we observe that the Dutch RoBERTa-based fusion models perform significantly bet-

ter on Dataset 2 than the TF-IDF-based fusion models, demonstrating better generalization

capabilities.

In conclusion, we observe slight improvements in performance on Dataset 1 using fusion mod-

els. The weighted ensemble fusion using the Dutch RoBERTa model is the only model that

outperforms its single-mode models, although not significantly. The evaluation of the fusion

models on Dataset 2 demonstrates that the fusion models are evidently less generalizable than

their single-mode models. In terms of generalizability, the weighted ensemble model using

Dutch RoBERTa performs best among all fusion models as well. Therefore, we conclude that

the weighted ensemble Dutch RoBERTa-based fusion models appear to have the greatest po-

tential to benefit from fusion, both in terms of performance on the same dataset and in their

ability to classify unseen datasets.

The fact that the fusion models do not significantly outperform the single-modality models

aligns with previous research on the state-of-the-art document image classification models

such as EAML [32], and other multi-modal classification networks [27, 57]. These works demon-

strate that multi-modal document classification does have the potential to outperform single-

mode models, even though their multi-modal models do not significantly outperform the used

single-mode models. Furthermore, our findings do not align with the literature, suggesting that

hybrid fusions, such as self-attention, achieve the best classification results [32]. when the right

models are fused. In contrast, we do not find significantly better results for the self-attention

fusion model.

5.2. FINAL MODEL DEPLOYMENT

Finally, we observe that the single-mode Inception-ResNet-V2 model achieves the best classi-

fication results when trained on the augmented dataset. We achieve a classification accuracy

and recall of 96.63%, a precision of 96.67% and an F1 score of 96.61% through k-fold testing

on Dataset 1. In terms of generalizability, the model performs best, as well as achieving a clas-

sification and recall of 60.8%, a precision of 63.67% and an F1 score of 51.52%. Although the

Inception-ResNet-V2 model demonstrates the best classification performance on Dataset 2,

further improvements are necessary before it can be used to classify more unseen datasets.

These found results are similar to those of state-of-the-art models trained and tested on RVL-

CDIP and Tobacco-3482 [26–29, 88]. As these datasets are much larger, and contain different

kinds of document, we cannot draw a direct connection to those results. The related research

only tested performance on a holdout part of the same dataset the model was trained on, there-

fore not exactly testing the generalizability of the model on a new dataset through direct infer-

ence, however previous research did examine the result of pretraining on a very related dataset
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[29, 31].

To enhance the model’s performance, the pretrained Inception-ResNet-V2 should be fine-tuned

on Dataset 2, or find other related datasets to further train the model on. Additional steps that

could improve model performance and generalizability without a third set of documents in-

clude applying further data augmentation techniques, such as scaling the document image,

flipping it horizontally or vertically, applying shearing techniques, or converting images to

grayscale. Further pretraining the model on publicly available datasets such as RVL-CDIP, or

available floor plan datasets could also enhance performance. To prevent overfitting on the

training data, regularization techniques can be employed to penalize the model for learning

to classify based on noise rather than relevant features. Lastly, deploying explainable AI tech-

niques can help better understand what the model focuses on in images to make classifications

[81, 86, 87]. As we did see slight improvement through fusion of modalities, applying data aug-

mentation to the fusion models could further improve overall performance as well.

In this specific case, the classification made is to be deployed for two main tasks; organizing

and adding metadata about the documents. For the final deployment of the model, a tool is

constructed that carries out the full pipeline, from input folder with files to be classified, to an

organized folder into the classified categories. Additionally, the classes are saved and formu-

lated in the required form as metadata.

Figure 5.13: Deployment Process Ensuring Quality Classification

Without applying any of the improvement tasks before deploying the model, we suggest the

process as demonstrated in Figure 5.13 to ensure quality outcomes for direct inference. Each

of the pipelines are actions that are automatically carried out. When an input folder is given,

its documents are converted to images, and these images are resized to (299,299,3) as this is the

optimal size for the Inception-ResNet-V2 model [120]. To be able to test the model performance

on a new dataset, we need to have a set of labeled documents. A minimum of 10 document

pages per class is required; however, a larger number of test files will give a greater confidence

in the test results. The model should be tested on this labeled set, and if the test results are

satisfactory, the model is to be used for further inference. If not, however, the labeled data is

used as fine-tuning data; it is augmented, and the augmented set of images is used to further

train the model. New documents should be labeled to evaluate the model performance and

this process should be repeated until performance is satisfactory. The final classification is
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made by classifying the individual page images. For a multi-page document, the full document

classification is made by applying a voting mechanism, where the class most occurring in the

individual page classification is chosen as the final class.



