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Abstract

Background: Budd-Chiari Syndrome (BCS) is a rare hepatic vascular disorder
characterised by obstruction of hepatic venous outflow. Detailed venous imaging
is crucial for preoperative planning. Current imaging techniques often rely on
ionising radiation combined with iodine contrast medium, posing health risks to
patients. Magnetic Resonance Angiography (MRA) is typically performed using
gadolinium-based contrast agents, which also carry potential risks. This study
investigates whether a deep learning model can accurately segment the hepatic
veins on non-contrast MRI using a balanced Steady-State Free Precession (b-SSFP)
sequence.

Methods: An nnU-Net v2 model was trained on 23 annotated datasets acquired
at Radboud University Medical Center (Nijmegen, Netherlands) using a 3 Tesla
MRI scanner. Model validation was performed on data from four healthy
volunteers scanned with a 1.5T MRI at the University of Twente (Enschede,
Netherlands). Quantitative analysis was performed by calculating an average Dice
score, sensitivity, and specificity. For qualitative analysis, a 3D reconstruction was
created for visual assessment. Additionally, a 3D-printed silicone liver phantom
with hollow veins was developed, and a catheter-based intervention was simulated
as an in-vitro experiment to assess clinical applicability.

Results: The model achieved an average Dice score of 0.88, sensitivity of 0.85
and a specificity of 1.00 on the independent validation set. Visual analysis showed
accurate segmentation of the major hepatic veins. Discrepancies between AI- and
manual segmentation were found in smaller peripheral branches, which can be
filtered out through post-processing.

Conclusion: The trained model can accurately segment veins on non-contrast
MRI. This technique has potential for clinical implementation in preoperative
roadmapping and, in the future, intraoperative guidance, offering a safer alternative
to contrast-enhanced imaging.
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1 List of Abbreviations

Abbreviation Meaning

3D Three-Dimensional
AI Artificial Intelligence
BCS Budd-Chiari Syndrome
b-SSFP Balanced Steady-State Free Precession
CT Computed Tomography
CNN Convolutional Neural Network
EMA European Medicines Agency
FA Flip Angle
FDM Fused Deposition Modeling
FOV Field of View
GBCAs Gadolinium-Based Contrast Agents
HV Hepatic Veins
ICM Iodine Contrast Medium
IVC Inferior Vena Cava
MR Magnetic Resonance
MRA Magnetic Resonance Angiography
MRI Magnetic Resonance Imaging
MRV Magnetic Resonance Venography
NSF Nephrogenic Systemic Fibrosis
PE Phase Encoding
PAT Parallel Acquisition Technique
PVA Polyvinyl Alcohol
Radboud UMC Radboud University Medical Center
SNR Signal-to-Noise Ratio
TA Time of Acquisition
TE Echo Time
TR Repetition Time
UTwente University of Twente
VIBE Volumetric Interpolated Breath-hold Examination
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2 Introduction

Budd-Chiari Syndrome (BCS) is a rare, potentially life-threatening hepatic vascular disorder
characterised by complete blockage or stenosis of the hepatic venous outflow tract [1, 2]. BCS
can be divided into two categories: primary BCS and secondary BCS [3]. Secondary BCS is
caused by external compression or invasion of the hepatic veins or inferior vena cava, often due
to conditions such as cysts, malignancies, or abscesses. In contrast, primary BCS results from
intraluminal narrowing, typically caused by phlebitis or thrombosis [4]. This paper will focus
on endovascular interventions via the venous system, where primary BCS is the most relevant
clinical condition. Therefore, in the remainder of the report, the term BCS will refer specifically
to primary Budd-Chiari Syndrome.

Figure 1: Anatomical illustration of the
hepatic venous system. The portal vein is
an afferent vessel that transports blood from
the gastrointestinal system to the liver. The
right, middle, and left hepatic veins are efferent
vessels that carry deoxygenated blood from the
liver to the inferior vena cava, from where the
blood returns to the heart [5].

