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Abstract 

The present study investigated whether the sequential effects on posterior theta in the classical 

Eriksen task can be understood better from the Conflict Adaptation Theory (CA) or the 

BRAC (Binding and Retrieval in Action Control) framework. Specifically, the study tested 

hypotheses derived from each theory regarding reaction time (RT), accuracy, and EEG theta 

power across eight conditions that varied in compatibility (compatible/incompatible), 

response transition (repeat/alternate). Participants completed a flanker task while EEG data 

were recorded. Behavioral data revealed that full repetition trials (e.g., CCR) produced the 

fastest RTs and highest accuracy, consistent with BRAC and CA predictions. However, CA 

predictions were all correct, while BRAC predictions only partially correct. Some findings 

deviated from BRAC predictions suggesting that motor response repetition may dominate 

retrieval under conditions of prior conflict. Posterior theta activity was biggest for sequences 

following incompatible trials relative to compatible trials, while also affected by some of the 

feature binding effects. These results suggest that neither theory alone fully accounts for the 

observed behavioral and neural dynamics. A novel integrative mechanism was proposed, 

which posits that feature-based retrieval and adaptive control operate in parallel, with their 

relative influence modulated by prior conflict, feature overlap, and the dominance of motor 

vs. perceptual retrieval. This framework would help to explain cases where full repetition 

does not guarantee facilitation (IIR) and provide new explanations of sequential cognitive 

control. 
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Introduction 

 Cognitive control, which is the ability to regulate behavior, allows an individual to 

operate in an environment with competing or conflicting information. It enables making 

adjustments after errors, controlling motor responses and decision-making, and suppressing 

irrelevant stimuli. Given its role in goal-directed behavior, developing theories that explain or 

predict cognitive control mechanisms holds significant practical and theoretical importance.  

One of the ways to study cognitive control and selective attention is the classical 

Eriksen task. In this task, participants respond to the central target (letter or an arrow), which 

is flanked by distractors that are either response compatible or response incompatible with the 

target (Eriksen & Eriksen, 1974). Performance improves, as reaction times (RT) are faster and 

more accurate (PC) on compatible than on incompatible trials. This difference is known as the 

compatibility effect (Davelaar, 2013). Importantly, this effect on trial n is modulated 

following an incompatible trial n-1 compared to a compatible trial n-1, which is called the 

congruency sequence effect (CSE; Gratton et. al., 1992). In practical terms, after an 

incompatible trial, RTs on a subsequent incompatible trial tend to be faster with fewer errors 

(iI) relative to an incompatible trial after a compatible one (cI). Conversely, responding to n 

compatible trial can be slowed if the n-1 trial was incompatible (iC) relative to the compatible 

trial (cC). Therefore, the interference effect is lower after conflict. This pattern suggests 

dynamic adjustments of control, meaning an incompatibility on trial n–1 triggers additional 

top-down control or inhibition that carries over, improving performance on trial n. 

 

Conflict Adaptation Theory in CSE  

  

According to the conflict adaptation theory, the CSE is connected to cognitive control 

adjustments. Moreover, conflict monitoring models argue that the anterior cingulate cortex 

(ACC) detects response conflict on an incompatible trial, and this triggers enhanced control 

on the next trial (Botvinick et al., 2001). Increased control sets higher filters specifically for 

stimulus processing (distractors are filtered stronger). The detection of conflict serves as a 

signal to the system to tighten inhibition or attentional focus, which allows for less 

interference from flankers on the subsequent trial. This increased control leads to smaller 

costs of RT and PC after incompatible trials. In other words, when the conflict is detected at 

trial n-1, it triggers enhanced cognitive control on trial n (Botvinick et al., 1999; Botvinick et 

al., 2001; and Kerns et al., 2004). Thus, the CSE is conceptualized as a form of top-down 
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adaptive control, a phenomenon wherein the cognitive system adjusts after conflict to prevent 

future performance decrements. 

 

Negative Priming & Feature Repetition  

 

Nevertheless, it can be argued that the CSE might not reflect modulations in active 

control but rather be attributed to bottom-up mechanisms including feature repetition and 

priming between consecutive trials. Practically, a compatible trial preceded by an 

incompatible trial (I→C) should be faster than I→I, regardless of whether the response 

repeats, because of carry-over control and compatibility effect. However, if a target response 

or distractor elements are repeated on the trial n, participants might experience an increase in 

performance from priming, especially if there is response repetition. On the other hand, if a 

distractor on one trial becomes the target on the next, responses slow down, a phenomenon 

known as negative priming. This effect, first demonstrated by Tipper (1985), suggests that it 

happens due to inhibitory bias applied during the initial act of suppression.  

Studies have shown that CSE is reduced or absent when feature repetitions are 

controlled, arguing against the idea of conflict adaptation (Mayr et al., 2003; Nieuwenhuis et 

al., 2006). On the other hand, there are studies that confirmed the presence of CSE without 

feature repetition (Lee et al., 2025). These alternative perspectives have contributed to the 

development of a new theoretical framework that emphasizes episodic memory for event 

features as the underlying mechanism of sequential effects, in contrast to the classic conflict 

monitoring view.  

 

Binding and Retrieval in Action Control (BRAC) 

 

 The framework of Frings et. al (2020), binding and retrieval in action control (BRAC), 

synthesized together concepts of feature integration, negative priming, repetition priming, and 

related effects into one model. This model suggests that sequential effects might not stem 

from adaptive control, but from two of its main mechanisms, which are episodic feature 

binding and retrieval. In the feature binding process, features of the stimulus (S), response (R) 

and a subsequent effect (E) are integrated into an event-file. Examples of those features are 

the target stimulus, distractors, the executed motor response, the outcome of the response, etc. 

When one of these features is repeated, the corresponding event-file is retrieved, which 

explains such phenomena as negative priming, response repetition, etc. Therefore, any 
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repeated component (S, R, or E) from the previous trial (n-1) can cue the entire response for 

the current trial (n). Moreover, depending on the situation, such retrieval can facilitate 

performance (an S-R link can be reactivated during response repetition), or interfere with it 

(negative priming). Interference can happen because of partial repetition, where only some of 

the feature repeats and the retrieved features compete with the new feature, which creates 

confusion. This leads to slower RTs and PCs (Lee et al., 2025). On the other hand, facilitation 

happens in the scenario of full repetition of all the features. Furthermore, no repetition of 

features results in no detected features, thus no confusion. So, full repetition and complete 

alternation benefits performance relative to a partial repetition. 

It is important to note that because an event file survives for more than one trial, older 

files can still be cued, so the current response may be facilitated or disrupted by trial n-2. 

BRAC emphasizes that binding and retrieval are distinct mechanisms that can be influenced 

by both bottom-up stimulus factors and top-down context. Therefore, it does not deny that 

cognitive control can play a role, rather it emphasizes that much of the sequential variance 

may come from memory retrieval of prior episodes. 

  

Posterior Theta  

 

Neural oscillations in the theta band (∼4–8 Hz) have been implicated in cognitive 

control and attention. Midfrontal theta power (maximal at frontal midline electrodes) 

increases during conflict or error processing, reflecting ACC engagement in control (Cohen & 

Cavanagh, 2011; Cavanagh & Frank, 2014). Most conflict tasks (also studies such as the one 

mentioned before) highlight frontal dynamics while posterior theta oscillations remain 

relatively understudied in the context of chosen theories and sequential effects. However, 

emerging evidence highlights that posterior theta activity may play a significant role in 

attentional control. Recent work from Haciahmet et al. (2021) found that in a flanker task 

midfrontal theta power rose for response conflicts, whereas parietal theta power was greater 

on compatible trials. In the same way, Asanowicz et al. (2023) reported that target 

anticipation and selection evoked a fronto-posterior theta network. Spatial cues elicited 

midfrontal and ipsilateral posterior theta before target onset, and after target onset a strong 

posterior-theta burst (ipsilateral to the target) was observed, tightly coupled with midfrontal 

theta. The authors suggested that this fronto-posterior theta coupling underlies the suppression 

of irrelevant visual information. Therefore, posterior theta is considered as an inhibitory 

control over distracting information. 
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Under this view, conditions requiring stronger inhibition should show enhanced 

posterior theta. Conflict adaptation theory implies that following an incompatible trial the 

system maintains an increased inhibitory state. Thus, larger posterior theta on trial n whenever 

trial n–1 was incompatible. The BRAC framework, by contrast, would predict increased 

posterior theta whenever retrieval of a prior binding brings distractor features back (e.g. 

negative-priming conditions when a former distractor reappears) and other partial repetition 

conditions, requiring more suppression. Lower theta expected during full repetition trials and 

complete mismatch trials. In all cases, higher posterior theta power will be interpreted as 

evidence of greater visual inhibitory effort. 

 

Current Study  

 

 Each theoretical framework offers a distinct perspective on the mechanisms 

underlying sequential effects and may account for different aspects of the phenomenon. 

