

MSc Industrial Engineering and Management
Final Project

Dynamic Production
Policies for ASML’s
General Supply Network

Marco Luis Ochoa Barnuevo

University of Twente (UT) Supervisors:
prof.dr.ir. MRK. (Martijn) Mes
dr. DRJ. (Dennis) Prak

External Supervisors:
ASML:
MSc. T. (Tjum) van Dijck
dr. T. (Tijn) Fleuren
Eindhoven University of Technology (TU/e):
dr. W. (Willem) van Jaarsveld

June, 2025

Department of Industrial Engineering and Business Information Systems (IEBIS)
Faculty of Behavioural Management and Social Sciences (BMS)

Industrial Engineering and Management (IEM)
University of Twente (UT)

Dynamic Production Policies for ASML’s General Supply Network

Acknowledgements

This thesis marks a significant chapter in my life, enriched by incredible people, memorable
experiences, and valuable learning opportunities. I extend my heartfelt gratitude to the
University of Twente for awarding me the UT Scholarship, which made this master’s journey
possible. Special thanks to Marco Schutten, former Director of the IEM program, for kindly
providing a recommendation letter, and Ellen van Zeijts and Annemieke van der Grijspaarde
for their invaluable support and assistance in navigating the scholarship process.

I am deeply grateful to (and will miss) all the professors at UT, whose courses sparked
my passion for Operations Research and significantly developed my skills. Their openness
to discussions and willingness to clarify concepts made my learning experience enjoyable
and productive. Also, a special thanks to all the PhD candidates who made me feel welcome
in their workspace and were always up for a good conversation.

My sincere appreciation goes to my outstanding team of supervisors. I especially thank
Tjum van Dijck, my supervisor at ASML, whose constant support, valuable brainstorming
sessions, and critical insights greatly shaped this thesis. Your guidance was essential in
transforming my ideas into reality. I will genuinely miss you and our insightful discussions.
Special thanks to Fabian Akkerman for his instrumental support, from helping me connect
with ASML through Willem van Jaarsveld, facilitating my experiments on the Snellius
supercomputer, and inviting me to present this work at the TKI Dinalog conference.

My sincere thanks also go to Martijn Mes, whose mentorship and support profoundly
impacted my learning journey at UT and this thesis. Your passion and expertise are truly
inspiring. Dennis Prak, thank you for courageously guiding me through this complex
project; your insightful critiques helped sharpen my methods. To Tijn Fleuren and Willem
van Jaarsveld, my second ASML supervisor and external supervisor from TU/e respectively,
thank you for your impactful feedback that sparked crucial improvements in my thesis.
Finally, I would like to acknowledge the wonderful Strategy and Improvement Team at
ASML for making me feel truly welcomed as part of the team. In particular, I am grateful
to Maarten Hendriks, whose guidance and example left a lasting impression on me.

To my dearest friends, thank you for your support, encouragement, and understanding
throughout this journey. Your presence has been a source of motivation and encouragement,
and it has made this journey more enjoyable and memorable.

Lastly, but most importantly, I want to express my deepest gratitude to my family,
especially to my mother and my girlfriend. Their unconditional love and belief in my
abilities have been the driving force behind my success. Their sacrifices, patience, and
encouragement have provided me with the strength and determination to overcome obstacles
and pursue my goals and dreams.

I hope this acknowledgment adequately expresses my gratitude to everyone who con-
tributed to this journey. This achievement belongs as much to you as it does to me. Thank
you sincerely.

i

Dynamic Production Policies for ASML’s General Supply Network

Management Summary

This thesis addresses the complex challenge of inventory management in multi-echelon supply
networks characterized by low-volume, high-mix demand, divergent and convergent (or
general) material flows, and shared capacity constraints, features emblematic of ASML’s high-
tech assembly environment. Traditional analytical models and heuristics fall short in this
setting: serial surrogate methods oversimplify topologies, Guaranteed-Service assumptions
are unrealistic in volatile demand environments, and existing allocation rules (e.g., FCFS or
fixed reservations) cannot adapt to asymmetric lead times or capacity constraints. Moreover,
prior DRL studies typically assume continuous actions or ignore shared capacities, limiting
their applicability to real-world, discrete-action systems.

To bridge these gaps, we propose an interpretable and efficient capacity-aware echelon
base-stock policy and a DRL-based approach:

1. Network-Compatible Base-Stock Sizing (G-MATCH): Extends convergent-
only methods to convergent-divergent networks and reduces cost by roughly 90%
compared to earlier base-stock extensions in uncapacitated experiments.

2. Capacity-Aware Guided Base-Stock Optimization (GBS): Introduces a Capac-
ity Constraint Ratio to iteratively raise static base-stock levels at the most constrained
nodes until no further cost improvement is possible. In capacitated systems, GBS
yields an additional 5–8% cost reduction.

3. Enhanced Allocation Rules. We propose a family of “water-filling”-style allocation
policies tailored to convergent–divergent network nodes. While standard Water-Filling
(WF) greedily allocates all available units to the highest shortfall, a “reservations”
variant (WFR) withholds a fixed buffer to address future risk. Our experiments show
that both WF and WFR achieve over 6% cost reduction compared to commonly used
FCFS and that WF’s straightforward, shortage-driven logic often outperforms more
reservation schemes.

4. Deep Controlled Learning (DCL). We embed a lightweight, discrete-action DRL
layer on top of GBS+WF, which sequentially refines ordering/reservation decisions
per node each period using real-time pipeline and capacity data. DCL learns state-
dependent buffers (e.g., prioritizing high-penalty end items or rerouting and balancing
around bottlenecks) while respecting discrete orders and shared-capacity constraints.
Experiments show DCL consistently adds further savings (up to 2–5% under tighter
capacity in smaller networks; 1–2% under moderate or uncapacitated settings), but
gains shrink below 1% with larger/deeper networks. Training is computationally
intensive (12 minutes on HPC or 8+ hours on standard hardware for a 7-node case)
and offers limited interpretability; however, behavioral insights can help enhance
heuristic methods.

Extensive experiments allow to see the following managerial implications.

• Heuristic “Quick Win”: A single run of capacity-aware base-stock optimization (GBS)
plus Water-Filling allocation delivers 90–95 % of achievable cost savings with minimal
effort and full traceability. For instance, a 7-node, 1,000-period simulation completes
in under 30 s, making periodic offline tuning trivial.

• Selective DRL Deployment: When capacity groups retain slack (e.g., moderate
overcapacity) or lead-time asymmetries and transient bottlenecks arise, the DRL-based

ii

Dynamic Production Policies for ASML’s General Supply Network

layer (DCL) can extract an additional 1–5 % savings by dynamically synchronizing
paired buffers and prioritizing high-penalty end items.

• Computational Trade-Offs: Training DCL at scale (e.g., our 7-node case) is resource-
intensive (12 min on an HPC cluster or +8 h on standard hardware), offers no
convergence guarantee, and yields a less interpretable policy. Use it only where
incremental gains justify the cost.

• DCL Limitations: When capacity groups are fully saturated, especially in deeper,
multi-echelon networks, DCL’s incremental gains fall below 1%. This can be driven
both by the lack of headroom and by the DRL method’s own limitations in such tight
settings. In these regimes, organizations should either invest in physical capacity
expansion or prioritize further enhancements to the DRL approach (e.g., richer
action spaces, advanced exploration strategies) before expecting meaningful policy
improvements.

• Heuristic Enhancement via DCL Insights: Even if full DRL deployment is impractical,
patterns learned by DCL, such as dynamically shifting inventory toward faster paths or
higher-penalty products, can be extracted into simpler, transparent rules or decision-
support tools, bridging performance and interpretability.

Contributions and Outlook.

By combining capacity-aware base-stock optimization, shortage-driven allocation, and a
discrete DRL roll-out, this thesis delivers the first scalable, data-driven framework for
general (convergent-divergent) multi-echelon networks with shared capacities and volatile
demand. Our approach preserves the interpretability and simplicity of classical heuristics
while layering on lightweight, state-dependent learning to capture residual savings. Future
research may explore policy architectures specialized for divergent versus single-successor
nodes within a coordinated scheme to share value across partitions; additionally, dynamic
reservation rules with brief lookahead could better balance risk and responsiveness; and
finally, adapting our methods to non-stationary, correlated demand could be of great value
for more realistic high-tech instances. In practice, these methods offer supply-chain managers
a clear, implementation-friendly path: begin with GBS + WF to secure most savings, then
deploy DCL selectively where capacity slack remains and lead-time asymmetries are most
pronounced.

Overall, this work demonstrates that pragmatic extension of established heuristics with
discrete, smart-allocation and capacity-aware capabilities, plus DCL, can bridge the gap
between elegant theory and the messy constraints of real-world, high-tech supply networks.

iii

CONTENTS

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Description . 1
1.3 Research Design . 3
1.4 Overview of Research Methodology . 6

2 Literature Review 8
2.1 Multi-Echelon Inventory Optimization and Challenges 8

2.1.1 Primary Frameworks for Multi-Echelon Inventory Optimization . . . 8
2.1.2 Extensions and Alternatives to Base-Stock Policies 9
2.1.3 Inventory Allocation in Divergent and General Supply Networks . . 9
2.1.4 Capacitated Systems . 10

2.2 Deep Reinforcement Learning for Inventory Management 10
2.2.1 Evolution of DRL Methods in Inventory Management 11
2.2.2 Addressing Multi-Echelon Complexities 12

2.3 Research Gap and Contribution . 13

3 Model Formulation 15
3.1 Case Context . 15
3.2 MDP Components . 17

3.2.1 Sets and Parameters . 17
3.2.2 State Space . 17
3.2.3 Action Space . 18
3.2.4 Reward Function . 18
3.2.5 Transition Dynamics . 18

3.3 Policy Definition and Evaluation . 19

4 Heuristic for a General Multi-Echelon System 20
4.1 Base-Stock Level Computation . 20

4.1.1 Decomposing a General System . 21
4.1.2 Low-Volume Demand Distributions 21
4.1.3 Echelon Base-Stock Computation via Shang & Song (2003) 22
4.1.4 From Echelon to Local Base-Stock 22
4.1.5 Backorder Matching for Aggregation 23
4.1.6 Final Echelon Base-Stock Levels . 23

4.2 Allocation Methods for Operating the General System 25
4.2.1 Illustrative Example: Allocation in Divergent vs. General Networks . 25
4.2.2 Baseline Allocation Methods . 26
4.2.3 Water-Filling Allocation Strategies 26

Dynamic Production Policies for ASML’s General Supply Network

4.3 Capacity-Aware Base Stock Optimization 29

5 Deep Reinforcement Learning Approach 31
5.1 DRL Methodology: Deep Controlled Learning (DCL) 31
5.2 Network Decomposition and Sequential Decision Process 33

5.2.1 Augmented State Definition . 34
5.2.2 Sub-decision Dynamics . 34
5.2.3 Period-End Event Transition . 35

5.3 Neural Network Architecture . 35
5.3.1 Input Representation . 35
5.3.2 Output Construction . 36
5.3.3 Neural Network Training . 36
5.3.4 Feature Extraction . 36

6 Computational Experiments 38
6.1 Heuristic Benchmarking Experiment . 40
6.2 DCL Tuning Experiments . 41

6.2.1 Feature Subset Selection . 43
6.2.2 Rollout Horizon Tuning . 44
6.2.3 Neural Network Architecture Search 45
6.2.4 Number of Generations . 46

6.3 Comparative Evaluation Experiments (Heuristics vs DCL) 47
6.3.1 Small Uncapacitated Cases under Lead-Time Stress Tests 48
6.3.2 Small Capacitated Cases under Lead-Time Variantions 50
6.3.3 The Large Seven-node Capacitated Network 55

7 Conclusion, Discussion & Future Research 60

A 67
A.1 Warm-Up Period Estimation Using Moving Averages 67
A.2 Benchmarking 36 Heuristic Configurations on the 7-Node System 68
A.3 5-node Uncapacitated Case Under Different Scenarios 68
A.4 Training of Classifiers for Uncapacitated Experiments 70
A.5 Training of Classifiers for Small Capacitated Experiments 71
A.6 Training of Classifiers for Large 7-node Experiments 74

v

LIST OF FIGURES

List of Figures

1.1 Overview of the research methodology. 7

3.1 Stylized general system network. Each component Ci is processed at group
Gk, with arcs indicating material flows and annotated with production lead
times li, holding costs hi, and backlog and demands (be;de,t) for each end
item (e ∈ Cend). 16

4.1 Decomposition of the general system into two serial chains—one for each end
item (C5, C6)—with updated echelon lead times and adjusted holding costs. 21

4.2 Allocation challenge in a divergent (left) and general (right) system. 25

6.1 Smaller cases. Each buffer B or module M is processed at group Gk, with
arcs indicating material flows and annotated with production lead times li,
holding costs hi, and backlog and demands (be;de,t) for each end item or
module (e ∈ Cend). 39

6.2 Demand Distributions . 39
6.3 Main Results of 36 Heuristic Configurations on 7-Node System 40
6.4 Mean Cost and Cumulative Improvement per Generation 46
6.5 Cost breakdown by Scenario and Method for the Smaller Uncapacitated Cases 49
6.6 Improvement (%) of GBS and DCL over the General-Focused basestock

across capacity scenarios C1–C5 for each network and lead-time case: S1,
S2, S3, and 6-node S5. 52

6.7 Average On-Hand Inventory by Policy for all scenarios. Subfigures (left to
right) represent C1 (Tight M3+M4+M5), C2 (Tight B2), and C3 (Tight
Capacity). 53

6.8 Inventory Cost (gold), Backlog Cost (orange) and Total Cost (dashed) per
period. 55

6.9 Average on-hand inventory at each node (C0–C6). Up = moderate capac-
ity,down = tight capacity. 57

6.10 RLIP at C6 (blue) and backlog frequency (red) under each policy. Solid =
RLIPC6 , dashed = % periods with any backlog. Left = moderate capacity;
right = tight. 57

A.1 Warmup Estimation with Moving Averages for the 5-node (left) and 7-node
(right) cases . 67

A.2 Training (gold) and validation (orange) loss versus epoch for each network
configuration. 70

A.3 Training (gold) and validation (orange) loss versus epoch for each network
configuration (Capacitated Scenarios 1–2). 72

Dynamic Production Policies for ASML’s General Supply Network

A.4 Training (gold) and validation (orange) loss versus epoch for each network
configuration (Capacitated Scenarios 3–4). 73

A.5 Training (gold) and validation (orange) loss versus epoch for Tight (left) and
Moderate (right) Capacitated 7-node system. 74

vii

LIST OF TABLES

List of Tables

2.1 Overview of Key Inventory Allocation Methods in Divergent and General
Supply Networks . 11

3.1 Key sets and parameters . 17

4.1 Variants of unified echelon base-stock levels under different modeling assump-
tions . 24

4.2 Features of Allocation Methods . 28

5.1 Hyperparameter settings used in DCL (based on Temizöz et al. (2023)) . . . 33

6.1 DCL Tuning Experiments Overview . 42
6.2 Performance Comparison of Feature Subsets (Lower Values Indicate Improve-

ment) . 43
6.3 Average Total Cost across Different Rollout Lengths 45
6.4 Training diagnostics for the 5-node network (N = 25 000 samples, M = 1000

scenarios, horizon= 21) . 45
6.5 Training diagnostics for the 7-node network (N = 35 000 samples, M = 1000

scenarios, horizon= 27) . 45
6.6 Tuned DCL Parameters . 47
6.7 Overview of Comparative Evaluation Experiments 48
6.8 Comparative performance under lead-time stresses (per-period averages over

1,000 trajectories). RLIP = Service level at M3,M4,(M5). 50
6.9 5-node capacity scenarios (C1–C5) relative to mean demand (=8). 51
6.10 6-node capacity scenarios (C1–C5) relative to mean demand (=11). 51

A.1 Experiment 1: 7-node, uncapacitated, all 36 configurations (per-period mean
cost and standard deviation) . 68

A.2 Experiment 2 results: 5-node uncapacitated case under four lead-time scenarios. 69
A.3 Summary of Training for Small Uncapacitated Classifiers. 71
A.4 Summary of Training for Small Capacitated Classifiers. 71
A.5 Summary of Training for Large Capacitated Classifiers. 74

Dynamic Production Policies for ASML’s General Supply Network

Chapter 1

Introduction

This thesis investigates how to better support inventory control in modern high-tech sup-
ply chains, such as ASML’s, by developing more flexible and responsive decision-making
approaches. These supply chains face increasing pressure to manage multi-echelon invento-
ries under uncertainty, shared components, and capacity constraints. Such complexities
challenge traditional planning methods, motivating the exploration of both heuristic and
emerging data-driven techniques.

1.1 Context

ASML, established in 1984 as a Philips-ASML joint venture, has become the global leader
in semiconductor lithography systems. The company employs 39,000 people from 143
nationalities across more than 60 global locations and reported €7.5B in Q3 2024 sales,
with projections of around €28 billion for the full year. ASML holds a unique position
as the sole manufacturer of extreme ultraviolet (EUV) lithography systems, enabling
3nm chip production, while also producing deep ultraviolet (DUV) systems. ASML’s
commitment to innovation is evident in its substantial R&D investments, reaching $4.592
billion for the twelve months ending September 30, 2024, an 11.58% increase year-over-year
(ASML, 2024). This focus on continuous improvement in accuracy and speed (measured
in wafers processed per hour) is crucial for maintaining the industry’s pace with Moore’s
Law, which predicts the doubling of transistors on a chip every 18 to 24 months. Within
ASML, the Planning and Delivery (P&D) department is responsible for integrating planning
activities across the company. The Strategy team within P&D actively develops innovative
methodologies to improve supply chain decision-making and find ways that help production
plans remain resilient in an environment where disruptions and variability are inevitable.
Recent research by Van Dijck et al. (2024) explored the potential of Deep Reinforcement
Learning (DRL) to optimize inventory management within ASML’s supply chain and their
findings demonstrated that DRL-based policies could outperform traditional benchmark
approaches. However, their model assumes a fully convergent supply structure and a single
end-product, which oversimplifies ASML’s real-world operations. This research builds upon
their work and aims to better capture the nature of ASML’s operations.

1.2 Problem Description

The semiconductor industry operates at the forefront of technological advancement, where
rapid innovation is accompanied by significant supply chain complexities. High capital
investments, long lead times, and relentless pressure for miniaturization and performance

1. Introduction

improvements drive manufacturers to adopt increasingly sophisticated planning methods
(Geng and Jiang, 2009). The COVID-19 pandemic and ongoing geopolitical tensions
have further exposed vulnerabilities within global semiconductor supply chains, disrupting
production and exacerbating supply-demand imbalances across industries ranging from
consumer electronics to data centers. However, these disruptions are only part of a
broader landscape of structural challenges that require more adaptive and resilient planning
approaches.

The industry’s high dependence on intricate, multi-tiered supply networks makes pro-
duction planning especially difficult. As market demand fluctuates, variations are amplified
throughout the supply chain, creating a "bullwhip effect" that leads to inefficiencies in ca-
pacity utilization and inventory management (Sucky, 2009). Traditional planning methods
struggle to mitigate these fluctuations, particularly as firms must balance technological
complexity, uncertain demand, and stringent quality requirements, all while ensuring cost
efficiency and meeting tight production schedules (Madanchian and Taherdoost, 2024;
Smirnov et al., 2021). Consequently, companies that can dynamically adjust inventory
levels, anticipate disruptions, and optimize resource allocation gain a competitive advantage
in an industry where technological leadership and billions in capital investment shape
market positioning (Chong et al., 2017).

ASML, as the sole manufacturer of EUV lithography machines, plays a crucial role
in the semiconductor supply chain. Its upstream position exposes it to extreme demand
fluctuations, driven by the investment cycles of chip manufacturers and technological
advancements. Managing production and inventory in this context is highly complex, as
ASML must navigate long supplier lead times, the high value of its products, capacity
constraints, and the challenges of low-volume, high-precision manufacturing. Unlike high-
volume industries, where inventory adjustments can be made in small increments, ASML’s
capital-intensive equipment and component dependencies require precise planning to avoid
excessive stockpiling or critical shortages. Given the scale and cost of its systems, even
minor miscalculations, like rounding up/down, in inventory levels can lead to critical supply
shortages and production delays.

Furthermore, ASML operates within a general supply network, which features both
convergent (assembly) parts, wherein multiple components are combined into intermediate
subassemblies before culminating in the final product, and divergent (distribution) parts,
wherein common components diverge to serve multiple end-products, thereby creating
interdependencies across various product lines. This structure leads to multi-commonality,
where multiple end-products depend on shared upstream components, making inventory and
replenishment planning significantly more complex than unidirectional systems. Additionally,
ASML must account for capacity groups, where replenishment decisions are restricted by
shared capacity constraints, which require careful resource allocation across competing
products. Further complexities arise from non-stationary and stochastic demand, where
fluctuations occur over different time horizons, making forecasting possibly unreliable due to
the difficulty of capturing long-term trends and short-term variations in a single predictive
model. Moreover, non-deterministic lead times and uncertain supply availability (e.g.,
supplier delays and transportation disruptions) make planning difficult, forcing ASML to
either hold excess safety stock or risk stockouts (or shortages) that disrupt production and
delay downstream deliveries.

To manage these challenges, ASML employs three primary mathematical models for
tactical production-inventory planning: RampFlex, CFO, and a Material Requirements
Planning (MRP) approach. RampFlex is a multi-stage stochastic programming model within
a rolling horizon framework, primarily used for safety stock placement—determining where

2

Dynamic Production Policies for ASML’s General Supply Network

to buffer stock to hedge against uncertainty. However, it relies on demand forecasts, which
can introduce errors in ordering decisions. CFO enables rapid production planning but lacks
the flexibility to effectively manage capacity constraints. Finally, at an operational level,
ASML’s ordering decisions are governed by an MRP-style approach, where replenishment
is based on forecasted demand and predefined rules. Together, these approaches provide a
layered structure for planning, yet they do not directly address key operational questions
such as when and how much to order or produce in real-time, nor how to allocate materials
during shortages. There is currently no integrated mechanism to support dynamic, supply
network-wide coordination of decisions under uncertainty. As such, ASML’s planning toolkit,
while strategically sound, lacks the operational agility required to respond effectively to
real-time disruptions, capacity bottlenecks, and shifting demand patterns.

This gap has motivated interest in more adaptive and data-driven methods within ASML,
particularly Deep Reinforcement Learning (DRL) has emerged as a promising approach to
learn decision policies directly from system interaction. Van Dijck et al. (2024) applied DRL
in a simplified, fully convergent setting and demonstrated performance improvements over
heuristic policies, even under non-stationary demand. While their work provides a strong
proof of concept, it does not fully capture the structural and operational realities of ASML’s
network. Specifically, their model assumes a single end product, omitting multi-commonality
and capacity constraints, and a fully convergent structure, which overlooks ASML’s broader
general network configuration.

As a result, current models, whether heuristic or learning-based, struggle to handle
the full scope of ASML’s supply chain complexities, including its multi-echelon structure,
shared components, group capacity constraints, non-stationary demand, and uncertain
lead times. While RampFlex, CFO, and MRP offer structure, they fall short in providing
flexible, real-time decision support. Likewise, while DRL has demonstrated potential in
simplified networks, its applicability to more realistic, general settings remains limited
and underexplored. To advance decision-making in this context, there is a need for an
integrated approach that not only captures ASML’s operational complexity, but also enables
dynamic coordination and policy learning. This thesis addresses that gap by developing and
benchmarking analytical and DRL-based methods for inventory and production optimization
in general supply networks, aiming to enhance decision support in high-tech manufacturing
environments.