6
CONCLUSION & DISCUSSION

6.1. REVISITING THE RESEARCH GAP

In the literature review, we evaluated document classification techniques applied specifically

in the fields of the AEC industry, as well as the more general document classification methods

utilized in the last five years. We found that the application of document classification to cases

in the AEC industry is limited. Research on classification in the AEC sector is mainly focused

on text, and mostly applied to very different problems. Classification based on visual features,

layout features, and their combinations have not yet been applied in research, although docu-

ments in the AEC sector are generally not very text-dense. More studies on the use of document

image classification and multimodal document classification models would be beneficial to the

AEC industry to further support Construction 4.0 practices. The further development and ex-

ploration of intelligent document processing techniques, such as document classification for

documents within the AEC industry, helps unlock information from documents and promotes

data-driven practices.

In research towards more general document classification, we observed significant develop-

ments over the years. Initially, document classification was mostly based on manually-extracted

and single-mode-based features. Over time, features were combined through hybrid modal-

ity models, and performance improved through the use of deep learning models. Two main

datasets are generally used in document classification research, and the classification perfor-

mance on these datasets has been optimized over the years. The application of pretraining and

transfer learning to document classification models has shown to be highly beneficial for clas-

sification performance. Recently, the focus of research towards document image classification

has shifted to other goals or topics surrounding the classification models, such as explainable

AI in document classification and improving the efficiency of training document classification

models.

84
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Even with these improvements, there is a significant gap in the application of multi-modal doc-

ument classification models and state-of-the-art document classification techniques within

the AEC sector. This gap shows the need for research focused on identifying the best-performing

classification model architecture for asset management documents in the AEC sector.

This study aims to address this gap by developing a generally applicable document classifica-

tion model that is able to generalize to new datasets. To make sure this model is generalizable,

we do not only test its ability to predict its own instances, but also measure its performance on

an external dataset. This way, we evaluate the model’s effectiveness in real-world scenarios and

its potential for broader application.

6.2. RESEARCH OUTCOMES

6.2.1. RESEARCH QUESTION 1.1: HOW DO STATE-OF-THE-ART CLASSIFICATION MODELS

PERFORM AT CLASSIFICATION OF ASSET RELATED DOCUMENTS?

BASE MODEL

The base model was constructed based on relevant features identified through exploratory data

analysis. This multinomial logistic regression model uses the multi-modal handcrafted features

from three modalities: visual, textual, and layout. Visual features include number of colors, as-

pect ratio, brightness, contrast, edge density, dominant color, and image entropy. Textual fea-

tures include the total and unique word counts, as well as the presence of specific keywords.

The layout features consist of the number and average size of bounding boxes, extracted using

OCR. This model serves as a baseline, comparing a handcrafted multi-modal document clas-

sification model to other deep learning-based models. This base model achieves an accuracy

and recall of 84.74%, with precision and F1-score around 84.6%. These results are comparable

to other document classification models using handcrafted features in the literature.

IMAGE MODALITY MODELS

Within this section, we evaluate the performance of five CNN architectures on document image

classification; MobileNetV2, ResNet50, VGG16, Inception-ResNet-V2 and EfficientNetB0. Three

main research objectives were evaluated; the effect of transfer learning, the impact of data aug-

mentation, and finally the classification performance of the models themselves. To evaluate the

effect of transfer learning, the difference between applying and not applying the standard Ima-

geNet weights was compared. Applying these weights generally improved accuracy, recall, pre-

cision, and F1 score for the CNN models, with MobileNetV2 benefiting the most (around 55%

increase) and Inception-ResNet-V2 the least (around 7% increase). Notably, the performance of

EfficientNetB0 did not improve, but decrease with the application of ImageNet weights. These

differences in performances can be explained by examining their architecture and complexity.

Lighter models with fewer parameters benefit more from transfer learning, where deeper net-

works can learn more complex features from scratch. We perform data augmentation by adding

rotated images, which quadruplicates the data size, and improves the performance of the more

complex models (Inception-ResNet-V2, ResNet50 and MobileNetV2). The lighter models (Ef-
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ficientNetB0, VGG16) did not benefit from the augmentation, possibly because they observe

the augmented data as noise. Lastly, comparing the performance of the five individual mod-

els, Inception-ResNet-V2 achieves the best classification performance, achieving an accuracy

and recall of 85.41%, a precision of 87.65%, and an F1-score of 85.6%, which improves approxi-

mately 10% when applying augmentation.

