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Abstract 

As humanoid robots move beyond automated tasks towards collaborative and interactive partners 

in diverse fields such as healthcare or education, humans’ innate tendency to implicitly trust 

robotic decisions can lead to suboptimal and even dangerous consequences. The uncritical 

reliance on inaccurate robotic cues could override human judgment, potentially causing serious 

errors, for example, administering the wrong medication based on the robot’s misleading 

gestures or mishandling hazardous materials in a factory. This work investigated how the 

reliability of a robot's referential gaze, in tasks of varying complexity, affects human-robot 

interaction. A self-constructed gaze control system for a screen-based robot was incorporated 

within a classification game, where participants received attentional gaze cues from the robots. 

These referential cues differed per robot in their reliability, leading to a high-validity robot 

(Ryan), a low-validity robot (Ivan), and a third neutral robot, which did not execute any 

referential gaze. Findings indicate that the existence of referential gaze, reliable or not, leads to 

significantly higher gaze predictability and faster decision-making as participants develop their 

own interaction strategies. We found that participants manifested a strong cognitive bias to trust 

and follow the gaze of the high-validity robot, which was similarly preferred in subjective ratings 

of anthropomorphism, likability, and intelligence.  
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Introduction 

The rapidly changing technological development has empowered machines and 

autonomous systems to become increasingly adaptive to their environment. Recent 

breakthroughs in areas such as artificial intelligence and neural networks have led to a 

transformation in human-machine interaction, far beyond static screens and keyboards. AI-driven 

systems can interpret speech, detect facial expressions, and navigate in physical environments 

(Zhou et al., 2023). Leveraging these abilities, AI is fundamentally transforming the field of 

robotics, enabling systems with advanced autonomy and cognitive functions. Consequently, 

robotic systems will be increasingly designed with capabilities that extend beyond task 

execution, emphasizing flexibility, adaptive behavior, and human likeness, particularly in 

human-robot interaction (Breazeal, 2003).  

As robots become an increasingly substantial part of our daily lives, they should arguably 

behave in ways that feel natural, polite, and predictable to humans, much like how we interact 

with each other. This social expectation stems from the fact that many of our everyday and 

professional tasks rely on communication, collaboration, and emotional attunement, requiring 

robots to behave not only functionally, but also socially appropriately (Breazeal, 2003). 

Ultimately, a robot’s social and emotional awareness contributes to enhanced levels of trust and 

acceptance (Fong et al., 2003) as well as increased task performance in cooperative settings 

(Breazeal, 2003). Building on this, research and development in Human-Robot Interaction (HRI) 

is required to investigate and equip robotics with the necessary verbal and non-verbal capabilities 

to achieve effective communication.  

One such central nonverbal tool that exerts a significant influence on our social 

consciousness is eye gaze (Kleinke, 1986). However, despite recent advances in this area, many 
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current robots still employ only simplistic or no gaze mechanisms at all (Mishra & Skantze, 

2022). As shown in Figure 1, robots like Tesla’s ‘Optimus’ (Tesla, n.d.) or Boston Dynamics’ 

‘Atlas’ (Boston Dynamics, n.d.) omit facial features entirely, underlining the technical and 

conceptual complexities of implementing expressive gaze behavior. To develop machine 

awareness and implementation, a central, profound investigation of social gaze behavior in 

human interaction is necessary.    

Figure 1.  

Examples of Recently Introduced Humanoid Robots.  

   

Note. From left to right: Tesla's Optimus Gen 2, the Atlas robot from Boston Dynamics, and the 

Furhat robot from Furhat Robotics. Of the robots shown, only Furhat includes an integrated gaze 

system.  

 

Gaze and Joint Attention in Human Interaction 

The human gaze system is a dynamic and active mechanism that constantly interacts with 

the world. To direct the human gaze, our eyes perform a variety of movements. Two central 

processes are saccades, referring to rapid jumps between fixation points, and fixations, which 

define periods of relatively still and stable movements where the brain actively processes visual 
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information (Land & Hayhoe, 2001). Beyond our visual perception, the way and where we look 

also conveys information about our mental states to others. In fact, gaze serves not only as a 

perceptual tool but also as a powerful social signal. An individual’s gaze conveys information 

about interest, emotional states, or potential intentions (Emery, 2000). In fact, the ability to 

follow another’s gaze is a fundamental socio-cognitive skill, not only to determine someone’s 

focus but also to enable more advanced social dynamics in human interaction. Joint attention is 

one of these central building blocks that is highly acknowledged in human-human interaction. 

Joint attention is a collaborative, cognitive, and nonverbal process in which two or more 

individuals share their focus or attention on an external object or activity. What distinguishes 

joint attention is particularly the mutual understanding that these individuals are attending to 

something together (Mundy & Newell, 2007). Joint attention can be established when individual 

A follows the gaze focus of individual B to look at the same object jointly. This process involves 

two roles: an initiator who directs attention using gaze or gestures, and a responder who follows 

these cues. In contrast to gaze following, joint attention ensures that both parties are focused on 

the same object and aware of each other’s attention, maintaining a shared focus (Bayliss et al., 

2013). Hence, joint attention can be categorized into two components: Responding to Joint 

Attention (RJA) and Initiating Joint Attention (IJA). RJA describes the role of the responder, 

who attentively follows the gaze of the initiator. In contrast, IJA describes the role of the 

initiator, which actively tries to direct the responder’s attention towards an object or event 

(Mundy & Newell, 2007). Eye gaze in particular plays a central role here, acting as a pivotal cue 

for directing and capturing joint attention. Upon that, joint attention can be achieved through a 

range of nonverbal behaviors such as head orientation, vocalizations, or pointing gestures 

(Mehlmann et al., 2014).  
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To empirically investigate the role of joint attention in human interaction, particularly the 

mechanisms of initiating and responding to joint attention, scientific research established the 

gaze-cueing and gaze-leading paradigm. Originating from the Posner cueing paradigm, which 

investigates the effects of symbolic and reflexive cues on spatial attention (Posner, 1980), the 

gaze-cueing and gaze-leading paradigm incorporate social stimulus such as eye gaze to provide 

cues that direct human attention (e.g., Bayliss et al., 2013; Friesen & Kingstone, 1998; Frischen 

et al., 2007). To study the role of the responder (RJA), a gaze-cueing paradigm is used. In a 

typical set-up, participants demonstrate faster reaction times while reacting to screen-based 

targets that align with the cued direction from a human face. Conversely, the gaze-leading 

paradigm shifts the focus towards the perspective of the gaze initiator, investigating the role of 

IJA. An examination of this paradigm is more complex, typically involving eye-tracking 

technology and a reactive screen-based stimulus (usually an avatar or virtual face) to study 

mechanisms that allow recognition of joint attention (Pfeiffer et al., 2013).  

The importance of joint attention in human-human interaction is underlined by its early 

appearance in development. The ability to execute RJA begins to manifest around 6 to 9 months 

of age when infants start to follow another person’s gaze or pointing gesture. This ability 

demonstrates infants’ early understanding of attentional interest (Mundy & Newell, 2007). 

Following on that, IJA typically develops between 9 and 12 months, showing a gradual transition 

from a passive towards an active role in directing another’s attention (Tomasello, 1999). In this 

early stage, IJA is often achieved through gestures like pointing or showing an object. From this 

early development, IJA manifests itself as a powerful skill, reflecting the desire to share one’s 

interest and exerting influence on another person’s mental state (Mundy, 2018).  



 8 

To further understand the need for joint attention in interpersonal communication, 

additional insights from research on autism spectrum disorder (ASD) provide a crucial reference 

point that underscores the critical role of initiating and responding to joint attention in human-

human communication (Mundy, 2018). Children with ASD have fundamental difficulties in 

establishing shared attention, which challenges their ability to navigate through a social world. 

This impairment creates a cascading effect, significantly hindering the development of social-

cognitive skills (Mundy & Newell, 2007). Remarkably, the ability to understand thoughts, 

beliefs, desires, or emotions – known as the theory of mind – is grounded in the early 

development of joint attention (Charman, 2000). Consequently, joint attention lays the 

groundwork for essential social abilities such as sharing experiences and emotions, social 

bonding, and facilitated turn-taking in interactions (Tomasello, 1999). Serving as a foundational 

skill in human interaction from an early age (Mundy & Newell, 2007), we argue that joint 

attention may also be a critical skill in human-robot interaction.  

Gaze and Joint Attention in Human-Robot Interaction 

Robots that will work and collaborate closely with humans must not only perform 

programmed tasks, but also be able to understand and participate on a shared social stage 

(Breazeal, 2003). Joint attention is a primary mechanism that requires the robot’s understanding 

to recognize, respond to, and actively initiate a shared focus with a human partner in real-time 

(Imai et al., 2003; Scassellati, 2002). The previously discussed concepts of initiating and 

responding to joint attention are directly applicable, defining the robot’s ability to react and 

trigger such behaviors (Mutlu et al., 2009).  

As mentioned above, two paradigms are highly suitable for empirically assessing the 

concepts of initiating (IJA) and responding (RJA) to joint attention. Similarly, the gaze-cueing 
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paradigm is frequently applied in human-robot interaction, replacing human eyes or faces with 

robotic cues.  In other words, gaze-cueing tasks display the robot’s execution of IJA and measure 

human reaction. In this context, “gaze cueing effects” describe a phenomenon where participants 

respond faster to a target that appears in a location where the screen-based face is also looking 

(Willemse et al., 2018). Combining the robot’s referential gaze with multiple modalities, such as 

pointing, creates a more robust and practical effect of IJA (Mehlmann et al., 2014). In addition, 

robots could exert a “gaze checking” behavior, where the robot looks towards the object and then 

briefly back to the human face to verify whether the establishment of shared attention was 

successful (Scassellati, 2002). The robotic capability to direct human attention through IJA has 

shown significant improvements in task performance, particularly when humans are unfamiliar 

with the task or situation (Andrist et al., 2017; Pan et al., 2020). On a more subtle level, studies 

have revealed a powerful effect of IJA in guiding human decision-making as typically shown in 

gaze-cueing paradigms, where participants’ reaction times are usually faster for cued targets 

(Mutlu et al., 2009; Willemse et al., 2018). Further research has shown that proactive guidance of 

attention facilitates learning of knowledge and skills as well as task learning and engagement 

(Kanda et al., 2004). 

On the other hand, the “gaze-leading paradigm” refers to the robot displaying a kind of 

gaze response to the participant’s gaze direction (Willemse et al., 2018). Such tasks effectively 

reverse the roles of the gaze-cueing paradigm, positioning the human as the initiator of joint 

attention and the robot as the one responding to it. Scientific research has shown that robots with 

the ability to respond to human gaze cues are often judged as increasingly competent, intelligent, 

and socially present (Huang & Thomaz, 2011). Responsiveness fosters a sense of being 

understood by the robot, directly affecting the social dynamics between the two interaction 
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partners (Mutlu et al., 2009). Further, communication with attentionally responsive robots has 

been shown to increase task performance and efficiency (Huang & Thomaz, 2011). Thus, a 

central underlying mechanism lies in the robots’ ability to demonstrate an increased 

understanding of human intentions, making the interaction more intuitive (Mehlmann et al., 

2014). 

Joint Attention in Gaze Control Systems 

Gaze-cueing and gaze-leading paradigms provide valuable insights into the human ability 

to respond and initiate gaze. However, they are often limited to discrete, reaction-based tasks in 

controlled settings that do not reflect the context-sensitive and continuous nature of real-world 

human interaction (Pfeiffer et al., 2013). Gaze control systems (GCS) provide a more 

comprehensive approach that incorporates perceptual input and dynamic gaze coordination 

(Admoni & Scassellati, 2017). GCS can be categorized into data-driven and heuristic methods. A 

data-driven GCS uses machine learning from datasets and adapts behaviors through neural 

networks or reinforcement learning, while a heuristic GCS is based on predefined rules or logic 

based on human intuition (Lemaignan et al., 2017; Mishra & Skantze, 2022). The underlying 

architecture of a gaze control system enables the robot to manage its gaze behavior and react to 

specific environmental events.  

Initial research in the domain of joint attention in gaze control systems found a focus on 

the robot’s execution of responding to joint attention (RJA), which displays a reactive behavior 

(Hoffmann & Breazeal, 2004; Imai et al., 2003). Programming a robot to follow a human’s gaze 

is technically less complex compared to a robot that engages in autonomous, attentional 

decision-making (Admoni & Scassellati, 2017). Thus, the dynamic implementation of initiating 

joint attention (IJA) is more challenging as it requires the robotic system to understand 
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environmental context in real-time and direct the human’s attention in a socially meaningful way 

(Admoni & Scassellati, 2017). However, the use of predefined tasks and scenarios can help 

reactive systems to simulate a proactive-looking IJA behavior. For example, Pereira et al. (2019) 

triggered IJA by programming a robot to automatically look at the correct puzzle piece a period 

before it would give a spoken hint in a dialogue act. Similarly, Mehlmann et al. (2014) used a 

two-step approach, where a robot would first look at the correct puzzle piece and then 

immediately follow up with a physical pointing gesture to make the instruction clear. Further 

research equipped the robot with a “gaze checking” tendency to simulate a check during the IJA 

process by briefly looking at the participant, which made the robot seem increasingly engaging 

and natural to the participants (Huang & Thomaz, 2011). While such implementation of IJA can 

also be described as reaction-based behavior, more recent research has focused on building a 

planned-based architecture, where the robot plans its referential gaze for a future rolling time 

window rather than being purely reactive. The robot with the planning-based structure was 

significantly preferred and rated as more interpretable (Mishra & Skantze, 2022).  

Despite the above-mentioned advances in gaze control systems, research in this area of 

joint attention is limited (Admoni & Scassellati, 2017; Lemaignan et al., 2017). Unlike isolated 

gaze cues, joint attention and social mechanisms require tight temporal gaze coordination and 

accountability of perceptual input, intention inference, or multimodal expression (Admoni & 

Scassellati, 2017). Hence, a detailed review of existing studies is essential to validate and 

investigate the role of joint attention in human-robot interaction. 

The implementation of initiating joint attention in gaze control systems was typically 

designed to be optimally helpful, meaning it consistently directs the participant to the correct 

objective (e.g., Mehlmann et al., 2014; Mutlu et al., 2009; Pereira et al., 2019). In consequence, 
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such systems would always assume that the robot knows the correct target and executes a correct 

gaze cue. While foundational, this binary approach – switching IJA as a simple on/off behavior – 

overlooks a critical aspect of social communication and trust: gaze reliability. In human-human 

interaction, we do not just evaluate whether a partner provides an attentional cue, but also 

whether that cue is trustworthy and accurate over time (Frischen et al., 2007). For instance, 

Bayliss and colleagues (2013) found that participants were faster to reengage with faces that 

provided a congruent and reliable gaze cue compared to an inaccurate gaze cue, which had cost 

participants more time monitoring the face. Despite that, frequent HRI literature did not 

differentiate between reliable and unreliable gaze cues. For example, Pereira et al. (2019) 

developed a collaborative system in which the robot initiates referential gaze to provide hints for 

a puzzle. Using a “helper search algorithm”, the robot in their manipulated condition always 

pointed to the correct target, which designed an optimally helpful system. Similarly, Mehlmann 

and colleagues (2014) investigated the role of referential gaze in a sorting task by comparing 

accurate gaze cues with no gaze cues in the control condition. 

However, a small body of research has begun to address this gap. Research from Admoni 

et al. (2014) and Staudte and Crocker (2011) explored the complexities of referential gaze 

reliability. Staudte and Crocker particularly concentrated on the impact of incongruent gaze cues 

in combination with verbalized statements to investigate speech matching. They found that 

incongruent gaze cues – where a robot looked at one object while speaking about a different one 

– significantly disrupted utterance comprehension. Admoni et al. (2014) focused on the effective 

production of robotic suggestions through the combination of gaze and physical actions. They 

used incongruent gaze cues to measure compliance and found that a delay between gaze and 

physical actions significantly increased the likelihood of complying with the robot’s suggestion 
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about where to sort a colored block. Despite making significant contributions, the outlined 

papers demonstrate a predominant focus on referential gaze applied with near-perfect accuracy 

(e.g., Mehlmann et al., 2014; Pereira et al., 2019). In addition, research that accounted for gaze 

reliability was primarily focused on measuring social dynamics rather than performance data 

(Staudte & Crocker, 2011). 