Thrombosis is the primary cause of BCS, which
has been diagnosed in approximately 1 in 100,000
individuals [1, 6]. A thrombus can cause a partial
or complete obstruction in the small hepatic veins,
large hepatic veins (HV), the inferior vena cava
(IVC), or a combination of these vessels (see
Figure 1) [2, 3]. In western countries, obstruction
of the hepatic veins is the most commonly observed
condition. Obstruction of the hepatic veins leads
to postsinusoidal portal hypertension, resulting in
a reduction of portal venous inflow. In the absence
of intervention, this hemodynamic disturbance
causes fluid accumulation within the liver (hepatic
congestion) and the peritoneal cavity (ascites)
[1]. The reduction in venous outflow creates a
hypoxic environment within the liver, ultimately
leading to hepatocellular necrosis [6]. If the extent
of necrosis is severe, this can result in acute
liver failure, a fatal condition. Over a longer
period of time – typically within a few weeks after
the obstruction – this process may evolve into
hepatic fibrosis, eventually progressing to liver
cirrhosis. In general, if left untreated, Budd-Chiari
Syndrome is a progressive and fatal disease.

After diagnosis of BCS has been established, a treatment plan must be formulated to
restore hepatic vein outflow [7]. The chosen therapeutic approach is determined in a
multidisciplinary team, taking into account factors such as the underlying cause and the
severity of the condition. If anticoagulant therapy proves insufficient, an endovascular
intervention may be performed by an interventional radiologist. Among patients with BCS,
50-80% undergo an endovascular intervention, with angioplasty alone being sufficient in 13-49%
of these cases [8–10]. In the remaining group of patients, a stent was also placed, which has
been shown to reduce the risk of reobstruction [11, 12]. Before the vascular intervention takes
place, medical imaging is important to map the anatomical structure of the hepatic veins [11, 13].

Current imaging techniques used during endovascular interventions – such as 3D fluoroscopy
and CT (computed Tomography)[14] – pose significant health risks. These methods rely on
ionising radiation combined with iodine contrast medium (ICM). Cumulative radiation exposure
exceeding 100 mGy has been linked to an increased risk of malignancies [15]. In CT fluoroscopy,
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patients may be exposed to total doses exceeding this threshold depending on procedure duration
[16]. Operators are also affected, receiving up to 1.1 mGy/sec to their hands. Additionally, ICM
can cause adverse effects, ranging from mild nausea to severe reactions such as cardiac arrest [17].

Magnetic Resonance Angiography (MRA) can be utilised to visualise hepatic vasculature
without ionising radiation, but this typically requires the intravenous administration of
gadolinium-based contrast agents (GBCAs), such as gadobutrol or gadobenic acid [18, 19].
While GBCAs are generally considered safe, they are not without risk. Adverse reactions
– though rare – can include anaphylactic shock and nephrogenic system fibrosis (NSF),
particularly in patients with impaired renal function [20, 21]. Additionally, GBCAs can be
nephrotoxic at high concentrations and it is therefore recommended to avoid administering a
second dose of GBCA within 48 hours to prevent kidney damage [22].

Considering the aforementioned risks – radiation exposure, ICM reactions, and GBCA
toxicity – this study explores the use of non-contrast MRI as a safer alternative. Recent
advances in artificial intelligence (AI), particularly in deep learning medical segmentation, offer
promising alternatives for reducing the use of GBCAs [23]. Recent studies have demonstrated
that a convolutional neural network (CNN) can post-process MRI images to enhance contrast,
enabling a reduction of GBCA dose by 90% [24–26]. However, these studies also indicate that
excluding GBCAs entirely leads to insufficient image contrast, limiting the performance of AI
algorithms compared to full-dose Gd administration. Besides AI-based contrast enhancement,
the choice of MRI acquisition protocol plays a critical role in vascular visualisation without
contrast agents. For instance, 4D flow MRI can be used to visualise abdominal veins by
identifying peak blood flow exceeding a certain threshold value, which serves as an indicator
of vascular lumen [27]. Additionally, AI models have successfully segmented liver veins on a
non-contrast T1-weighted Dixon sequence [28]. However, balanced steady-state free precession
(b-SSFP) is a technique known for generating a high signal-to-noise ratio (SNR) and vascular
contrast [29]. Furthermore, the nnU-Net framework – specifically the enhanced version,
nnU-Net v2 – has thus far well performed across a wide range of medical imaging tasks, with
minimal manual tuning required [30]. Therefore, this study investigates the use of a b-SSFP
sequence combined with the nnU-Net v2 framework for liver vein segmentation, aiming to
improve the interventional workflow and expand treatment accessibility for patients who are
known to react poorly to gadolinium-based contrast agents.