1.3 Research Design

Given the supply network complexities discussed previously, such as multi-echelon depen-
dencies, multi-commonality, capacity constraints, and demand uncertainties, developing
effective inventory policies for ASML requires a structured yet practical approach. This
section outlines the research goal, scope, and key research questions guiding this study.

Research Goal

This research aims to develop and systematically benchmark a well-designed heuristic
method to optimize tactical and operational inventory decisions in complex multi-echelon
supply networks like ASML’s. Additionally, it explores how advanced data-driven meth-
ods, particularly DRL, could further improve these heuristic policies or reveal superior
alternatives.

This thesis contributes the following:
• A stylized yet representative simulation model capturing ASML’s key complexities

3

1. Introduction

• Fast and well-performing analytical heuristic methods tailored to the given inventory
system.

• A scalable DRL method for adaptive decision-making.
• A benchmark and insight-rich comparison of heuristic and DRL behavior

Research Questions

To guide this study, the following central research question is formulated:

How can an effective heuristic method be developed to optimize inventory management
in ASML’s complex supply network, and how can a DRL method contribute to improving
this method or uncovering superior inventory policies?

Addressing this question involves a stepwise approach that incrementally builds a
comprehensive understanding and solution framework. The process begins with analyzing
the specific complexities of ASML’s supply network. Based on these insights, a suitable
inventory modeling framework is constructed, followed by formal problem formulation and
the development of a simulation environment for evaluation. Next, appropriate heuristic
benchmarking methods are identified to serve as a performance baseline. A scalable DRL-
based approach is then designed, implemented, and tested within the same environment.
Finally, both methods are validated, systematically compared, and analyzed to extract
actionable insights that can inform decision-support tools for ASML’s supply chain.

To address the central question systematically, it is broken down into the following
subquestions:

1. What are the defining complexities of ASML’s multi-echelon inventory system?

Before designing an optimization framework, it is essential to understand ASML’s
supply chain complexities. Unlike traditional high-volume inventory systems, ASML
operates in a low-volume, high-value production environment with multi-echelon
dependencies, shared components, and finite ordering capacities. This raises several
fundamental questions:

(a) How do ASML’s general supply network structures, shared components, and
capacity constraints differentiate it from conventional inventory models?

(b) How do ASML’s discrete production setting, and demand uncertainties impact
inventory planning?

(c) What service level definitions are most appropriate given ASML’s operational
constraints?

2. What inventory modeling approaches have been explored for complex supply networks,
such as ASML’s, and how are such problems typically structured?

Once the key complexities of multi-echelon supply networks are identified, the next
step is to explore existing modeling approaches that have been proposed in the
literature. A wide range of inventory control models and solution methods have
been developed for different network structures, each tailored to specific system
characteristics and complexity levels.

(a) What inventory control models have been used in the context of multi-echelon
and general networks?

4

Dynamic Production Policies for ASML’s General Supply Network

(b) How have researchers addressed modeling challenges in networks with both
convergent and divergent flows, especially when structural interdependencies
and component sharing are present?

(c) What types of solution methods are typically applied in different settings, and
under what conditions are they effective?

(d) How can insights from studies on simpler network structures inform further
modeling choices in more complex general settings?

3. How can the problem be formally modeled, and how should the simulation environment
be designed?

Once an appropriate inventory modeling approach is selected, the next step is to
formulate the problem in a way that captures uncertainties evolving over time. A
suitable framework for this is a Markov Decision Process (MDP), which supports
building a simulation environment for testing and benchmarking.

(a) What is the appropriate formulation of the MDP components, including state
space, action space, transition dynamics, reward function, time horizon, and
discount factor, to realistically capture the system’s behavior?

(b) How should the simulation model be constructed to replicate key structural
features of ASML’s supply network, while remaining abstract enough to allow
controlled experimentation?

(c) How should the evaluation setup be structured, starting with simplified test
instances and gradually scaling up to more complex representations that reflect
ASML’s operational characteristics?

4. How can a heuristic method be designed to provide a good analytical benchmark for
inventory decisions?

After the simulation environment and problem formulation are in place, the next step
is to design a practical and interpretable heuristic policy. A well-designed analytical
method, like a heuristic, should serve not only as a baseline for performance and a
source of operational insights, but also as an easily implementable solution. This
benchmark should be tailored to ASML’s specific constraints and system behavior.

(a) How can components for this heuristic method be correctly designed and imple-
mented.

(b) What material allocation rules should be used to manage shortages effectively?

5. How can DRL be designed to be scalable, efficient, and suitable for ASML’s decision
environment?

While heuristics provide interpretable and computationally efficient solutions, they
may struggle with dynamic, high-dimensional decision spaces. To address this, we
explore the potential of Deep Reinforcement Learning (DRL) to learn adaptive
policies directly from system interaction. Designing such a DRL approach requires a
scalable and system-specific design. Additional factors include careful consideration
of ASML’s discrete decisions (e.g., production quantities), which are often subject
to group capacity limits and component interdependencies. These characteristics
require tailored action space formulations and scalable learning architectures to
ensure that DRL policies remain computationally feasible and practically relevant for
benchmarking and insight generation.

5

1. Introduction

(a) What DRL architectures and action space formulations are best suited for
ASML’s discrete decision-making environment?

(b) How can action space structuring, state representation, and reward shaping be
designed to support efficient learning?

(c) How can DRL be tuned (e.g., hyperparameters) to ensure scalability, convergence,
and generalization across network scenarios?

(d) How can DRL-generated insights be translated into enhancements for heuris-
tic interpretable methods and actionable recommendations for supply chain
managers?

6. How can heuristic and DRL policies be effectively evaluated, and what performance
can be expected under different conditions?

After both the heuristic and DRL-based policies are developed, it is essential to com-
pare their performance systematically. This requires a well-structured experimental
design that captures key KPIs, tests generalizability, and supports meaningful analysis
of strengths, weaknesses, and practical applicability.

(a) What evaluation setup (KPIs and test scenarios) best captures meaningful
differences in cost, service level, and adaptability between methods?

(b) Under which conditions do heuristic and DRL methods perform best, or break
down?

(c) How can insights from DRL inform improvements to the heuristic methods and
support actionable guidance for supply chain decision-makers?

Research scope

Given the complexity of ASML’s supply network, directly modeling its full operational
reality is impractical due to the vast number of interacting components, constraints, and
uncertainties. Instead, this study adopts a stylized yet representative problem formulation
that remains computationally tractable while capturing essential system characteristics.
These include multi-echelon dependencies, shared components (multi-commonality), group-
based capacity constraints, demand uncertainty, and discrete decision-making. To maintain
focus and feasibility, the model does not incorporate non-stationary demand patterns or
non-deterministic lead times, though these are recognized as relevant factors in ASML’s
real-world operations.

The scope of this research is limited to tactical and operational inventory decision-
making—specifically, determining when and how much to order or produce, and how to
allocate materials in the presence of shortages. It explicitly excludes broader elements such
as detailed production scheduling, supplier negotiation strategies, or large-scale disruptions
caused by geopolitical or systemic risks. Although simplified, the model is designed to
generate insights that can support the development of new, adaptive replenishment strategies
aligned with ASML’s operational needs or be combined with existing tools such as RampFlex,
particularly in the context of safety stock placement. The practical implementation of such
strategies, however, falls outside the scope of this work.

1.4 Overview of Research Methodology

To guide the reader through the remainder of this thesis, Figure 1.1 presents an overview
of the overall research structure. This outlines the sequential phases of this thesis, from

6

Dynamic Production Policies for ASML’s General Supply Network

analyzing ASML’s supply network and reviewing existing literature, to developing a rep-
resentative model, designing both heuristic and DRL-based methods, and conducting a
comparative evaluation. Each research question maps to a specific phase in this process.
The upcoming chapters follow this structure: Chapter 2 reviews relevant literature, Chapter
3 introduces the model and simulation setup, Chapters 4 and 5 present the heuristic and
DRL methods, respectively, Chapter 6 covers the computational experiments and their
evaluation, and Chapter 7 concludes with conclusions and recommendations.

Figure 1.1: Overview of the research methodology.

7

2. Literature Review

Chapter 2

Literature Review

The challenge of inventory optimization in complex multi-echelon supply chains characterized
by shared components (multi commonality), stochastic demand, finite capacities, and
intricate network structures has been widely explored in the literature through various
analytical models, heuristic methods, and increasingly, data-driven approaches. We structure
this review around (i) foundational frameworks for inventory optimization, (ii) control
policies in general networks, (iii) capacity-constrained systems, and (iv) emerging DRL-based
approaches.

2.1 Multi-Echelon Inventory Optimization and Challenges

Multi-echelon inventory management optimizes ordering and production across supply chain
stages to balance cost minimization, service-level maintenance, and uncertainty mitigation.
Challenges stem from interconnected stages, shared components, finite capacities, and
demand/lead time variability (De Kok et al., 2018). By coordinating inventory holistically
rather than in isolation, multi-echelon systems can reduce total inventory by up to 30%
while improving item availability by 5% (Clark and Scarf, 1960).

2.1.1 Primary Frameworks for Multi-Echelon Inventory Optimization

Two foundational frameworks have emerged to model and solve multi-echelon systems.
The Guaranteed Service Model (GSM), introduced by Simpson (1958) and generalized by
Graves and Willems (2003), simplifies multi-echelon inventory optimization by assuming
deterministic service from upstream stages. In essence, each stage guarantees delivery
within a fixed lead time, allowing downstream nodes to plan accordingly without modeling
upstream uncertainty.

The deterministic service time decouples stages in the supply chain and enables the use of
linear programming to determine optimal safety stock levels (Eruguz et al., 2016). Because
of its tractability and ease of implementation, GSM has seen widespread adoption in settings
where lead times are relatively stable. However, GSM’s rigidity often leads to excessive safety
stock or service failures in more volatile environments. This is particularly problematic
in high-tech industries like semiconductor manufacturing, where disruptions propagate
quickly and unpredictably through the network (Simchi-Levi and Zhao, 2012). Even recent
extensions that incorporate demand-bound formulations still struggle to dynamically adjust
to real-time variability (Eruguz et al., 2016).

In contrast, the Stochastic Service Model (SSM), originating from Clark and Scarf
(1960), explicitly accounts for randomness in demand and lead times. Unlike GSM, SSM

Dynamic Production Policies for ASML’s General Supply Network

models how disruptions at one stage propagate downstream. If a stage fails to meet its
replenishment targets due to demand or supply variability, it triggers delays that accumulate
at subsequent stages, increasing backorders across the supply chain. This requires solving
high-dimensional stochastic dynamic programs. Clark and Scarf (1960) established the
optimality of echelon base-stock policies for un-capacitated serial systems under constant lead
times, a result later extended to convergent systems by Rosling (1989), who demonstrated
their equivalence to serial structures. For divergent systems, Diks and De Kok (1998)
derived optimal policies under restrictive assumptions (e.g., allowing negative shipments),
though practical implementation remains challenging. Moreover, general multi-echelon
networks lack universally optimal solutions due to combinatorial complexity (De Kok et al.,
2018), and they have been largely overlooked in existing literature, see De Kok and Visschers
(1999) for example. Optimal outcomes have generally been limited to specific cases like
fixed batch sizes or independent Poisson demand within two-echelon systems (Nadar et al.,
2014). Rong et al. (2017) discuss heuristic strategies for un-capacitated general systems,
but since their study is centered on distribution systems, they do not extend their results
to general systems.

2.1.2 Extensions and Alternatives to Base-Stock Policies

Despite the fact that base-stock policies may not be optimal in general systems, they remain
widely applied due to their simplicity and tractability. However, alternative policies such
as (s, S), (R, Q), and MRP-based planning are also used, and each offers trade-offs in
complexity and responsiveness. The (s, S) policy triggers replenishment when inventory
falls below a reorder point, while (R, Q) policies order fixed quantities. Though effective
for stochastic demand, these methods face computational intractability in multi-echelon
systems due to the exponential growth of decision variables (Axsäter, 2015). Echelon-stock
(R,Q) policies extend traditional (R,Q) logic by accounting for downstream inventory
positions when making replenishment decisions, thereby centralizing control across multiple
stages to reduce overall stock levels. This differs from installation-stock policies, where each
stage manages its own inventory independently, which tends to amplify demand variability
throughout the network (Axsäter and Rosling, 1993). Moreover, a method that is widely
adopted in structured manufacturing environments is the Material Requirements Planning
(MRP) due to its simplicity and integration with ERP systems. MRP combines bills
of materials with production schedules to forecast replenishment needs, but its reliance
on deterministic forecasts limits effectiveness under uncertainty, often requiring manual
adjustments to stay responsive (Snyder et al., 2016).

2.1.3 Inventory Allocation in Divergent and General Supply Networks

Divergent networks, where upstream stages distribute inventory to multiple downstream
nodes, face critical allocation challenges during stockouts. Poor allocation of scarce inventory
in such systems can exacerbate service imbalances and propagate shortages downstream,
leading to significant inefficiencies, increased backorder costs, and a systemic decline of
service levels. This is why allocation mechanisms are critical for maintaining service levels
and minimizing overall costs in these settings. Several allocation methods exist, each with
trade-offs in complexity, accuracy, and scalability. Table 2.1 summarizes their key features.

A commonly used yet theoretically limited rule is first-come-first-served (FCFS), which
allocates inventory strictly in the order demands arrive, irrespective of origin (Zipkin,
2000). To address this, Eppen (1981) introduced the balance assumption, where unmet
demand is fully backordered. Under this approach, available inventory is allocated to the

9

2. Literature Review

earliest backorders first, simplifying analysis in models like the one-warehouse-multi-retailer
(OWMR) system. However, its efficacy is contingent on system parameters as noted by
Doğru et al. (2009). Persistent imbalances in retailer imbalances may be better addressed
by alternative allocation rules such as: Proportional allocation, which distributes inventory
based on demand share, reducing disparities but ignoring critical needs, and shortfall
minimization, which allocates inventory to minimize the maximum shortfall between base-
stock levels and actual inventory (Kaynov et al., 2024).

To achieve optimality, Axsäter (1990) proposed the Projection Method, which formulates
allocation as a non-convex optimization problem to provide exact solutions. Although highly
accurate, its exhaustive search process is computationally infeasible for large networks.
To overcome these scalability challenges, heuristic approximations such as the METRIC
model (Sherbrooke, 1968) and Graves’ two-moment approach (Graves, 1985) trade off
precision for traceability. These methods simplify calculations by approximating key
performance metrics—such as backorders and fill rates—using stochastic lead time or
demand assumptions, rather than solving the exact optimization problem. While less
precise, they are widely adopted in practice for scenarios with stochastic lead times.

Recent advances in adaptive balancing for machine learning include Randomized Se-
quential Allocation (Kaynov et al., 2024), which assigns all inventory in a random sequence
to reduce allocation bias of FCFS, while it is fairer, it can lead to unfulfilled demand if
stock runs out early. Randomized Balanced Allocation (Stranieri et al., 2024) improves
upon this by dynamically assigning units to retailers based on real-time demand, better
balancing inventory and reducing performance gaps by up to 5% as shown in simulations.

2.1.4 Capacitated Systems

Finite production capacities complicate multi-echelon optimization, invalidating traditional
base-stock assumptions. For the GSM, Graves and Schoenmeyr (2016) propose a heuristic
where replenishment orders are capped at capacity limits while maintaining near-optimal
base-stock levels. Similarly, Huh et al. (2016) analyze shortfall processes to derive near-
optimal policies for capacitated serial systems (SSM), later extended by Van Dijck et al.
(2024) to capacitated assembly systems.

Recent advances combine production and buffer planning through a rolling horizon
framework to balance feasibility and cost-effectiveness, though scalability remains a chal-
lenge (Fleuren et al., 2022). For dynamic adaptation, Woerner et al. (2016) combines
perturbation analysis with iterative tuning of base-stock levels to adapt policies to capacity-
induced bottlenecks, albeit at computational costs. Despite these advancements, optimizing
capacitated multi-echelon systems with convergent and divergent flows remains highly
complex. Existing heuristics offer solutions for specific cases, but a scalable, universally
effective method is still missing, highlighting the need for stronger approaches that balance
capacity constraints, demand variability, and service levels in large networks.

2.2 Deep Reinforcement Learning for Inventory Management

Recent advances have positioned DRL as a promising alternative to traditional heuristics
for inventory management in complex, uncertain, and capacitated supply networks. DRL
leverages neural network architectures to dynamically learn policies directly from system
interactions, addressing many shortcomings of static inventory approaches (Sutton and
Barto, 2018; Mnih et al., 2015).

The subsequent discussion examines the development of DRL methodologies within the

10

Dynamic Production Policies for ASML’s General Supply Network

Method Description (with Pros and Cons) References
FCFS Allocates based on the demand arrival order. Pros: Simple,

easy to use. Cons: Ignores priority, imbalances.
Zipkin (2000)

Balance
�Assumption

Assumes all unmet demand is backordered, prioritized by
arrival. Pros: Simple, tractable in OWMR. Cons: Limited
flexibility, sensitive to system parameters.

Eppen (1981);
Doğru et al.
(2009)

Proportional
Allocation

Distributes proportionally across demand. Pros: Reduces
disparity among retailers. Cons: Ignores critical needs, may
neglect high-priority demands.

Kaynov et al.
(2024)

Shortfall
�Minimization

Minimizes maximum shortfall across nodes. Pros: Efficient
for addressing critical shortages. Cons: Needs accurate
shortfall estimation.

Kaynov et al.
(2024)

Projection
Method

Solves allocation as a non-convex optimization problem for
exact solutions. Pros: Highly accurate. Cons: Computa-
tionally expensive, not scalable for large networks.

Axsäter (1990)

METRIC
Model

Uses stochastic lead-time approximations for backorder es-
timates. Pros: Scalable, computationally efficient. Cons:
Less precise than optimization-based methods.

Sherbrooke
(1968)

Graves’ Two-
Moment

Approximates performance using mean and variance. Pros:
Simple calculations, efficient for analysis. Cons: Assumes
normality, may be inaccurate for non-normal demand.

Graves (1985)

Randomized
Sequential
Allocation

Allocates inventory in random order to reduce bias. Pros:
Fairer than FCFS, reduces order bias. Cons: Risk of unful-
filled demand if inventory depletes early.

Kaynov et al.
(2024)

Randomized
Balanced
Allocation

Iteratively assigns units to retailers in random order to
balance stock. Pros: Fair, low bias, prevents imbalances.
Cons: May not guarantee optimal allocation.

Stranieri et al.
(2024)

Table 2.1: Overview of Key Inventory Allocation Methods in Divergent and
General Supply Networks

context of Inventory Management, with a focus on addressing the complexities associated
with multi-echelon systems.

2.2.1 Evolution of DRL Methods in Inventory Management

DRL methods have evolved to tackle inventory challenges like partial observability and
dynamic demand. This section traces their progression from RL to tailored DRL algo-
rithms specifically for inventory management, highlighting advancements in scalability and
adaptability.

From Tabular Q-Learning to Deep Q-Networks (DQNs)

Early RL applications in inventory management relied on tabular Q-learning for small-scale
systems (Giannoccaro and Pontrandolfo, 2002). However, these methods failed to scale to
multi-echelon networks due to exponential growth in state-action spaces (Geevers et al.,
2024). The advent of Deep Q-Networks (DQNs) marked a breakthrough by using neural
networks to approximate Q-values, enabling partial scalability (Mnih et al., 2015). While
DQNs excelled in deterministic environments like Atari games, they struggled in inventory
settings due to partial observability (e.g., unobserved in-transit stock) and large discrete
action spaces (e.g., order quantities), often producing unstable or unrealistic policies
(Oroojlooyjadid et al., 2021).

11

2. Literature Review

Policy Gradient Methods: Direct Policy Optimization

Policy gradient methods, such as Asynchronous Advantage Actor-Critic (A3C), circumvented
DQN limitations by optimizing stochastic policies directly through gradient ascent (Mnih
et al., 2015). A3C’s parallelized training improved exploration in stochastic environments,
but its hyperparameter sensitivity and unstable convergence hindered reliable
deployment in complex supply chains (Gijsbrechts et al., 2022).

Proximal Policy Optimization (PPO): Stabilizing Training

Proximal Policy Optimization (PPO) addressed instability by constraining policy updates,
enabling robust performance in joint replenishment and capacitated lot-sizing problems
(Schulman et al., 2017; Van Hezewijk et al., 2023). PPO’s success in two-echelon divergent
networks (Stranieri et al., 2024) highlighted its adaptability to multi-stage systems, though
its reliance on continuous action spaces limited granularity in discrete order decisions.

Deep Controlled Learning (DCL): A Paradigm Shift

Deep Controlled Learning (DCL) reframed DRL as a classification task, iteratively re-
fining policies through supervised learning on "elite" trajectories (Temizöz et al., 2023).
This approach achieved faster convergence in high-stochasticity settings (e.g., perishable
inventory, random lead times) and demonstrated adaptability to non-stationary demand
in semiconductor supply chains (Van Dijck et al., 2024). Unlike traditional DRL, DCL
avoids value function approximation pitfalls, making it uniquely suited for trend-sensitive
environments like ASML’s high-tech manufacturing.

2.2.2 Addressing Multi-Echelon Complexities

DRL shows promise for multi-echelon inventory optimization, but applying it to low-demand,
high-tech settings poses unique challenges. Additionally, unlike structured networks, general
supply chains have complex interdependencies with convergent and divergent flows, needing
adaptive replenishment and efficient allocation to manage shortages.

Existing methods, such as those proposed by Geevers et al. (2024), employ a continuous
action space with PPO, which is unsuitable in sparse-demand environments, where every
order must be rounded to an integer, producing systematic over- or under-stocking that is
costly in capacity-constrained, high-value settings. Techniques like action masking limit
infeasible moves (Peng et al., 2019), yet converting continuous outputs to integers (e.g., by
rounding Soft Actor-Critic signals) still injects error and erodes service levels in low-volume
regimes (Vanvuchelen et al., 2025). For such contexts, multi-discrete action spaces that let
the agent choose exact unit quantities are a closer fit to operational reality.

Integer-valued action spaces lead to combinatorial growth when allocating stock across
many nodes, with the number of feasible actions exploding as recipients increase (Kaynov
et al., 2024). To address this, multi-discrete action factorization decomposes joint decisions
into per-node outputs, reducing dimensionality from exponential to linear (Van Dijck et al.,
2024). However, this decomposition introduces new issues in divergent networks, where
local allocations may exceed available inventory, necessitating corrective mechanisms to
maintain feasibility, see Kaynov et al. (2024).

Moreover, the complexity of effective allocation strategies, as discussed in Section 2.1.3,
also extends to DRL implementations. Allocation rules can restrict the action space, but
when applied sequentially, they may bias inventory toward upstream or early-served nodes,
which can make it hard for downstream nodes to recover from shortages. To mitigate this,

12

Dynamic Production Policies for ASML’s General Supply Network

Kaynov et al. (2024) use randomized sequential allocation to reduce bias by distributing
full inventory in random order, while Stranieri et al. (2024) improves this by randomly
allocating unit-by-unit to improve fairness.

Transfer learning offers another path to scalability. Oroojlooyjadid et al. (2021) showed
for a serial system that a Beer-Game agent’s policy can be transplanted to new parameter
settings with little retraining. However, in the case of general systems, the agent’s per-
formance and transferred knowledge may degrade under complex interdependencies and
information asymmetries.

