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Management Summary 

This thesis is conducted at Distribute and investigates the design of an autonomous business-to-

consumer last-mile delivery system, using the campus of the University of Twente as a case study. The 

current last-mile delivery system is approaching a point that it will no longer be sustainable due to 

various economic, social, and environmental challenges. Autonomous delivery presents a potential 

solution by eliminating delivery driver personnel costs, achieving more accurate delivery time windows 

through local depots and further reducing emissions. However, despite this potential, it is unclear how 

to implement such a system. This is the main goal of the thesis which is why we formulated the 

following main research question: 

How to design an autonomous Business-2-Consumer last mile delivery system, using the Campus of 

the University of Twente as a case study? 

The research starts by conducting an extensive literature review. We study the current state of last-mile 

logistics, types of autonomous delivery vehicles (ADVs), existing models and optimization techniques, 

simulation methods, and key performance indicators (KPIs) used for evaluation. 

Building on the knowledge we gained from literature, we develop a generic design framework for 

designing autonomous last-mile delivery systems. This supports system designers in selecting and 

combining design elements. This framework does not attempt to cover every operational detail. 

Instead, it focuses on strategic, system level design choices that must be addressed before 

implementation. Key design choices included geographical and infrastructure factors, demand 

estimation methods, depot setup, and fleet compositions. This stage will result in a set of feasible 

delivery system alternatives.  

To answer this question, we introduce a structured decision-making framework that supports system 

designers in selecting and combining design elements. This framework does not attempt to cover every 

operational detail. Instead, it focuses on strategic, system level design choices that must be addressed 

before implementation.  

We develop a simulation model to test the performance of different system configurations under 

varying levels of demand, time windows, and fleet compositions. Key Performance Indicators are 

defined in the economic, environmental, and social domains, and experiments are conducted to 

evaluate the system’s behavior. 

Finally, the experimental results are analyzed, allowing us to draw conclusions about the performance 

of the proposed system and to develop recommendations for future use.  
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Key Findings Case Study 

There are many examples of autonomous delivery vehicles, but we found that these can be divided 

into three general categories (See Figure 1): 

• Unmanned Aerial Vehicles (UAVs), often referred to as drones, are small, unmanned aircrafts 

without a pilot on board. Due to their limited size, they are not capable of delivering large, 

heavy or multiple packages (at once). However, their advantage lies in their ability to travel 

through the air, allowing them to bypass traffic. This makes them suitable for fast deliveries 

and are an excellent supplement for delivering parcels once the demand increases. 

• Sidewalk Autonomous Delivery Vehicles (S-ADVs) are small, ground-based autonomous 

robots with a low maximum speed and a limited capacity (typically one). They drive 

preferably on sidewalks or through small pedestrian areas so they can bypass the public road. 

This makes them suitable for short-distance deliveries to customers, especially when these 

customers are inaccessible for the other vehicles.  

• Road Autonomous Delivery Vehicles (R-ADVs) are larger, ground-based autonomous robots 

that function as a mobile parcel locker. With their significantly higher capacity and often 

ability to drive on public roads, they are suitable for delivering large volumes. 

 
Figure 1: Examples Autonomous Delivery Vehicles: R-ADV (Express Robot) on the left, S-ADV (Starship Robot) in the center 
and UAV (Zipline Drone) on the right 

A series of experiments were conducted to test the system under different configurations, including 

variations in fleet composition (homogeneous vs heterogeneous), customer demand levels (43, 106, 

192), and delivery constraints (09:00-17:00 delivery, 09:00-21:00 and strict morning/afternoon time 

windows of 09:00-13:00 & 13:00-17:00).  

Recommendation for the University of Twente Campus 

For campus deliveries, we recommend not to implement deliveries with strict time windows. Since it 

would be way too costly to achieve this compared to delivery without time windows. For an 

autonomous delivery system with full day (09:00-17:00) delivery to customers at their home, we 

recommend using a heterogeneous fleet of one R-ADV and two UAVs. This heterogeneous fleet can 

deliver up to around 150 parcels a day between 09:00-17:00 (covering days with low demand, 

average demand and even slightly higher than average demand).  

On a lower demand day, the single R-ADV or the two UAVs can deliver the parcels homogeneously 

(each with around 55% utilization). On an average demand day, a single R-ADV and UAV can deliver 

these packages with 91% utilization. On days of high demand, we recommend using an option of 

evening delivery, which allows this fleet to deliver 192 parcels with a utilization of 83%. If evening 

delivery is not an option, the heterogeneous fleet needs an additional two drones to cover the high 

demand days. 
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Chapter 1 Introduction and Methodology 
In this thesis, we investigate how autonomous delivery concepts might be able to address the problems 

with the existing last-mile delivery system. Section 1.1 provides a description of the problem, which 

entails a definition of the term last-mile delivery, accompanied by some background information, a 

description of the assignment, the problem context and the research motivation. Section 1.2 outlines 

the research design, which entails the research scope and the research objective with the devised 

research questions. Additionally, the deliverables, data collection methods and contributions of the 

study are described. Finally, the chapter ends with Section 1.3 containing the thesis outline and readers’ 

guide. 

1.1 Problem Description 
Logistics covers the complete process of storing, coordinating, and transporting resources to their 

destination. In logistics management, the last-mile delivery refers to the final stage of the delivery 

process wherein a parcel is transported from a distribution hub to its destination. Some definitions are 

more precise than others. According to Boysen et al. (2020), the last mile delivery refers to "logistics 

activities associated with delivering shipments to private customer households in urban areas," while 

Vakulenko et al. (2019) defines last mile delivery as "delivery from the final upstream point of shipment 

to the end consumer". Ha et al (2022) encompasses the need for a more rounded definition of last mile 

delivery, emphasizing the delivery element while encompassing every form of delivery:  

“The last transportation of a consignment in a supply chain from the last dispatch point to the 

delivery point where the consignee receives the consignment.” 

To give some extra context to this definition, despite being labeled as the "last mile," it may not 

necessarily be a mile. In fact, it can encompass various distances and utilize any mode of transportation, 

including bicycles, buses, cars, scooters, and even Unmanned Aerial Vehicles (UAVs). The final dispatch 

point will most likely be a distribution center or warehouse, but it could also be a store that directly 

ships the products. The delivery point could be the customer, but it can also include reception points 

or collection points. Figure 2 shows an example (simplified) overview of an entire supply chain and its 

components (Ha et al., 2022). 

 
Figure 2: Schematic Representation of the First, Middle and Last Mile in the Supply Chain (Maersk, 2025) 
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1.1.1 Problem Context and Research Motivation  
Allen et al. (2018), Buldeo et al. (2022a), and Kahl (2020) highlight that the last-mile delivery is under 

increasing pressure due to various challenges. These include increased customer expectations, 

seasonal peaks in demand, reduced lead times, meeting delivery time windows, a high rate of first-time 

delivery failure rates, and a growing number of product returns. Some aspects of last-mile delivery are 

stochastic, such as seasonal peaks, product returns and traffic congestion on roads. Other factors add 

more constraints to deliveries like tight delivery time windows and lowering energy consumption. 

Projections indicate that without significant change, delivery-related emissions in the top 100 global 

cities will increase by 31% in 2030, while traffic congestion could rise by 21% (World Economic Forum, 

2020). Simultaneously, the number of delivery vehicles may increase by 36% (Kahl, 2020).  

Centraal Bureau voor de Statistiek (2022a) projects that especially large and medium-sized cities will 

continue to grow in the Netherlands, as will several municipalities around the major cities. The World 

Economic Forum (2020) claims that urban areas already account for approximately 70% of global 

emissions, and delivery vehicles represent a disproportionately high share compared to personal 

vehicles. In Amsterdam, for example, one in every eight vehicles in the inner city is a truck or delivery 

van. According to Femke Halsema, the Mayor of Amsterdam, urban deliveries cause structural 

problems in the city of Amsterdam: Many old bridges and quays are not designed for the weight of 

vehicles and intensive use these days. Ultimately, urban last-mile delivery will increase by 78% by 2030. 

Mobility experts argue that the limiting factor in the future of urban mobility will not even be 

affordability, but land.  

In addition to environmental and logistical pressures, human labor remains a major bottleneck. Last-

mile delivery is relatively labor-intensive, with much of the driver’s time spent driving rather than on 

value-adding tasks (Thomas & Tokar, n.d.). Moreover, human-operated delivery is restricted by 

infrastructure limitations, such as traffic regulations, parking access, working hours and, not to forget, 

human error. These constraints make it difficult to scale the current delivery system to meet future 

demands.  

The Assignment 
The current last-mile delivery system is under growing pressure due to mobility, sustainability and labor 

challenges mentioned in the previous subsection. Urban areas are experiencing increased congestion 

and rising delivery demand. At the same time, there is a clear need to reduce emissions and improve 

the efficiency of logistics systems. These challenges highlight the need to rethink existing last-mile 

logistics models and investigating alternative solutions. 

Autonomous delivery systems, whether on the ground or in the air, offer a potential solution. By 

removing the dependency on human drivers and introducing new forms of mobility, these technologies 

could improve efficiency, reduce emissions, and reduce the pressure on the urban infrastructure. 

However, despite their potential, the question remains: How should autonomous delivery systems be 

designed and evaluated to ensure they are suitable and effective in real-world settings? 

The goal of this thesis is to provide a structured approach for designing and assessing the suitability of 

autonomous last-mile delivery systems, with a focus on urban environments. While the case study 

provides a concrete example, the approach and insights are designed with a broader applicability in 

mind.  

  



3 
 

By selecting the University of Twente campus as a case, the research can examine autonomous delivery 

within a realistic and contained environment. The campus is located between the cities of Enschede 

and Hengelo in the Twente region of the Netherlands. Offering as much as a small town with 3,000 

student houses and flats with plenty of facilities, such as a supermarket, bar, gym, general practitioner 

and even a hairdresser (Campus | Universiteit Twente, n.d.). The following list of reasons is why we 

chose for the campus as a case: 

• Like a small town, the campus has people living and working in the same area. 

• A university has a much higher chance of agreeing to potential testing of autonomous 

delivery, making it much more worthwhile to design an autonomous delivery system. 

• Since the campus shares characteristics with a small town, insights gained from research here 

could be scaled up to larger urban applications 

 
Figure 3: Map of the University of Twente (Campus | Universiteit Twente, n.d.). 

This master thesis was conducted at a company called Distribute. Distribute is a young, relatively small, 

University of Twente Spin-off. Distribute designs and simulates distributed planning and control 

systems for the logistics and transport sector. Distribute is keen to keep up with developments in 

technology, aiming to better understand the current last-mile delivery infrastructure and the potential 

autonomous options for last mile delivery.  

This essentially comes down to addressing and solving the following problem: 

The current last mile delivery system is approaching a point where it will no longer be sustainable due 

to various challenges. Autonomous delivery presents a potential solution, but it remains unclear what 

approach we should use to design and implement this, particularly when considering a case like the 

University of Twente Campus. 

This thesis has two goals: 

1) Develop a generic framework for the design and evaluation of autonomous delivery systems 

2) Demonstrate the application of this approach through a real-world case 

While the outcomes are based on the University of Twente campus, the resulting framework could be 

applicable to other campuses or controlled urban environments. Future research is needed to further 

explore its broader applicability. 
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1.2 Research Design 
In this section, we present the design of our research. We discuss the research scope, after which we 

describe the research objective and research questions. We then outline the data collection methods 

and contributions of the study. The subsection ends with a thesis outline for the reader. 

1.2.1 Research Scope 
In this thesis, we explore the field of last-mile delivery with a focus on societal, environmental and 

business factors. Furthermore, this thesis focuses on the case of the campus of the University of 

Twente. The campus is used as a base that should provide insight into how autonomous delivery can 

best be applied to (similar) areas such as the campus. Last-mile delivery can be split up into Business 

to Consumer (B2C) and Business to Business (B2B). The scope of this thesis lays in the B2C model rather 

than the B2B model.  

Consumers demand increasingly faster, more reliable, and environmentally friendly delivery options. 

B2C also has a much larger range of different places and is in general less standardized. This causes 

more and more problems for the B2C model, while the B2B model is much more focused on ‘fixed’ 

retail orders with a regular partner. This process could also be more efficient and environmentally 

friendly in many ways, but for this thesis we still focused on the B2C model.  

1.2.2 Research objectives and research questions 
The main research objective of this thesis can be formulated as follows: 

How to design and evaluate an autonomous B2C last mile delivery system, using the Campus of the 

University of Twente as a case study? 

Several research questions are devised to help us answer the objective of the thesis. For each question, 

a small description is given about the approach.  

Stage 1. Literature review 

The thesis starts with a literature review to provide a strong foundation for designing an autonomous 

last-mile delivery system. The review focuses on understanding the current state of last-mile logistics, 

the potential of autonomous delivery technologies, and relevant modeling and simulation methods. 

The theoretical foundation is essential for developing and evaluating delivery system configurations in 

later stages of the research. 

RQ. What does existing literature reveal about the technologies, models and methods available for 

designing and evaluating autonomous last-mile delivery systems? 

a) How are the first, middle, and last-mile stages of parcel delivery organized in practice in the 

Netherlands? 

b) What does the literature say about the current last-mile delivery landscape and its advantages 

and disadvantages? 

c) What types of autonomous delivery vehicles exist, and what are their legal restrictions, 

opportunities and limitations? 

d) What autonomous delivery systems and mathematical models are proposed in the literature? 

e) What approaches exist in the literature to solve vehicle routing problems? 

f) What simulation methods are used to analyze last-mile logistics systems? 

g) What Key Performance Indicators (KPIs) are used in the literature to assess the performance 

of a delivery system? 

The answers to these sub-questions are given in Chapter 2 and form the theoretical foundation of the 

thesis.  
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Stage 2. Design Framework with Simulation Model 

Building on the knowledge gathered from the literature, the second stage of the study focuses on 

creating an autonomous last-mile delivery system and presents the simulation model developed for 

evaluation. The framework is structured as a “menu of choices”, helping system designers make 

informed decisions about service area boundaries, demand patterns, depot placement, and 

operational logistics. These design choices are not only theoretically grounded but also serve as direct 

inputs to the simulation model. The chapter also outlines the structure and capabilities of the 

simulation tool used to assess delivery performance. 

RQ. How can an autonomous B2C last-mile delivery system be designed, using a set of configurable 

design choices, based on the characteristics of a specific environment? 

a) What geographical and infrastructural factors must be considered? 

b) How can delivery demand be estimated and integrated into the system design? 

c) What depot configuration best supports the expected delivery flows? 

d) How should operational logistics be structured? 

e) How can simulation be used to assess and validate the performance of a proposed design? 

Chapter 3 presents a structured framework for designing autonomous delivery systems and describes 

how this framework is operationalized within a simulation environment.  

Stage 3. Case study: Applying the Framework to the University of Twente 

In this stage, the system design framework and simulation model are applied to the specific use case 

of the University of Twente campus. Based on campus characteristics and available data, a feasible 

autonomous delivery system is configured. This includes decision-making in the service area, demand 

estimations, depot configuration and operational logistics. These choices are shaped by both 

theoretical insights and practical constraints, and they serve as the inputs for the simulation 

experiments conducted in the next stage. 

RQ. How can the autonomous last-mile delivery system be configured for the University of Twente 

campus using the developed framework and simulation model? 

a) Which design options from the framework best fit the characteristics of the UT campus? 

b) Which system configurations are promising for experimentation? 

c) How can these design choices be implemented in the simulation model?  

Chapter 4 presents the system design for the UT case study and identifies potential experimental 

configurations that will be discussed in Chapter 5. 

Stage 4. Experiments and Evaluation 

This stage focuses on conducting simulation experiments using the previously selected configurations. 

The goal is to evaluate how the autonomous delivery system performs under different design scenarios.  

RQ. How does the autonomous delivery system perform under different design configurations, and 

which setup offers the best operational performance? 

a) What experiments should be conducted to assess different delivery configurations? 

b) How do key performance indicators vary across setups? 

c) Which configuration provides the most balanced and effective performance for campus-

wide implementation? 
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Chapter 5 presents the simulation results and provides insights into vehicle-specific performance, cost-

efficiency, energy usage, and practical implementation recommendations for the University of Twente 

campus. 

Stage 5. Drawing conclusions and providing recommendations 

After experimenting with our autonomous delivery system, we can analyze the results and draw 

conclusions. This includes evaluating whether the designed autonomous delivery system meets 

performance expectations, interpreting the implications for the University of Twente campus, and 

outlining directions for future research or system deployment. The results are discussed in terms of 

both theoretical insights and practical relevance. This is all done in Chapter 6. 
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Chapter 2 Literature Review 
Autonomous delivery for the last mile delivery is a promising, but also still distant concept. In this 

chapter, we aim to broaden our knowledge of about three aspects before continuing our research (i) 

general last-mile delivery (characteristics) (ii) autonomous delivery vehicles and (iii) the accompanying 

delivery systems. This will give us the theoretical background that we need to properly think about 

designing an autonomous delivery system. In this chapter, we aim to answer the research question: 

What does existing literature reveal about the technologies, models and methods available for 

designing and evaluating autonomous last-mile delivery systems? 

• Section 2.1 briefly explains how the first, middle and last-mile delivery works in practice 

• Section 2.2 analyses the advantages and disadvantages of the current general last-mile delivery 

landscape. 

• Section 2.3 outlines the different types of autonomous technologies which could be used for 

autonomous delivery. It provides specific examples of technologies produced by certain companies 

as well as a discussion about the opportunities and limitations per type. 

• Section 2.4 describes the different types of delivery systems based on the technology found in 

Section 2.3 

• Section 2.5 focuses on modeling these systems, including the mathematical formulation of delivery 

problems 

• Section 2.6 reviews the solution approaches to solve such models 

• Section 2.7 discusses how to evaluate autonomous delivery systems 

• Section 2.8 concludes the literature review 

2.1 Parcel Delivery Process in the Netherlands (PostNL) 
From Autoriteit Consument & Markt Dashboard (2024), we obtained the following data. In 2024, a total 

of 606 million parcels were delivered in the Netherlands. Out of those, 494 million are delivered B2C 

(Business to consumer), while 95 million were B2B (business to business) and 16 million were C2X 

(consumer to business/consumer). The national parcel market share is distributed as follows: 

• PostNL: 45-50% 

• DHL: 40-45% 

• Other carriers (e.g., DPD, UPS): 5 – 10% 

Since PostNL has the largest market share, we will mainly focus on PostNL. Parcel Delivery by PostNL 

(to the campus) works as follows (Een Postgeschiedenis (n.d.); Feiten En Cijfers Postbezorging (n.d.)): 

First Mile – From webshop to Sorting Center 

After a customer places an order online, the retailer packages and labels the parcel. PostNL collects the 

parcel from the retailer or drop-off point and transports it to one of the 6 large regional sorting centers, 

for the campus this will be Zwolle.  

Middle Mile – Transport between sorting centers and depots 

Parcels are sorted by destination zip code and shipped across the national network. For deliveries to 

Enschede, parcels are forwarded to the Hengelo depot, which serves the Enschede area including the 

University of Twente Campus.  

Last Mile – Final Delivery to the customer  

At the Hengelo depot, parcels are loaded into delivery vans and distributed along predefined routes 

of which one includes the campus. 
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2.2 Advantages and Disadvantages of the current landscape 
As previously said, last-mile delivery is one of the most polluting and costly stages of the delivery supply 

chain. Aside from these two critical concerns, the existing form of last-mile delivery presents several 

additional challenges. Ha et al. (2022) categorizes these concerns into five groups:  

• Operational challenges 

• Infrastructure challenges 

• Delivery challenges 

• Logistical challenges 

• Environmental Challenges.  

Below, we will explain these challenges individually to provide the reader with a basic understanding 

of the problems of the last mile delivery and therefore the need for innovative solutions. These 

challenges come from Ha et al. (2022). 

Operational challenges 

The first challenge is about operations, specifically the time required for loading and unloading parcels. 

Regardless of the mode of transportation, a certain amount of time is needed for parcel loading. 

Similarly, when the parcels reach their destination, some unloading time is needed. In high-density 

areas, this unloading time can contribute to other challenges such as traffic congestion, air pollution 

and noise pollution. Another operational challenge is the cost associated with maintenance, fuel, and 

labor for last mile delivery. Employing human delivery drivers incurs labor costs, and vehicles running 

on gasoline or diesel also incur fuel costs. Electric Vehicles (EVs) running on electricity is cheaper 

compared to cars with Internal Combine Engines (ICEs). It is worth noting that EVs typically have lower 

maintenance and repair costs compared to gasoline or diesel cars (Electric Vs. Gas Cars: Is It Cheaper 

to Drive an EV?, 2023). 

Infrastructure challenges 

In addition to operational challenges, there are also various infrastructure challenges. Example of 

infrastructure challenges are traffic congestion and there are not enough parking facilities in densely 

populated areas. With traffic congestion, it goes both ways. This means that it could be negatively 

impacted by traffic congestion, but it could be negatively impacting the traffic congestion (making it 

worse). In densely populated areas with a lot of traffic congestion, parcel delivery (especially when 

dealing with time windows) could run into major problems because it cannot deliver on time. The 

delivery vehicles could also cause traffic congestion because they may need to stop their vehicle at 

inconvenient spots due to the lack of parking spaces. Furthermore, the current IT systems being utilized 

for delivery face their own challenges. 

Delivery of Parcels 

The delivery of parcels itself presents additional challenges. The growing trend of fast and diverse 

delivery options, such as same-day delivery and specific time windows, means that parcels no longer 

follow a simple first-come, first-served (FCFS) approach. Delivery services and drivers must now 

navigate multiple customer preferences and priorities. Additionally, this comes with problems from 

order cancellations, incorrect or invalid customer addresses, and customer unavailability. Lastly, there 

is always the risk of parcel theft at the customer's doorstep. 
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Logistical challenges 

Parcel delivery also means various logistical challenges. For instance, the most efficient delivery route 

may not always be used due to unexpected circumstances such as road construction. Moreover, the 

vehicles used for delivery often do not optimize their available space 

Environmental challenges 

Lastly, environmental challenges are a significant concern. Specifically, the use of diesel or gasoline 

vehicles for delivery contributes to greenhouse gas emissions, as well as air and noise pollution in urban 

areas. One contributing factor to this issue is the relatively inefficient fuel-to-mile ratio 

Besides these disadvantages, there are also a couple of noteworthy advantages, with a particular focus 

on the human deliverer. 

• Flexibility: Human deliverers could adapt to changes in delivery routes and schedules based on 

real-time conditions, such as traffic congestion or customer preferences.’ 

• Customer interaction: Human deliverers provide a personalized touch by interacting directly 

with customers, addressing any concerns or questions they may have about their deliveries. 

These issues encountered during the delivery process, can then be quickly resolved. Human 

deliverers also build trust and rapport with customers through consistent and reliable delivery 

service, leading to customer loyalty and repeat business 

• Versatility and adaptability: Human deliverers can handle unexpected situations, such as 

locating difficult-to-find addresses or navigating complex delivery environments like apartment 

buildings or gated communities. They could also predict, based on personal experience, 

whether certain routes may or may not be more efficient (contradicting the available data). 

They can also handle a wide range of parcel sizes and types, including fragile or perishable 

items, ensuring safe and secure delivery. In addition, deliverers can handle special delivery 

requests, such as specific delivery time slots or instructions for leaving parcels in secure 

locations. 

  



10 
 

2.3 Autonomous Delivery Solutions 
The second subsection focuses on the concept of Autonomous Delivery Vehicles. The concept of 

Autonomous Delivery Vehicles (ADVs) is first explained with the different levels of autonomy. Next, it 

outlines the main types of autonomous delivery vehicles with their opportunities and limitations. 

Finally, the subsection ends with a general reflection on the limitations of autonomous vehicles.  

2.3.1 What is an automated delivery vehicle (ADVs) 
Autonomous delivery refers to self-driving vehicles, robots, or drones that are used to transport goods 

and packages without the help of human intervention or control (Vivatechnology, 2025). They use 

technologies such as sensors, cameras, and artificial intelligence to scan their surroundings and make 

decisions based on their observations (Vivatechnology, 2025). The level of autonomy can vary, with 

some vehicles requiring human intervention, when necessary, while others are fully autonomous and 

do not require human input. The levels of autonomy for ADVs can be classified using the Society of 

Automotive Engineers (SAE) autonomous driving levels. These levels range from 0 to 5 (See Figure 4), 

with 0 indicating no automation and 5 indicating full automation (Inoiță, 2017). 

 
Figure 4: 6 Levels of Autonomy (Bruneteau & Bruneteau, 2022) 

2.3.2 Classification of autonomous delivery Vehicles 
Now that we've discussed the concept of autonomous delivery, let's broaden our view to explore the 

different categories that exist within this field. This section examines the varied designs and 

functionalities that characterize ADVs. The literature is not always consistent in the terminology for 

describing the technologies for autonomous delivery (A lot of times different terms are used to describe 

the same thing). In this thesis, we use the term ADVs for the entire set of autonomous 

vehicles/robots/drones that are used to transport goods and packages. Most of the papers online use 

this as well as an umbrella term. A distinction frequently made in the literature is between ADVs based 

on their mode of operation (ground or air) and their vehicle size or carrying capacity. The three main 

types of ADVs are: 

- Sidewalk ADVs: small delivery vehicles designed to drive on the sidewalk/pavements 

- Road ADVs: larger delivery vehicles designed to drive on public roads 

- UAVs: self-operating flying vehicles that transport through air 
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Sidewalk ADVs (sometimes referred to as S-ADRs by Engesser et al (2023), or simply ADR by Alverhed 

et al. (2024)): These are compact, lightweight delivery robots designed to operate on sidewalks and 

pedestrian walkways. They travel at a pedestrian speed of around 6 km/h, are relatively small and have 

a limited carrying capacity (one or two small parcels). S-ADVs use sensors and cameras to navigate 

safely among pedestrians and deliver parcels to residential or commercial buildings. Starship (Figure 5) 

is the market leader (Autonomous Delivery Vehicles Market Insights, n.d.) in this form of autonomous 

delivery, furthermore, many competitors in this field seem to have been discontinued such as amazon 

(Soper & Day, 2022).  

 
Figure 5: Sidewalk ADVs (Starship robots), taken from 

The main advantage according to Starship Technologies (2024b) of S-ADVs is their ability to drive at, 

like the name says, sidewalks and other places (pedestrian zones) where normal cars or vehicles are 

not allowed. This allows them to reach additional places (customers), which could otherwise not have 

been visited. The vehicles can also go up curbs, allowing them to travel across the street. They come 

with a specially designed, insulated lining. This keeps the food at the desired temperature for the 

duration of this journey and are also designed to withstand almost all-weather conditions. However, 

they may face obstacles such as parked cars, construction sites, and even uneven surfaces, which can 

hinder their smooth navigation. Moreover, S-ADVS may have limited battery life, reducing their 

operating range and delivery capacity.  