Given the clinical importance of pre-interventional hepatic vein mapping and the risks
associated with gadolinium-based contrast agents, this study investigates whether artificial
intelligence can be used for segmentation on non-contrast MRI. The following research question
will be addressed: Can a deep learning model, trained on annotated non-contrast MRI data,
accurately perform automatic segmentation of hepatic veins on non-contrast MRI?

It is expected that this model could generate an accurate high-quality, non-contrast anatomical
roadmap [28] that can aid interventional radiologists in planning and performing endovascular
interventions for Budd-Chiari syndrome.
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3 Methods

Prior to this study, 23 liver MRI datasets were obtained in healthy volunteers (age range: 23−80
years) at Radboud University Medical Center (Radboud UMC) in Nijmegen, Netherlands.
Manual segmentation of the hepatic veins, including the vena cava and portal vein, was
performed to serve as ground truth for the AI model training. The model was subsequently
validated using MRI data from four additional subjects. Finally, a 3D liver model was printed
and used in a simulated endovascular intervention to evaluate clinical applicability.

3.1 MRI Acquisition Protocol

MRI scans at Radboud UMC were obtained using a balanced steady-state free precession
(b-SSFP) sequence on a 3 Tesla MRI scanner. For validation, four healthy volunteers were
scanned at the University of Twente (UTwente) TechMed Centre using a 1.5 Tesla MRI scanner.
During data acquisition, participants were instructed to hold their breath for approximately
twenty seconds to reduce respiratory motion artifacts. To ensure consistency and comparability,
a similar b-SSFP protocol was used. An overview of the protocols is provided in Table 1. The
b-SSFP sequence was selected for its high contrast between liver tissue (dark) and blood vessels
(bright) [31–33].

Table 1: Overview of key b-SSFP acquisition parameters. ’Radboud UMC’ refers to the 3T MRI
protocol used at Radboud UMC. ’UTwente’ refers to the 1.5T MRI protocol used at the University of
Twente.

Parameter Radboud UMC UTwente

Orientation Transversal Transversal
Slice thickness 3.0 mm 4.5 mm
Number of slices 40 30
Field of View (FOV) 380 mm × 311 mm 380 mm x 306 mm
Matrix size 320 x 256 320 x 320
Voxel size 1.2 x 1.2 mm2 1.2 x 1.2 mm2

Repetition Time (TR) 3.7 ms 4.26 ms
Echo Time (TE) 1.87 ms 2.13 ms
Flip Angle (FA) 41° 60°
Time of acquisition (TA) 0m 19s 0m 20s
Parallel imaging acceleration factor (PE) 2 2

3.2 Manual Data Segmentation

On MRI scans from subjects at Radboud UMC
(n = 23, male: 12, female: 11, age range:
23 − 80 years), manual vein segmentation was
performed using 3D Slicer (version 5.8.1) [34].
An example of the segmentation is shown in
Figure 3. In older subjects, hepatic cysts
are not uncommon (see Figure 2). As the
b-SSFP sequence renders fluids bright, may
appear similar to veins [31, 32]. Therefore,
each segmented structure was carefully traced
back to the portal vein or vena cava to ensure
accuracy. Figure 2: Transverse b-SSFP MRI scan of the

liver. Indicated are: 1 – a cyst, 2 – the vena cava,
and 3 – the portal vein.
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Figure 3: Example of hepatic veins segmentation using 3D Slicer. (A) Transverse b-SSFP MRI scan
of the liver, with segmented veins overlaid in blue. (B) 3D rendering of the segmented veins, visualised
with smoothing factor 0.3. In both, arrow 1 points to the IVC, arrow 2 to the portal vein.