TEXTUAL MODALITY MODELS

After extracting the text using OCR, we cleaned the text to evaluate the result of two different

cleaning steps; first, filtering on Dutch words, and second, filtering out stopwords, resulting in

Textset 1 and Textset 2, respectively. The models tested include traditional TF-IDF features and

tokenizer-based transformers. The TF-IDF features were classified using a simple CNN model,

slightly outperforming the base model. However, no significant difference in performance was

observed between the two text sets. The tokenizer-based models perform similarly to TF-IDF

on Textset 1, but generally decreased in performance when using Textset 2. For the tokenizer-

based models, we specifically evaluated BERT, RoBERTa, and the Dutch versions of these two

models. The text was tokenized and classified using the respective tokenizers and classifica-

tion models. The Dutch versions of BERT and RoBERTa (BERTje and RobBERT, respectively)

achieved the best performance, closely followed by RoBERTa and BERT. This aligns with ex-

pectations, as Dutch pretrained models are expected to better capture the Dutch text in the

document dataset, which is in line with prior research as well.

LAYOUT MODALITY MODELS

This section evaluated five layout-based classification models: LayoutLM, LayoutLMVv2, Lay-

outLMv3, LiLT and UDOP. LayoutLMv2 achieves the best performance across all metrics, out-

performing its successor, LayoutLMv3. The original LayoutLM performs the worst, highlighting

the added value of incorporating visual features in addition to textual-spatial information. The

better performance of LayoutLMv2 may be because of architectural differences, pretraining

objectives, or tokenization techniques.

The LiLT and UDOP models perform better than the original LayoutLM model but do not out-

perform LayoutLMv2. LiLT, like LayoutLM, only uses textual and layout information, yet still

achieves a competitive classification performance compared to the models that combine all

three modalities.

In recent literature, LayoutLMv3 and UDOP generally achieve the best classification perfor-

mances, which does not align with the results of this study. This difference may be because of

differences in datasets, as the RVL-CDIP dataset might be better suited to these models, or the

possibility of not tuning the hyperparameters in the suiting way for these models.

GENERALIZABILITY OF BEST PERFORMING MODELS

Over all tested models, Inception-ResNet-V2 achieves the best classification performance, closely

followed by ResNet50. Textual models such as Dutch BERT, Dutch RoBERTa, and the TF-IDF

model perform well but achieve approximately 10% lower classification metrics compared to
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the image-based models. The multi-modal LayoutLMv2 model outperforms the base model,

but does not compete in performance with the single-modality models. Since visual models

perform significantly better than textual or hybrid models, image-based information seems to

be most important for the classification of this dataset.

When evaluating these best-performing models on the second dataset through direct infer-

ence to evaluate their generalizability, each model shows a significant decrease in performance

(decrease of 20% - 30%). The image-based models demonstrate the best performance, closely

followed by the TF-IDF model. The large decrease in performance for all models suggests that

they primarily learned dataset-specific features rather than more generally applicable features.

This indicates that models should be trained on more data to improve performance. Further

data collection and fine-tuning of the single-modality models is therefore needed to develop an

asset management document classification model capable of correctly classifying unseen data

in new datasets.

6.2.2. RESEARCH QUESTION 1.2: HOW DO COMBINATIONS OF DOCUMENT MODALITIES

IMPACT THE PERFORMANCE OF A CLASSIFICATION IN TERMS OF ACCURACY?

This study combines the best performing single-modality models found with the first research

question. Three types of fusions are used: weighted ensembling and simple concatenation, and

self-attention-based fusion. The best performing visual-based Inception-ResNet-V2 is fused

with the best performing text-based TF-IDF and Dutch RoBERTa models.

In the weighted ensemble fusion model, each individual model is trained during the train-

ing process and delivers a final classification, which is then merged using trainable weights.

This fusion method achieves the best performance and generalizability, specifically combin-

ing Inception-ResNet-V2 with Dutch RoBERTa. Generally, the fusion models only showed very

little to no improvement over the single-modality models, for both Dataset 1 and Dataset 2.

These findings align with some existing work, where multi-modal models do not always signifi-

cantly outperform single-modality models. However, in contrast to the literature, the weighted

ensemble outperforms the more complex self-attention-based fusion in this study.

6.3. LIMITATIONS & FUTURE RESEARCH

Several limitations were encountered in this research that provide an important context for

interpreting the results and additionally help indicate interesting directions for future work.

We categorize the limitations into two main groups; data-related limitations and model-related

limitations.

6.3.1. LIMITATIONS

First, the literature review for this research was conducted between October 2024 and January

2025, and the remainder of the research was carried out between January 2025 and June 2025.