Recent advances in general systems include Pirhooshyaran and Snyder (2021), who
developed a DNN-based order-up-to policy with proportional allocation; Wang and Hong
(2023) propose a new method for large-scale inventory optimization using Recurrent Neural
Networks (RNNs), encoding the supply network’s structure within an RNN for rapid
end-to-end policy evaluation and gradient estimation, achieving large speedups compared to
classical simulation-based approaches; and Harsha et al. (2025), whose programmable actor
RL (PARL) framework combines deep policy iteration with mathematical programming
to handle combinatorial action spaces and state-dependent constraints. PARL outper-
forms state-of-the-art RL algorithms and heuristics by up to 14.7% in complex settings,
leveraging sample average approximation for per-step optimality, additionally, the authors
provide an open-source Python library to democratize RL adoption in inventory manage-
ment. Complementing these approaches, DCL has emerged as a promising model-based
alternative for high-variability systems by treating policy learning as a classification task
over simulation-based state-action pairs. This approach improves sample efficiency and
minimizes hyperparameter tuning. Recent studies by Van Dijck et al. (2024) and Temizöz
et al. (2023) demonstrate that DCL achieves sub-0.2% optimality gaps with substantially
lower training times.

Allocation rules from the previous section also apply to DRL since they can constrain
the action space (see sub-section 2.1.3). However, these strategies can lead to systematic
biases, particularly when sequential allocation rules are applied, as downstream warehouses
may receive insufficient inventory, making it harder to recover from shortages. Kaynov
et al. (2024) addressed this issue by introducing a randomized sequential allocation rule,
where orders are executed in full, one by one, until the central warehouse inventory is
depleted. While this mitigates bias in order fulfillment, it does not guarantee that all
locations receive stock, leading to potential supply imbalances. To improve fairness, Stranieri
et al. (2024) proposed a balanced allocation rule for continuous action spaces, ensuring
that stock is allocated equitably while preventing infeasible shipments. Their approach,
applicable to multi-discrete action spaces, prevents disproportionate inventory imbalances
while maintaining feasibility.

2.3 Research Gap and Contribution

The review shows a clear disconnect between current theory and the needs of ASML-
type supply chains. First, general multi-echelon networks with both convergent and
divergent flows remain largely unsolved. Most studies adopt the Guaranteed-Service Model,
yet volatile, low-volume demand indicates that a Stochastic-Service perspective is more
appropriate; beyond the distribution-focused heuristic of Rong et al. (2017), no practical
SSM-based method exists for truly general topologies. Second, allocation in divergent stages
is still rudimentary: simple FCFS rules or recent random-sequence variants (Kaynov et al.,
2024; Stranieri et al., 2024) either bias stock or fail to scale to mixed convergent–divergent
settings. Third, group-based capacity constraints (common at ASML) are virtually absent

13

2. Literature Review

from the literature; serial shortfall approaches (e.g., Huh et al. (2016)) cannot cope with
shared-capacity groups, leaving both planning and allocation under capacity constraints
highly ad-hoc. Finally, recent DRL work either assumes continuous actions or ignores
capacity sharing; existing discrete methods are limited to small networks, and no study
combines SSM dynamics with discrete, capacity-aware DRL in general systems.

This thesis fills these gaps by developing a unified, capacity-aware ordering framework
for general multi-echelon systems with volatile demand. We (i) extend SSM reasoning
to general networks with shared-capacity groups, (ii) design new allocation rules that
balance fairness and feasibility in convergent–divergent structures, and (iii) integrate these
components into a discrete, multi-action DRL scheme. Together, these contributions provide
the first scalable, data-driven solution tailored to ASML’s high-tech, low-demand supply
chain and advance the state of general multi-echelon inventory control.

14

Dynamic Production Policies for ASML’s General Supply Network

Chapter 3

Model Formulation

This chapter formalizes the tactical production-inventory planning problem for ASML’s
multi-echelon supply chain as an infinite-horizon Markov Decision Process (MDP). The
formulation captures ASML’s role as central decision-maker coordinating production across
nodes in a network spanning from raw material suppliers to the final assembly of lithography
systems. The objective is to determine optimal stationary production policies that minimize
total costs, comprising inventory holding penalties for components and backlog costs for
unmet end-product demand, under capacity constraints and stochastic demand patterns.

To structure the formulation, the chapter proceeds as follows. Section 3.1 introduces
the case context and key structural features of ASML’s supply network. Section 3.2 defines
the components of the Markov Decision Process (MDP) model, including the sets and
parameters, the state space, the action space, the reward function, and the transition
dynamics.

3.1 Case Context

ASML’s supply chain exhibits two distinctive structural features that shape the modeling
approach. First, convergent flows, where ultra-precision modules—such as EUV light
sources and wafer stages—integrate thousands of components into atomically synchronized
assemblies. Second, divergent flows, where shared subsystems like silicon carbide mir-
rors or laser modules branch across product lines (EUV, DUV, metrology). In addition,
components are grouped into capacity-constrained processing stages, such as optical
polishing or sub-nanometer testing, where shared resources—like ion-beam figuring tools or
vibration-isolated cleanroom cells—create contention and bottlenecks.

Figure 3.1 illustrates the structural setup of our stylized supply network, organized into
three logical layers: upstream suppliers (C0, C1), intermediate pre-assembly processing
stages (C2, C3, C4), and downstream end products (C5, C6). Each component Ci is
permanently assigned to a single facility or group Gk (denoted Ci ∈ Cg), with arrows
indicating material flows, annotated by production lead times li, and each component
incurring a holding cost hi. For example, C0 is processed at Group G0 and flows to both
C2 and C3, each with a lead time of 2. Moreover, final components C5 and C6 represent
end-products (e ∈ Cend) with stochastic period-specific customer demand de,t. Unmet
demand is backlogged at a cost of be per unit. For instance, group G4 processes both C5

and C6, subject to a capacity of Q4, with respective backlog penalties b5 = 35 and b6 = 40.
In this representation, groups (Gk) denote physical production or assembly resources,

subject to shared capacities (Qk) and operational constraints, while components (Ci) are
the individual flow units being stocked, moved, and consumed.

3. Model Formulation

Figure 3.1: Stylized general system network. Each component Ci is processed
at group Gk, with arcs indicating material flows and annotated with production
lead times li, holding costs hi, and backlog and demands (be;de,t) for each end item
(e ∈ Cend).

Stylized Network Features. The example network in Figure 3.1 embodies a set of
structural assumptions aligned with ASML’s real-world supply system:

• Convergence and divergence: Components may merge into assemblies (e.g., C2,
C4 into C5) or split across multiple end-products (e.g., C4 to C5, C6), reflecting
complex module integration and shared subassemblies.

• Single-use components: Each component is consumed in exactly one downstream
assembly (e.g., C0 flows to C2 and C3, but is not reused in subsequent stages). This
prevents component recycling, ensuring traceability and avoiding requalification costs
in systems with irreversible assembly steps.

• Universal Group Contribution: Every facility or group Gk contributes indirectly
to all end products (C5, C6) through various assembly paths, which ensures that all
groups are vital and fully utilized in the supply chain.

• Acyclic structure: The network follows a forward-only flow with no loops, consistent
with irreversible manufacturing steps and certification sequences.

• Deterministic timing and cost structure: Each arc has a fixed production lead
time, and each component incurs a deterministic holding cost—assumptions that
reflect ASML’s engineered-to-order operations and need for cost visibility.

These structural assumptions ensure logical consistency with ASML’s real-world supply
dynamics and provide a tractable basis for decomposition and analysis. Additionally,
three operational constraints further define the modeling scope. First, production facilities
are subject to capacity limits, particularly at shared or bottleneck stages like optics
polishing or cleanroom testing. Second, lead times vary across components, driven by
their complexity and sourcing origin. Finally, end-product demand de,t follows discrete,
low-volume distributions—typical of ASML’s high-mix, low-volume environment.

16

Dynamic Production Policies for ASML’s General Supply Network

3.2 MDP Components

The MDP formulation begins by defining the sets and parameters, followed by the state
space, action space, reward function, and transition dynamics. This formulation builds in
part on the pure assembly model proposed by Van Dijck et al. (2024).

3.2.1 Sets and Parameters

The model employs several sets and parameters (Table 3.1) to formally describe the supply
network structure, component relationships, and operational constraints. Many of these
elements have already been illustrated in Figure 3.1.

The bill-of-materials (BOM) is captured by a binary matrix A ∈ {0, 1}|C|×|C|, where
aij = 1 indicates that component i is required to produce component j. This representation
supports both convergent and divergent flows, as components may have multiple upstream
suppliers U(i) and multiple downstream consumers D(i). Finally, the system evolves over
discrete time periods t ∈ T , during which production decisions are made, inventories are
updated, and demands for end-products are realized.

Table 3.1: Key sets and parameters

Symbol Description

Sets
C All components/products
G Production facilities
T Time periods
Cg Components at group g
Cend End-products
U(i) Upstream or predecessor components required to produce i (per BOM A)
D(i) Downstream or successor components that consume i (divergent flows)

Parameters
li Production lead time of component i
A BOM adjacency matrix
de,t Stochastic demand of end-product e at time period t
hi Holding cost per unit of component i per time period
be Backlog penalty per unit of end-product e per time period
Qg Cpacity of group g

3.2.2 State Space

The system state st at period t fully describes inventory positions and production pipeline
status across all nodes. For each component i ∈ C, the state vector combines on-hand
inventory Ii,t with pipeline inventory Pi,t,k representing units scheduled for completion in k
periods. Formally:

st = {[Ii,t, Pi,t,1, . . . , Pi,t,li−1]}i∈C (3.1)

where Ii,t ∈

{
Z if i ∈ Cend
Z+ otherwise

, since it allows negative values for end-products (backlogs).

17

3. Model Formulation

The exclusion of demand di,t from the state vector is justified by its role as an exogenous
stochastic process, assumed to be independent and identically distributed across periods.

3.2.3 Action Space

At each decision stage t, the agent selects production quantities Xi,t for all components,
subject to three operational constraints, which define the allowable action space A(st)
from state st. First, group capacity limits (Constraint 3.2a) ensure the total production
at each group n does not exceed Qg. Second, material availability constraints (3.2b)
prevent production starts that exceed current component inventories, critical for high-value
items like EUV mirror modules. Third, integrality constraints (3.2c) enforce discrete unit
production, matching ASML’s low-volume context. Formally:

A(s) =

{∑
i∈Cg

Xi,t ≤ Qg ∀g ∈ G; (3.2a)

∑
j∈D(i)

Xj,t ≤ Ii,t ∀i ∈ C; (3.2b)

Xi,t ∈ N0 ∀i ∈ C

}
(3.2c)

3.2.4 Reward Function

The immediate reward rt represents negative total costs, combining inventory holding costs
for upstream components and service-level costs for end-products. For upstream items
(i /∈ Cend), costs accrue linearly with on-hand inventory. End-products incur holding costs
only on surplus stock (Ij,t − dj,t) and backlog penalties on unmet demand (dj,t − Ij,t), with
bj > hj reflecting service-level agreements. The cost function C(st, at) is:

C(st, at) =
∑

i/∈Cend

hiIi,t +
∑

j∈Cend

[
hj(Ij,t − dj,t)

+ + bj(dj,t − Ij,t)
+
]

(3.3)

3.2.5 Transition Dynamics

State transitions follow a four-step sequence mirroring ASML’s operational cycle. First,
pipeline inventories age: Pi,t+1,k = Pi,t,k+1 for k < li− 1, moving items closer to completion.
Completed production (k = 1) joins on-hand inventory: Ii,t+1 ← Ii,t + Pi,t,1. Second,
end-product demand di,t is realized and fulfilled, reducing Ii,t for i ∈ Cend and creating
backlogs if inventory is insufficient. Third, new production starts Xi,t consume upstream
inventories per the BOM matrix A: each unit of j ∈ Di reduces Ii,t by one. Finally, all nodes
update their production pipelines with new starts: Pi,t+1,li−1 = Xi,t. These transitions are
captured formally by:

18

Dynamic Production Policies for ASML’s General Supply Network

st+1 = f(st, Xi,t) (3.4)
Pi,t+1,j ← Pi,t,j+1 ∀1 ≤ ℓ < li − 1, (3.4a)

Pi,t+1,li−1 ← Xi,t, (3.4b)

Ii,t+1 ← Ii,t + Pi,t,1 −
∑

j∈D(i)

Xj,t (i /∈ Cend), (3.4c)

Ii,t+1 ← Ii,t + Pi,t,1 − di,t (i ∈ Cend) (3.4d)

3.3 Policy Definition and Evaluation

We consider a stationary policy π : S → A that assign to each state s ∈ S a valid action
π(s) ∈ A(s). Under such a policy, the system evolves according to

At = π(St), St+1 ∼ f(St, At),

where f is the transition function introduced in Subsection 3.2.5.
We seek a policy π that minimises the long-run average cost per period:

J(π) = lim
T∈N,T→∞

1

T
Eπ

[T−1∑
t=0

C(St, At)
]
,

where C(St, At) is the one-period cost defined in (1.1). All solution-specific choices (e.g.,
finite-horizon simulation, warm-up length, episode count) are discussed in later chapters.

19

4. Heuristic for a General Multi-Echelon System

Chapter 4

Heuristic for a General Multi-Echelon
System

To establish a heuristic for our general multi-echelon network, we reviewed two main
approaches in the literature: GSM and SSM. GSM, although well-studied for general
networks, imposes a strict service-level target at each echelon, which is unsuited for ASML’s
low-volume environment because any local shortage rapidly propagates further upstream
or downstream. Instead, we adopt a SSM framework using an echelon base-stock policy,
which is widely used and known to perform effectively in this setting.

Our method builds a full decision-making framework , which divides this chanter by
(i) computing appropriate base-stock levels, (ii) defining how inventory is allocated across
competing demands, and (iii) refining base-stock levels to account for capacity constraints
using simulation-optimization. These components are organized as follows:

Together, these steps form our complete heuristic policy framework tailored to ASML’s
supply network. The performance of the resulting base-stock levels and allocation rules,
and capacity-aware base-stock levels is assessed in later chapters.

4.1 Base-Stock Level Computation

While base-stock policies are conceptually straightforward, determining base-stock levels
in networks with both convergent and divergent flows remains challenging. A notable
reference is Rong et al. (2017), which proposes a decomposition approach that breaks the
network into serial chains—one per end item—and reaggregates them by matching expected
backorders, rather than summing base-stock levels. While their focus is on distribution
systems, they briefly outline an extension to general networks. However, the treatment of
convergent structures is limited. To guide the transformation of such assembly flows into
serial representations, we refer to Rosling (1989) and Van Dijck et al. (2024), which offer
more concrete structural insights for handling convergent parts of the network.

To operationalize this approach, we structure the base-stock computation in five steps:
1. Decomposition into serial systems;
2. Custom discrete distributions for low-volume demand;
3. Shang & Song heuristic to compute echelon base-stock levels for each serial system;
4. Conversion from echelon to local base-stock levels;
5. Backorder matching to unify base-stocks at shared nodes.
6. Calculate final echelon base-stock levels.
Each step is described in detail below.

Dynamic Production Policies for ASML’s General Supply Network

4.1.1 Decomposing a General System

We transform the original multi-echelon network into multiple serial systems w ∈W , one
for each end item. Each of these serial systems represents a linearized view of the supply
path leading to a specific end product. To construct them, we trace each end item’s path
back to the external supply, duplicating any convergent components across serial chains.
This ensures that each resulting subsystem forms a single uninterrupted chain from source
to end item, as described by Rosling (1989) and Van Dijck et al. (2024).

Figure 4.1: Decomposition of the general system into two serial chains—one for
each end item (C5, C6)—with updated echelon lead times and adjusted holding
costs.

In Figure 4.1, the general system from Figure 3.1 is decomposed into two purely serial
chains, each terminating in one of the end products (C5 or C6). Each component i has an
echelon lead time l′wi , which is the total time from the given component node to the end
item in serial system w. To mirror the sequential progression of materials in a serial system,
we sort the component nodes in descending order of l′wi (e.g., in the C5 subnetwork, C1
might have the largest l′wi , followed by C0, C4, and finally C2). If multiple nodes share the
same l′wi , we combine them into a single node in the serial system, summing their holding
costs and demands.

The serialized production lead time lwi for a component node is obtained by subtracting
the echelon lead time of its immediate successor from its own. For example, if l′C5

1 = 8 and
l′C5
0 = 6, then lC5

1 = 8−6 = 2. Holding costs in the serialized chain are updated sequentially
from upstream to downstream. At each node, the adjusted holding cost hwi is computed by
adding its original holding cost, subtracting the original costs of any predecessors, and then
subtracting the adjusted cost of the previous node. For instance, hC5

0 = 1.4 + 1.2 = 2.6,
and hC5

4 = 2.6− 1.4 + 2.6 = 3.8.
This serialized transformation enables the application of well-established single-product

inventory heuristics, such as those by Shang and Song, while respecting the topology of
the original network. It is the first key step in our overall base-stock policy computation
framework.

4.1.2 Low-Volume Demand Distributions

Each end item inherits a custom discrete demand distribution, which can be a discrete Erlang
or other empirically fitted approximation suitable for low-volume, high-tech manufacturing.
This aligns with Van Dijck et al. (2024). Note that Rong et al. (2017) use Poisson demand
however, the method of Shang & Song (2003) does not require Poisson per se; they only need
to evaluate or invert Pr(D ≤ s) and E[(D − s)+]. Thus, our custom discrete distributions
easily fit into this framework.

21

4. Heuristic for a General Multi-Echelon System

4.1.3 Echelon Base-Stock Computation via Shang & Song (2003)

Within each new serial system w, we determine echelon base-stock levels for each com-
ponent node c using the Shang & Song heuristic, which approximates optimal policies in
uncapacitated serial supply chains. Let D̃iw be the echelon leadtime demand for node i
in subsystem w. Define bℓw as the backorder penalty for end item ℓw, and let Hi be the
echelon holding cost at node i, where Hi = hi − hU(i) and H0 = h0. Then:

• Case 1: i is the end-item node in subsystem w.

SECH
iw = F−1

D̃iw

(bℓw +
∑

j∈A(0,U(i))Hj

bℓw +
∑

j∈A(0,i)Hj

)
.

• Case 2: i is an internal node (non-end) in subsystem w.

SECH
iw =

1

2

[
G−1

D̃iw

(α1) + G−1

D̃iw

(α2)
]
,

where

α1 =
bℓw +

∑
j∈A(0,U(i))Hj

bℓw +
∑

j∈A(0,i)Hj
and α2 =

bℓw +
∑

j∈A(0,U(i))Hj

bℓw +
∑

j∈A(0,ℓw)Hj
.

Here, A(0,U(i)) is the set of nodes from the external supply up to immeditate upstream
nodes for i U(i), and A(0, ℓw) is the set of nodes from the external supply up to the end
item ℓw. The function G−1

D̃iw

is a continuous approximation to the discrete inverse CDF for

D̃iw , ensuring we can handle non-integer or stepwise demands.

4.1.4 From Echelon to Local Base-Stock

Once we obtain echelon base-stock levels SECH
iw

for each node i in serial system w, we
compute the local base-stock levels sS-LOC

iw
using the transformation proposed by Rong et

al. (2017). We use the prefix S-LOC to indicate that these levels are serial-system-based
local base-stock levels:

sS-LOC
iw = SECH

iw − SECH
jw , where jw is the successor of iw in serial system w.

This transformation is well-suited to divergent distribution systems—like those em-
phasized in their work—where each node has a unique downstream path. However, in
general supply networks with convergent flows, as considered in our setting, the serialized
representation may assign successors that are not directly connected in the original network.
For example, in the serial system for end item C5 (see Figure 4.1), node C4 appears
upstream of both C2 and C5, even though it only supplies C5 in the actual network.

To preserve consistency with the original network topology, we define sG-LOC
iw

, a general-
system-based local base-stock level, by referencing each node’s actual immediate successor
in the general system, as long as that successor lies on the path to end item ℓw:

sG-LOC
iw = SECH

iw − SECH
jw , where jw ∈ D(iw) ∩A(iw, ℓw),

where D(iw) is the set of immediate successors of iw in the general network, and A(iw, ℓw)
is the set of nodes on the directed path from iw to end item ℓw.

22

Dynamic Production Policies for ASML’s General Supply Network

This ensures that local base-stock levels reflect the true flow of materials toward the end
item under consideration, especially in regions of the network with convergence. Importantly,
this adjustment complements the serial approach: in purely divergent systems, where each
node has a single downstream path, our method reduces to the original rule.

Finally, for end-item nodes, we set sS-LOC
iw

= sG-LOC
iw

= SECH
iw

.

4.1.5 Backorder Matching for Aggregation

After computing local base-stock levels sLOC
iw

in each subsystem w, some nodes i appear in
multiple subsystems and thus have multiple values. But in the actual network, each node
can only hold one physical base-stock level, si. Simply summing or taking the maximum of
these values ignores risk pooling—the fact that high demand for one product may be offset
by low demand for another. To account for this, Rong et al. (2017) propose backorder
matching: instead of matching stock levels, we match their effect on expected backorders.

Thus, the key idea behind backorder matching is to align the expected backorders in
the full network with the sum of expected backorders across all serial subsystems in which
a node i appears.

In each subsystem w, we compute a local base-stock level sLOC
iw

for node i, and evaluate
its expected backorders as:

E[(Diw − sLOC
iw)+],

where Diw is the lead time demand for node i associated with end item w. Importantly,
these demands are always calculated using the general network’s local lead times, even
when working within serialized subsystems.

To determine a unified physical base-stock level si for node i, we match the total
expected backorders in the general network to the sum of subsystem-level backorders:

si = min

{
s ∈ Z≥0

∣∣∣∣∣E[(Di − s)+] ≤
∑
w:i∈w

E[(Diw − sLOC
iw)+]

}
.

Here, both Di and Diw use the same lead time parameters but differ in scope. Di

reflects the full network’s demand aggregated across all end items, while Diw captures
demand routed only to end item ℓw. The aggregation preserves consistency with the original
network while using the serial simplifications.

4.1.6 Final Echelon Base-Stock Levels

Up to this point, we’ve described how to compute unified base-stock levels si by performing
backorder matching on local base-stock levels sLOC

iw
, where the demand Diw is evaluated

using general-network lead times. These local levels can be derived from either general-
system-based inputs sG-LOC

iw
, or serial-system-based ones sS-LOC

iw
, resulting in two distinct

sets of unified local base-stock levels:

• sG-MATCH
i : based on sG-LOC

iw
,

• sS-MATCH
i : based on sS-LOC

iw
.

An alternative, more serialization-aligned modeling choice would be to compute Diw

using serial-system lead times, rather than those from the general network. In that case,
both the local base-stock levels and their corresponding expected backorders would be fully
aligned with the structure and timing of each serial subsystem. This would produce yet
another variant of local base-stock levels: sFullS-MATCH

i .

23

4. Heuristic for a General Multi-Echelon System

• sFullS-MATCH
i : based on sS-LOC

iw
and serial lead times.

Since we ultimately operate under an echelon base-stock policy, each variant of local
base-stock levels is converted into its corresponding echelon form:

Si = si +
∑
j∈Di

Sj , ∀i ∈ C

where Di is the set of immediate successors of node i in the general network. The recursion
begins at the end-items and proceeds upstream, ensuring each echelon level captures all
downstream inventory needs.

Finally, due to the discrete and low-volume nature of demand, we cannot simply round
final base-stock levels at the end of the pipeline. Instead, we track both the rounded-up
and rounded-down versions throughout the Shang and Song initial computation, backorder
matching and echelon transformation steps. As a result, we obtain in total six variants
of final echelon base-stock levels. These variants are summarized in Table 4.1, and later
evaluated in the experimental section.