Despite extensive work on flanker sequential effects, there is a lack of research on how 

Conflict Adaptation theory and BRAC account for both behavior and posterior EEG 

dynamics. Studies of theta-band activity have predominantly focused on midfrontal sources, 

leaving a gap in how oscillatory dynamics in visual cortical regions can be understood within 

theoretical models of cognitive control. This thesis aims to fill that gap by comparing how 

well Conflict Adaptation theory and BRAC feature-binding model account for observed 

patterns of behavior and posterior theta oscillatory activity across flanker trial sequences. In 

doing so, this study raises a critical question: Which theoretical model, Conflict Adaptation or 

BRAC, best accounts for both the behavioral sequential effects and associated EEG (theta-

band) patterns in the Eriksen flanker task?  

 Specific behavioral and EEG predictions (see Table 1 and Figure 1) were derived from 

each theoretical framework to explore this question (Previous Compatibility [C/I] → Current 

Compatibility [C/I] × Response Transition [Repeat/Alt]). Conflict Adaptation theory proposes 

a smaller compatibility cost after incompatible trials. So, Hypothesis 1 (H1) is that RTs on an 

incompatible trial will be faster and accuracy higher if the previous trial was incompatible 

(I→I) compared to when the previous trial was compatible (C→I). In contrast, a compatible 

trial after an incompatible (I→C) will be slightly slower and less accurate than after a 

compatible (C→C). If the previous trial was compatible, no extra control is engaged. Putting 

it all together, C→C is going to be the fastest due to no conflict after compatible previous 

trial. Then I→C where prior trial induces more filtering and less conflict with the current 
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compatible trial. In this case the current compatible trial has suppressed typical flanker 

facilitation. I→I (CSE) is going next because of the previous trial upregulation and current 

incompatible trial. Current incompatible trial is intrinsically slower than current compatible 

trial and reduction of interference for n = I do not exceed loss on facilitation for n = C. The 

worst performance will be C→I as there is no prior conflict to engage control making the 

system unprepared for the interference.  

Table 1 

Behavioral and theta predictions 

Sequence type Conflict adaptation  

 

BRAC  

 

RT Theta RT Theta 

CCR (C→C, R) 1 4 1 8 

CCA (C→C, A) 1 4 3 6 

ICR (I→C, R) 2 2 5 4 

ICA (I→C, A) 2 2 6 3 

CIR (C→I, R) 4 3 7 2 

CIA (C→I, A) 4 3 8 1 

IIR (I→I, R) 3 1 2 7 

IIA (I→I, A) 3 1 4 5 

Note. Behaviorally: 1 = fastest RT, 8 = slowest RT. Theta: 1 = highest Theta, 8 = lowest. For 

the conflict adaptation theory RT (fastest to slowest) and Theta (highest to lowest) levels are 

ranked from 1-4, since it does not consider response priming.  

 

From the BRAC perspective (Frings et al. 2020; Lee et al. 2025) Hypothesis 2 (H2) 

predicts that trials that are full stimulus–response (S-R) repetitions from the n-1 trial will 

produce the fastest RTs. In other words, repeating all features of the prior event will facilitate 

performance via episodic retrieval of the just-executed response. Accuracy is also expected to 

be highest in full repetition conditions due to this retrieval. For example, CCR and IIR will 

have the fastest RTs and highest accuracy where CCR is faster than IIR due to compatible 

trials being intrinsically easier. Moreover, resolution of target-flanker competition may be 

attenuated but not fully abolished by response repetition. Hypothesis 3 (H3) predicts that 

complete alternation trials will produce slower RTs as it is a complete mismatch sequence, 

which does not produce interference or facilitation. So, the participant cannot leverage any 

memory from the last trial but also isn’t confused by any partial overlap. Therefore, CCA and 

IIA. Later is slower due to the compatibility of trials. Lastly, Hypothesis 4 (H4) predicts that 

trials with a partial repetition of features will produce the slowest RTs, and more errors 

compared to either full repetitions or complete alternations. Moreover, negative priming 
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conditions will result in reduced performance. So, ICR is placed next and followed by IIA. 

Study of Frings et al. (2007) argues that repeating a distractor (stimulus cue) helps only when 

the same motor code is required again. So, it can be argued that retrieved motor code 

determines whether retrieval helps. ICR possesses the same response as the old target and 

same flankers on the current trial, while ICA as it is a typical negative priming example. CIR 

is going to be next as the key repeats itself, but the new distractor causes confusion. CIA has 

the worst performance out of all the conditions as it cannot benefit from the same distraction 

due to the change in response and it is a negative priming example.  

Figure 1 

Behavioral and theta predictions 

 

Note. RT: 1 = fastest RT, 8 = slowest RT. Theta: 1 = highest Theta, 8 = lowest. For the 

conflict adaptation theory RT (fastest to slowest) and Theta (highest to lowest) levels are 

ranked from 1-4, since it does not consider response priming.  

 

In terms of theta, all models expected to predict greater posterior theta in conditions 

demanding more inhibition. For example, according to the conflict adaptation, Hypothesis 5 

(H5) predicts that posterior theta power will be greater following an incompatible trial than 

after a compatible trial. Sequences with prior conflict on trial n-1 will show elevated posterior 

theta (upregulated visual distractor inhibition) relative to sequences on trial n-1 with no prior 

conflict. This reflects the hypothesis that conflict triggers heightened attentional control. 
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Hypothesis 6 predicts that during partial repetitions posterior theta power will be higher on 

partial repetition trials than on full repetitions or total alternations (with alternations having 

higher theta than full repetitions). Thus, conditions with feature overlap/mismatch should 

elicit greater theta, whereas a full repetition or an entirely novel trial (no overlap) will require 

less theta power for conflict resolution. However, they may differ in exactly which sequences 

have maximum theta. The table and figure below outline these theory-specific predictions for 

RT, PC, and posterior theta in each of the eight conditions.  

 

Methods 

Participants 

 

A total of 14 adult participants aged 18-35 years old (mean age: 23.7, male: 6, female: 

8) were recruited, primarily students from the University of Twente. To be part of the 

experiment, they had to fit the inclusion criteria, which were being right-handed (assessed via 

the Annett Handedness Inventory), fluent in English (to understand task instructions), and 

having normal or corrected-to-normal vision (self-report). Exclusion criteria included self-

reported neurological or psychological conditions (ADHD, ADD, epilepsy, depression, or 

anxiety disorders), history of brain injury or concussion, dyslexia, use of medication that 

affects cognitive functioning, severe visual impairments that cannot be corrected. The 

activities during the experiment were communicated to all participants in advance, and an 

informed consent form was obtained in writing. Participants eligible for course credits were 

rewarded for their participation. The University of Twente’s Ethical Committee (Netherlands) 

approved the followed procedures (nr. 250455).  

 

Stimuli, apparatus, and procedure 

 

A central white fixation dot appeared on a black background for 1-2 seconds. 

Immediately after a five-letter array was shown for … ms. The target in the center, flanked on 

each side by three identical letters. Arrays were either compatible (SSSSSSSSS or 

HHHHHHHHH) or incompatible (SSSSHSSSS or HHHHSHHHH). Participants were 

instructed to respond by pressing the left Ctrl key for the target letter S and the right Ctrl key 

for H. The response window lasted for … ms. If an incorrect response was made or 

participant failed to respond, the word “ERROR” appeared on the screen. The experimental 
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session consisted of 4 blocks of 80 trials each. Within each block target letters and 

compatibility were randomized to ensure balanced trial sequences. 

The experiment was conducted in a controlled laboratory setting at the University of 

Twente. Stimuli were presented on a computer screen positioned at a viewing distance of 0.3-

0.6m. Responses were collected via a standard QWERTY keyboard. The laboratory was kept 

in a comfortable temperature and luminance. Stimulus presentation and response collection 

were managed using custom Presentation software. 

EEG data were recorded with an ActiCap 32-channel cap using the extended 10/20 

system (Appendix C). Electrode impedance was maintained below 10 kΩ. Vertical EOG was 

measured from electrodes above and below the left eye, and horizontal EOG from electrodes 

at the outer canthi of both eyes, near the temple. Grounds were placed in the middle of the 

forehead above the nasion, and at the placement point GND on the EEG cap, which was 

above the other ground. EEG and EOG signals were recorded using BrainVision Recorder 

software and later preprocessed BrainVision Analyzer software.  

After completing the informed consent forms, a demographic questionnaire, and the 

Annett Handedness Inventory (Appendix B), participants were fitted with the EEG cap. A 

brief calibration procedure was conducted before starting the trails. Following calibration, 

participants were presented with on-screen instructions and completed 20 practice trials. Once 

they confirmed understanding of the stimulus-response mapping, the first experimental block 

commenced. 

Participants were instructed to respond as quickly and accurately as possible while 

minimizing unnecessary movements. Throughout the session, the experimenter continuously 

monitored electrode impedance and signal quality in real time, conducting additional 

impedance checks between blocks if necessary. 

 After the experiment, participants were debriefed, and all data were anonymized and 

securely stored. The entire session lasted approximately 120 to 180 minutes. 