Given the fast-evolving field of data-driven solutions and artificial intelligence, new relevant
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research may have emerged after January, as well as after the finalization of this thesis.

We first describe the data-related limitations, of which some have a direct effect on the gener-

alizability of the model. One of the main limitations of this study is the use of small datasets.

Each class contained only 40-50 document pages per class, which restricted the model’s ability

to generalize. Both of these datasets were private and may not be representative of the wider

AEC industry or asset management documentation as a whole. As such, each time the model

is applied to a new dataset, its performance and generalizability should be re-evaluated. In a

related sense, this study uses Dutch datasets. Although tokenizer-based Dutch models outper-

formed others in this context, these results cannot be directly generalized to other languages or

domains, as model performance may vary significantly for other languages or domains. Given

these constraints, we cannot make industry-wide claims based on the results we obtained. In

addition, class imbalance posed challenges. As we did foresee biases in classification training

on an imbalanced dataset, we applied a simple method to equalize the number of instances

used per class. Throughout the study, we discovered that the method used, namely random

undersampling, has other implications as well, such as the loss of information by excluding

data samples and that possibly other balancing techniques would have yielded better perfor-

mance.

The model-related limitations related to the model include computational constraints. Al-

though an improved CPU and GPU were provided, more complex deep learning models (e.g.,

EfficientNetB2-B7, NasNet, or advanced fusion architectures) could not be tested. Secondly,

the models we tested were selected based on whether they could be trained on our data, and

past performance on standard datasets (e.g., RVL-CDIP, Tobacco-3482), which are structurally

different from asset management documents. This means that conclusions about the effective-

ness of specific models are not necessarily transferable between cases.

6.3.2. FUTURE RESEARCH

While overcoming the limitations identified in this study is a natural next step, we also find

four key directions for future research that emerge from our findings. These directions aim to

improve the robustness of the model, improve applicability of the model to the real-world, and

to apply intelligent document processing (IDP) techniques within the AEC sector.

Future research should focus on creating and publicly publishing AEC-related document datasets

to promote reproducibility and progress in the field. A larger variety of datasets from different

companies in different languages and document types to train the classification models on

would improve model generalizability and help establish more robust and transferable solu-

tions. More importantly, such datasets would open the door to a broader range of research into

intelligent document processing (IDP) techniques within the AEC sector. Such research could

improve efficiency by automating and accelerating currently manual, document-heavy tasks.

Moreover the models evaluated in this research; future work could investigate more advanced

fusion architectures, making different combinations in CNN-, transformer-, and non-deep learning-
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based models. With the development of new models, new advantages could arise for document

classification as well.

Additionally, feature analysis for both deep learning models and the hand-crafted features could

help identify the most informative document attributes, improving both accuracy and explain-

ability. In addition, investigating various other document interpretation tasks such as symbol

recognition, named entity recognition, and object detection, would further broaden the appli-

cation of intelligent document processing (IDP) in the AEC sector.

6.4. RECOMMENDATIONS FOR MOVARES

As in the current state of model capabilities, the model is not generalizable enough to correctly

classify new datasets, we recommend further training the final model on new datasets from

other companies, increasing the generalizability of the model. Each time the model is used for

a new case, a range of 10 - 50 documents should be labeled, and the performance of the model

should be tested. If the performance metrics retrieved through this test are not satisfactory, the

labeled data should be used to further fine-tune the model to the new data. As the model has

been pretrained on the initial dataset(s), it will learn the new data much faster.

Incorporating publicly available datasets into the training set can enhance generalizability.

Currently, only a few available floor plan datasets are directly applicable to this classification.

Pretraining the dataset on document datasets with different classes than those used in this

research (e.g., RVL-CDIP and Tobacco-3482) is likely to improve the classification results, as

demonstrated by the improved classification results when applying ImageNet weights. How-

ever, since these publicly available datasets are generally in English, the primary benefit is ex-

pected to be in visual-based classification. There may be benefits in text-based models if the

texts are translated before inclusion.

As demonstrated by the EDA and final classification, the intra-class compactness and inter-

class separability are not optimal for each of the classes. The Photo and Report are gener-

ally separable from the other classes, however, the drawing-based classes (View-Segment Di-

agram, Detail, Floor Plan, and Installation Diagram) are more intertwined. The Table class is

very closely related to the Report class. As the drawing-based documents often contain words

related to the specific category (e.g., a Detail drawing would contain the words "Detail" or a

specific scale that can easily be searched for), it would be interesting to evaluate the results of

a model classifying documents into just the three classes Photo, Report, or Drawing. In this

sense, documents cannot be classified into the specific drawing-base classes, but documents

can contain e.g. a View-Segment Diagram, Detail, Floor Plan, or Installation Diagram. Simi-

larly, an effective way of identifying Tables in reports would allow to extract tables in the same

format.