Table 4.1: Variants of unified echelon base-stock levels under different modeling
assumptions

Type Notation Lead Times Characteristics

General-system-based SG-MATCH↑
i

SG-MATCH↓
i

General Aligned with full network structure and
timing

Hybrid Serial-based
(Rong et al., 2017)

SS-MATCH↑
i

SS-MATCH↓
i

General Serial structure with general-network
timing

Fully serial-based SFullS-MATCH↑
i

SFullS-MATCH↓
i

Serial Based entirely on serialized structure
and timing

Clarifying the Modeling Variants. The different base-stock variants introduced above
stem from how we compute local base-stock levels within each serial subsystem, and how
we later unify them. The central distinction lies in whether the decomposition respects
the structural and temporal features of the original network. The general-system-based
variant (SG-MATCH

i) uses the actual immediate successors from the original network to define
local base-stock levels, and applies general-network lead times when evaluating backorders.
This approach ensures consistency with the true material flow, particularly in convergent
areas where a component may feed multiple downstream nodes in different ways.

By contrast, the serial-system-based variant (SS-MATCH
i), inspired by Rong et al.

(2017), assumes that local successors follow the structure of the serial chain. While this is
valid for divergent distribution networks, it can misrepresent flow dependencies in general
systems where serialized successors are not always real successors. The fully serial-based
variant (SFullS-MATCH

i) goes a step further by also replacing lead times with those derived
from the serial chain, thereby fully aligning structure and timing—but at the cost of
deviating further from the true network logic.

Among these, the general-system-based approach remains the most aligned with the
physical network and is therefore expected to yield more realistic stock targets. Nonetheless,
all six variants (up/down rounded) are carried forward to the experiments in further
chapters.

24

Dynamic Production Policies for ASML’s General Supply Network

4.2 Allocation Methods for Operating the General System

While computing base-stock levels provides inventory targets for each node (how much to
order and hold), they do not specify how that inventory is used once it arrives. In
fact, operating the network under demand uncertainty and capacity constraints
requires effective allocation rules. This is particularly important in divergent supply
networks, where upstream resources must be distributed among competing downstream
demands. As highlighted in the literature, poor allocation decisions can amplify shortages,
degrade service levels, and raise total costs.

As reviewed in Chapter 2, allocation in divergent networks has been extensively studied
in the context of one-warehouse-multi-retailer (OWMR) systems, but generalizations remain
limited. Early approaches, such as FCFS and balance assumptions (Eppen, 1981), offer
simplicity but lack robustness under demand asymmetries. More recent work—including
projection-based heuristics (Axsäter, 1990), two-moment approximations (Graves, 1985),
and adaptive rules (Stranieri et al., 2024)—attempts to improve scalability and fairness,
yet none fully address the dynamic interdependencies of convergent-divergent structures
like ASML’s supply network.

4.2.1 Illustrative Example: Allocation in Divergent vs. General Net-
works

Figure 4.2 shows the difference in allocation complexity between a simple divergent system
and a more realistic general network.

Figure 4.2: Allocation challenge in a divergent (left) and general (right) system.

In the divergent setting (left), warehouse C0 supplies both end-products C1 and C2.
When stock is limited, we must decide how to split it between them. This is a classic
one-to-many allocation problem.

In the general system (right), end-products C3 and C4 depend on multiple upstream
nodes (C0, C1, and C2). Unlike the fully divergent system, their production is constrained
by the least available inventory among their suppliers. For example, C3 requires inputs
from both C1 and C2, and its output is limited by the most constrained node. Similarly,
allocation from C2 must consider not only the demand of its direct successors but also
whether C0 and C1 have enough supply to support C3 and C4. This type of indirect
constraint propagation—where the availability at one node affects how useful allocations
are downstream—is what makes allocation in general networks particularly challenging and
underexplored.

25

4. Heuristic for a General Multi-Echelon System

It is important to mention that in general systems, instead of treating allocation locally
at each predecessor, we adopt a global view: in each period, we consider the pool of all
successors that share at least one common predecessor, and coordinate allocations across
this group. This allows the system to make better use of shared resources and ensures
fairness across tightly interconnected product paths.

Overview of Proposed Allocation Rules

To address the resource distribution challenges highlighted (see Section 4.2), we design
and evaluate several allocation policies. These range from simple sequential heuristics
like First-Come-First-Served (FCFS) and Randomized Sequential Allocation, to more
sophisticated, fairness-aware dynamic strategies based on the water-filling (WF) principle.
The water-filling methods further explore variants including prioritization by shortage, and
incorporate mechanisms such as halting allocations, reserving inventory for constrained
nodes, and realizing these reservations over time. Each method is detailed in the subsequent
sections, accompanied by illustrative examples to clarify its operational mechanics and
distinctions.

4.2.2 Baseline Allocation Methods

First-Come-First-Served (FCFS)

The First-Come-First-Served (FCFS) rule allocates inventory to successor nodes based
on a predetermined, fixed sequence. For each successor, if all its requisite inputs are available
and can process its demand, this is supplied in full. Otherwise, the algorithm skips to the
next node. This continues until inventory is depleted or all successors are considered.

Example: Suppose node C0,C1 and C2 have 3 units of inventory and must serve C3

and C4, in that order. If both require 2 units and both can be served, FCFS will allocate
2 units first to C3, then 1 unit to C4. If only 1 unit is available, C3 gets it, and C4 gets
nothing.

While easy to implement, FCFS may be unfair, since the first nodes are consistently
prioritized over others.

Randomized Sequential Allocation (RandomWF)

Inspired by Stranieri et al. (2024), this rule adds fairness by randomly permuting the order
of successors in each period. One unit is allocated at a time to the first feasible node in the
randomized sequence. The randomness is seeded to ensure reproducibility.

Example: With C0, C1 and C2 serving C3 and C4, we randomly choose between
successors. Suppose the random order is [C4, C3] and inventory is 2 units. If both are
feasible, 1 unit goes to C4, then 1 to C3. This prevents systematic bias over time.

Even though this method is relatively simple to implement, it is still myopic and does
not consider base-stock targets or current inventories.

4.2.3 Water-Filling Allocation Strategies

Water-filling (WF) allocation strategies constitute a class of methods designed to distribute
resources more equitably by prioritizing nodes with the greatest need. The guiding principle
is analogous to water filling a container’s lowest points. These methods typically rely on
a quantified measure of "shortage" at each successor node to direct allocation decisions,
aiming for a more balanced inventory distribution across the system.

26

Dynamic Production Policies for ASML’s General Supply Network

Standard Water-Filling (Minimizing the Maximum Shortage) (WF)

The previous Water-Filling algorithm, in its basic form, prioritizes allocations to the
feasible node experiencing the highest unmet demand, quantified by its shortage. A node is
feasible if all its direct predecessors have non-zero available inventory. This approach draws
inspiration from simpler divergent systems, where a common objective is to minimize the
maximum shortage observed among all direct successors (Kaynov et al., 2024). However, in
general systems, accurate distribution is hard to pre-calculate when successors depend on
multiple, potentially constrained inputs. Consequently, our adaptation for general systems
employs an iterative, unit-by-unit allocation process. At each iteration, one unit is given to
the feasible node with the highest shortage.

The absolute shortage for node i is:

shortagei = Si − IECH
i − allocatedi

where Si is base-stock, IECH
i is echelon inventory, and allocatedi (units assigned this period,

initially zero) tracks current allocations. However, the use of absolute shortages can be
potentially misleading when target base-stock levels (Si) differ substantially among successor
nodes. For instance, a shortage of 10 units might be relatively minor for a node with a
target base-stock Si = 1000 but critically urgent for a node with Si = 20. The Relative
Water-Filling normalizes shortage by Si, reflecting proportional urgency:

Relativeshortagei =
Si − IECH

i − allocatedi

Si
(Si > 0)

Example: C0 supplies C3, C4.

• C3: S3 = 5, IECH
3 = 2 =⇒ Abs. shortage3 = 3,Rel. shortage3 = 0.6.

• C4: S4 = 10, IECH
4 = 6 =⇒ Abs. shortage4 = 4,Rel. shortage4 = 0.4.

This indicates that C3 is proportionally further from achieving its target inventory level
(0.6 > 0.4) and should be prioritized, despite C4’s larger absolute shortage. Therefore, 1
unit is allocated to C3, and shortages are then updated for the next iteration.

Initial experiments indicate that the relative version consistently outperforms the
absolute version. For this reason, we adopt the relative shortage as our default shortage
measure and use it in all subsequent Water-Filling methods.

Full-Stop Water-Filling (WFFS)

Standard water-filling algorithm continues to allocate inventory to the feasible node with
the highest shortage. However, if high-priority nodes are temporarily unfulfillable (due
to missing inputs from any predecessor), the algorithm skips them and serves the next
highest-shortage feasible nodes. This behavior can lead to perpetuating unfairness if certain
high-priority nodes are persistently blocked. To address this, we propose the Full-Stop
Water-Filling method, which adds a fairness safeguard and suspends allocations if the
node with the greatest shortage cannot be serviced because of unavailable inputs. No other
feasible nodes receive allocations, conserving inventory for when the high-priority node is
again serviceable. This conservative strategy aims to prevent lower-priority nodes from
consuming resources when a more urgent node, though temporarily unserviceable, exists.

Example: C3 has the highest relative shortage for inventory from C2 but also needs a
component from C0. If C0 is out of stock, C3 is infeasible. C0 halts allocation, not serving
C4 even if feasible.

27

4. Heuristic for a General Multi-Echelon System

Water-Filling with Reserve (WFR)

Rather than stopping the allocation process entirely, the water-filling with reserve method
introduces a more flexible response. When the node with the highest relative shortfall
cannot be served due to missing input from some (but not all) of its predecessors, the
algorithm does not skip the node or halt. Instead:

a) It reserves one unit of its inventory for the constrained node.

b) Allocation continues, with relative shortages recalculated considering allocatedi and
now reservedi:

Relativeshortagei =
Si − IECH

i − allocatedi − reservedi

Si

This policy aims to ensure that reservations count toward meeting a node’s target and
influence subsequent allocation decisions. This method could potentially maintain fairness
without halting the system and keeping high-priority nodes in focus even if they are only
partially feasible. Reservations are considered only within the current allocation period.

Water-Filling with Reserve Realization (WFRR)

This method adds persistence to reservations. units reserved for a constrained node in a
given period t are carried forward into the subsequent period t + 1. So, at the start of
period t+ 1, Water-Filling with Reserve Realization first attempts to "realize" these
outstanding reservations: if all inputs for a reserved node are now available, the allocation
is executed. This precedes any Water-Filling with Reserve logic in the current period for
the remaining available inventory and any new or remaining demands.

Example: In period 1, we reserved a unit for C3 (blocked by C0). In period 2, if C0

and C2 are now available, we allocate to C3 from the reservation before other period 2
allocations. This could help prevent the loss of intent behind reservations in Water-Filling
with Reserve. However, it may limit responsiveness when previously low-priority nodes
face sudden demand spikes, potentially delaying reallocation to more urgent needs in the
current period.

Summary of Allocation Methods

The different allocation methods with their differentiating characteristics are summarized
in Table 4.2.

Table 4.2: Features of Allocation Methods

Method Shortage-Based Uses Reserves Tracks Over Time
FCFS No No No
RandomWF No No No
Water-Filling Variants:
WF Yes (Relative) No No
WFFS Yes (Relative) Halts System Instead No
WFR Yes (Relative) Yes (Intra-period) No
WFRR Yes (Relative) Yes Yes (Inter-period)

28

Dynamic Production Policies for ASML’s General Supply Network

4.3 Capacity-Aware Base Stock Optimization

Group-based capacity constraints, common at ASML, are mostly overlooked in inventory
literature. Traditional methods like serial shortfall heuristics (Huh et al. (2016)) fail with
overlapping capacity groups, and most DRL approaches ignore shared capacities. No
method currently combines capacity-aware planning and discrete control in multi-echelon
networks. This study employs a simulation-optimization heuristic to refine base stock levels
in multi-echelon supply chain networks subject to capacity constraints. The method aims
to minimize total system costs by iteratively adjusting base stock levels, guided by the
degree to which nodes are capacity-constrained.

The core of the methodology is an iterative, greedy search, which is outlined in Algo-
rithm 1. It begins with an initial set of base stock levels (lines 4–6). The performance of
these levels, primarily in terms of average total system cost, is assessed through discrete-
event simulation over multiple trajectories. Concurrently, a "Capacity Constraint Ratio"
(CCR) is computed for each node. This CCR quantifies the proportion of time periods in
which a node’s desired replenishment order (based on its current accepted base stock level
and echelon inventory) could not be fully met due to insufficient capacity in its associated
capacity group. A period is classified as capacity-constrained only when the group’s residual
capacity is not only insufficient to fulfill the node’s order but also less than or equal to the
minimum inventory available from the node’s immediate predecessors.

The optimization proceeds iteratively. In each iteration (line 10), the node with
the highest CCR not yet unsuccessfully adjusted is selected (line 11). This is the most
bottlenecked node. The base stock level of this bottleneck node is then tentatively increased
by a small, fixed amount (lines 15–16). The system’s performance with this modified base
stock level is re-evaluated via simulation (lines 17). When evaluating this tentative change,
the policy under test uses the new, modified base stock levels, but the CCR calculation
continues to determine desired orders based on the previously accepted base stock levels to
ensure a consistent measure of constraint. If this change improves system cost (line 18),
it is accepted (lines 19–22), and the process may restart by considering all nodes again.
Otherwise, the node is marked as unsuccessfully tried (line 23). If all nodes have been tried
without success (line 24), the algorithm terminates.

The algorithm stops when no further improvements are found, constraints are minor,
or a maximum number of iterations is reached (line 25). The best-performing base stock
levels are returned (line 28).

29

4.3. CAPACITY-AWARE BASE STOCK OPTIMIZATION 30

Algorithm 1 Guided Base Stock Optimization
1: Input: Network_Configuration, Initial_Base_Stock_Levels (BSL), Simulation_Parameters,

Max_Iterations
2: Output: Optimized_BSL, Best_Mean_System_Cost
3:
4: current_BSL ← Initial_Base_Stock_Levels
5: best_BSL ← current_BSL
6: (best_mean_cost, current_node_CCR)←

EvaluateConfiguration(current_BSL, Sim_Params, Network_Config)
7: iteration ← 0
8: nodes_unsuccessfully_tried ← []
9: while iteration < Max_Iterations do

10: iteration++
11: Select most_constrained_node_idx (with highest CCR value) from nodes not in

nodes_unsuccessfully_tried
12: if no such node exists then
13: break ▷ Convergence or no significant constraints
14: end if
15: tentative_BSL ← current_BSL
16: tentative_BSL[most_constrained_node_idx]++
17: (evaluated_cost, evaluated_CCR)←

EvaluateConfiguration(tentative_BSL, Sim_Params, Network_Config)
18: if evaluated_cost < best_mean_cost then
19: best_mean_cost ← evaluated_cost
20: best_BSL ← tentative_BSL
21: current_BSL ← tentative_BSL
22: current_node_CCR ← evaluated_CCR
23: nodes_unsuccessfully_tried ← []
24: else
25: Add most_constrained_node_idx to nodes_unsuccessfully_tried
26: if AllNodesTried(nodes_unsuccessfully_tried, num_nodes) then
27: break ▷ No improvement possible this round
28: end if
29: end if
30: end while
31: return best_BSL, best_mean_cost

5. Deep Reinforcement Learning Approach

Chapter 5

Deep Reinforcement Learning
Approach

Chapter 2 discussed how Deep Reinforcement Learning (DRL) addresses limitations of
heuristic inventory control in complex environments. DRL learns directly from interactions,
adapting to stochastic dynamics and interdependencies not easily captured analytically.
However, common DRL, like Deep Q-Networks (DQN), struggles with stability and scalabil-
ity in low-volume inventory settings (Oroojlooyjadid et al., 2021). Actor-critic methods such
as A3C and PPO (Gijsbrechts et al., 2022; Van Hezewijk et al., 2023) also underperform
compared to simple policies, due to inefficiencies and sensitivity issues. To overcome these,
new DRL approaches integrate structural information. Programmable Actor Reinforcement
Learning (PARL) uses mixed-integer optimization for action selection (Harsha et al., 2025),
but its high computational cost and inconsistency in outperforming heuristics remain
drawbacks. Conversely, Deep Controlled Learning (DCL) emerges as a model-based, sample-
efficient alternative for high-variability inventories, avoiding value function approximation
and treating policy learning as a classification task over simulation-based state-action pairs.
It shows sub-0.2% optimality gaps with reduced training time and tuning effort (Van Dijck
et al., 2024; Temizöz et al., 2023).

This chapter describes the implementation of the DCL method, Section 5.2 explains the
DCL methodology and core principles, then Section 5.3 covers node-wise decomposition for
simpler decision-making, and finally, Section 5.4 details the neural network architecture,
training/testing, and feature extraction.

5.1 DRL Methodology: Deep Controlled Learning (DCL)

Deep Controlled Learning (DCL) acts as a model-centric framework for approximate policy
iteration, converting reinforcement learning tasks into a supervised learning paradigm.
Rather than calculating expected value functions for an entire spectrum of states and
actions, DCL determines the optimal action per state by running controlled trials on a
chosen group of potential actions under uniform stochastic conditions. These trials directly
compare action results, enabling DCL to label each state optimally without the noise, bias,
and instability of temporal difference methods.

As described in Temizöz et al. (2023), the DCL algorithm operates by starting from a
pool of N sampled states, where DCL revisits each state under multiple exogenous scenarios
M (e.g., demand realizations) and simulates trajectories of fixed length H. For each
candidate action a ∈ Rg(s) in a state (Rg(s) = {a(1), . . . , a(m)} ⊆ A(s)), the algorithm
runs M independent roll-outs of length H under common random numbers (CRN) (to

Dynamic Production Policies for ASML’s General Supply Network

control variance between cost estimates) and computes the empirical cost-to-go

Ĉg(s, a) =
1

M

M∑
m=1

H−1∑
t=0

C
(m)
t (s, a),

where C
(n)
t (s, a) is the one-step cost for policy-iteration g at time t in the mth simulation.

Then labels the state with the action incurring the lowest cost a⋆(s) = argmina∈RK(s) ĈK(s, a).
In addition to CRN, DCL utilizes a lightweight bandit approach known as Sequential Halv-
ing to focus on the most promising actions (⌈α |Rg(s)|⌉, α ∈ (0, 1)) and identify the action
with the least cost (a⋆(s) = argmaxa∈RK(s) Q̂K(s, a)). This method allows for efficient use
of simulation budgets by avoiding exhaustive simulations of every action across all scenarios
and iterations.

The collected (s, a⋆) pairs form a dataset Dg that trains a neural network policy fθ
through cross-entropy loss:

L(θ) = −
∑

(s,a⋆)∈Dg

1⊤a⋆(s)log fθ(s),

optimised by stochastic gradient descent (learning rate η, mini-batch size, early-stop
patience)

Throughout, DCL adopts a finite–horizon perspective: each training example is gener-
ated by first running the system for a “warm-up” of L periods—so that the state s reflects
realistic, steady-state behavior—and then simulating an additional H steps to estimate the
cumulative cost-to-go from a given state s. In the very first policy iteration or generation
(for DCL), these roll-outs are driven by a fixed rollout policy, which here is the base-stock
heuristic from Chapter 4. Once N such (s, a⋆) labels have been collected, the neural policy
fθ is retrained to minimize classification error. In each new generation, the policy trained
in the previous one is used to guide the rollouts, replacing the initial heuristic. This
self-labeling helps the model refine its own decisions over time. However, if early policies
are poor, this feedback loop can reinforce suboptimal behavior. This procedure—sample N
states, label them via H-step cost roll-outs after an L-period warm-up, update fθ—is re-
peated for G generations, yielding progressively improved decision rules. Table 5.1 provides
the suggested DCL parameter settings by Temizöz et al. (2023).

This approach presents multiple advantages in inventory management contexts. Firstly,
by circumventing the need to assess long-term value functions in noisy settings, DCL
bypasses the instability common in actor-critic models and the overestimation bias found in
Q-learning. Secondly, it promotes structured exploration by explicitly comparing plausible
actions under consistent external conditions, enhancing resilience to randomness. Thirdly, it
simplifies policy design by framing the learning challenge as a straightforward classification
problem. However, extending DCL to general supply networks poses notable challenges,
especially related to the combinatorial escalation of the action space as both nodes and
their capacity for orders grow.

To keep computational demands manageable and sustain learning efficacy, we integrate
two core modifications: (1) a sequential decision-making framework to break down global
actions into node-level decisions (Section 5.3) as done in Van Dijck et al. (2024), and (2) a
structured output space that encapsulates feasible actions in a succinct and comprehensible
manner (Section 5.4). These enhancements enable DCL to scale effectively in real-world
supply chain scenarios while preserving its core strengths in sample efficiency and policy
refinement.

32

5. Deep Reinforcement Learning Approach

Table 5.1: Hyperparameter settings used in DCL (based on Temizöz et al. (2023))

Parameter Value

Roll-out horizon (H) 40
Warm-up length (L) 100
Exogenous scenarios per action (M) 1000
Sampled states per generation (N) 5000
Policy iterations (G) 3
Candidate set size (m) 20
Halving ratio (α) 0.5
Neural network layers (256, 128, 128, 128)
Mini-batch size 64
Optimizer Adam
Learning rate (η) 0.001
Early stopping patience 10 epochs

5.2 Network Decomposition and Sequential Decision Process

One of the main challenges in applying DCL to a general supply network lies in managing
the explosive growth of the action space. An approach, where ordering decisions for all
components are made simultaneously, quickly becomes computationally infeasible as the
number of components increases. To mitigate this, Van Dijck et al. (2024) proposes to
restructure the decision-making process into a sequential, component-by-component
framework, which significantly reduces the action space at each decision step while
preserving the integrity of the system dynamics.

In this sequential approach, decisions are made individually for each component node
i ∈ C following a predetermined topological order K, typically progressing from upstream
to downstream. This structure substantially reduces the dimensionality of the action space
and is key to making DCL tractable in large networks. While K is primarily a modeling
tool to structure the decision flow, it implicitly introduces a degree of prioritization in
group-based capacity usage: nodes earlier in the sequence may consume more of the shared
capacity, which can bias learning in tightly constrained capacity groups. Although this is a
known limitation of sequential decision-making, simultaneously optimizing decisions across
all nodes would be computationally infeasible due to the combinatorial explosion of joint
actions.

Moreover, we extend the approach of Van Dijck et al. (2024) to accommodate flows,
where multiple successors compete for inventory, and propose a different treatment. In
these cases, we propose to perform allocation simultaneously for all competing successors
using the chosen rule (see Section 4.2). This allocation is executed during the decision
step of the first node in the sequence that has multiple successors, and we ensure that
the allocated quantities are consistent across the group and respect the shared capacity
and supply available inventory. When the sequence proceeds to the remaining competing
nodes, their decisions are based on the allocation result already determined. It is important
to mention that during rollouts, if DCL begins with a competing successor node, the full
allocation cannot be applied upfront. We resolve this by treating the current node as
the starting point of a reduced competing set and reapplying the allocation rule to the
remaining successors based on residual supply and capacity. This preserves the intent of
the simultaneous allocation logic.

33

Dynamic Production Policies for ASML’s General Supply Network

Even though this reduces the bias of sequential ordering and DCL is trained to recognize
and adapt to this structure, the sequential structure still induces a mild priority effect in
group capacity usage, and performance in tightly constrained settings may still reflect the
implicit ordering advantage of earlier nodes.

In the subsequent sub-sections, the state is expanded, and we present both the sub-
decision dynamics as well as the revised event transitions.