3.3 AI Model Development

The Radboud UMC MRI data and corresponding segmentations were used as ground truth to
train an nnU-Net v2 AI model [30]. A Python script (version 3.12) was written to run nnU-Net
v2. During preprocessing, several operations were applied. First, Z-score normalisation was
performed without a mask to ensure consistent intensity scaling:

Z =
X − µ

σ

Where Z represents the Z-score, X is the value of a pixel, µ is the mean intensity of the
dataset, and σ is the standard deviation of the dataset. Subsequently, all images were
resampled to a spacing of [3.0, 1.1875, 1.1875] mm. The model was trained using the 3d_fullres
configuration of nnU-Net. The configuration settings used were automatically optimised by
nnU-Net based on the characteristics of the dataset. This configuration employed a network
with six layers, where only 2D convolutions were applied in the first layer. The patch size was
set to [32, 224, 256], and the batch size was 2. This preprocessing and configuration ensured
optimal model training while taking into account the limitations of the available hardware. The
loss function used was a DeepSupervisionWrapper, which combined the RobustCrossEntopyLoss()
– a variant of cross-entropy designed to be more stable in the presence of label noise – and the
MemoryEfficientSoftDiceLoss(), a Dice loss variant optimised for reduced memory consumption.
The fold was set to ’all’, meaning that the entire dataset from Radboud UMC was used for
both training and internal validation. The UTwente dataset served to validate the model on
independent data.

3.4 Quantitative Validation

The dataset obtained from the participants was manually segmented. In addition, the trained AI
model was used to segment the same dataset. The manual segmentation can then be compared to
the AI-generated segmentation by quantifying their volume overlap (see Equation 1), sensitivity
(see Equation 2), and specificity (see Equation 3). Due to variability in the number of segmented
voxels between segmentations, the Dice score is used to quantify overlap. This analysis enables
an evaluation of the model’s accuracy.
Let:

A = {x | segAI(x) > 0}, A′ = {x | segAI(x) = 0}
B = {x | segmanual(x) > 0}, B′ = {x | segmanual(x) = 0}

Then:

Dice =
2 · |A ∩B|
|A|+ |B|

(1) Sensitivity =
|A ∩B|
|B|

(2) Specificity =
|A′ ∩B′|

|B′|
(3)
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3.5 Qualitative Validation

To identify specific regions where the AI-generated segmentation deviates from the manual
segmentation, a 3D reconstruction was performed. For this purpose, three segmentation masks
were generated: one containing all voxels overlapping the AI and manual segmentations, one
containing all voxels segmented only by the AI model, and one containing voxels present only
in the manual segmentation. Each of these masks was assigned a distinct colour to visualise the
spatial distribution of discrepancies between the AI and manual segmentations.

As an additional postprocessing step, a binary filtering operation was applied to remove
small isolated structures and maintain only clinically relevant regions; namely, the larger
hepatic veins and the inferior vena cava. This was performed in 3D Slicer using the ’opening
(remove extrusions)’ filter, with a kernel size of 3.0 mm.

3.6 In-Vitro Assessment

Figure 4: 3D representation of the liver
phantom model [35]. Shown are the vena
cava (blue) and the portal vein (yellow)
inside one half of the mold (green) The
front half of the mold is excluded in this
view; the filling opening is visible at the
back.

To investigate the clinical potential of this AI
model before and during MRI-guided interventions,
a phantom was created for use in an in-vitro study.
A computer-generated model of the liver and hepatic
veins (as shown in Figure 4) was used [35]. The
vessels were printed using fused deposition modeling
(FDM) with polyvinyl alcohol (PVA) material. After
printing a mold of the liver, the vessels were placed
inside the mold, which was then filled with silicone
(Ecoflex 00-31 Near Clear, Smooth-On, Macungie,
PA). Once the silicone had cured, the phantom was
immersed in water to dissolve the PVA as much
as possible, resulting in hollow venous structures
within the phantom. Subsequently, the phantom —
submerged in a water bath to fill the venous structures
— was scanned using a 1.5T MRI scanner at UTwente
with a 3D b-SSFP sequence (protocol parameters are
listed in Table 2). Finally, under MRI guidance,
navigation through the hepatic veins was performed
using a real-time b-SSFP sequence (parameters can
be found in Table 2).

Table 2: Overview of the key parameters of the b-SSFP sequences used for phantom imaging.