Additionally, since two utilized datasets were initially labeled into two different, yet relevant

sets of classes, it is important to design a standard for asset management document classes

that optimally reflects the possible classes of documents. Furthermore, as this study classifies
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single document pages, a strategy should be designed for how to determine the final class for

these longer documents.

Further specifying the complete IDP pipeline could help better determine the value of the clas-

sification made by the models in this study. This includes detailing the pipeline down to all

required information and identifying which IDP tasks could be used to retrieve the informa-

tion. By doing so, it will be clearer to what end the classification model will serve and how it

can be utilized optimally.

6.5. CONTRIBUTIONS TO RESEARCH & PRACTICE

The contributions of this study can be summarized into three main areas:

• The application of intelligent document processing (IDP) in the architecture, engineer-

ing, and construction (AEC) industry, and an initial step towards automated document

classification for asset management within the AEC sector

• A comprehensive evaluation of multi-modal classification architectures on a real-world

dataset, and

• An initial step towards automated document classification for asset management within

the AEC sector

First, although the AEC sector is increasingly taking on construction 4.0, derived from Industry

4.0, and applying more and more data-driven approaches, the use of document classification

applications is still limited in this sector. In our literature review, we identified a gap in the ap-

plication of document classification techniques, specifically in the use of image-based features

in AEC document classification. By evaluating document classifications on an AEC document

dataset, which includes floor plans, drawings, and installation schemes, this work broadens the

use of document classification within the AEC sector.

Secondly, apart from contributing to the AEC sector specifically, this study contributes to the

broader academic fields of document classification and multi-modal classification. This study

provides a detailed comparison of different modality-specific models, using visual, textual, and

layout-based approaches, on a real-world dataset. We demonstrate what impact the decision of

modality has on the classification, and broaden the standard features used in document classi-

fication. Furthermore, we evaluate the behavior of state-of-the-art pretrained models outside

of their original domains, and how transfer learning may or may not generalize across domains

outside of standard benchmarking datasets. Finally, in evaluating Dutch-language NLP models,

we confirm the added value of language-specific pretraining as Dutch-language NLP models

outperform their English counterparts in this research.

Lastly, as limited research has been conducted on the use of intelligent document process-

ing in asset management within the AEC sector, this research represents an initial step in that

direction. We explore the possibilities and challenges of processing asset-related document
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types using state-of-the-art models and discover new possible directions for beneficial future

research in this area.
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A
KEYWORD CLOUDS

Figure A.1: Keyword Density Wordcloud for document classification in AEC applications keywords

Figure A.2: Keyword Density Wordcloud for (multimodal) document image classification.
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B
PUBLICATION COUNTS PER

CONFERENCE/JOURNAL

Table B.1: Publication Counts per Conference/Journal (Document Classification in AEC applications)

Conference/Journal Count
ArXiv 1
Automation in Construction 1
Construction Innovation 1
IEEE Transactions on Engineering Management 1
INFORMATIK 2022. Gesellschaft für Informatik 1
Intelligent Computing Paradigm and Cutting-edge
Technologies

1

International Conference on Computer Engineer-
ing, Information Science & Application Technol-
ogy (ICCIA)

1

International Symposium on Automation and
Robotics in Construction (ISARC)

1

Journal of Building Engineering 1
Journal of General Management 1
KSCE Journal of Civil and Environmental Engi-
neering Research

1

Korean Journal of Construction Engineering and
Management

1
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Table B.2: Publication Counts per Conference/Journal (Multimodal Document Classification/ Document Image
Classification), only including conference/journals having published more than one of the selected materials.

Conference/Journal Count
ArXiv 10
International Conference on Document Analysis
and Recognition (ICDAR)

9

Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR)

5

International Journal on Document Analysis and
Recognition (IJDAR)

4

International Conference on Pattern Recognition
(ICPR)

3

Proceedings of the ACM International Conference
on Multimedia

2



C
CATEGORIZATION OF FEATURE FUSION

METHODS

Table C.1: Categorization of Feature Fusion Methods (part 1)

Fusion Methods Fusion Level Complexity (Sim-
ple/ Intermedi-
ate/ Advanced

Based on Atten-
tion Mechanisms

Based on Adaptiv-
ity

Multi-View Deep
Autoencoder
(MDAE)