Additionally, Gherke et al. (2023) demonstrate in their study that areas with crossings and limited roads 

are the centers of attention of moderate and dangerous conflicts, with no distinction made as to what 

space travelers should occupy. It will be difficult for practitioners to safely introduce S-ADVs onto 

existing crowded sidewalks and urban paths, possibly demanding creative solutions related to S-ADV 

route planning and urban infrastructure reform. According to observational research from Weinberg et 

al. (2023), many individuals stop because they are interested in the vehicles, obstructing the path of 

the vehicle and forcing it to stop. Naturally, this will be less likely in the future as these vehicles become 

less unique. However, it is highly likely that a S-ADV will have to stop frequently on a busy sidewalk 

because it could collide with people/animals. 

S-ADVs also must face the issue of requiring an actual pavement. They are unable to or are not 

permitted to drive on public roads (because of slow speed for example). As a result, these vehicles must 

be perfectly up to date on the current infrastructure and understand that if there is no pavement or 

road closures, they cannot use these routes. 
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Road ADVs (also referred to as R-ADRs by Engesser et al (2023) and sometimes called mobile parcel 

lockers or Autonomous Guided Vehicles (AGVs) by Chen et al. (2021a)) are larger delivery vehicles 

designed to operate on public roads. They are equipped with sensors and navigation systems to 

navigate through traffic and deliver parcels to their destinations. Even including external airbags for 

pedestrian protection in case of a collusion. However, because these vehicles share infrastructure with 

conventional traffic, they are exposed to a much broader and more complex set of challenges (such as 

unpredictable human behavior). R-ADVs are suitable for larger parcel sizes and longer distances 

compared to sidewalk ADVs. These R-ADVs are developed in many different shapes and sizes. A couple 

of the main examples given in research papers are Nuro, Udelv and Neolix (Buldeo et al., 2022b; 

Jennings, 2020; Srinivas et al., 2022).  

In January 2022, Nuro announced their newest level 4 autonomy model R3 (Figure 6). This new 

generation will even fit more cargo (24 bags of groceries) and has modular compartments to keep 

meals hot and drinks cold. At the end of 2024, Nuro announced that they will expand by testing their 

R3 vehicles after they changed their business strategy by licensing its technology to automakers (Bellan, 

2024). Neolix's Autonomous Vehicle X3 Plus has received the world's first Level 4 autonomous driving 

system international safety standard certification. Their vehicles have been successfully implemented 

in application situations in 12 countries ranging from Norway and Saudi Arabia to Australia and Japan 

(Neolix, n.d.). One of the key advantages of the Neolix autonomous vehicles is their modular cargo 

container, which allows for scenario customization, such as food delivery. They also have the capability 

of replacing its battery in 30 seconds, allowing the vehicles to run continuously for 24 hours. A Dutch 

company called Macrostep, has also developed their own autonomous delivery vehicles called Express 

robot. These robots have already been tested in holiday park Duinrell (see Figure 6).  

 
Figure 6: Nuro R3 (Left), Neolix (middle) and Express Robot in Duinrell (left); retrieved from: (Wessling, 2022), (Neolix, n.d.) 
and (MacroStep BV, 2025) 

A larger example of a Road ADV is the Udelv transporter (Figure 7). The Udelv Transporter (level 4 

autonomy) is a bus shaped autonomous vehicle built to deliver as many as 80 parcels. The storage 

space on the bus can be adjusted to accommodate parcels of all shapes and sizes. With its maximum 

speed of 112 km/h, potentially, the transporter could also drive outside of urban areas on the roads. 

This vehicle is still in development and the company aims to have 50,000 transporters on public roads 

by 2028 (Transporter | Udelv, n.d.). Some papers, like Srinivas et al. (2022), use the term ADV to 

describe these larger road-based vehicles. However, since they still also fall under the category of being 

road-based delivery vehicles, it makes sense to place them under the category road ADVs. 

 
Figure 7: Udelv transporter, retrieved from: (Transporter | Udelv, n.d.) 
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The other category of ADVs is the Unmanned Aerial Vehicles (UAVs), more commonly known as 

drones. UAVs are self-operating flying vehicles that have the capability to transport parcels through the 

air. These vehicles don’t require a large landing surface because they can take off and land vertically. 

UAVs uses a so called “sense and avoid” technology, which enables it to detect and evade obstacles. It 

starts off in vertical takeoff and then switches to horizontal flight. Short-distance, light-weight package 

transportation is a good application for UAVs. 

Amazon has its own UAV delivery service called Prime Air, which has been deployed since 2023. This 

program is utilized for delivery in three locations within the United States, as well as cities in Italy and 

the United Kingdom. Zipline, another UAV company, also delivers packages to locations in America 

(Zipline Fact Sheet, n.d.). Amazons Prime Air UAV can carry parcels weighing up to five pounds and is 

designed to guarantee quick delivery to customers, usually in an hour or less (Iddenden, 2022). 

Customers must have a designated “marker” in their garden or fenced area (in case of an apartment 

building). The UAV uses these markers to locate the drop-off location. In case of Amazons Prime Air 

UAV, the parcels are released from a height of about 3.7 meters (Chen, 2023b), Zipline uses a mini 

‘droid’ which is lowered to the drop-off point (Zipline Fact Sheet, n.d.). 

  
Figure 8: Left: Amazon Prime's delivery UAV (Chen, 2023b), Right: Ziplines UAV (Zipline Fact Sheet | Zipline UAV Delivery & 
Logistics, n.d.) 

The biggest advantage of UAVs is that they do not have to deal with traffic, only with other UAVs in the 

sky (and objects/buildings). By navigating around traffic and skipping traditional road infrastructure, 

delivery times are significantly reduced. They can use almost straight delivery routes, which allows for 

very fast deliveries. Another advantage is that UAVs are relatively cheap compared to the other ADVs. 

Despite their advantages, UAVS also have significant drawbacks according to Bahabry et al. (2019). One 

major limitation is their battery life, which restricts their range and continuous operation. This can have 

negative consequences if the battery runs out, such as application failure or even a crash. Another 

challenge in urban areas is the presence of tall buildings/trees, which can obstruct the direct routes of 

UAVs, especially when flying at low altitudes. In other words, the mobility of UAVS is constrained by 

different permanent and temporary obstacles, which must be considered for optimal path selection 

and improved navigation. Additionally, tall buildings in urban areas reduces the available airspace for 

UAVs, thereby limiting the number of UAVs that may be used. It is important to consider the prevention 

of UAV collisions in urban areas when implementing UAVS. This becomes even more crucial if the 

number of UAVs in operation increases significantly  

UAVs are available in various sizes and configurations, each with its own restrictions on weight and 

range. In UAV technology, there is a tradeoff between the capacity to carry cargo and the duration of 

flight. Generally, commercially available UAVs have limited payload capabilities (Singhal et al., 2018). 

For instance, Amazon's Prime Air UAV can transport parcels weighing up to 2.26 kg (Chen, 2023), which 

is like the typical payload capacity of a small UAV, around 2kg (Young, 2023), (UAVs, 2021).  
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The MK30 is quieter and will be able to fly in more diverse weather conditions, meaning customers can 

receive super speedy deliveries even in situations like light rain and hotter or colder temperatures. 

However, many countries, such as the Netherlands, experience more extreme weather conditions, 

particularly heavy rain or snowfall in the winter and fall. Considering climate change and its effects on 

extreme weather conditions, it is suggested that these events will occur more frequently, always raising 

the question about the availability of UAV delivery.  

The use of UAVs raises significant privacy issues. Many recreational UAVs come with advanced camera 

systems that enable owners to view and record footage. However, this capability also raises concerns 

about potential misuse, as individuals may use UAVs to observe places where they should not have 

access. Previous incidents, like the one in Australia, have highlighted the negative consequences that 

can arise from such misuse (Yahoo Is Part of the Yahoo Family of Brands, n.d.). 

2.3.3 Legal Restrictions  
One of the biggest issues with the implementation of autonomous (delivery) vehicles are the legal 

restrictions. Of course, it should be very important that the implementation of this technology must be 

at least as safe as or even safer than the current (delivery) vehicles. In this section, we discuss the legal 

restrictions of autonomous vehicles in the Netherlands. Further on in this research, we will neglect the 

legal restrictions on autonomous (delivery) vehicles. If we must assume all restrictions now, it is 

basically not possible to come up with a good autonomous delivery solution. It must be assumed that 

the use of autonomous delivery will eventually be possible. 

Because the implementation of autonomous cars is still in an early development phase, it is not always 

allowed to use or test this technology. The Dutch approved a bill back in 2019 that allowed self-driving 

vehicle testing to begin without the presence of a driver. The ‘Experimenteer wet zelfrijdende auto’ 

(the law governing the experimental use of self-driving automobiles) eliminates legal obstacles. As a 

result, manufacturers will have more opportunities to undertake self-driving vehicle tests. This law will 

allow companies to seek permission to perform experiments on public roads using autonomous cars, 

with a human on hand to take command via remote control (Ministerie van Infrastructuur en 

Waterstaat, 2023).  

In November 2021, clevon mobility, tested their autonomous delivery vehicle in the city of Eindhoven 

during a 5-day pilot project carried out by DPD Netherlands and Clevon. This marks the start of bringing 

autonomous delivery services to the public streets of the Netherlands (Railway-News, 2021). Besides 

this pilot project, there have been other small tests around the Netherlands, mainly on college 

campuses (Ecommerce News Europe, 2020). However, larger scale testing has not been done yet.  

Besides road autonomous vehicles, there are also restrictions on UAVS. The Dutch government divides 

UAVs into three categories: open, specific, and certified, and they are all subject to flight rules. Low-

risk UAV flights are under the open category, which has restrictions including a weight limit of 25 kg, a 

maximum altitude of 120 meters, and constant visual contact with the UAV. UAVs with greater flying 

risks, such as those that exceed the previously stated conditions, fall under this category. The last 

category, which is not yet completely defined, is for “high” risk UAV flights. UAVs longer than three 

meters that are used to transport person or dangerous goods, or that fly above crowds, fall under this 

category. (Netherlands Enterprise Agency, RVO, 2023). 
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2.4 Autonomous Delivery Systems  
Using the technologies discussed in 2.3 Autonomous Delivery Solutions (S-ADVs, R-ADVs and UAVs), 

this section briefly discusses the different autonomous delivery systems known in the literature. 

Engesser et al. (2023) and Srinivas et al. (2022) discuss the different autonomous delivery options 

available right now. In section 2.4, we will discuss these systems again in detail and explain how they 

can be modeled. In general, there are two options: centralized systems or decentralized systems. 

In centralized systems, the ADVs deliver the packages directly from a single depot/warehouse to the 

customer(s). The advantage of a centralized system is that it simplifies planning and coordination. 

Fleets can be homogeneous (for example only UAVs) or heterogeneous (mix of S-ADV, R-ADV, and/or 

UAV). The logistical processes of homogeneous fleets are easier to manage, compared to a 

heterogeneous fleet. However, heterogeneous fleets offer greater delivery flexibility (for example, 

UAVs for remote zones) but this comes with more complex (operational) planning. 

In decentralized systems, multiple mobile or fixed nodes are used across the service area. ADVs may 

be relocated throughout the day or mobile depots are used to transport the ADVs to another location. 

Although this method improves responsiveness and flexibility, it requires more complex planning and 

coordination. The decentralized systems can be further categorized into three categories: 

• Two-Tier Model: conventional trucks transport several parcels to smaller local hubs. From 

these hubs, the parcels are delivered to the customers. 

• UAV-aided Model: A delivery truck equipped with UAV(s) leaves a distribution center to deliver 

parcels. The delivery truck serves as a mobile depot for the UAV(s). 

• S-ADV aided Model: A delivery truck equipped with S-ADV(s) leaves a distribution center to 

deliver parcels. The delivery truck serves as a mobile depot for the S-ADV(s). 

• R-ADV aided Model: In case the R-ADVs are not allowed to drive to a part of service area This 

is where the platoon model comes in, in which the R-ADVs follow one manually operated 

vehicle to an AV-friendly zone where they can deliver themselves  

Besides these models, the literature also discusses other variants of the delivery model focusing on a 

specific aspect like reserving lanes or dropping of delivery personnel. Reed et al. (2022) suggest a model 

in which delivery workers are dropped off in autonomous vans near customer locations. At the drop-

off locations, the delivery personnel can deliver the parcels on foot and are picked up later. This solves 

the problem of having to search for parking spaces and customers having to actively pick up the parcels 

from the vehicle, but it does come with extra personnel costs.  

There are also a lot of papers focusing on one specific option in a predetermined area. Bakach et al. 

(2022), for example, investigates a robot-based last-mile delivery problem considering path flexibility 

given the presence of zones with varying pedestrian Level of Service (LOS). While Gherke et al. (2023) 

observes the sidewalk autonomous delivery robot interactions with pedestrians and bicyclists.  

Besides autonomous delivery options, there are also other options proposed in the literature. Akeb et 

al. (2018) provides an idea to encourage citizens in the same neighborhood (known as “Neighbor 

Relays”) to collect and deliver parcels to the end consumer when the consumer is not at home. 

Consumers will be notified and can contact their neighbor using mobile apps to plan parcel delivery. 

This “Neighbor Realy” earns money in exchange. The high population density in urban areas makes this 

option appealing to both neighboring relays (in terms of money) and transporters (in terms of cost).  
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2.5 Modelling and Problem Formulations of Autonomous systems 
This subsection builds upon Section 2.4 Autonomous Delivery Systems by focusing on the modelling 

and problem formulations. The goal of this subsection is not to present a systematic literature review 

about the different systems, but to try and classify the different problems. Engesser et al. (2023) and 

Srinivas et al. (2022) discuss the different autonomous delivery options available right now. Figliozzi 

(2020) examines the efficiency of self-driving (driverless) air and ground delivery vehicles in terms of 

vehicle miles, energy consumption, and carbon emissions. Jennings (2020) studies the potential 

impacts on freight efficiency and travel of road autonomous delivery Vehicles.  

Figure 9 shows an overview of the different autonomous delivery systems as discussed earlier in 2.4 

Autonomous Delivery Systems. This overview is adjusted from Srinivas et al. (2022), with additions that 

include UAVs and a distinction between S-ADRs and R-ADRS (originally grouped together as ADRs). The 

literature contains many more different variants than are present below, this should only ensure that 

we have a general overview of the possible systems. In doing so, we have chosen those systems that 

are autonomous as much as possible, unless otherwise not possible. The meaning of "as autonomous 

as possible" indicates that options requiring human intervention (like autonomous vans that send 

delivery workers) are being ignored. Also, for convenience, we have left out the specific models 

(focussing on load dependent flight or lane reservation), as they do not so much use a different system 

but create a different solution.  

  
Figure 9: Classification of routing literature. Adjusted from Srinivas et al. (2022) 

2.5.1 Foundational routing problems 
Two classical routing problems form the basis of the modern delivery models: the Traveling Salesman 

Problem (TSP) and the Vehicle Routing Problem (VRP).  

 

The TSP, first introduced around the 1930s (Pop et al., 2023), is one of the oldest and most well-known 

problems in combinatorial optimization. It can be stated as:  

“If a traveling Salesman wishes to visit exactly once each of a list of m cities (where the cost of traveling 

from city i to city j is cij) and then return to the home city, what is the least costly route the traveling 

salesman can take?” (Hoffman & Padberg, 2001).  

See Figure 10 for an example. 

The VRP was introduced later, in 1959 (Laporte et al., 2013) and generalizes to TSP where the objective 

is to efficiently plan multiple routes for a fleet of vehicles from a single starting point 

(depot/warehouse/distribution center) to visit all specified locations. Each route starts at the starting 

point, visits a subset of the nodes, and returns to the starting point. Figure 10 shows an example. 
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The TSP and the VRP come in different variations. Take for example the Vehicle Routing Problem with 

Time Windows (VRPTW) or the Capacitated Vehicle Routing Problem (CVRP). VRPTW considers 

delivery time windows, and the CVRP considers the capacity of the delivery vehicles (Baldacci et al., 

2012). It is even possible to combine both options into one model, the Capacitated Vehicle Routing 

Problem with Time Windows (CVRPTW).  

 
Figure 10: Traveling Salesman Problem (a) and Vehicle Routing Problem (b)--an illustration. Retrieved from (Liu et al., 2014) 

Over the years, many different variations of the VRP and the TSP have been introduced. We will cover 

the models per ADV type, starting with UAVs, then covering S-RADVs and finally the R-ADVs. 

2.5.2 S-RADVs Models   
A company can decide to only use S-ADVs for their delivery operations. In this case, the problem is 

simplified to a VRP scenario, where a S-ADV delivers the products to a variable number of customers, 

depending on the capacity of the S-ADV. This will be referred to as the ADV Direct Delivery Problem. 

Companies might also look further and use a hybrid model, the truck-and-robot or mothership van 

model. This model complements S-ADVs with their limited range, that can be used to drop off and pick 

up several S-ADVs. However, the mothership itself is not an autonomous vehicle (yet) and requires a 

driver. The mothership can load and transport up to eight S-ADVs (Figliozzi, 2020). 

Two-Tier Model 

In the Two-Tier Model, conventional trucks transport several parcels to smaller local hubs (for example 

S-ADV hubs). From these hubs, the parcels are then distributed to the customers. Bakach et al. (2021) 

proposes a two-tier model with hubs able to store S-ADVs and parcels, with and without time windows. 

Since it is a very general model, it could also be applied to UAVs.  

 

Mothership Dispatch-Wait-Collect 

In this model, a van with SADVs drives to a drop-off location. Here, the van loads the parcels into the 

SADVs, and they deliver the parcels to the customers. The truck waits at the same location and 

continues with the route once every SADV has returned to the truck. Chen et al. (2021) proposed in 

their paper a new Vehicle Routing Problem with Time Windows and Delivery Vehicles (VRPTWDR). The 

trucks dispatch Vehicles nearby customers while the driver of the truck is also serving customers.   

Mothership Dispatch-Move 

This model works almost the same as the Dispatch-Wait-Collect model, except for the fact that the 

truck does not specifically wait until all the SADVs are back before it continues. This model considers 

the possibility that some SADVs will drive ahead to the next location, where they will be picked up by 

the van. Simoni et al. (2020) formulated this problem as the Traveling Salesman Problem with Robot 

(TSP-R).  
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Mothership Dispatch-leave 

Another version of the mothership van problem is one where the S-ADVs do not have to return to the 

van. Instead, they return to so called ADV stations where they are stored and charged, waiting to be 

picked up by another van for a new route. These ADV stations do not store any parcels, only S-ADVs. 

Ostermeier et al. (2021) present in their paper the Truck-and-Robot Cost-optimal Routing approach 

(TRX). Instead of the variant presented by Boysen et al. (2018), the paper of Ostermeier focuses on a 

limited availability of S-ADVs. 

2.5.3 UAV Models 
Besides S-ADR deliveries, a company can also decide to deliver with UAVs. Given the current capacity 

limitations with UAV delivery (only able to serve one customer), this resembles a series of individual 

dispatch problems. However, once the capacity and possibilities of UAV delivery increases, it might 

become feasible to expand operations to delivery to multiple customers by route. The problem will 

then become a VRP.  This will be referred to as ADV Only Delivery. This ADV Direct Delivery problem is 

basically a VRP, using the characteristics of the specific vehicle used in delivery.  

In addition to the option of UAV-only delivery, a hybrid model is often suggested in the literature. With 

this approach, a van is used to transfer the UAV(s) and/or deliver the larger parcels. At the same time, 

the UAVs can charge on the van. This mitigates the constraints of flight duration and radius associated 

with UAVs. The Flying Sidekick Traveling Salesman Problem (FSTSP) and the Parallel UAV Scheduling 

Traveling Salesman Person (PDSTSP) are two mathematical models proposed by Murray and Chu (2015) 

to model the truck and UAV combination (As implied by its name, both are derived from the 

conventional Traveling Salesman Problem).  

In the FSTSP, a delivery truck equipped with a UAV leaves a distribution center to deliver parcels. The 

UAV is deployed to deliver lightweight parcels to consumers along the truck’s route. After delivery, the 

UAV returns to the truck or distribution center. The objective is to minimize the total delivery time or 

distance traveled by the UAV pair. 

The PDSTSP extends the FSTSP by incorporating multiple UAVs operating in parallel with a delivery 

truck. Each UAV can independently deliver parcels within its operational range. The PDSTSP is seen as 

the most viable option if a lot of the customers are located around the depot and inside of the 

operational range. The FSTSP is seen as the viable option when the depot is located further away from 

the customers. However, it is not always straightforward, as there can be instances that demonstrate 

its complexity and show that the opposite is true. Othman et al. (2017) presents a model where a truck, 

accompanied by a UAV, follows a fixed predetermined route. A UAV is detached at certain locations and 

returns to another location, where it can charge at the truck. Kitjacharoenchai & Lee (2019) discuss the 

Vehicle Routing Problem with UAVs (VRPD) with multiple UAVs at a single truck.  

Besides these papers, there have been many others researching different aspects of problems 

regarding UAV delivery such as load-dependent flight speed (Nishira et al., 2023), a delivery model with 

backhaul option (Jeon et al., 2021), the option of using UAVs for resupply at transshipment points 

(Moshref-Javadi et al., 2023). Moadab et al. (2022) even discuss the potential of a UAV routing problem 

using public transportation as moving charging stations.  
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2.5.4 R-RADVs models  
The final models covered in this subsection are the models concerned with the R-ADVs. Because of the 

advantage that R-ADVs have enough space and thus are suitable for delivering basically all types of 

parcels, they do not need to be supported by another vehicle. This makes the routing problem of R-

ADVs less complex. The R-ADVs also have a simple ADV Direct Delivery problem, which is again basically 

a VRP. 

In contrast to S-ADVs, R-ADVs are larger and heavier and are not easily transferred by vans. Then again, 

they can achieve higher speeds, carry more parcels and cover more distance. This makes them much 

more suitable for autonomous transport to multiple customers. However, in the current infrastructure, 

there will be some zones that are not suitable for autonomous vehicles, so they may need to be moved 

to an AV-friendly zone. This is where the platoon model comes in, in which the R-ADVs follow one 

manually operated vehicle to an AV-friendly zone where they can deliver themselves. Scherr et al. 

(2019) formulated this model as the Service Network Design for Autonomous vehicles in Platoons 

(SNDAVP) 

R-ADVs take up a lot of space, so it's not clear how they'll coexist with other modes of transportation 

on the road. To address the issue, Wu et al. (2017) explored an ADV Transportation Problem with Lane 

Reservation (ATP-LR). This approach focusses on optimally reserving lanes in a transportation network 

to establish transportation routes for each task. The problem is tackled through a two-phase exact 

algorithm, where the feasible routes are first determined, after which the optimal lane scheme and 

delivery task path is determined.  

2.6 Approaches to solve vehicle routing problems 
This subsection of the literature review delves into the approaches used to solve vehicle routing 

problems (VRPs). As briefly mentioned in earlier sections, VRPs vary widely in complexity, and are 

impacted by several variables, including fleet size, customer demand patterns, time windows, and 

geographic limitations. As a result, a wide range of approaches have been developed to deal with these 

issues, from heuristics and metaheuristic techniques that produce high-quality solutions in a 

reasonable amount of computational time to exact algorithms that ensure optimal results. 

The size and restrictions of the problem frequently influence the strategy used because many VRP 

versions are computationally challenging. This section first examines exact approaches, which have 

limitations in terms of scalability but are appropriate for small to moderately large issues. The 

subsection then shifts to heuristic and metaheuristic techniques, which are appropriate for large-scale, 

real-world VRPs and compromise optimality for efficiency. 

Exact Methods 

Exact methods are techniques that can be used to solve a problem to optimality. However, only small 

or moderately sized problems can be solved to optimality in practice, because the run-time increases 

considerably with the size of the problem. Integer Linear Programming (ILP), a mathematical program 

with constraints, is one of the most widely used accurate techniques for modeling VRP problems. It is 

a type of optimization model where the variables are integer values and the objective function 

equations are linear. Branch and Bound or Branch and Cut are two methods which are used to solve 

these models. By breaking the ILP problem down into smaller subproblems (or branches) and then 

removing some of the branches based on bounds on the optimal solution, the branch and bound 

methods solves the problem. The branch and cut method uses the branch and bound method to turn 

an optimal non-integer solution into an optimal integer solution by imposing additional constraints 

(Genova & Guliashki, 2011). 
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Heuristics  

Since the basic version of each VRP (basic version is TSP) is NP-Hard, each vehicle routing problem 

which must be solved is essentially NP-hard, which means that solving these (large) problems can take 

an impractically long time. In these cases, heuristics and metaheuristics are often used. Heuristics are 

basically ‘good enough’ solutions, which means that they can be optimal but also non-optimal. This is 

also dependent on the type of heuristic(s) and the problem size (and its characteristics) itself.  

Heuristics can be further divided into three different types: constructive heuristics, improvement 

heuristics, and metaheuristics (F. Liu a et al., 2023; see Figure 11). 

Constructive heuristics are algorithms that use a fixed empirical heuristic procedure to construct 

routing solutions from zero as explained by F. Liu a et al. (2023). They typically generate a feasible 

solution fast and are easy to implement in many different scenarios. However, this comes at a cost. The 

solutions generated often have a gap to the optimal solution. Take for example the Nearest Neighbor 

Method, which allows for the construction of routes in either parallel or sequential manner. From the 

starting point, which is typically a depot or hub, a route is constructed by continuously adding 

additional unallocated customers until no more can be added.  

Improvement heuristics, according to F. Liu a et al. (2023), iteratively improve a routing solution by 

performing a local search in the neighborhood. In optimization, a neighborhood refers to the set of 

solutions that can be reached from a current solution by making a small change. Intra-route methods 

are methods focused on improving a single route. For example, exchanging the order of two customers 

in one route. This can change (improve or decrease!) the total amount of kilometers of a route. Inter-

route methods are methods focused on local searches across multiple routes. Many of these 

techniques are simply intra-route techniques but for multiple routes. So, swapping customers from two 

different routes. There are also some downsides to these heuristics. It can happen that with only these 

local searches, the solution can become stuck on a local optimum. This means that the solution can no 

longer be improved anymore with these local searches (swaps, inserts).  