 

Data Analysis 

 

Behavioral Measures 

 

 Separate analyses were conducted for reaction times (RT) and proportion of correct 

responses (PC). All statistical procedures were carried out in R using the following packages: 

tidyverse, readxl, writexl, stringr, tibble, kableExtra, afex, effectsize, emmeans and dplyr. 
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Dependent variables were analyzed using repeated-measures within-subjects ANOVAs to 

examine main effects and interactions. Behavioral ANOVA analysis used 2 × 2 × 2 factorial 

structure: PrevComp (compatible vs incompatible), CurrComp (compatible vs incompatible) 

and RespTrans (repetition vs. alternation). 

 The same analyses on descriptive statistics were used for the theta activity. Dependent 

variables were analyzed using repeated-measures within-subjects ANOVA with the factors: 

PrevComp (compatible vs incompatible), CurrComp (compatible vs incompatible), RespTrans 

(repetition vs. alternation), Electrode (PO7 vs PO8). The 150 – 200 ms post-stimulus time 

window was used as it is the most sensitive to the theta power modulations.  

An alpha level of .05 was used for all statistical tests. Effect sizes (e.g., partial η²) was 

reported to facilitate interpretation the results. All statistical procedures followed APA 

guidelines for reporting results, ensuring that the analysis is transparent and replicable by 

other researchers. 

 

EEG preprocessing 

 

Continuous EEG data were preprocessed using BrainVision Analyzer 2. The raw 

signals were band-pass filtered between 0.1 and 30 Hz using a zero-phase filter. Additionally, 

a 50 Hz notch filter was applied to eliminate line noise. Ocular and other artefacts were 

removed using independent component analysis (ICA) with the Infomax algorithm. Following 

ICA correction, any residual artefacts were addressed by excluding individual epochs 

exhibiting excessive peak-to-peak amplitudes (e.g., exceeding ±100 µV). This preprocessing 

pipeline ensured the quality and reliability of the EEG signal for subsequent time–frequency 

analyses. Data was re-referenced to the average of 31 scalp channels. Additional artefact 

rejection was performed with stricter criteria, which is a maximal voltage step of 50 µV/ms, a 

maximal allowed difference of 200 µV in 200 ms intervals, and low activity detection as 

above. 

Because the study examined inter-trial CSE, the segmentation had to isolate only those 

epochs that belonged to pre-defined two-trial sequences. In other words, the trial had to 

contain the same stimulus code (S111 or S121) both five seconds earlier and at the current 

stimulus onset. For each satisfied rule, a 7-s epoch (−6000 ms → +1000 ms) was extracted. 

Overlapping was permitted so that every qualifying trial sequence was retained. Thirty-five 

such segments were obtained in the example shown above. 
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Time-frequency decomposition was performed using a Morlet complex wavelet 

transform (Morlet parameter = 5).  Frequencies from 4 Hz to 20 Hz were analysed in 7 

logarithmic steps, with a focus on theta band activity. Spectral power was normalized as 

percent change relative to a pre-stimulus baseline (-500 ms to -100 ms). 

EEG data were imported from four Excel files, each corresponding to a specific post-

stimulus time window (100–150 ms to 250–300 ms). Posterior electrodes, PO7 and PO8, were 

selected based on prior literature implicating these regions in theta activity associated with 

conflict processing.   

 

Results 

Behavioral measures  

 

Means (M) and standard deviations (SDs) of RT and PC across each condition are 

presented in Figure 2, 3 and Table 2. Participants responded fastest on CCR trials, M = 507.0 

± 74.4. In contrast, responses were slowest on the CIR trials, M = 585.2 ± 91.5. On average, 

current compatible trials showed faster RTs than for incompatible trials, M = 522 ms vs. M = 

567 ms, respectively. The 8 conditions, ranked from the slowest to fastest based on mean 

reaction times, are as follows: CIR→IIA→CIA→IIR→ICR→ICA→CCA→CCR. 

Accuracy was high across all conditions. Mean percent-correct ranged from about 

93% to 98%. The highest accuracy can be seen on the CCA trials, M = 98.5 ± 1.8, whereas 

lowest accuracy on the IIA and CIR trials, M = 93.2 ± 6.1 and M = 93.1 ± 5.1, respectively. 

On average, current compatible trials showed higher PCs than for incompatible trials, M = 

97.6 vs. M = 94.5, respectively. However, response alternate trials showed slightly higher 

accuracy, M = 96.2, compared to the response repeat trials, M = 95.9. The 8 conditions, 

ranked from the least to most accurate based on mean accuracy, are as follows: 

CIR→IIA→CIA→ICR→IIR→CCR→ICA→CCA. The comparison of the observed RT 

pattern vs. CA and BRAC predictions is in Figure 4. 
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Figure 4 

Observed vs CA and BRAC 

 

 

Figure 2 

Reaction Time by Condition 
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Figure 3 

Percent Correct by Condition 

  

A repeated measures ANOVA on RT showed main effect of CurrComp F (1,13) 

=29.77, p<0.0002, ηp
2 =0.7. Also, it revealed significant interaction between PrevCong X 

CurrCong, F (1,13) =16.69, p<0.002, ηp
2 =0.56, and PrevComp X CurrComp X RespTrans, F 

(1,13) =18.64, p<0.001, ηp
2 =0.59. Furthermore, an interaction between PrevComp X 

RespTrans revealed almost significant results, F (1,13) =4.57, p = 0.0519, ηp
2 =0.26. Even 

though response repeat trials produced slightly faster RTs, M = 543 ms, compared to the 

response alternate trials with M = 546 ms, the main effect of RespTrans was insignificant.   

The same analysis on PC revealed significant main effect of CurrComp, F (1,13) 

=8.95, p<0.02, ηp
2 =0.41, and an interaction between PrevComp X RespTrans, F (1,13) =5.04, 

p<0.05, ηp
2 =0.28. Also, a significant three-way interaction with response transition was 

detected (PrevComp X CurrComp X RespTrans), F(1,13) =8.2, p<0.02, ηp
2 =0.39. There were 

no other significant or close to significant main effects or interactions, both in response time 

and accuracy data. 
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Theta measures 

  

Table 1 displays the mean theta power for each trial condition. Topographic maps of 

the theta activity are provided in the Appendix (Appendix 1) to illustrate the scalp distribution 

of effects. Means (M) and standard deviations (SDs) theta power across each condition are 

presented in Figure 5, and Table 3. Generally, participants had highest theta on the IIR trials, 

M = 695.2 ± 362.73, and lowest on CCR trials with M = 444 ± 281.51. Current compatible 

trials had lower theta than incompatible trials, M = 535.63 ± 375.92 and M = 598.17 ± 

364.61, respectively. Moreover, response alternate trials had M = 577.73 ± 369.37, which is 

higher than response repeat trials M = 556.07 ± 373.57. The 8 conditions, ranked from the 

lowest to the highest, are as follows: CCR→CIR→CCA→CIA→ICR→ICA→IIA→IIR. The 

comparison of the observed Theta pattern vs. CA and BRAC predictions is in Figure 6. 

A five-factor repeated-measures ANOVA on the theta power showed significant main 

effects of PrevCong, F (1,13) =8.58, p < 0.02, ηp
2 =0.4, and CurrCong, F (1,13) =9.42, p < 

0.009, ηp
2 =0.42. Only interaction between PrevComp X RespTrans was significant, F (1,13) 

=4.98, p < 0.05, ηp
2 =0.28. It is important to note that, although theta power at PO8 (M = 613) 

was higher than at PO7 (M = 521) in the 150–200 ms time window, this difference was not 

statistically significant (paired t(13) = –1.35, p = .202).  

 

Table 3 

Theta Means 

Sequence type Theta power 

mean sd 

CCR (C→C, R) 443.99 281.51 

CCA (C→C, A) 529.46 370.31 

ICR (I→C, R) 584.20 470.03 

ICA (I→C, A) 584.87 360.47 

CIR (C→I, R) 500.9 323.87 

CIA (C→I, A) 583.23 370.43 

IIR (I→I, R) 695.19 362.73 

IIA (I→I, A) 613.35 390.9 
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 Figure 5 

Theta Power 

  

Figure 6 

Theta Observed vs CA and BRAC Predictions 
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Discussion 

 

 

This study investigated whether sequential effects on behavioral measures and 

posterior theta in the Eriksen flanker task can be best understood by Conflict Adaptation 

theory or by BRAC theory. Theoretical predictions were tested using both behavioral and 

neural measures.  

Behaviorally, a classic CSE was observed with the significant interaction between 

previous and current compatibility trials, which is consistent with the conflict adaptation 

theory. Furthermore, strong interaction on the previous and current compatibility trials with 

added response transition suggest that episodic binding also played a role. The EEG data 

showed after incompatible indicating sustained visual inhibition after conflict trial.  

Conflict adaptation effects and CSE were observed in the data, as predicted by H1 (see 

Table 2), which states that RTs on an incompatible trial will be faster and accuracy higher if 

the previous trial was incompatible (I→I) compared to when the previous trial was 

compatible (C→I). In contrast, a compatible trial after an incompatible (I→C) confirmed to 

be slightly slower and less accurate than after a compatible (C→C). Accuracy showed the 

same trend. These results suggest that cognitive systems use more control to resolve the 

following conflict. These results are consistent with the research of Gratton et al. (1992). 