5.2.1 Augmented State Definition

To support sequential decision-making, we extend the period-level system state st by
introducing two additional elements:

• A decision pointer K ∈ {0, 1, . . . , |C|}, indicating the current component node for
which a decision is being made.

• A vector of remaining capacities {Rg,t}g∈G , capturing the available production
capacity for each capacity group at the current decision point.

Formally, the full augmented state at decision step K is:

st = [{Ii,t, Pi,t,1, . . . , Pi,t,li−1}i∈C , {Rg,t}g∈G , K] .

At the start of each period, the pointer is initialized to K = 0 and all group capacities
are fully available, i.e., Rg,t = Qg for each g ∈ G.

5.2.2 Sub-decision Dynamics

At each sub-decision step K, the agent selects an order quantity XK,t ∈ N0 for component
node K, subject to two feasibility conditions:

1. Material Availability:

XK,t ≤ Ij,t ∀j ∈ U(K),

where U(K) denotes the set of immediate upstream components required to produce
node K.

2. Capacity Availability:

XK,t ≤ Rg(K),t,

where g(K) is the capacity group associated with component K.

Upon selecting XK,t, the state is immediately updated as follows:

st+1 = f(st, XK,t)

PK,t, lk−1 ← XK,t,

Ij,t ← Ij,t −XK,t, ∀ j ∈ U(K),

Rg(K),t ← Rg(K),t −XK,t,

K ← K + 1.

(5.3)

Here, we add production start to pipeline tail for component K, consume upstream
inventories, decrease the remaining capacity of group g(K), and advance the pointer to
the next component. This process is repeated until all components K = 1, . . . , |C| have
received a production start decision.

34

5. Deep Reinforcement Learning Approach

5.2.3 Period-End Event Transition

After completing all component decisions for the current period, the system undergoes
a single event transition st → st+1. In this case, we adapt the transition dynamics
function of Chapter 3 not only to be aware of the dynamics that have happened already in
the sub-decision dynamics, but also to advance the production pipelines, update on-hand
inventories, and realize external demand where applicable.

The event transition dynamics are defined as:

st+1 = f(st, [di,t]i∈Cend
])

Pi,t+1,ℓ = Pi,t,ℓ+1 ∀i ∈ C, 1 ≤ ℓ < li − 1,

Pi,t+1,li−1 = 0 ∀i ∈ C,

Ii,t+1 =

{
Ii,t + Pi,t,1 − di,t, if i ∈ Cend,

Ii,t + Pi,t,1, otherwise,

Rg,t+1 = Qg ∀g ∈ G,
K ← 0.

(5.4)

In the last two equations, we reset all Rg,t to full capacity Qg for the new period, and
the pointer K resets to 0.

5.3 Neural Network Architecture

The core of our Deep Controlled Learning approach is a neural network trained to approxi-
mate the optimal policy learned via supervised classification over state-action pairs. This
section details the design of the network architecture, including the input representation,
output construction, and training pipeline. The architectural choices are driven by the
need for scalability, expressiveness, and compatibility with the sequential decision structure
introduced in Section 5.3. In this section, we present the input and output representations,
feature engineering, the training pipeline, and some implementation details.

5.3.1 Input Representation

Each input to the neural network corresponds to the current sub-decision state st when a
decision must be made for a specific component node. The input captures the complete
status of the supply network, the remaining production capacities, and the pointer to the
current decision node. Formally, the input vector includes:

• On-hand inventory Ii,t for all components i ∈ C

• Pipeline inventory Pi,t,k for all i ∈ C and 1 ≤ k ≤ li

• Group capacity availability Qg,t for all groups g ∈ G

• Pointer value for the current decision node

• (Optionally) additional engineered features can be included, see in Subsection 5.3.4.

This design ensures that the network is fully aware of the current system configuration
while focusing attention on the specific component node being considered.

35

Dynamic Production Policies for ASML’s General Supply Network

5.3.2 Output Construction

We implement a shared neural network whose output layer spans the concatenated action
spaces of all nodes: if node n has |An| feasible order quantities, the output dimension is∑

n|An|. We assign a contiguous slice of this output vector to each node via cumulative
offsets: node 0 occupies indices [0, |A0|−1], node 1 occupies [|A0|, |A0|+|A1|−1], and so on.
Since order decisions are discrete and bounded by the node’s capacity, the output layer
consists of a categorical softmax distribution over all feasible order quantities for that node.
During inference time, given the current decision pointer K, we apply a dynamic mask
that zeroes out probabilities outside the slice for node K, and the action with the highest
probability is chosen.

One key challenge is that the total number of output classes can grow rapidly with the
number of nodes and capacity sizes. For example, with 10 nodes each having 15 feasible
actions, the output layer already spans 150 nodes. This could pose challenges in training
efficiency and over- (for smaller systems) and under- (for larger systems) fitting risk, which
we try to mitigate through decomposition by limiting next nodes options based on previously
made ones, by using simulatanesuly making divergent nodes’ actions with the heuristic,
and by having a strong rollout heuristic that supplies quality (state, best-action) labels to
steer the learning toward high-impact actions and avoiding low-value or infeasible ones.

5.3.3 Neural Network Training

During training, we treat the network as a classifier over discrete order quantities for the
active node. Each training example consists of:

• An input vector ϕ(s) encoding the system state (including any global and node-specific
features) together with a node identifier K, indicating which node’s decision is to be
made.

• A labeled “best” action a∗ for node K, obtained from heuristic or previous-generation
neural network rollouts.

By training on many (ϕ(s),K, a∗) samples, the network learns to predict, for each node
in each state, which discrete order quantity minimizes expected cost. At evaluation time,
given a new state and node K, we repeat the masking and softmax steps and select the
action with highest predicted probability among the feasible set for K.

5.3.4 Feature Extraction

To support decision-making within the MDP framework, a structured set of features is
extracted from the system state at each decision epoch. These features capture both global
system information and local node-specific dynamics. Formally, given the system state st,
the feature vector ϕ(st) is constructed as follows:

The features are organized into five main groups, each serving a specific purpose in
capturing the dynamics of the supply chain:

• Basic State: Essential state information for decision-making:

– Kt – Current Node

– {Ii,t}i∈C – Inventory Levels

– {Pi,t,k}i∈C,l=1,...,li – Production Levels per Capacity Group

36

5. Deep Reinforcement Learning Approach

• New State: Aggregate measures for state representation:

–
∑li

l=1 Pi,t,l – Total Production in Node

– {Pi,t,1}i∈C – Inventory Arriving in Next Period

– {IECH
i,t }i∈C – Echelon Inventory Levels

• Capacity Awareness: Current utilization of capacity:

– CapUtilg(Kt) = 1− qg(Kt),t

Qg(Kt)
– Group Capacity Utilization

– |Cg(Kt)| – Components Sharing Group

• Structural Awareness: Network configuration insights:

– |U(Kt)| – Direct Predecessors

– |D(Kt)| – Direct Successors

– 1{|D(Kt)|> 1} – Divergence Indicator

• Bottleneck Awareness: Shortage dynamics capture:

– RelShortKt = max

(
0,

SKt−IECH
Kt,t

SKt

)
– Current Node Shortage

– MaxReceivableKt = min
(
qg(Kt),t,minj∈U(Kt) Ij,t

)
– Receivable Inventory Limit

– AggRelShortKt
=

∑
j∈D(Kt)

RelShortj – Aggregated Shortages

– BottleneckRatioKt =
MaxReceivableKt

AggRelShortKt

– Capacity-Demand Ratio

– {Backloge}e∈Cend
– End-Product Backlogs

– {RelShortj}j∈D(Kt) – Per-Node Shortages

Zero-padding handles variable network topology for RelShortj and Backloge, ensuring
fixed-dimensional inputs for learning stability. The best subset of feature is defined in
Section 6.2.1

Chapter 5 Conclusion. Chapter 5 introduced DCL as a supervised-learning–style DRL
method tailored to multi-echelon inventory systems. Instead of estimating value functions,
DCL labels states by comparing candidate actions through controlled rollouts under common
random numbers, then trains a classifier to predict the best action. This avoids instability
of actor-critic or Q-learning approaches in low-volume, discrete-action settings. To manage
combinatorial explosion, we employ a sequential decision structure (similar to Van Dijck
et al. (2024)): at each period, nodes follow a fixed topological order but also adapt it
for divergent parts, where we apply simultaneous allocation at the first-occurring node.
The neural network uses a shared architecture: inputs combine global system state and
node-specific features (which we also extracted), and the output layer concatenates the
action spaces of all nodes. During training, each example is a (state + node ID, best action)
pair, and at evaluation time we mask out irrelevant slices so the softmax focuses only on
feasible actions for the current node. We considered scalability issues, where the input layer
size increases as the number of nodes and their lead times grow, and the output increases
as the number of nodes and capacity constraints grow.

37

Dynamic Production Policies for ASML’s General Supply Network

Chapter 6

Computational Experiments

This chapter describes the experimental design structured to systematically evaluate and
compare the heuristic and DRL-based methods developed in previous chapters.

This chapter consists of three stages defined as follows:

1. Heuristic Benchmarking: Identify top base-stock configurations and allocation
rules on uncapacitated 7-node network.

2. DCL Tuning: Determine the most effective DCL setup by varying state features,
planning horizon, and neural network architecture under controlled conditions.

3. Comparative Evaluation (Heuristics vs DCL): Contrast the tuned DCL policy
against the best heuristics in (i) small uncapacitated, (ii) small capacitated, and (iii)
full seven-node capacitated networks, revealing where data-driven decisions improve
upon static rules.

To approximate the infinite-horizon average cost of a policy π, we run N independent
simulations, each of length W +H. We discard the first W periods as a warm-up, then
compute the per-episode average cost over the next H steps:

CW,H(τ ;π) =
1

H

W+H−1∑
t=W

C(St, π(St)).

The policy’s empirical average cost is

ĴW,H(π) =
1

N

N∑
n=1

CW,H(τ (n);π),

which (as N → ∞ and with large W,H) approximates the true long-run average
cost. Lower ĴW,H(π) means a better (cost-minimizing) policy. In our experiments we use
N = 1000 trajectories of 1000 periods each, with a 60-period warm-up. Warmup definition
can be found in Appendix A.1

Moreover, the following elements are common across all stages and defined once here
for brevity.
Experimental Networks. We consider three progressively complex network topologies.
The 5-node system (Figure 6.1, left) includes three upstream buffers (B0, B1, B2) feeding
two downstream modules (M3,M4), and serves as the base for both uncapacitated and
capacitated tests. The 6-node network (Figure 6.1, right) extends this setup by adding

6. Computational Experiments

a third module (M5), enabling analysis of competitive allocation under shared upstream
resources. The full 7-node network, introduced in Chapter 3 (Figure 3.1), reflects our leading
example for ASML’s general supply configuration and is used in the final experiments
under moderate and tight capacity constraints. All networks are initially evaluated without
capacity limits; later stages introduce explicit overcapacity settings relative to mean demand.

Figure 6.1: Smaller cases. Each buffer B or module M is processed at group Gk,
with arcs indicating material flows and annotated with production lead times li,
holding costs hi, and backlog and demands (be;de,t) for each end item or module
(e ∈ Cend).

Figure 6.2: Demand Distributions

Demand Distributions. All demand processes are stationary and follow discrete dis-
tributions that approximate Erlang shapes. These are based on company insights and
are consistent with the profiles used by Van Dijck et al. (2024). The 5-node and 7-node
networks use the middle and left-hand side demand profiles in Figure 6.2, which represent
different end-items. The 6-node system includes all three demand types to simulate multiple
end-products.

Key Performance Indicators Averages over trajectories are reported for:

• (Per-period) Total Cost: Holding + backlog costs.

39

Dynamic Production Policies for ASML’s General Supply Network

• Holding / Backlog Cost: Separate breakdowns.

• RLIP (Requested Line-Item Performance): Fraction of requested demand that
is immediately satisfied. (Per end-product)

• % Backlog: Percentage of periods with unmet demand.

• Average Inventory per Node (Inv): Per-node average inventory levels.

• DCL Training Metrics (tuning stage):

– Train L: Training error at convergence, indicating model fit.

– Val.L: Generalization error on held-out scenarios.

– Epochs, s/epoch, train time: Number of training epochs, runtime per epoch,
total training time.

Computational Environment All experiments were executed on the Dutch national
supercomputing infrastructure, supported by the SURF Cooperative (grant no. EINF-
5192) to ensure reproducibility and consistent performance measurement. The supply
chain simulations and DCL implementation were developed in C++20 within the Dynaplex
Software Library (Akkerman et al., 2023), neural network training and inference were
performed using PyTorch (Temizöz et al., 2023). Simulations ran on a thin node of the
Snellius supercomputer, operated by SURF, featuring two AMD Rome processors at 2.6 GHz,
128 cores in total, and 256 GiB of RAM.

6.1 Heuristic Benchmarking Experiment

In this first experiment, we test all 36 combinations of three base-stock sizing strategies—G-
MATCH, S-MATCH (Rong et al., 2017), and FullS-MATCH, and six allocation rules (FCFS,
RandomWF, WF, WFFS, WFR, WFRR) on the 7-node uncapacitated system in Figure 3.1.
Method descriptions are provided in Chapter 4, and full results appear in Appendix A.2.
As these methods are designed for uncapacitated inventory systems, production constraints
are not considered.

We report per-period average cost and its standard deviation (see Table A.2 for these
and the corresponding up- and down-rounded base-stock levels). Figure 6.3 summarizes
the findings. The left panel averages over allocation rules for each base-stock strategy to
identify the best base-stock sizing method. Using the best one (G-MATCH), the right panel
then compares the performance of all allocation rules.

Figure 6.3: Main Results of 36 Heuristic Configurations on 7-Node System

40

6. Computational Experiments

From the left graph in Figure 6.3, we see that SG-MATCH clearly outperforms the
alternatives, showing a nearly 90% cost reduction over SS-MATCH proposed by Rong et al.
(2017). This confirms that modeling the network’s actual structure and lead times (as
SG-MATCH does) is required. SS-MATCH, despite using general-network lead times, wrongly
assumes a serial structure and performs poorly. The original method by Rong et al. (2017)
remains valuable for distribution systems with its structured backorder matching heuristic.
However, the proposed extension to general systems lacks formal evaluation and overlooks
the dynamics of convergent parallel flows, causing its performance to drop. Finally, the fully
serial-based (SFullS-MATCH) variant, which applies the serial assumption for both structure
and timing, performs much better than SS-MATCH but remains inferior to G-MATCH.

These results underscore that if a general system is approximated as serial systems,
consistency between network structure and lead times is critical to achieve good performance.
While directly modeling the true general system (as with SG-MATCH) is always preferable,
the Fully Serial variant was tested specifically to emphasize this point and show that even
with fully serial matching, performance is much better than SS-MATCH, which mixes general
lead times with serial assumptions. Although the Fully Serial variant itself is unlikely to
be practically useful (given that directly modeling the general system is computationally
manageable), this can serve as a quick sanity check for general systems that are currently
serially approximated.

Moreover, something less relevant but still important is that upward rounding of base-
stock levels often provided a slight cost advantage (see in Table A.2). Moving onto the
allocation rules, the left graph in Figure 6.3, across all base-stock models, Waterfilling
rules (WF) and its derivatives (WFR, WFFS) consistently emerged as the most effective
allocation strategies, outperforming FCFS for more than 5%. Even though we can see that
the standard water-filling WF (push all inventory) outperforms the rule with reservations
(WFR) with G-MATCH base-stock levels, WF and WFR produce similar results in other
base-stock level variants (see the appendix table) such as FullS-MATCH, so more research
is needed to determine whether WF always outperforms WFR.

Experiment Conclusion G-MATCH clearly outperforms the other base-stock methods,
confirming the importance of matching both network structure and lead times in general
systems. S-MATCH performs poorly due to its inconsistent assumptions, while FullS-
MATCH performs moderately well but remains inferior. Among allocation rules, Water-
Filling and its variants (WF, WFR, WFFS) outperform FCFS and randomWF, with WF
performing best under G-MATCH.

6.2 DCL Tuning Experiments

Having identified the best-performing heuristic (G-MATCH base-stock levels with WF
allocation) in the previous experiment, we now use it as the rollout policy for tuning the
DCL algorithm. The goal is to fine-tune DCL parameters and architectural components
to enhance learning performance and generalization, while keeping computational costs
manageable.

We first fix several easy-to-tune hyperparameters based on preliminary testing and
literature:

• Warm-up length (L): Set to 60 (validated for 5–7-node networks in Appendix A.1)
to ensure realistic state sampling.

41

Dynamic Production Policies for ASML’s General Supply Network

• Number of exogenous scenarios (M): M = 1000 achieves >80% action-label
significance (Dynaplex metric) for all tested networks, which is sufficient to train the
classifier reliably. Reducing M may lead to poor label quality and suboptimal learning,
while increasing it offers limited performance gains at a higher computational cost.

• Mini-batch size and Early Stopping: 64 batch-size performs well across cases;
increasing to 128 roughly doubled training time without consistent improvements, and
in some cases even led to overfitting. For early stopping, we observe from trial and
error in our cases that 10-15 epochs is the sweet spot, where decreasing or increasing
it under/over fits.

• Learning rate and optimizer: Fixed to 0.001 with Adam, following Temizöz et al.
(2023). We did not explore tuning these further.

The tuning process is organized into three building steps. Table 6.1 summarizes the
steps, their configuration, and objectives. To ease learning and match the rollout policy,
DCL is trained under a maximum order size of 11 (about 37.5% above the mean demand).

Table 6.1: DCL Tuning Experiments Overview

First, we identify the best subset of features for representing system states using the
5-node uncapacitated system. We fix the neural network to the standard architecture from
Temizöz et al. (2023), with a training set of N = 15,000 samples (extended to 25,000 for top
subsets), and use a rollout horizon H = 35 (5× the network’s maximum cumulative lead
time), which is sufficient for accounting of actions’ long-term effects. Feature subsets are
evaluated in this small setup because their relative performance tends to scale consistently
with network size and training samples, given shared structural and decision dynamics.
Next, we tune the rollout horizon using a new parameter: the horizon multiplier, which
expresses the horizon as a multiple of the network’s maximum cumulative lead time (MCLT).
This allows the planning horizon to scale naturally with network lead times; this multiplier
can be assumed to generalize to different networks. We test values from 1× to 5× MCLT,
again using the 5-node setup and best-performing feature subset.
Now, we find a neural network architecture, which is inherently network-specific due
to varying input/output sizes. This step is done after fixing the best feature subset
and rollout length. We compare several popular architectures (e.g., Pyramid, TwoLayer,
DeepTapered) for their learning capacity and scalability. This staged approach avoids
exhaustive tuning across all combinations of features, horizons, and architectures, as this
would be computationally infeasible.

42

6. Computational Experiments

Finally, we employ the currently optimal hyperparameter settings and adjust the number
of generations, using a calibrated number of samples determined through trial and error.
Our aim is to determine if executing multiple generations provides any advantage.

6.2.1 Feature Subset Selection

We begin by identifying the most effective subset of features for representing system states.
This is done using the 5-node uncapacitated system and previously mention parameters.
The goal is to understand which input features enable the DCL model to learn high-quality
policies efficiently. Since decision logic is structurally similar across systems, we assume
the best-performing subset generalizes well to larger networks. We start from the basic
configuration and incrementally add capacity, structural, and bottleneck features, which
were described in Section 5.3.4. To evaluate, we use as KPIs: The train and validation
losses (explained in the start of the chapter); and the relative per-period cost improvement
based on the baseline features (Subset 1).

The evaluated subsets are the following:

• Subset 1: Basic State (Baseline: node, inventory, production)
• Subset 2: New State (Aggregate production & echelon inventory)
• Subset 3: Basic + Capacity Awareness
• Subset 4: Basic + Capacity + Structural Awareness
• Subset 5: Subset 4 + Local Shortages (MR, RS, Backlog)
• Subset 6: Subset 4 + Aggregated Shortages
• Subset 7: Subset 4 + Per-Node Shortages
• Subset 8: Subset 4 + Bottleneck Ratio
• Subset 9: Subset 6 + Ratio

Table 6.2: Performance Comparison of Feature Subsets (Lower Values Indicate
Improvement)

Subset Inputs Train L Val. L Cost Imp. (%)

1 (Baseline) 15 0.666 0.852 0.00
2 21 0.712 0.837 +21.67
3 17 0.622 0.856 -2.45
4 20 0.606 0.790 -4.24
5 24 0.630 0.752 -4.35
6 23 0.572 0.746 -5.01
7 24 0.570 0.725 -5.01
8 21 0.645 0.786 -3.12
6 (25k) 23 0.541 0.631 -5.28
7 (25k) 24 0.548 0.636 -5.39
9 (25k) 24 0.539 0.634 -5.24

Table 6.2 reveals insights about feature subset evaluation:

• Subset 2 Failure: The New State’s aggregated features increased costs by 21.67%
despite additional inputs, which shows that high-level summaries cannot replace
granular data

• Capacity+Structural Awareness: 2.45%, 4.24% cost reduction shows the impor-
tance of capacity utilization tracking and network context.

43

Dynamic Production Policies for ASML’s General Supply Network

• Bottleneck Features: Including backlog information for end products showed no
improvement, likely due to delayed backlog signals hindering timely decisions. The
standalone bottleneck ratio (Subset 8) improved costs -3.12% over the baseline,
possibly because it oversimplifies bottleneck pressure, missing supply constraint
complexities. Notably, Subset 6 (Aggregated Shortages) matched Subset 7 (Per-Node
Shortages) in performance with fewer inputs. This indicates that aggregated shortages
better capture essential dynamics without node-specific details and reduce complexity
and local variation noise.

• Extended Evaluation of Top Performing Subsets: Encouraged by Subsets 6 and
7, we tested 25,000 samples for scalability and stability on larger datasets. Subset 6
improved -5.28% over the baseline with smooth convergence and a validation loss of
0.631, indicating better generalization. Although Subset 7 achieved slightly better
improvement -5.39%, it required more inputs (24 vs. 23 for Subset 6) and showed
signs of overfitting in later stages with fluctuating validation losses (0.041 vs 0.029).
The per-node detail in Subset 7 does not justify the extra complexity and overfitting
risk. Subset 6’s concise design with stable convergence suggests a more efficient way
to capture bottleneck effects.

• Introducing Feature Subset 9 This subset extends Subset 6 by adding the
Bottleneck Ratio indicator, slightly enhancing cost reduction to -5.24%. However, it
introduced additional multicollinearity, leading to a less stable convergence path in
training. Thus, while it proved competitive, its increased complexity did not justify
the trade-off.

Experiment Conclusion In light of these results, Feature Subset 6 – Basic State +
Capacity Awareness + Structural Awareness + Aggregated Shortages – remains the best
choice due to its balance of cost efficiency, input dimensionality, and stability across different
sample sizes (15-25 thousand samples) as seen table 6.2.

6.2.2 Rollout Horizon Tuning

The rollout horizon length (H) in DCL represents the planning horizon over which the
impact of current actions is evaluated. This look-ahead depth is crucial for ensuring that the
agent accounts for both immediate and propagated effects of production decisions and must
be at least one full production period (including all components lead times), we call this the
maximum cumulative lead time or MCLT. We tune the rollout horizon length, expressed
as a multiplier of the network’s MCLT to ensure that the planning horizon scales with
network complexity. Using the same 5-node system and the best feature subset, we identify
the shortest horizon length that achieves stable learning without unnecessary computation.
The tested configurations include the following rollout horizon lengths H ∈ [7, 14, 21, 28, 25],
which are relative to the MCLTs from 1x to 5x.