 A second limitation that has been only partially addressed in the literature is the 

complexity of the experimental tasks in interaction with the robots (Chen & Barnes, 2014). In 

more complex situations, people evaluate attentional cues differently than in simple ones (Lavie, 

2005). While studies such as Pereira et al. (2019) or Pan et al. (2020) intentionally incorporated 

varying levels of task difficulty through puzzle complexity or referential ambiguity, many 

studies utilized a consistent, monotonous level of difficulty (Huang & Thomaz, 2011; Mehlmann 

et al., 2014; Mutlu et al., 2009). Despite its usefulness in assessing further manipulated variables, 

such task levels do not account for the complexity of the real world in which humanoid robots 

will increasingly operate (Admoni & Scassellati, 2017). Table 1 provides an overview of 

research papers that include the above-discussed variables, such as joint attention mechanisms, 

gaze reliability, and task complexities.    
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Table 1. 

Overview of Experimental Design Features from Joint Attention Studies that Implemented Gaze 

Control Systems in Human-Robot Interaction in Comparison to the Current Paper.  

Paper RJA IJA Bidirectional 

Flow A 

Difficulty 

Variation B 

Gaze Reliability 

Variation C 

Mutlu et al. (2009) Yes Yes Yes No No 

Huang & Thomaz (2011) Yes Yes No No No 

Staudte & Crocker (2011) No Yes No Yes Yes 

Mehlmann et al. (2014) Yes Yes Yes No No 

Pereira et al. (2019) Yes Yes Yes Yes No 

Pan et al. (2020) Yes No No No No 

The current paper No Yes No Yes Yes 

Note. IJA refers to Initiating Joint Attention, and RJA to Responding to Joint Attention.  

A Bidirectional flow means that the experiment directly integrates responding joint attention and 

initiating joint attention together, without separating the gaze skills. B Difficulty Variation is 

given when the game or task that participants played had different difficulty or complexity 

levels. C Gaze Reliability Variation refers to the fact that robots’ gaze behavior differed in terms 

of pointing to the correct target, for example, also pointed in the wrong direction. 

 

To conclude, research on joint attention mechanisms around human-robot interaction has 

already highlighted its improved engagement, task performance, and efficiency (e.g., Huang & 

Thomaz, 2011). However, the rapid development towards adaptive and social robots requires 

more context-sensitive research, particularly considering a robot’s reliability in guiding human 
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attention. While robots have become significantly more intelligent (Breazeal, 2003), we cannot 

ideally rely on them in every situation, considering that they will play an increasingly 

responsible role in our everyday lives. As a collaborative and interactive partner across various 

fields, robots pose significant societal risks, as they can guide human decision-making through 

misleading gaze cues. The implicit development of complete trust and automation bias 

(Parasuraman & Manzey, 2010), even to the point of overriding one’s judgment, can lead to 

blind following, resulting in costly errors. For instance, in factories, this could lead to increased 

costs due to repeated errors. Of greater significance, such automation bias could also appear in 

the health and care fields, posing dangerous consequences (Goddard et al., 2012). If we equip 

robots with social intention tools like the initiation of joint attention, research must address the 

consequences of such decisions.  

Thesis Outline 

The purpose of this research was to develop a reactive, screen-based gaze control system 

that enables real-time interaction in a context-based task. In alignment with the research aim, this 

context should provide the robot with the opportunity to direct the participant’s attention using 

referential gaze. Finally, this mechanism of initiating joint attention to a specific side allowed for 

control in its reliability and considered gaze quality. Taking this into account, the researcher 

programmed a classification game with two categories on the right and left side, allowing 

participants to drag and drop cards into one of the two categories. This involved internal 

communication with the built gaze control system to enable the robot to plan its gaze. To 

compare the conditions, three different robots were created, each displaying different gaze 

behavior. Two of the three robots, ”Ryan” (high validity) and “Ivan” (low validity), displayed 

referential gaze towards one of the classification categories. Conversely, the third one, “Carl” 
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(neutral robot), did not apply any gaze. To account for differences in gaze reliability, “Ryan” 

belonged to a “high-validity” condition, pointing to the correct classification in 80% of the trials. 

At the same time, “Ivan” displayed the “low-validity” condition, pointing towards the incorrect 

side in 80% of the trials. Finally, to account for complexity variation, statements were 

categorized into easy and hard categories.  

Consequently, this work establishes a unique triadic comparison that not only 

concentrates on the existence of referential gaze but also its quality. Our study design moves 

beyond simple dichotomies and accounts for task complexity and differing gaze accuracy. The 

aim of this multifaceted approach is to enable more profound insights into the execution of joint 

attention, guiding human attention and decision-making in human-robot interaction. The 

following research question was formulated: “Given a varying task complexity, how does the 

reliable execution of referential gaze impact humans’ cognitive and behavioral processes, 

particularly their visual strategy and gaze-follow decisions? “  

In line with the previously discussed literature, we formulated four hypotheses, each 

aimed at assessing the research question from a different methodological viewpoint. The first 

hypothesis pertains to the participants’ performance, particularly referring to their score of 

correctly answered statements and their movement duration. This approach aligns with a body of 

research demonstrating the advantages of responding and initiating joint attention in HRI (e.g., 

Huang & Thomaz, 2011; Mehlmann et al., 2014). The second hypothesis investigates 

participants’ gaze-following behavior, referring to their classification decisions in 

correspondence with the robotic gaze cue. This view is grounded in work by Staudte and Crocker 

(2011), who found that participants trusted robotic gaze cues more than the factually correct 

spoken utterance, indicating a kind of automation bias. Based on that, our second assumption 
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examines participants’ strategic gaze-following behavior during both correct and incorrect 

robotic gaze hints, while interacting with the high-validity and low-validity robot. Pursuing this 

strategic path, the third hypothesis investigates participants’ eye-tracking data, focusing on gaze 

patterns and eye movement predictability across the robotic conditions. While the first three 

approaches had a behavioral nature, the fourth hypothesis examines self-reporting responses, 

particularly about the social attributes of anthropomorphism, likability, intelligence, and trust. 

This fourth assumption, measured through a post-experiment questionnaire, provides a more 

subjective perspective on the participants’ perception of the robots, as observed in various 

literature studies (e.g., Admoni & Scassellati, 2017; Mutlu et al., 2009). Accordingly, research 

was guided by the following hypothesis:  

H1: Participants will perform significantly better in interaction with the high-validity robot 

H2: Participants’ strategic bias to follow the high-validity robot leads to a kind of ‘automation 

bias’, causing users to follow its suggestion even if they are incorrect 

H3: Participants will display more exploratory, unpredictable gaze behavior when interacting 

with the neutral robot, while the existence of referential gaze cues, albeit potentially incorrect, 

will lead to more predictable gaze patterns 

H4: The reliability of a robot's gaze will positively influence the self-reporting social attributes 

of likability, intelligence, anthropomorphism and trust. 
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Methodology 

Design 

 The study used a 3 x 2 repeated-measures design. Three manipulated screen-based robots 

were used in interaction with a classification game that featured two levels of complexity. 

Accordingly, the first independent variable was robot identity, which implicitly varied in two key 

aspects: the presence of Initiating Joint Attention (IJA, or referential gaze) and the reliability of 

its gaze cues. In this case, IJA referred to the robot’s expressions of eye movement to the 

classification categories, while reliability defined the degree to which these gaze behaviors were 

directed to the correct or incorrect classification category. The first robot, ‘Ryan’, directed 

referential gaze to the correct classification category for 80% of the trials (and 20% to the 

incorrect side). Throughout this paper, we refer to this robot by its name or primarily as the "high 

validity" robot. The second robot, ‘Ivan’, displayed referential gaze to the incorrect classification 

category in 80% of the statements (and 20% to the correct side). Thus, Ivan was defined as the 

“low validity” robot. The third robot, ‘Carl’, did not execute any IJA, serving as the ‘neutral’ 

robot. The second independent variable was statement difficulty, referring to the ‘easy’ and 

‘hard’ statement categories. In total, 90 statements were presented across all conditions. The 

dependent variables encompassed four measurement groups: (1) performance metrics (e.g., 

accuracy score in classification game), (2) gaze-following data (e.g., whether participants 

followed the attentional cues), (3) eye-tracking data, capturing visual attention during interaction 

and (4) self-reporting measures (via a post-interaction questionnaire).  
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Participants 

 A total of 33 participants (15 male participants, 18 female participants, Age: M = 23.00, 

SD = 2.44) were recruited. Participants were selected using convenience sampling. All 

participants were students at the University of Twente. Fourteen participants lived in the 

Netherlands, and 19 participants lived in Germany. The inclusion criteria contained a sufficient 

level of English to understand the game statements and questionnaires, as well as normal or 

corrected-to-normal vision. No participants were excluded based on predefined criteria. The 

study and its procedures were approved by the local ethics committee of the University of 

Twente (request 250748).  

Apparatus and Materials 

Hardware 

 The technical setup for this experiment includes an HP Z1 computer with an AOC 

G2460PF 24-inch screen, which was connected to a Tobii Pro Fusion or Tobii X3 fixed eye-

tracker. Additionally, the computer was connected to a Brio 4K streaming camera, which was 

mounted at the top of the screen. An iPad Air with a 9.7-inch screen was used to answer the 

questionnaire. Participants were seated at a desk in a monitored laboratory room. Screen height 

was individually adjusted so that its center aligned with the participant’s eye level. Participants 

were approximately 50cm away from the monitor. A mouse and keyboard were connected to the 

computer.  

Software 

 A questionnaire was designed and administered using Qualtrics Software (Qualtrics, 

2025). The content of the questionnaire consisted of a briefing, informed consent, experimental 
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information, and scale items to evaluate each robotic condition in the dimensions of 

anthropomorphism, likability, perceived intelligence, and trust. To measure the first three 

variables, three dimensions with five scale items of the Godspeed questionnaire were used. The 

three dimensions were selected as they represent core and validated metrics for assessing the key 

attributes of social perception in human-robot interaction (Bartneck et al., 2009). In addition, the 

choice of metrics aligns with frequently used constructs to evaluate social robots (Admoni & 

Scassellati, 2017). In the questionnaire, participants were for example asked to rate the robot 

between the scale items of ‘fake’ vs. ‘natural’ or ‘incompetent vs. ‘competent’ (Bartneck et al., 

2009). While the original Godspeed questionnaire encompasses five dimensions, the research 

team decided to exclude the dimensions of perceived safety and animacy as the robots displayed 

limited expressive abilities and only screen-based interaction. Lastly, the questionnaire used the 

brief 14-item version of Schaefer’s Trust-Perception Scale for HRI (TPS-HRI). While the 

development of the full TPS-HRI involved the Army Research Laboratory, the 14-item concise 

version is frequently used in Human-Robot literature to measure how participants trust the robot 

(Schaefer, 2016). The TPS-HRI was answered on a seven-point Likert scale from ‘Strongly 

Disagree’ to ‘Strongly Agree’. Items such as “The robot is reliable” or “The robot provides 

feedback” were included in this version. The research team used Tobii Pro Lab for screen 

recording, eye tracking calibration, and analysis of eye tracking variables. The experimental 

game and gaze control system were programmed and designed by the research team using 

HTML, CSS, JS, and Python as detailed below.  

Robotic conditions 

The three manipulated gaze conditions were allocated to similar-looking robot faces that 

display a high resemblance in their facial features, such as a slight smile, eyebrows, nose, robotic 
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ears, and a slightly positive facial expression. The robots were artificially generated using 

OpenAI’s DALL·E 2 image-generation model via GPT-4 (OpenAI, 2025). They were 

specifically designed to feature characteristics that already correspond to real humanoid robots, 

such as the iCub (Metta et al., 2010). Prompting statements to generate robotic pictures can be 

found in Appendix 1. Figure 2 shows an image of each generated robot.   

Figure 2. 

The Three Robots used in the Experiment overlaid with the Eyes of the Interactive Gaze System.  

 

Note. Each static robotic picture was generated using OpenAI’s DALL-E 2 Image Generation 

Model. Ryan (high validity) on the left side, Ivan (low validity) in the middle, and Carl (neutral/ 

control) on the right side.  

The experimental game 

 The experiment involved playing a classification game with a screen-based robot. A 

picture of the experimental interface is shown in Figure 3. Participants were able to reveal a card 

by clicking on the blue stack of cards and move and drop the card to one of the two categories on 

the left or right side based on their intuition whether the statement was true or false. The mouse 

was used to move a card around. The stack of cards consisted of 90 statements, with 45 

categorized as easy and 45 categorized as hard. The statements were chosen from a public 
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database of general facts hosted by the machine learning platform Hugging Face (L1Fthrasir, 

2023). The list of all statements can be found in Appendix 5. An example of a simple statement 

is “The Sun is more massive than the Earth”. A more complex question was “The respiratory 

system prevents the exchange of gases between the body and the environment”. The researcher 

initially selected and categorized each statement. Subsequently, a third-party reviewer 

independently assessed and validated the categorization to ensure reliability. The order of 

statements was randomized entirely for each participant. However, the algorithm considered 

each robot to receive the same number of easy and hard questions. To enable bidirectional real-

time communication between user events, such as a card reveal or card drop, the program used a 

WebSocket API on the local connected network, allowing the gaze control system and 

classification game to interact in real-time. 
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Figure 3.  

The Interface of the Experimental Game and real-time animated Eyes (Gaze Control System) 

that shows the current Robot, the Robot’s Name, the Cards to reveal, and the Categories True 

(left side) and False (right side).  

 

 

The gaze control system 

 The gaze control system was built and implemented using HTML, CSS, JavaScript, and 

Python. Using a static robotic picture, the interactive system encompasses the eyes and pupils. 

As shown in Figure 4, the input system, written in Python and JavaScript, was locally connected 

using the WebSocket API. The program received data input from the Brio 4K camera to detect 

face and head position in real-time. Additionally, it received user events such as game start, card 

reveal, or card drop. Such event messages not only contained the event name, but also additional 

calculated information such as the statement, the correct side, or the following robotic condition. 
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All these input parameters were checked and validated in the gaze control system, whose output 

determined the robot’s gaze behavior in real-time. During the experiment, the gaze system 

(output) was limited to three gaze behaviors: mutual gaze, gaze aversion, and Initiating Joint 

Attention (IJA). Mutual gaze describes a condition in which the pupils of the robot are positioned 

in alignment with the coordinates of the face in front of the screen. This created an illusion in 

which it looked as if the robot was looking at the participant. In this situation, the robotic eyes 

followed the participant’s head movement without a recognizable latency. Avoiding staring 

behavior, the robot also applied gaze aversion within mutual gaze at randomized time intervals 

between 1000 and 3000 milliseconds. Gaze aversion can be described as a periodically brief, 

fixed-duration gaze shift toward a randomly determined off-center point. Gaze Aversion was 

biased towards vertical rather than horizontal displacement to avoid confusion with IJA 

behavior. Finally, IJA describes a triggered gaze behavior, in which the robot smoothly shifts its 

gaze from its current position towards a designated direction and maintains its gaze fixed on that 

side for 2000 milliseconds unless it smoothly transitions its gaze back towards the user’s 

currently detected face position.  
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Figure 4. 

Overview of the Gaze Control System with Its Three Layers.  

 

Note. The Perception layers detected real-time information from the participant’s face and the 

experimental game. Information was processed and prioritized in the Priorization Layer to finally 

calculate the eye movement, which was applied from the output layer.   

 

During the game, mutual gaze was the default active behavior when a user was present, 

and no higher-priority actions occurred. IJA was triggered for a card reveal event and, after a 

short delay, explicitly interrupted and overridden mutual gaze until the IJA action was complete. 