Early Fusion Intermediate No Attention Adaptive Fusion

multimodal
Transformer
Model

Early Fusion Advanced No Attention Adaptive Fusion

Cross-Modal At-
tention Encoder

Hybrid Fusion Advanced Attention Adaptive Fusion

Cross-Modal
Interaction At-
tention Module
(InterMCA and
IntraMSA)

Hybrid Fusion Advanced Attention Adaptive Fusion

Self-Attention Hybrid Fusion Advanced Attention Adaptive Fusion
Multi-Head At-
tention Based
Encoder

Hybrid Fusion Advanced Attention Adaptive Fusion

Adaptive Fusion
Layer

Hybrid Fusion Advanced Attention Adaptive Fusion

Feature Maps Hybrid/Late Fu-
sion Fusion

Intermediate No Attention Static Fusion
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Table C.2: Categorization of Feature Fusion Methods (part 2)

Fusion Methods Fusion Level Complexity (Sim-
ple/ Intermedi-
ate/ Advanced

Based on Atten-
tion Mechanisms

Based on Adaptiv-
ity

Average Ensem-
bling (Superpos-
ing) Method

Late Fusion Simple No Attention Static Fusion

Equal Concatena-
tion

Late Fusion Simple No Attention Static Fusion

Sum of Weighted
Probabilities

Late Fusion Simple No Attention Static Fusion

Linear Transfor-
mation Layer

Late Fusion Simple No Attention Static Fusion

Average Pooling
Layer & Softmax

Late Fusion Simple No Attention Static Fusion

Element-Wise
Product and Aver-
aging

Late Fusion Intermediate No Attention Adaptive Fusion

Separate Softmax
for Text and Vi-
sual, then Com-
bined

Late Fusion Intermediate No Attention Static Fusion

Sample-
Dependent At-
tention Weights

Late Fusion Intermediate Attention Adaptive Fusion



D
OPTICAL CHARACTER RECOGNITION

TOOL COMPARISON

OCR is the widely used method to extract text from images, which we elaborate on in Section

3.3.1. Over the years, numerous tools have been developed that are available for public and

commercial use. In this study, we analyze the performance of three different publicly avail-

able OCR tools; PyTesseract OCR 1, EasyOCR2, and Keras OCR3. Furthermore, we compare the

results with the performance of a commercial OCR tool, Azure OCR4.

For each of the classes, the text is extracted manually from two class images; in other words,

we read the texts ourselves. We refer to these texts as reference texts. These texts are used as

reference texts to compare the OCR results, which we refer to as hypothesis texts. For each of

the words in the reference texts, we test whether it is included in the corresponding hypothesis

text. The best performing OCR is the OCR that, on average, includes most of the manually

extracted words.

1Tesseract OCR Github
2EasyOCR on Jaided AI
3Keras OCR Website
4Azure AI Vision
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Figure D.1: Image from the Tobacco-3482 dataset

We use Figure D.1, which is an image from the Tobacco-3482 dataset, to illustrate this process.

Manually we extract the following text from the image.

1956 GOT A COLD? SWITCH FROM "HOTS" TO KOOLS KOOLS are the only

cigarettes that taste good when you have a cold. They taste even better when

you don’t. KOOL MILD MENTHOL TIPPEO REGULAR AND KING-SIZE job No

K-2978 Newspapers - 300 lines - March & April, 1950 100 lines) Final Proof (T)

March 15, 1956 66400 7 1 2 7

Figure D.2: Reference Text

In this example, we test the performance of PyTesseract OCR. The following Figure shows the

text as extracted by PyTesseract OCR. We convert both texts to lowercase, and then for each

word in the reference text we is extract whether it is included by the hypothesis text as well.

KOOLS are the only cigarettes that taste good when you have & cold. They taste

even ‘better when you don’t. Job No, K-2978 ‘Mewapapars—300 iner—Mateh &

April, 1956 (8 9-4 in, 2 108 ines) Pinal Proof (7) March 18, 1956

Figure D.3: Hypothesis Text

The reference text contains 61 words, while the hypothesis text, extracted by PyTesseract con-

tains only 48 words. Among these, 28 words have an exact match between the two methods.

We evaluate the performance of the OCR using the Strict Word Error Rate (SWER) as defined
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by Karpinski et al. [154]. This metric divides the number of incorrectly extracted words by the

original length of the text (the reference text). A word that is not extracted at all is also seen as

incorrectly extracted. For this image, the SWER is 54.10%. The aim is to have a SWER as close

to 0 as possible.