However, there are some results that cannot be explained by Conflict Adaptation. The 

evidence is in the comparison of full and partial repetition conditions, and complete mismatch 

conditions. According to the hypotheses 2-4 (Lee et al., 2025), BRAC predicts that full S-R 

repetitions (CCR, IIR) will show the fastest RTs (H2), complete alternations (CCA, IIA) will 

show slower RTs (H3), and partial feature overlaps (ICR, ICA, CIR, CIA) will be the slowest 

(H4). The data showed only partial support for these predictions. During full repetition 

performance improved only in CCR, which likely indicates retrieval mechanism of BRAC. 

However, IIR was mid-range in the RT ranking. Complete alternations were predicted to be 

after full repetitions, however only CCA was among the fastest conditions (2nd fastest), while 

IIA was second slowest. Therefore, hypothesis 3 cannot be fully supported. Partial repetitions 

CIR and CIA were among the slowest, whereas ICR and ICA followed immediately after the 

fastest conditions (3rd and 4th rankings). Despite significant effect of previous compatibility 

and response repetition, accuracy revealed mixed results, which hints at repetition benefit. 

However, most of the times repetition trials showed lower accuracy and ranking results were 

not fully consistent with RTs. Therefore, BRAC cannot fully explain the pattern of conditions. 
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Posterior Theta and Inhibitory Control 

 

 Conflict Adaptation theory in hypothesis 5 predicted that posterior-parietal theta 

activity would index the engagement of visual selective attention and that this would increase 

after an incompatible trial, when control is engaged. In other words, how strongly the brain is 

filtering out flankers. The overall pattern of theta power strongly supported the conflict 

adaptation interpretation. Sequences where the previous trial was incompatible exhibited 

higher posterior theta than those where the previous trial was compatible. All four “I→” 

sequences showed greater theta power than any of the “C→” sequences. This suggests that 

the mere experience of conflict triggered a sustained enhancement of visual-processing 

control, carried into the next trial. Moreover, the highest theta was observed for sequences 

with two consecutive incompatible trials, which aligns with the idea that when conflict is 

encountered, the system is using maximal distractor suppression. So, the first incompatible 

trial activates control, and if the second trial is also incompatible, that control is fully used 

(and possibly further strengthened), resulting in strong theta-band activity to help filter out the 

conflicting flankers. In contrast, after a compatible trial the system’s alert for conflict is 

lower, so when an incompatible trial appears it is unexpected and there is initially less 

inhibition. Results are also consistent with the research of Asanowicz et al. (2023) where 

subsequent targets evoke ipsilateral posterior theta bursts to suppress irrelevant stimuli. 

 BRAC might propose that theta reflects retrieval-induced conflict (i.e. the need to 

resolve interference from a partially mismatched memory of the previous trial). Theta 

findings only partly support this view. So, the prediction of hypothesis 6 was that partial-

repetition trials should elicit higher posterior theta than full repeats or full alternations, 

reflecting the conflict between a retrieved episode and current stimuli. The data do not clealry 

support this view. Some conditions with partial overlaps showed elevated theta consistent 

with needing more inhibition. For example, ICR and ICA elicited high theta power, which 

could be seen as the brain handling a conflict between the retrieved prior response and the 

new response requirement. However, the overall ranking did not follow H6. Moreover, the 

peak theta was on IIR (full repetition) followed by IIA (complete mismatch, which is opposite 

to H6’s predictions. A closer look shows that theta was more strongly driven by the presence 

of conflict and its anticipation (previous trial type) than by overlap. Importantly, the condition 

with the worst behavioral interference (CIR) did not show the highest theta. Its low theta, 

paired with poor performance, leans more towards the conflict adaptation theory. From the 

BRAC perspective, one might have expected high theta due to the retrieval mismatch, but the 
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results suggest that without a trigger for control (like a previous conflict), the system did not 

produce a large theta, and the outcome was an uninhibited, slow response. These findings 

suggest that the posterior theta reflects active control implementation rather than the passive 

presence of mismatch.  

 

Theoretical Implications and Integrations 

  

Egner (2007) argued that CSE is best understood as a combination of top-down and 

bottom-up influences. The results suggest that conflict adaptation theory accounts for the 

main sequential effects, especially in EEG. The presence of a significant CSE interaction in 

RT supports the idea of dynamic adjustments. Moreover, the results were similar with the 

classis conflict adaptation model of Botvinick et al. studies, which indicates that after an 

incompatible trial participants showed enhanced focus on task-relevant information and 

reduced distractor interference. This led to faster RTs and fewer errors on the following trial. 

Posterior theta power was higher after incompatible trials relative to compatible trials 

mirroring earlier findings that conflict produces increased theta-band activity related to 

attentional control. Overall pattern, both behavioral and neural, is best explained by the top-

down control mechanism. So, conflict on trial n-1 serves as a signal for more control on trial 

n.  

In contrast, the pure feature-binding account (BRAC) only partially explained the data 

with the strong benefit of full repetition (CCR) and the overall mixed response-repeat trend 

that would fit BRAC. Despite significant ANOVA results on response effect, many predicted 

effects of BRAC were not observed. So, the data does not fully support the claim that full 

event-file repetition leads to facilitation, suggesting that intrinsic difficulty of incompatible 

trials, as emphasized by the Conflict Adaptation theory, continues to play a significant role. 

On the other hand, some of the results showed the facilitation during the repetition trials. 

Therefore, a hybrid explanation, where feature integration mechanisms (BRAC) interact with 

reactive control adjustments (Conflict Adaptation), may better explain the full pattern of 

results. From the theta perspective, conflict adaptation interpretation was favored over BRAC, 

suggesting that new explanation or mechanism is needed to understand the pattern from 

BRAC perspective.  

 

Limitations, Future Suggestions & Conclusion 
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 Several limitations were found in this study. Analysis was centered on a relatively 

early post-stimulus interval, even within this window multiple processes could overlap. For 

example, initial sensory encoding of the new stimulus (~100–150 ms) transitions into 

attentional processing (~150–200 ms), and theta-band measure could reflect a mixture of 

both. Secondly, the study had a small sample which limits the generalizability of the results. 

Then only 2 electrodes (PO7 & PO8) were used which restricts identification of the precise 

neural sources of the theta effects. Also, assessment on fronto-medial signals is lacking.  

Moreover, an ideal study design would manipulate target repetition and response repetition 

(for instance, using multiple stimuli mapping to the same response). 

 Future work should include larger and more diverse samples to ensure that observed 

effects are robust. More electrodes to map theta generators and better distinguish inhibition 

dynamics. It is also important to know which elements drive BRAC effects more strongly. Is 

repeating the flankers alone sufficient, or must the target or even the task context repeat? So 

holding two features constant while varying the third would help. Future works can also 

expand this type of research on other conflict tasks such as Stroop, Simon, etc. Moreover, 

these studies would benefit from new theoretical explanations on sequential effects and 

conflict tasks such as combining the multiple levels of feature integration (including 

identification on which feature is more dominant) and adaptive control, which would interact 

between each other.  

In conclusion, this study aimed to evaluate whether sequential Effects on posterior 

theta in the classical Eriksen task are better understood by Conflict Adaptation Theory or the 

BRAC framework. Results showed that conflict adaptation mechanisms played a dominant 

role in both behavioral outcomes and posterior theta activity. This supports the idea that top-

down control is used to manage conflict and optimize performance. However, feature binding 

effects predicted by BRAC were also observed, particularly in conditions involving full 

feature repetitions, where performance was facilitated. It is important to note that BRAC-

related effects were only partially explained, suggesting that feature retrieval is more selective 

and less generalized than conflict-driven control. Overall, the data suggests an integrative 

model in which both conflict adaptation and feature binding contribute to adaptive control, 

with conflict adaptation as the primary driver and BRAC mechanisms as selective (secondary) 

modulatory effects when feature overlap allows. 

  

 

  



21 

 

 

References 

 

Asanowicz, D., Panek, B., Kotlewska, I., & Van Der Lubbe, R. (2023). On the Relevance of 

Posterior and Midfrontal Theta Activity for Visuospatial Attention. Journal of 

Cognitive Neuroscience, 35(12), 1972–2001. https://doi.org/10.1162/jocn_a_02060  

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict 

monitoring and cognitive control. Psychological Review, 108(3), 624–652. 

https://doi.org/10.1037/0033-295x.108.3.624  

Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict 

monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 

179–181. https://doi.org/10.1038/46035  

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. 

Trends in Cognitive Sciences, 18(8), 414–421. 

https://doi.org/10.1016/j.tics.2014.04.012  

Cohen, M. X., & Cavanagh, J. F. (2011). Single-Trial regression elucidates the role of 

prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2. 

https://doi.org/10.3389/fpsyg.2011.00030  

Davelaar, E. J. (2013). When the Ignored Gets Bound: Sequential Effects in the Flanker Task. 

Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00552  

Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive Affective & 

Behavioral Neuroscience, 7(4), 380–390. https://doi.org/10.3758/cabn.7.4.380  

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a 

target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. 

https://doi.org/10.3758/bf03203267  

https://doi.org/10.1162/jocn_a_02060
https://doi.org/10.1037/0033-295x.108.3.624
https://www.nature.com/articles/46035
https://doi.org/10.1016/j.tics.2014.04.012
https://doi.org/10.3389/fpsyg.2011.00030
https://doi.org/10.3389/fpsyg.2012.00552
https://doi.org/10.3758/cabn.7.4.380
https://doi.org/10.3758/bf03203267


22 

 

Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., 

Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., & Philipp, A. (2020). 

Binding and Retrieval in action Control (BRAC). Trends in Cognitive Sciences, 24(5), 

375–387. https://doi.org/10.1016/j.tics.2020.02.004  

Frings, C., Rothermund, K., & Wentura, D. (2006). Distractor repetitions retrieve previous 

responses to targets. Quarterly Journal of Experimental Psychology, 60(10), 1367–

1377. https://doi.org/10.1080/17470210600955645  

Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic 

control of activation of responses. Journal of Experimental Psychology General, 

121(4), 480–506. https://doi.org/10.1037/0096-3445.121.4.480  

Haciahmet, C. C., Frings, C., & Pastötter, B. (2021). Target amplification and distractor 

inhibition: theta oscillatory dynamics of selective attention in a flanker task. Cognitive 

Affective & Behavioral Neuroscience, 21(2), 355–371. 

https://doi.org/10.3758/s13415-021-00876-y  

Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. 

(2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 

303(5660), 1023–1026. https://doi.org/10.1126/science.1089910  

Lee, Y., Verhaeghen, P., Hazeltine, E., & Schumacher, E. H. (2025). Meta-analytic evidence 

for the complex mechanisms underlying congruency sequence effect. Psychological 

Research, 89(2). https://doi.org/10.1007/s00426-025-02093-5  

Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of 

executive control. Nature Neuroscience, 6(5), 450–452. 

https://doi.org/10.1038/nn1051  

Nieuwenhuis, S., Stins, J. F., Posthuma, D., Polderman, T. J. C., Boomsma, D. I., & De Geus, 

E. J. (2006). Accounting for sequential trial effects in the flanker task: Conflict 

https://doi.org/10.1016/j.tics.2020.02.004
https://doi.org/10.1080/17470210600955645
https://doi.org/10.1037/0096-3445.121.4.480
https://doi.org/10.3758/s13415-021-00876-y
https://doi.org/10.1126/science.1089910
https://doi.org/10.1007/s00426-025-02093-5
https://doi.org/10.1038/nn1051


23 

 

adaptation or associative priming? Memory & Cognition, 34(6), 1260–1272. 

https://doi.org/10.3758/bf03193270  

Tipper, S. P. (1985). The negative priming effect: inhibitory priming by ignored objects. The 

Quarterly Journal of Experimental Psychology Section A, 37(4), 571–590. 

https://doi.org/10.1080/14640748508400920 

  

https://doi.org/10.3758/bf03193270
https://doi.org/10.1080/14640748508400920


24 

 

Appendix A 

Table 1 

Behavioral and theta predictions 

Sequence type Conflict adaptation  

 

BRAC  

 

RT Theta RT Theta 

CCR (C→C, R) 1 4 1 8 

CCA (C→C, A) 1 4 3 6 

ICR (I→C, R) 2 2 5 4 

ICA (I→C, A) 2 2 6 3 

CIR (C→I, R) 4 3 7 2 

CIA (C→I, A) 4 3 8 1 

IIR (I→I, R) 3 1 2 7 

IIA (I→I, A) 3 1 4 5 

Note. Behaviorally: 1 = fastest RT, 8 = slowest RT. Theta: 1 = highest Theta, 8 = lowest. For 

the conflict adaptation theory RT (fastest to slowest) and Theta (highest to lowest) levels are 

ranked from 1-4, since it does not consider response priming.  

 

Table 2 

RTs and PCs 

Sequence type RT PC 

mean sd mean sd 

CCR (C→C, R) 507.0186 74.36528 97.54136 5.605188 

CCA (C→C, A) 517.1007 77.12124 98.48371 1.798981 

ICR (I→C, R) 533.6543 79.21286 96.38779 5.252422 

ICA (I→C, A) 529.6564 70.71920 97.86593 4.184226 

CIR (C→I, R) 585.2236 91.54154 93.14457 5.115500 

CIA (C→I, A) 563.3021 75.78799 95.05293 6.344378 

IIR (I→I, R) 545.8550 76.89930 96.57893 4.240638 

IIA (I→I, A) 572.4921 74.49746 93.24964 6.069709 

 

Table 3 

Theta Means 

Sequence type Theta power 

mean sd 

CCR (C→C, R) 443.99 281.51 

CCA (C→C, A) 529.46 370.31 

ICR (I→C, R) 584.20 470.03 

ICA (I→C, A) 584.87 360.47 

CIR (C→I, R) 500.9 323.87 

CIA (C→I, A) 583.23 370.43 

IIR (I→I, R) 695.19 362.73 

IIA (I→I, A) 613.35 390.9 
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Figure 1 

Behavioral and theta predictions 

 

Note. RT: 1 = fastest RT, 8 = slowest RT. Theta: 1 = highest Theta, 8 = lowest. For the 

conflict adaptation theory RT (fastest to slowest) and Theta (highest to lowest) levels are 

ranked from 1-4, since it does not consider response priming. Figure 2 

Reaction Time by Condition 
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Figure 3 

Percent Correct by Condition 

  

 

Figure 4 

Observed vs CA and BRAC 
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Figure 5 

Theta Power 

  

Figure 6 

Theta Observed vs CA and BRAC Predictions 
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Appendix B 

Annett Handedness Inventory 
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Appendix C 

10/20 system 

 

 

 

 

Appendix D 

R Code for statistical analysis 

 

library(tidyverse) 

library(readxl) 

library(writexl) 

library(stringr) 

library(tibble) 

library(afex) 

library(emmeans) 

library(kableExtra) 

library(effectsize) 

library(scales) 
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#----------------------------- 

# LOADIING LIBRARIES AND FILES 

#----------------------------- 

 

file_list <- list( 

  "L1_100-150ms_THeta_THesis.txt" = "100-150", 

  "L1_150-200ms_THeta_THesis.txt" = "150-200", 

  "L1_200-250ms_THeta_THesis.txt" = "200-250", 

  "L1_250-300ms_THeta_THesis.txt" = "250-300" 

) 

 

# DATASET WITH ALL THETA 

all_theta_data <- list() 

 

# LOOPING THROUGH EACH FILE 

for (file_name in names(file_list)) { 

  time_label <- file_list[[file_name]] 

   

  theta_data <- read.delim(file_name, sep = "\t", header = TRUE) %>% 

    filter(if_any(everything(), ~ !is.na(.) & . != "")) 

   

  po7_cols <- grep("^PO7", colnames(theta_data), value = TRUE) 

  po8_cols <- grep("^PO8", colnames(theta_data), value = TRUE) 

   

  theta_po7 <- theta_data[, po7_cols] 

  theta_po8 <- theta_data[, po8_cols] 

  subjects <- paste0("PP", sprintf("%02d", 3:16)) 

   

  long_po7 <- theta_po7 %>% 

    mutate(Subject = subjects) %>% 

    pivot_longer(-Subject, names_to = "CondLabel", values_to = "Theta") %>% 

    mutate(Electrode = "PO7") 
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  long_po8 <- theta_po8 %>% 

    mutate(Subject = subjects) %>% 

    pivot_longer(-Subject, names_to = "CondLabel", values_to = "Theta") %>% 

    mutate(Electrode = "PO8") 

   

  combined <- bind_rows(long_po7, long_po8) %>% 

    mutate( 

      Subject = toupper(trimws(Subject)), 

      Condition = str_extract(CondLabel, "[A-Z]{3}(?=_)"), 

      Condition = toupper(trimws(Condition)), 

      PrevCong = substr(Condition, 1, 1), 

      CurrCong = substr(Condition, 2, 2), 

      RespTrans = substr(Condition, 3, 3), 

      PrevCong = factor(PrevCong, levels = c("C", "I")), 

      CurrCong = factor(CurrCong, levels = c("C", "I")), 

      RespTrans = factor(RespTrans, levels = c("R", "A")), 

      TimeWindow = time_label 

    ) 

   

  all_theta_data[[time_label]] <- combined 

} 

 

# COMBINE ALL INTO DATA FRAME 

 

theta_all_windows <- bind_rows(all_theta_data) 

 

# LOADING RTs and PCs 

 

rt_data <- read.delim("RT_Thesis.txt", header = FALSE, sep = "\t") 

pc_data <- read.delim("PC_Theses.txt", header = FALSE, sep = "\t") 

conditions <- c("CCR", "CCA", "ICR", "ICA", "IIR", "IIA", "CIR", "CIA") 

subjects <- paste0("PP", sprintf("%02d", 3:16)) 

 

#ADD COLUMN NAMES 
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colnames(rt_data) <- conditions 

colnames(pc_data) <- conditions 

rt_data$Subject <- subjects 

pc_data$Subject <- subjects 

 

rt_long <- rt_data %>% 

  pivot_longer(-Subject, names_to = "Condition", values_to = "RT") %>% 

  mutate(Subject = toupper(trimws(Subject)), Condition = 

toupper(trimws(Condition))) 