IJA was executed in the high-validity (Ryan) and low-validity (Ivan) robots only. This is also 

visualized in Figure 4, which shows the algorithmic prioritization.   
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Procedure 

 Each participant was recruited individually and invited to sit in front of the researcher’s 

laptop at a desk. After the introduction, the participant received the iPad with the Qualtrics 

Questionnaire. After provision of electronic consent and a study briefing in the questionnaire, 

participants received a second oral briefing about the experimental procedure as well as the 

opportunity to ask remaining questions before the experimental game. If there were no more 

questions, participants were instructed to begin calibrating the eye tracker by following a dot on 

the screen. After successful calibration, defined by an average calibration accuracy of less than 

0.5 degrees of visual angle, participants saw the web interface and were able to enter their 

participant ID. Before the actual game, each participant was instructed to participate in a practice 

round, in which they had to classify six statements. Participants were not able to see one of the 

robots during the practice session. With the end of that session, participants were able to start the 

real game. After the practice session, the researcher left the monitored room so that the 

participant could play the game undisturbed. As visualized in Figure 5, participants always 

started with the neutral robot (Carl), which was then randomly switched after each card drop, 

considering that no robot appears twice in a row. This randomized process was repeated for a 

total of 90 statements. After completing the statements, a pop-up window informed participants 

about the end of the experimental game. Thereupon, participants were required to complete a 

post-questionnaire with dimensional questions for each robot. The questionnaire order began 

with the neutral robot (Carl), continued with the high-validity robot (Ryan), and ended with the 

low-validity robot (Ivan). A debriefing followed.  
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Figure 5.   

The procedure of the entire experiment, starting with the informed consent and ending with an 

evaluation questionnaire and debriefing.   

 

Data Analysis 

 All data analysis was conducted using Python in Visual Studio Code and R in RStudio. 

During the experiment, a CSV file was created for each participant. This file contains event and 

performance-related information as well as specific timestamps for each piece of information. A 

Python script was used to combine each participant’s file into an overall CSV file.  

An additional Python script was used to transform the raw Qualtrics data files into a 

suitable CSV file, which included demographic variables, consent information, and numerically 



 28 

converted values. In this script, three reversely coded trust items (Item 9, Item 11, Item 14) from 

the TPS-HRI scale (Schaefer, 2016) were converted appropriately.  

For the eye-tracking data, specific areas of interest were marked on the screen recordings 

in Tobii Pro lab. Figure 6 shows a picture of the relevant areas of interest. For every participant, 

a TSV file was downloaded separately from Tobii Pro lab. A Python script was used to combine 

the relevant eye-tracking data for each participant with the event CSV file. This script, located in 

Appendix 7, enables differentiation of eye-tracking data for each game event. 
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Figure 6. 

A Screenshot of the Screen recording with the Areas of Interest highlighted in different Colors. 

 

Note. The areas ‘true_category’ and ‘false_category’ on the left and right sides were combined 

into ‘classification_category’. The ‘robot’ AOI encompasses the green shape, the ‘face’ AOI 

encompasses the oval ‘slate-blue’ shape, and the ‘eyes’ AOI shapes the central, white-bordered 

rectangle. 

 

Performance and Move Duration Analyses 

The analysis of performance data encompassed the proportion of correctly answered 

statements (accuracy score, ranging from 0 to 1) and move duration, which defined the time 

(seconds) it took participants to drop a card into a classification category after card reveal. The 

effects of these variables were examined using a 3 (Robot: High-validity, low-validity, neutral) x 

2 (Difficulty: Easy, hard) repeated-measures Analysis of Variance (ANOVA). Significant main 

effects were further investigated using post-hoc comparisons with Bonferroni correction.  
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Gaze following analysis  

For the gaze following analysis, a participant’s gaze follow was defined for every trial, 

where the participant moved the item to the identical side to which the robot applied referential 

gaze before. Since the neutral robot did not use any referential gaze, this was only calculated for 

the high-validity and low-validity robots. Descriptive statistics (frequencies and percentages) 

were computed for participants’ gaze-following behavior (followed, not followed). Participants’ 

data were segmented by robotic identity, gaze correctness (I.e., did the robot look to the correct 

side?), and difficulty level (hard or easy statements). Gaze following behavior was further 

analyzed using the framework of signal detection theory (SDT). Therefore, the two key metrics 

of sensitivity (d’) and response criterion (c’) were computed. To investigate how these measures 

were affected by robotic identity and difficulty level, a 2 (Robot: High-validity, low-validity) x 2 

(Difficulty: Easy, hard) repeated-measures ANOVA was calculated for the metric d’ and c’, 

respectively.  

Eye-Tracking analyses 

 Participants’ visual attention and gaze patterns were analyzed using a variety of eye-

tracking metrics. Heatmaps were created to visualize participants’ gaze concentrations during 

each robotic and difficulty condition. Previously defined AOIs (see Figure 6) were used to 

investigate total dwell time and frequency of visits. The influence of the experimental conditions 

on these metrics was assessed using a series of 3 (Robot: High-validity, low-validity, neutral) x 2 

(Difficulty: Easy, hard) repeated-measures ANOVAs. Subsequently, an advanced AOI transition 

analysis was applied to examine participants’ attentional shifts and gaze transitions. This was 

further visualized for the AOIs using transition probabilities. Chi-squared tests were employed to 

determine if the observed transition patterns differed significantly as a function of robot identity 
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and difficulty. Finally, a Recurrence Quantification Analysis (RQA) was applied to assess the 

predictability and structure of participants’ gaze patterns. The RQA computed a Determinism 

(DET) score, which quantifies the extent to which a pattern or sequence of states repeats itself 

(Anderson et al., 2013). A high DET score, usually for values above 70%, indicates a structured 

and repeated gaze frequency. A lower DET score, usually less than 40%, suggests more random, 

unstructured gaze movement. A 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty: 

Easy, hard) repeated-measures ANOVA was conducted on the DET scores. 

Self-report questionnaire analysis plan 

For the self-report analysis of Qualtrics data, ratings for the following variables were 

computed respectively for each robot: Anthropomorphism, Likability, Intelligence, and Trust. To 

compare participants’ subjective ratings across the three robots (High-validity, low-validity, 

neutral), a series of four separate one-way repeated-measures ANOVAs was conducted. 

Significant effects were further examined using post-hoc pairwise comparisons with a 

Bonferroni correction.  
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Results 

Performance Analysis 

The performance data encompasses the participants’ accuracy scores of correctly 

answered statements as well as their move durations to classify a statement. Based on a 2.5 

standard deviation rule applied to each participant’s data, 82 trials (2.76% of the total) were 

removed as outliers from the move duration variable prior to the main analysis. Participants 

scored consistently higher on ‘easy’ (M = 0.93, SD = 0.25) compared to ‘hard’ (M = 0.62, SD = 

0.47) statements across all robots. As visualized in Figure 7, this trend is also reflected in the 

movement duration scores, with participants showing shorter durations for statements 

categorized as easy (M = 4.82s, SD = 3.94) compared to those marked as hard (M = 8.55s, SD = 

5.92s). 
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Figure 7.  

Bar Chart of Mean Move Duration across the Three Robots and Easy and Hard Difficulty 

Levels. 

 

Note. The bar chart displays the mean time in seconds that participants took to complete a trial 

for each of the three robots and two difficulty levels. The data shown are from trials remaining 

after the removal of outliers. Error bars represent ±1 standard error of the mean. *** p < .001. 

 

A 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty: easy, hard) repeated-

measures ANOVA was conducted to examine effects on task accuracy percentage. The analysis 

revealed no significant main effect of robot on the accuracy score (F(2, 64) = 0.26, p = .76, ηg² = 

.003), suggesting that the performance did not differ significantly across the three robots. As 
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expected, there was a significant main effect of Difficulty (F(1, 32) = 333.66, p < .001, ηg² = 

.670), with participants displaying significantly higher accuracy on easy tasks (M = 93.2%, SD = 

7.25%) compared to ‘hard’ tasks (M = 62.5%, SD = 13.8%; Mean Diff = 30.8, 95% CI [27.3, 

34.2]). The Robot x Difficulty interaction effect was not statistically significant (F(2, 64) = 2.75, 

p = .072, generalized η² = .023). 

For move duration, a 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty: easy, 

hard) repeated-measures ANOVA was conducted. The analysis revealed a statistically significant 

main effect of robot on move duration (F(2, 64) = 6.19, p = .003, ηg² = .017). Post-hoc pairwise 

comparisons with Bonferroni correction displayed participants having significantly longer move 

durations when interacting with the neutral robot (M = 6.69s, SD = 2.83s) compared to the high-

validity robot (M = 6.00s, SD = 2.64s;	Mean Diff = 0.69s, 95% CI [0.15, 1.22], p = .008). No 

other pairwise differences for the main effect reached statistical significance (High-validity vs. 

low-validity: p = .712; low-validity vs. neutral: p = .097). As expected, there was also a 

significant main effect of Difficulty, F(1, 32) = 234.96, p < .001, ηg² = .352. Participants 

exhibited significantly shorter move durations on ‘easy’ tasks (M = 4.70s, SD = 1.77s) compared 

to 'hard' tasks (M = 7.90s, SD = 2.56s; Mean Diff = -3.19s, 95% CI [-3.62, -2.77]). The Robot x 

Difficulty interaction effect was not statistically significant (F(2, 64) = 0.79, p = .459, ηg² = 

.001). 

Gaze Following Analysis 

The experimental design for the high-validity robot (Ryan) aimed for its gaze cues to 

point in the correct direction in 80% of instances, with the remaining 20% being incorrect. For 

the low-validity robot (Ivan), the gaze was programmed to look in the incorrect direction in 80% 

of cases. To enhance internal validity, the assignment process of correct and incorrect gaze hints 
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was randomized by chance for each trial. Hence, analysis of the collected data revealed that gaze 

cues from Ryan were correct in 77.2% of trials (n = 770 out of 998), while Ivan displayed gaze 

towards the correct side in only 20.9% of trials (n = 205 out of 982). A ‘gaze follow behavior’ 

was defined as an instance where a participant’s choice of side was congruent with the direction 

of the robot’s referential gaze cue. 

Figure 8 illustrates the proportional frequency with which participants chose the 

classification category indicated by the robotic gaze cue. When the high-validity robots’ gaze 

was correct, participants followed in 80.8% of cases (n = 622 out of 770 total correct gaze trials; 

easy statements: 94.3%, hard statements: 67.4%). In terms of incorrect robotic execution from 

the high-validity robot, participants followed its misleading gaze in 34.2% of cases (n = 78 out of 

228 total incorrect gaze trials; easy statements: 12.3%, hard statements: 56.1%). For the low-

validity robot, when gaze was correct, participants followed in 75.1% of cases (n = 154 out of 

205 total correct gaze trials; easy statements: 91.6%, hard statements: 57.1%). When gaze was 

incorrect, participants followed this misleading gaze in 21.2% of cases (n = 165 out of 777 total 

incorrect gaze trials; easy statements: 7.3%, hard statements: 34.6%). 
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Figure 8.  

Bar Charts showing the Percentage of Participants that followed the Robotic Gaze Hints in their 

Decision-Making Process for the High-Validity (Ryan) and Low-Validity (Ivan) Robots across 

Easy and Hard Statements.  

 

Note. The bar chart on the left side visualizes this behavior, when the robotic gaze hints pointed 

to the correct category, while the right chart indicates behavior when robotic cues were 

misleading. Error bars represent ±1 standard error of the mean (SEM). *** p < .001. 

 

To gain detailed insight into participants’ gaze-following behavior, the inferential 

analysis was approached from the perspective of Signal Detection Theory (SDT). This method 

allowed the separation of two key processes. The metric of sensitivity (d’) represents how well 

participants could tell whether a robot’s gaze cue pointed to the correct location. Secondly, the 

response criterion (c’) measures the participants’ general bias to follow the gaze cue. For d’, a 
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value of zero would indicate a complete inability to distinguish between correct and incorrect 

gaze cues. Hence, a value of 1.0 is considered to reflect a moderate sensitivity, while a value of 

3.0 or higher would indicate a near-perfect discrimination. For the c’ value, the number zero 

would represent a neutral bias or a neutral strategy of the participants. In alignment with SDT, 

every c’ value below the zero line can be defined as liberal bias, a tendency to follow the robot. 

Positive values instead can be defined as conservative bias, a tendency not to follow the robotic 

gaze cue. Although this is not strictly bounded, values for c’ typically fall between -1 and +1, 

with values further from zero indicating a stronger bias. For both sensitivity and response 

criterion, two separate 2 (Robot: High-validity vs. low-validity) x 2 (Difficulty: Easy vs Hard) 

repeated-measures ANOVAs were computed.  

 The analysis of sensitivity revealed a significant main effect of difficulty (F(1,32) = 

137.64, p < .001, ηg² = .54) with participants being significantly less able to distinguish between 

correct and incorrect gaze cues during the ‘hard’ category (M = 0.45, SD = 0.77) compared to the 

‘easy’ condition (M = 2.25, SD = 0.67; Mean Diff = 1.81, 95% CI [1.49, 2.12]). However, no 

significant differences emerged between the robot (p = .320) and sensitivity, nor was there a 

significant interaction between the robot and difficulty (p = .169). This is highlighted in Figure 9, 

where participants achieved a significantly higher sensitivity across the easy condition compared 

to the hard one. These findings suggest that the robot did not affect how well participants could 

distinguish between correct and incorrect gaze cues. Instead, task difficulty was the primary 

driver impairing participants’ ability to evaluate the quality of gaze hints.  
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Figure 9. 

Bar Chart of the Mean Sensitivity (d’) from Signal Detection Theory Method as a Function of 

Task difficulty for the High-validity and Low-validity Robot. 

 

Note. Bars represent mean sensitivity scores for participants while discriminating between 

correct and incorrect gaze cues. Higher values indicate better discrimination. Error bars represent 

±1 standard error of the mean (SEM). 

 

However, the analysis of response criterion showed a significant main effect of robot 

(F(1,32) = 37.67, p < .001, ηg² =.28). Consequently, participants adopted a different strategic 

bias towards the robots. As visualized in Figure 10, participants were significantly more inclined 

to follow gaze cues from the high-validity robot compared to the low-validity robot (Mean Diff = 
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0.48, 95% CI [0.32, 0.64], p < .001). Both bars of Figure 10 for the low-validity robot are 

positive, showing participants’ conservative bias towards the unreliable gaze (M = 0.18, SD = 

0.40). For the high-validity robot, the two bars position themselves consistently below the zero 

line, reflecting participants’ willingness to follow its gaze (M = -0.30, SD = 0.33). This finding 

suggests that participants developed a consistent strategic preference for trusting the reliable, 

high-validity robot. Apart from that, neither task difficulty (p = .421) nor the interaction between 

robot and difficulty (p = .814) had a significant effect, reflecting that this strategic preference 

was adopted consistently regardless of task difficulty. 
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Figure 10.  

Bar Chart of Response Bias (c’) criterion from Signal Detection Theory Method as a Function of 

Task difficulty for the High-validity and Low-validity Robot. 

 

Note. Bars represent participants’ average response bias. Negative values reflect tendencies to 

follow the cue, while positive values reflect a tendency to ignore the cue. Error bars represent ±1 

standard error of the mean (SEM).  

 

To summarize, the above analyses and use of Signal Detection Theory revealed that task 

difficulty significantly reduced participants’ ability to distinguish between correct and incorrect 

cues (sensitivity), regardless of the robot identity. However, the strategic response bias showed 

strong preferences to follow the high-validity robot’s gaze more than that of its counterpart (low-
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validity), regardless of task difficulty, which indicates a strategic trust in the more reliable robot, 

even when cues were misleading.   

Eye-tracking analysis 

Analysis of Areas of Interest 

 To examine participants’ visual attention, gaze data were analyzed based on predefined 

Areas of Interest (AOI). As mentioned in the methodology, the main AOI groups encompassed 

the blue cards (“cards”), the two classification category fields (“Classification”), and the robot 

(represented by the AOIs of “eyes”, “face” and “robot”, while the last one accounted for the 

entire robot picture with the grey background). An overview of the AOI can be found in the data 

analysis part of the methodology (Figure 6). To illustrate visual attention, Figure 11 shows a 

heatmap of where participants looked most frequently. Heatmaps for further conditions can be 

found in Appendix 4. Figure 11 shows the high-validity robot for ‘hard’ statements only but can 

be considered representative as basic visual allocation across all conditions.  
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Figure 11.  

Heatmap of Participants’ Visual Fixation for the High-Validity Robot During Hard Statements.

 

Note. This heatmap shows an overview of participants’ visual allocation. Higher concentration of 

fixations is represented by ‘darker’ colors.  