Parameter 3D b-SSFP real-time b-SSFP

Orientation Coronal Coronal oblique
Slice thickness 1.50 mm 10.0 mm
Number of slices 128 1
Field of view (FOV) 288 mm × 288 mm 224 mm x 224 mm
Matrix size 192 x 192 112 x 112
Voxel size 1.5 x 1.5 mm2 2.0 x 2.0 mm2

Repetition time (TR) 3.87 ms 4.1 ms
Echo time (TE) 1.70 ms 2.05 ms
Flip angle (FA) 40° 40°
Temporal resolution – 172.2 ms
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4 Results

4.1 Model Training

The model was trained for a maximum of 250 epochs, starting from an initial learning rate
of 0.01 and gradually decreasing to 7 · 10−5 in the final epoch (Figure 5, bottom). Both the
training and the validation loss curves begin to converge gradually after approximately 50 epochs,
with continued slow improvement in both training and validation. The best epoch achieved an
average pseudo-Dice score of 0.90 on the validation set. The pseudo-Dice score refers to a Dice
score calculated (Equation 1) during training on the internal validation data, rather than on a
fully independent dataset. The top panel of Figure 5 shows that the model improved over time
without signs of overfitting. The small gap between the training and validation loss suggests
that the model was able to generalise well. These trends indicate that the model successfully
learned to segment hepatic veins and is likely to be applicable to unseen datasets.

Figure 5: Learning curves over 250 epochs. Top: Training loss (blue) and validation loss (red) plotted
against the number of epochs, alongside the pseudo-Dice score (dotted green) and its moving average
(solid green) on the validation set. The pseudo-Dice score increases consistently progression throughout
training, reaching approximately 0.90 in the final epoch. No signs of overfitting are observed. Bottom:
The learning rate decreases during training, starting at approximately 0.01 and ending at around 7 ·10−5.
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4.2 Model Validation

A quantitative analysis was performed by calculating the Dice score, sensitivity, and specificity.
The manual segmentation served as the ground truth against which the AI-generated
segmentation was compared. The results are presented in Table 3. For participant 1, the
model achieved a Dice score of 0.86, a sensitivity of approximately 0.84, and a specificity of
approximately 1.00. These results indicate that the model provides a close approximation of the
ground truth segmentation. However, the sensitivity suggests that the AI segmentation contains
a considerable number of false negative voxels. In contrast, the high specificity indicates that
the AI model produces very few false positives.

Table 3: Quantitative comparison between AI-generated and manual segmentations of the hepatic veins
across four participants (male: 1, female: 3). The Dice score (calculated using Equation 1), sensitivity
(Equation 2), and specificity (Equation 3) were computed for each individual participant, and the average
scores are also reported.

Participant Dice-score Sensitivity Specificity

1 0.86 0.84 1.00
2 0.88 0.86 1.00
3 0.87 0.83 1.00
4 0.89 0.87 1.00

Average: 0.88± 0.01 0.85± 0.02 1.00± 0.00

In addition to the quantitative analysis, a qualitative assessment was performed to provide
insight into the cause of the discrepancies between manual and AI segmentations. As
shown in Figure 6, the majority of the segmented volume consists of overlapping regions
(depicted in green), indicating that the AI model largely identifies the same voxels as the
manual segmentation. Deviations are visible in yellow (voxels segmented only in the manual
annotation) and blue (voxels segmented only by the AI). Notably, these differences are
predominantly located in small peripheral vascular structures.

Furthermore, it was observed that the regions missed by the AI model often include fine
vessel branches that serve as connectors between smaller and larger venous structures. In
addition, the manual segmentation tends to outline the vascular lumen slightly larger than the
AI segmentation, which may cause the tendency of the AI model to under-segment in regions
with low image contrast.

In participant 1 and participant 4, the AI model failed to segment a portion of the portal vein
on the caudal side. In participant 4, it was also noted that an entire branch of the right hepatic
vein, as well as a branch of the left hepatic vein, were not segmented by the AI.