Finally, F. Liu a et al. (2023) explains that metaheuristics try to tackle this problem of being stuck in the 

local neighborhood. Metaheuristics are high-level frameworks designed to explore the broader 

solution space. They use methods like randomization, memory or adaptive learning to direct local 

searches (and sometimes constructive heuristics). This makes them suitable for large problems which 

tend to fall into local optima. Ant Colony, Tabu Search and Simulated annealing are examples of popular 

metaheuristics. For example, simulated annealing allows sometimes a change which makes the 

solution worse, to try and find other better solutions based on the worse solution. By storing 

information in a short-term memory list (tabu list), Tabu Search prevents looping back to previously 

explored solution. These are called single-solution-based methods, which focus on the one solution 

you have (for example a problem with 3 routes). Population-based methods focus on multiple solutions 

(creating a sort of copy of your problem) and improving all these solutions at the same time. Take for 

example the ant colony algorithm. Instead of guiding one ant to the end goal (Single-solution-based 

methods), multiple ants are sent to try many options and by learning from each other (Ant Colony 

Algorithm), so they can find smarter solutions over time (F. Liu a et al., 2023). 
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Figure 11: Overview of heuristics, taken from (F. Liu a et al., 2023) 

2.7 Evaluating the solution 
From network design to vehicle routing, there are several steps involved in creating an effective and 

sustainable last-mile delivery system. However, the process does not end with proposing a solution. It 

is essential to evaluate the solution to understand its performance under realistic (as much as possible) 

conditions. 

Key Performance Indicators (KPIs) are the essential indicators used for evaluating the effectiveness of 

a logistics system. They enable organizations to assess and optimize critical aspects such as cost-

efficiency or environmental impact. According to Seuring and Müller (2008), three main components 

define sustainable development in logistics: 

1. Economic – Focus on the financial performance and efficiency 

2. Environmental – Measure the environmental impact of the logistics operations 

3. Social – Assess social factors such as public perception and workforce impact. 

The specific goals and context of the delivery system determine which KPIs are used, and to give a 

complete picture of system performance, several KPIs are frequently assessed at the same time. A 

summary of popular KPIs for last-mile delivery systems, divided into the three above-mentioned 

categories, is shown below (Table 1). These KPIs are compiled from Zis et al. (2023), Aliev et al. (2019) 

and Morana and Gonzalez-Feliu (2015).  

KPIs may specify what should be measured, but it is just as important to determine how to measure it 

in practical and unpredictable situations. This problem can be addressed by Monte Carlo Simulation 

(MCS), which offers a probabilistic evaluation framework. The delivery system simulation is repeatedly 

run by MCS, with key input parameters being randomly varied based on predetermined probability 

distributions. Traffic-impacted travel times or customer pickup times are examples of these inputs. 

(Raychaudhuri, 2008) 
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Table 1: Overview of possible KPIs 

Economic Environmental Societal 

General: CO2 Emissions (kg/km) Safety & Security 

Distance Nox, Sox Emissions (kg/km) Accident Rate (%) 

Moving time Total Energy Consumption 
(kWh/unit) 

Emergency Stop Rate (%) 

Loading/Unloading Time 
(Mins) 

Charging Efficiency (%) Failure to Avoid Obstacles (%) 

Operational Efficiency Noise Pollution (dB) Crime Incidents (#) 

Delivery Success Rate (%)  Workforce impact: 

Load Efficiency (%)  Employment Turnover (%) 

Average Delivery Time (Mins)  Employment Change Rate (%) 

Delivery throughput 
(parcels/hour/day) 

 Training hours per employee 

Idle Time / Utilization Rate (%)  Public Perception 

Reliability & Performance:  Public Perception (Score) 

On-Time Delivery Rate (%)  Work-life balance (Score) 

Deviation Time (mins)  Public complaint rate (#) 

Error Rate  Total Minutes Late 

Mean Time Between Failures  Late Customers 

Cost Efficiency  Average Time After TimeWindow 

Cost per Delivery (€/parcel)   

Energy Consumption per km 
(Energy/km) 

  

Maintenance Costs (€)   

Daily operating costs (€)   

Customer Satisfaction   

Customer Satisfaction Score (%)   
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2.8 Conclusion 
In this chapter, an extensive literature review was conducted to build the theoretical foundation for the 

remainder of the thesis. The review addressed six core themes: the current state of last-mile delivery, 

types and characteristics of autonomous delivery vehicles (and their opportunities and limitations), 

different delivery systems and mathematical models, approaches to solve vehicle routing problems, 

simulation methods for evaluation and KPIS for performance assessment. 

The current last-mile delivery landscape is challenged by five main challenges: Operational Challenges, 

Infrastructure challenges, delivery challenges, logistical challenges and environmental challenges. ADVs 

are a promising innovative solution to these challenges. We have covered three main types of ADVs 

being: Road Autonomous Vehicles (R-ADVs), Sidewalk Autonomous Vehicles (S-ADVs) and Unmanned 

Aerial Vehicles (UAVs), each with unique operational characteristics and constraints. We have 

concluded that the current legislation is not suited for ADVS, it does not allow autonomous delivery of 

parcels. Therefore, some legislative changes would be necessary for the future use of ADVs in the last-

mile delivery landscape.  

The literature also outlined a wide range of (partly) autonomous delivery systems, including single-tier 

and two-tier networks, and ADV-aided systems where an autonomous delivery vehicle is aided in 

delivery by a (often) manually driven van. These systems are all based on variations of the VRP, such as 

time window and capacity constraints.  

The systems have a mathematically based model, which can be solved by multiple approaches. Exact 

methods such as Integer Linear Programming provide can provide a fast solution for smaller VRPs. Once 

the size of the problems increases, non-exact methods become necessary to find a (near) optimal 

solution. Constructive heuristics, like the nearest neighbor approach, create an initial solution, which 

can then be optimized by local search heuristics like 2-ot, and 3-opt. Metaheuristics are a problem 

independent technique which can be applied to a broad range of problems. 

Finally, the chapter provided a section on the evaluation method of the designed system. A structured 

overview of relevant KPIs used to evaluate delivery performance across economic, environmental, and 

societal dimensions is given. The literature provides a wide range of KPIs to evaluate last-mile delivery 

systems. However, their applicability largely depends on the specific context and objectives of the 

evaluation. This makes it essential to select KPIs that are not only theoretically relevant but can also be 

practically measured.  

This literature review contributes to the literature in several ways: 

• It connects the different domains (technology, logistics, modeling, evaluation) that are all 

relevant for autonomous last-mile delivery 

• It shows that there are many different systems and combinations, which also means 

there are various decision variables to consider when designing an autonomous delivery 

system. 

• It provides an overview of commonly used KPIs for autonomous delivery evaluation, 

which will be useful for our own system. 
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Chapter 3 Framework for Design of an Autonomous delivery System 
The previous chapter showed that there is no single way to design an autonomous delivery system. 

Various types of systems exist, each with their own strengths and limitations, and each better suited to 

a different delivery environment. For example, systems can be centralized or decentralized, involve a 

single vehicle type or multiple types, and may use different routing or transfer strategies depending on 

vehicle capabilities and area characteristics. In this chapter, we aim to answer the following research 

question: 

How can an autonomous B2C last-mile delivery system be designed, using a set of configurable 

design choices, based on the characteristics of a specific environment? 

To answer this question, we introduce a structured decision-making framework that supports system 

designers in selecting and combining design elements. This framework does not attempt to cover every 

operational detail. Instead, it focuses on strategic, system level design choices that must be addressed 

before implementation.  

The framework is based on three principles: 

- Insights from literature 

- Relevance to research scope 

- Generality and usability 

From these foundations, we identify four design categories that shape the structure of any autonomous 

delivery system: 

- Geographical and Infrastructure considerations 

- Demand of the Area 

- Depot Characteristics and Placement 

- Operational Logistics 

We identified the different types of ADVs and learned about the differences between them and the 

limitations of these ADVs. The autonomous delivery system is based on these ADVs and can be shaped 

to suit different areas (single depot, two-tier model). This leads us to the first design choice: geographic 

and infrastructure considerations. First, the delivery area should be clearly defined. If we want to apply 

autonomous delivery to a certain area, we need to know where we need to deliver. Is the service area 

a closed area? Or there are multiple regions where we need to deliver and is the range of the ADVs 

sufficient to reach the entire area? In addition, it is also important to know where the delivery points 

(customers) are and whether they can be reached (directly) by ADVs.  

If we know the answer to these questions, we need to know the demand of the location. As we learned 

from the literature, UAVs and S-ADVs currently have a limited capacity. Therefore, which ADVs (and 

especially how much) to use may depend on the demand in the delivery area. This leads us to the next 

design choice: demand of the area. The demand of the area includes the volume, frequency and 

distribution of parcel deliveries that need to be delivered to the customers. Areas with high-demand 

may require more frequent deliveries or larger capacity vehicles, while low-demand areas might benefit 

more from fast lower capacity vehicles or one large delivery route. Here it is also necessary to 

determine which type of parcels will be delivered by ADVS, since (at present) not everything can just 

be delivered by ADVs (think sofas or refrigerators).  
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Once we have a good idea of the delivery area and how many packages need to be delivered there, we 

can think further about placing the depot(s). This leads us to the third design choice: Depot 

characteristics and placement. If the service area is small enough and all customers can be served by 

the ADVs, a central depot might be the best choice. If not, decentralized depots or even mobile depots 

should be considered. 

Finally, from the literature we obtained information on modelling and solving a vehicle routing 

problem. For example, a problem can be formulated with homogeneous or heterogeneous fleet, 

certain capacity and time windows. We also learned that there are different ways to solve a problem 

(exact, heuristics or metaheuristics). In the final design choice: operational logistics, we address these 

choices. Most of these operational logistics decisions can also be seen as experimental factors, since it 

might not be known whether for example a homogeneous or heterogeneous fleet is better. 

To support the application of the framework in practice, a simulation tool has been created that allows 

users to configure their autonomous delivery system according to the four previously mentioned 

categories and evaluate the systems expected performance.  This tool serves as a link between the 

system design and operational assessment.  

By inputting parameters such as the service area, demand of the area, depot location, vehicle 

allocation/configuration and implement operational logistics, we can simulate daily delivery 

operations. Using the fleet configuration and chosen routing strategies, the tool simulates delivery 

dynamics and produces performance metrics based on the users’ interests.  
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A menu of choices 

3.1 Geographical and Infrastructure considerations 

• 3.1.1 Defining the Delivery Area 

o A) Basic Boundary (Single enclosed shape) 

o B) Multi-region model (Multiple sub-regions) 

o C) Dynamic Regional Adjustments (Continuously adjust multiple sub-regions) 

• 3.1.2 Delivery Locations 

o A) Predefined General Delivery Locations (Fixed predefined locations) 

o B) Customized Delivery Locations (Based on Accessibility & Reception Needs) 

o C) Dynamic Delivery Locations (Real-time Adjustments) 

• 3.1.3 Delivery Network Complexity 

o A) Basic Uniform Network (All vehicles can use same network) 

o B) Vehicle-Specific Network Offline Data (nodes and edges have predefined 

attributes) 

o C) Vehicle-Specific Network Offline & Online Data (Includes real-time updates in 

addition to static offline data) 

3.2 Demand of the Area 

• A) No demand data available (use country/regional averages per capita) 

• B) Partial data available (Extrapolate based on limited sample data) 

• C) Full data available (Use actual demand distribution patterns) 

3.3 Depot Characteristics and Placement 

• A) No Depot (Direct Supplier-to-Customer Delivery) 

• B) Single Centralized Depot (Low Complexity, High efficiency in small areas) 

• C) Multiple Decentralized Depots (High Scalability, Faster Deliveries) 

• D) Mobile/Moving Depots (High flexibility, Adaptive Operations) 

3.4 Operational Logistics 

• 3.4.1 Vehicle Characteristics 

• 3.4.2 Fleet Composition 

• 3.4.3 Routing Strategy 

o A) Exact Optimization (Exact mathematical solver for optimal routing) 

o B) Constructive Heuristic Only (Fast, predefined routing) 

o C) Constructive + Improvement Heuristic (Improves initial routes with heuristic 

refinement) 

o D) Constructive + Metaheuristic optimization (Improves initial routes with 

metaheuristic refinement) 
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3.1 Geographical and Infrastructure Considerations 
The first elements to consider are the geographical and infrastructure considerations. Designing a 

logistical delivery system starts with defining the area and the locations that need to be visited. In this 

context, we focus on the geographical area that will be the focus of the study and the infrastructure 

that is located there. The aim is to model the area two-dimensionally and visualize the delivery routes 

in that area. 

3.1.1 Defining the area 
One of the most important decisions in the design of an autonomous delivery system is defining the 

geographic area in which you want to deliver. The boundaries of the area affect routing choices, depot 

placement, and the scope of operations. The more complex the area (due to size, layout, or traffic 

conditions), the more challenging it becomes to design a flexible and efficient system.  

As explained in 2.1 Parcel Delivery Process in the Netherlands (PostNL), parcels are distributed by using 

different sorting centers/depots. These depots serve as intermediate points to organize and dispatch 

deliveries more efficiently. To manage this, urban areas are often divided into smaller regions or zones, 

with each served by its own depot and delivery fleet. Variables such as population density, delivery 

volume, and physical layout are important when defining these zones.  

Several studies have researched how to divide a delivery area into sub-regions to optimize routing and 

resource allocation. Huang et al. (2018) provide a detailed review of how two-echelon delivery systems 

can be optimized by considering time windows, depot capacities, energy use, and variable demand. 

In this study, the delivery area is represented as a two-dimensional space enclosed by a shape defined 

by coordinate points (x, y). For most vehicle types, this 2D layout is sufficient. However, the inclusion 

of UAVs adds a third dimension (altitude) to the model. UAVS are not restricted by road networks but 

are subject to height regulations and potential no-fly zones. Although we take vertical constraints into 

account, our model assumes no hard upper altitude limit. This allows us to leave out the locations of 

high buildings or trees which interfere with the UAV delivery, as we can simply assume that the UAV 

should fly above them.  

The area can take on different forms: 

• Polygonal shapes: Triangle, rectangle, or other polygons with straight sides. 

• Circular boundaries: Possible alternative where the boundary follows a curved perimeter. 

• Multi-polygons: A combination of multiple polygons, which we exclude in this study to ensure 

the delivery network remains cohesive and connected. 

 
Figure 12: Examples of polygon (left) and multipolygons (right), taken from (Understanding Difference Between Polygon and 
Multipolygon for Shapefiles in QGIS?, n.d.) 
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Table 2: Design Choice: Defining the area 

Option Description Best used when…. Complexity Required Data System 
Adaptability 

A) Basic 
Boundary 

Single enclosed zone 
with no internal 
subdivisions 

Delivery area is relatively 
small, uniform, or low in 
demand 

Low Basic Area 
boundary & 
demand estimate 

Low 

B) Multi-
Region 
Model 

Area divided into sub-
regions 

Larger delivery area, 
non-uniform demand  

Medium Population, 
infrastructure, 
demand per 
region 

Medium 

C) Dynamic 
Adjustments 

Adaptive sub-regions 
based on live data 

Variable demand or high-
uncertainty areas 

High Actual/live data on 
demand/infrastruc
ture 

High 

With choice A, the user does not need to perform any further steps, the area is defined and depending 

on the other design choices, a certain autonomous delivery system is used in this area. In contrast, 

choices B and C require dividing the region into smaller areas. This can be based on professional 

expertise or based on methods proposed in literature, such as Huang et al. (2018). In case of C, the 

continuous adaptation is highly dependent on the availability and frequency of relevant data. It will 

then be necessary to periodically reassess whether the region’s distribution is still correct. 

3.1.2 Defining Delivery Locations 
After the geographical area is defined, the next step is to determine where parcels will be delivered 

within that area. The design of delivery locations greatly affects routing efficiency, accessibility for 

different vehicle types, and ultimately customer satisfaction. Like regional design, delivery location 

strategies can vary in complexity.  

Table 3: Design Choice: Delivery Locations 

Option Description Best used when…. Complexity Required Data System 
Adaptability 

A) General 
Locations 

Fixed drop-off 
points 

High density or 
centralized locations 

Low Customer address 
list 

Low 

B) Customized 
Locations 

Adjusted to 
accessibility 

Mixed urban/residential 
zones 

Medium Customer address 
& access 
constraints per 
address 

Medium 

C) Dynamic 
Locations 

Live updates for 
drop location during 
the day 

Time-sensitive, flexible 
user preferences 

High List of (multiple) 
addresses per 
customer, possibly 
GPS location 

High 

With choice A, the user does not need to take any further steps, since the locations are treated with 

no access constraints. However, this may result in slightly different or inconvenient drop-off locations 

per vehicle type (an R-ADV might be unable to reach the front door, while a drone may only deliver to 

the backyard). Choice B specifies the access constraints and allowing the system to link customers with 

a most suitable delivery method based on their location. Choice C builds on this by dynamically 

adjusting the delivery location and vehicle.  

  



29 
 

3.1.3 The delivery network 
The delivery network of a logistical system is the foundation of a (autonomous) last-mile delivery 

system. A network can be defined as: 

“A network is simply a collection of connected objects. We refer to the objects as nodes or vertices and 

usually draw them as points. We refer to the connections between the nodes as edges and usually draw 

them as lines between points.” (An Introduction to Networks – Math Insight, n.d.) 

Nodes of delivery network 

The nodes in the delivery network represent points within the network where decisions are made. They 

represent a point on earth defined by its latitude and longitude. Each node can be: 

• Intersection – where multiple routes or roads converge 

• Dead End – terminating point of road 

• Delivery Location – final destination of parcels 

Edges of delivery network 

The edges in the delivery network represent the roads in a defined area. Depending on infrastructure 

and regulations, edges may vary in suitability for different types of ADVs. In this study, four categories 

are defined:  

• Suitable for S-ADV – accessible only to S-ADVS (such as pedestrian pathways) 

• Suitable for R-ADV - accessible only to R-ADVs (regular roads) 

• Suitable for both S-ADV & R-ADV – shared infrastructure 

• Not suitable – inaccessible or restricted paths for either vehicle type 

Table 4: Design choice: Delivery network 

Option Description Best used when…. Complexity Required Data System 
Adaptability 

A) Basic Uniform 
Network 

All vehicles use 
the same 
network 

Infrastructure is small, 
highly accessible, and 
suitable for all vehicle 
types 

Low Basic road 
network 

Low 

B) Vehicle-Specific 
Network (Offline) 

Static access 
rules per vehicle 
type 

Area contains a lot of 
infrastructure constraints 

Medium Vehicle access 
road classification 

Medium 

C) Vehicle-Specific 
Network (Online 
& Offline) 

With real-time 
updates (traffic, 
weather, etc..) 

Dynamic/high-traffic 
environments 

High Static + real-time 
network data 

High 

With choice A, no further steps are needed. All vehicles share the same infrastructure and access rules. 

In reality, this might result in suboptimal delivery performance, such as inconvenient drop-off locations. 

With choice B, access constraints are defined per vehicle type. This allows for better alignment between 

vehicle capabilities and infrastructure characteristics. Finally, choice C introduces the highest 

complexity by incorporating both offline and real-time updates for the edges.  
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3.2 Demand of the area 
Once the geographical area is defined with its network and delivery locations, the next step is to 

estimate the demand in this area. Determining depot capacity, optimizing vehicle allocation, and 

creating effective routing strategies all depend on an understanding of the demand (distribution). 

However, since private companies often keep parcel delivery data private, demand estimation needs 

to rely on alternative (or inaccurate) sources. 

Table 5: Design Choice: Demand of the area 

Option Description Best used when…. Complexity Required Data System 
Adaptability 

A) No Demand 
Data 

Use 
national/regional 
averages per 
capita 

No historical demand 
data is available 

Low Demographics & 
average demand 
rates 

Low 

B) Partial Data Extrapolation 
from sample 
demand data 

Only partial data is 
available, or pilot/test 
areas 

Medium Partial demand 
data 

Medium 

C) Full Data Use actual 
demand from 
historical data 

All data is available High Customer-level or 
area-wide demand 
data 

High 

With choice A, where no historical demand data is available, the system designer should rely on 

indicators such as population density, demographics, or national e-commerce statistics to estimate 

parcel volumes. While this approach is less accurate, this estimation method provides a foundation for 

approximate assessments of the system’s scale and feasibility. With choice B, the demand can be scaled 

from a small period of time to approximate full-area demand. If regional seasonality is available, this 

would be the preferred choice, or it must come from another source. This option gives a much better 

idea of the demand of the area. Choice C provides the system designer with real historical data, which 

allows for the most accurate modeling. The routing and capacity optimization will be much more 

precise. 

3.3 Depot Characteristics and Placement 
After estimating the demand in the area, the next step in designing an autonomous delivery system is 

to establish a depot strategy. Depots function as hubs for vehicle storage, charging, and parcel sorting. 

An important decision to make is whether to make use of a single depot or multiple depots (or maybe 

none), which depends on the size and distribution of the demand across the service area.   

If a depot is needed, it is convenient to place it in a central location from which both ground ADVs (R-

ADVs and S-ADVs) and UAVs can depart from and reach as many customers as possible in the service 

area.  

In this research, we assume that: 

• A depot can store and charge multiple vehicles (R-ADVs, S-ADVs and UAVs). 

• It functions as a distribution hub where parcels are sorted. 

• Employees work at the depot to oversee safety and assist in loading/unloading vehicles. 
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Table 6: Design Choice: Depot Strategy 

Option Description Best used when…. Complexity Required Data System 
Adaptability 

A) No Depot  Last dispatch point 
is in (or close to) 
service area or the 
supplier (supplier is 
the last dispatch 
point) can deliver 
directly 

Supplier with low-
volume and small service 
area. Last dispatch point 
allows for delivery 

Low/Medium Last Dispatch 
point or 
supplier needs 
the space 

Low 

B) Single 
Centralized 
Depot 

One hub for all 
deliveries 

Compact area or 
centralized operations 

Low/Medium Central Depot 
Location 

Low 

C) Multiple 
Decentralized 
Depots 

Separate depots for 
regional operations 

Larger area or dispersed 
demand 

Medium Depot 
Placement 
Optimization 

Medium 

D) Mobile/ 
Moving 
Depots 

Depots that (can) 
reposition daily 

Highly flexible or shifting 
demand areas 

High Mobile depot 
routing and 
scheduling 

High 

 

For choice A, the need for a depot depends on the company’s structure and the location of the final 
dispatch point. In cases where the company manufactures or sells its own product and operates in a 
small service area, it might choose to directly deliver from its own facility (such as retail store or 
restaurant). Additionally, if the last dispatch point is already located in or near the service area, a 
separate depot might not be necessary.  In such cases, deliveries can be made directly from the 
existing facility.  

In case of choice B, one fixed depot serves as the main hub for all deliveries. The middle mile delivers 
the parcels to this depot, which in turn handles the deliveries. Normally placed in a central location of 
the service area, one fixed depot is simple to manage with economies of scale in operations and 
charging. Suitable for relatively small, well-defined service areas.  

In case of choice C, several depots are located around the service area to reduce travel distances and 
even improve the coverage of the area. It requires careful placement of these depots to balance 
demand and optimize routing. Suitable for larger, high-demand areas with multiple delivery hotspots. 
Finally, in case of choice D, the Depots are not fixed but relocated based on demand patterns. It can 
be implemented using mobile storage units, trucks as temporary depots or modular container hubs. 
Suitable for dynamic urban environments with constantly changing demands. 

3.4 Operational Logistics 
In this subsection, we will delve into the operational logistics that are essential for the efficient 

functioning of an autonomous delivery system. These logistics include decisions such as the allocation 

of vehicles, routing, scheduling, and fleet management. Since we have now defined and decided what 

the service area is and its infrastructure, the demand of the area and the depot placement. Now, we 

can focus on operational logistics. It must be noted that many of these choices/decisions can be inputs 

for the experiments later on. For instance, a key experimental question may be: Which fleet 

configuration best meets the performance of the system? 
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3.4.1 Vehicle characteristics 
The network described earlier, will be used by several types of vehicles described in the literature 

review presented in 2.3 Autonomous Delivery Solutions. As we learned from the literature review, we 

can classify the ADVs into three categories (S-ADV, R-ADV and UAV). Among them there are many 

different designs and types, of which the system designer is not yet sure which will fit best in the 

system. Or maybe there is only 1 option for each type, and we need to see if these types meet the 

expectations of the delivery system. For this purpose, we identified important characteristics for each 

vehicle category, such as speed, range and capacity (based on data from the literature). These should 

be quantified and used to integrate the ADVs to the logistics system. Some examples of characteristics 

are listed in the table (Table 7) below. 

Table 7: Example of ADV characteristics  

Characteristic Description Impact on Delivery System 

Average Speed The vehicle’s typical operational 
speed 

Affects travel time and total deliveries 
per shift 

Load time Time required to load parcels at the 
depot 

Determines depot efficiency and 
vehicle turnaround 

Unload time Time required to deliver a parcel to 
the customer 

Impacts total stops per trip and overall 
service time 

Maximum Range The total distance the vehicle can 
travel 

Influences vehicle allocation and 
depot placement 

Storage Capacity Maximum number of parcels a 
vehicle can carry 

Defines how many stops a vehicle can 
make per trip 

Energy Capacity Total energy storage available in the 
vehicle 

Limits range and determines recharge 
needs 

Energy 
Consumption 

Energy usage while the vehicle is in 
transit 

Impacts operational efficiency and 
battery life 

Charge speed Time required to recharge the 
battery 

Determines downtime and depot 
efficiency 

The specific value of these characteristics should be based on the technology that will potentially be 

used in the autonomous delivery system. In the literature review, we went over some of the vehicles 

currently under development/in operation. These characteristics will also serve as input parameters in 

the simulation model developed for this research, allowing the evaluation of various system 

configurations under different conditions. 

3.4.2 Vehicle allocation: Homogeneous vs. Heterogeneous Fleet 
Vehicle allocation involves determining how many and which types of vehicles are assigned to each 

depot within the delivery network. This decision is influenced by factors such as the expected demand, 

the capacity of the depots, and the geographical characteristics of the area as well as the budget of 

designing this delivery system. 

Table 8: Design Choice: Fleet configuration 

Option Description Best used when…. Complexity Required Data System 
Adaptability 

A) Homo-
geneous 
Fleet  

One ADV 
type 

Simplicity and ease of 
operation 

Low Vehicle specifications  Low 

B) Hetero- 
Geneous 
Fleet 

Multiple 
ADV types 

More flexible delivery 
capability, different 
accessibilities per 
customer 

Medium Vehicle specifications & 
Customer/Network 
accessibility  

Medium 
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3.4.3 Routing 
In designing an autonomous last-mile delivery system, selecting the appropriate routing strategy is an 

important step. Routing decisions must consider the characteristics of the ADVs, structure of the 

delivery network, and the possible constraints of the environment. This section provides a guideline 

for selecting an appropriate routing strategy by considering these elements.  