 

 To investigate participants’ eye movements in alignment with the defined AOIs, we 

started the eye-tracking data analysis with an examination of proportional dwell times (the 

percentage of total trial time spent looking at an area) and fixation frequency (the percentage of 

total fixations within an area). As highlighted in Figure 11, our analysis focused on three 

representational areas: the cards, the robotic face, and the classification category (including the 

right and left classification sides). For each metric and AOI, we conducted a 3 (robot) x 2 

(difficulty) repeated-measures ANOVA.  

Starting with the cards, a dwell analysis revealed only a significant effect of difficulty 

(F(1, 31) = 200.27, p < .001, ηg² = .144), indicating that participants spent a larger amount of 
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time focusing on hard statements (M = 58.7%, SD = 10.9%) compared to easy ones (M = 44.1%, 

SD = 10.1%; Mean Diff = -14.6, 95% CI [-17.0, -12.2]). No significant differences between the 

robots (p = .087), nor an interaction effect (p = .119) were found. This trend continues for the 

proportional fixation frequencies, showing only a significant impact of difficulty level (F(1, 31) 

= 230.27, p < .001, ηg² = .196) but no effect of robot (p = .231), or an interaction (p = .161) 

An analysis of participants dwell time towards the classification categories indicated a 

significant effect of difficulty (F(1, 31) = 78.51, p < .001, ηg² = .172) as well as a substantial 

impact of robot identity (F(2, 62) = 5.71, p = .005, ηg² = .018). However, the interaction was not 

significant (p = .280). Post-hoc comparisons showed that participants spent significantly more 

time examining the classification categories when interacting with the low-validity robot (M = 

15.1%, SD = 5.4%) compared to both the high-validity robot (M = 12.5%, SD = 4.3%; Mean Diff 

= -2.6, 95% CI [-3.0, -1.0], p = .012), and compared the neutral robot (M = 12.0%, SD = 4.9%; 

Mean Diff = 3.1, 95% CI [1.0, 4.0], p = .013). This finding, also highlighted in Figure 12, 

indicates participants’ uncertainty and their stronger verification after misleading gaze cues from 

the robot. A similar result was obtained in the proportional fixation frequency analysis, showing 

a significant effect of robot (F(2, 62) = 5.55, p = .006, ηg² = .004) and difficulty (F(1, 31) = 

94.97, p < .001, ηg² = .080) with no interaction effect (p = .543). For the significant effect of 

difficulty, participants dwelled longer during hard statements (M = 16.2%, SD = 5.6%) than easy 

statements (M = 10.2%, SD = 3.5%; Mean Diff = 6.0, 95% CI [5.0,8.0], p < .001).  
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Figure 12 

Bar Chart of the Proportional Dwell Time that Participants spent on the AOI Classification 

Categories. 

 

Note. The classification category AOI includes the left and right classification boxes on the sides 

of the experimental game. Outliers greater than 2.5 standard deviations from the mean were 

removed prior to analysis. Error bars represent ±1 standard error of the mean (SEM). *p < .05. 

 

Finally, the analysis of dwell time for the “face” AOI showed a significant main effect of 

both robot identity (F(2, 62) = 10.84, p < .001, ηg² = .019) and difficulty level (F(1, 31) = 82.08, 

p < .001, ηg² = .081). In contrast to the previous analyses, an interaction effect between robot and 

difficulty level was also found (F(2, 62) = 11.49, p < .001, ηg² = .010), suggesting that the 

amount of time participants looked at the robot was influenced by statement complexity. Post-
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hoc testing revealed that participants spent a significantly greater proportion of time looking at 

the face while interacting with the neutral robot (M = 23.3%, SD = 9.8%) compared to both the 

high-validity robot (M = 18.8%, SD = 8.1%; Mean Diff = -4.5, 95% CI [-7.0, -2.0], p = .007) and 

the low-validity robot (M = 18.2%, SD = 8.7%; Mean Diff = 5.1, 95% CI [3.0, 9.0], p = .003). 

This is also visualized in Figure 13. Further, this finding found support from the analysis of 

proportional fixation frequency, showing a significant effect of robot (F(2, 62) = 5.03, p = .009, 

ηg² = .009) and difficulty (F(1, 31) = 84.09, p < .001, ηg² = .126) as well as an interaction effect 

(F(2, 62) = 4.46, p = .015, ηg²= .004). Post-hoc analysis of main effects revealed that while 

participants fixated more on the face during hard statements for all robots, this effect was most 

pronounced for the neutral robot. 
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Figure 13. 

Bar Chart of the proportional Dwell Time that Participants spent on the Face AOI during the 

experiment for the three robots for easy and hard statements.  

 

Note. Outliers greater than 2.5 standard deviations from the mean were removed prior to 

analysis. Error bars represent ±1 standard error of the mean (SEM). *p < .05. 

 

Advanced AOI Transition Analysis 

 The previous and initial eye-tracking analysis focused on where and how frequently 

participants looked at the AOIs. Taking it a step further, this section applied an advanced AOI 

transition analysis to investigate the dynamics of attentional shifts, particularly the transitions 

between AOIs and their directionality. Hence, the previously examined AOIs - “cards”, “face”, 

and “classification categories” - were used. Figure 14 illustrates two representative transition 
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probability maps for the neutral robot. Additional transition maps of the high-validity and low-

validity robots can be found in Appendix 4 (Figure 2).  

 Accounting for an investigation of fixation-sustaining and strategical transition patterns, 

two underlying behavioral gaze patterns were identified using the transition maps. These 

strategic patterns consistently dominated across all complexity levels and robotic identities. First 

and most frequently, a dominant self-transition to stay at the ‘cards’ AOI was observed. As 

visualized in Figure 14, the cards AOI became a gaze focus, with participants being extremely 

likely to remain at that area with their gaze, even more likely for ‘hard’ statements (from ‘easy’ 

to ‘hard’: high-validity robot: 83% → 91%, low-validity robot: 83% → 91%, neutral robot: 83% 

→ 92%). This finding suggests that participants allocated more cognitive effort and processing 

time to read and understand more difficult statements. Apart from that, the most significant 

transitional pattern was a loop between the robot and classification categories. In contrast to the 

first pattern, transitions from the robot to the classification AOI diminished during ‘hard’ 

statements (from ‘easy’ to ‘hard’: high-validity robot: 21% → 16%, low-validity robot: 22% → 

17%, neutral robot: 17% → 13%). Such a decrease could imply a strategic trade-off, where 

participants made more use of social or referential cues from the robot in ‘easier’ trials, while 

they relied more heavily on prolonged fixations on the statement assumptions during ‘hard’ 

tasks. In addition, this demonstrates a strategic shift towards more sustained fixations during 

more complex statements, rather than assessing the robotic cues.  
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Figure 14.  

AOI Transition Probabilities for the Neutral Robot (Carl) in Easy and Hard Scenarios, 

highlighting the Gaze Transition Dynamics for Participants in the Experimental Game.  

 

Note. Matrices show the likelihood of gaze moving from a starting AOI (y-axis) to an AOI 

destination (x-axis). 

 

 Besides the visualized differences, a Chi-Squared test was applied to formally assess 

whether participants’ gaze strategies varied across the experimental conditions. The analysis 

revealed a significant effect of both difficulty level (χ(10)² = 38782.38, p < .001) and robot 

identity (χ(16)² = 38721.37, p < .001), confirming that participants altered their visual gaze 

strategy in response to task complexity and robot.  

 A post-hoc analysis using standardized residuals found that participants adapted a more 

focused strategy during ‘hard’ trials as the ‘Cards → Cards’ self-transition occurred significantly 

more frequently than expected (Residual = +53.61). In contrast, ‘easy’ statements were 

characterized by more social monitoring as the ‘Classification → Robot’ transition occurred 
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significantly more often (Residual = +18.28). Examining the robot identity, our analysis showed 

a “stickier” gaze behavior towards the neutral robot as the ‘Robot → Robot’ self-transition 

showed significantly more trials (Residual = +63.29). Conversely, participants displayed 

significantly more interaction between the ‘Robot → Classification’ loop when interacting with 

the high-validity (Residual = +10.09) and low-validity robots (Residual = +10.83). Hence, 

participants engaged significantly more in the ‘Robot ↔ classification’ loop and displayed a 

more integrative back-and-forth strategy when the robot displayed a kind of referential gaze, no 

matter if reliable or not. 

Recurrence Quantification Analysis 

 The previous transition analysis identified specific strategic moves and detailed gaze 

patterns applied by the participants. Upon this, the following analysis shifted to a macro-level 

understanding of the general gaze strategy. Particularly, the Recurrence Quantification Analysis 

(RQA) assessed the broader structure and the predictability of the entire strategic sequence for 

each trial. The RQA primarily focused on the metric of Determinism, which states how 

predictable and structured the participants’ gaze strategy is (Anderson et al., 2013). A high 

Determinism score indicates a structured and more similar gaze strategy, while a low 

Determinism score would suggest a more chaotic and exploratory gaze path. Determinism rates 

were analyzed using a 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty: Easy, hard) 

repeated-measures ANOVA.  Before analysis, 1.76% (n = 50) of the data was removed based on 

the previously defined 2.5SD rule.  

 The ANOVA revealed a significant main effect of robot identity (F(2, 62) = 5.79, p 

= .005, ηg² = .009) and difficulty (F(1, 31) = 72.20, p < .001, ηg² = .091). No significant 

interaction effect was observed (p = .909). Post-hoc comparisons (with Bonferroni correction) 
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revealed that gaze patterns in the presence of the low-validity robot (M = 0.77, SD = 0.19) were 

significantly more deterministic compared to the neutral robot (M = 0.74, SD = 0.22; Mean Diff 

= 0.03, 95% CI [0.01, 0.05], p = .012). No significant differences emerged between the high-

validity and low-validity robots (p = .065), nor between the high-validity and neutral robots (p = 

.360). As visualized in Figure 15, the results demonstrate apparent differences in determinism 

according to the complexity level, but also represent the neutral robot with the lowest mean 

results, suggesting that participants adopted a marginally more exploratory approach for these 

and more difficult trials. 
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Figure 15. 

Bar Chart of the Mean Determinism (DET) Scores for the Three Robots and Difficulty Levels.  

 

Note. A high DET indicates higher predictability of gaze patterns. Data points identified as 

outliers were removed prior to analysis. Error bars represent ±1 standard error of the mean 

(SEM). *p < .05. 

 

Analysis of Subjective Ratings 

Across all subjective assessments from the Qualtrics Questionnaire, the high-validity 

robots’ performance consistently surpassed that of the other two. As visualized in Figure 16, the 

high-validity robot (Ryan) obtained the highest ratings in anthropomorphism (M = 3.15, SD = 

1.02), likability (M = 3.70, SD = 1.05), intelligence (M = 3.48, SD = 0.91), and trust (M = 4.12, 

SD = 1.03). The neutral robot (Carl) displayed the lowest average ratings for anthropomorphism 
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(M = 2.49, SD = 0.83) and trust (M = 3.50, SD = 0.74), while the low-validity robot (Ivan) was 

the weakest for likability (M = 2.40, SD = 0.84) and intelligence (M = 2.53, SD = 0.84).  

Figure 16.  

Bar charts of the Average Ratings for Anthropomorphism, Likability, Intelligence, and Trust for 

each of the three Robots.  

 

Note. Error bars represent the 95% confidence interval of the mean. p < .05, ** p < .01, *** p < 

.001, **** p < .0001. 

In terms of reliability, the internal consistency of the assessment scales for each robot 

was evaluated using Cronbach’s Alpha. Overall, all scales demonstrated acceptable to excellent 

internal consistency. All scales across the high-validity robot demonstrated excellent reliability, 
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ranging from α = .895 for trust to α = .951. The intelligence ratings for the low-validity robot 

showed the lowest value of α = .787, which can still be considered between acceptable and good.  

To compare participants’ subjective ratings of the robots, a series of one-way repeated 

measures ANOVAs was conducted across the four scales. In addition to the previously tested 

normality, Mauchly’s test to check equality of the variances of the differences between all pairs 

of conditions was examined.  

For the first scale, Anthropomorphism, Mauchly’s test showed no violations of sphericity 

(W=.962, p=.545). A repeated-measures ANOVA revealed significant differences between the 

robots (F(2,64) = 4.98, p = .010, ηg² = .083). Post-hoc comparisons using Bonferroni correction 

showed the high-validity robot (M = 3.15, SD = 1.02) rated significantly higher on 

anthropomorphism compared to the neutral robot (M = 2.49, SD = 0.83; Mean Diff = 0.66, 95% 

CI [0.19, 1.13], p = .021). No significant differences were found between low-validity (M = 

2.77) and the neutral robot (p = .531), or between the high-validity and low-validity robots (p = 

.184).  

For likability, a significant main effect across the robots was found (F(2,64) = 17.07, p < 

.001, ηg² = .281). While Mauchly’s test indicated a violation of sphericity (W= .810, p = .038), a 

Greenhouse-Geisser estimate of sphericity was used to correct the degrees of freedom (ϵ = .84). 

The corrected ANOVA result also showed a main effect (F(1.68, 53.79) = 17.07, p < .001). 

Consequently, post-hoc comparisons showed the high-validity robot (M = 3.70, SD = 1.05) being 

significantly more likable than the low-validity one (M = 2.40, SD = 0.84; Mean Diff = 1.30, 

95% CI [0.78, 1.82], p < .001). Similarly, the neutral robot (M = 3.40, SD = 0.81) showed 

significantly more likability compared to the low-validity robot (Mean Diff = 1.00, 95% CI 
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[0.64, 1.36], p < .001). No significant differences emerged between the high-validity and neutral 

robot (p = .750).  

When it comes to perceived intelligence, a significant main effect of robot was observed 

during ANOVA testing (F(2,64) = 11.49, p < .001, ηg² = .202). However, Mauchly’s test 

indicated a violation of sphericity (W = 0.794, p = .028), leading to a Greenhouse-Geisser 

estimate of sphericity to correct the degrees of freedom (ϵ = 0.83). The corrected ANOVA 

showed a significant main effect as well (F(1.66, 53.08) = 11.49, p < .001). Post-hoc 

comparisons showed that the high-validity robot (M = 3.48, SD = 0.91) was rated significantly 

higher on intelligence than both the neutral robot (M = 2.62, SD = 0.84; Mean Diff = 0.86, 95% 

CI [0.33, 1.39], p = .007), and the low-validity robot (M = 2.53, SD = 0.84; Mean Diff = 0.95, 

95% CI [0.52, 1.38], p < .001). However, no significant difference emerged between neutral and 

low-validity robots (p = 1.00).  

A similar pattern emerged for trust scores as significant differences emerged during 

ANOVA testing (F(2, 64) = 5.59, p = .006, ηg² = .096). Next, Mauchly’s test indicated a 

violation of sphericity (W = 0.326, p < .001), leading to the Greenhouse Geisser correction (ϵ = 

.60). The ANOVA revealed a significant main effect of robot identity (F(1.19,38.23) = 5.59, p = 

.018). Consequently, post-hoc analysis showed that participants trusted the high-validity robot 

(M = 4.12) significantly more than the low-validity robot (M = 3.66, SD = 0.63; Mean Diff = 

0.46, 95% CI [0.14, 0.78], p = .019). No significant differences were found in trust ratings 

between the neutral robot (M = 3.50) and the high-validity robot (p = .069), nor between the 

neutral and low-validity robot (p = .780).  

  



 55 

Discussion 

The current study aimed to investigate the influence of joint attention in Human-Robot 

Interaction (HRI), particularly the social mechanism of initiating joint attention from a screen-

based robot towards a human. The conducted experiment accounted for the unique consideration 

of various independent factors such as complexity variation and gaze reliability, allowing a more 

dynamic and complex design. Our findings indicate that participants strategically adapted to the 

robot’s reliability, developing a clear bias to trust and follow the gaze of the high-validity robot, 

while ignoring the low-validity one.  

Performance Impact 

 The first hypothesis of this work examined the gaze impact on task performance, 

claiming that “Participants will perform significantly better in interaction with the high-validity 

robot”. The current study findings partly contradict this hypothesis, as participants did not 

display a significantly higher or different score across one of the other robots. However, 

significant time differences during the classification process revealed that it took participants 

longer to make a decision when gaze cues were absent. In contrast to other conditions, 

participants were unable to devise a strategy and had to decide for themselves which statement 

was correct or incorrect. They had to rely on their knowledge and intuition. 