4.3 Postprocessing

The three-dimensional (3D) reconstructions are shown in Figure 7. This 3D rendering resulted
from the ’opening (remove extrusions)’ operation, performed without applying a smoothing
factor, illustrating the staircasing effect due to the low resolution in the longitudinal direction.
It can also be observed that small vascular structures were removed as a result of the
post-processing step, and that the manual segmentation yields an anatomically very similar
reconstruction.
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Figure 6: 3D visualisation (smoothing factor 0.3) comparing manual and AI-generated segmentations
of hepatic veins. Overlapping regions between the manual and AI segmentations are shown in green,
manual-only segmented regions in yellow, and AI-only segmented regions in blue. Each row represents
a different participant (from top to bottom: participants 1-4), with anterior and posterior views shown
on the left and right, respectively.
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Figure 7: 3D visualisation without smoothing factor, with postprocessing filter applied, resulting in
the removal of small vascular structures. All views are shown from an anterior perspective. Each row
represents a different participant (from top to bottom: participants 1-4), with the manual segmentation
shown on the left and the AI-generated segmentation on the right.
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4.4 Phantom Intervention

Figure 8: 3D reconstruction
of the segmented venous
structures in the liver phantom,
based on the 3D b-SSFP
sequence.

First, a segmentation was created on the 3D b-SSFP scan
using the ’grow from seeds’ module in 3D Slicer. The 3D
reconstruction of this segmentation is shown in Figure 8.
Subsequently, an MRI-compatible catheter was advanced through
the inferior vena cava under MRI guidance. This procedure
was recorded using the real-time b-SSFP sequence. Through
post-processing in 3D Slicer, the 3D segmentation could be
overlaid onto the real-time 2D imaging (as shown in Figure
9).

The figure displays a series of static frames, but using specialised
software (in this case 3D Slicer), this 3D overlay can be
interactively rotated and translated in all six degrees of freedom
(namely, translation and rotation along the three orthogonal
axes). The frames illustrate that the catheter’s position can
be continuously tracked, and the 3D overlay provides the
operator with a clear visual reference of the catheter’s location in
three-dimensional space. This visualisation also aids in identifying which vascular branch should
be targeted during navigation.

Figure 9: Four frames from the MRI-guided real-time b-SSFP acquisition with an overlaid 3D
segmentation. Between frame 236 and frame 281, the catheter was advanced through the inferior vena
cava. The catheter tip is indicated by red arrows.
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5 Discussion

In this study, the feasibility of accurately segmenting the hepatic veins on non-contrast MRI
using an AI model was investigated. A 3D full-resolution nnU-Net version 2 framework was
used and trained on 23 manually segmented b-SSFP MRI scans. The model achieved an
average pseudo-Dice score of 0.90 on an internal validation set. Validation on an independent
dataset, which was not used during training and consisted of four manually segmented MRI
scans, yielded an average Dice score of 0.88 ± 0.01, an average sensitivity of 0.85 ± 0.02,
and an average specificity of 1.00 ± 0.00. These scores are significantly higher than those
reported by Zbinden et al., who also employed a nnU-Net framework, but for the separate
segmentation of the liver, portal vein, and hepatic veins on a T1 volumetric interpolated
breath-hold examination (VIBE) Dixon sequence [28]. The AI model in their study achieved a
Dice score of 0.643±0.09 for the portal vein and 0.532±0.12 for the hepatic veins. The fact that
Zbinden et al. trained the model to segment the portal vein and hepatic veins separately may
have introduced an additional level of difficulty, potentially contributing to the lower Dice scores.

Visual analysis indicated that the majority of the segmented venous lumen corresponded
well to the ground truth. Discrepancies were mainly observed in small peripheral vessels and
along the outer edge of the lumen. Furthermore, Figure 7 demonstrates that filtering out
small vascular structures results in a clear 3D reconstruction of the major vessels relevant for
endovascular interventions. One can appreciate that the AI segmentations visually correspond
to the manual segmentations in terms of anatomical branching and spatial orientation. However,
it should be noted that the vascular structures exhibit low spatial resolution in the longitudinal
direction, which is due to the relatively large slice thickness (4.5 mm). Improvements in this
aspect could enhance segmentation clarity. Despite the limited size of both the training and
validation datasets, the model demonstrated successful generalisation to previously unseen
data, supported by the learning curves showing no signs of overfitting (as was shown in Figure 5).