1956 kools kools are the only cigarettes that taste good when you have cold. they

taste even when you don’t. job K-2978 march april, proof march 1956 2

Figure D.4: Corresponding Words between Reference Text and Hypothesis Text

The limitation of this method is that it only checks whether a word is included somewhere in the

extracted text OCR without ensuring that it is in the right position. It does however, provide a

useful measure for comparing OCR performance in terms of the number of recognized words.

The strict word error rate is calculated for 14 images in the dataset, with images selected per

category. We denote the resulting error rates, subtracted from 100 percent, in Table D.1.

Table D.1: Optical Character Recognition Analysis Results in 100 - Strict Word Error Rate

OCR package Basic Patches Grayscale + Dilution

PyTesseract 29.03% 11.73% 12.82%

EasyOCR 16.53% 17.15% 15.21%

Keras OCR 5.79% 10.03% 3.18%

Azure OCR 32.95% x x

Furthermore, not only is the text directly extracted from the images. We also test the impact of

applying grayscale and dilution to images, as well as extracting text from image-patches instead

of solely from the full images. We compare the hypothesis texts with the reference texts in the

same way. The further used OCR tool and setting is the best found combination of the two.



E
EXPLORATORY DATA ANALYSIS

E.0.1. IMAGE DATA ANALYSIS

The metrics used for image data analysis are based on widely recognized image analysis stan-

dards. In this section, we discuss the results of the analysis and highlight the most evident

differences between the classes. First, we evaluate the number of colors per class, as illustrated

in Figure E.1. On average, the Cross-Section Drawing and Detail Drawing classes contain the

least different colors. Aspect ratio, which represents the relation between the width and height

of documents, indicates whether a document is in portrait (aspect ratio of approximately 0.7)

or landscape (aspect ratio of approximately 1.4), or possibly does not conform to a a standard

document form. We find that Installation Diagram is most consistent with landscape orienta-

tion, while Report is most consistent with portrait orientation. The other classes seem to vary

between the two orientations and may included different document formats as well (see Figure

E.2). The brightness of the images represents the average pixel intensity of the class images. A

pixel intensity of 255 means that the image is completely white, while 0 signifies a completely

black pixel. The average brightness of most classes varies between 238 and 248, while the av-

erage brightness of class Photo is significantly lower, indicating higher degree of darkness. For

each image, we compute the most dominant color, i.e. the color that most pixels have. We see

that for most images the dominant color is white, or a teint of white having a closely related

RGB code. Figure E.4 shows the number of documents that have white as the dominant color

as a percentage of the total number of documents per class. We observe that for most classes

white is the dominant color for most documents while for Photo this is not the case. Lastly,

we measure the image entropy, which quantifies the complexity of an image by evaluating the

range and distribution of pixel values. A high entropy indicates a less predictable and more

information-containing image, while a low entropy indicates the contrast. We observe that im-

ages in class Photo on average have higher entropy, whereas the rest of the classes have more

similar entropy values E.5.
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Figure E.5: Average Entropy per class

E.0.2. TEXT DATA ANALYSIS

For the text evaluation, we analyzed the number of words per document and the number of

unique words per document across two datasets. We found that the number of words is not

quite directly related to the classes, as there is significant variation between the two datasets

(see Figure E.6. Generally, documents in dataset 2 contain fewer words on average, except for

the classes Cross-Section Drawing and Photo. Both have the fewest words on average for the

class Photo. Additionally, dataset 2 generally has a higher percentage of unique words per text

than dataset 1 has, except for the class Photo (see Figure E.7).
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E.0.3. LAYOUT DATA ANALYSIS

For the layout data analysis we evaluate the bounding boxes that we extract by using by using

OCR. We observe that classes Installation Diagram, Floor Plan, and Table on average have the

most bounding boxes (see Figure E.8). In contrast, documents in class Photo have the least

number of bounding boxes, but at the same time with the largest area (see Figure E.9).
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Figure E.9: Average Bounding Box Area per Category

E.0.4. INTER-CLASS SIMILARITY AND INTRA-CLASS COMPACTNESS ANALYSIS

The Davies–Bouldin Index (DBI) [155] and Silhouette Score [156] are the metrics used to assess

the quality of the clusters. The DBI measures the average similarity ratio of each cluster with

the cluster that is most similar to it. A lower DBI value indicates better clustering as it indicates

well-separated and compact clusters. The Silhouette Score, on the other hand, measures how

similar an object is to its own cluster compared to other clusters. A higher Silhouette Score

indicates better-defined clusters.

In our analysis, we compute both the DBI and the Silhouette Score to assess the inter-class sep-

arability and intra-class compactness numerically, where the clusters represent the 7 classes.