The increased decision time in interaction with the neutral robot, which lacked external 

gaze hints, aligns with foundational literature. Mehlmann et al. (2014) found that the execution 

of referential gaze made a collaborative task twice as fast and significantly reduced errors. 

Similarly, Staudte & Crocker (2011) demonstrated that congruent gaze cues provide a clear 

performance benefit by speeding up comprehension. However, the same study introduced a 

‘benefit-disruption spectrum’, stating that the robot’s incongruent gaze cue demonstrated the 
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slowest understanding times. Our results showed no significant time differences between the 

congruent (high-validity) and incongruent (low-validity) robots, and generally no differences in 

accuracy scores, which highlights a clear difference from the paper by Staudte and Crocker 

(2011). This difference can likely be attributed to the experimental design, as they used a single 

robot that applied congruent and incongruent gaze executions, while the current research used 

multiple robots. Consequently, it became easier for participants in our experiment to strategically 

trust or distrust the differing robots, as discussed in the following paragraphs. 

Impact and Persistence of Gaze Following 

The second hypothesis formulated was that “Participants’ strategic bias to follow the 

high-validity robot leads to a kind of ‘automation bias’, causing users to follow its suggestion 

even if they are incorrect”. This assumption emphasized gaze-following behavior, referring to 

participants’ alignment of side choice with the robotic hints from the high-validity and low-

validity robots. Our analysis underscored a strong support for that hypothesis. Fundamentally, 

participants followed the high-validity robot for incorrect gaze cues in 34.2% of trials. As 

expected, this trend increased for more complex tasks as participants followed incorrect gaze 

hints from the high-validity robot in 57.1% of the hard statements. Our findings indicate a 

substantial level of trust in the reliable robot, enough to override a participant’s judgment when 

the task becomes more complex. This behavior can be characterized as an example of 

automation bias, defined as the human tendency to over-rely on suggestions from automated 

systems (Skitka et al., 1999).  

The finding that participants followed the misleading gaze cue from a generally reliable 

robot is supported by previously conducted research. A similar study design from Staudte and 

Crocker (2011) found that participants would ‘correct’ a factually true statement when the 
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referential gaze of a reliable robot pointed to a conflicting direction. The findings of this study 

confirm this tendency to trust robots’ nonverbal cues, even to the point of questioning objective 

facts. Further, this finding is supported by Admoni and Scassellati (2017), who highlighted the 

role of humans in interpreting the robot’s gaze as a direct signal of intention and focus of 

attention. In addition, our study revealed that this bias increased by task complexity, with 

participants’ reliance on the robot enhancing from 34.2% to 57.1% of gaze following. In line 

with previous research, this finding underscores that humans are more likely to offload cognitive 

effort to an automated partner when this partner is perceived as competent (Lee & See, 2004; 

Risko & Gilbert, 2016).  

These findings can also be interpreted within the framework of top-down and bottom-up 

processing (Katsuki & Constantinidis, 2014). Hence, the increased gaze following during more 

complex tasks can be interpreted by considering the interplay between reflexive and strategic 

attention. The robot’s referential gaze hints could act as a salient, bottom-up cue, which naturally 

triggers a reflexive tendency to follow. Conversely, participants may have used their knowledge 

of the robot’s identity as a strategic top-down process to either inhibit or trust this reflex. During 

easier trials, participants arguably displayed lower cognitive effort for the primary task – 

classifying the statement – and could use remaining resources to suppress a bottom-up reflex to 

follow the robotic gaze when it was incorrect. In contrast, for more complex statements, 

participants required increasing levels of mental effort in the primary task, which may have left 

fewer mental resources to suppress the bottom-up reflex to ignore the robotic gaze cue when it 

was misleading. This integrative approach, which allows for consideration of bottom-up and top-

down processing, displays parallels with research conducted by Kompatsiari et al. (2018). In 

their study, mutual gaze was used to activate participants’ engagement, which arguably increased 
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the bottom-up urge of gaze following. Pursuing their argumentation, gaze-following behavior 

increased as the robots’ eye contact strengthened participants’ engagement and focus on the 

experimental game. Our findings extend this framework by suggesting that task complexity 

could be a key factor that is able to temporarily shift the balance from top-down towards more 

reflexive, bottom-up processing in human-robot interaction. Both studies highlight the dynamic 

interplay between bottom-up orienting and top-down control in shaping social attention.  

In addition, our analysis considered gaze following behavior through the lens of signal 

detection theory (SDT). We employed the SDT framework to measure decision-making under 

uncertainty, particularly to measure an individual’s ability to distinguish between signal and 

noise (Green & Swets, 1966). In the current context, SDT was applied to separate perceptual 

sensitivity from strategic bias in participants’ decision-making process regarding the referential 

gaze applied. Our findings indicate a lower sensitivity (d’) in the hard difficulty relative to the 

easy statements, suggesting that participants increasingly struggled with more complex tasks to 

judge if the referential gaze was correct. In other words, when the task became difficult, 

participants struggled to tell whether the robot was helping them or tricking them. Further, this 

score showed no differences between the high-validity and low-validity robots, indicating that 

participants were equally good at discriminating correct and incorrect gaze across the robots. 

More relevant in alignment with our assumption was an investigation of the response criterion 

(c’), which assesses participants’ tendency and willingness to follow the robots. The results of 

this analysis represent one of the most critical findings of our research. As expected, participants 

tended to follow the high-validity robot and resist following the low-validity robot. However, 

this tendency also remained when the robots’ gaze cues were misleading and incorrect. The 

participants simply ‘stuck’ with their previous strategy, no matter how difficult the statements 
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got. Instead of trial-by-trial calculation, participants operated on a pre-established cognitive 

heuristic that was shaped by the robot’s identity. Participants did not abandon their previously 

developed strategy in times of uncertainty. They strongly relied on it. 

Participants’ strong persistence in strategy deserves deeper reflection.  Our findings 

provide an example of how humans interact with robots under uncertain conditions. The 

development of strong heuristics toward the high-validity and low-validity robot (e.g., “Ryan is 

helpful,” “Ivan is not”) became more relevant in complex and demanding tasks. As described by 

researchers like Kahneman (2011) and Gigerenzer and Gaissmaier (2011), this provides an 

example of how humans shift from analytical processing to more efficient heuristic-based 

strategies. In addition, humans are susceptible to the predictive validity of gaze cues. They are 

efficiently able to learn to inhibit reflexive orienting towards unreliable sources such as the low-

validity robot (Friesen & Kingstone, 1998). As revealed in the Signal Detection Theory analysis, 

the observed automation bias was not a passive choice, but an active cognitive strategy powerful 

enough to override conflicting evidence.   

Impact of Initiating Joint Attention on Gaze Predictability 

 The third hypothesis aimed to investigate gaze patterns and gaze strategies in depth. The 

hypothesis stated that “Participants will display more exploratory, unpredictable gaze behavior 

when interacting with the neutral robot, while the existence of referential gaze cues, albeit 

potentially incorrect, will lead to more predictable gaze patterns”. The use of eye tracking 

analysis built a strong foundation to analyze not only basic features like dwell time but also to 

gain a deeper understanding of gaze strategies through advanced transition and recurrence 

analysis. Our analyses indicate a strong support for this hypothesis, showing that the 

determinism of gaze patterns was significantly lower when interacting with a robot that did not 
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apply referential gaze. The absence of referential gaze and attentional guiding forced participants 

to adopt a more variable and exploratory search strategy. Further, this is supported by the AOI 

analysis, which reveals longer and more frequent visual attention towards the neutral robot. 

Taken together, the eye-tracking data represent a distinct trend: The presence of referential gaze, 

reliable or not, encourages participants to adopt a strategy during human-robot interaction, while 

its non-existence forces participants to adopt a more exploratory approach accompanied by a 

higher cognitive demand.  

 Previous work that included eye-tracking data provided evidence that the robot’s 

referential gaze acts as a compelling guide for human attention. In other words, people 

automatically look where the robots look, even if the robotic cue is incorrect (Staudte & Crocker, 

2011). Our recurrence analysis assigns a number to this effect as a significantly higher 

“determinism” score for gaze-referring robots proved a more predictable, structured pattern. 

These findings further align with established theories of visual attention, such as the “Guided 

Search” paradigm (Wolfe, 1994). From that perspective, the high-validity and low-validity 

robots provided a salient cue to ‘guide’ participants’ search, which further simplifies the task and 

cognitive workload (Wolfe & Horowitz, 2017). Moreover, such a search strategy would be more 

structured, which explains its higher determinism scores. Conversely, the neutral robot represents 

an “unguided search”, shaped by participants’ cognitive load and less predictable gaze patterns 

(Liversedge & Findlay, 2000; Wolfe & Horowitz, 2017). 

Our eye-tracking analysis also revealed an effect of participants displaying a “stickier” 

gaze towards the neutral robot. This was evidenced not only by more prolonged and more 

frequent dwell times, but also by a significantly higher probability of a ‘Robot to Robot’ self-

transition. Given the robot’s role as an active driver in conditions of referential gaze, we interpret 
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the lingering human eye movement on the neutral robot as a behavioral marker for participants’ 

uncertainty. Participants were naturally oriented towards the robot, expecting guidance from it. 

However, upon receiving no referential gaze, participants’ gaze remained on the robot as they 

were forced to disengage from a simply reactive strategy and instead engage in a more 

cognitively demanding process. Eye-tracking literature indicates longer fixation durations as a 

primary indication of cognitive load or more difficult mental processing (Rayner, 2009).  

Impact on perceived social attributes 

  Finally, the fourth hypothesis investigated the subjective ratings of interaction, stating 

that “The reliability of a robot's gaze will positively influence the self-reporting social attributes 

of likability, intelligence, anthropomorphism and trust”. Analysis of the self-reporting 

questionnaires supported this assumption as the high-validity robot, Ryan, consistently received 

the most favorable ratings across all four measured attributes: anthropomorphism, likability, 

intelligence, and trust. This outcome supports the overarching effect of reliable referential gaze 

on social perception in human-robot interaction. It aligns with previous scientific research, 

linking context-aware gaze to robots being perceived as more natural, likable, and intelligent 

(Admoni & Scassellati, 2017).  

However, post-hoc analyses revealed a more nuanced picture, adding value to the 

understanding of the importance of reliability in joint attention as well as the consequences of its 

absence. Pairwise comparisons displayed an unlikability or off-putting nature to the low-validity 

robot, whereas the high-validity and neutral robots did not show major preferences in terms of 

likability. While a trend towards the high-validity robot was identified, the non-significance 

compared to the neutral robot can be attributed to the robots’ general limitations, as participants 

saw only a static picture with interactive eyes, which were also limited in their gaze application. 



 62 

However, the significant differences remained stable across scores of anthropomorphism and 

intelligence, with the reliable robot showing higher ratings. Moreover, perceived intelligence was 

rated significantly higher for the high-validity robot compared to the other robots, which further 

strengthens literature insights that reliable referential gaze leads robots to appear more competent 

(Admoni & Scassellati, 2017).  

Interestingly, this study found no significant differences across self-perceived trust 

scores. This finding contradicts previous scientific work, which frequently reported higher scores 

of robots that applied referential gaze (Mutlu et al., 2009). Counterintuitively, the non-

significances in the self-reporting data also contrast with our behavioral findings, as the gaze-

following and eye-tracking analysis revealed significant preferences for following the high-

validity robot, shaped by more predictable strategies of trustworthiness. In consistency with our 

behavioral data and literature context, it’s plausible that the Trust-Perception Scale for HRI 

(TPS-HRI) from Schaefer (2016) could not adequately reflect participants’ trust level. Following 

the arguments for a participatory and context-aware approach (Korpan, 2024), a universal or 

generic trust scale might oversimplify nuanced ways in which trust is formed. Moreover, a scale 

that was validated primarily for a military simulation context may fail to capture the dynamic 

and social dimensions of joint attention (Korpan, 2024). 

Strengths of the Study 

 Unlike previous studies, this research examines the mechanism of initiating joint 

attention in a more complex consideration, accounting for its reliability and its influence on task 

complexity. While using a 3 x 2 study design to examine joint attention with three robots in 

complexity-varying tasks, the robots implicitly varied in two key aspects: the presence of 

Initiating Joint Attention and the reliability of the gaze cues. This variation allowed us to 
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investigate what is rarely reported in HRI literature: the consequences of incorrect application of 

referential gaze (Admoni & Scassellati, 2017). If humans increasingly interact with intelligent 

machines and robots, blind trust can lead to high costs or dangerous accidents, due to an over-

reliance on the robot’s indication (Parasuraman & Manzey, 2010). Our study addresses this gap, 

acknowledging the varying reliability of attentional cues.  

 In addition, a substantial strength of this study is the use of a within-subjects repeated-

measures design. This experimental design allowed each participant to act as their own baseline, 

thereby comparing the three robots directly, which strengthens the internal validity of our 

conclusions. Further, the procedure for presenting the classification statements and robots was 

randomized. While still algorithmically accounting for the same amount of “easy” and “hard” 

statements for each of the three robots, the randomization procedure prevented confounding 

variables related to specific order or content effects (Shadish et al., 2002). Similarly, it ensured a 

fair and balanced comparison of the robots. Upon this, the construction of our experiment 

connected the experimental game via a local network to the robotic gaze system, which enabled 

robotic gaze cues to be linked directly and intentionally to the task. Even when the robots’ gaze 

was unreliable, it was not randomly looking at one target, which makes an incorrect gaze cue 

also task relevant. In addition, the task was arguably more naturalistic compared to other 

research (Huang & Thomaz, 2011), while we still maintained experimental control.  

 Finally, our experiment provided a range of measurement metrics, allowing for increased 

validity. Using the self-constructed classification game and gaze control system, this research 

accounted for participants’ performance and gaze-following data but additionally incorporated 

their gaze behavior through eye-tracking metrics. In addition, a post-questionnaire measured 

participants’ self-reporting tendencies regarding the social attributes of the robots. Such 
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methodological triangulation revealed more nuanced insights and provided a richer, more 

comprehensive understanding of human-robot interaction.  

Future Directions 

The findings of this study are considered in light of some methodological limitations, 

which in turn suggest valuable directions for future research. First, the experimental setup 

consisted of a static screen-based robot face with an interactive gaze system on a monitor. The 

robot was therefore neither an embodied agent nor was it particularly flexible in its facial 

movements. The lack of physical embodiment can be a significant consideration, as scientific 

literature suggests that people perceive and behave differently towards physically embodied 

robots compared to virtual agents, primarily with increased attention and stronger social 

engagement (Li, 2015). However, the use of screen-based robots in human-robot interaction 

literature is a standard and commonly used methodology, often to achieve high experimental 

control over variables such as gaze cues (Admoni & Scassellati, 2017). Despite that, future 

research could examine and validate our results using a physically embodied robot. Socially 

embodied robots such as “Furhat” (Furhat Robotics, n.d.) provide flexible and straightforward 

API connections, enabling the use of a similar gaze control system in humanoid robots. In 

addition, such studies could investigate the effects of embodiment, potentially strengthening or 

weakening the effects of joint attention in human-robot interaction. 

A second limitation refers to the self-constructed gaze control system. Building a 

complete human-like gaze system, which perceives its environment and reacts accordingly, is 

still very limited (Admoni & Scassellati, 2017; Mishra & Skantze, 2022). Our system 

specifically focused on joint attention and perceived its environment only in a very limited way: 

by interpreting game events and the presence of human faces. Further, the execution of 
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referential gaze was triggered to appear in a static timeframe after a card reveal automatically. 

While this is beneficial in terms of overview and controlled manipulation, it also limits the 

interactivity and reactivity of the robot in communication with humans, which is often a 

significant factor in engagement, natural movements, and social feelings towards the robot (Fong 

et al., 2003). Future studies might extend the gaze control system to become more flexible. One 

example of such direction is highlighted in the paper by Mishra and Skantze (2022), who 

developed a planned gaze control system, which plans the robot’s gaze for a future, rolling time 

window instead of being purely reactive. Like Pereira et al (2019), their gaze system not only 

used a proactive layer for referential gaze, but also integrated a responsive layer to display 

responsive gaze. In alignment with the recent breakthroughs in areas of deep and reinforcement 

learning (LeCun et al., 2015), an additional exemplary approach might use not only a 

heuristically driven system, but instead build a combination or even a fully data-driven system. 