Experiment Conclusion The results indicate that performance improves substantially
up to a rollout length of 2x MCLT, where it already shows signs of stability. From 3x MCLT
onward, the performance remains consistent, with minimal added benefit when extending
beyond 5x MCLT. Given this observation, the stability observed at 2x MCLT suggests that
in larger networks, 2x or 3x MCLT may be sufficient for keeping proper decision-making
and reducing computational demands.

44

6. Computational Experiments

Table 6.3: Average Total Cost across Different Rollout Lengths

Policy Configuration Cost Train time (s)
DCL-WF-FS6-H7 300.76 75.3
DCL-WF-FS6-H14 110.45 101.1
DCL-WF-FS6-H21 110.05 155.4
DCL-WF-FS6-H28 110.32 196.6
DCL-WF-FS6-H35 110.50 243.9

6.2.3 Neural Network Architecture Search

The choice of neural network architecture in DCL is important for capturing complex
action-state dependencies, maintaining scalability, and avoiding overfitting as sample and
network size increase. This step is performed per network (5- and 7-node cases), using the
best feature subset and tuned rollout horizon (3xMCLT or 21 for the 5-node case and 27 for
the 7-node case). To assess how different structures impact learning and generalization in
our systems, we systematically tested several widely used architectures (Pyramid, TwoLayer,
ThreeEqualLayers, WideMidLayer, and DeepTapered), ranging from shallow and narrow to
deeper and more hierarchical topologies.

Table 6.4: Training diagnostics for the 5-node network (N = 25 000 samples,
M = 1000 scenarios, horizon= 21)

Architecture Layers Train L Val.L Epochs s/epoch

Pyramid [64, 128, 64] 0.59 0.63 36 1.86
TwoLayer [256, 256] 0.50 0.67 41 2.93
ThreeEqualLayers [128, 128, 128] 0.56 0.63 36 2.14
WideMidLayer [128, 256, 128] 0.53 0.62 36 2.87
DeepTapered [256, 128, 128, 64] 0.54 0.60 36 2.74

Table 6.5: Training diagnostics for the 7-node network (N = 35 000 samples,
M = 1000 scenarios, horizon= 27)

Architecture Layers Train L Val.L Epochs s/epoch

Pyramid [64, 128, 128] 0.636 0.715 46 2.03
TwoLayerThin [128, 128] 0.662 0.733 36 2.11
TwoLayerWide [256, 256] 0.599 0.740 36 2.27
ThreeEqualLayers [128, 128, 128] 0.581 0.720 56 1.95
WideMidLayer [128, 256, 128] 0.678 0.778 26 2.62
DeepTapered [256, 128, 128, 64] 0.628 0.712 46 2.02
DeepTaperedNew [256, 128, 128, 128] 0.729 0.774 21 2.98

The results of the architecture search are shown in Tables 6.4 and 6.5. In the 5-node
system, all models converged, but DeepTapered ([256, 128, 128, 64]) achieved the best gen-
eralization with the lowest validation loss and balanced training time, while WideMidLayer
([128, 256, 128]) also performed well and the pyramid architecture ([64, 128, 64]) performed
efficiently but neither of both outperform DeepTapered. TwoLayer ([256, 256]) obtained
the lowest training loss but showed a higher validation gap, indicating overfitting. In the
7-node system, DeepTapered again offered a favorable trade-off between generalization
and efficiency, followed by the Pyramid ([64, 128, 128]), which remained competitive but

45

Dynamic Production Policies for ASML’s General Supply Network

training time per epoch does not justify its simplicity, while ThreeEqualLayers ([128, 128,
128]) also yielded good validation loss but required more epochs. Wider or deeper variants
offered no added benefit and sometimes worsened overfitting or training speed.

Experiment Conclusion DeepTapered architectures show better scalability for DCL (as
suggested by Temizöz et al. (2023) and support effective training and strong generalization
as the network size increases. For future experiments and larger systems, DeepTapered ([256,
128, 128, 64]) is recommended for both 5- and 7-node settings, though ThreeEqualLayers is
also suitable for larger problems where longer training time is acceptable. Moreover, the
Pyramid architecture can be used for applications that require fast and reliable learning
with minimal risk of overfitting.

6.2.4 Number of Generations

DCL refines an initial heuristic policy by training successive generations of neural-network
classifiers, starting with the previous generation’s policy. The number of generations is a
key hyperparameter affecting model bootstrapping and the balance between performance
gains and training costs.

Figure 6.4: Mean Cost and Cumulative Improvement per Generation

Experiments on 5- and 7-node networks in Figure show that the first generation achieves
the most significant cost reduction (1.2–1.6 units on average), while subsequent generations
offer marginal improvements (0–0.2 units). By generations 3 and 4, improvements have
stagnated. This performance comes with high computational costs, with training time
increasing from 5 (Gen 0 to 1) to 40 minutes (next generations) for 5-node systems and
from 17 minutes to 1.5 hours for 7-node systems. Similar trends are observed elsewhere.
Therefore, we conclude that the majority of the benefits can be obtained in practice with just
one generation of DCL beyond heuristics (for our experiments), and subsequent generations
are not cost-effective when weighing training time against cost savings.

DCL Best Practices for our Systems

In this section, we started by selecting reasonable values for easy-to-tune parameters, and
then moved into defining best engineered subset of features, in which Subset 6 (Basic State
+ Capacity & Structural Awareness + Aggregated Shortages) achieved over a 5% cost
reduction compared to the baseline state representation with least number of features and
best generalization. Additionally, we found via experiments that setting a rollout horizon

46

6. Computational Experiments

to 2-3 times the network’s maximum cumulative lead time results in an ideal look-ahead
length for training. Furthermore, implementing a four-layer "DeepTapered" architecture
enhances DCL’s scalability more effectively than other designs. Lastly, employing a single
policy generation with the proper identified state sampling yields the most substantial
improvements, with future generations offering no notable advancements. Find the final
tuning practices which we will use in the next experiments in Table 6.6

Our tuning experiments have shown that a DCL setup that has been well-adjusted offers
promising performance. In our subsequent experiments, we intend to determine whether
this method outperforms our best heuristic methods.

Table 6.6: Tuned DCL Parameters

Hyperparameter Tuned Value

Rollout Horizon (H) 2–3× MCLT
Sampled States (N) 100–150 (small), 200 000 (large)
Scenarios per Action (M) 1 000 (ensures > 80% label significance)
Warm-Up Steps (L) 60 (5/6/7-node systems)
Policy Iterations (G) 1
Architecture [256,128,128,128] (default)

Alternatives: [128,256,128], [64,128,64]
Batch Size 64
Early Stop Patience 10–15 epochs (optimal to avoid under/over-fitting)

6.3 Comparative Evaluation Experiments (Heuristics vs DCL)

This section presents three comparative experiments designed to evaluate the performance
of heuristics versus the DCL policy under increasingly realistic conditions. Table 6.7
summarizes the key experimental configurations.

First, we start by studying how lead-time asymmetries influence inventory allocation
in the 5- and 6-node networks when no capacity constraints exist. All policies use the
general-focused base-stock levels (G-MATCH) identified in Experiment 1. We conduct
lead-time stress tests on methods and compare the two best-performing heuristic allocation
rules, Water-Filling (WF) and its reservation variant (WFR), against the DCL policy
trained on top of G-MATCH base stocks and WF allocation logic (DCL-WF). The goal
is to understand how DCL dynamically negotiates trade-offs differently from rule-based
methods. DCL is trained using N = 100,000 samples and M = 1,000 demand scenarios,
with a planning horizon set to H = 2×MCLT to provide adequate look-ahead.
Next, we impose shared-capacity limits on the same networks to evaluate policy adaptation
under constrained production. We test three lead-time scenarios and five capacity con-
figurations (C1–C5), using WF as the fixed allocation rule. We compare: (i) the original
G-MATCH base-stocks, (ii) Guided Base-Stock (GBS) levels re-optimized for each capacity
case, and (iii) DCL trained on top of GBS+WF. DCL is trained with N = 100,000 samples
and M = 1,000 scenarios, except for lead-time case S1 in the 5-node network (N = 125,000),
and the 6-node case (N = 150,000), to handle larger state-spaces from extended lead times
and number of nodes. The horizon was set to H = 3×MCLT (one more than uncapacitated)
because DCL needs a longer look-ahead for capacity constraints. The MLP architecture
remained {256, 128, 128, 64} with a minibatch size of 64 and early stopping patience of 15.
Finally, we scale to the full seven-node ASML network under both moderate and tight

47

Dynamic Production Policies for ASML’s General Supply Network

capacity configurations, where we evaluate the same three policies and DCL training setup
as the previous experiment, but increasing the training sample size to N = 200,000 to
support the complexity of the full network. Neural network training convergence and run
times can be found in Appendixes A.4, A.5, A.6.

Table 6.7: Overview of Comparative Evaluation Experiments

Exp. Setting Network(s) Capacity DCL Training

(1) Lead-time asymmetries 5-, 6-node None N = 100,000, H = 2×MCLT

(2) Capacity-constrained cases 5-, 6-node C1–C5 [l]N = 100,000–150,000∗,
H = 3×MCLT

(3) Full-network under capacity 7-node C3,C4 N = 200,000, H = 3×MCLT

∗S1 in 5-node uses N = 125,000; 6-node case uses N = 150,000 to handle extended state-spaces.
All DCL models use MLP {256, 128, 128, 64}, minibatch 64, and early stopping (patience 15).

6.3.1 Small Uncapacitated Cases under Lead-Time Stress Tests

This experiment investigates how lead-time asymmetries influence inventory allocation in
smaller, uncapacitated networks. We benchmark the two strongest heuristic rules (WF
and WFR) against the DCL policy trained on top of WF logic and G-MATCH base-stocks.
By focusing on fewer nodes, it allows for clearer observation of how and where DCL’s
learned behavior departs from heuristics. Full results, including comparisons with all other
allocation rules, are provided in Appendix A.3. Results focus on RLIP at each retailer,
average inventory at selected nodes, and % backlog. We evaluate five distinct lead-time
scenarios:
Lead-time scenarios. Each vector lists different lead times(l0, l1, l2, l3, l4, (l5)).

S1 Baseline (4, 4, 2, 3, 2):
Shared node B2 replenishes fastest; downstream modules differ slightly.

S2 Slow expensive (4, 4, 2, 2, 3):
Same as baseline but with a slower expensive module M4.

S3 Inflated Pipeline (4, 4, 2, 6, 2):
Slow M3 response, exaggerating its apparent shortage. Tests over-prioritization of
apparently "needy" nodes versus M4 (LT=2).

S4 Urgent Integration (5, 5, 2, 4, 1):
M4 becomes time-critical (one period) while upstream is sluggish. Tests priority
management for immediate-disruption nodes.

S5 B2 Bottleneck (2, 2, 6, 3, 1): Shared node becomes the slowest link, forcing re-allocation
under a bottleneck. Tests dynamic material rerouting strategies.

S6 Shared-Node Competition (4, 5, 3, 3, 2, 1):
Adds retailer M5 (l5 = 1) to test two- and three-module competition via B1 and B2.
Tests allocation balancing under competition.

Analysis: WF, WFR, and DCL Dynamics Table 6.8 and Figure 6.5 shows the results,
where WFR never outperforms WF in any scenario; its mean cost is consistently
0.1–0.3% higher (blue bars slightly higher, orange bars unchanged). This indicates that

48

6. Computational Experiments

Figure 6.5: Cost breakdown by Scenario and Method for the Smaller Uncapacitated
Cases

a static “hold-reserves” rule is rarely the right amount of inventory to withhold: in many
periods the reservation is unnecessary, while in genuinely tight states it is insufficient.
Nevertheless, we believe that the idea of reserving stock is not fully wrong; what is missing
is state-dependence which DCL is able to learn. DCL lowers mean cost by 0.6–1.6% compared
to WF (see MeanCost column) by selectively and strategically managing inventory.

The following four consistent DCL behaviors are visible across the 5 scenarios:
1. Aggressive cutting inventories of B2: Instead of over-stocking the fast shared

buffer, DCL holds just enough there to smooth immediate flows, cutting B2 inventory
by 35–45 % compared to WF.

2. Smart “reservations” or inventory control upstream: When a downstream
module risks stock-out, DCL reallocates saved units to its dedicated buffer (B0 or
B1), creating a targeted cushion exactly where it’s needed.

3. Lead-time–aware rerouting: In the scenarios where long lead times exaggerate
the perceived urgency of some modules, DCL diverts supply from slow paths toward
faster or higher-priority nodes, correcting misallocations and reducing backlog spikes.

4. Penalty-sensitive bias: If one module carries a higher backlog cost, DCL shifts
inventory through its paths to protect it first, even at the expense of backlog in less
critical nodes.

These tactics allow DCL to hold or "reserve" inventory upstream more strategically,
creating flexible buffers that can be released only under real-time pressure, something neither
WF nor WFR can achieve. The result is a balanced, adaptive policy that consistently
trims holding costs without raising backlog penalties. Detailed scenario statistics are in
Appendix A.3.

The following summarize how DCL adapts its tactics to each scenario:
S1 DCL reduces costs by 1.6% by strategically cutting B2 inventory from 4.7 to 2.7 units

and accepting targeted backlogs.
S2 DCL prioritizes the expensive, long-lead-time module by increasing upstream inventory

while still cutting B2, which avoids overstock and reducing cost by 1.5%.
S3 DCL corrects the inflated urgency of M3 by shifting inventory toward the faster M4,

lowering backlog misallocation and improving cost by 1.2%.
S4 DCL anticipates the stockout risk at the most time-sensitive node, M4, and reroutes

49

Dynamic Production Policies for ASML’s General Supply Network

Table 6.8: Comparative performance under lead-time stresses (per-period averages
over 1,000 trajectories). RLIP = Service level at M3,M4,(M5).

Scenario Policy MeanCost % Backlog InvB0/InvB2 / RLIP

(4,4,2,3,2) – Baseline
WF 103.30 23.91% 3.62/4.72 / (91.9|93.1)%
WFR 103.50 24.21% 3.65/4.76 / (91.8|93.1)%
DCL 101.73 25.45% 4.71/2.66 / (91.6|92.4)%

(4,4,2,2,3) – Slow expensive
WF 103.98 23.93% 3.65/4.02 / (93.4|91.3)%
WFR 104.28 23.49% 3.62/3.95 / (93.5|91.5)%
DCL 102.90 24.38% 4.69/2.55 / (93.5|91.1)%

(4,4,2,6,2) – Inflated Pipeline
WF 114.57 22.15% 3.71/3.83 / (92.0|93.0)%
WFR 114.79 22.47% 3.76/3.90 / (91.8|93.0)%
DCL 113.16 25.22% 3.82/2.02 / (90.2|92.2)%

(5,5,2,4,1) – Urgent Module
WF 102.08 21.42% 3.91 / (93.1|93.7)%
WFR 102.29 21.77% 3.98 / (92.9|93.7)%
DCL 100.65 24.06% 2.23 / (91.9|93.0)%

(2,2,6,3,1) – W2 Bottleneck InvW0/InvW1/InvW2 / RLIP
WF 97.43 24.83% 3.11/3.75/6.85 / (91.1|93.9)%
WFR 97.59 25.02% 3.14/3.75/6.88 / (91.0|93.9)%
DCL 96.89 25.44% 2.52/3.26/6.91 / (91.3|93.3)%

3-Module Competition InvW1/InvW2 / RLIP
WF 135.66 34.65% 6.15/5.26 / (91.4|91.2|94.9)%
WFR 136.30 35.47% 6.19/5.38 / (90.9|91.1|94.9)%
DCL 133.63 35.89% 7.07/3.87 / (91.0|92.9|92.8)%

inventory from the shared buffer B2 to reach M4 earlier, even if it means slightly
more backlog at less urgent modules, which reduces total cost by 1.4%.

S5 With all paths slow, DCL increases upstream inventories (at B0 and B1) by small
amounts to smooth delivery and somewhat reduce variability, which leads to a modest
0.6% gain.

S6 DCL focuses on the fastest and highest-penalty module M4, allocating more aggres-
sively toward it during tight periods (see increase of RLIP) while holding less in
the shared buffer, which reduces both unnecessary holding and backlog costs, and
achieves the largest improvement (1.6%)

Experiment Conclusion WF is too eager, WFR too rigid, and the optimum lies between
them, accessible only through state awareness. DCL approaches that optimum by tailoring
its reservation size to real-time pipeline risk, releasing or withholding inventory exactly when
the cost trade-off justifies it. This adaptive logic explains its consistent 0.6–1.6 % advantage
across all asymmetric lead-time scenarios. Full policy statistics appear in Appendix A.3.

6.3.2 Small Capacitated Cases under Lead-Time Variantions

This experiment evaluates how the Guided Base-Stock Optimization (GBS) improves upon
the General-Focused basestock (designed for uncapacitated systems) when capacity limits

50

6. Computational Experiments

are imposed. We also measure how DCL, which in previous experiment demonstrated
state-dependent reservation benefits, further reduces cost under capacity constraints. We
reuse the 5-node and 6-node networks from prior sections, applying five capacity scenarios
(C1–C5) defined by percentage overcapacity relative to mean demand (see Tables 6.9–6.10).
For 5-node configurations, three lead-time cases (S1: (4, 4, 2, 3, 2); S2: (4, 4, 2, 6, 2); S4:
(4, 4, 6, 3, 2)) are tested. For the 6-node network, we evaluate a single lead-time case (S5:
(4, 5, 3, 1, 3, 2)). Analysis concentrates on total cost and node-level inventories as capacity
slack shrinks.

Capacity Grouping and Scenarios. In the 5-node system, capacity groups are {B0, B1},
{B2}, and {M3,M4}. Since M3 and M4 have mean demands of 3.7 and 4.3 (sum = 8), a
capacity of 9 corresponds to 12.5% overcapacity. Table 6.9 defines five cases:

Table 6.9: 5-node capacity scenarios (C1–C5) relative to mean demand (=8).

Case G1 (B0 +B1) G2 (B2) G3 (B3 +B4)

C1 – Tight G3 10 10 9
C2 – Tight G2 10 9 10
C3 – +12.5% 9 9 9
C4 – +25% 10 10 10
C5 – +37.5% 11 11 11

In the 6-node network, capacity groups are {W0,W1}, {W2}, {M3 +M4 +M5}. With
mean demand 3.05 + 3.7 + 4.3 ≈ 11, a capacity of 13 corresponds to 18.2% overcapacity.
Table 6.10 defines five cases:

Table 6.10: 6-node capacity scenarios (C1–C5) relative to mean demand (=11).

Case G1 (B0 +B1) G2 (B2) G3 (M3 +M4 +M5)

C1 – Tight G3 14 14 13
C2 – Tight G2 14 13 14
C3 – +18.2% 13 13 13
C4 – +27.3% 14 14 14
C5 – +36.4% 15 15 15

Results and Visualization. Figure 6.6 plots the percentage reduction in mean cost
of GBS and DCL versus the General-Focused baseline over capacity scenarios C1–C5 for
the three 5-node lead-time cases (S1–S3) and the 6-node case (S5). In all 5-node setups,
GBS delivers its largest savings (≈8–10%) when downstream modules or shared buffers
are tight (C1, C3) and negligible benefit when more capacity slack appears (C4–C5). DCL
builds on GBS: in C1 it adds roughly 4–5 percentage points more savings, in C3 around
2–3 points, and in C2 only about 1 point. Even under mild slack (C4–C5), DCL finds ≈1%
extra improvement. the same pattern holds but with slightly smaller magnitudes for the
6-node case (S5).

To further explain these cost patterns, Graphs in Figure 6.7 display average on-hand
inventories at buffers B0, B1, B2 and modules M3,M4, (M5) under three policies (WF
baseline, WF+GBS, and DCL) for the tight scenarios C1–C3 in each lead-time variant
S1,S2,S4,S5. In each figure, three subplots correspond to C1 (downstream modules tight), C2
(shared buffer B2 tight), and C3 (uniform tightness). Viewing these figures together reveals
consistent patterns that are similar to the uncapacitated experiment: DCL consistently
reduces inventory at the shared bottleneck buffer (B2) and reallocates it into the faster

51

Dynamic Production Policies for ASML’s General Supply Network

Figure 6.6: Improvement (%) of GBS and DCL over the General-Focused basestock
across capacity scenarios C1–C5 for each network and lead-time case: S1, S2, S3,
and 6-node S5.

upstream group (B0/B1), and module stocks are biased toward the higher-penalty nodes.
Additionally, DCL’s key advantage over GBS lies in synchronizing buffer inventories
between the shared buffer B2 and its paired upstream buffers (B0 for M3, B1 for M4).
Whereas GBS sets static basestocks independently, sometimes leaving B2 stocked when
the matching upstream buffer is low (or vice versa). DCL, on the hand, maintains average
levels so that when B2 replenishes, its partner buffer is also likely to have stock, maximizing
“both-buffers-available” events. In practice this means DCL holds B2 more leanly and
balances B0 and B1 according to module penalties and expected B2 availability, avoiding
idle inventory in one buffer and wasted capacity in the other.

Below we discuss how the above logic appears in each lead-time variant, referring to
average-inventory levels for C1–C3.
S1 In the baseline case, GBS raises basestocks for both modules but may leave B2 average
higher than ideal relative to B0/B1, causing occasional mismatches. DCL trims B2 and
raises the upstream buffer for the higher-penalty module (e.g., B0 or B1 as appropriate), so
that when B2 is available, its partner buffer is ready. Under uniform tightness, DCL then
splits inventory evenly across B0 and B1 rather than concentrating in one, ensuring both
module inputs align with B2 timing. These adjustments appear in first graph in Figure 6.7
as lower B2 and balanced upstream levels, which yields the extra cost reduction over GBS.

S2 With M3’s lead time inflated, GBS static CCR can overstock B2 for M3 even when
B0/B2 alignment is poor and M4 suffers. DCL responds by moderating B2’s average and
stocking B1 (for M4) or B0 only to the extent that realistically matches B2’s capacity pattern
in order to align inventories to correct lead-time distortions. Under uniform tightness,
DCL balances B0 and B1 in proportion to module penalties and expected B2 timing, so

52

6.3. COMPARATIVE EVALUATION EXPERIMENTS (HEURISTICS VS DCL) 53

Figure 6.7: Average On-Hand Inventory by Policy for all scenarios. Subfigures
(left to right) represent C1 (Tight M3+M4+M5), C2 (Tight B2), and C3 (Tight
Capacity).

6. Computational Experiments

both upstream buffers refill in step with B2. The second graph of Figure 6.7 shows these
synchronized levels and explains DCL’s improved performance over GBS.

S4 Here the shared buffer B2 has a long lead time. GBS often stocks B2 heavily but may
not align upstream buffer levels, causing low joint availability. DCL holds B2 at a moderate
average and adjusts B0/B1 so that when B2 replenishes, the appropriate upstream buffer
is ready—prioritizing the higher-penalty module’s pair. Under uniform tightness, DCL
splits upstream inventory according to module costs and B2’s realistic availability pattern,
rather than loading one buffer. The last plot in Figure 6.7 reflects these aligned average
inventories and underpins the observed extra savings versus GBS in the shared-bottleneck
scenario.