 

pc_long <- pc_data %>% 

  pivot_longer(-Subject, names_to = "Condition", values_to = "PC") %>% 

  mutate(Subject = toupper(trimws(Subject)), Condition = 

toupper(trimws(Condition))) 

 

# MERGE EVEYTHING 

 

theta_all <- theta_all_windows %>% 

  left_join(rt_long, by = c("Subject", "Condition")) %>% 

  left_join(pc_long, by = c("Subject", "Condition")) 

 

str(theta_all$Theta) 

 

# HOW MANY NAs 

 

sum(is.na(as.numeric(theta_all$Theta))) 

 

# PROBLEMATIC ROWS 

 

theta_all %>% 

  filter(is.na(as.numeric(Theta))) %>% 

  select(Subject, Electrode, CondLabel, Theta) %>% 

  distinct() 
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theta_all <- theta_all %>% 

  mutate( 

    Theta = gsub(",", ".", Theta),      # convert comma decimal to dot 

    Theta = trimws(Theta),              # remove whitespace 

    Theta = na_if(Theta, ""),           # convert empty strings to NA 

    Theta = as.numeric(Theta)           # final conversion 

  ) 

 

# NOW NUMERIC 

 

str(theta_all$Theta)    

 

# CHECK NAs 

 

sum(is.na(theta_all$Theta))   

 

#MAKE AN EXCEL FILE 

 

#write_xlsx(theta_all, "theta_all_export.xlsx") 

 

#LAST CHECK 

 

str(theta_all)       

head(theta_all) 

 

#------------------------ 

#SUMMARY OF MEANS AND IDs 

#------------------------ 

 

summary_stats <- theta_all %>% 

  group_by(Electrode, Condition, TimeWindow) %>% 

  summarise( 

    mean_RT = mean(RT, na.rm = TRUE), 

    sd_RT = sd(RT, na.rm = TRUE), 
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    mean_PC = mean(PC, na.rm = TRUE), 

    sd_PC = sd(PC, na.rm = TRUE), 

    mean_Theta = mean(Theta, na.rm = TRUE), 

    sd_Theta = sd(Theta, na.rm = TRUE), 

    n = n() 

  ) %>% 

  ungroup() 

 

print(summary_stats) 

 

#THETA 150-200 

 

summary_stats_150_200 <- theta_all %>% 

  filter(TimeWindow == "150-200") %>% 

  group_by(Electrode, Condition, TimeWindow) %>% 

  summarise( 

    mean_RT = mean(RT, na.rm = TRUE), 

    sd_RT   = sd(RT, na.rm = TRUE), 

    mean_PC = mean(PC, na.rm = TRUE), 

    sd_PC   = sd(PC, na.rm = TRUE), 

    mean_Theta = mean(Theta, na.rm = TRUE), 

    sd_Theta   = sd(Theta, na.rm = TRUE), 

    n = n(), 

    .groups = "drop" 

  ) 

 

print(summary_stats_150_200) 

 

#MAKE AN EXCEL FILE 

 

#write_xlsx(summary_stats_150_200, "summary_stats_150_200.xlsx") 

 

#write_xlsx(summary_stats, "summary_stats_export.xlsx") 
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#----------------- 

#ANOVA PREPARATION + DESCRIPTIVE STATISTICS 

#----------------- 

 

df <- read_excel("theta_all_export.xlsx") 

 

 

df <- df %>% 

  mutate( 

    Condition = factor(Condition, 

levels=c("CCR","CCA","ICR","ICA","IIR","IIA","CIR","CIA")), 

    PrevCong  = factor(substr(Condition,1,1), levels=c("C","I"), 

labels=c("Prev_C","Prev_I")), 

    CurrCong  = factor(substr(Condition,2,2), levels=c("C","I"), 

labels=c("Curr_C","Curr_I")), 

    RespTrans = factor(substr(Condition,3,3), levels=c("R","A"), 

labels=c("Resp_Repeat","Resp_Alt")), 

    TimeWindow = factor(TimeWindow, levels=c("100-150","150-200","200-

250","250-300")), 

    Electrode  = factor(Electrode, levels=c("PO7","PO8")) 

  ) 

 

#CHECK THE DATA 

 

str(df) 

 

#Filter for 150-200 timewindow 

 

df_150_200 <- df %>% filter(TimeWindow == "150-200") 

 

 

#----------- 

#ANOVA START 

#----------- 
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#---- 

#RT 

#---- 

 

rt_df <- df_150_200 %>% 

  select(Subject, Condition, PrevCong, CurrCong, RespTrans, RT) %>% 

  distinct() 

 

#aov_rt <- aov( 

 # RT ~ PrevCong * CurrCong * RespTrans + 

 #   Error(Subject / (PrevCong * CurrCong * RespTrans)), 

 # data = rt_df 

#) 

 

aov_rt <- aov_ez( 

  id = "Subject", 

  dv = "RT", 

  within = c("PrevCong", "CurrCong", "RespTrans"), 

  data = rt_df 

) 

 

eta_squared(aov_rt, partial = TRUE) 

 

summary(aov_rt) 

 

#RT means 

 

rt_desc <- rt_df %>% 

  group_by(Condition) %>% 

  summarise( 

    mean_RT = mean(RT, na.rm = TRUE), 

    sd_RT   = sd(RT,   na.rm = TRUE), 

    n       = n(), 
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    .groups = "drop" 

  ) %>% 

  mutate( 

    RT_desc = sprintf("%.1f ± %.1f (n=%d)", mean_RT, sd_RT, n) 

  ) 

 

rt_df %>% 

  group_by(CurrCong) %>% 

  summarise(Mean_RT = mean(RT)) 

 

rt_df %>% 

  group_by(RespTrans) %>% 

  summarise(Mean_RT = mean(RT)) 

 

# RT plot 

 

ggplot(rt_desc, aes(x = reorder(Condition, mean_RT), y = mean_RT)) + 

  geom_col(fill = "steelblue", width = 0.7) + 

  geom_errorbar(aes(ymin = mean_RT - sd_RT, ymax = mean_RT + sd_RT), 

                width = 0.2, color = "black") + 

  labs( 

    title = "Reaction Time by Condition", 

    x = "Condition", 

    y = "Mean RT (ms)" 

  ) + 

  coord_cartesian(ylim = c(min(rt_desc$mean_RT) - 100, max(rt_desc$mean_RT) + 

100)) + 

  theme_minimal(base_size = 14) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

#---- 

#PC 

#---- 
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pc_df <- df_150_200 %>% 

  select(Subject, Condition, PrevCong, CurrCong, RespTrans, PC) %>% 

  distinct() 

 

#aov_pc <- aov( 

#  PC ~ PrevCong * CurrCong * RespTrans + 

 #   Error(Subject / (PrevCong * CurrCong * RespTrans)), 

 # data = pc_df 

#) 

 

aov_pc <- aov_ez( 

  id = "Subject", 

  dv = "PC", 

  within = c("PrevCong", "CurrCong", "RespTrans"), 

  data = pc_df 

) 

 

summary(aov_pc) 

 

eta_squared(aov_pc, partial = TRUE) 

 

#PC Means 

pc_desc <- pc_df %>% 

  group_by(Condition) %>% 

  summarise( 

    mean_PC = mean(PC, na.rm = TRUE), 

    sd_PC   = sd(PC,   na.rm = TRUE), 

    n       = n(), 

    .groups = "drop" 

  ) %>% 

  mutate( 

    PC_desc = sprintf("%.1f ± %.1f (n=%d)", mean_PC, sd_PC, n) 

  ) 
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pc_df %>% 

  group_by(CurrCong) %>% 

  summarise(Mean_PC = mean(PC)) 

 

pc_df %>% 

  group_by(RespTrans) %>% 

  summarise(Mean_PC = mean(PC)) 

 

#PC plot 

ggplot(pc_df, aes(x = Condition, y = PC)) + 

  geom_boxplot(fill = "palegreen3", color = "black", width = 0.6) + 

  stat_summary(fun = mean, geom = "point", shape = 20, size = 3, color = "red") + 

  labs( 

    title = "Percent Correct by Condition", 

    x = "Condition", 

    y = "Accuracy (%)" 

  ) + 

  ylim(75, 100) + 

  theme_minimal(base_size = 14) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

#----- 

#Theta 

#----- 

 

theta_summary <- df_150_200 %>% 

  group_by(Subject, PrevCong, CurrCong, RespTrans, Electrode) %>% 

  summarize(Theta = mean(Theta, na.rm = TRUE), .groups = "drop") 

 

#aov_150_200 <- aov( 

  #Theta ~ PrevCong * CurrCong * RespTrans * Electrode + 

   # Error(Subject / (PrevCong * CurrCong * RespTrans * Electrode)), 

  #data = theta_summary 

#) 



40 

 

 

aov_theta <- aov_ez( 

  id = "Subject", 

  dv = "Theta", 

  within = c("PrevCong", "CurrCong", "RespTrans", "Electrode"), 

  data = theta_summary 

) 