Furthermore, the sample size was modest (n = 33) and consisted only of university 

students, decreasing the generalizability to a broader population. In consideration of the context 

that humanoid robots will interact in various fields with various people, further investigation 

could account for a larger sample size with different demographic characteristics.  

Finally, additional review and investigation are needed to assess the bidirectionality of 

combining the mechanisms of responding and initiating joint attention, but also to assess them 

separately as we did. These two mechanisms of joint attention can be very different and may 

prove to be useful or less useful in different contexts. Thus, the last recommendation of this 

paper is to test the social mechanisms of joint attention in varying contexts and objectives. For 

example, on a production line, the versatile use of referential gaze is likely to be advantageous 
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due to increased speed and fewer errors, whereas in school, reciting instructions could hinder 

independent learning. 

Practical Implications  

 Beyond theoretical relevance, the results also offer insights for practical applications in 

the field of research and development of humanoid robots. One essential finding of this overall 

research for designers and engineers is the prioritizing of reliability when it comes to the 

implementation of referential gaze or initiating joint attention. Our results clearly indicate that a 

low-validity robot was not only seen as less capable, but it was also actively disliked and 

distrusted. For several social attributes, such as likability, intelligence, anthropomorphism, or 

trust, participants did not show any significant preferences towards the low-validity robot 

compared to the neutral robot, which did not apply any kind of referential gaze. However, a 

high-validity gaze behavior evoked social preferences and performance improvements. In other 

words, the practical implication of this research could be formulated in the manner of “Do it 

right or don’t do it at all”. 

 More critically, our research outcomes highlight how humans develop strategies and 

automation bias to trust humanoid robots. In a societal context, this underscores the particular 

risk to over-rely on machines and robotics, even to override one’s own judgment. This research 

can be used to raise awareness of this automation bias and overreliance, particularly to treat 

human-robot interaction with caution in certain fields such as healthcare and education 

(Breazeal, 2003).  
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Conclusion 

 This research emphasized the role of reliable referential gaze in Human-Robot 

Interaction. Our central finding lies in the gaze-following analysis, which indicates humans’ 

development of powerful strategic bias, learning to consistently trust a reliable robotic gaze, and 

even overriding their own judgment. Trust towards a high-validity robot has led to a kind of 

automation bias, causing participants to follow the robot’s suggestions. This was particularly the 

case for more complex tasks, as participants arguably experienced a higher cognitive workload, 

leaving them with less mental capacity to judge the correctness of the robotic hints. Upon that, a 

more detailed look through the eye-tracking data confirmed participants’ strategic approach, as 

the existence of referential gaze, albeit of its validity, revealed more structured and organized 

gaze patterns. The absence of referential gaze significantly altered participants’ gaze behavior, 

showing less structured and more explorative gaze strategies. Despite that, participants spent 

more time looking towards the robot without the initiation of joint attention, arguably in 

expectation of receiving a gaze cue or reaction. Further, the eye-tracking data provided powerful 

support for participants’ strategic development towards the robots that applied initiating joint 

attention. Hence, participants developed a more predictable gaze strategy when interacting with 

robots that execute referential gaze. For example, we observed participants switching their gaze 

between the robot and classification theory more frequently when the robot provided initiated 

joint attention. Despite many similarities in the eye-tracking data, particularly from a strategic 

and predictable nature, the reliability of gaze cues showed not only significant differences in the 

gaze following, but also in the self-reporting tendencies. Our results show that participants 

substantially preferred a robot that applied a reliable gaze compared to one with frequently 

misleading gaze hints. Notably for likability, the robot with unreliable gaze cues showed 
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significantly worse values compared to both the reliable robot and the robot without referential 

gaze. Participants' tendency to trust the robot with a reliable gaze, as opposed to one that displays 

an unreliable gaze, is also supported by our behavioral data, as the gaze-following analysis 

reveals a clear preference for following the reliable, high-validity robot.  
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Appendixes.  

 

Appendix 1. 

Prompting to generate the three static pictures for a robots face that account for each of the 

three different gaze conditions in the gaze control system in OpenAI’s image-generation model 

DALL E 2 via the GPT-4 console.  

 

Primary prompt for the robot with high reliability gaze:  

- “Create a 3D picture of a realistic, friendly humanoid robot that looks directly at the 

camera with a straight face. The robot should display a gentle, approachable expression. 

Further, it has a smooth, rounded face with large, expressive, and realistic eyes that 

convey a sense of curiosity. The neck is exposed and contrasts with the smooth face, 

revealing intricate black and grey mechanical joints and wiring. The overall design 

should show strong similarities to the iCub robot. The overall picture should display the 

robots face, his neck and partly his shoulders” 

Further prompting for the low-reliability robot and control robot: 

- “Based on the previous picture, please generate additional 3D pictures of similar-looking 

robots, that display the same gentle, approachable expression with a smooth, rounded 

face with large, expressive and realistic eyes and similarities to the iCub robot. The 

robotic shape and its expression should be similar to the previous picture, but the robot 

should look differently. Imagine a scenario where this robot could be a cousin or another 

relative of the previous robot. “ 

- “Generate an alternative picture based on the previously used prompt” 



 78 

 
 
  



 79 

Appendix 2.  

Codebase for the Gaze Control System and Experimental Game. 
 

 
 
Valid link: https://github.com/Devin037/Bachelor-Thesis/tree/main/experiment 
  

https://github.com/Devin037/Bachelor-Thesis/tree/main/experiment
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Appendix 3.  

Barcode  for Data Analysis as well as Data Cleaning and Data Transformation in Python and R.  
 
 
 
Barcode for Scripts of Data Preprocessing and Data Cleaning before actual data analysis: 
 

 
 
Valid link: https://github.com/Devin037/Bachelor-Thesis/tree/main/data-transformation-and-
cleaning 
 
Barcodes for Data Analyses Scripts in R for the analyses of performance, gaze following, 
Qualtrics questionnaire and for the Python Scripts for the Eye-tracking Analyses: 
 

Python Scripts (Eye-tracking) 
 

R-Scripts: 

 
 

 

https://github.com/Devin037/Bachelor-
Thesis/tree/main/data-analysis/python-eye-

tracking 

https://github.com/Devin037/Bachelor-
Thesis/tree/main/data-analysis/R 

Note. The raw code of data cleaning, transformation and analysis can also be found in 
Appendix 7. 

https://github.com/Devin037/Bachelor-Thesis/tree/main/data-transformation-and-cleaning
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-transformation-and-cleaning
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/python-eye-tracking
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/python-eye-tracking
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/python-eye-tracking
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/R
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/R
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Appendix 4. 

Heatmaps and advanced AOI transition maps for each robotic and difficulty condition as 

additional data of the Results Section next to the shown visualizations.  

 

Figure 1. 

Heatmaps of each robotic condition for “easy” and “hard” difficulties  

 

 

 
Note. The row with the first two pictures shows the high-validity robot (Ryan) for both 

categories (‘easy’ on the left side, ‘hard’ on the right side). The second row shows two pictures 

for the low-validity Robot (Ivan) with the easy category on the left and hard on the right side. 

The third row shows the heatmaps for the neutral robot  (Carl), also with easy statements on the 

left and hard statements on the right side. 
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Figure 2.  

Advanced AOI maps for each robot and difficulty level, starting with the high-validity Robot 

(Ryan) in the first row, followed by the low-validity Robot (Ivan) in the second row. 
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Note. Pictures on the left side refer to the “easy” category, while pictures on the right side can be 
marked as “hard”. 
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Appendix 5.  

Table of the questions used for the classification game.  
 
Round type difficulty category question correct_answer 
default boolean easy General 

Knowledge 
Move statement to one of the sides to start the actual game!  TRUE 

1 boolean easy General 
Knowledge 

The Sun is more massive than earth TRUE 

1 boolean easy General 
Knowledge 

The Eiffel Tower is located in Paris France. TRUE 

1 boolean easy General 
Knowledge 

The fastest fish in the world is the goldfish FALSE 

1 boolean easy General 
Knowledge 

French is an official language in Canada. TRUE 

1 boolean easy General 
Knowledge 

Ananas is mostly used as the word for Pineapple in other languages. TRUE 

1 boolean easy General 
Knowledge 

The color orange is named after the fruit. TRUE 

1 boolean easy General 
Knowledge 

Mount Everest is the highest mountain in the world TRUE 

1 boolean easy General 
Knowledge 

Earth has multiple moons FALSE 

1 boolean easy General 
Knowledge 

The Sun rises from the North. FALSE 

1 boolean easy General 
Knowledge 

Coral reefs are located underwater. TRUE 

1 boolean hard General 
Knowledge 

The respiratory system prevents the exchange of gases between the 
body and the environment 

TRUE 

1 boolean hard General 
Knowledge 

The smallest volcano in the world is located in Hawaii. FALSE 

1 boolean hard General 
Knowledge 

Light can exhibit neither wave-like nor particle-like properties. FALSE 

1 boolean hard General 
Knowledge 

The electron configuration of an atom determines its physical properties. FALSE 

1 boolean hard General 
Knowledge 

The Doppler effect causes the change in frequency or wavelength of a 
wave in relation to an observer 

TRUE 

1 boolean hard General 
Knowledge 

The first successful human heart transplant was performed in 1967 TRUE 

1 boolean hard General 
Knowledge 

The carbon cycle disrupts the balance of nitrogen in Earth's 
atmosphere, oceans, and biosphere 

FALSE 

1 boolean hard General 
Knowledge 

The three types of blood vessels in the human body are arteries, veins, 
and capillaries 

TRUE 

1 boolean hard General 
Knowledge 

Human digestion begins in the hand and ends in the large intestine FALSE 

1 boolean hard General 
Knowledge 

The human digestive system breaks down food into nutrients. TRUE 

1 boolean easy General 
Knowledge 

Adolf Hitler was born in Australia.  FALSE 

1 boolean easy General 
Knowledge 

The Sahara is the largest hot desert TRUE 
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1 boolean easy General 
Knowledge 

The sky is blue. TRUE 

1 boolean easy General 
Knowledge 

The Mona Lisa is a famous painting by Leonardo da Vinci. TRUE 

1 boolean easy General 
Knowledge 

Cars need soap to run. FALSE 

1 boolean easy General 
Knowledge 

The greenhouse effect influences Earth's temperature. TRUE 

1 boolean easy General 
Knowledge 

Apples are a type of fruit. TRUE 

1 boolean easy General 
Knowledge 

Humans have five basic senses. TRUE 

1 boolean easy General 
Knowledge 

The shortest river in the world is the Amazon River. FALSE 

1 boolean easy General 
Knowledge 

Fossils destroy evidence of past life on Earth. FALSE 

1 boolean hard General 
Knowledge 

Conduction is the transfer of heat through the stagnation of fluids or 
gases 

FALSE 

1 boolean hard General 
Knowledge 

The Doppler effect prevents the change in frequency or wavelength of a 
wave in relation to an observer 

FALSE 

1 boolean hard General 
Knowledge 

The process by which a solid turns directly into a gas is called 
sublimation 

TRUE 

1 boolean hard General 
Knowledge 

The Krebs cycle is a series of chemical reactions that generate energy in 
cells. 

TRUE 

1 boolean hard General 
Knowledge 

Mars has a thin atmosphere. TRUE 

1 boolean hard General 
Knowledge 

Saturn's largest moon is Titan. TRUE 

1 boolean hard General 
Knowledge 

Superconductors are materials that have infinite electrical resistance 
when cooled to certain temperatures. 

FALSE 

1 boolean hard General 
Knowledge 

Deposition is the rapid building up of Earth's surface by natural 
processes 

FALSE 

1 boolean hard General 
Knowledge 

Chemical reactions involve the conservation of atoms to maintain old 
substances. 

FALSE 

1 boolean hard General 
Knowledge 

The water cycle includes evaporation, convection, precipitation, and 
collection. 

TRUE 

1 boolean easy General 
Knowledge 

Humans do not use their brains. FALSE 

1 boolean easy General 
Knowledge 

The coldest place on Earth is the equator. FALSE 

1 boolean easy General 
Knowledge 

There are no planets in our solar system. FALSE 

1 boolean easy General 
Knowledge 

Birds are not animals FALSE 

1 boolean easy General 
Knowledge 

Water is poisonous to humans. FALSE 

1 boolean easy General 
Knowledge 

Cows are mammals that produce milk. TRUE 

1 boolean easy General 
Knowledge 

The Earth is located in the Milky Way galaxy. TRUE 

1 boolean easy General 
Knowledge 

The sky is often cloudy when it's going to rain. TRUE 
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1 boolean easy General 
Knowledge 

Mount Everest is the shortest mountain in the world. FALSE 

1 boolean easy General 
Knowledge 

The Nile River is located in South America. FALSE 

1 boolean hard General 
Knowledge 

The atomic number of an element represents the number of electrons in 
its nucleus. 

FALSE 

1 boolean hard General 
Knowledge 

Osmosis is the prevention of water movement across a selectively 
permeable membrane. 

FALSE 

1 boolean hard General 
Knowledge 

Stars appear steady due to Earth's atmosphere. FALSE 

1 boolean hard General 
Knowledge 

Polar ice caps are primarily made of fresh water. TRUE 

1 boolean hard General 
Knowledge 

The planet Pluto has five known moons. TRUE 

1 boolean hard General 
Knowledge 

The tallest tree in the world is a redwood tree named Hyperion. TRUE 

1 boolean hard General 
Knowledge 

The four fundamental forces of nature are gravity, electromagnetism, the 
strong nuclear force, and the weak nuclear force. 

TRUE 

1 boolean hard General 
Knowledge 

The planet Saturn is named after the Roman god of agriculture. TRUE 

1 boolean hard General 
Knowledge 

The freezing point of water decreases as altitude increases FALSE 

1 boolean hard General 
Knowledge 

The first successful powered flight was made by the Wright Brothers in 
1903. 

TRUE 

1 boolean easy General 
Knowledge 

Snow is cold TRUE 

1 boolean easy General 
Knowledge 

Penguins can fly FALSE 

1 boolean easy General 
Knowledge 

All animals are colorblind FALSE 

1 boolean easy General 
Knowledge 

Earth is 71% land. FALSE 

1 boolean easy General 
Knowledge 

The earth is round TRUE 

1 boolean easy General 
Knowledge 

Dogs are not mammals FALSE 

1 boolean easy General 
Knowledge 

Birds can fly TRUE 

1 boolean easy General 
Knowledge 

The human body has bones TRUE 

1 boolean easy General 
Knowledge 

A circle has 200 degrees FALSE 

1 boolean easy General 
Knowledge 

Vaccines promote infectious diseases. FALSE 

1 boolean easy General 
Knowledge 

Cats can bark like dogs FALSE 

1 boolean easy General 
Knowledge 

Choclate is a popular dessert. TRUE 

1 boolean easy General 
Knowledge 

Earth has a magnetic field TRUE 

1 boolean easy General 
Knowledge 

Honey is produced by bees.  TRUE 
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1 boolean easy General 
Knowledge 

Gravity makes things fall down TRUE 

1 boolean hard General 
Knowledge 

Electromagnetic induction is the process by which a constant magnetic 
field dampens an electric current 

FALSE 

1 boolean hard General 
Knowledge 

The planet Venus is often referred to as the "morning star" or the 
"evening star." 

TRUE 

1 boolean hard General 
Knowledge 

The two main types of cells are prokaryotic and eukaryotic TRUE 

1 boolean hard General 
Knowledge 

Our solar system consists of eight stars: Mercury, Venus, Earth, Mars, 
Jupiter, Saturn, Uranus, and Neptune 

FALSE 

1 boolean hard General 
Knowledge 

A substance that can be broken down into simpler substances by 
chemical means is called an element. 