1 Vehicle-Specific Routing Considerations 

The choice of routing strategy depends largely on the type of vehicle being used and their operational 

constraints. As we mentioned earlier, we categorize ADVs into three groups: 

• Sidewalk Autonomous Delivery Vehicles (S-ADVs)  

• Road Autonomous Delivery Vehicles (R-ADVs) 

• Unmanned Aerial Vehicles (UAVs 

2 Network Structures and Routing Implications 

Besides vehicle characteristics, the structure of the delivery network plays an important role as well in 

selecting a routing approach. In general, autonomous delivery networks fall into the following 

categories (see 2.5 Modelling and Problem Formulations of Autonomous systems): 

• Direct Delivery (ADV-Only Delivery): ADVs travel directly from a central depot to customers, 

requiring efficient vehicle routing to minimize travel distances. 

• Two-Tier Delivery: Vehicles transport first transport parcels to decentralized depots or micro 

hubs before final delivery to customers.  

• UAV-Aided Delivery: Combines road-based vehicles with UAVs, where a vehicle carries parcels 

to an area before deploying UAVs for final delivery. This approach requires vehicle and UAV 

synchronization algorithms to optimize. 

• S-ADV-Aided Delivery: Combines road-based vehicles with S-ADVs, where a v vehicle carries 

parcels to an area before deploying S-ADVs for final delivery. Again, this approach requires 

vehicle and S-ADV synchronization algorithms to optimize. 

• R-ADV-Aided Delivery: Uses the platoon model to transfer R-ADVs to an ADV friendly zone.  

3 Selecting an Appropriate Routing strategy  

The complexity of the routing problem varies based on the number of vehicles, customer demands, 

and constraints. The appropriate problem-solving approach should be used: 

Table 9: Design Choice: Routing strategy 

Option Description Best used when…. Complexity Required Data System 
Adaptability 

A) Exact 
Optimization  

Solve to optimality 
(e.g. MILP) 

Small problem instances 
with high accuracy needs 

High Full Problem 
Formulation 

Low 

B) 
Constructive 
Heuristic 

Simple rule-based 
initial routes 

Fast, scalable for real-
time 

Low Basic delivery 
inputs 

Low 

C) 
Constructive + 
Improvement 
Heuristic 

Iterative 
improvement after 
initial route 

Trade-off between speed 
and quality. Might not 
achieve optimality 

Medium Heuristic input 
& tuning 

Medium 

D) 
Constructive + 
Metaheuristic 

Advanced 
metaheuristics after 
initial route 

For larger or more 
complex systems, with 
high accuracy needs 

High Metaheuristic 
configuration 

Medium 

 



34 
 

Each of these approaches is used to generate routes for a problem instance. However, there is also 

another option which includes continuous real-time route optimization. Which means that throughout 

the day, each time an ADV returns to the depot to pick up another parcel, the routes are optimized 

again to see whether the initial routing strategy is still the best. This can also be done with each of the 

four options.  

3.5 Evaluating the model 
While the routing optimization discussed above focuses on finding optimized vehicle routes, we also 

need to evaluate how well these routes perform in dynamic, real-world environments. Simulations 

incorporate uncertainties such as customer locations, probabilistic service times per customer and 

other unexpected disruptions, allowing for a nice method of evaluating the route strategy. For this 

research, we have created a simulation model which simulates a single day of deliveries in the service 

area chosen by the system designer. Appendix E) Model Documentation outlines more information 

about the simulation model. 

3.5.1 The model 
The simulation model evaluates how different ADV configurations perform under varying geographic, 

demand, and operational logistics scenarios. It helps system designers assess KPIs such as delivery 

success rate, energy usage, delivery times, and routing efficiency. The basis of the simulation is built 

upon the OpenTripModel, an open-source dictionary for modelling logistics (About Open Trip Model, 

n.d.). The model is structured using a simplified version of the OpenTripModel (OTM). OTM separates 

logistics into two layers:  

• Entities are the building blocks of the system. These include Vehicles (S-ADVs, R-ADVs, UAVs 

and Electric vans), Locations (Depot or Customer), Routes and Trips. They store static or 

planned information, for example a vehicle has an average speed, capacity and battery size. In 

our model, these static entities sometimes also have properties that can change during the 

simulation, such as the current battery percentage of a Vehicle. 

• Actions describe what happens during the simulation. Each action is linked to one or more 

entities and has an expected duration based on input parameters. For example: 

o A charge action connects a Vehicle to a Location (Depot) 

o A move action links a Vehicle to a Route between two Locations 

o An unload action connects a Vehicle to a Location (Customer) 

Each Trip combines a sequence of actions into one delivery round to represent the delivery of the 

parcels. A Trip is linked to a Vehicle, and every action inside the trip describes what the vehicle is doing 

step-by-step. Each action has an expected duration which allows the model to estimate the duration of 

the trip in total. Each action also has a lifecycle and success property, which shows whether the action 

was (successfully) executed.  In this way, actions are the link between vehicles, locations, trips, route, 

and can be used for evaluation of the performance of the system. 

Monte Carlo Simulation 

To make the simulation more realistic, we incorporate a Monte Carlo simulation component. While 

each action has an expected duration at the start of the day, in reality, these durations will vary due to 

uncertainty in traffic and customer behavior. The Monte Carlo Simulation helps capture this 

randomness by sampling from probability distributions instead of using fixed values.  

• Unload Action are based on the vehicle’s unload time and the service time at the customers 

location. The service time represents the time a customer takes to come outside and interact 

with the ADV. This varies each time, so we model it using a probability distribution 
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• Move Action expected durations are calculated from the distance between two points and the 

vehicle’s average speed. However, real-world scenarios such as congestion introduce 

variability, so we apply randomness to the actual travel time using a distribution  

The exact probability distributions we used are discussed in 4.7 Evaluating the model, where we apply 

this framework to the campus case. 

3.5.2 Conceptual Model 
This subsection explains how the simulation operates from start to finish. It outlines the logical flow of 

a single simulation run, showing how inputs are used to create trips, how parcels are delivered, and 

how outputs are collected. We refer to the entities and actions as classes from this point on.  

Input Configuration 

At the start of the simulation, the user provides all required inputs: 

• Number and type of vehicles (UAVs, S-ADVs, R-ADVs, or a mix) 

• Vehicle characteristics (e.g., speed, capacity, battery, energy consumption 

• Service area (e.g. University of Twente Campus) 

• Depot location (coordinates) 

• Number of deliveries to make (e.g. 106 customers, each with one parcel) 

• Time window settings 

These inputs are flexible and allow the user to experiment with different fleet setups, demand levels, 

and delivery constraints. Not forgetting, the service area of the delivery system. The service area as an 

input means indeed that the model is suitable for different areas if the designated service area is 

defined in OpenStreetMap. If this is not the case, since OpenStreetMap is open source, the system 

designer can add a new service area in OpenStreetMap themselves.  

 

Initial class creation 

Each class (Vehicle, Location, Trip, Route, Action) has a formula to create this class where the user can 

enter the input values in to create it. Using the input data, the model creates the following classes: 

• Vehicle class: Each vehicle is created with its type (e.g., UAV), and all its operational 

characteristics like speed, range, and capacity 

• Depot (Location class): The depot is added first, based on its coordinates and operating hours. 

• Customer Locations (Location class): The customer locations are created based on their 

coordinates, demand, time windows and service time. 

  

The number of customers are determined based on the defined service area and the types of buildings 

selected by the user within the area. The service area is extracted from OpenStreetMap data, which 

includes various building categories such as ‘dormitory’, apartments’ or ‘academic’. It is up to the 

system designer to decide which buildings are eligible for parcel delivery.  

 

At this point, the simulation has all the necessary vehicles, one or more depot(s), and the customer 

locations. This means that the customer can be allocated to vehicles. 

 

Allocating the customers 

Once the initial classes are created, it is time for allocating the customers to vehicles. This is based on 

the delivery logic implemented in the simulation.  
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The vehicle’s capacity and the routing algorithm implemented by the user determine how many 

customer locations will be visited in a single trip. Each trip consists of multiple actions, which describe 

what the vehicle will do. The trips are always sequenced in the following order: 

- Charge Action: The vehicle charges (at the start of a trip) to make sure it has sufficient amount 

of battery 

- Load Action: The parcels are loaded into the vehicle 

- Move Action: The vehicle travels from one location to another 

- Wait Action: In case the vehicle arrives before customer’s time window opens, it must wait 

- Unload Action: The parcel is delivered to the customer 

- (Repeat Move/Wait/Unload): These actions are repeated for each stop 

- Return Move Action: Vehicle moves back to the depot 

Running the simulation day 

Once all customers are allocated to trips, the simulation day can begin. Deliveries officially start at the 

opening time of the depot. A SimulationClock tracks the time, and actions/trips are triggered based on 

their planned start times. 

 

The first scheduled trips for each vehicle have a status “requested”. As soon as the SimulationClock 

reaches the planned start time of the “requested” trips, they are prepared by updating the expected 

durations to the real durations (Monte Carlo), and the trip is executed. During execution, the simulation 

updates the relevant states, for example the vehicle’s battery level, current location, and the progress 

of the action. 

 

After the vehicle completes its trip, the trips status is set as “completed” and the next scheduled trip 

for the vehicle is labeled as “requested”. This loop continues until the SimulationClock reaches the 

depot’s closing time. By the end of the day, the model outputs key performance indicators based on 

the actions.  

 

This concludes the general explanation of the simulation model. In the next chapter, we apply the 

framework (including the simulation model) to the University of Twente campus case. There, we go 

into more detail about how the simulation model was set up for this case, how the inputs were 

handled, what the outputs are, and how reliable and realistic the model is for answering our research 

questions.  
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3.5.3 Assumptions of the model 
This simulation model is built on several core assumptions derived from earlier chapters, historical 

context, and specific coding choices made during implementation. some assumptions can be changed 

by adjustments in the underlying code, such as the method of customer sampling. The following list 

covers the main and most important assumptions of the model: 

• Independent days 

Each day is independent, meaning it is not affected by the day before and does not consider 

the next day.  

• Independence of time of day 

The model does not account for variations in campus activity throughout the day. Pedestrian 

and vehicular traffic tends to increase during class changes. The model assumes that the day is 

evenly distributed. 

• Static Geographical input: 

The campus delivery area with its nodes and edges is assumed to remain static throughout the 

simulation. So, all infrastructure elements are available all the time, with no temporary 

shutdowns or maintenance activities. 

• Customer generation and sampling 

The University of Twente campus consists of multiple buildings that vary in size and number of 

residents (potential customers). However, since detailed information on the distribution of 

residents per building is not publicly available, this distribution is not modeled. Also, the 

number of residents per building still does not give us the necessary information (Number of 

residents does not equal number of potential customers). Instead, it is assumed that all 

buildings have an equal probability of being selected as customer location. Customer 

generation is performed by sampling building locations with replacement, meaning that each 

sampled building represents a single customer with a (standard) demand of one parcel. 

Sampling with replacement allows for the possibility that a single building is selected multiple 

times, representing multiple customers per building. 

• Generic Distribution of Waiting Times: 

Each delivery vehicle (UAV, R-ADV or S-ADV) drop off has the same generic distribution of 

waiting times at the customer, no matter the location. So, we assume customers must be 

present at parcel drop off for every delivery vehicle.  

• Average Vehicle Speed: 

The model assumes a constant average speed for the autonomous delivery vehicles. 

• Fixed Battery and Recharging Parameters: 

Each vehicle is assumed to have a consistent battery capacity with a predetermined 

recharging time and battery consumption while moving. This means we neglect the (small) 

amount of battery which the vehicles consume on standby. 

• No Vehicle Interference 

The simulation does not model interactions between (delivery) vehicles. Each vehicle operates 

independently based on the schedule and routing algorithm. 

• Static Routing Strategy: 

The routing strategy is based on the expected durations of each action; the schedule does not 

adapt dynamically during a simulation run if the real durations are updated.  

• Delivery Success: 

The model assumes that all deliveries have a certain delivery success. Failed deliveries stay in 

the vehicle and are not delivered at another time. The idea is that customers can pick up the 

parcel themselves at the warehouse in case of a failed delivery.  
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3.6 Conclusion 
Chapter 3 focused on transforming the theoretical foundation from literature into a practical 

framework for designing autonomous last-mile delivery systems. At the start of the chapter, we wanted 

to answer the following research question: 

How can an autonomous B2C last-mile delivery system be designed, using a set of configurable 

design choices, based on the characteristics of a specific environment? 

Recognizing that each urban environment has unique logistical characteristics, this chapter introduced 

a “menu of design choices” that can be used for different scenarios/environments. The idea is that a 

system designer can use this framework to make/consider design decisions for their own area. This 

framework does not attempt to cover every operational detail. Instead, it focuses on strategic, system 

level design choices that must be addressed before implementation. These design decisions can then 

be evaluated by the simulation model. 

The framework consisted of four major design decisions: 

1) Geographical and Infrastructure considerations: define the delivery area and delivery network 

2) Demand Estimation quantifies the delivery load based on data  

3) Depot Configuration: addresses the placement of depots 

4) Operational logistics: covering fleet composition, vehicle characteristics, and routing strategies 

Each design component was described, highlighting how the decisions affect the performance of the 

delivery system. The design framework serves two purposes: 

1) It structures the process of designing autonomous delivery systems 

2) It enables evaluation across different scenarios/areas using the simulation model 

In the next Chapter, we apply this framework to the case of the University of Twente Campus. 
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Chapter 4 Application of the framework to the UT campus   
In this chapter, we’ll apply the framework of the previous chapter to design the autonomous delivery 

system for the University of Twente Campus. Just like in chapter 3, we will go over each element of 

the framework and describe the actions in a separate subsection.  

4.1 Geographical and Infrastructure Considerations 
From section 3.1 Geographical and Infrastructure Considerations, we know that geographic and 

infrastructural context are very important. In the case of the University of Twente campus, these 

considerations are particularly important due to its unique layout. This section aims to define the 

delivery area, identify the specific delivery locations and define the delivery network.  

4.1.1 Defining the area 
The first step is to define the service area in which the deliveries take place. Since the campus is 

closed and well-structured environment, this study considers the entire campus as a single area. 

Selected approach: Choice A) Basic Boundary 

As said before, we treat the campus as a single service area instead of differentiating between 

residential, academic or commercial areas. The service radius of each available vehicle (S-ADV, R-ADV 

and UAV) is also large enough to cover the entire campus (Radius of approximately 1500m) without 

the need for subdivision into different operational zones. The choice to treat it as a single area 

simplifies logistics, routing, and vehicle allocation.  

To accurately define the boundaries of the service area, we use the entire University of Twente 

campus as the geographical basis, as illustrated in Figure 13. We retrieved additional geospatial data 

using OpenStreetMap (OSM) to outline the campus surroundings and coordinates. A set of 33 

boundary nodes has been identified to define the exact perimeter of the study area. The full list of 

nodes, along with their coordinates, is provided in Appendix B. 

4.1.2 The delivery locations 
Now that we have defined the delivery service area, we can identify the delivery locations. 

Selected approach: Choice A) Predefined General Delivery Locations 

A total of 192 potential delivery locations were selected using OpenStreetMap data. These locations 

were chosen based on their building types (Residential and Institutional). Residential delivery 

locations were identified using tags such as “apartments”, “house”, “residential” and “dormitory”. 

University buildings were identified using tags such as “university”, “school”, and “public”. 

Of the 192 locations, 34 are institutional buildings (Red buildings in Figure 13). However, these 

locations were excluded from the delivery strategy for two reasons: 

1. Deliveries to university buildings are handled internally by the university itself through two daily 

consolidated delivery rounds.  

2. A disproportionate share (approximately 80%) of these deliveries is directed to just three buildings, 

making them unrepresentative of typical last-mile delivery patterns. 

By excluding these 34 buildings, the research focuses solely on the remaining 158 residential delivery 

locations (Blue buildings in Figure 13), providing a more accurate basis for evaluation of autonomous 

B2C last-mile delivery performance. 
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The campus consists of various types of buildings, each with different population densities. However, 

due to privacy concerns, detailed data on individual building occupancy or usage is not accessible. As 

a result, all delivery locations are treated uniformly in this research.  

How Are the Delivery Locations Assigned? 

• The University of Twente Campus was mapped using OpenStreetMap (OSM), identifying a set 

of nodes representing intersections, pathways, and accessible locations 

• Each customer’s delivery point is linked to the nearest node, ensuring that deliveries are 

made to the closest locations 

• These nodes serve as the delivery points for that customer, regardless of the vehicle type. It 

might occur that certain locations use the same node as delivery point. 

 
Figure 13: Residential buildings (blue) and campus facility buildings (red), with delivery network plotted on the right 

4.1.3 The delivery network 
The delivery network is retrieved using OpenStreetMap as well (See Figure 13). This provides a 

representation of the roads, sidewalks, and pathways. This information, however, is not complete 

enough to use for our research, so we chose to assume that each road of the network is accessible to 

R-ADVs and S-ADVs. 

Selected Approach: Choice A) Basic Uniform Network with a separate UAV Distance Matrix 

The road network is used by the S-ADV and R-ADV, while we created a separate UAV Distance matrix 

for UAV delivery.  

How was the delivery network defined? 

1. Extracting Data from OpenStreetMap  

• The University of Twente Campus was used as input for extracting data on the nodes and 

edges. These can be used by all ground vehicles (S-ADVs & R-ADVs). 

• The nodes are defined as intersections, dead ends, and delivery points. The edges as 

roads and pathways that any ground vehicle can use. 

• The UAV network is created using python library Networkx (NetworkX Documentation, 

n.d.) which calculates the Euclidean distance between each node and the depot.  
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4.2 Customer demand  
Obtaining detailed information on parcel delivery volumes from commercial logistics providers in the 

Netherlands is remarkably difficult. Publicly available data is typically limited to annual parcel volumes 

at national level, with no specification by region or delivery day. As a result, there is no direct 

information on campus-specific delivery volumes or seasonality patterns. For this research, were able 

to obtain data (from PostNL) on parcel deliveries at the campus between January 1 until March 14th, 

2024. A total of 2500 parcels were delivered to the university facilities and 5000 parcels to the campus 

residents. We also used an external dataset from the Final Report: Single-carrier Consolidation – Central 

London Trial (Clarke et al. 2017), which includes parcel delivery of a full year. While this data is from a 

different country/environment, it serves as an estimation of the general delivery trends and seasonality 

patterns.  

Selected Approach: Choice B) Partial Data Available  

Please read Appendix C) Extra demand calculations for more details on the dataset and calculations. 

To estimate the annual parcel demand on the University of Twente Campus, we begin by analyzing 

the data from the London Trial. This dataset includes daily delivery data of one or more delivery vans. 

By summing up the total number of parcels we get to a total of 2,005,728 parcels delivered in a year. 

Since we have daily delivery data, we can also calculate the weekly package distribution. March 14th 

falls in the middle of week 11, so we sum the parcel distribution percentages from week 1 to 10 and 

add half of week 11. This results in 0.194709 (19.47%), so 19.47% of parcels were delivered from 

January 1 until March 14th in London.  

We use this proportion to estimate the total annual parcel volume for campus deliveries. We know 

that around 5000 parcels were delivered during the first 10.5 weeks of the year. Dividing this by the 

19.47% share gives an estimated annual volume: 

To estimate full-year parcel demand, we use: 

5,000

0,194709
= 25.680 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (𝑃𝑜𝑠𝑡𝑁𝐿) 

Since PostNL holds 50% of the market share, the total number of parcels delivered annually to the 

campus is approximately: 

25,680 ∗ 2 = 51.360 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡) 

To determine the number of parcels suitable for autonomous delivery, it is important to consider size 

and weight constraints. Back in 2019, Amazon’s CEO Worldwide consumer stated that: “between 75 

and 90% of Amazon deliveries could technically be handled by the UAV” (D’Onfro, 2019). Since UAVs 

have the most restrictive limitations in terms of payload and volume, any parcel that is eligible for UAV 

delivery is also suitable for S-ADVs and R-ADVs. Therefore, the share of parcels eligible for delivery via 

autonomous methods can be estimated at 75-90%. In this study we take the most conservative number 

75%. 

51.360 ∗ 0,75 = 38,520 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡) 

In addition to the weekly distribution of parcels, we also calculated the daily and monthly distributions 

to gain insight into seasonal variations across different time periods. By combining weekly and daily 

distributions, we roughly estimate the daily number of parcels delivered.  
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This enables us to compute key demand statistics, including: 

• Median and Average Daily Parcel Volume 

• Top 10% busiest days (highest demand periods) 

• Lowest 10% least busy days (low-demand periods) 

 

These insights (See Table 10) provide a data-driven understanding of delivery trends, which can help in 

modelling demand fluctuations and optimizing logistics planning. 

Table 10: Median, Average and Range of parcels delivered per day 

METRIC ALL DAYS TOP 10% DAYS LOWEST 10% DAYS 

MEDIAN 109 172 48 
AVERAGE 106 193 46 
RANGE 29-306 153-306 29-52 

 

4.3 Depot Characteristics and Placement 
At the University of Twente, the depot serves as the central hub for handling autonomous deliveries. 

This depot will handle vehicle storage, charging and loading activities. 

Selected Approach: Choice A – Single Centralized Depot 

The centralized approach is chosen based on the following considerations: 

• Campus Suitability: The University of Twente is a compact, well-defined area with relatively 

stable parcel demand of ~38,520 parcels per year and ~106 parcels per day. 

• Cost Efficiency: Centralizing operations reduces infrastructure needs, enables shared use of 

charging and maintenance facilities. It requires less staff and coordination is easier. 

• Operational Simplicity: All vehicles start and return to one location 

• Existing location present: The University of Twente already has a small parcel distribution 

center named “Garage”, located near the Ravelijn (See Figure 14). The building is assumed to 

be large enough to support the storage, charging and monitoring of the ADVs.  

Another option would be to build a new depot and place it at another location on campus. In our case, 

we assume an existing location, but there are also papers that calculate what the best locations might 

be such as Sartika & Gamal, (2019).  

 
Figure 14: Location of new Depot/”old Garage” (Yellow) 

This does also mean that we use a two-tier delivery system (See 2.4 Autonomous Delivery Systems). 

In this model, a delivery van (for example from PostNL) transports parcels from a regional sorting 

center (in this examples case, PostNL’s depot in Hengelo) to the central campus depot. From there, 

the parcels are delivered to the customers using the ADVs. 
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4.4 Operational Logistics 
In this section, we focus on the operational logistics of the autonomous delivery system. These are 

decisions about vehicles, routing, scheduling, and fleet management. These logistics include decisions 

related to ADV types, routing, scheduling, and fleet configuration. Unlike the previously discussed 

system design choices (delivery area, demand of the area, and the depot location) these operational 

logistics choices are not all fixed.  

While certain operational logistics might be fixed in another scenario, in our scenario this is not the 

case. This really depends on each situation and the aim of the research (wishes of the system designer). 

We will elaborate on each aspect (vehicle characteristics, fleet allocation, and routing strategy) and 

clarify whether the decisions are fixed for this research.  

4.4.1 Vehicle Characteristics (Fixed) 
The University of Twente delivery network will be utilized by the three types of vehicles mentioned 

before: S-ADVs, R-ADVs and UAVs. For modelling purposes, the operational characteristics are treated 

as fixed inputs. These include their average speed, load time, unload time, service range, storage 

capacity, noise, battery capacity, energy usage and charge speed. These characteristics influence how 

each ADV performs in the simulation and determines factors such as delivery time and energy 

consumption.  
 

Please note that in other research projects, these vehicle parameters could be varied as experimental 

inputs. For instance, a system designer might want to compare multiple UAV models to identify the 

most suitable one for the delivery system. The simulation model developed for this research allows for 

changes in all of the vehicle characteristics. 
 

The autonomous delivery system modeled for the campus case includes the following three ADV types: 

• S-ADV, based on the Starship Robot 

• R-ADV, based on the Macrostep parcel locker 

• UAV, based on the Zipline Drone 

These ADVs are chosen because they have (relatively) a lot of publicly available information on their 

characteristics and have already been tested or used in real-life delivery scenarios. This makes them 

suitable and realistic candidates for the simulation model. Also, to compare the autonomous system to 

the current system. We introduce the CargoLEV TC delivery vehicle (Vleugel, 2023). A Light Electric 

Vehicle (LEV) that is currently being employed in the last-mile logistics in Amsterdam, The Hague, 

Arnhem and Groningen. This makes it a good candidate for comparisons with the autonomous system.  

Table 11: Light Electric Vehicle Characteristics 

Characteristic Value Source or Explanation 

Speed 20 km/h Estimated guess based on infrastructure 

Load time 60 seconds/parcel Estimated guess  

Unload time 180 seconds/parcel Estimated guess 

Maximum range 115 km Max range (132km) (DPG Media Privacy Gate, 
n.d.). With load probably less 

Storage capacity 300 6 m^3 storage room, fits approximately 600 
shoeboxes (0.34m*0.28m*0.14m). Assuming 
inefficient use of storage room say 300 units. 

Noise 56 (dB) Legal limit (Waarom Een Elektrische Auto Geluid 
Maakt | ANWB, n.d.) 

Tank 11960 (Wh) 104*115=11960 

Energy cons. moving 104 (Wh/km) (DPG Media Privacy Gate, n.d.) 

Charge speed 1440 (Wh) Assume same charge speed as R-ADV 
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4.5.2 Vehicle allocation (Experimental) 
The fleet allocation is a key experimental factor in this thesis. Since we are not limited by a budget or 

specific ADV delivery goal, we decided to use the fleet allocation as the main experimental factor. 

Different experiments will test how varying fleet combinations (homogeneous vs heterogeneous) 

impact the delivery performance.  

In some scenarios, the fleet might be restricted to one vehicle type (such as only UAV delivery) and 

the system designer might just be interested in the performance of a certain number of UAVs under 

different conditions. In these cases, the vehicle allocation becomes a fixed variable. 

4.5.3 Routing 
Finally, we will make the decision on the routing strategy.  

Selected Approach: B) Constructive Heuristic Only 

For this research, we have decided to base the routing strategy on constructive heuristics only. The 

focus of this thesis is on how to design an autonomous delivery system, not optimizing the autonomous 

delivery system at the campus. A heterogeneous electric fleet where each vehicle can make multiple 

trips is already a complex model to optimize, and we have decided that this would fall out of the scope 

of this thesis. We use the Two-Tier model, with an ADV depot placed in the center of the campus. 