 

summary(aov_theta) 

 

eta_squared(aov_theta, partial = TRUE) 

 

 

#Means Theta 

 

desc_stats_by_condition <- df_150_200 %>% 

  group_by(Condition) %>% 

  summarise( 

    Mean_Theta = mean(Theta, na.rm = TRUE), 

    SD_Theta   = sd(Theta, na.rm = TRUE), 

    N          = n(), 

    .groups    = "drop" 

  ) 

 

print(desc_stats_by_condition) 

 

 

#Plots 

 

 

ggplot(df_150_200, aes(x = Condition, y = Theta)) + 

  geom_boxplot(fill = "skyblue", color = "black") + 

  stat_summary(fun = mean, geom = "point", shape = 20, size = 3, color = "red") + 
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  labs(title = "Theta Power by Condition (150-200 ms)", y = "Theta Power", x = 

"Condition") + 

  theme_minimal() 

 

 

#Means CurrCong 

desc_by_currcong <- df_150_200 %>% 

  group_by(CurrCong) %>% 

  summarise( 

    Mean_Theta = mean(Theta, na.rm = TRUE), 

    SD_Theta   = sd(Theta, na.rm = TRUE), 

    N          = n(), 

    .groups    = "drop" 

  ) 

 

print(desc_by_currcong) 

 

#Means RespTrans 

desc_by_resptrans <- df_150_200 %>% 

  group_by(RespTrans) %>% 

  summarise( 

    Mean_Theta = mean(Theta, na.rm = TRUE), 

    SD_Theta   = sd(Theta, na.rm = TRUE), 

    N          = n(), 

    .groups    = "drop" 

  ) 

 

print(desc_by_resptrans) 

 

 

 

# ANOVA Everything + TimeWindow and Electrode 

#aov_tw <- aov( 

 # Theta ~ PrevCong * CurrCong * RespTrans * TimeWindow * Electrode + 
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  #  Error(Subject / (PrevCong * CurrCong * RespTrans * TimeWindow * Electrode)), 

  #data = theta_tw 

#) 

#summary(aov_tw) 

 

 

#aov_tw_afex <- aov_ez( 

#  id = "Subject", 

#  dv = "Theta", 

 # within = c("PrevCong", "CurrCong", "RespTrans", "Electrode"), 

 # data = theta_summary 

#) 

 

#summary(aov_tw_afex) 

 

 

gratton_means <- rt_df %>% 

  group_by(PrevCong, CurrCong) %>% 

  summarise(Mean_RT = mean(RT), .groups = "drop") 

 

gratton_df <- gratton_means %>% 

  tidyr::pivot_wider(names_from = CurrCong, values_from = Mean_RT) 

 

gratton_df <- gratton_df %>% 

  mutate(Delta_RT = Curr_I - Curr_C) 

 

brac_means <- rt_df %>% 

  group_by(PrevCong, CurrCong, RespTrans) %>% 

  summarise(Mean_RT = mean(RT), .groups = "drop") 

 

brac_wide <- brac_means %>% 

  pivot_wider(names_from = CurrCong, values_from = Mean_RT) %>% 

  mutate(Delta_RT = Curr_I - Curr_C) 
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repeat_df <- rt_df %>% filter(RespTrans == "Resp_Repeat") 

change_df <- rt_df %>% filter(RespTrans == "Resp_Alternate") 

 

anova_repeat <- aov_ez( 

  id = "Subject", 

  dv = "RT", 

  data = repeat_df, 

  within = c("PrevCong", "CurrCong") 

) 

 

print(anova_repeat) 

 

 

#----- 

#Plots 

#----- 

 

seq_order <- c("CCR","CCA","ICR","ICA","CIR","CIA","IIR","IIA") 

 

# Prepare prediction table  

 

# 1. Define eight theoretical predictions sequentially (1–8) 

pred_tbl <- tribble( 

  ~Condition, ~CA_RT, ~CA_Theta, ~BRAC_RT, ~BRAC_Theta, 

  #  Conflict-adaptation  |  BRAC 

  #  RT  | Theta          |  RT  | Theta 

  "CCR", 1,    8,            1,    8, 

  "CCA", 2,    7,            4,    7, 

  "ICR", 5,    4,            3,    6, 

  "ICA", 6,    3,            6,    3, 

  "CIR", 7,    6,            5,    4, 

  "CIA", 8,    5,            8,    1, 

  "IIR", 3,    2,            2,    5, 

  "IIA", 4,    1,            7,    2 
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) 

 

# Tidy the data 

plot_df <- pred_tbl %>% 

  pivot_longer(-Condition, 

               names_to = c("Theory", "Measure"), 

               names_sep = "_", 

               values_to = "Rank") %>% 

  mutate( 

    Theory = recode(Theory, CA = "Conflict Adaptation", BRAC = "BRAC"), 

    Measure = factor(Measure, levels = c("RT", "Theta")), 

    x_order = as.numeric(factor(Condition, levels = pred_tbl$Condition)), 

    Offset = ifelse(Measure == "RT", -0.1, 0.1), 

    x_pos = x_order + Offset 

  ) 

 

plot_df <- pred_tbl %>%  

  pivot_longer(-Condition, names_to = c("Theory","Measure"), 

               names_sep = "_", values_to = "Rank") %>%  

  mutate( 

    Condition = factor(Condition, levels = seq_order), 

    Theory    = recode(Theory, CA = "Conflict Adaptation", BRAC = "BRAC"), 

    Measure   = factor(Measure, c("RT","Theta")), 

    x_pos     = as.numeric(Condition) + ifelse(Measure == "RT", -0.1, 0.1) 

  ) 

 

# Create the plot  

ggplot(plot_df, aes(x = x_pos, y = Rank, group = Measure)) + 

  geom_hline(yintercept = 1:8, linetype = "dotted", colour = "grey80") + 

  geom_line(aes(colour = Measure, linetype = Measure), size = 0.8) + 

  geom_point(aes(shape = Measure, colour = Measure), size = 3.5, fill = "white") + 

  facet_grid(Measure ~ Theory) + 

  scale_x_continuous(breaks = 1:8, labels = seq_order) + 

  scale_y_reverse(breaks = 1:8) + 
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  scale_colour_manual(values = c(RT = "tomato3", Theta = "steelblue")) + 

  scale_linetype_manual(values = c(RT = "solid", Theta = "dashed")) + 

  scale_shape_manual(values = c(RT = 16, Theta = 17)) + 

  labs(title = "Predicted RT and Theta Rank Patterns (1–8 scale)", 

       x = "Sequence Condition", y = "Rank (1 = best)") + 

  theme_minimal(base_size = 11) 

 

# Corrected tribble block: each column name starts with ~ 

pred_long <- tribble( 

  ~Condition, ~Theory,              ~Measure, ~Rank, 

  "CCR",      "Conflict Adaptation", "RT",     1, 

  "CCR",      "Conflict Adaptation", "Theta",  4, 

  "CCR",      "BRAC",                "RT",     1, 

  "CCR",      "BRAC",                "Theta",  8, 

   

  "CCA",      "Conflict Adaptation", "RT",     1, 

  "CCA",      "Conflict Adaptation", "Theta",  4, 

  "CCA",      "BRAC",                "RT",     3, 

  "CCA",      "BRAC",                "Theta",  6, 

   

  "ICR",      "Conflict Adaptation", "RT",     2, 

  "ICR",      "Conflict Adaptation", "Theta",  2, 

  "ICR",      "BRAC",                "RT",     5, 

  "ICR",      "BRAC",                "Theta",  4, 

   

  "ICA",      "Conflict Adaptation", "RT",     2, 

  "ICA",      "Conflict Adaptation", "Theta",  2, 

  "ICA",      "BRAC",                "RT",     6, 

  "ICA",      "BRAC",                "Theta",  3, 

   

  "CIR",      "Conflict Adaptation", "RT",     4, 

  "CIR",      "Conflict Adaptation", "Theta",  3, 

  "CIR",      "BRAC",                "RT",     7, 

  "CIR",      "BRAC",                "Theta",  2, 



46 

 

   

  "CIA",      "Conflict Adaptation", "RT",     4, 

  "CIA",      "Conflict Adaptation", "Theta",  3, 

  "CIA",      "BRAC",                "RT",     8, 

  "CIA",      "BRAC",                "Theta",  1, 

   

  "IIR",      "Conflict Adaptation", "RT",     3, 

  "IIR",      "Conflict Adaptation", "Theta",  1, 

  "IIR",      "BRAC",                "RT",     2, 

  "IIR",      "BRAC",                "Theta",  7, 

   

  "IIA",      "Conflict Adaptation", "RT",     3, 

  "IIA",      "Conflict Adaptation", "Theta",  1, 

  "IIA",      "BRAC",                "RT",     4, 

  "IIA",      "BRAC",                "Theta",  5 

) |> 

  set_names(c("Condition","Theory","Measure","Rank")) 

 