FALSE 

1 boolean hard General 
Knowledge 

Water freezes at 0 degrees Celsius (32 °F) and boils at 100 degrees 
Celsius (212 °F) 

TRUE 

1 boolean hard General 
Knowledge 

The process by which a gas turns directly into a solid, without becoming 
a liquid, is called sublimation 

FALSE 

1 boolean hard General 
Knowledge 

Metamorphosis is a biological process in which an organism undergoes 
a significant change in form during its life cycle 

TRUE 

1 boolean hard General 
Knowledge 

The auroras, or polar lights, are natural light displays caused by the 
interaction of solar particles with Earth's magnetic field 

TRUE 

1 boolean hard General 
Knowledge 

The first law of thermodynamics states that energy cannot be created or 
destroyed, only converted from one form to another 

TRUE 

1 boolean hard General 
Knowledge 

The planet Mars is known as the "Red Planet" due to its iron oxide-rich 
surface 

TRUE 

1 boolean hard General 
Knowledge 

Radioactive decay occurs when stable atomic nuclei transform into 
more stable forms by emitting particles or radiation 

FALSE 

1 boolean hard General 
Knowledge 

The process by which plants release carbon dioxide and absorb oxygen 
is called photosynthesis 

FALSE 

1 boolean hard General 
Knowledge 

Sound waves require a medium to travel, such as air, water, or solids TRUE 

1 boolean hard General 
Knowledge 

Black holes are regions of space where gravity is so strong that nothing, 
not even light, can escape 

TRUE 

test boolean  
General 
Knowledge 

Apples grow on vines. FALSE 

test boolean  
General 
Knowledge 

The smallest animal in the world is the elephant. FALSE 

test boolean  
General 
Knowledge 

Comets are icy celestial objects. TRUE 

test boolean  
General 
Knowledge 

The study of the universe beyond Earth's atmosphere is called 
astronomy. 

TRUE 

test boolean  
General 
Knowledge 

The fastest bird in the world is the penguin. FALSE 

test boolean  
General 
Knowledge 

Mars has two small moons, Phobos and Deimos. TRUE 
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Appendix 6. 

Post questionnaire about self-reporting tendencies.  
 
 
Bachelor-Thesis - complete randomization 

 

Start of Block: Introduction_and_Consent 

 
[Briefing] 
Dear Participant,    Welcome to this study. The purpose of this research is to investigate robotic gaze behavior and joint attention in human-robot interaction and collaboration. In 
this study, you play a simple classification game where you have to sort cards into one out of two categories while interacting with a screen-based robot.     Study Design:  In this 
repeated-measures study, you will be randomly assigned to robots that display different gaze skills. In interaction with every robot, you will classify statements from a stack of 
cards into True or False categories. In total, you will answer 90 statements. After the experimental game, you have to answer a survey regarding your experience in the game.    
Support:  Please note that you can withdraw from this study at any point. If you feel the need to talk to someone about the presented information, do not hesitate to call the 
following number. The Netherlands: 0800 0113.    Confidentiality:  We understand that the information you provide is sensitive. Thus, we want to ensure that all your data will be 
kept confidential. Any data or other information that could directly identify you will be removed from your responses before analysis. All data collected during this study will be 
stored securely. Data access will be provided only to the research team of this study.     Anonymisation:  Your name and any other information that could directly identify you will 
be removed from your responses before analysis. We will assign you a unique code number to track your data throughout the study.    Secure Storage:  All data collected during 
this study will be stored securely on a password-protected computer of the researcher. Only the research team will have access to this data.    Reporting:   Any reports or 
publications resulting from this study will not include any information that could identify you.    Contact Information and Right to Withdraw:  In case you have any further 
questions about the study, or if you want to withdraw from the study after you have consented, you can always contact one of the researchers at the following E-mail address. You 
can also contact the University of Twente Psychology Department Ethics Committee at ethicscommittee-hss@utwente.nl if you have any concerns about how the study is being 
conducted.    Researcher:  Devin Kruse (d.kruse-1@student.utwente.nl) +49 162 337 2000  
 
[Consent] 
Please tick the appropriate boxes 

 

 
[understandingStudy] 
I have read (or it has been read to me) and understood the study information. I have been able to ask questions about the study and my questions have been answered to my 
satisfaction.  

o Yes  (1)  

o No  (2)  

 

 
[voluntaryConsent] 
I consent voluntarily to be a participant in this study and understand that I can refuse to answer questions and I can withdraw from the study at any time, without having to give a 
reason.  

o Yes  (1)  

o No  (2)  

 

 
[understandingDesign] 
I understand that taking part in the study involves the interaction with a screen-based, real-time animated robot in an experimental game.  

o Yes  (1)  

o No  (2)  
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[publication] 
I understand that information I provide will be used for publication on scientific databases.  

o Yes  (1)  

o No  (2)  

 

 
[dataStoring] 
I give permission for the unpersonalised questionnaire data that I provide to be archived in the database of the University of Twente so it can be used for future research and 
learning.  

o Yes  (1)  

o No  (2)  

End of Block: Introduction_and_Consent 
 

Start of Block: Demographics 

 
[Age]  
What is your date of birth?   "Please enter in the format: DD-MM-YYYY"  

________________________________________________________________ 

 

 
[residence] 
Country of Residence: 

o The Netherlands  (1)  

o Germany  (2)  

o Other  (3) __________________________________________________ 

 

 
[gender] 
What is your Gender Identity? 

o Male  (1)  

o Female  (2)  

o Non-binary / third gender  (3)  

o Prefer not to say  (4)  
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[student] 
Are you currently a student in a University/College? 

o Yes  (1)  

o No  (2)  

 

 
[participantID] 
What is your Participant-ID? 

________________________________________________________________ 
 

End of Block: Demographics 
 

Start of Block: Game Instruction 

 
[explanation] 
 Experimental Set-Up: In the game, you will see the TRUE category in the box on the left and the FALSE category in the box on the right. These categories remain the same 
during the entire experiment. In the lower half of the screen, you'll see a stack of cards. Once you tap one of the cards, it will be revealed and can then be pushed to one of the 
sides. For each card reveal, you will see one of three different robots. The robots display different skills and behaviors. After you have dropped the statement into one of the 
categories, you will see a different robot. Note that you will not see the same robot for two questions in a row. In total, you have to categorize 90 statements for this game. Before 
you start the game, you can do a test round with 6 statements.  For testing and the very first card, you will not see the robot but a black box which displays the text "ready?!"   How 
the game works:  As mentioned above, you can see two categories, TRUE and FALSE, on your left and right sides. In the game, your task is to classify the revealing cards. A card 
is revealed when you touch on the stack of cards.  When you consider the statement to be true, move it to the left category. When you consider the statement to be false, move it to 
the right category. Before you move a card, try to build eye contact with the robot and be attentive to the robots behavioral cues.     Important:  There's no time limit on the game. 
However, you should try to categorize each statement as quickly as possible, so do not overthink too much and try to listen to your intuition. For us, it is more important to see how 
you interact with the robot and maintain eye contact during the game rather than how you scored in the game. Try to create eye-contact with the robot after each card reveal.  
Note: The robots beliefs can be based on a random belief model, so you have to decide whether you trust the robot or not.  

End of Block: Game Instruction 
 

Start of Block: Robot_Introduction 

[RobotIntroduction] 
As mentioned above, you will play the game together with 3 different robots, that have different skills. The robots that you will meet in the game are Carl, Ryan and Ivan. Take a 
moment and have a look on the pictures to get familiar with them. After that, go to the next page. The robots can look a little bit similar, so try to remember some of the differences 
from these pictures. During the game, you will also see the name of each robot in the top left corner. Your goal is to interact with each of the robots during the game.      This 
is Carl:           This is Ryan:          And this is Ivan:          

End of Block: Robot_Introduction 
 

Start of Block: ready1 

You can start the experiment now. Please tell the researcher that you are ready before you continue with this questionnaire! 

End of Block: ready1 
 

Start of Block: finishGame 

Thanks for your participation in the experimental game. In the following minutes, we will ask you for your perception on the 3 robots. There is no right or wrong. Simply share 
your own intuition and perception of the robots regarding the questions and statements. Please go to the next page when you are ready. 

End of Block: finishGame 
 

Start of Block: Carl_evaluation 

Lets start with Carl: Please rate your overall impression of Carl based on the following descriptive words. For each pair of words, please indicate where you feel Carl falls on the 
spectrum between them.       
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[anthropomorphism] 
How did you perceive Carl on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Fake o  o  o  o  o  Natural 

Machinelike o  o  o  o  o  Humanlike 

Unconscious o  o  o  o  o  Conscious 

Artificial o  o  o  o  o  Lifelike 

Moving rigidly o  o  o  o  o  Moving elegantly 

 

 

 
[likability] 
How did you perceive Carl on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Dislike o  o  o  o  o  Like 

Unfriendly o  o  o  o  o  Friendly 

Unkind o  o  o  o  o  Kind 

Unpleasant o  o  o  o  o  Pleasant 

Awful o  o  o  o  o  Nice 
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[intelligence] 
How did you perceive Carl on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Incompetent o  o  o  o  o  Competent 

Ignorant o  o  o  o  o  Knowledgeable 

Irresponsive o  o  o  o  o  Responsible 

Unintelligent o  o  o  o  o  Intelligent 

Foolish o  o  o  o  o  Sensible 
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[trust] 
Please rate your agreement with the following statements about Carl:  

 Strongly 
Disagree (1) Disagree (2) Somewhat 

Disagree (3) Neutral (4) Somewhat Agree 
(5) Agree (6) Strongly Agree 

(7) 

The robot 
functions 

successfully. (1)  o  o  o  o  o  o  o  
The robot acts 
consistently (2)  o  o  o  o  o  o  o  

The robot is 
reliable (3)  o  o  o  o  o  o  o  
The robot is 

predictable. (4)  o  o  o  o  o  o  o  
The robot is 

dependable. (5)  o  o  o  o  o  o  o  
The robot follows 

directions. (6)  o  o  o  o  o  o  o  
The robot meets 
the needs of the 

mission. (7)  o  o  o  o  o  o  o  
The robot 

performs exactly 
as instructed. (8)  o  o  o  o  o  o  o  

The robot has 
errors (9)  o  o  o  o  o  o  o  
The robot 
provides 

appropriate 
information. (10)  o  o  o  o  o  o  o  

The robot 
malfunctions. 

(11)  o  o  o  o  o  o  o  
The robot 

communicates 
with people. (12)  o  o  o  o  o  o  o  

The robot 
provides 

feedback. (13)  o  o  o  o  o  o  o  
The robot is 

unresponsive. 
(14)  o  o  o  o  o  o  o  

 

End of Block: Carl_evaluation 
 

Start of Block: Ryan_evaluation 

Lets continue with Ryan:Please rate your overall impression of Ryan based on the following descriptive words. For each pair of words, please indicate where you feel Ryan falls 
on the spectrum between them.       
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[anthropomorphism] 
How did you perceive Ryan on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Fake o  o  o  o  o  Natural 

Machinelike o  o  o  o  o  Humanlike 

Unconscious o  o  o  o  o  Conscious 

Artificial o  o  o  o  o  Lifelike 

Moving rigidly o  o  o  o  o  Moving elegantly 

 

 

 
[likability] 
How did you perceive Ryan on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Dislike o  o  o  o  o  Like 

Unfriendly o  o  o  o  o  Friendly 

Unkind o  o  o  o  o  Kind 

Unpleasant o  o  o  o  o  Pleasant 

Awful o  o  o  o  o  Nice 
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[intelligence] 
How did you perceive Ryan on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Incompetent o  o  o  o  o  Competent 

Ignorant o  o  o  o  o  Knowledgeable 

Irresponsive o  o  o  o  o  Responsible 

Unintelligent o  o  o  o  o  Intelligent 

Foolish o  o  o  o  o  Sensible 
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[trust] 
Please rate your agreement with the following statements about Ryan:  

 Strongly 
Disagree (1) Disagree (2) Somewhat 

Disagree (3) Neutral (4) Somewhat Agree 
(5) Agree (6) Strongly Agree 

(7) 

The robot 
functions 

successfully. (1)  o  o  o  o  o  o  o  
The robot acts 
consistently (2)  o  o  o  o  o  o  o  

The robot is 
reliable (3)  o  o  o  o  o  o  o  
The robot is 

predictable. (4)  o  o  o  o  o  o  o  
The robot is 

dependable. (5)  o  o  o  o  o  o  o  
The robot follows 

directions. (6)  o  o  o  o  o  o  o  
The robot meets 
the needs of the 

mission. (7)  o  o  o  o  o  o  o  
The robot 

performs exactly 
as instructed. (8)  o  o  o  o  o  o  o  

The robot has 
errors (9)  o  o  o  o  o  o  o  
The robot 
provides 

appropriate 
information. (10)  o  o  o  o  o  o  o  

The robot 
malfunctions. 

(11)  o  o  o  o  o  o  o  
The robot 

communicates 
with people. (12)  o  o  o  o  o  o  o  

The robot 
provides 

feedback. (13)  o  o  o  o  o  o  o  
The robot is 

unresponsive. 
(14)  o  o  o  o  o  o  o  

 

End of Block: Ryan_evaluation 
 

Start of Block: Ivan_evaluation 

Lets continue with Ivan: Please rate your overall impression of Ivan based on the following descriptive words. For each pair of words, please indicate where you feel Ivan falls on 
the spectrum between them.       
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[anthropomorphism]  
How did you perceive Ivan on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Fake o  o  o  o  o  Natural 

Machinelike o  o  o  o  o  Humanlike 

Unconscious o  o  o  o  o  Conscious 

Artificial o  o  o  o  o  Lifelike 

Moving rigidly o  o  o  o  o  Moving elegantly 

 

 

 
[likability] 
How did you perceive Ivan on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Dislike o  o  o  o  o  Like 

Unfriendly o  o  o  o  o  Friendly 

Unkind o  o  o  o  o  Kind 

Unpleasant o  o  o  o  o  Pleasant 

Awful o  o  o  o  o  Nice 
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[intelligence] 
How did you perceive Ivan on the following spectra:  

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)  

Incompetent o  o  o  o  o  Competent 

Ignorant o  o  o  o  o  Knowledgeable 

Irresponsive o  o  o  o  o  Responsible 

Unintelligent o  o  o  o  o  Intelligent 

Foolish o  o  o  o  o  Sensible 
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[trust] 
Please rate your agreement with the following statements about Ivan:  

 Strongly 
Disagree (1) Disagree (2) Somewhat 

Disagree (3) Neutral (4) Somewhat 
Agree (5) Agree (6) Strongly Agree 

(7) 

The robot 
functions 

successfully. 
(1)  o  o  o  o  o  o  o  

The robot acts 
consistently (2)  o  o  o  o  o  o  o  

The robot is 
reliable (3)  o  o  o  o  o  o  o  
The robot is 

predictable. (4)  o  o  o  o  o  o  o  
The robot is 

dependable. (5)  o  o  o  o  o  o  o  
The robot 
follows 

directions. (6)  o  o  o  o  o  o  o  
The robot 

meets the needs 
of the mission. 

(7)  o  o  o  o  o  o  o  
The robot 
performs 
exactly as 

instructed. (8)  o  o  o  o  o  o  o  
The robot has 

errors (9)  o  o  o  o  o  o  o  
The robot 
provides 

appropriate 
information. 

(10)  
o  o  o  o  o  o  o  

The robot 
malfunctions. 

(11)  o  o  o  o  o  o  o  
The robot 

communicates 
with people. 

(12)  o  o  o  o  o  o  o  
The robot 
provides 

feedback. (13)  o  o  o  o  o  o  o  
The robot is 

unresponsive. 
(14)  o  o  o  o  o  o  o  

 

End of Block: Ivan_evaluation 
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Appendix 7.  

Included Data Analysis Scripts.  
 
Note. The Data Analysis Scripts should be also find online using the links or barcodes provided 
in Appendix 3. 
 