To achieve this, we use Solomon’s Nearest Neighbor constructive heuristic, a well-established method 

for solving the Vehicle Routing Problem (Solomon, 1987). This method efficiently assigns Sidewalk 

Autonomous Delivery Vehicles (S-ADVs), Road Autonomous Delivery Vehicles (R-ADVs), and Unmanned 

Aerial Vehicles (UAVs) to different deliveries while potentially considering time windows. Solomon’s 

nearest neighbor’s constructive heuristic, however, does not deal with a potential penalty of missing 

the time window (hard constraint). For this thesis, we have transformed Solomon’s cost function to a 

cost function that factors in a penalty of missing the time windows.  

Solomon’s Cost Function with Parameterized Weights 

Solomon’s Cost Function is used for the routing decisions, by evaluating the desirability of each 

potential next customer during the routing process. This heuristic calculates the cost of visiting a 

candidate customer j after serving customer i, considering multiple factors: 

1. Travel distance between the two locations 

2. Travel time required to get to this location 

3. The urgency of delivery based on the remaining time within customer j’s allowable delivery window. 

For example: Possible delivery to a customer with TimeWindow (09:00-17:00) at precisely 11:00 means 

a remaining time of 6 hours, making it a less time-critical choice than another customer whose 

TimeWindow closes at 12:00.  
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We define a tunable cost function that integrates weighted contributions from each of the core factors. 

The general form of the cost function is given by:  

𝐶𝑖,𝑗 = 𝑤1 ∗ 𝑑𝑖,𝑗 + 𝑤2 ∗ 𝑇𝑖,𝑗 + 𝑤3 ∗ max(0, 𝑣𝑖,𝑗) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠 ∗ max(0, −𝑣𝑖,𝑗) 

Where: 

• Time Window Customer i [𝑒𝑖, 𝑙𝑖] 

• Service time at customer i 𝑠𝑖  

• Service beginning at customer j = 𝑏𝑗 = max(𝑒𝑗,   𝑏𝑖 + 𝑠𝑖 +  𝑡𝑖,𝑗)  

• 𝑑𝑖,𝑗 = Distance between the current location i and customer j. 

• 𝑇𝑖,𝑗 = Travel time required to reach customer j computed as:  𝑇𝑖,𝑗 = 𝑏𝑗 − (𝑏𝑖 + 𝑠𝑖) 

• 𝑣𝑖,𝑗 = Slack time computed as: 𝑣𝑖,𝑗 =  𝑙𝑗 − (𝑏𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑗) 

• 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡 = 10000 (Standard) 

• 𝐶𝑖,𝑗 = Composite cost of selecting (next) customer j after visiting location i. 

• w1 = Weight for travel distance (default: 0.5, TimeWindowDelivery: 0.05) 

• w2 = Weight for travel time (default: 0.4, TimeWindowDelivery: 0.05) 

• w3 = Weight for slack time (default: 0.1, TimeWindowDelivery: 0.90) 

• 𝑤1 + 𝑤2 + 𝑤3 = 1   

The decision on the weights is as follows: For delivery on days where each customer has the same 

window of delivery (09:00-17:00), the slack time is not relevant because it’s the same for each 

customer. During the regular days without TimeWindows, the weights are thus set on distance/time. 

In experiments where meeting TimeWindows is important, this slack time weight is increased a lot.  

This approach allows the routing algorithm to be adapted dynamically based on: 

• Delivery urgency (increasing 𝑤2 prioritizes travel time) 

• Battery efficiency (reducing 𝑤1 for UAVs can prevent over-prioritization of short distances). 

• Time window sensitivity (adjusting 𝑤3 ensures compliance with delivery deadlines) 

 
Figure 15: Algorithm Solomons Nearest Neighbor 
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4.6 KPI Selection 
In this section, we will select the Key Performance Indicators that will be useful for our simulation study. 

The KPIs identified from the literature review form the total set, but not all of them can be directly 

measured or used within the simulation framework. Therefore, we must narrow them down to KPIs 

that can be logically and quantitatively evaluated in our model. The remaining KPIs are selected based 

on their measurability within our simulation framework and scope of this study. Some of these KPIs are 

derived from the KPIs in the literature section to better fit our model (Instead of Delivery Success rate, 

we went with total successful deliveries). 

Table 12: Final KPIs 

Final KPIs 

Economic  

Distance (km) Total amount of kilometers driven 

Total Successful Deliveries (#) Total Orders successfully delivered to customers 

Average Delivery Time (mins) Average time between deliveries 

Utilization Rate (%) Percentage of time the ADV performs a ‘useful’ action: Loading, 
Unloading, Moving, Charging 

Unplanned Deliveries (#) The average number of deliveries not being planned. If the ADV 
does not expect to be able to deliver the package on time, this 
customer will not be included in the route. 

Environmental  

Energy Consumption (kWh) Measures the total kilowatt-hours per day 

Social  

Average Time After 
TimeWindow (mins) 

Measures the average time the customers need to wait/be at 
their location before the ADV arrives with their package 

Late Customers (#) Average Number of Customers receiving their order too late 

Total Minutes Late (mins) Total minutes of deliveries being late 

 

We want to note that many KPIs can be determined in different ways. Energy Consumption can also be 

looked at from an economic perspective, because if a certain vehicle consumes a lot of energy this will 

increase operating costs. The same goes for distance, we also think that distance is somewhat a social 

KPI. A delivery system that drives a total of 300 kilometers around the campus or one that drives a total 

of 20 kilometers will certainly be looked at different from the public viewpoint.  

4.7 Evaluating the model 
To test the performance of the autonomous delivery system on the University of Twente campus, the 

delivery system is evaluated using the simulation model. From 3.5 Evaluating the model we learned 

that we need a couple of inputs for our model: 

Input Configuration 

• Number and type of vehicles (UAVs, S-ADVs, R-ADVs, or a mix) 

• Vehicle characteristics (e.g., speed, capacity, battery, energy consumption 

• Service area (e.g. University of Twente Campus) 

• Depot location (coordinates) 

• Number of deliveries to make (e.g. 106 customers, each with one parcel) 

• Time window settings 

In the next subsection, we will cover all of the inputs we use in our simulation model for the campus 

case 
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4.7.1 Inputs of the simulation model 
The simulation model is driven by a variety of inputs derived from previous chapters and supplemented 

with historical data. Essentially, the model can be rewritten and changed on many levels, but the model 

which is used during this thesis has the following inputs:  

• Geographical Data: Input of the model is the area “Universiteit Twente”, which is a defined 

area found on OpenStreetMap (OSM Universiteit Twente Service Area, n.d.)  

• Housing tags: Buildings with the following tags are used as input: House, Dormitory, 

Apartments.  

• Depot Location: The depot location is manually chosen in the model with latitude: 

52.239623555802815, longitude: 6.853921115398408 and OSMID 7801064041. 

• Road Network: For the R-ADV and S-ADV, the entire road network is used in the Universiteit 

Twente service area (Instead of using only sidewalks/bicycle lanes) 

• Vehicle Specifications: Performance parameters for the ADVs such as average speed, storage 

capacity, battery life, and loading/unloading times as given in Section 4.4.1 Vehicle 

Characteristics (Fixed) and Appendix D) Vehicle Characteristics 

• Customer Demand: 43 Low, 106 Average and 196 High (4.2 Customer demand)  

• Driving Time Distribution: To account for the uncertainty in driving from one location to 

another, the expected duration (computed from route length and vehicle speed) is modeled 

using a normal distribution. The distribution has a mean equal to the expected duration and a 

standard deviation equal to 5% of that expected duration, representing some variability due to 

factors such as traffic conditions.  

• Customer Pickup Time Distribution (ADVs) – Gamma (α=4, θ=1): To simulate how long it takes 

for a customer to come outside and collect a parcel from an ADV, we model this time using a 

Gamma distribution with shape parameter α=4 and scale θ=1. This results in a mean pickup 

time of 4 minutes. Starship Technologies (2024b) explains on their website that the maximum 

time a starship robot waits for customer pickup is 12 minutes. We assume that most of the 

customers pick up their parcel much faster than 12 minutes, the pickup time follows most-likely 

a right-skewed distribution. There is no real data on the pickup time of autonomous delivery 

on campus, so we decided to use this gamma distribution with a mean of four minutes.  

It is important to know that this pickup time is on top of the unload time per vehicle. See Figure 

16 on the next page for an overview of all the service times per customer (Unload time + Pickup 

time) 

• Customer Pickup Time Distribution (Electric van) – Gamma (α=2, θ=1): We use the same type 

of distribution for the service time (pickup time) for the Electric Van (human deliverer). Since 

a human operator will deliver these packages to the houses of the customers, the service time 

at a customer is much lower. The human deliverer does not need to person to hand the package 

too. Also, the human deliverer can often just place the package on a place around the house, 

which saves lots of time. See Figure 16 for an overview of the service times of the vehicles 

used. 
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Figure 16: Distribution of waiting times 

 

Besides these inputs, the model also has some additional inputs: 

• Delivery Success: Each delivery has a predetermined success percentage, for experimentation 

this is placed at 100%.  

• SimulationClock SpeedUp factor: The simulation model lets the user choose between Manual 

Mode and Experimentation Mode. In Manual Mode, the simulation runs in real-time but with 

a speed-up factor (default is 20x), so the simulation progresses 20 times faster than actual time.  

 

4.7.1 Validity of the simulation model 
The model is validated using techniques discussed in Robinson (1997). The problem of our simulation 

model and routing strategy is that there is no real world for comparison. Just like Robinson (1997) 

explained in validating models that have no real world for comparison, a model that is valid to one 

person may not be valid to another. We based our simulation on the Campus case as discussed earlier, 

but this campus does not have an autonomous delivery system. Despite the lack of real-world data, we 

employ validation techniques such as black-box validation. 

Data validation 

The main input from our simulation model is the data from OpenStreetMap, which is a public website 

accessible to anyone. Using python packages such as OSMnx (Boeing, 2025) and NetworkX (NetworkX 

Documentation, n.d.), the road network of the campus is transformed to a usable delivery network 

which can calculate the shortest path between two different nodes (and its distance). The packages 

Networkx and OSMnx are tested by a lot of people worldwide, which gives us the confidence that these 

packages provide valid data for our delivery network. There is only one possible flaw for this thesis 

(which can be solved by anyone if noticed!). OpenStreetMap is a public website where basically 

everyone can change the characteristics of the map (just like Wikipedia can be changed by everyone). 

In this research, we assume that there is no misinformation (only a lack of information sometimes) in 

OpenStreetMap, and that if there was anything inaccurate, that the community would take care of it 

(just like Wikipedia). 
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White box validation 

White-box validation is used to assess the behaviour of small parts of the simulation model. Our 

simulation focusses on delivering parcels and thus driving from node to node. First, we want to check 

whether each node and delivery location is correctly depicted on the world map. The customer 

generation tab in the simulation model offers the possibility to check each location (with a selection of 

tags). This results in a list of locations with their latitude and longitude.  

 
Figure 17: Automated Order Screenshot pt1   

This provides the user with a list of possible 

locations. Each of these locations can be hovered 

over and check if the latitude longitude and whether 

the latitude/longitude is correct. These values can be 

inserted in an online website and checked if they 

correspond to the location in on the map as well. 

These packages that were used to display this map 

are used by so many people that they give the good 

locations/results. Another thing is whether the 

distances between nodes are correct. We can take a 

random set of nodes and connect them to each 

other with the shortest path. This could be checked 

in the real world, but because OpenStreetMap is 

based on latitude and longitude, this already covers 

this check. The shortest path algorithm can be 

checked multiple times but again, these packages are 

very accurate (at the level we of which we use it) so 

there is basically no need. With the manual mode, 

other classes such as customers with their demand 

and TimeWindows can be checked as well. 

Another thing that should be looked at is whether the service time distribution and the deviation in 

the driving time. The model can generate multiple random service times, and these can be plotted to 

see if they fit the distribution. The same goes for the deviation in driving time, the differences can be 

plotted to see if they only deviate 5%. 

Figure 18: Automated Order Screenshot pt2. 
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Black-box validation 

Black-box validation is used to assess the overall behaviour of our model. We check whether given the 

input parameter, realistic outputs are obtained. It is not possible to validate the ADV deliveries in the 

simulation model, however, it is possible to validate the deliveries with the electric van. For this 

validation, we simulated the deliveries with the electric van for 20 and 100 customers. We used the 

input parameters discussed in this chapter (Electric van characteristics), so also Solomons Nearest 

Neighbor Algorithm. Figure 19, shows the delivery routes of 20 and 100 customers.  

 
Figure 19: Delivery Route to 20 random customers (left) vs Delivery route to 100 random customers (right) 

Some interesting results from the two routes are given in Table 13: Results 20 vs 100 customers. 

Table 13: Results 20 vs 100 customers 

 Distance Expected Duration Actual Duration 

20 customers 7.46 km 1:47:22 1:42:51 

100 customers 9.56 km 7:13:40 7:09:11 

With an unloading time of 2 minutes, and an average pickup time of 2 minutes, it is expected that the 

electric van will take around 4 minutes for each customer. Assuming on average, the time it takes a van 

to drive from one customer to another is in the case of 20 customers 60 seconds, and in case of 100 

customers 30 seconds, we can estimate the duration of the trips:  

- For the 20-customer case, it is expected to take: 5 minutes x 20 + 5 minutes loading at depot = 

105 minutes (1:45:00) 

- For the 100-customer case, it is expected to take: 4,5 minutes x 100 + 5 minutes loading at 

depot = 450 minutes (7:30:00) 

This roughly corresponds to the real time it takes the delivery van to deliver every package. The route 

for 100 customers is 2000 meters longer, which is approximately 25 meters per extra customer 

(2000/80). Looking at the picture, this distance between customer is very likely. 

Now, it might seem like the delivery routes of the van are always in the same direction, starting in the 

bottom left corner and continuing upwards until moving down to the bottom right. Figure 20 shows an 

example of when the closest customer is not at the bottom left, but north of the depot. Which indicates 

that the Nearest Neighbor Algorithm does indeed choose the nearest neighbors.  

It also highlights the limitation of the algorithm: the delivery route is not always optimal. In this case, 

a shorter total route could have been achieved if the van had started deliveries at the bottom-left 

corner and visited location 37 last.  
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Figure 20: Different Delivery Route example 

Concluding, from what we have noticed, is that information that is available from OpenStreetMap is 

valid. This would indicate that the activities on the delivery network are also correct. Via the Manual 

Mode, it is also possible to follow the deliveries in real time (with a specific actions table which show 

the data under the model such as expected arrival time vs actual arrival time). From the black-box 

validation, we conclude that our model performs as expected and we can only say with great 

confidence that we do not know how the model can be incorrect (except that there are many 

assumptions such as average speed which do not give an entirely accurate picture of what would 

happen in real life). 

4.8 Conclusion 
Chapter 4 applied the autonomous delivery design framework to the specific case of the University of 

Twente campus. The campus was chosen for its semi-controlled environment, diverse infrastructure, 

and because it can be compared to a small village. The potential for real-life testing is also much higher 

on a university campus compared to other environments. 

The main research question of this chapter was: 

How can the autonomous last-mile delivery system be configured for the University of Twente campus 

using the developed framework and simulation model? 

The decisions of the “menu of choices” were described and explained in this chapter. We have 

explained how the area of the University of Twente is generated. We have shown what the total set of 

delivery locations will be and why they were chosen. The daily demands were calculated using a test 

case in London, since we had almost no data on the demand at the campus. The “garage” of the 

University of Twente will be used as the depot location, because it is centrally located, well connected 

to the road network and this location is already being used for deliveries to university buildings. 

Solomon’s nearest neighbor was used for the constructive heuristic which formed the basis of our 

routing strategy. We then covered the relevant KPIs to be used for performance evaluation in the 

simulation phase.  

For this simulation model, we covered the inputs of the simulation model based on the design 

decisions. We also validated the model. Using the simulation model created for this research, the 

autonomous last-mile delivery system configured for the University of Twente campus can be 

evaluated. In the next chapter, we will discuss and present the experiments.  
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5 Experiments 
This chapter describes the experimental setup used to evaluate the performance of the proposed 

autonomous last-mile delivery system. Building on the assumptions, inputs and design decisions 

discussed in the previous chapters, we present the simulation configuration, define the experimental 

factors, and detail the structure of the experimental design. The goal is to systematically assess how 

different configurations impact delivery performance on the campus. We aim to answer the following 

research question: 

RQ. How does the autonomous delivery system perform under different design configurations, and 

which setup offers the best operational performance? 

5.1 Experimental Settings 
The simulation models deliveries for a single day, meaning one simulation run represents one full day 

of parcel deliveries.  

5.1.1 Experimental factors 
The experiments focus on varying the following input parameters: 

Table 14: Experimental Factors 

Exp. Factor Description Factor settings 

Fleet Composition Homogeneous vs Heterogeneous UAVs only, S-ADVs only, R-ADVs only or 
combinations 

Fleet size Number of available vehicles per 
type 

1-20 vehicles 

Daily Demand Total number of orders per day Low (43), Average (106) and High (193) 

Time Windows Whether deliveries must occur 
within time windows (wide or 
narrow) 

Without Time Window, with narrow time 
windows or with wide time windows 

Opening Time Night/Evening delivery or not 09:00-17:00 or 09:00-21:00 

 

5.1.2 Ranges and Combinations 
The experiments will be conducted in four different phases: 

Phase 1  

The goal of phase 1 is to determine the number of ADVs in a homogeneous fleet necessary to meet the 

demand (low, average, high) of a regular day without TimeWindows (09:00-17:00).  

Phase 2 

Once we determined the homogeneous fleet composition for a regular day without TimeWindows, we 

are interested in the heterogeneous fleet composition. Using the homogeneous number of R-ADVs, S-

ADVs and UAVs as an upper bound, we experiment with different combinations of ADVs per demand 

type.  

Phase 3 

Once we know the homogeneous and heterogeneous fleet composition for a regular day without 

TimeWindows, we are interested in the impact of night delivery. So, we start experimenting on days 

09:00 to 21:00. Using the homogeneous number of ADVs as an upper bound, we try to find the new 

homogeneous number of ADVs for night delivery. Then, we use this number as upper bound for the 

heterogeneous fleet. 
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Phase 4 

Finally, we experiment with time window delivery (09:00-13:00 & 13:00-17:00) on a regular 09:00-

17:00 day, and experiment to find the minimum number of ADVs we need to deliver to each customer 

without being late.  

5.1.3 Warmup & Replications 
The Key Performance Indicators described are the output of the simulation. Our simulation focuses on 

a single day delivery, independent of the preceding or following day. The day starts at the opening time 

of the depot after which the parcels can directly be delivered to customers and ends at the closing time 

of the depot. Since each day is independent and random, certain days might give us very extreme 

results. Which is why we need to run multiple days and take the average of those days. In this section 

we determine the minimum number of days needed for a single experiment. 

We are dealing with a terminating simulation because of our closing time (natural event specifies the 

end of a simulation run), and the system has a transient behaviour (performance depends on initial 

conditions, in our case customer demand). This means that we do not need to use a warmup period.  

To account for stochastic variation in simulation outcomes, each experiment is replicated multiple 

times. The number of replications is determined based on the precision of the confidence interval 

around the KPIs. Specifically, the half-width of the confidence interval, relative to the mean, is 

compared to a threshold y’. The following criterion should be used: 

𝑡𝑛−1,1−𝛼/2 ∗ √𝑆2/𝑛

𝑋̅
< 𝛾′ 

A pilot study with for example 10 replications is normally used to estimate the sample mean 𝑋̅ and 

variance 𝑆2, after which the number of replications n is increase until the criterion is satisfied. A 

frequently used threshold is a 5% error margin, which ensures that the 95% confidence interval half 

width relative to the mean is below 5%. 

We chose to apply a fixed number of 10 replications per experiment. In each phase, we only used 

simulation configurations that successfully delivered all packages (on time) to be considered valid. Any 

replication in which one or more packages remained undelivered were not considered sufficient. For 

the other KPIs, no relative error is calculated, which represents a limitation of the study. 

5.2 Experimental Results 
In this section, we will go over the experimental results. The first experimental phase focuses on gaining 

an understanding of the number of vehicles necessary to deliver parcels on a low, average and high 

demand day. 

5.2.1 Phase 1 
The main goal of phase 1 is to gain a rough understanding of the number of vehicles we need to cover 

the demand on a regular day (09:00-17:00), without considering time windows constraints. This phase 

gives us the basis we need for further experimentation. Due to the extensive number of experiments 

conducted, most detailed results and tables are provided in Appendix F) Detailed Experiments Section. 

In phase 1, we focus exclusively on the key performance indicator Successful Deliveries, aiming to 

identify the minimum number of vehicles needed to fulfill all deliveries. Phase 1 is structured as follows: 

we first determine the number of required R-ADVs to cope with low, average and high demand, 

followed by the same analysis for S-ADVs and UAVs.  
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We start this phase by first analyzing the scenario Average demand. An initial experiment was 

conducted using a fleet size of 5, 10, 15, and 20 R-ADVs Vehicles. The results, shown in Table 15, reveal 

that the key performance indicators (KPIs) were nearly identical across all configurations. All setups 

successfully completed all deliveries with no unplanned stops and minimal variation in delivery time or 

energy consumption. Notably, the configuration with only 5 R-ADVs already achieved full delivery 

coverage, with a utilization rate of 26.64%. 

Table 15: Initial experiment homogeneous fleet R-ADVs (average demand) 

Exp # of  
R-ADVs 

Total  

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 5 19.11 106.0 5.0 26.64 00:06:01 

2 10 19.13 106.0 5.0 13.46 00:06:05 

3 15 18.86 106.0 5.0 8.72 00:05:55 

4 20 19.42 106.0 5.0 6.51 00:05:53 

Since the configuration with 5 R-ADVs showed only ~26% utilization, we investigated whether even 

fewer street Vehicles could achieve full delivery capacity. A second experiment tested configurations 

with 1 to 5 Vehicles. The results below (see Table 16 ) demonstrate that two R-ADVs were sufficient to 

handle all regular-day deliveries. 

Table 16: Number of R-ADVs required for average demand 

Exp # of 
R-ADVs 

Total  

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 1 14.86 81.33 4.0 98.74 00:05:50 

2 2 20.4 106.0 5.0 66.96 00:06:03 

3 3 20.06 106.0 5.0 44.6 00:06:02 

4 4 20.61 106.0 5.0 33.92 00:06:09 

5 5 19.84 106.0 5.0 26.52 00:05:59 

This indicates that two R-ADVs can comfortably meet daily delivery demands, and a single robot has a 

maximum delivery capacity of around 80 parcels (regular day, no time windows). Next, the experiments 

for low demand (Table 17) and high demand (Table 18) are shown in tables below. 

Table 17: Low demand R-ADVs (regular day, no time windows) 

Exp # of  
R-ADVs 

Total 

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 1 11.66 43 2 53.19 00:05:56 

2 2 11.8 43 2 28.42 00:06:23 

A single R-ADVs was able to handle all 43 deliveries comfortably, with a utilization of 53.19%. Which, 

interestingly, does match what we saw earlier, that the street robot is able to deliver around 80 parcels 

a day (43/80 is around 53%) 

Table 18: High demand R-ADVs (regular day, no time windows) 

Exp # of  
R-ADVs 

Total 

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 2 25.42 167 8 101.83 00:05:52 

2 3 26.7 192 8 77.59 00:05:50 

3 4 28.1 192 8 58.53 00:05:52 

With 3 R-ADVs, all 192 deliveries were completed. Again, notice the fact that this is conform to the 80 

packages a day. 
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Conclusion Phase 1 

The same type of experiments was conducted with the S-ADVs and the UAVs. All these experiments 

and their outcomes can be found in Appendix F) Detailed Experiments Section. A summary of the key 

findings is presented below in Table 19. 

Table 19: Conclusion Phase 1 

 Number of Vehicles necessary to fulfill entire demand 

Vehicle Low (43) Average (106) High (192) 

S-ADVs 5 11 20 

R-ADVs 1 2 3 

UAVs 2 4 6 

From these results, we observe a linear relationship between the number of vehicles and the demand 

level. Based on our own observations under the conditions of a regular working day (09:00-17:00, no 

time windows), we can formulate the following equation: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 80 ∗  𝛼 + 10 ∗  𝛽 +  35 ∗ 𝛾 

Where: 

• 𝛼 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅 − 𝐴𝐷𝑉𝑠 

• 𝛽 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆 − 𝐴𝐷𝑉𝑠 

• 𝛾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝐴𝑉𝑠 

This equation will be further tested and refined in Phase 2, where we will explore the use of 

heterogeneous fleets. It must be noted that this equation is a rough estimation, since the total number 

of customers a vehicle can serve heavily depends on the location of the customers (a lot of generated 

customers near the hub allows the vehicle to deliver faster and thus more parcels).   

5.2.2 Phase 2 
Now, we are interested in the heterogeneous fleet scenario, where a different combination of vehicles 

is allowed to deliver parcels. From this point on, we begin using the KPIs discussed earlier, since a lot 

of combinations will satisfy the demand of the parcels. We do not consider time windows in this phase, 

so social KPIs will not be measured. Again, more detailed information on the experiments is given in 

the Appendix. To estimate sufficient heterogeneous combinations, we will apply two guiding principles: 

• Avoid Redundant Capacity: Combinations in which a single vehicle type already meets the 

entire demand on its own are excluded. This helps focus on true mixed-fleet strategies. 

• Use of estimation formula: The equation derived in Phase 1 is used as a reference to guide the 

search for effective fleet configurations: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 80 ∗  𝛼 + 10 ∗  𝛽 +  35 ∗ 𝛾 

• In general, we use the following table for creating our heterogeneous combinations: 

S-ADVs R-ADVs UAV 

Only S-ADVs - - 

- Only R-ADVs - 

- - Only UAVs 

High S-ADVs Low R-ADVs - 

Low S-ADVs High R-ADVS - 

- Low R-ADVs High UAVs 

- High R-ADVs Low UAVs 

High S-ADVs - Low UAVs 

Low S-ADVs - High UAVs 
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Low Demand Performance (Homogeneous & Heterogeneous, Regular Day, no TW) 
Table 20: Heterogeneous Fleet Low Demand (Regular Day, No TimeWindows) 

Combo 
ID 

Demand S-ADV R-ADV UAV Reps Del Tot. 
Energy 

Util. Distance Del. 
time 

1 Low (43) 5 0 0 10 43 2.98 83.45 85.26 46:34 

2 Low (43) 0 1 0 10 43 1.06 54.92 11.74 06:07 

3 Low (43) 0 0 2 10 43 2.66 56.1 63.25 12:32 

4 Low (43) 2 0 1 10 43 2.84 78.53 73.01 26:21 

5 Low (43) 1 0 1 10 42.8 2.77 97.7 69.34 22:01 

In the low demand scenario, the heterogeneous combinations are limited by the small number of 

vehicles available, especially R-ADVs (only 1) and UAV (only 2). As such, there is only one useful 

heterogeneous combination (Combo 4) involving both S-ADVs and UAVs. Combination 5 did not always 

succeed in delivering all the 43 parcels (42.8 deliveries, meaning 1 in 5 scenarios this combination can 

only deliver 42 parcels). This configuration matches the demand capacity closely (2*10 + 1*35 ≈ 55, 

43/55 ≈ 78%) and performs relatively well across the KPIs. 