# fixed condition order for x–axis 

seq_order <- c("CCR","CCA","ICR","ICA","CIR","CIA","IIR","IIA") 

pred_long <- pred_long |> mutate( 

  Condition = factor(Condition, levels = seq_order), 

  Measure   = factor(Measure, levels = c("RT","Theta")) 

) 

 

#2.  Plot: one facet per Theory, overlay RT & Theta  

ggplot(pred_long, 

       aes(x = Condition, y = Rank, 

           colour = Measure, shape = Measure, linetype = Measure, 

           group  = Measure)) + 

  geom_hline(yintercept = 1:8, colour = "grey85", linewidth = .15) + 

  geom_line(linewidth = .8, position = position_dodge(width = .4)) + 

  geom_point(size = 3, fill = "white", 

             position = position_dodge(width = .4)) + 
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  scale_y_reverse(breaks = 1:8) + 

  scale_colour_manual(values = c(RT = "firebrick", Theta = "steelblue")) + 

  scale_shape_manual(values  = c(RT = 16, Theta = 17)) + 

  scale_linetype_manual(values = c(RT = "solid", Theta = "dashed")) + 

  facet_wrap(~ Theory, nrow = 2) + 

  labs(title = "Predicted rank order (1 = fastest RT / highest Theta)", 

       y = "Rank (1 = best, 8 = worst)", x = "Sequence condition") + 

  theme_minimal(base_size = 11) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

 

#-------------------- 

#Plot for Statistics 

#-------------------- 

 

#RT PLOT 

 

rt_desc <- tribble( 

  ~Condition, ~mean_RT, ~sd_RT, 

  "CCR", 507.0186, 74.36528, 

  "CCA", 517.1007, 77.12124, 

  "ICR", 533.6543, 79.21286, 

  "ICA", 529.6564, 70.71920, 

  "CIR", 585.2236, 91.54154, 

  "CIA", 563.3021, 75.78799, 

  "IIR", 545.8550, 76.89930, 

  "IIA", 572.4921, 74.49746 

) 

 

# Define the sequence order 

seq_order <- c("CCR", "CCA", "ICR", "ICA", "CIR", "CIA", "IIR", "IIA") 

 

# Convert Condition to a factor with specified order 

rt_desc <- rt_desc %>% 
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  mutate(Condition = factor(Condition, levels = seq_order)) 

 

# Create the plot 

ggplot(rt_desc, aes(x = Condition, y = mean_RT)) + 

  geom_col(fill = "steelblue", width = 0.7) + 

  geom_errorbar(aes(ymin = mean_RT - sd_RT, ymax = mean_RT + sd_RT), 

                width = 0.2) + 

  labs(title = "Reaction Time by Condition", 

       y = "Mean RT (ms)", x = "Condition") + 

  coord_cartesian(ylim = c(min(rt_desc$mean_RT)-100, 

                           max(rt_desc$mean_RT)+100)) + 

  theme_minimal(base_size = 14) 

 

#PC PLOT 

 

ggplot(pc_df %>% mutate(Condition = factor(Condition, seq_order)), 

       aes(Condition, PC)) + 

  geom_boxplot(fill = "palegreen3", width = 0.6) + 

  stat_summary(fun = mean, geom = "point", size = 2, color = "red") + 

  labs(title = "Percent Correct by Condition", 

       y = "Accuracy (%)", x = "Condition") + 

  ylim(75, 100) + 

  theme_minimal(base_size = 14) 

 

#THETA PLOT 

 

ggplot(df_150_200 %>% mutate(Condition = factor(Condition, seq_order)), 

       aes(Condition, Theta)) + 

  geom_boxplot(fill = "skyblue", width = 0.6) + 

  stat_summary(fun = mean, geom = "point", size = 2, color = "red") + 

  labs(title = "Theta Power (150–200 ms) by Condition", 

       y = "Theta Power", x = "Condition") + 

  theme_minimal(base_size = 14) 
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#OPTIONAL 

rt_plot_df <- rt_df %>% 

  group_by(Condition) %>% 

  summarise(mean_RT = mean(RT, na.rm = TRUE), .groups = "drop") %>% 

  mutate(Condition = factor(Condition, levels = seq_order)) 

 

ggplot(rt_df %>% mutate(Condition = factor(Condition, levels = seq_order)), 

       aes(x = Condition, y = RT)) + 

  geom_boxplot(fill = "lightblue", width = 0.6) + 

  stat_summary(fun = mean, geom = "point", shape = 20, size = 4, color = "red") + 

  geom_line(data = rt_plot_df, aes(x = Condition, y = mean_RT, group = 1), 

            color = "tomato3", size = 0.5, inherit.aes = FALSE) + 

  labs(title = "Reaction Time by Condition", 

       y = "RT (ms)", x = "Condition") + 

  theme_minimal(base_size = 14) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

 

#------------- 

#Overlay Plots 

#------------- 

 

#Make sure it is in this sequence 

 

seq_order <- c("CCR", "CCA", "ICR", "ICA", "CIR", "CIA", "IIR", "IIA") 

 

clean_condition <- function(df) { 

  df %>% 

    mutate( 

      Condition = str_trim(Condition),                   

      Condition = factor(Condition, levels = seq_order) # lock desired order!!! 

    ) 
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} 

 

# Observed RT data 

rt_desc <- tribble( 

  ~Condition, ~mean_RT, 

  "CCR", 507.0186, 

  "CCA", 517.1007, 

  "ICR", 533.6543, 

  "ICA", 529.6564, 

  "CIR", 585.2236, 

  "CIA", 563.3021, 

  "IIR", 545.8550, 

  "IIA", 572.4921 

) 

 

# Observed Theta data 

theta_desc <- tribble( 

  ~Condition, ~mean_Theta, 

  "CCR", 443.99, 

  "CCA", 529.46, 

  "ICR", 584.20, 

  "ICA", 584.87, 

  "CIR", 500.90, 

  "CIA", 583.23, 

  "IIR", 695.19, 

  "IIA", 613.35 

) 

 

 

# Add observed RTs 
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pred_long_rt <- pred_long %>%                  

  filter(Measure == "RT") %>% 

  clean_condition() %>% 

  mutate(Theory = as.factor(Theory)) %>% 

  left_join(rt_desc, by = "Condition") 

 

 

# RT Plot 

ggplot(pred_long_rt, aes(x = Condition)) + 

  geom_hline(yintercept = 1:8, colour = "grey85", linewidth = .15) + 

  geom_line( 

    aes(y = Rank, group = Theory, colour = "Predicted Rank"), 

    linewidth = .8 

  ) + 

  geom_point( 

    aes(y = Rank, colour = "Predicted Rank", shape = "Predicted Rank"), 

    size = 3 

  ) + 

  geom_point( 

    aes(y = rescale(mean_RT, to = c(8, 1)), 

        colour = "Observed RT", shape = "Observed RT"), 

    size = 3 

  ) + 

  scale_y_reverse(breaks = 1:8) + 

  scale_x_discrete(limits = seq_order, drop = FALSE) +   # <- hard lock order 

  scale_colour_manual( 

    name   = "Measure", 

    values = c("Predicted Rank" = "firebrick", 

               "Observed RT"    = "black") 

  ) + 
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  scale_shape_manual( 

    name   = "Measure", 

    values = c("Predicted Rank" = 16, 

               "Observed RT"    = 1) 

  ) + 

  facet_wrap(~ Theory, nrow = 2) + 

  labs( 

    title = "RT: Predicted Rank vs Observed RT", 

    y     = "Rank (1 = best)", 

    x     = "Sequence Condition" 

  ) + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

# Add observed Theta 

pred_long_theta <- pred_long %>% 

  filter(Measure == "Theta") %>% 

  clean_condition() %>% 

  mutate(Theory = as.factor(Theory)) %>% 

  left_join(theta_desc, by = "Condition") 

 

# Theta Plot 

ggplot(pred_long_theta, aes(x = Condition)) + 

  geom_hline(yintercept = 1:8, colour = "grey85", linewidth = .15) + 

  geom_line( 

    aes(y = Rank, group = Theory, colour = "Predicted Rank"), 

    linetype = "dashed", linewidth = .8 

  ) + 

  geom_point( 

    aes(y = Rank, colour = "Predicted Rank", shape = "Predicted Rank"), 
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    size = 3 

  ) + 

  geom_point( 

    aes(y = rescale(mean_Theta, to = c(8, 1)), 

        colour = "Observed Theta", shape = "Observed Theta"), 

    size = 3 

  ) + 

  scale_y_reverse(breaks = 1:8) + 

  scale_x_discrete(limits = seq_order, drop = FALSE) +   # <- hard lock order 

  scale_colour_manual( 

    name   = "Measure", 

    values = c("Predicted Rank" = "steelblue", 

               "Observed Theta" = "black") 

  ) + 

  scale_shape_manual( 

    name   = "Measure", 

    values = c("Predicted Rank" = 17, 

               "Observed Theta" = 1) 

  ) + 

  facet_wrap(~ Theory, nrow = 2) + 

  labs( 

    title = "Theta: Predicted Rank vs Observed Theta", 

    y     = "Rank (1 = highest Theta)", 

    x     = "Sequence Condition" 

  ) + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1))   
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