S5 In the 6-node case, DCL surpasses GBS by better coordinating shared buffer availability
among three end-items. GBS inflates B2 and evenly distributes stock, causing mismatches
under tight capacity due to unaligned inventories. In contrast, DCL optimizes B2and
allocates B0 and B1 based on specific needs and backlog penalties. In C1, GBS reduces B0

to boost B1 for M4/M5, leaving M3 understocked when B2 arrives. DCL balances B0 with
B2’s cadence, increasing M3 availiability, while maintaining adequate B1 for high-penalty
modules, leading to increased B0 and M3 stock levels alongside M4. In C2, where B2

bottlenecks, GBS inflates module stocks, stalling production if buffers misalign. DCL
sets B2 to realistic capacity and maintains B0/B1 at necessary levels, ensuring partner
buffers align when B2 opens, resulting in moderate averages and less idle inventory. In C3,
with uniform constraints, GBS evenly distributes stock while ignoring dependencies. DCL
adjusts based on module penalties and lead-times, raising B1 for M4/M5 and B0 for M3

while keeping B2 lean. This reduces module shortages and provides cost advantages over
GBS.

Experiment Conclusion

Figure 6.7 consolidates average on-hand inventories for buffers B0, B1, B2 and modules
M3,M4 (and M5 in S5) under WF, WF+GBS, and DCL across the tight scenarios C1–C3 in
each lead-time variant (S1, S2, shared-bottleneck, three-module competition). A consistent
pattern emerges: DCL maintains a somewhat leaner average at the shared buffer B2 and
reallocates that inventory into the upstream buffers B0 and B1 in a way that aligns with
each module’s penalty and the actual timing of B2 availability. Crucially, DCL’s gain
arises from synchronizing paired buffers—ensuring that whenever B2 is replenished, its
matching upstream buffer (B0 for M3, B1 for M4 or M5) also has stock—rather than from
large shifts in total inventory.

• Under downstream-tightness (C1), DCL slightly trims B2 relative to GBS and boosts
the upstream buffer feeding the highest-penalty module so that “both-buffers-available”
events increase.

• When the shared buffer is tight (C2), static GBS often inflates all module targets but
still faces mismatches; DCL holds B2 at realistic levels and keeps upstream reserves
poised to pair with any sporadic B2 replenishment.

• In uniform tightness (C3), instead of concentrating stock in one upstream buffer based
on static signals, DCL balances B0 and B1 according to module costs and expected
B2 timing, avoiding idle stock and enabling more resilient fulfillment.

• These same principles correct distorted signals in the inflated-pipeline variant (S2)
and avoid overstocking the slow shared buffer in the shared-bottleneck case: DCL’s

54

Dynamic Production Policies for ASML’s General Supply Network

state-aware adjustments consistently align paired buffers under each lead-time pattern.
In S5’s three-module competition, the synchronization logic extends to coordinating
three end-items: DCL times B0 and B1 stocks to match B2 availability in proportion
to each module’s urgency, again with modest changes to B2 but smarter upstream
placement.

Summary and KPI-driven Take-Aways

• Role of capacity: In C1–C3, capacity binds, forcing GBS to raise basestocks at
bottleneck nodes. Inventory KPI shifts under GBS indicate which nodes are identified
as bottlenecks. In contrast, under C4–C5, GBS and DCL converge to similar inventory
patterns since no node experiences sustained blocking.

• DCL’s advantage: KPI patterns confirm that DCL lowers on-hand inventory at
the most constrained buffer, raises average availability at the paired upstream buffer
feeding the critical module, and improves module inventory availability.

• Managerial insight: These results highlight that while a well-tuned static heuristic
handles gross capacity constraints, incremental dynamic coordination of shared and
upstream buffers, timing paired availability to module-specific needs, yields consistent,
explainable benefits, especially when lead-time asymmetries or competition distort
naive stocking signals.

6.3.3 The Large Seven-node Capacitated Network

The objective of this experimnet is to determine whether DCL’s benefit persists in the large
ASML-inspired network.

Experiment-specific settings.
• Capacity regimes: moderate Qg=10 (≈25 % over mean) and tight Qg=9 (≈12.5 %).
• Policies: WF (uncap.), WF-GBS, DCL.
• DCL training: N=200,000 samples; horizon H = 3MCLT.
Below we discuss cost-composition, inventory allocation, service metrics, and the reasons

DCL’s extra gain shrinks under tight capacity.

Figure 6.8: Inventory Cost (gold), Backlog Cost (orange) and Total Cost (dashed)
per period.

55

6. Computational Experiments

Cost Composition

The cost breakdown (Figure 6.8) shows that WF+GBS captures the bulk of achievable
savings by statically adjusting base-stock targets to average capacity constraints. Under
moderate capacity, WF+GBS lowers inventory cost relative to WF, but incurs a modest rise
in backlog cost, nonetheless it yields a net total-cost reduction of 1%. DCL further reduces
inventory cost more sharply but accepts a somewhat larger backlog increase, resulting in an
additional total-cost drop of 1.5%. Under tight capacity, WF+GBS’s static tuning delivers
a 2% large savings gain by raising some buffers in exchange for lower backlog costs. Here
DCL’s further improvement is small (0.5%): it trims inventory slightly more where possible
and rebalances to get marginal savings. Further exploration is required to understand its
limited performance on this tight scenario.

Node-Level Inventory Allocations

The average-on-hand inventory plots (Figure 6.9) reveal consistent allocation patterns under
DCL versus WF and WF+GBS:

Upstream supplier differences: Here we see that C0 is slower or more constrained, DCL
holds noticeably less than WF+GBS in the slow supplier (C0) (e.g., moderate: WF+GBS
≈2.19 at C0 vs. DCL ≈1.19), which explains having too much inventory in longer-to-
replenish paths (C0) is not effective if other parallel partners (C1) are not simultaneously
stocked. Moreover, C1 is relatively faster and critical for certain mid-tier paths, which
explains why DCL holds more than WF+GBS (e.g., moderate: GBS ≈3.09 vs. DCL ≈3.47).
Since C1 supplies C4 (and via C4 eventually feeds end-items C5/C6), holding more at
C1 ensures that when downstream buffers (say C2/C3) become available, C1 can quickly
replenish its C4.

Mid-tier buffers (C2, C3, C4): Since C2 and C3 depend on C0, DCL carries their
inventories more leanly than WF+GBS. Although WF+GBS may set a higher static target
at C2/C3 to guard against average shortages, if C0 inventory is uneven or slow, that static
cushion may not translate into actual simultaneous availability at both inputs. DCL’s
lower average at C2/C3 matches its leaner C0 holding, avoiding idle stock that cannot be
used because its partner input is missing. Moreover, C4 depends on C1, and DCL’s higher
C1 stock supports a moderate average at C4. Rather than inflating C4 statically, DCL
trusts the faster upstream path (C1) to replenish C4 when needed, so it carries only enough
average inventory at C4 to meet likely immediate demand when both C1 and its second
input (C2/C3 as applicable) align.

End-items (C5, C6): This nodes are composed from mid-tier components and require
specific mid-tier inputs: e.g., C5 might need (C2 and C4), C6 needs (C3 and C4). Because
C4 draws from faster supplier C1 (where DCL holds more), and C2/C3 draw from leaner C0,
DCL ensures that when C4 replenishes, its partner mid-tier (C2 or C3) has a matching—but
leaner—average level, so joint availability events occur often enough. Moreover, the average
inventory for the higher-backlog-cost end-item (C6) is slightly higher under DCL than
WF+GBS, even if overall end-levels are slightly lower or similar. By aligning upstream/mid-
tier availability toward the critical path feeding C6, DCL sustains or marginally improves
its RLIP. The average-inventory bars show that C6’s level under DCL remains competitive,
reflecting this prioritization.

56

6.3. COMPARATIVE EVALUATION EXPERIMENTS (HEURISTICS VS DCL) 57

Figure 6.9: Average on-hand inventory at each node (C0–C6). Up = moderate
capacity,down = tight capacity.

Figure 6.10: RLIP at C6 (blue) and backlog frequency (red) under each policy.
Solid = RLIPC6 , dashed = % periods with any backlog. Left = moderate capacity;
right = tight.

Dynamic Production Policies for ASML’s General Supply Network

In sum, DCL’s learned policy respects the production setup: it avoids overstocking a
mid-tier buffer if its upstream partner is lean, instead reallocating to faster or higher-priority
paths. WF+GBS, by contrast, raises targets for many buffers independently based on
average constraint ratios, which can leave one input stocked without its partner; this static
approach cannot guarantee the simultaneous availability that actual production requires.
The average-inventory figure 6.9 visually corroborates these alignment patterns.

Service Level & Backlog Trade-offs

The RLIP/backlog frequency plots in Figure 6.10 illustrate how these allocation patterns
translate into service outcomes:

• Under moderate capacity (C4): WF+GBS increases fill at the critical end-item
(C6) compared to WF, but backlog frequency rises slightly overall. DCL further
concentrates service protection: by aligning buffer averages toward the highest-penalty
path, DCL preserves or slightly boosts fill for C6 while allowing marginally more
backlog at the less-critical end-item (C5). The plot shows DCL’s backlog bar higher
than WF+GBS, but RLIP@C6 is maintained or improved. This trade-off reduces
total cost, where a slight sacrifice at C5 frees inventory to guard C6 more effectively.

• Under Tight capacity (C3): WF+GBS already lifts C6 fill by raising static targets.
DCL’s alignment yields only minor inventory shifts, with its service/backlog bars
having more balanced RLIPs for end items and with a slight additional protection for
C6. Because capacity is scarce, any reallocation must be cautious; the plots confirm
that DCL’s policy avoids harming C6 fill, and in turn reflects the small difference in
total cost.

Why DCL’s Gain Shrinks under Tight Capacity

In smaller networks (5- and 6-node), DCL often sees its largest gains under tight capac-
ity because the reduced action space simplifies learning on a narrower set of impactful
reallocations. In the full 7-node system under tight capacity, however, DCL’s incremental
improvement falls below that seen under moderate constraints. An easy explanation for
this would be that as network depth and action dimensionality grow, our current neural
policy faces greater scalability challenges in representing and learning effective decisions.

However, we hypothesize that GBS already does a very good job and sets each node’s
base-stock near its shared-capacity limits. Now, DCL tries to do better by moving inventory
around (a strategy that worked well in smaller 2-echelon systems), for example, by reducing
inventory in the middle nodes (like C2, C3, C4) and sending it to more urgent downstream
nodes (like the final products C5 and C6). This fails because middle nodes can’t be
easily refilled as they depend on already constrained upstream components (C0 and C1).
Additionally, middle nodes serve multiple end-items, reducing inventory impacts final
products, incurring high backlog penalties. Thus, any reallocation by DCL may do more
harm than good, explaining its minimal improvement.

Why DCL’s Gain Shrinks in the 7-Node Tight Case

In smaller networks (5- and 6-node), DCL often sees its largest gains under tight capacity
because the reduced action space focuses learning on a narrower set of impactful reallocations.
In the full 7-node system under tight capacity, however, DCL’s incremental improvement
falls below that seen under moderate constraints. While increased network depth and
action dimensionality may strain the neural policy’s scalability, our primary hypothesis is

58

6. Computational Experiments

structural: GBS already sets each node’s base-stock near its shared-capacity limits, leaving
little uncommitted inventory. Any attempt by DCL to trim mid-tier buffers (C2–C4) and
shift stock toward urgent end-items (C5, C6) fails because (a) upstream components (C0,
C1) are themselves capacity-bound and cannot quickly refill a reduced mid-tier buffer, and
(b) each mid-tier node feeds multiple end-items, so reducing its inventory simultaneously
harms several high-penalty products. Thus, under these simultaneous bottlenecks and tight
upstream availability, virtually no reallocation remains beneficial, explaining why DCL’s
extra gain drops below 1% in the tight 7-node scenario.

We hypothesize that in the 7-node system under tight capacity, GBS optimizes node
inventory targets to reach close to shared-group capacity. DCL attempts to improve by
reallocating inventory, a strategy effective in smaller 2-echelon systems, by shifting stock
from middle nodes (C2-C4) to urgent downstream nodes (C5 and C6). This fails because
middle nodes can’t be easily refilled as they depend on already constrained upstream
components (C0 and C1). Additionally, middle nodes serve multiple end-items; reducing
inventory impacts several final products, incurring high backlog penalties. Thus, any
reallocation by DCL may do more harm than good, explaining its minimal improvement.

Summary & Managerial Insights

We elaborate on the summary insights as follows:
• Align to dependencies: In a general network, inventory policies must ensure that

paired inputs (e.g., C0→C2/C3 and C1→C4) replenish in sync so end-items can be
produced when needed. DCL’s learned averages achieve this alignment by holding
leaner stocks at slower upstream buffers and reinforcing faster ones feeding critical
mid-tier nodes.

• Static tuning vs. dynamic alignment: WF+GBS’s capacity-aware static base-
stock adjustments deliver the principal cost benefit by addressing average bottlenecks.
DCL refines further by aligning average inventories to the production and penalty
structures, yielding additional savings when capacity slack exists. Under extreme
tightness, its gains shrink.

• Service-prioritization via alignment: By focusing limited inventory where up-
stream and mid-tier paths align for the highest-penalty end-item, DCL sustains its
RLIP even when overall stock is leaner. Managers can replicate this idea: rather than
uniformly raising safety stocks under capacity, target dynamic alignment of paired
buffers to critical products.

• Interpret figures directly: The average-inventory charts illustrate where DCL
holds less at slower nodes (C0), more at faster ones (C1), and sets mid-tier/end
stocks to match production dependencies. The service/backlog plots show how these
averages translate into maintained or improved fill at the most critical end-item, at
the cost of marginal extra backlog elsewhere. The cost breakdown charts confirm the
net benefit.

Conclusion of experiment Under moderate capacity (Qg = 10), WF-GBS removes
most capacity refusals, and DCL’s dynamic reallocation of ≈4–5 units cuts total cost by an
additional 1.4 %. Under tight capacity (Qg = 9), WF-GBS’s gives largest savings (≈2%);
DCL’s mid-period tweaks can bring only a additional ≈0.5 % improvement. This confirms
that, while state-dependent trained DCL policy always adds benefit, its marginal return
shrinks as the network depth grows together with tight capacity constraints.

59

Dynamic Production Policies for ASML’s General Supply Network

Chapter 7

Conclusion, Discussion & Future
Research

This thesis tackles inventory management in multi-echelon supply networks with low-
volume, high-mix demand, divergent/convergent flows, and shared-capacity constraints,
as exemplified by ASML’s operations. We extended on the fully-convergent approach of
Van Dijck et al. (2024) and adapted their Markov Decision Process (MDP) and action-space
decomposition suited to discrete orders to accommodate divergent allocations, multiple end
items, and shared capacities. Based on this model, we developed and evaluated:

• A network-compatible base-stock sizing approach (G-MATCH) that respects the gen-
eral network graph and lead times, extending Rong et al. (2017) beyond distribution-
only settings and demonstrating roughly 90% cost reduction over their proposed
base-stocks general extension in uncapacitated tests.

• A family of allocation rules, including standard Water-Filling and reservation variants;
the standard version emerged as most powerful when combined with appropriate
base-stocks, while reservation-based variants show promise if extended with lookahead
or priority weighting.

• A Guided Base-Stock (GBS) optimization that iteratively adjusts static targets for
shared-capacity groups via a capacity-constrained ratio metric, yielding 5–8% cost
improvement when capacity is binding.

• A Deep Controlled Learning (DCL) method for discrete, divergent-aware DRL: we
decomposed outputs per node similar to Van Dijck et al. (2024) but handle simultane-
ous allocations among successors sharing predecessors; we engineered input features
for the neural network combining global and node-specific context (improving costs by
over 5% relative to a baseline feature set). We used a shared neural network with an
output layer covering the entire joint action space (a concatenation of all node-specific
action spaces

∑
n(actionDimn)). During inference, outputs are dynamically masked

to select only feasible actions for the current node. We also conducted systematic
tuning of DCL parameters (feature subsets, horizon multiplier, network architectures).

Extensive experiments on 5-, 6-, and 7-node networks under varied lead-time and
capacity scenarios yielded these insights:

Heuristic performance: G-MATCH base-stocks combined with Water-Filling allocation
outperformed serial or surrogate methods by large margins (e.g., 60–90% cost reduction over

7. Conclusion, Discussion & Future Research

state-of-the-art distribution heuristics misaligned with the true network). Under capacity
constraints, GBS further improved costs by roughly 5–8% over unmodified base-stocks, by
raising targets at nodes most frequently constrained.

DRL refinements and observed limits: DCL, initialized with the best heuristic
rollout, achieved higher gains (up to 2–5%) under tight capacity in the 5- and 6-node
systems compared to looser capacity settings (1–2%). This is expected, as tighter capacity
constraints reduce the set of feasible actions, making the learning process more focused
and increasing the likelihood of identifying effective allocation decisions. Yet in the full
7-node network, the additional benefit under tight capacity unexpectedly shrank below the
moderate-capacity gains. This reversal may reflect two possible factors: first, scalability
challenges in our neural policy as network depth and action dimensionality grow; and second,
a low room for improvement, once GBS targets have already filled nearly all capacity groups,
resulting in a system with simultaneous bottlenecks and scarce upstream availability that
leave little headroom to reallocate stock without incurring expensive shortages. Therefore,
when training, we observe that the complexity of a supply network, exemplified by longer
lead times, an increasing number of nodes and echelons, as well as greater asymmetry in
lead times or backlog penalties, inherently elevates the effort. This effort also scales with
capacity size, driven by end-item demand. Training becomes especially challenging not only
as the capacity increases, leading to a broader action space, but also with tighter capacity
restrictions in networks with more than two echelons (e.g., fully tight 7-node).

Modeling and methodological contributions: We extended the fully-convergent MDP
modeling of Van Dijck et al. (2024) to handle general divergent/convergent topologies with
shared capacities and multiple end items. We extended the approach of Rong et al. (2017)
and validated that base-stock computation requires compatibility between network structure
and lead times, as shown by G-MATCH’s superiority over the hybrid-serial-structure and
general-timing of their method. For DRL, we adapted output decomposition from Van Dijck
et al. (2024) to simultaneous allocations among successors sharing predecessors and enriched
input features with global and node-specific context; these design choices improved learning
stability and policy quality in non-trivial networks.

Limitations and future directions:

• Scalability in larger/deeper networks: As depth and lead times increase, training
DCL may become slow. Partitioned learning (e.g., separate neural networks for
divergent and single-successor nodes) could help find targeted features, improve
learning and reduce state-action complexity, but coordinating across partitions and
the credit-sharing requires careful design and is an open problem.

• Adaptive allocation sequencing: Our rollout applies decisions in fixed topological
order, allowing simultaneous multi-node decisions for nodes with at least one common
predecessor; however, shared capacity usage remains biased by this order. A further
extension of the heuristic would be to allow simultaneous decisions in nodes with a
shared capacity group, but here there is no need for hard water-filling approaches but
a proportional shortage-based allocation would suffice as capacity is drawn from a
single source. This could better capture real-world simultaneity, though representing
it within an MDP while maintaining feasibility is complex.

• Reservation enhancements: Reservation-based allocation rule (namely WFR)
could incorporate brief lookahead or priority-weighted simulations to decide when

61

Dynamic Production Policies for ASML’s General Supply Network

reserving inventory truly reduces downstream risk, rather than using fixed or purely
myopic reserves.

• Extension to non-stationary demand: Adapting our DRL approach to non-
stationary demand remains a challenging open problem. Van Dijck et al. (2024)
proposed a time-varying demand model for a pure-assembly system with a single end-
item; extending this to our setting is substantially more complex due to the presence
of multiple end items with (possibly correlated) evolving demand distributions. This
significantly increases the state and training space complexity. A potential path
forward for our heuristic could involve periodically adjusting base-stock levels based
on distributions drawn from forecasted demand scenarios, but doing so reliably and
efficiently would require careful design to avoid excessive computational burden.

In ASML-like networks, a capacity-aware base-stock adjustment (GBS) combined with
Water-Filling allocation captures the majority of cost savings with high efficiency and
interpretability. For example, GBS optimization on a 7-node system over 1000 periods
completes in under 30 seconds. DRL-based control provides additional—but smaller—gains
by dynamically aligning buffer stocks and prioritizing high-penalty items in response to
transient imbalances, though these benefits only materialize when capacity slack exists.
Moreover, training DRL policies for larger, deeper networks is computationally intensive
(e.g., 12 minutes on a supercomputer for the 7-node case, estimated 8+ hours on standard
hardware), with no guarantee of convergence and limited interpretability of the resulting
policy.

Managerial implications: In ASML-like networks, a capacity-aware base-stock adjust-
ment (GBS) combined with Water-Filling allocation captures the majority of cost savings
with high efficiency and interpretability. For example, running the heuristic on a 7-node
system over 1000 periods completes in under 30 seconds. DRL-based dynamic control yields
further, smaller improvements by synchronizing paired buffers and prioritizing high-penalty
items when temporary imbalances occur, though these benefits only materialize when
capacity slack exists. Moreover, training DRL policies for larger, deeper networks is compu-
tationally intensive (e.g., 12 minutes on a supercomputer for the 7-node case, estimated 8+
hours on standard hardware), with no guarantee of convergence and limited interpretability
of the resulting policy. Furthermore, when capacity groups are saturated in networks with
more than two echelons, additional gains from our DRL-based method are limited. In such
cases, it may be more effective to invest in capacity expansion or explore enhancements to
the learning approach itself. Nonetheless, insights from DCL’s learned policy, such as how
to balance upstream inventories given lead-time asymmetries and penalties, can inform
enhancements to simpler, transparent heuristics or decision-support tools.

In summary, this work shows how a focused heuristic, grounded in correct network
structure and extended for capacity constraints, forms a strong baseline, and how a
targeted DRL method can refine it further where flexibility exists and its capabilities
allow. The combination preserves interpretability and computational tractability while
capturing transient, state-dependent opportunities that static rules overlook, offering a
practical blueprint for inventory control in modern, capacity-constrained multi-echelon
supply networks.

62

BIBLIOGRAPHY

Bibliography

Akkerman, F., Begnardi, L., Lo Bianco, R., Temizoz, T., Mes, M., and van Jaarsveld, W.
(2023). DynaPlex.

ASML (2024). Asml investor day 2024. Accessed: March 24, 2025.

Axsäter, S. (2015). Inventory control, volume 225. Springer.

Axsäter, S. (1990). Simple solution procedures for a class of two-echelon inventory problems.
Operations Research, 38(1):64–69.

Axsäter, S. and Rosling, K. (1993). Installation vs. echelon stock policies for multilevel
inventory control. Management Science, 39(10):1274–1280.

Chong, A., Lo, C., and Weng, X. (2017). The business value of it investments on supply
chain: A contingency perspective. Journal of Business Research, 80:37–46.

Clark, A. J. and Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem.
Management Science, 6(4):475–490.

De Kok, T., Grob, C., Laumanns, M., Minner, S., Rambau, J., and Schade, K. (2018). A
typology and literature review on stochastic multi-echelon inventory models. European
Journal of Operational Research, 269(3):955–983.

De Kok, T. G. and Visschers, J. W. (1999). Analysis of assembly systems with service level
constraints. International Journal of Production Economics, 59(1–3):313–326.

Diks, E. and De Kok, A. (1998). Optimal control of a divergent multi-echelon inventory
system. European Journal of Operational Research, 111(1):75–97.

Doğru, M. K., de Kok, A. G., and van Houtum, G. J. (2009). A numerical study on
the effect of the balance assumption in one-warehouse multi-retailer inventory systems.
Flexible Services and Manufacturing Journal, 21(3-4):114–147.

Eppen, G. (1981). Centralized ordering policies in a multi-warehouse system with lead times
and random demand. Multi-level production/inventory control systems, pages 51–67.

Eruguz, A. S., Sahin, E., Jemai, Z., and Dallery, Y. (2016). A comprehensive survey
of guaranteed-service models for multi-echelon inventory optimization. International
Journal of Production Economics, 172:110–125.

Fleuren, T., Yasemin, M., Hendriks, M., and Renata, S. (2022). Tactical production
planning and strategic buffer placement under demand and supply uncertainty in the
high-tech manufacturing industry. Working paper.