Average Demand Performance (Homogeneous & Heterogeneous, Regular Day, no TW) 

The results for heterogeneous fleet with average demand are shown in Table 21: 

Table 21: Heterogeneous Fleet Average Demand (Regular Day, no TimeWindows) 

Combo 
ID 

Demand S-ADV R-ADV UAV Del. Tot. 
Energy 

Util. Distance Del. 
time 

1 Average (106) 11 0 0 106 7.54 95.37 215.37 47:30 

2 Average (106) 0 2 0 106 1.86 67.14 20.66 06:04 

3 Average (106) 0 0 4 106 6.87 75.82 163.74 13:46 

4 Average (106) 3 1 0 106 3.53 96.44 75.12 17:31 

5 Average (106) 0 1 1 106 3.3 91.22 60.99 08:18 

6 Average (106) 8 0 1 106 6.99 89.89 190.96 36:44 

7 Average (106) 1 0 3 106 6.86 97.71 166.83 17:44 

With the average demand, we observe that a lot more options seem to be viable due to the increase 

in available ADVs. The utilization rates indicate that these options are the most ‘efficient’ ones. Since 

adding an S-ADV or UAV to a certain combination would mean that they essentially have overcapacity.  

Example Calculation using demand estimation formula 

Let’s verify combo 6 using the demand formula: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 80 ∗  1 + 10 ∗  0 +  35 ∗ 1 ≈ 120 

Thus, Combo 6 has a total capacity of 120, giving it +-8% overcapacity (106/120) compared to actual 

demand.  
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High Demand Performance (Homogeneous & Heterogeneous, Regular day, no TW) 

With the high demand, we observe that there are a lot of combinations possible to meet the demand 

on a single day. Again, these utilization rates indicate that these options are the most ‘efficient’ ones.  

What does become very clear at this point is the increase in vehicles in perspective of the entire day of 

demand. For example, the number of S-ADVs increases a lot based on demand while the number of R-

ADVs and UAVs remain quite stable. This makes sense, based on the average delivery time per package, 

which is very high for S-ADVs (because of their slow speed).  

Table 22: Heterogeneous Fleet High Demand (Regular Day, no TimeWindows) 

Combo 
ID 

Demand S-ADV R-ADV UAV Del. Tot. 
Energy 

Util. Distance Del. 
time 

1 High (192) 20 0 0 192 13.7 95.41 391.47 47:49 

2 High (192) 0 3 0 192 2.56 79.04 28.39 05:56 

3 High (192) 0 0 7 192 12.31 79.27 293.17 13:53 

4 High (192) 12 1 0 192 9.23 93.45 242.49 30:25 

5 High (192) 3 2 0 192 4.4 96.04 82.86 12:00 

6 High (192) 0 1 4 192 8.74 87.68 194.95 10:57 

7 High (192) 0 2 1 192 4.31 96.44 71.11 07:15 

8 High (192) 17 0 1 192 13.31 93.48 371.34 42:10 

9 High (192) 4 0 5 192 12.32 91.14 306.02 20:33 

10 High (192) 10 0 3 192 12.4 92.91 327.1 30:17 

11 High (192) 2 1 3 192 8.09 91.37 184.66 13:44 

12 High (192) 4 1 2 192 8.3 93.26 197.85 18:42 

 

Example Calculation using demand estimation formula 

Let’s verify combo 11 using the demand formula: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 80 ∗  1 + 10 ∗  2 +  35 ∗ 3 ≈ 205 

Thus, Combo 11 has a total capacity of 205, giving it +-6.5% overcapacity (192/205) compared to actual 

demand.  

 

Comparison with electric van 

From these results, we observe that the average demand scenario represents the practical upper limit 

for operating a single electric van, given the utilization rate of 98.01%. This indicates that the vehicle is 

nearly fully occupied during the available delivery window (09:00-17:00). So, there is basically no buffer 

time for delays. The 0.2 late customers in the average scenario implies that on some days, the final 

customer gets their package delivered a little bit after 17:00. The late customers in the high scenario 

are explained because one delivery van is fully packed until 17:00, creating the same problem as the 

average demand scenario.  

Table 23: Performance electric van regular days 

Demand # of vans Del. Tot. Energy Utilization Distance Del. time Late customers 

Low 1 43 1.01 43.16 9.69 04:48 0 

Average 1 106 1.31 98.01 12.62 04:25 0.2 

High 2 192 1.7 85.97 16.36 04:17 0.7 
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Conclusion Phase 2 

From Phase 2, we learn that the estimated demand formula developed is moderately effective for 

predicting demand in a heterogeneous fleet composition. We also observe that the number of S-ADVs 

does not scale proportionally well with demand when compared to R-ADVs and UAVs. This may be 

improved by including night delivery in the next phase, which could provide the S-ADVs with longer 

delivery windows. Additionally, when combining different types of ADVs in a fleet, we see changes in 

the average delivery times. Specifically, R-ADVs and UAVs demonstrate lower average delivery times, 

suggesting they might be more suitable for deliveries with time windows.  

5.2.3 Phase 3 
Now, we are interested in the performance of the system with night delivery (09:00-21:00) instead of 

normal hours (09:00-17:00). Just like the previous phase, we start with the low demand case, continue 

with the average demand case and finally the high demand case. Since we have a longer delivery time, 

the expected performance is that we need fewer vehicles for each demand scenario. 

Low Demand Performance (Homogeneous, Night Delivery, No TW) 

The night delivery scenario (See Table 24) creates the possibility to deliver every parcel by either one 

UAV, one R-ADV or four S-ADVs. These values also show that a heterogeneous fleet is not 

possible/necessary for the low demand scenario (combinations will always lead to overcapacity). 

Table 24: Performance low Demand Heterogeneous & Homogeneous fleet with night delivery 

Combo 
ID 

Demand S-ADV R-
ADV 

UAV Del Late 
cust 

Tot. 
Energy 

Util. Distance Del. 
time 

1 Low (43) 4 0 0 43 0 3.09 72.09 88.18 48:16 

2 Low (43) 0 1 0 43 0 1.08 37.47 11.95 06:18 

3 Low (43) 0 0 1 43 0 2.76 90.44 65.75 15:20 

 

Average Demand Performance (Homogeneous and heterogeneous, Night Delivery, No TW) 

The night delivery scenario with average demand (See Table 25) creates opportunities for some 

heterogeneous fleets. In this night delivery scenario, one R-ADV is still able to deliver all the packages 

on its own. Because of this, there is no efficient heterogeneous fleet combination with R-ADVs. This 

leaves only combinations with S-ADVs and UAVs.  

Table 25: Performance Average Demand Heterogeneous and Homogeneous fleet (Night Delivery, No TW) 

Combo 
ID 

Demand S-
ADV 

R-
ADV 

UAV Del Late 
cust 

Tot. 
Energy 

Util. Distance Del. 
time 

1 Avg (106) 8 0 0 106 0 7.54 87.5 215.34 47:41 

2 Avg (106) 0 1 0 106 0 1.8 88.8 20 06:01 

3 Avg (106) 0 0 3 106 0 6.81 72.5 162.21 14:46 

4 Avg (106) 2 0 2 106 0 6.86 83.87 172.01 22:49 

5 Avg (106) 5 0 1 106 0 7.08 84.76 190.37 34:35 
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High Demand Performance (Homogeneous and heterogeneous, Night Delivery, No TW) 

In the high demand scenario, it is no longer possible for the single R-ADV to deliver each parcel. Two R-

ADVs are now necessary to meet the demand of 192 parcels, with a utilization rate of 80%. The S-ADVs 

do not scale well, even in the night delivery scenario. Instead of the 20 S-ADVs we needed, we now still 

need 15 of them. The R-ADVs can now also be considered in the heterogeneous fleet combinations. 

Besides the combinations between two ADVs, this high demand scenario also has one heterogeneous 

fleet combination with all three ADVs. 

Table 26: Performance High Demand Homogeneous and Heterogeneous Fleet (Night Delivery, No TW) 

Combo 
ID 

Demand S-ADV R-ADV UAV Del. Tot. Energy Util. Distance Del. 
time 

1 High (192) 15 0 0 192 13.5 84.03 385.76 47:22 

2 High (192) 0 2 0 192 2.45 77.61 27.27 05:49 

3 High (192) 0 0 5 192 12.26 79.52 291.98 14:58 

4 High (192) 7 1 0 192 7.65 82.35 191.84 24:48 

5 High (192) 0 1 2 192 6.11 82.91 126.52 09:20 

6 High (192) 8 0 2 192 12.6 87.44 335.96 32:49 

7 High (192) 2 0 4 192 12.5 87.18 306.61 19:41 

8 High (192) 2 1 1 192 5.65 88.33 125.49 13:17 

 

Comparison with electric van 

On regular days, the electric could just deliver the parcels to the customers. On some days, the last 

parcel was delivered a bit late (after 17:00). This changes in the night delivery scenario (Table 27). The 

performance of the electric van does not really change that much. Only that in the high demand 

scenario, the utilization is much lower. This is also expected because we have a longer delivery time 

window.  

Table 27: Performance Electric Van Night Delivery 

Demand # of vans Del. Tot. Energy Utilization Distance Del. time Late customers 

Low 1 43 1.02 41.83 9.78 04:48 0 

Average 1 106 1.5 67.11 14.38 04:32 0 

High 2 192 1.7 58.1 16.35 04:21 0 

 

Conclusion Phase 3 

From Phase 3, we can conclude that the following number of ADVs is necessary to meet the demand 

of parcels: 

Table 28: Conclusion Phase 3 (Number of ADVs) 

 Number of Vehicles necessary to fulfill entire demand 

Vehicle Low (43) Average (106) High (192) 

S-ADVs 4 8 15 

R-ADVs 1 1 2 

UAVs 1 2 5 

Electric Van 1 1 2 

From the experiments, we can still observe some linear relationships between the number of vehicles 

and the demand level. Where the R-ADV and UAV really improve in the potential number of parcel 

deliveries on a day-to-day basis, the S-ADV does not really show the improvement you would want in 

the night scenario.  
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Just like in Phase 1, we formulate another number of vehicles demand equation. 

𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑖𝑔ℎ𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≈ 120 ∗ 𝛼 + 12 ∗  𝛽 +  50 ∗ 𝛾 

Where: 

• 𝛼 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅 − 𝐴𝐷𝑉𝑠 

• 𝛽 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆 − 𝐴𝐷𝑉𝑠 

• 𝛾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝐴𝑉𝑠 

 

Example Calculation using demand estimation formula 

Let’s verify Average demand (2 S-ADVS, 0 R-ADV, 2 UAV) using the demand formula: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑖𝑔ℎ𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≈ 120 ∗  0 + 14 ∗  2 +  50 ∗ 2 ≈ 128 

This combination had a utilization of 83.5% according to the experiments, 106/124 results in 82.8%.    

Let’s verify High demand (2 S-ADVS, 1 R-ADV, 1 UAV) using the demand formula: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑖𝑔ℎ𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≈ 120 ∗  1 + 14 ∗  2 +  50 ∗ 1 ≈ 198 

This combination had a utilization of 88.3% according to the experiments, 192/198 results in 96.9%.  

So, the equation works quite well in the average case and underestimates the performance in the high 

demand case.  

5.2.4 Phase 4 
For the final phase, we will check the compatibility of the autonomous delivery system with customer 

specific time windows. Which means that the customers can choose their own preferred time window. 

For example, on a 09:00-17:00 day, customers can select morning delivery 09:00-13:00 or afternoon 

delivery 13:00-17:00. One of the most interesting KPIs right now are the number of late customers (and 

the total minutes being late). Also, we are interested in the KPI Average time after the start of 

TimeWindow which, as the name suggests, is the average amount of time customers must wait after 

the start of the TimeWindow. A lower Average Time After Start of TimeWindow is preferred, since 

customers won’t have to wait as long. Before we start experimenting, we will have to take another look 

at our Solomons nearest neighbor’s cost function. This cost function, as we have used (and talked 

about) before, has the following weights: 

𝐶𝑖,𝑗 = 𝑤1(0.025) ∗ 𝑑𝑖,𝑗 + 𝑤2(0.025) ∗ 𝑇𝑖,𝑗 + (0.95)𝑤3 ∗ max(0, 𝑣𝑖,𝑗) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠 ∗ max(0, −𝑣𝑖,𝑗) 

The reason that we chose for this distribution of weights now becomes useful. Earlier, we only had to 

deal with distance and time. Where now, we must deal with TimeWindows. In this scenario, we 

prioritize the slack time of the time window of the customer, thus giving it a higher weight compared 

to distance/travel time. 
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Low Demand Performance (Homogeneous and heterogeneous, Regular Day, TW) 

From this point on, the important information to save on the tables becomes a bit much, so we use 

some abbreviations in the tables (LM = Total Late Minutes, LC = Average Late Customers, ATAT = Average 

Time After TimeWindows). In the low demand scenario (Table 29: Performance Low Demand 

Homogeneous (Regular Day, TW)Table 29), it takes 8 S-ADVs and 4 Drones to deliver to each customer 

on time in their TimeWindow. As one can see, the R-ADV scenario does not get to the point of achieving 

zero late customers. This has to do with our Solomons Nearest Neighbor algorithm which is not really 

suitable for TimeWindow deliveries with high-capacity vehicles. Further explanation in conclusion.  
Table 29: Performance Low Demand Homogeneous (Regular Day, TW) 

ID S-ADV R-ADV UAV Del. Dist. LM LC Energy Util. ATAT Del. time 

1 10 0 0 43 109.37 0 0 3.83 73.42 69.15 01:21:57 

2 0 2 0 43 15.7 186.3 3 1.41 64.81 79.49 14:30 

3 0 0 4 43 65.05 0 0 2.73 62.68 37.36 28:03 

4 7 1 0 43 96.26 0 0 3.51 69.26 55.76 01:01:59 

5 0 1 3 43 34.13 138.32 1.1 2.05 50.19 58 22:24 

6 7 0 1 43 93.04 0 0 3.42 69.86 51.12 01:02:22 

7 3 0 3 43 75.74 0 0 2.99 64.17 42.22 42:58 

Average Demand Performance (Homogeneous and heterogeneous, Regular Day, TW) 

In the average demand scenario, the number of S-ADVs necessary to deliver the parcels to get zero late 

customers is 18, and the number of UAVs is 9. The R-ADVs do not improve after 5, since they drive a 

total of 5 trips which is enough to deliver each parcel (5*24 = 120, 120>106).   

Table 30: Performance Average Demand Homogeneous (Regular Day, TW) 

 

High Demand Performance (Homogeneous and heterogeneous, Regular Day, TW) 

In the high demand scenario, just like in the low and average scenario, the R-ADVs do not improve after 

8, since they drive a total of 8 trips which is enough to deliver each parcel (8*24 = 192). We observe 

that the 30 S-ADVS are sufficient for time window delivery without late customers, as well as 11 drones. 

Table 31: Performance High Demand Homogeneous (Regular day, TW) 

ID D S-ADV R-ADV UAV Dist. LM LC Energy Util. ATAT Del. time 

1 106 18 0 0 218.82 0 0 7.66 77.48 71.25 01:03:11 

2 106 0 5 0 26.84 114.43 2.5 2.42 37.91 72.29 12:53 

3 106 0 0 9 163.14 0 0 6.85 63.79 41.21 26:02 

4 106 15 1 0 198.37 0 0 7.52 72.9 77.43 52:56 

7 106 6 2 0 98.23 278.88 2.6 4.42 71.62 90.26 25:59 

8 106 0 2 3 78.92 0 0 4.22 61.61 70.02 13:56 

10 106 0 1 8 99.46 540.57 5.2 4.88 61.97 74.24 25:26 

11 106 15 0 3 224.85 0 0 8.29 71.55 59.45 57:20 

12 106 10 0 5 198.74 0 0 7.72 68.78 49.79 44:30 

ID D S-ADV R-ADV UAV Dist. LM LC Energy Util. ATAT Del. time 

1 192 30 0 0 382.94 0 0 13.44 53.57 74.52 01:00:11 

2 192 0 8 0 35.79 41.49 0 3.22 36.88 66.18 11:05 

3 192 0 0 11 288.68 0 0 12.12 48.92 55.63 20:11 

4 192 15 3 0 224.68 2.46 0.2 9.32 70.88 80.42 31:53 

5 192 0 3 8 83.37 26.9 1.4 5.07 64.4 80.78 17:42 

7 192 26 0 3 430.44 79.61 1.33 15.64 78.66 75.4 57:07 

8 192 8 0 8 328.83 0 0 13.05 77.25 64.75 30:53 
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Conclusion Phase 4 

From Phase 4, we can conclude that the following number of ADVs is necessary to meet the demand 

for parcels: 

Table 32: Conclusion Phase 4 (Number of ADVs) 

 Number of Vehicles necessary to achieve 0 late customers 

Vehicle Low (43) Average (106) High (192) 

S-ADVs 10 18 30 

R-ADVs 2 5 8 

UAVs 4 9 11 

The main conclusion drawn from phase 4 is the inability of the Solomons Nearest Neighbor to deal with 

high-capacity vehicles, such as R-ADVS, in case of strict TimeWindow constraints. The problem lies in 

how the algorithm assigns customers to trips.  

For example, in the low-demand scenario (43 parcels), a single R-ADV could technically deliver all 

parcels in two trips (2x24 = 48 capacity). However, because the algorithm now prioritizes meeting the 

strict time windows rather than minimizing distance, each trip takes a bit longer. As a result, one R-ADV 

is no longer enough, and a second R-ADV is needed to meet the demand and time windows.  

What happens is this: 

- The first R-ADV is filled with the “best” customers according to the cost function (fitting within 

the time windows and travel time) 

- The second R-ADV is then assigned to the remaining customers, who are often more spread 

out.  

In some cases, if a very large share of morning deliveries ends up in the second R-ADV (for example the 

case of 26 total morning deliveries vs 17 afternoon deliveries), it becomes nearly impossible for that 

second vehicle to meet all the morning time windows (especially when they are further apart).  

Not to forget that the service times per customer are not fixed (we use a distribution), so even small 

delays can cause the last few deliveries on a trip to be late. This issue affects the Late Customers KPI, 

which makes it almost impossible to get a good idea of the effectiveness of R-ADVs at strict time 

windows. The sequential filling of the vehicles using Solomons nearest neighbor prevents effective use 

of R-ADVs with strict TimeWindows. This is a limitation of our research. 

The UAVs and S-ADVs performed as expected and increased very much in necessary amounts. It 

remains the question, however, whether this increase in amount is worth the strict time windows.   
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5.3 Conclusion 
In this chapter, we experimented with different configurations for the campus case. At the start of the 

chapter, we aimed to answer the following research question: 

How does the autonomous delivery system perform across different configurations, and how does it 

compare to the current system? 

To answer this question, we answer it in different parts.  

ADV parcel delivery capacities 

First of all, we obtained a rough estimation of the number of parcels an ADV can deliver in a day (regular 

day 09:00-17:00 and night delivery 09:00-21:00).  

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 80 ∗  𝛼 + 10 ∗  𝛽 +  35 ∗ 𝛾 

𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑖𝑔ℎ𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≈ 120 ∗ 𝛼 + 12 ∗  𝛽 +  50 ∗ 𝛾 

This gives us an estimated guess on how many parcels an ADV can deliver in a day, which is useful 

information in value comparison. Deliveries with strict TimeWindows did not really gave us an accurate 

demand estimation formula, since it also really depends on the distribution of Morning/Afternoon 

deliveries. 

Vehicle-Type Performance analysis 

Across all the experimental phases, the ADV performance remained somewhat the same. There was 

not a vehicle that performed very differently in night delivery scenarios or smaller TimeWindow 

scenario. It must be noted that the sequential filling of vehicles with Solomons Nearest Neighbor 

algorithm is not suitable for higher capacity ADVs/vehicles in cases of strict time windows.  

R-ADVs (Road Autonomous Delivery Vehicles) demonstrated the best all-round performance in terms 

of energy efficiency, delivery time, and scalability. With a capacity of 24 and the ability to deliver around 

80 packages a day, they are ideal for campus-wide deployment or at least as the backbone of a 

heterogeneous fleet.  

UAVs (Unmanned Aerial Vehicles) showed surprisingly good results for a single capacity vehicle. Due to 

their speed and ability to bypass the traffic by skipping traditional road infrastructure, the delivery 

times are very short compared to the S-ADVs. This is also apparent in the total kilometers they must fly 

in a single delivery day. It is always significantly shorter than the S-ADVs, but not even close to the low 

kilometers the R-ADVs drive during a day. With a capacity of 1 and the ability to deliver around 35 

packages a day makes them scale very well. However, it makes them perhaps more suitable for 

supplementing deliveries in a heterogeneous fleet, but they are also certainly suitable for a 

homogeneous fleet.  

S-ADVs (Sidewalk Autonomous Delivery Vehicles) turned out to be the worst of the three. This might 

have been expected from the start, but the experiments showed that they really do not come close to 

the R-ADVs and UAVs in whatever area. With a capacity of 1 and the ability to deliver around 10 

packages a day, they are certainly not suitable for homogeneous package delivery. So, they can only be 

suitable for supplementary deliveries. However, since the UAV beats the S-ADVs in each aspect, this 

might not be the first supplementary choice.  
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5.3.1 Economic, Social and Environmental Assessment 
Assessing the ADVs across economic, social and environmental factors remains a challenge, especially 

given the limited data availability and the subjective nature of some criteria. This section still tries to 

assess the three ADVs based on available cost estimates, energy consumption, and potential social 

impacts.  

 

Economic Assessment 

Economic comparisons are difficult to make without having the prices of each vehicle. The vehicles 

used throughout this thesis-such as the Express Robot (R-ADV), Starship Robot (S-ADV), and Zipline 

Drone (UAV) do not share detailed cost information. In fact, all of the characteristics of these ADVs 

were already very difficult to find. 

There is one source online (Condliffe, 2022) stating that Kristjan Korjus said in 2018 that the price of a 

S-ADV was around 5000 dollars. Although the price is probably affected by inflation, the increasing 

adoption and technology maturity of such systems typically drive costs down. Therefore, we assume 

5000 dollars (roughly €4300) as a reasonable estimate for the unit price in this research. Since we do 

not have the official prices of the other ADVs, we propose a relative valuation based on their average 

delivery capacities per day: 

• S-ADV: ≈ 10 deliveries/day 

• R-ADV: ≈ 80 deliveries/day 

• UAV: ≈ 35 deliveries/day 

Assuming cost scales linearly with the delivery capacity: 

• An R-ADV could be valued at 8x the S-ADV price, € 34,400  

• A UAV could be valued at 3.5x the S-ADV price, € 15,000  

This over simplified approach allows a rough economic ranking. A UAV is likely to cost significantly less 

than € 15,000, making it a more cost-efficient option. Similarly, while an R-ADV may indeed cost more 

than an S-ADV, it is unlikely to be eight times as expensive. Based on these estimations, the UAV appears 

to offer the best cost-efficiency, followed by the R-ADV, with the S-ADV being the least economically 

favorable. We should also consider the operating costs, which in this case are electricity costs. 

Assuming a price of 0.32 euros per kWh (Overstappen.nl, 2025), the electricity price per day for each 

type of vehicle is: 

• Homogeneous S-ADV fleet (11): Total 7.54 kWh (€ 2,41) 

• Homogeneous R-ADV fleet (2): Total 1.86 kWh (€ 0,60) 

• Homogeneous UAV fleet (4): Total 6.87 kWh (€ 2,20) 

Even though the S-ADVs are the most cost efficient per vehicle per operating day, in total they are the 

least energy efficient, followed closely by UAVs and the most energy efficient are R-ADVs. 

Environmental Assessment 

Environmental comparisons are also difficult to make. Because each option is electrical, there are no 

emissions per vehicle (assuming electricity comes from clean sources). From the cost assessment, we 

know that R-ADVs are the most energy efficient, followed by UAVs and finally the S-ADVs.  
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Social Assessment 

The social assessment is arguably the most difficult to assess, mainly because it lacks the objective, 

simulation-based data available for economic and environmental performance. One of the most 

important social KPIs, the social perception of ADVs by campus students and residents, is pretty 

subjective and hard to quantify without survey-based research. 

Nevertheless, we can again make some estimations based on vehicle activity. On an average day, the 

delivery system requires: 

• 11 S-ADVs, covering a total of 215 kilometers 

• 2 R-ADVs, covering a total of 20 kilometers 

• 4 UAVs, covering a total of 163 kilometers 

Given these numbers, students and residents are much more likely to encounter S-ADVs in daily campus 

life. With their slow speed and regular occurrence on the network, S-ADVs are more visible and 

potentially more disruptive. The high number of vehicles and the total distance traveled imply a 

constant, noticeable presence, which could negatively influence public perception. R-ADVs are much 

larger and potentially noisier (likely near the legal limit of 56 dB because of their participation on the 

road with other cars). However, they have much lower presence on the roads. This limited presence, 

both in vehicle numbers and distance driven, likely results in lower visibility and lower perceived 

disturbance.  

UAVs are a completely different story, because they do not participate in traffic. They are, however, 

flying a total of 163 kilometers per day. They cover this distance through direct flight paths across 

campus, making them frequently visible overhead. They are also quit fast and maybe a bit loud (around 

60 dB), which could raise some concerns about noise pollution and safety, especially in usually quiet 

places.  

This analysis suggests that social acceptability is likely the highest for R-ADVs, moderate for UAVs and 

the lowest for S-ADVs. 

5.3.1 Recommendations for the University of Twente Campus 
Finally, we end with a recommendation to the University of Twente Campus. We recommend not to 

implement deliveries with time windows. Since it would be way too costly to achieve this compared to 

delivery without time windows.  

If you want an autonomous delivery system with full day (09:00-17:00) delivery to customers at their 

home, we recommend using a heterogeneous fleet of one R-ADV and two UAVs. This heterogeneous 

fleet can deliver up to around 150 parcels a day between 09:00-17:00 (covering days with low demand, 

average demand and even slightly higher than average demand).  