Both qualitative and quantitative analyses support these findings: the AI model is capable of
segmenting the main structures of the hepatic and portal veins. Although small peripheral
venous branches were occasionally missed, this is unlikely to be clinically significant when
these small vessels are filtered out. These results suggest that the AI model holds potential for
generating vascular maps from non-contrast MRI.

5.1 Clinical Implications

Research by Zhu et al. has demonstrated that 3D reconstruction of the cerebral veins during
catheterisation, serving as procedural roadmap, is of critical importance [36]. The 3D projection
can be freely rotated by the interventionalist, allowing for enhanced visualisation of anatomical
structures. This facilitates catheter navigation and optimises placement accuracy, thereby
reducing the risk of complications due to inadvertent navigation into an incorrect lumen.
However, this method relies on real-time intraoperative imaging using ionising radiation, which
poses a potential risk to both patients and medical staff. In contrast, this study focuses on the
generation of preoperative imaging using non-invasive and non-ionising methods.

The importance of 3D visualisation in endovascular interventions is further supported by
Kishore et al., who employed contrast-enhanced 3D magnetic resonance venography (MRV)
[37]. Their study demonstrated a significant increase in clinician confidence regarding the
anatomy of the cortical veins, as measured by a 3-point Likert scale (1 = low confidence; 3 =
high confidence). Scores improved from 1.9 to 2.9 (p = 0.001), highlighting the clinical value of
3D venous imaging. When extrapolating these findings from cerebral to hepatic endovascular
interventions, the AI model proposed in this study has the potential to aid the interventionalist
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with a non-toxic preoperative roadmap, despite the lack of real-time imaging.

While this study primarily aimed to develop an AI model capable of generating preoperative
venous segmentation, an initial phantom experiment was conducted to explore its potential
use during interventions. This initial study demonstrated that real-time MRI acquisition –
comparable to conventional fluoroscopy – combined with a post-processed 3D overlay, can
accurately depict the catheter’s position within the venous system. These findings suggest
that AI-based 3D segmentation may not only support preoperative planning, but also assist
intraoperative navigation by providing spatial context during catheter navigation.

Moreover, the findings of this study indicate that the combination of a b-SSFP sequence
with the proposed AI model eliminates the need for contrast agents altogether. Prior research
has identified potential toxic side effects of GBCAs in patients [20–22]. Recent advances have
demonstrated that the integration of AI can significantly reduce the required dose of GBCAs
[23–26]. In contrast, using AI for segmentation effectively removes the risks associated with
GBCA administration, such as anaphylaxis and nephrotoxicity, thereby enabling a safer and
less invasive imaging approach for patients.

5.2 Study Limitations

There are several important limitations to keep in mind when analysing the results of this study.
The ground truth segmentations used to train the model were created by a researcher, not by a
trained radiology technician or interventional radiologist. Although care was taken to accurately
segment the veins and exclude surrounding tissues, the lack of clinical experience might have
introduced some errors. These potential inaccuracies in the training labels could impact the
model’s performance, as deep learning models depend heavily on precise annotations. Besides,
the training dataset included only 23 scans, which means that any single annotation error could
have a relatively large impact on the final model performance compared to a situation in which
a larger dataset had been used.

Another limitation to consider is the imaging parameters of the validation dataset. These scans
were taken using a 1.5 Tesla MRI with a slice thickness of 4.5 mm, whereas the training data
used a thinner slice of 3.0 mm. The thicker slices and lower magnetic field strength resulted
in reduced spatial resolution, particularly in the z-direction (cranio-caudal axis). This directly
affected the visibility of small vascular structures, especially veins running predominantly in
the transverse plane. As a consequence such vessels were sometimes missed or only partially
segmented. This could lead to 3D visualisations of the segmentation appearing incomplete,
with some vessels disconnected. For pre-operative roadmapping, it is particularly important
that vascular connectivity is accurately represented in order to plan the catheter route effectively.

Respiratory motion artifacts were observed in several scans from the Radboud UMC dataset,
particularly in older participants. These artifacts may have caused anatomical structures to be
misaligned, which can result in the AI model being trained on distorted or inaccurate images.
As a result, this may have negatively impacted the overall performance of the model.