Dynamic Production Policies for ASML’s General Supply Network

Geevers, K., Van Hezewijk, L., and Mes, M. R. K. (2024). Multi-echelon inventory
optimization using deep reinforcement learning. Central European Journal of Operations
Research, 32(3):653–683.

Geng, N. and Jiang, Z. (2009). A review on strategic capacity planning for the semiconductor
manufacturing industry. International journal of production research, 47(13):3639–3655.

Giannoccaro, I. and Pontrandolfo, P. (2002). Inventory management in supply chains:
a reinforcement learning approach. International Journal of Production Economics,
78(2):153–161.

Gijsbrechts, J., Boute, R. N., Van Mieghem, J. A., and Zhang, D. J. (2022). Can deep
reinforcement learning improve inventory management? performance on lost sales, dual-
sourcing, and multi-echelon problems. Manufacturing Service Operations Management,
24(3):1349–1368.

Graves, S. C. (1985). A multi-echelon inventory model for a repairable item with one-for-one
replenishment. Management Science, 31(10):1247–1256.

Graves, S. C. and Schoenmeyr, T. (2016). Strategic safety-stock placement in supply
chains with capacity constraints. Manufacturing amp; Service Operations Management,
18(3):445–460.

Graves, S. C. and Willems, S. P. (2003). Optimizing strategic safety stock placement in
supply chains. Manufacturing Service Operations Management, 2(1):68–83.

Harsha, P., Jagmohan, A., Kalagnanam, J., Quanz, B., and Singhvi, D. (2025). Deep policy
iteration with integer programming for inventory management. Manufacturing Service
Operations Management, page msom.2022.0617.

Huh, W. T., Janakiraman, G., and Nagarajan, M. (2016). Capacitated multiechelon
inventory systems: Policies and bounds. Manufacturing Service Operations Management,
18(4):570–584.

Kaynov, I., Van Knippenberg, M., Menkovski, V., Van Breemen, A., and Van Jaarsveld,
W. (2024). Deep reinforcement learning for one-warehouse multi-retailer inventory
management. International Journal of Production Economics, 267:109088.

Madanchian, M. and Taherdoost, H. (2024). Ai-powered innovations in high-tech research
and development: From theory to practice. Computers, Materials & Continua, 81(2).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.

Nadar, E., Akan, M., and Scheller-Wolf, A. (2014). Technical note—optimal structural
results for assemble-to-order generalized m -systems. Operations Research, 62(3):571–579.

Oroojlooyjadid, A., Nazari, M., Snyder, L., and Takáč, M. (2021). A deep q-network for
the beer game: A deep reinforcement learning algorithm to solve inventory optimization
problems.

64

BIBLIOGRAPHY

Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., and Su, H. (2019). Deep reinforcement
learning approach for capacitated supply chain optimization under demand uncertainty.
In 2019 Chinese Automation Congress (CAC), page 3512–3517, Hangzhou, China. IEEE.

Pirhooshyaran, M. and Snyder, L. V. (2021). Simultaneous decision making for stochastic
multi-echelon inventory optimization with deep neural networks as decision makers.
(arXiv:2006.05608). arXiv:2006.05608 [cs].

Rong, Y., Atan, Z., and Snyder, L. V. (2017). Heuristics for base-stock levels in multi-echelon
distribution networks. Production and Operations Management, 26(9):1760–1777.

Rosling, K. (1989). Optimal inventory policies for assembly systems under random demands.
Operations Research, 37(4):565–579.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms.

Sherbrooke, C. C. (1968). Metric: A multi-echelon technique for recoverable item control.
Operations Research, 16(1):122–141.

Simchi-Levi, D. and Zhao, Y. (2012). Performance evaluation of stochastic multi-echelon
inventory systems: A survey. Advances in Operations Research, 2012:1–34.

Simpson, K. F. (1958). In-process inventories. Operations Research, 6(6):863–873.

Smirnov, D., Van Jaarsveld, W., Atan, Z., and De Kok, T. (2021). Long-term resource
planning in the high-tech industry: Capacity or inventory? European Journal of
Operational Research, 293(3):926–940.

Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., and and, B. S. (2016). Or/ms
models for supply chain disruptions: a review. IIE Transactions, 48(2):89–109.

Stranieri, F., Stella, F., and Kouki, C. (2024). Performance of deep reinforcement learning
algorithms in two-echelon inventory control systems. International Journal of Production
Research, 62(17):6211–6226.

Sucky, E. (2009). The bullwhip effect in supply chains—an overestimated problem? Inter-
national Journal of Production Economics, 118(1):311–322. Special Section on Problems
and models of inventories selected papers of the fourteenth International symposium on
inventories.

Sutton, R. S. and Barto (2018). Reinforcement learning: An introduction, volume 1. MIT
press Cambridge.

Temizöz, T., Imdahl, C., Dijkman, R., Lamghari-Idrissi, D., and Jaarsveld, W. v. (2023).
Deep controlled learning for inventory control. (arXiv:2011.15122). arXiv:2011.15122 [cs].

Van Dijck, T., Fleuren, T., Temizoz, T., Merzifonluoglu, Y., Hendriks, M., and
Van Jaarsveld, W. (2024). Inventory planning in capacitated high-tech assembly systems
under non-stationary demand. SSRN Electronic Journal.

Van Hezewijk, L., Dellaert, N., Van Woensel, T., and Gademann, N. (2023). Using the
proximal policy optimisation algorithm for solving the stochastic capacitated lot sizing
problem. International Journal of Production Research, 61(6):1955–1978.

65

Dynamic Production Policies for ASML’s General Supply Network

Vanvuchelen, N., De Moor, B. J., and Boute, R. N. (2025). The use of continuous action
representations to scale deep reinforcement learning for inventory control. IMA Journal
of Management Mathematics.

Wang, T. and Hong, L. J. (2023). Large-scale inventory optimization: A recurrent neural
networks–inspired simulation approach. INFORMS Journal on Computing, 35(1):196–215.

Woerner, S., Laumanns, M., and Wagner, S. M. (2016). Simulation-based optimization of
capacitated assembly systems under beta-service level constraints. Decision Sciences,
49(1):180–217.

Zipkin, P. H. (2000). Foundations of inventory management. McGraw-Hill/Irwin.

66

A.

Appendix A

A.1 Warm-Up Period Estimation Using Moving Averages

To ensure accurate steady-state performance evaluation, we need to remove the initial
transient behavior of the system. We estimate the appropriate warm-up period using a
visual moving average method applied to the time series of period costs obtained from
simulation runs.

Let Yt denote the cost observed in simulation period t, for t = 1, 2, . . . , T . To smooth
short-term fluctuations and reveal longer-term trends, we compute moving averages of Yt
over windows of length w. The moving average at time t, denoted Ȳ

(w)
t , is defined as:

Ȳ
(w)
t =

1

w

w−1∑
i=0

Yt−i for t ≥ w

We evaluate the moving averages for window sizes w = 1, w = 10, and w = 50, across two
different network configurations: 5-node from Figure 6.1 and 7-node from Figure 3.1. For
each case, the time series of period costs was plotted along with its smoothed counterparts.
Figure A.1 shows that cost behavior stabilizes after about 60 periods in both network
instances. Beyond this, plots remain flat, indicating the end of the transient phase. Thus,
we conservatively choose 60 periods as the warm-up duration for simulations.

Figure A.1: Warmup Estimation with Moving Averages for the 5-node (left) and
7-node (right) cases

Dynamic Production Policies for ASML’s General Supply Network

A.2 Benchmarking 36 Heuristic Configurations on the 7-Node
System

Table A.1: Experiment 1: 7-node, uncapacitated, all 36 configurations (per-period
mean cost and standard deviation)

Policy Bound Allocation Mean Cost Std. Dev.

G-MATCH
UP WF 106.311 0.1298
DOWN WF 106.686 0.1276
UP WFR 108.220 0.1397
DOWN WFR 108.350 0.1359
UP WFRR 108.859 0.1378
DOWN WFRR 109.027 0.1343
UP WFFS 111.621 0.1540
DOWN WFFS 112.034 0.1540
UP RandomWF 109.704 0.1459
DOWN RandomWF 110.739 0.1483
UP FCFS 112.470 0.1669
DOWN FCFS 115.383 0.1771

FullS-MATCH
UP WF 157.526 0.1112
DOWN WF 153.178 0.1078
UP WFR 157.526 0.1112
DOWN WFR 153.178 0.1078
UP WFFS 157.526 0.1112
DOWN WFFS 153.178 0.1078
UP WFRR 159.310 0.1186
DOWN WFRR 154.683 0.1121
UP RandomWF 163.475 0.1332
DOWN RandomWF 158.272 0.1237
UP FCFS 169.691 0.1653
DOWN FCFS 163.286 0.1489

S-MATCH
UP WF 765.404 1.0795
DOWN WF 806.721 1.0911
UP WFR 765.404 1.0795
DOWN WFR 806.721 1.0911
UP WFFS 805.060 1.1830
DOWN WFFS 846.016 1.1955
UP WFRR 770.734 1.0733
DOWN WFRR 810.777 1.0855
UP RandomWF 911.091 1.1986
DOWN RandomWF 981.223 1.2516
UP FCFS 1064.580 0.9804
DOWN FCFS 1151.010 0.9772

A.3 5-node Uncapacitated Case Under Different Scenarios

68

A
.3.

5-N
O

D
E

U
N

C
A

PA
C

IT
A

T
E

D
C

A
SE

U
N

D
E

R
D

IF
F
E

R
E

N
T

SC
E

N
A

R
IO

S
69

Lead Times Policy MeanC HoldC Backl.C % Backlog RLIPM3 RLIPM4 InvB2 InvM3/InvM4

(4,4,2,3,2)
FCFS-U 103.95 78.03 25.82 24.07% 92.34% 92.55% 4.72 4.13 / 4.04
WFRandom-U 103.62 78.03 25.59 24.02% 92.06% 92.88% 4.72 4.09 / 4.07
WF-U 103.30 78.00 25.30 23.91% 91.92% 93.13% 4.72 4.06 / 4.10
WFFS-U 104.51 77.67 26.84 24.93% 91.30% 92.81% 4.84 4.01 / 4.06
WFR-U 103.50 77.84 25.65 24.21% 91.77% 93.07% 4.76 4.04 / 4.08
S1–DCL 101.73 74.60 27.13 25.45% 91.61% 92.43% 2.66 3.97 / 3.98

(4,4,2,6,2)
FCFS-U 116.03 89.33 26.70 22.82% 92.75% 91.79% 3.83 6.01 / 3.95
WFRandom-U 115.30 89.28 26.02 22.49% 92.35% 92.45% 3.83 5.93 / 4.02
WF-U 114.57 89.23 25.34 22.15% 92.03% 93.04% 3.83 5.87 / 4.07
WFFS-U 116.37 88.73 27.64 23.38% 90.89% 92.74% 4.03 5.77 / 4.03
WFR-U 114.78 89.00 25.79 22.47% 91.82% 92.97% 3.90 5.83 / 4.06
S2–DCL 113.16 83.38 29.78 25.22% 90.21% 92.15% 2.02 5.55 / 3.91

(5,5,2,4,1)
FCFS-U 104.07 79.88 24.19 22.45% 94.01% 92.11% 3.91 5.31 / 3.22
WFRandom-U 103.08 79.79 23.29 21.99% 93.61% 92.88% 3.91 5.23 / 3.28
WF-U 102.08 79.72 22.36 21.42% 93.13% 93.73% 3.91 5.13 / 3.36
WFFS-U 104.47 79.27 25.20 22.90% 91.64% 93.42% 4.12 5.03 / 3.33
WFR-U 102.29 79.50 22.79 21.77% 92.88% 93.70% 3.98 5.09 / 3.35
S3–DCL 100.65 75.01 25.64 24.06% 91.86% 93.01% 2.23 4.90 / 3.23

(2,2,6,3,1)
FCFS-U 102.33 72.90 29.43 25.68% 93.60% 89.73% 6.85 4.24 / 3.16
WFRandom-U 99.83 72.64 27.18 25.34% 92.12% 92.01% 6.85 4.11 / 3.25
WF-U 97.43 72.37 25.06 24.83% 91.11% 93.88% 6.85 4.00 / 3.31
WFFS-U 97.96 72.23 25.73 25.31% 90.69% 93.85% 6.91 3.97 / 3.30
WFR-U 97.59 72.29 25.30 25.02% 90.95% 93.88% 6.88 3.99 / 3.30
S4–DCL 96.89 70.95 25.94 25.44% 91.28% 93.29% 6.91 4.00 / 3.27

3-Retailer case RLIPM5
InvB2 InvM3/InvM4/InvM5

FCFS-U 143.52 101.00 42.52 35.71% 96.44% 92.26% 86.00% 5.26 4.11 / 3.66 / 4.00
WFRandom-U 138.65 100.86 37.79 35.51% 93.91% 91.62% 90.31% 5.26 4.04/ 3.89 / 3.75
WF-U 135.65 100.41 35.25 34.65% 94.92% 91.44% 91.18% 5.26 3.99 / 3.88 / 3.75
WFFS-U 137.98 99.57 38.41 36.97% 94.70% 89.92% 90.84% 5.57 3.83 / 3.84 / 3.71
WFR-U 136.29 100.03 36.26 35.47% 94.87% 90.91% 91.09% 5.38 3.92 / 3.86 / 3.74
DCL 133.63 98.67 34.96 35.89% 92.78% 90.97% 92.87% 3.87 3.92 / 4.00 / 3.52

Table A.2: Experiment 2 results: 5-node uncapacitated case under four lead-time scenarios.

A.

A.4 Training of Classifiers for Uncapacitated Experiments

In this appendix we report on the convergence behavior, final performance and computational
cost of the six neural-network policies trained under the Small Uncapacitated Lead-Time
Stress Test scenarios. Figure A.2 shows, for each case, the evolution of training and
validation loss over epochs, and Table A.3 summarizes the key metrics.

Figure A.2: Training (gold) and validation (orange) loss versus epoch for each
network configuration.

Classifier Convergence and Performance Across all six Small-Uncapacitated cases,
each 5- or 6-node MLP converged in 31–71 epochs (182–413s) to stable validation losses be-
tween 0.34 and 0.46, yielding cost improvements of –0.13 to –0.36 versus the G-MATCH+WF.
In particular, the Baseline (4,4,2,3,2) network reached a val-loss of 0.41 at epoch 20 (–0.36
cost, 31ep/182s), the Slow-Expensive (4,4,2,2,3) case converged in 71ep (0.42 val-loss, –0.24
cost, 339s) with minor overfitting after epoch 25, and the Inflated-Pipeline (4,4,2,6,2) ran
41ep (0.39 val-loss, –0.33 cost, 258s). The Urgent-Module (5,5,2,4,1) also took 41ep (0.39
val-loss, –0.31 cost, 245s), while the W2-Bottleneck (2,2,6,3,1) achieved its best at epoch 30
(0.34 val-loss, –0.12 cost, 41ep/230s) with minimal train–val gap. Finally, the 3-Module

70

Dynamic Production Policies for ASML’s General Supply Network

Case Epochs Best Val L Cost Imp. Time (s)

Baseline (4,4,2,3,2) 31 0.41 -0.36 182.2
Slow Expensive (4,4,2,2,3) 71 0.42 -0.25 339.2
Inflated Pipeline (4,4,2,6,2) 41 0.39 -0.33 258.1
Urgent Module (5,5,2,4,1) 41 0.39 -0.31 244.8
W2 Bottleneck (2,2,6,3,1) 41 0.34 -0.13 230.4
3-Module Competition 51 0.46 -0.29 413.2

Table A.3: Summary of Training for Small Uncapacitated Classifiers.

Competition needed 51ep (0.46 val-loss, –0.29 cost, 413s) to stabilize in this more complex
six-node topology. All classifiers show smooth training–validation improvements and deliver
consistent cost reductions under lead-time stress.

A.5 Training of Classifiers for Small Capacitated Experiments

In this appendix we report on the convergence behavior, final performance and computa-
tional cost of the neural-network policies trained under the Small Capacitated Lead-Time
Variations. Figures A.3 and A.4 shows, for each case, the evolution of training and validation
loss over epochs, and Table A.4 summarizes the key metrics.

Table A.4: Summary of Training for Small Capacitated Classifiers.

In the four waiting time scenarios (inflated channeling, W2 bottleneck, and 3-module
competition), our reduced capacity cases consistently converged in less than 100 epochs
with modest training times (<20 min per case), demonstrating robust learning across
diverse network structures and capacity constraints. The Tight G3 variant (C1) repeatedly
achieved the largest cost improvements (from –1.13 to –1.32) with relatively low validation
losses (0.40–0.47) and early stopping points (15–35 epochs), indicating strong policy gains
under strict constraints in the early stages. In contrast, the +12.5% capacity relaxation
(C3) often achieved the next best cost improvements (from –0.84 to –0.36), albeit with a
higher number of epochs (40–75), suggesting diminishing returns from additional capacity
relaxations. The intermediate variants C2 (strict G2) and C4 (+25%) yielded moderate
cost benefits (from –0.22 to –0.27 and from –0.25 to –0.49, respectively) with validation

71

A.

losses clustered around 0.43–0.52, while the most flexible network (+37.5%, C5) converged
more quickly but offered the smallest improvements (from –0.11 to –0.65). In general, strict
capacity adjustments generate the greatest cost savings, while excessive capacity slack
accelerates convergence at the expense of policy performance.

0 5 10 15 20 25 30
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

Scenario 1 Tight G3
Train Loss
Val Loss

0 10 20 30 40 50
Epoch

0.5

0.6

0.7

0.8

0.9

Lo
ss

Scenario 1 Tight G2
Train Loss
Val Loss

0 10 20 30 40 50 60
Epoch

0.4

0.5

0.6

0.7

Lo
ss

Scenario 1 +12.5%
Train Loss
Val Loss

0 10 20 30 40 50
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 1 +25%
Train Loss
Val Loss

0 5 10 15 20 25 30
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 1 +37.5%
Train Loss
Val Loss

0 5 10 15 20 25 30 35 40
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 2 C1_Tight_G3
Train Loss
Val Loss

0 10 20 30 40 50 60
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 2 C2_Tight_G2
Train Loss
Val Loss

0 10 20 30 40 50
Epoch

0.5

0.6

0.7

0.8

0.9

Lo
ss

Scenario 2 C3_12.5%
Train Loss
Val Loss

0 5 10 15 20 25 30 35
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

Scenario 2 C4_25%
Train Loss
Val Loss

0 5 10 15 20 25 30
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Lo
ss

Scenario 2 C5_37.5%
Train Loss
Val Loss

Figure A.3: Training (gold) and validation (orange) loss versus epoch for each
network configuration (Capacitated Scenarios 1–2).

72

A.5. TRAINING OF CLASSIFIERS FOR SMALL CAPACITATED EXPERIMENTS73

0 5 10 15 20 25 30 35
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 3 C1_Tight_G3
Train Loss
Val Loss

0 10 20 30 40 50
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 3 C2_Tight_G2
Train Loss
Val Loss

0 10 20 30 40 50 60 70
Epoch

0.5

0.6

0.7

0.8

0.9

Lo
ss

Scenario 3 C3_12.5%
Train Loss
Val Loss

0 5 10 15 20 25 30 35
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

Scenario 3 C4_25%
Train Loss
Val Loss

0 10 20 30 40 50 60 70
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Lo
ss

Scenario 3 C5_37.5%
Train Loss
Val Loss

0 5 10 15 20 25 30
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 4 C1_Tight_G3
Train Loss
Val Loss

0 20 40 60 80
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

Scenario 4 C2_Tight_G2
Train Loss
Val Loss

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Scenario 4 C3_12.5%
Train Loss
Val Loss

0 5 10 15 20 25 30 35
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

Scenario 4 C4_25%
Train Loss
Val Loss

0 5 10 15 20 25 30
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Lo
ss

Scenario 4 C5_37.5%
Train Loss
Val Loss

Figure A.4: Training (gold) and validation (orange) loss versus epoch for each
network configuration (Capacitated Scenarios 3–4).

Dynamic Production Policies for ASML’s General Supply Network

A.6 Training of Classifiers for Large 7-node Experiments

Capacity Best Val.L Cost Epochs Train
case at/ Epoch Imp. time(s)

Tight Cap 0.28/ 40 –0.09 56 885.7
Moderate Cap 0.31/ 40 –0.20 56 1067.0

Table A.5: Summary of Training for Large Capacitated Classifiers.

For the 7-node tightly capacitated system, the validation curve shows pronounced
oscillations, where after an initial sharp decline to around epoch 15, it rises again by 20%
to recover at epoch 40, while training loss decreases steadily. This “irregular” behavior,
together with a marginal improvement in cost around zero in later epochs, suggests that
the model has difficulty dealing with the tight capacities and learning better policies. The
moderate capacity network shows a better behavior, with a slightly slower initial drop in
validation loss, but ultimately reaching a comparable minimum of about 0.31 in epoch 40
with a small overfitting thereafter. Both cases seems to struggle reaching to a convergent
point.

Figure A.5: Training (gold) and validation (orange) loss versus epoch for Tight
(left) and Moderate (right) Capacitated 7-node system.

74

	Introduction
	Context
	Problem Description
	Research Design
	Overview of Research Methodology

	Literature Review
	Multi-Echelon Inventory Optimization and Challenges
	Primary Frameworks for Multi-Echelon Inventory Optimization
	Extensions and Alternatives to Base-Stock Policies
	Inventory Allocation in Divergent and General Supply Networks
	Capacitated Systems

	Deep Reinforcement Learning for Inventory Management
	Evolution of DRL Methods in Inventory Management
	Addressing Multi-Echelon Complexities

	Research Gap and Contribution

	Model Formulation
	Case Context
	MDP Components
	Sets and Parameters
	State Space
	Action Space
	Reward Function
	Transition Dynamics

	Policy Definition and Evaluation

	Heuristic for a General Multi-Echelon System
	Base-Stock Level Computation
	Decomposing a General System
	Low-Volume Demand Distributions
	Echelon Base-Stock Computation via Shang & Song (2003)
	From Echelon to Local Base-Stock
	Backorder Matching for Aggregation
	Final Echelon Base-Stock Levels

	Allocation Methods for Operating the General System
	Illustrative Example: Allocation in Divergent vs. General Networks
	Baseline Allocation Methods
	Water-Filling Allocation Strategies

	Capacity-Aware Base Stock Optimization

	Deep Reinforcement Learning Approach
	DRL Methodology: Deep Controlled Learning (DCL)
	Network Decomposition and Sequential Decision Process
	Augmented State Definition
	Sub-decision Dynamics
	Period-End Event Transition

	Neural Network Architecture
	Input Representation
	Output Construction
	Neural Network Training
	Feature Extraction

	Computational Experiments
	Heuristic Benchmarking Experiment
	DCL Tuning Experiments
	Feature Subset Selection
	Rollout Horizon Tuning
	Neural Network Architecture Search
	Number of Generations

	Comparative Evaluation Experiments (Heuristics vs DCL)
	Small Uncapacitated Cases under Lead-Time Stress Tests
	Small Capacitated Cases under Lead-Time Variantions
	The Large Seven-node Capacitated Network

	Conclusion, Discussion & Future Research
	
	Warm-Up Period Estimation Using Moving Averages
	Benchmarking 36 Heuristic Configurations on the 7-Node System
	5-node Uncapacitated Case Under Different Scenarios
	Training of Classifiers for Uncapacitated Experiments
	Training of Classifiers for Small Capacitated Experiments
	Training of Classifiers for Large 7-node Experiments