On a lower demand day, the single R-ADV or the two UAVs can deliver the parcels homogeneously 

(each with around 55% utilization). On an average demand day, a single R-ADV and UAV can deliver 

these packages with 91% utilization. On days of high demand, we recommend using an option of 

evening delivery, which allows this fleet to deliver 192 parcels with a utilization of 83%. If evening 

delivery is not an option, the heterogeneous fleet needs an additional two drones to cover the high 

demand days. 

As we read before, findings, basing the decision on economic, environmental and social is quite 

difficult.  
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Comparison with current scenario (electric van) 

From the experiments, we know that only one electric van (current situation) can deliver the parcels 

on low demand and average demand days. On high demand days, this number doubles. So, we can 

draw up some rough comparisons. On low demand and average demand days, the autonomous 

delivery system requires one worker (09:00-17:00) which monitors the autonomous vehicles and loads 

them with packages. The same is true for the worker on the electric van, which delivers the packages 

himself. This means that in personnel costs, this is the same. In higher demand days, the autonomous 

delivery system requires late night delivery, so the worker needs to work for four more hours (a total 

of 12 hours of work). In the case of electric van, however, there are now 2 vans required. This means 

that a total of 2 workers need to work for 8 hours, which totals 16 hours (4 hours more). This 

autonomous delivery system is therefore more efficient in terms of staff costs (on high demand days), 

which is usually a high cost in business.  

Another advantage of the autonomous delivery system is that personnel are only required at a single 

location to monitor operations and load parcels. In contrast, the current delivery process typically 

requires two delivery workers, especially on high-demand days, to carry out the deliveries using vans. 

The autonomous system’s ability to operate with just one staff member, as opposed to the necessity of 

two in the current setup, significantly increases the operational flexibility. 

The argument could be made that we exclude the larger packages which are not considered because 

they do not fit in with the ADVs, which would indicate that in the autonomous delivery scenario, there 

should be someone delivering them as well. However, we compared the same type and number of 

packages for both situations, so this is also the case for the current scenario. In the current situation, 

the electric bus can only handle the demand (98%). So, this will no longer be possible in the situation 

with the large packages. This means that with average demand, an additional driver must also be used 

in the current scenario (which evens it out). 
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Chapter 6 Conclusion and Recommendations 

The most important findings and recommendations are summarized in this chapter by systematically 

revisiting each stage of the research and answering the associated research questions. This structured 

approach highlights how the study addressed the central problem and provides a comprehensive 

overview of key findings. 

Additionally, we outline the limitations of the study and explain how the research could have been 

improved. Finally, we give recommendations for future research regarding this topic. 

6.1 Most important Findings and Recommendations 
At the start of this research, we encountered the problem that the current last-mile delivery system 

was approaching a point that it would no longer be sustainable due to various challenges. Autonomous 

delivery presented a potential solution, but it was unclear what approach should be used to implement 

this. To address this problem, we formulated the following main research question:  

How to design an autonomous B2C last mile delivery system, using the Campus of the University of 

Twente as a case study? 

This question was answered using four different stages, which we will cover right now. 

Stage 1. Literature review 

The thesis started with a literature review with the goal of answering the following question:  

What does existing literature reveal about the technologies, models and methods available for 

designing and evaluating autonomous last-mile delivery systems? 

The review identified five key challenges facing the current last-mile delivery system: Operational 

Challenges, Infrastructure challenges, delivery challenges, logistical challenges and environmental 

challenges. Autonomous Delivery Vehicles emerged as a promising innovative solution to these issues. 

Three types of ADVs were identified: Road Autonomous Vehicles (R-ADVs), Sidewalk Autonomous 

Vehicles (S-ADVs) and Unmanned Aerial Vehicles (UAVs), each with unique operational characteristics 

and constraints. The literature also detailed various possible autonomous delivery system 

architectures, including single-tier networks, two-tier networks and ADV-aided systems. Mathematical 

modeling approaches are widely used to model and optimize these delivery systems. Exact methods 

such as Integer Linear Programming provide can provide a fast solution for smaller VRPs. Once the size 

of the problems increases, non-exact methods become necessary to find a (near) optimal solution. 

Constructive heuristics, like the nearest neighbor approach, create an initial solution, which can then 

be optimized by local search heuristics like 2-ot, and 3-opt. Metaheuristics are a problem independent 

technique which can be applied to a broad range of problems. Finally, the literature revealed a wide 

range of KPIs to evaluate last-mile delivery systems. However, their applicability largely depends on the 

specific context and objectives of the evaluation.  

Stage 2. Design Framework with Simulation Model 

The second stage of the study focused on creating an autonomous last-mile delivery system and 

presenting the simulation model developed for evaluation. In this stage, the aim was to answer the 

following question: How can an autonomous B2C last-mile delivery system be designed, using a set of 

configurable design choices, based on the characteristics of a specific environment? 

We have created a general framework structured as a “menu of choices”, helping system designers 

make informed decisions about service area boundaries, demand patterns, depot placement, and 
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operational logistics. These design choices are not only theoretically grounded but also serve as direct 

inputs to the simulation model used for evaluation. 

Stage 3. Case study: Applying the Framework to the University of Twente 

In this stage, the system design framework and simulation model was applied to the specific use case 

of the University of Twente campus. We aimed to answer the following question: How can the 

autonomous last-mile delivery system be configured for the University of Twente campus using the 

developed framework and simulation model? 

Based on campus characteristics and available data, a feasible autonomous delivery system was 

configured. This included decision-making in: 

• Service area: University of Twente campus  

• Demand estimations: Parcel demand was estimated using partial delivery data from PostNL 

and extrapolated with seasonality patterns derived from an external dataset 

• Depot configuration: The garage on campus will be used as a depot, meaning that we use a 

two-tier delivery system 

• Operational logistics: Three ADV types were used for the characteristics (Starship Robot for S-

ADV, Macrostep for R-ADV and Zipline for UAV), fleet configuration are used as simulation 

input, and we use a constructive heuristic (Solomons Nearest Neighbor) for our routing 

strategy 

This information was entered into the simulation model created for this research and used for 

evaluation. 

 

Stage 4. Experiments and Evaluation 

This stage focused on conducting simulation experiments using the previously selected configurations. 

The goal was to answer the following question: How does the autonomous delivery system perform 

under different design configurations, and which setup offers the best operational performance? 

A series of experiments were conducted to test the system under different configurations, including 

variations in fleet composition (homogeneous vs heterogeneous), customer demand levels (43, 106, 

192), and delivery constraints (09:00-17:00 delivery, 09:00-21:00 and strict time windows of 09:00-

13:00 & 13:00-17:00).  

For campus deliveries, we recommend not to implement deliveries with strict time windows. Since it 

would be way too costly to achieve this compared to delivery without time windows. For an 

autonomous delivery system with full day (09:00-17:00) delivery to customers at their home, we 

recommend using a heterogeneous fleet of one R-ADV and two UAVs. This heterogeneous fleet can 

deliver up to around 150 parcels a day between 09:00-17:00 (covering days with low demand, 

average demand and even slightly higher than average demand).  

On a lower demand day, the single R-ADV or the two UAVs can deliver the parcels homogeneously 

(each with around 55% utilization). On an average demand day, a single R-ADV and UAV can deliver 

these packages with 91% utilization. On days of high demand, we recommend using an option of 

evening delivery, which allows this fleet to deliver 192 parcels with a utilization of 83%. If evening 

delivery is not an option, the heterogeneous fleet needs an additional two drones to cover the high 

demand days. 
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Concluding 

So, to design an autonomous B2C last mile delivery system, using the University of Twente campus as 

a case study, it is essential to follow a structured approach that combines literature insights, a 

configurable design framework, and simulation-based evaluation.  

The recommended design, a two-tier delivery system using a heterogeneous fleet of one R-ADV and 

two UAVs (operating within a full-day delivery window), proved to be the most efficient across varying 

demand levels. This configuration balances operational efficiency, scalability, and practicability, while 

also avoiding the high costs associated with strict time windows or overcapacity.  

This research does not only provide a concrete system design for the campus but also offers a general 

framework and methodology that can guide system designers for similar implementations in other 

environments. The framework is highly adaptable and flexible, making sure that it can be tailored to 

the specific needs of many different environments. 

In the following sections, we reflect on the limitations of this study and propose ideas for future 

research. 

6.2 Limitations 
Although the findings and recommendations of this research are very interesting, the research also had 

some limitations. In this section we acknowledge the limitations of this research and give suggestions 

on how this research could have been improved.  

Model/Framework limitations 

First of all, the framework only serves as a general guide in designing autonomous delivery systems. 

While it provides a structured and adaptable approach, it does not claim to capture every possible 

design factor or operational nuance. 

As we have discussed during this research, the Solomons Nearest Neighbor is not really effective for 

strict window customer allocation because of its sequential filling algorithm.  

Creating a simulation model which represents the real word completely is very challenging, which is 

why a lot of simulation models are based on certain assumptions. Assumptions such as: Independent 

days, no traffic interference and average vehicle speed (see Error! Reference source not found.) can 

potentially be removed by more extensive programming. This would make the model more accurate 

and thus also give more accurate results.  

Although the literature review covered various economic, environmental, and social Key Performance 

Indicators (KPIs), this research found a lack of quantifiable KPIs that accurately assess and compare 

autonomous delivery systems on these dimensions using the simulation model. For example, 

environmental impact can be evaluated on CO2 emissions and energy usage, but this is minimal for all 

of the ADV options studied. Similarly, social impacts such as effects on employments and user 

acceptance were not really quantitatively measured.  

Campus specific limitations 

Another limitation of the research is the almost non-existent information on package/customer 

distribution on the campus. Due to privacy reasons this information cannot be made public, but it does 

make for a limitation of the research. More accurate information about the housing of students 

(numbers per house) and the package distribution (distribution of parcels per house, seasonality) will 

improve the model significantly and give more accurate results. The same principle holds for more 

accurate information on the ADV characteristics. 
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We chose to apply a fixed number of 10 replications per experiment. In each phase, we only used 

simulation configurations that successfully delivered all packages (on time) to be considered valid. Any 

replication in which one or more packages remained undelivered were not considered sufficient. For 

the other KPIs, no relative error is calculated, which represents a limitation of the study. 

The implementation of autonomous delivery systems is subject to legal and regulatory frameworks. 

This research assumed feasibility of UAV and ground ADV deployment on campus, while there is a high 

probability that UAV delivery is not possible with the Twente Airport near the campus.  

6.3 Future Research 
In this section, we outline opportunities for future research building upon the foundations of this study. 

We start by discussing the possibilities for the specific case of the University of Twente campus, 

followed by the potential of this research in a broader sense.  

A natural first step of this research would be to deal with the limitations of the model and perhaps 

create a more accurate simulation model.  

For this scenario of the University of Twente case, an extension of parcel delivery to the university 

buildings could be considered. So, also consider the deliveries to the university buildings. As well as 

experimenting with what else is possible with autonomous transport. For example, one very interesting 

option is the Generalized Traveling Salesman Problem, in which each node has a set of different 

TimeWindows. For example, morning delivery at home and afternoon delivery at work. With the help 

of an autonomous system that can dynamically adapt, this could possibly work well in the future. 

This research was conducted with not only the University of Twente campus in mind, but also the 

broader picture of autonomous last-mile delivery. So, we encourage future research by using the 

framework that we have created and applying it to different use cases. For similar use cases to test 

whether this framework is useful for cases like a campus, but also completely different cases to (stress) 

test the possibilities of the framework.  

Every component of the framework can also be more extensively researched. For instance, future 

research could investigate alternative demand forecasting methods or evaluate routing algorithms that 

better handle complex constraints such as dynamic traffic or customer preferences.  

Finally, this research could be used as the foundation of a digital twin model, which means that the 

routing and findings of a day can be used as input for actual deliveries. 
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Appendix A) Detailed KPI selection 
 

Economic dimension 
The economic dimension of delivery systems evaluates efficiency, reliability, cost-effectiveness, and 

customer satisfaction. These KPIs provide insights into the financial sustainability and viability of 

logistics operations, particularly in autonomous parcel delivery. 

1. General 

• Distance (km) – Total Distance 

• Moving time (hrs/mins) – Total moving time 

• Loading/Unloading time (hrs/mins) – Total unloading/loading time 

• Average Delivery Time (mins) -Time taken from pickup to delivery 

• Delivery throughput (parcels/hour/day) – number of parcels delivered per timeframe 

• Idle Rate / Utilization rate (%) - Percentage of time a vehicle is doing something ‘useful’ such 

as loading, unloading, moving, charging. 

2. Reliability and Performance 

• On-Time Delivery Rate – Percentage of deliveries completed within the expected timeframe 

• Deviation Time (mins) – Total Time deviating from customers time windows 

• Error rate (%) – Number of incorrect or failed deliveries 

• Mean time between failures – Average time between system failures 

3. Cost efficiency  

• Cost per delivery (€/parcel) - Total cost per successful parcel 

• Energy Consumption per km (kWh/km) – Evaluates energy efficiency 

• Maintenance Costs (€) – Expenses for vehicle and system upkeep 

• Daily Operating Costs (€) – Total Daily Operational Expense 

4. Customer Satisfaction 

• Customer Satisfaction Score (%) 

Environmental dimension 
Environmental KPIs focus on reducing the ecological footprint of logistics operations. These metrics are 

typically quantifiable and standardized, making them easier to track. 

• Total Energy Consumption (kWh/day) – measures the total energy consumption of the system 

• CO2 emissions (kg/km) – Total carbon footprint per ton-km 

• Nox, Sox emissions (kg/km) – Measures harmful pollutants affecting air quality 

• Charging efficiency (%) – Measures energy transfer efficiency  

• Noise Pollution (dB) – Measures the sound emissions generated by logistics operations.  
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Social/Societal Dimensions 
The social dimension is much more difficult to quantify, as it depends on survey-based data such as 

public perception or data like workforce impact and operational safety. 

Safety & Security  

• Accident Rate (%) – Measures the frequency of Accidents 

• Emergency Stop Rate (%) – Number of times a vehicle executes an emergency stop 

• Failure to avoid obstacles (%) – Rate of unsuccessful obstacle avoidance attempts  

• Crime incidents (#) – Number of crime incidents 

2. Workforce Impact 

• Employment Turnover (%) – How much staff can keep their job 

• Training Hours per Employee – How much training hours are required for employees. 

3. Public Perception & Complaints 

• Public Perception (Score) – Survey based score on public perception 

• Work-life balance score (Score) – Survey based score on work-life balance 

• Public complaint rate (#) – number of complaints per day/week 

• Total minutes late (mins) – Total minutes of the ADVs being too late on a single day 

• Late customers – Average number of customers being late on a single day 

• Average Time After TimeWindows – Average time the customer must wait in their time 

window until they receive their package. 
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Appendix B) Latitude and Longitude polyline campus 
This appendix shows the latitude and longitude coordinates of the campus area. 

Node_Number Latitude Longitude Node_Code 

1 52.2346702 6.8609214 1581427650 

2 52.2360103 6.8615901 1581427654 

3 52.2367369 6.8623460 1581427658 

4 52.2368486 6.8630453 1581427662 

5 52.2368848 6.8640121 1581427671 

6 52.2373811  6.8645515 1581427670 

7 52.2394155 6.8648960 1581427678 

8 52.2400050 6.8634598 1581427682 

9 52.2405613 6.8622939 1581427688 

10 52.2413688 6.8613765 1581427690 

11 52.2420523 6.8611371 1581427692 

12 52.2425458 6.8568649 1581427696 

13 52.2439463 6.8568437 1581427702 

14 52.2476731 6.8536048 1581427708 

15 52.2486595 6.8519172 1581427712 

16 52.2491214 6.8510241 1581427716 

17 52.2490803 6.8548766 8390256680 

18 52.2504145 6.8550101 8390256679 

19 52.2503258 6.8559694 8390256678 

20 52.2510970 6.8570688 8390256677 

21 52.2510467 6.8573486 8390256676 

22 52.2516628 6.8577781 8390256675 

23 52.2522441 6.8481536 670918703 

24 52.2518093 6.8448758 1581427731 

25 52.2499176 6.8461647 1581427719 

26 52.2481438 6.8460123 1581427709 

27 52.2448187 6.8453539 1581427706 

28 52.2438252 6.8450541 8224509753 

29 52.2428283 6.8449027 7531709842 

30 52.2406722 6.8442565 1581427689 

31 52.2390723 6.8490913 1581427673 

32 52.2380581 6.8516822 1581427672 

33 52.2346702 6.8609214 1581427650 
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Appendix C) Extra demand calculations 
This appendix describes the demand calculations in more detail. The first picture shows how the data 

is presented in the dataset, with daily total number of parcels per van round.  

 

As we can see, these are only datapoints from July 1st. The dataset has more than 13000 rows of 

delivery data, and by summing each row “Total number of parcels” we get to a total of 2,005,728 

parcels delivered. Since we have daily volume data, we can calculate the weekly package distribution.  

Week number Percentile Week number Percentile Week number Percentile 

1 0,010605631 19 0,016981872 37 0,016466847 

2 0,024004762 20 0,02141069 38 0,015995696 

3 0,021054211 21 0,020495312 39 0,01569755 

4 0,019482213 22 0,018773741 40 0,016798398 

5 0,019314194 23 0,018419755 41 0,018263203 

6 0,019793322 24 0,02025151 42 0,018308075 

7 0,018604725 25 0,018911846 43 0,018540908 

8 0,017184791 26 0,019197528 44 0,018580295 

9 0,016850249 27 0,026170062 45 0,01878122 

10 0,018712417 28 0,018827089 46 0,020048092 

11 0,018204372 29 0,017891767 47 0,02135485 

12 0,017988989 30 0,013538233 48 0,022506552 

13 0,014673981 31 0,017579661 49 0,033668091 

14 0,015712507 32 0,019513124 50 0,038014146 

15 0,018110142 33 0,01619363 51 0,033512537 

16 0,01905693 34 0,015873048 52 0,019648237 

17 0,017417126 35 0,017563706   

18 0,017962066 36 0,011490098   
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Since March 14th falls in the middle of week 11, we sum the parcel distribution percentages from 

week 1 to 10 and add half of week 11. This results in 0.194709 (19.47%).  

Next, we use this proportion to estimate the total annual parcel volume for campus deliveries. We 

known that around 5000 parcels were delivered during the first 10.5 weeks of the year. Dividing this 

by the 19.47% share gives an estimated annual volume: 

5,000

0,194709
= 25.680 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (𝑃𝑜𝑠𝑡𝑁𝐿) 

Since PostNL holds 50% of the market share, the total number of parcels delivered annually is: 

25,680 ∗ 2 = 51.360 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡) 

To determine the number of parcels suitable for autonomous delivery, it is important to consider size 

and weight constraints. Back in 2019, Amazon’s CEO Worldwide consumer stated that: “between 75 

and 90% of Amazon deliveries could technically be handled by the UAV” (D’Onfro, 2019). Since the UAVs 

have the most restrictive limitations in terms of payload and volume, any parcel that is eligible for UAV 

delivery is also suitable for S-ADVs and R-ADVs. Therefore, the share of parcels eligible for delivery via 

autonomous methods can be estimated at 75-90%. In this study we take the most conservative number 

75%. 

51.360 ∗ 0,75 = 38,520 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡) 

The graph below shows the expected number of packages delivered each week to the campus based 

on the total of 38,520 packages per year. 
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In addition to the weekly distribution of parcels we also calculated the daily and monthly distributions 

to gain insight into seasonal variations across different time periods. By combining weekly and daily 

distributions, we roughly estimate the daily number of parcels delivered. This enables us to compute 

key demand statistics, including: 

• Median and Average Daily Parcel Volume 

• Top 10% busiest days (highest demand periods) 

• Lowest 10% least busy days (low-demand periods) 

 

Parcel distribution of the daily demand (daily percentages combined with weekly) with high demand 

days in red, low demand days in green. 
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Appendix D) Vehicle Characteristics 
The entire vehicle characteristics table is given here in the Appendix. Some information on load and 

unload time does not exist and can hardly be derived from data. These are estimated guesses by us, 

to try and make it as realistic as possible. The loading time per parcel for the S-ADV and R-ADV are 

guessed at 60 seconds, since that is what it probably would take back in the depot to load one parcel. 

Loading the UAV takes a bit longer because it makes use of a docking station. Unloading time of the 

UAV is also considered as the longest, since these UAVs make use of a droid that drops down to 

deliver the package. We assume that this will only happen once the customer is present at a drop-off 

location. The unload time of the R-ADV is assumed to be shorter than the S-ADV because the R-ADVs 

are designed for delivery to a single customer, which might increase the time needed for unlocking 

the S-ADV. 

Vehicle Characteristic Value Source or Extra Explanation 

S-ADV  Speed 3 km/h STARSHIP DELIVERY ROBOT (n.d.) 

 Load time 60 seconds/parcel Estimated guess 

 Unload time 120 seconds/parcel Estimated guess 

 Max service range Operating radius 
3.2km 

Starship Technologies (2024b) 

 Storage capacity 1 unit Starship Technologies (2024b) 

 Noise 0 (db) Industry - Starship Deliveries (2024) 

 Battery Capacity 1260 (Wh) Industry - Starship Deliveries (2024) 

 Energy Usage 35 (Wh/km) 12 hours of driving 3 km/h -> 36 km max  
1260 Wh/36 = 35 (Wh/km) 

 Charge speed 200 (W)  (STARSHIP DELIVERY ROBOT, n.d.)  

R-ADV Speed 15 km/h  Max 25 (Express Robot, 2025), average around 15 km/h 
in urban area 

 Load time 60 sec per parcel Estimated guess 

 Unload time 60 seconds Estimated guess 

 Max range 80 km 100 in perfect conditions (Express Robot, 2025), 
realistic 80 

 Storage capacity 24 units (Express Robot, 2025) 

 Noise 56 (db) Legal limit (Waarom Een Elektrische Auto Geluid Maakt 
| ANWB, n.d.) 

 Battery Capacity 7200 (Wh) (Express Robot, 2025) 

 Energy Usage 90 (Wh/km) 7200Wh / 80km = 90 (Wh/km) 

 Charge speed 1440 (W)  From 20% to 90% in 3.5 hours (Express Robot, 2025). 
(0,7*7200)/3,5 = 1440 

UAV Speed 35 km/h  Max 112 km/h (Zipline Fact Sheet | Zipline UAV Delivery 
& Logistics, n.d.). Estimated average 35 km/h in small 
urban area 

 Load time 120 seconds/parcel Estimated guess 

 Unload time 300 seconds/parcel Estimated guess 

 Max service range 16 km (Zipline Fact Sheet | Zipline UAV Delivery & Logistics, 
n.d.) 

 Storage capacity 1 unit (Zipline Fact Sheet | Zipline UAV Delivery & Logistics, 
n.d.) 

 Noise 60 (db) Youtube video (Marques Brownlee, 2025) 

 Battery Capacity 1333 (Wh) Battery of UAV 3 times as heavy 4000 Wh (DJI DB2000 
Intelligent Flight Battery, n.d.). 4000/3 = 1333 Wh 

 Energy Usage 42 (Wh/km) Max fly range of 16*2 = 32 km 

 Charge speed 661 (W) Charging speed also 1/3 (DJI DB2000 Intelligent Flight 
Battery, n.d.) 
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Appendix E) Model Documentation 

 
This Appendix includes all the extra interesting information on the simulation model. It starts with an 

overview of the four entities (Vehicle, Location, Route, Trip) and Action class.  

Vehicle 

Properties Description 

Type S-ADV, R-ADV, UAV or electric van 

Load_Time Load time of the vehicle (seconds) 

Unload_Time Unload time of the vehicle (seconds) 

Speed Average speed (km/h) 

Noise_Pollution Noise Pollution of the vehicle (dB) 

Storage_Capacity Storage Capacity of the vehicle (units) 

Battery_Capacity Battery Capacity of the vehicle (kWh) 

Energy_Usage Energy Usage of the vehicle (kWh/km) 

Charge speed Charge speed of the vehicle per hour (kW/h) 

 

Location 

Properties Description 

Type Warehouse or Customer Location 

Georeference Latitude and Longitude of the location 

Time_Window_Open Opening time of the service window 

Time_Window_Close Closing time of the service window 

Demand Demand for deliveries at this location 

Service_Time Time required for service at this location 

 

Action 

Properties Description 

Type Charge, Load, Unload, Wait, Move 

Lifecycle The lifecycle status of an action: “Requested,  

Trip The overall trip associated with the action 

Route The route associated with the action 

Location The location associated with the action 

from Starting location of the action (in case of move) 

to Destination of the action (in case of move) 

Expected Duration Expected Duration at the start of the day 

Real Duration Real Duration during the day 

 

Trip 

Properties Description 

Locations List of locations to visit 

Vehicle The vehicle assigned to the trip 

Actions List of all the actions included in the trip 

Expected Duration Expected Duration at the start of the day 

Real Duration Real Duration during the day 
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Route 

Properties Description 

Origin Starting location of the route 

Destination Ending location of the route 

Length Length of the route 

Coordinates Coordinates 

 

We will also go over the simulation model in a chronological sequence. Covering the manual mode first 

and then the simulation mode.  

Input tab 

The simulation model’s “Input” tab is displayed below. The user can choose which vehicles will be used 

in the simulation, how many, and with what characteristics. Before customers can be generated, the 

input values should be determined.  
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Customer Generation tab 

The customers can be generated under the customer generation page once the user has entered the 

simulation model’s correct input parameters. By entering the location Query (standard: Universiteit 

Twente), the relevant and available housing tags are displayed. The corresponding buildings will appear 

on the map below if specific tags are selected. Once the user is satisfied with the selection of 

tags/buildings, the customers can be generated. The user can choose the type of demand per customer, 

the number of customers, and whether there will be time windows using the sliders and check boxes. 