Finally, the validation dataset only included young, healthy volunteers without hepatic
cysts. Although the training data did contain scans with hepatic cysts and the AI model was
trained to avoid segmenting these, this cannot be verified using the current validation set. Since
hepatic cysts are more common in older individuals and appear similarly bright as veins on
b-SSFP sequences, it remains uncertain how the model would behave when segmenting data
from a patient with hepatic cysts. The model’s ability to differentiate between cysts and actual
vascular structures has therefore not been conclusively validated.
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5.3 Recommendation

As previously demonstrated, the proposed AI model is capable of accurately segmenting the
venous structures in the liver, the model could be further improved by enabling the separate
segmentation of the hepatic veins and the portal vein. Currently, all venous structures are
segmented together, which can lead to confusion for the interventionalist, especially in cases
such as BCS, where only inferior vena cava and hepatic veins are clinically relevant. In contrast,
during catheterisation procedures for portal vein thrombosis [38], segmentation of the portal
vein becomes clinically essential. Therefore, it would be an advantage if the AI model could
distinguish between different venous structures, allowing the clinician to selectively visualise
the vessels of interest.

Zbinden et al. have demonstrated with their AI model that there is still room for improvement
in terms of separate venous segmentation [28]. Now that AI has proven to be capable of
accurate venous segmentation and its clinical importance has been established, the model could
be further developed and integrated into hospital workflows. This would allow the model to be
continuously trained on a larger and more representative dataset, including variations such as
cysts, specific anatomical abnormalities, or imaging artifacts.

The initial phantom experiment suggests that MRI-guided endovascular interventions
may become feasible in the future. However, several technical limitations were observed.
Most notably, catheter visibility on the b-SSFP sequence was limited when the catheter was
stationary, but further enhancement is necessary to make static positioning clearly noticeable.
One potential solution could be the use of gadolinium-coated catheters or incorporating
materials in the catheter tip that provide better contrast on b-SSFP imaging. Alternatively,
catheter tip tracking could be achieved using small embedded coils, with spatial location
rendered in the 3D reconstruction via software animation. However, this approach may increase
catheter diameter, which could be clinically undesirable. Additionally, the current 2D real-time
b-SSFP sequence presents a limitation for MRI-guided interventions, as the catheter is no
longer visible when moving out of the imaging plane. Improved 3D real-time imaging sequences
or spatial tracking may offer the solution to this constraint.
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6 Conclusion

This study demonstrated that a deep learning convolutional neural network, based on the
nnU-Net v2 framework, is capable of accurately segmenting hepatic venous structures on non-
contrast MRI using a b-SSFP sequence. The AI model achieved a high Dice score of 0.90,
indicating strong agreement with manual annotations, even when validated on an independent
dataset (Dice score: 0.88 ± 0.01). With a sensitivity of 0.85, the AI model still exhibits some
false-negative voxels, primarily in regions containing small peripheral vessels with lower image
contrast. However, the majority of these vessels are not relevant during an intervention and
are removed during post-processing to improve the 3D visualisation and focus on the clinically
relevant larger venous structures during navigation. Although in certain specific cases involving
stenting the preservation of small vascular structures may be important, these could potentially
be included in a separate segmentation channel.

Learning curves and performance on the external dataset suggest that the AI model generalises
well to new subjects, confirming its robustness. These findings support the use of AI-based
segmentations for generating patient-specific 3D reconstructions in the preoperative phase. Such
reconstructions provide interventional radiologists with an enhanced understanding of spatial
anatomy, potentially leading to more accurate catheter navigation and fewer complications.

If the use of MRI-guided interventions becomes more feasible in the future, real-time
intraoperative segmentation by AI may further support these procedures. As a result, the need
for ionising radiation, iodine-based contrast media, or gadolinium contrast agents could be
entirely eliminated.

In summary, this study shows that accurate liver vein segmentation without contrast
agents is both feasible and clinically relevant. With further validation and integration into
clinical workflows, this technology could contribute to safer and more accessible endovascular
interventions for Budd-Chiari Syndrome and other related vascular conditions.
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