Using the features extracted from the classification models, we ensure that the clustering is

based on the same features used for classification. This approach is applied to both image and

text data, providing a comprehensive evaluation of the clustering performance (see Table E.1).

Table E.1: Clustering Measures

Dataset Davies-Bouldin-Index Silhouette Score

Dataset 1 Images 2.7042713282921897 0.09954584389925003

Dataset 1 Text 0.9090793139348567 0.3266998529434204

Textset 1 0.9865165012612194 0.3549281656742096

Textset 2 0.8861770139306265 0.3549281656742096

Dataset 2 Images 2.631281052960695 0.09031537920236588

Dataset 2 Cleaned Text 0.8322079619122981 0.38891518115997314

The resulting DBI and silhouette scores indicate that the inter-class separability and intra-class

compactness are the best for the Textset 2, indicating a higher likelihood that the dataset is well
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classifiable [157, 158].

To visualize inter-class separability and intra-class compactness, we cluster the datasets us-

ing t-SNE [159] (see Figures E.10,E.11,E.12,E.13). t-SNE or t-distributed Stochastic Neighbor

Embedding, is a dimensionality reduction technique that maps high-dimensional data to a

lower-dimensional space, through which it maintains the relative distances between nearby

data points. This makes it easier to identify clusters and patterns. This technique is used as

it is generally effective for high-dimensional data such as images. We cannot take any direct

measures from these clusters, but they do give a visual of the separability of the classes.
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Figure E.10: t-SNE visualization of images with original labels (dataset 1)
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Figure E.11: t-SNE visualization of texts with original labels (dataset 1)
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Figure E.12: t-SNE visualization of Textset 1 with original labels (dataset 1)
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Figure E.13: t-SNE visualization of Textset 2 with original labels (dataset 1)



F
TERM FREQUENCY - INVERSE DOCUMENT

FREQUENCY CLASSIFICATION MODEL

ANALYSIS

Figures F.1 and F.2 illustrate the classification performance of various classifiers using the Term

Frequency - Inverse Document Frequency (TF-IDF) feature. The deep learning model con-

sistently outperforms other models across both datasets, showing only minimal variation in

performance between them. For other classifiers, the text set classification 2 generally achieves

more accurate classifications, except the decision tree classifier, which performs worse on this

dataset.

This shows a variation in how the models work and what they focus on. As found in Chapter

5, the tokenizer (BERT) models each achieve an improved performance on Textset 1, instead

of on Textset 2, which we observe for the traditional machine learning models. This difference

could indicate that the stop words that are included in Textset 1 could be perceived as noise or

distracting to the model, affecting classification performance to which these models are more

vulnerable than the pretrained tokenizer models. As the simple deep learning model clearly

outperforms the other models for the TF-IDF feature, this model is used further in this study,

which is further detailed in Chapter 5.
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Figure F.1: Dataset 1 Classification Performances (Text Modality - Textset 1, TF-IDF)
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Figure G.1: Base Model Confusion Matrix

VSD
6

55%

2

18%

0

0%

1

9%

2

18%

0

0%

0

0%

Detail Drawing
0

0%

9

82%

0

0%

2

18%

0

0%

0

0%

0

0%

Photo
0

0%

0

0%

11

100%

0

0%

0

0%

0

0%

0

0%

Installation Diagram
1

9%

0

0%

0

0%

8

73%

1

9%

1

9%

0

0%

Floor Plan
2

18%

0

0%

0

0%

0

0%

9

82%

0

0%

0

0%

Report
0

0%

1

9%

0

0%

0

0%

0

0%

9

82%

1

9%

Table
0

0%

VSD

0

0%

Deta
il Dra

win
g

0

0%

Photo

0

0%

In
sta

lla
tio

n
Dia

gra
m

0

0%

Flo
or Plan

4

36%

Report

7

64%

Table

A
ct

u
al

C
la

ss

Predicted Class

Figure G.2: Inception-ResNet-V2 Confusion Matrix
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Figure G.3: TF-IDF Confusion Matrix
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Figure G.4: Roberta Base Confusion Matrix
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Figure G.5: LayoutLMv2 Confusion Matrix

G.2. DIRECT INFERENCE ON DATASET 2
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Figure G.6: Inception-ResNet-V2 Inferencing
Dataset 2 Directly Confusion Matrix
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Figure G.7: TF-IDF Inferencing Dataset 2 Directly
Confusion Matrix
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Figure G.8: Roberta Base Inferencing Dataset 2 Di-
rectly Confusion Matrix
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Figure G.9: LayoutLMv2 Inferencing Dataset 2 Di-
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