If all done, the user could simply generate the customers by pressing the button, and the map with the 

customers are shown on this screen. 
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Manual Mode (Main tab) 

Once the user has customized the simulation with their own inputs and generated the customers, the 

manual mode can be used. The user will see the customers’ locations on the delivery map, and by 

pressing on the button Allocate Vehicles to Customers, the simulation will allocate the available vehicles 

to the customers (using the Solomons Nearest Neighbor allocation). This creates the ‘Trips’ of the 

model, which can be viewed under Detailed Trip View. 
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This creates the ‘Trips’ of the model, which can be viewed under Detailed Trip View. Here, the user can 

highlight a specific trip and see the actions and their expected durations. The route is also highlighted 

on the map itself. By pressing the button Start Deliveries, the trips will be started. 
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At periodic intervals, the 

location of the vehicles and 

the other information below 

are updated. The KPIs will 

appear on the Outputs tab at 

17:00, at the end of the day. 
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Output tab 

As said before, at 17:00 the KPIs will become visible in the Output tab. 
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Appendix F) Detailed Experiments Section 
In this Appendix, we will go over the simulation model in a chronological sequence. Covering the 

manual mode first and then the simulation mode 

Phase 1 
The main goal of phase 1 is to gain a rough understanding of the number of vehicles we need to cover 

the demand on a regular day (09:00-17:00), without considering time windows constraints. This phase 

gives us the basis we need for further experimentation. Due to the extensive number of experiments 

conducted, most detailed results and tables are provided in the Appendix. In phase 1, we focus 

exclusively on the key performance indicator Successful Deliveries, aiming to identify the minimum 

number of vehicles needed to fulfill all deliveries. Phase 1 is structured as follows: we first determine 

the number of required R-ADVs to cope with low, average and high demand, followed by the same 

analysis for S-ADVs and UAVs.  

 

We start this phase by first analyzing the scenario Average demand. An initial experiment was 

conducted using a fleet size of 5, 10, 15, and 20 street Vehicles. The results, shown in Table 15, reveal 

that the key performance indicators (KPIs) were nearly identical across all configurations. All setups 

successfully completed all deliveries with no unplanned stops and minimal variation in delivery time or 

energy consumption. Notably, the configuration with only 5 street Vehicles already achieved full 

delivery coverage, with a utilization rate of 35.35%. 

Exp # of  
R-ADVs 

Total  

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 5 19.11 106.0 5.0 26.64 00:06:01 

2 10 19.13 106.0 5.0 13.46 00:06:05 

3 15 18.86 106.0 5.0 8.72 00:05:55 

4 20 19.42 106.0 5.0 6.51 00:05:53 

Since the configuration with 5 Vehicles showed only ~35% utilization, we investigated whether even 

fewer street Vehicles could achieve full delivery capacity. A second experiment tested configurations 

with 1 to 5 Vehicles. The results below (Table 16)demonstrate that two Vehicles were sufficient to 

handle all regular-day deliveries. 

Exp # of 
R-ADVs 

Total  

Distance 

Successful + 

Failed  

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 1 14.86 81.33 4.0 98.74 00:05:50 

2 2 20.4 106.0 5.0 66.96 00:06:03 

3 3 20.06 106.0 5.0 44.6 00:06:02 

4 4 20.61 106.0 5.0 33.92 00:06:09 

5 5 19.84 106.0 5.0 26.52 00:05:59 

This indicates that two street Vehicles can comfortably meet daily delivery demands, and a single robot 

has a maximum delivery capacity of around 60 parcels (regular day, no time windows). Whether this 

holds on high-demand days are explored in the following section. Next, the experiments for low 

demand (Table 17) and high demand (Table 18) are shown in tables on the next page.  
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Exp # of  
R-ADVs 

Total 

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 1 11.66 43 2 53.19 00:05:56 

2 2 11.8 43 2 28.42 00:06:23 

Even a single street robot was able to handle all 43 deliveries comfortably, with a utilization of 73%. 

Which, interestingly, does match what we saw earlier, that the street robot is able to deliver around 60 

parcels a day (43/60 is around 73%).  

 

Exp # of  
R-ADVs 

Total 

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 2 25.42 167 8 101.83 00:05:52 

2 3 26.7 192 8 77.59 00:05:50 

3 4 28.1 192 8 58.53 00:05:52 

With 4 street Vehicles, all 192 deliveries were completed. At 3 Vehicles, some unplanned deliveries 

remained. Again, notice the fact that this is conform to the 60 packages a day. 

Number of S-ADVs 

Unlike street Vehicles, sidewalk robot configurations showed significant variation in performance 

depending on fleet size. This is expected, given their lower carrying capacity and reduced travel speed. 

Exp # of  
S-ADVs 

Total  
Distance 

Successful  
Deliveries 

Trips Util. (%) Avg Delivery Time 

1 5 97.28 66.0 66.0 100.43 00:36:42 

2 10 204.0 102.33 102.3

3 

100.18 00:47:01 

3 15 209.08 106.0 106.0 68.0 00:46:11 

4 20 209.2 106.0 106.0 51.17 00:46:20 

From these results, it appears that a fleet of 10 S-ADVs is close to optimal, balancing capacity and 

utilization. To fine-tune this further, additional experiments were conducted with 10, 11, and 12 

vehicles 

Exp # of  
S-ADVs 

Total 
Distance 

Successful 
Deliveries 

Trips Util. (%) Avg Delivery Time 

1 10 203.43 103 103.33 99.55 00:46:22 

2 11 213.41 106.0 106.0 95.09 00:47:21 

3 12 218.8 106 106 89.15 00:48:44 

The results indicate that 11 sidewalk Vehicles offer the best performance with near-complete 

deliveries, minimal unplanned stops, and excellent utilization. 

S-ADVs (Low Demand) 

Exp # of 
sidewalk 
Vehicles 

Total 

Distance 

Successful 

Deliveries 

Unplanned 

Deliveries 

Energy 

(kWh) 

Trips Utili (%) Avg 

Delivery 

Time 

1 3 59.41 35.33 7.67 2.08 35.33 99.86 00:40:44 

2 4 82.45 40.33 2.67 2.89 40.33 100.17 00:47:46 

3 5 80.89 43.0 0 2.83 43.0 79.72 00:44:29 

S-ADVs required 5 vehicles to ensure full delivery without failure, with a utilization of 83%. Lower 

numbers resulted in unplanned deliveries. 
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S-ADVs (High demand) 

Exp # of 
sidewalk 
Vehicles 

Total 

Distance 

Successful 

Deliveries 

Unplanned 

Deliveries 

Energy 

(kWh) 

Trips Utili (%) Avg 

Delivery 

Time 

1 15 301.86 167.67 24.33 10.57 167.67 99.85 00:43:07 

2 16 324.97 170 22 11.37 170 100.24 00:45:27 

3 17 347.22 179 13 12.15 179 100.69 00:46:02 

4 18 365.8 189 3.0 12.8 189 100.02 00:45:53 

5 19 384.95 189.67 2.33 13.47 189.67 98.89 00:47:43 

6 20 394.65 192 0 13.81 192 95.94 00:48:02 

7 21 394.55 192 0 13.81 192 91.76 00:48:14 

With 20 sidewalk Vehicles, all 192 deliveries were able to be completed. The utilization of 95.57 shows 

us that there is not a lot of room left for more parcels. 

Number of UAVs (Average demand) 

For the UAV Vehicles, the initial experiment using 5 to 20 UAVs revealed little variation in KPIs. Even 5 

UAVs could complete all deliveries efficiently, suggesting overcapacity in larger fleet sizes. 

Exp # of  
UAVs 

Total 
Distance 

Successful 
Deliveries 

Trips Util. (%) Avg Delivery 
Time 

9 5 161.02 106.0 106.0 56.16 00:12:42 

10 10 164.15 106.0 106.0 25.61 00:11:35 

11 15 160.57 106.0 106.0 17.33 00:11:50 

12 20 156.66 106.0 106.0 12.85 00:11:38 

 

To determine the minimum viable fleet size, experiments were also run with 1 to 5 UAVs. 

Exp # of 
UAVs 

Total 

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg 

Delivery 

Time 

1 1 38.4 41 41 100.34 00:11:50 

2 2 89.51 74 74 100.45 00:13:01 

3 3 150.56 102 102 101.74 00:14:21 

4 4 161.38 106 106 76.43 00:15:52 

5 5 162.07 106 106 57.31 00:12:58 

The data shows that at least 4 UAVs are required to ensure full delivery capacity. Although 3 UAVs cover 

a large portion, they fall just short.  

UAV Vehicles (Low demand) 

Exp # of 
UAVs 

Total 

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 1 48.34 35.67 35.67 104.61 00:14:07 

2 2 61.99 43 43 55.24 00:12:519 

Two UAVs were required to meet low demand fully. One UAV left about 11 deliveries unfulfilled. 
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UAVs (High Demand) 

Exp # of 
UAVs 

Total 

Distance 

Successful 

Deliveries 

Trips Util. (%) Avg Delivery Time 

1 5 242.18 175.33 175.33 101.31 00:13:53 

2 6 294.45 192 192 96.39 00:14:27 

3 7 289.07 192 192 78.37 00:13:44 

Seven UAVs were required to fulfill all deliveries at high demand, though delivery times rose 

significantly. 

Conclusion Phase 1 

The same type of experiments was conducted with the S-ADVs and the UAVs. All these experiments 

and their outcomes can be found in Appendix X. The results are shown in Table 19. 

 Number of Vehicles necessary to fulfill entire demand 

Vehicle Low (43) Average (106) High (192) 

S-ADVs 5 11 20 

R-ADVs 1 2 4 

UAVs 2 4 6 

 

Based on our own observations, we can state that the number of vehicles necessary to fulfill the entire 

demand of a regular day (09:00-17:00, no time windows) have a linear growth. For the specific 

conditions of our research, we can formulate the following equation: 

# 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑑𝑎𝑦 ≈ 60 ∗  𝛼 + 10 ∗  𝛽 +  30 ∗ 𝛾 

Where: 

𝛼 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅 − 𝐴𝐷𝑉𝑠 

𝛽 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆 − 𝐴𝐷𝑉𝑠 

𝛾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑟𝑜𝑛𝑒𝑠 

 

In Phase 2, we will test and try this equation by creating heterogeneous fleets.  
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Phase 2 
Now, we are interested in the heterogeneous fleet scenario, where a different combination of vehicles 

is allowed to deliver parcels. From this point on, we begin using the KPIs discussed earlier, since a lot 

of combinations will satisfy the demand of the parcels. We do not consider time windows in this phase, 

so social KPIs will not be measured. Again, more detailed information on the experiments is given in 

the Appendix. To estimate sufficient heterogeneous combinations, we will apply two guiding principles: 

• Avoid Redundant Capacity: Combinations in which a single vehicle type already meets the 

entire demand on its own are excluded. This helps focus on true mixed-fleet strategies. 

• Use of estimation formula: The equation derived in Phase 1 is used as a reference to guide the 

search for effective fleet configurations: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 80 ∗  𝛼 + 10 ∗  𝛽 +  35 ∗ 𝛾 

• In general, we use the following table for creating our heterogeneous combinations: 

S-ADVs R-ADVs UAV 

Only S-ADVs - - 

- Only R-ADVs - 

- - Only UAVs 

High S-ADVs Low R-ADVs - 

Low S-ADVs High R-ADVS - 

- Low R-ADVs High UAVs 

- High R-ADVs Low UAVs 

High S-ADVs - Low UAVs 

Low S-ADVs - High UAVs 

 

Low Demand Performance (Homogeneous & Heterogeneous, Regular Day, no TW) 

Combo 
ID 

Demand S-ADV R-ADV UAV Reps Del Tot. 
Energy 

Util. Distance Del. 
time 

1 Low (43) 5 0 0 10 43 2.98 83.45 85.26 46:34 

2 Low (43) 0 1 0 10 43 1.06 54.92 11.74 06:07 

3 Low (43) 0 0 2 10 43 2.66 56.1 63.25 12:32 

4 Low (43) 2 0 1 10 43 2.84 78.53 73.01 26:21 

5 Low (43) 1 0 1 10 42.8 2.77 97.7 69.34 22:01 

In the low demand scenario, the heterogeneous combinations are limited by the small number of 

vehicles available, especially R-ADVs (only 1) and UAV (only 2). As such, there is only one useful 

heterogeneous combination (Combo 4) involving both S-ADVs and UAVs. This configuration matches 

the demand capacity closely (2*10 + 1*35 ≈ 55, 43/55 ≈ 78%) and performs relatively well across the 

KPIs. 

Average Demand Performance (Homogeneous & Heterogeneous, Regular Day, no TW) 

The results for heterogeneous fleet with average demand are shown in Table 21: 

Combo 
ID 

Demand S-ADV R-ADV UAV Del. Tot. 
Energy 

Util. Distance Del. 
time 

1 Average (106) 11 0 0 106 7.54 95.37 215.37 47:30 

2 Average (106) 0 2 0 106 1.86 67.14 20.66 06:04 

3 Average (106) 0 0 4 106 6.87 75.82 163.74 13:46 

4 Average (106) 3 1 0 106 3.53 96.44 75.12 17:31 

5 Average (106) 0 1 1 106 3.3 91.22 60.99 08:18 

6 Average (106) 8 0 1 106 6.99 89.89 190.96 36:44 
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7 Average (106) 1 0 3 106 6.86 97.71 166.83 17:44 

With the average demand, we observe that a lot more options seem to be viable due to the increase 

in available ADVs. The utilization rates indicate that these options are the most ‘efficient’ ones. Since 

adding an S-ADV or UAV to a certain combination would mean that they essentially have overcapacity.  

Example Calculation using demand estimation formula 

Let’s verify combo 6 using the demand formula: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 80 ∗  1 + 10 ∗  0 +  35 ∗ 1 ≈ 120 

Thus, Combo 6 has a total capacity of 120, giving it +-8% overcapacity (106/120) compared to actual 

demand.  
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Phase 3 
Now, we are interested in the performance of the system with night delivery (09:00-21:00) instead of 

normal hours (09:00-17:00). Just like the previous phase, we start with the low demand case, continue 

with the average demand case and finally the high demand case. Since we have a longer delivery time, 

the expected performance is that we need fewer vehicles for each demand scenario. 

Low Demand Performance (Homogeneous, Night Delivery, No TW) 

The night delivery scenario (See Table 24) creates the possibility to deliver every parcel by either one 

UAV, one R-ADV or four S-ADVs. These values also show that a heterogeneous fleet is not 

possible/necessary for the low demand scenario (combinations will always lead to overcapacity). 

Combo 
ID 

Demand S-ADV R-
ADV 

UAV Del Late 
cust 

Tot. 
Energy 

Util. Distance Del. 
time 

1 Low (43) 5 0 0 43 0 2.91 54.67 83.21 45:45 

2 Low (43) 4 0 0 43 0 3.09 72.09 88.18 48:16 

3 Low (43) 3 0 0 42.78 0.3 3.12 97.99 89.01 49:36 

3 Low (43) 0 0 2 43 0 2.76 38.67 65.61 13:02 

4 Low (43) 0 0 1 43 0 2.76 90.44 65.75 15:20 

5 Low (43) 0 1 0 43 0 1.08 37.47 11.95 06:18 

 

Average Demand Performance (Homogeneous and heterogeneous, Night Delivery, No TW) 

The night delivery scenario with average demand (See Table 25) creates opportunities for some 

heterogeneous fleets. In this night delivery scenario, one R-ADV is still able to deliver all the packages 

on its own. Because of this, there is no efficient heterogeneous fleet combination with R-ADVs. This 

leaves only combinations with S-ADVs and UAVs.  

Combo 
ID 

Demand S-
ADV 

R-
ADV 

UAV Del Late 
cust 

Tot. 
Energy 

Util. Distance Del. 
time 

1 Avg (106) 9 0 0 106 0 7.53 77.72 215 47:41 

2 Avg (106) 8 0 0 106 0 7.54 87.5 215.34 47:41 

3 Avg (106) 0 0 3 106 0 6.81 72.5 162.21 14:46 

3 Avg (106) 0 0 2 97.7 1.2 5.85 101.15 139.33 14:57 

4 Avg (106) 0 2 0 106 0 1.81 44.47 20.14 06:02 

5 Avg (106) 0 1 0 106 0 1.8 88.8 20 06:01 

  6 0 2 106 0 7.09 55.2 186.15 30:02 

  3 0 1 98 1.2 6.08 102.33 159.84 30:11 

  5 0 2 106 0 7.01 59.67 182.45 28:31 

  2 0 2 106 0 6.86 83.87 172.01 22:49 

  4 0 1 105.9 0.9 6.98 98.32 186.03 33:28 

  5 0 1 106 0 7.08 84.76 190.37 34:35 

 

High Demand Performance (Homogeneous and heterogeneous, Night Delivery, No TW) 

In the high demand scenario, it is no longer possible for the single R-ADV to deliver each parcel. Two R-

ADVs are now necessary to meet the demand of 192 parcels, with a utilization rate of 80%. The S-ADVs 

do not scale well, even in the night delivery scenario. Instead of the 20 S-ADVs we needed, we now still 

need 15 of them. The R-ADVs can now also be considered in the heterogeneous fleet combinations. 

Besides the combinations between two ADVs, this high demand scenario also has one heterogeneous 

fleet combination with all three ADVs. 
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Combo 
ID 

Demand S-ADV R-ADV UAV Del. Tot. Energy Util. Distance Del. 
time 

1 High (192) 15 0 0 192 13.5 84.03 385.76 47:22 

2 High (192) 0 2 0 192 2.45 77.61 27.27 05:49 

3 High (192) 0 0 5 192 12.26 79.52 291.98 14:58 

4 High (192) 8 1 0 192 7.98 79.03 208.13 26:44 

5 High (192) 0 1 3 192 6.92 65.13 149.46 09:47 

6 High (192) 4 1 2 192 7.52 61:49 174.96 16:08 

7 High (192) 9 0 2 192 13.02 83.1 348.44 34:20 

8 High (192) 3 0 4 192 12.41 79.75 307.82 20:58 

9 High (192) 7 1 0 192 7.65 82.35 191.84 24:48 

10 High (192) 0 1 2 192 6.11 82.91 126.52 09:20 

11 High (192) 8 0 2 192 12.6 87.44 335.96 32:49 

12 High (192) 2 0 4 192 12.5 87.18 306.61 19:41 

13 High (192) 2 1 1 192 5.65 88.33 125.49 13:17 

 

Conclusion Phase 3 

From Phase 3, we can conclude that the following number of ADVs is necessary to meet the demand 

of parcels: 

 Number of Vehicles necessary to fulfill entire demand 

Vehicle Low (43) Average (106) High (192) 

S-ADVs 4 8 15 

R-ADVs 1 1 2 

UAVs 1 2 5 

From the experiments, we can still observe some linear relationships between the number of vehicles 

and the demand level. Where the R-ADV and UAV really improve in the potential number of parcel 

deliveries on a day-to-day basis, the S-ADV does not really show the improvement you would want in 

the night scenario. Just like in Phase 1, we formulate another number of vehicles demand equation. 

𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑖𝑔ℎ𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≈ 120 ∗ 𝛼 + 12 ∗  𝛽 +  50 ∗ 𝛾 

Where: 

• 𝛼 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅 − 𝐴𝐷𝑉𝑠 

• 𝛽 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆 − 𝐴𝐷𝑉𝑠 

• 𝛾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝐴𝑉𝑠 
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Example Calculation using demand estimation formula 

Let’s verify Average demand (2 S-ADVS, 0 R-ADV, 2 UAV) using the demand formula: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 120 ∗  0 + 14 ∗  2 +  50 ∗ 2 ≈ 128 

This combination had a utilization of 83.5% according to the experiments, 106/124 results in 82.8%.    

Let’s verify High demand (2 S-ADVS, 1 R-ADV, 1 UAV) using the demand formula: 

𝐷𝑒𝑚𝑎𝑛𝑑𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐷𝑎𝑦 ≈ 120 ∗  1 + 14 ∗  2 +  50 ∗ 1 ≈ 198 

This combination had a utilization of 88.3% according to the experiments, 192/198 results in 96.9%.    

So, the equation works quite well in the average case and underestimates the performance in the 

high demand case.  

Phase 4 
For the final phase, we will check the compatibility of the autonomous delivery system with customer 

specific time windows. Which means that the customers can choose their own preferred time 

window. For example, on a 09:00-17:00 day, customers can select morning delivery 09:00-13:00 or 

afternoon delivery 13:00-17:00. One of the most interesting KPIs right now are the number of late 

customers (and the total minutes being late). Also, we are interested in the KPI Average time after the 

start of TimeWindow which, as the name suggests, is the average amount of time customers must 

wait after the start of the TimeWindow. A lower Average Time After Start of TimeWindow is 

preferred, since customers won’t have to wait as long. Before we start experimenting, we will have to 

take another look at our Solomons nearest neighbor’s cost function. This cost function, as we have 

used (and talked about) before, has the following weights: 

𝐶𝑖,𝑗 = 𝑤1(0.025) ∗ 𝑑𝑖,𝑗 + 𝑤2(0.025) ∗ 𝑇𝑖,𝑗 + (0.95)𝑤3 ∗ max(0, 𝑣𝑖,𝑗) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠 ∗ max(0, −𝑣𝑖,𝑗) 

The reason that we chose for this distribution of weights now becomes useful. Earlier, we only had to 

deal with distance and time. Where now, we must deal with TimeWindows. So, why would we choose 

for weights distributed like this? Please look at the following example: 
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Low Demand Performance (Homogeneous and heterogeneous, Regular Day, TW) 

From this point on, the important information to save in the tables becomes a bit much, so we use 

some abbreviations in the tables (LM = Total Late Minutes, LC = Average Late Customers, ATAT = Average 

Time After TimeWindows). In the low demand scenario, it takes 8 S-ADVs and 4 Drones to deliver to 

each customer on time in their TimeWindow. As one can see, the R-ADV scenario does not get to the 

point of achieving zero late customers. Due to our Solomons Nearest Neighbor algorithm, the R-ADVs 

are being filled with the ‘best’ possible customers. So, in the lower demand scenario, 43 parcels must 

be delivered to the customers, which can be done in two trips (2*24 = 48). Because the trips now take 

a bit longer (since we prioritize time windows instead of distance), it is no longer possible for 1 R-ADV 

to meet the demand (41.47 deliveries). Two R-ADVs are thus necessary to meet the demand. The first 

R-ADV is filled with the best 24 customers, after which the following R-ADV is filled with the other 19 

customers. In the unfortunate case of having a lot of morning deliveries relative to afternoon deliveries 

(for example 26/17) in combination with (morning) customers located all around the campus, the R-

ADVs are not able to deliver to each customer in the morning timeslot. This means that on certain days, 

the morning deliveries are postponed to late in the afternoon (after the afternoon deliveries). So even 

though the Late Customers KPI is not equal to zero, it is a bit of a distorted view, because if on 2/10 

days 4 customers are late, it will tell us 0.8 customers on average late (10 runs).  

ID S-ADV R-ADV UAV Del. Dist. LM LC Energy Util. ATAT Del. time 

1 5 0 0 42 83.21 260 1.4 2.91 95.94 96.32 54:59 

2 6 0 0 42.87 82.52 278 1.93 2.89 88.01 95.82 59:08 

3 7 0 0 43 87.63 137 0.87 2.98 81.24 79.9 01:03:35 

4 8 0 0 43 88.83 0 0 3.09 75.37 69.55 01:07:18 

5 0 1 0 41.47 15.12 1546 8.93 1.36 90.48 151.7 10:32 

6 0 2 0 43 15.7 186.3 3 1.41 64.81 79.49 14:30 

7 0 3 0 43 16.12 76.62 1.07 1.45 40.75 68.71 13:40 

8 0 4 0 43 15.7 67.89 1.53 1.41 31.32 70.24 14:01 

9 0 0 2 42.66 64.69 540.8 3.67 2.72 87.17 106.9 19:47 

10 0 0 3 43 64.93 10.76 0.47 2.73 68.85 56.34 23:03 

11 0 0 4 43 65.05 0 0 2.73 62.68 37.36 28:03 

 

Average Demand Performance (Homogeneous and heterogeneous, Regular Day, TW) 

In the average demand scenario, the number of S-ADVs necessary to deliver the parcels to get zero late 

customers is 18, and the number of UAVs is 9. The R-ADVs do not improve after 5, since they drive a 

total of 5 trips which is enough to deliver each parcel (5*24 = 120, 120>106).   

 

High Demand Performance (Homogeneous and heterogeneous, Regular Day, TW) 

ID D S-ADV R-ADV UAV Dist. LM LC Energy Util. ATAT Del. time 

1 106 17 0 0 210 102.54 1.1 7.37 78.02 76.94 01:00:23 

2 106 18 0 0 218.82 0 0 7.66 77.48 71.25 01:03:11 

3 106 0 5 0 26.84 114.43 2.5 2.42 37.91 72.29 12:53 

4 106 0 6 0 29.31 864.58 14 2.64 48.26 99.24 13:07 

5 106 0 7 0 29.74 740.86 12.4 2.68 40.24 95.42 12:44 

6 106 0 8 0 29.76 701.27 13 2.68 36.7 96.51 13:20 

7 106 0 9 0 29.86 665.61 12.2 2.69 33.39 94.46 13:41 

8 106 0 0 7 162.45 55.02 1.1 6.82 71.01 64.11 22:35 

9 106 0 0 8 164.42 1.64 0.2 6.9 66.28 50.79 24:08 

10 106 0 0 9 163.14 0 0 6.85 63.79 41.21 26:02 
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In the high demand scenario, just like in the low and average scenario, the R-ADVs do not improve after 

8, since they drive a total of 8 trips which is enough to deliver each parcel (8*24 = 192). We observe 

that the 30 S-ADVS are sufficient for time window delivery without late customers, as well as 11 drones. 

 

Conclusion Phase 4 

From Phase 4, we can conclude that the following number of ADVs is necessary to meet the demand 

of parcels: 

 Number of Vehicles necessary to achieve 0 late customers 

Vehicle Low (43) Average (106) High (192) 

S-ADVs 4 18 30 

R-ADVs 2 5 8 

UAVs 1 9 11 

 

 

 

ID D S-ADV R-ADV UAV Dist. LM LC Energy Util. ATAT Del. time 

1 192 25 0 0 383.87 1103 6 13.44 60.98 98.27 55:30 

2 192 28 0 0 381.16 442.83 2.5 13.34 55.34 83.29 58:14 

3 192 29 0 0 389.25 135.94 1 13.87 53.3 78.05 01:00:09 

4 192 30 0 0 382.94 0 0 13.44 53.57 74.52 01:00:11 

5 192 31 0 0 381.38  0 0 13.35 52.69 74.24 01:01:30 

6 192 0 8 0 35.79 41.49 0 3.22 36.88 66.18 11:05 

7 192 0 0 15 288.01 0 0 12.09 43.22 44.43 24:27 

8 192 0 0 14 294.02 0 0 12.35 44.52 48.08 23:24 

9 192 0 0 13 292.09 0 0 12.27 45.88 60.32 22:21 

10 192 0 0 12 292.06 0 0 12.27 47.58 58.5 21:36 

11 192 0 0 11 288.68 0 0 12.12 48.92 55.63 20:11 

12 192 0 0 10 290.86 320.44 2.33 12.22 51.39 70.96 19:18 