 
Python Script for Data Cleaning and Transformation for the Post-Questionnaire Qualtrics Data 
 
import pandas as pd 
import numpy as np 
import re 
 
# --- Configuration --- 
# Input file from the original first script 
INPUT_CSV_FILE = 'qualtrics_questionnaire.csv'  
# Final output file from the original second script 
OUTPUT_CSV_FILE = 'qualtrics_data_final.csv'  
 
# --- Part 1: Configuration from the first script --- 
# Define the initial columns you absolutely want to keep by their base name 
INITIAL_COLS_TO_KEEP = [ 
    'understandingStudy', 'voluntaryConsent', 'understandingDesign', 
    'publication', 'dataStoring', 'Age', 'residence', 'gender', 
    'student', 'participantID' 
] 
 
# Likert scale mapping for TRUST variables 
LIKERT_MAPPING_TRUST = { 
    "Strongly Disagree": 1, 
    "Disagree": 2, 
    "Somewhat Disagree": 3, 
    "Neutral": 4, 
    "Somewhat Agree": 5, 
    "Agree": 6, 
    "Strongly Agree": 7 
} 
 
# Base names of TRUST items to be reverse-coded 
TRUST_ITEMS_TO_REVERSE = ['trust_9', 'trust_11', 'trust_14'] 
 
# --- Part 2: Configuration from the second script --- 
# Manual override for column types during imputation. 
# Set to a list of column names to override auto-detection, otherwise leave as None. 
MANUAL_NUMERIC_COLS = None 
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MANUAL_CATEGORICAL_COLS = None 
 
# --- Helper Functions (from Script 1) --- 
def clean_column_name(col_name): 
    """Cleans a column name by stripping whitespace and replacing non-breaking spaces.""" 
    if pd.isna(col_name): 
        return f"Unnamed_Column_{pd.Timestamp.now().nanosecond}" 
    return str(col_name).strip().replace('\xa0', ' ') 
 
def generate_new_column_names(original_headers, metadata_row_values): 
    """Generates new, unique column names based on metadata.""" 
    cleaned_original_headers = [clean_column_name(h) for h in original_headers] 
    pid_cleaned_name = clean_column_name('participantID') 
     
    try: 
        pid_idx = cleaned_original_headers.index(pid_cleaned_name) 
    except ValueError: 
        print(f"CRITICAL ERROR: '{pid_cleaned_name}' column not found in the CSV headers. 
Cannot proceed.") 
        return None 
 
    new_names = [] 
    for i, name in enumerate(cleaned_original_headers): 
        new_name = name 
        if i > pid_idx: 
            metadata_str = str(metadata_row_values[i]).lower() 
            suffix = "" 
            if "carl" in metadata_str: suffix = "_carl" 
            elif "ryan" in metadata_str: suffix = "_ryan" 
            elif "ivan" in metadata_str: suffix = "_ivan" 
            if suffix: new_name = name + suffix 
        new_names.append(new_name) 
 
    # Ensure final names are unique by appending .1, .2, etc. if needed 
    final_unique_names = [] 
    counts = {} 
    for name in new_names: 
        if name not in counts: 
            counts[name] = 0 
            final_unique_names.append(name) 
        else: 
            counts[name] += 1 
            final_unique_names.append(f"{name}.{counts[name]}") 
             
    return final_unique_names 
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# --- Processing Functions (from Script 1) --- 
def convert_likert_scales(df, column_prefix, mapping): 
    """Converts columns with Likert scale text to numeric values.""" 
    print(f"\n--- Converting Likert Scales for columns starting with '{column_prefix}' ---") 
    converted_cols_count = 0 
    for col in df.columns: 
        if str(col).lower().startswith(column_prefix.lower()): 
            print(f"  Converting column: {col}") 
            df[col] = df[col].astype(str).map(mapping)  
            df[col] = pd.to_numeric(df[col], errors='coerce') 
            converted_cols_count += 1 
            if df[col].isnull().any(): 
                print(f"    Note: Some values in '{col}' became NaN (could not be mapped or were 
already NaN).") 
    if converted_cols_count == 0: 
        print(f"  No columns found starting with '{column_prefix}' for Likert conversion.") 
    else: 
        print(f"  Successfully attempted Likert conversion for {converted_cols_count} columns.") 
    return df 
 
def reverse_code_items(df, items_to_reverse_bases, scale_min=1, scale_max=7): 
    """Reverse codes specified numeric columns based on a scale.""" 
    print("\n--- Reverse Coding Specific Trust Items ---") 
    reverse_value = scale_min + scale_max 
    reversed_cols_found_count = 0 
 
    for col in df.columns: 
        for base_item in items_to_reverse_bases: 
            # Regex to match base_item, optional suffix, and optional duplicate number (.1) 
            pattern = rf"^{re.escape(base_item)}(_carl|_ryan|_ivan)?(\.\d+)?$" 
            if re.match(pattern, str(col).lower()):  
                if pd.api.types.is_numeric_dtype(df[col]): 
                    if df[col].notna().any(): 
                        print(f"  Reverse coding column: {col} (Original mean: {df[col].mean():.2f})") 
                        df[col] = reverse_value - df[col] 
                        print(f"    New mean for {col}: {df[col].mean():.2f}") 
                    else: 
                        print(f"  Column {col} contains all NaNs, skipping reverse coding logic.") 
                    reversed_cols_found_count += 1 
                else: 
                    print(f"    Warning: Column '{col}' identified for reverse coding is not numeric. 
Skipping.") 
                break  
     
    if reversed_cols_found_count == 0: 
        print("  No columns found matching the criteria for reverse coding.") 
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    else: 
        print(f"  Successfully attempted reverse coding for {reversed_cols_found_count} 
columns.") 
    return df 
 
def reorder_columns(df, first_col_name_base): 
    """Moves a specified column to the first position in the DataFrame.""" 
    print(f"\n--- Reordering Columns to make '{first_col_name_base}' first ---") 
    target_first_col_final_name = None 
    cleaned_first_col_base = clean_column_name(first_col_name_base) 
 
    if cleaned_first_col_base in df.columns: 
        target_first_col_final_name = cleaned_first_col_base 
    else: 
        for col_name_in_df in df.columns: 
            if str(col_name_in_df).startswith(cleaned_first_col_base): 
                target_first_col_final_name = col_name_in_df  
                print(f"  Found '{first_col_name_base}' as column '{target_first_col_final_name}'.") 
                break 
     
    if target_first_col_final_name and target_first_col_final_name in df.columns: 
        cols = [target_first_col_final_name] + [col for col in df.columns if col != 
target_first_col_final_name] 
        df = df[cols] 
        print(f"  Column '{target_first_col_final_name}' moved to the first position.") 
    else: 
        print(f"  Warning: Column based on '{first_col_name_base}' not found. No reordering 
done.") 
    return df 
 
# --- Imputation Functions (from Script 2) --- 
def report_missing_values(df, title="Missing Value Report"): 
    """Prints a report of missing values (count and percentage) for each column.""" 
    print(f"\n--- {title} ---") 
    missing_count = df.isnull().sum() 
    missing_percentage = (missing_count / len(df)) * 100 
    missing_df = pd.DataFrame({ 
        'Missing Count': missing_count, 
        'Missing Percentage (%)': missing_percentage 
    }) 
    missing_df = missing_df[missing_df['Missing Count'] > 0].sort_values(by='Missing 
Percentage (%)', ascending=False) 
     
    if missing_df.empty: 
        print("No missing values found in the dataset.") 
    else: 
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        print(missing_df) 
    return missing_df 
 
def impute_missing_data(df, numeric_cols_override=None, categorical_cols_override=None): 
    """Imputes missing data: median for numeric, mode for categorical.""" 
    print("\n--- Starting Data Imputation ---") 
    df_imputed = df.copy() 
 
    # Determine numeric columns for imputation 
    if numeric_cols_override is not None: 
        numeric_cols = [col for col in numeric_cols_override if col in df_imputed.columns] 
        print(f"Using manually specified numeric columns: {numeric_cols}") 
    else: 
        numeric_cols = df_imputed.select_dtypes(include=np.number).columns.tolist() 
        print(f"Auto-detected numeric columns for imputation: {numeric_cols}") 
 
    # Determine categorical/object columns for imputation 
    if categorical_cols_override is not None: 
        categorical_cols = [col for col in categorical_cols_override if col in df_imputed.columns] 
        print(f"Using manually specified categorical columns: {categorical_cols}") 
    else: 
        all_cols = df_imputed.columns.tolist() 
        categorical_cols = [col for col in all_cols if col not in numeric_cols] 
        print(f"Auto-detecting categorical/object columns (all non-numeric): {categorical_cols}") 
 
    # Impute numeric columns with MEDIAN 
    for col in numeric_cols: 
        if df_imputed[col].isnull().any(): 
            median_val = df_imputed[col].median() 
            df_imputed[col].fillna(median_val, inplace=True) 
            print(f"  Numeric column '{col}': Imputed NaNs with median ({median_val:.2f})") 
 
    # Impute categorical/object columns with MODE 
    for col in categorical_cols: 
        if df_imputed[col].isnull().any(): 
            if df_imputed[col].dtype == 'object' or 
pd.api.types.is_categorical_dtype(df_imputed[col]): 
                mode_val = df_imputed[col].mode() 
                if not mode_val.empty: 
                    mode_val = mode_val[0] 
                    df_imputed[col].fillna(mode_val, inplace=True) 
                    print(f"  Categorical column '{col}': Imputed NaNs with mode ('{mode_val}')") 
                else: 
                    print(f"  Categorical column '{col}': Mode could not be determined. NaNs remain.") 
            else: 
                print(f"  Skipping imputation for '{col}' as it is not an object/category type.") 
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    print("--- Imputation Attempt Finished ---") 
    return df_imputed 
 
# --- Main Script Execution --- 
def main(): 
    print(f"--- Starting Full Pipeline: Processing {INPUT_CSV_FILE} ---") 
 
    # 
=====================================================================
==== 
    # STAGE 1: DATA LOADING AND CLEANING (from Script 1) 
    # 
=====================================================================
==== 
    try: 
        df_headers = pd.read_csv(INPUT_CSV_FILE, header=None, nrows=1, encoding='utf-8') 
        original_headers = df_headers.iloc[0].tolist() 
        df_metadata_row = pd.read_csv(INPUT_CSV_FILE, header=None, nrows=1, 
skiprows=[0], encoding='utf-8') 
        metadata_row_values = df_metadata_row.iloc[0].tolist() 
    except FileNotFoundError: 
        print(f"Error: Input file '{INPUT_CSV_FILE}' not found.") 
        return 
    except Exception as e: 
        print(f"Error reading header/metadata rows: {e}") 
        return 
 
    final_column_names = generate_new_column_names(original_headers, 
metadata_row_values) 
    if final_column_names is None: return 
 
    try: 
        df_data = pd.read_csv(INPUT_CSV_FILE, header=None, skiprows=2, 
names=final_column_names, encoding='utf-8', dtype=str, keep_default_na=False) 
    except Exception as e: 
        print(f"Error reading main data: {e}") 
        return 
     
    df_data.replace('', np.nan, inplace=True) 
    print(f"\nDataFrame loaded with {df_data.shape[0]} data rows and {df_data.shape[1]} 
columns.") 
     
    # --- Column Selection --- 
    columns_to_keep_final = [] 
    initial_cols_cleaned = [clean_column_name(col) for col in INITIAL_COLS_TO_KEEP] 
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    original_headers_cleaned_for_selection = [clean_column_name(h) for h in original_headers] 
 
    for initial_col_name_to_find in initial_cols_cleaned: 
        found_in_original = False 
        for i, original_cleaned_h in enumerate(original_headers_cleaned_for_selection): 
            if original_cleaned_h == initial_col_name_to_find: 
                if final_column_names[i] not in columns_to_keep_final: 
                    columns_to_keep_final.append(final_column_names[i]) 
                found_in_original = True 
                break  
        if not found_in_original: 
            print(f"Warning during selection: Initial column '{initial_col_name_to_find}' was not 
found.") 
             
    pid_original_cleaned_name = clean_column_name('participantID') 
    try: 
        pid_original_idx = 
original_headers_cleaned_for_selection.index(pid_original_cleaned_name) 
        for i in range(pid_original_idx, len(final_column_names)): 
            if final_column_names[i] not in columns_to_keep_final: 
                 columns_to_keep_final.append(final_column_names[i]) 
    except ValueError: 
        print(f"CRITICAL ERROR: Original '{pid_original_cleaned_name}' column not found.") 
        return 
     
    print(f"\nColumns selected (count: {len(columns_to_keep_final)}): 
{str(columns_to_keep_final[:10])[:200]}...") 
     
    try: 
        df_selected = df_data[columns_to_keep_final].copy()  
    except KeyError as e: 
        print(f"KeyError during final column selection: {e}.") 
        return 
         
    print(f"Shape after column selection: {df_selected.shape}") 
 
    # --- Data Processing --- 
    df_processed = convert_likert_scales(df_selected, "trust", LIKERT_MAPPING_TRUST) 
    df_processed = reverse_code_items(df_processed, TRUST_ITEMS_TO_REVERSE) 
    df_processed_reordered = reorder_columns(df_processed, 'participantID')  
 
    # --- Remove first data row --- 
    if not df_processed_reordered.empty: 
        print("\n--- Removing the first data row (metadata/test row) ---") 
        df_processed_final = df_processed_reordered.iloc[1:].reset_index(drop=True) 
        print(f"Shape after removing first data row: {df_processed_final.shape}") 
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    else: 
        print("\nDataFrame is empty prior to removal of the first data row.") 
        df_processed_final = df_processed_reordered 
     
    # 
=====================================================================
==== 
    # STAGE 2: DATA IMPUTATION (from Script 2) 
    # 
=====================================================================
==== 
     
    # Initial missing value report on the processed data 
    report_missing_values(df_processed_final, title="Missing Value Report (Before Imputation)") 
 
    # Perform imputation 
    df_imputed = impute_missing_data(df_processed_final,  
                                     numeric_cols_override=MANUAL_NUMERIC_COLS,  
                                     categorical_cols_override=MANUAL_CATEGORICAL_COLS) 
 
    # Final missing value report after imputation 
    report_missing_values(df_imputed, title="Missing Value Report (After Imputation)") 
 
    # 
=====================================================================
==== 
    # STAGE 3: SAVE FINAL OUTPUT 
    # 
=====================================================================
==== 
    try: 
        df_imputed.to_csv(OUTPUT_CSV_FILE, index=False, encoding='utf-8') 
        print(f"\nSuccessfully saved final data to '{OUTPUT_CSV_FILE}'.") 
        print(f"Final shape of saved data: {df_imputed.shape}") 
        print(f"Final columns (first 10): {list(df_imputed.columns)[:10]}") 
        print("\nFirst 5 rows of the final imputed data:") 
        print(df_imputed.head()) 
         
        # Final info and stats 
        print("\nInfo for final data:") 
        df_imputed.info() 
        trust_cols_final = [col for col in df_imputed.columns if str(col).lower().startswith('trust') 
and pd.api.types.is_numeric_dtype(df_imputed[col])] 
        if trust_cols_final: 
            print("\nDescriptive statistics for numeric 'trust' columns in the final data:") 
            print(df_imputed[trust_cols_final].describe()) 
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    except Exception as e: 
        print(f"\nError saving final imputed data to CSV: {e}") 
 
if __name__ == '__main__': 
    main() 
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Python Script for Data Cleaning and Transformation from the Performance and Gaze Following 
Data 
 
# Import necessary libraries 
import os 
import glob 
import pandas as pd 
 
# Define the path to the folder containing the gaze log files 
# Assumes the 'gaze_logs' folder is in the same directory as the script 
folder_path = 'gaze_logs' 
 
# Define the pattern for the gaze log files 
# It looks for files starting with 'gaze_log_p' and ending with '.csv' 
file_pattern = os.path.join(folder_path, 'gaze_log_p*.csv') 
 
# Find all files in the folder that match the pattern 
all_files = glob.glob(file_pattern) 
 
# Check if any files were found 
if not all_files: 
    print(f"No files matching the pattern '{file_pattern}' found in the folder '{folder_path}'.") 
else: 
    print(f"Found {len(all_files)} files to combine:") 
    for f in all_files: 
        print(f" - {os.path.basename(f)}") 
 
    # Initialize an empty list to hold DataFrames 
    list_of_dfs = [] 
 
    # Loop through the list of files found 
    for filename in all_files: 
        try: 
            # Read the current CSV file into a DataFrame 
            df = pd.read_csv(filename, index_col=None, header=0) 
            # Add the DataFrame to the list 
            list_of_dfs.append(df) 
            print(f"Successfully read {os.path.basename(filename)}") 
        except Exception as e: 
            print(f"Error reading {os.path.basename(filename)}: {e}") 
 
    # Check if any DataFrames were successfully read 
    if not list_of_dfs: 
        print("No dataframes were created. Cannot proceed.") 
    else: 
        # Concatenate all DataFrames in the list into a single DataFrame 
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        combined_df = pd.concat(list_of_dfs, axis=0, ignore_index=True) 
 
        # Define the name for the output file 
        output_filename = 'total_gaze.csv' 
 
        # Save the combined DataFrame to a new CSV file 
        try: 
            combined_df.to_csv(output_filename, index=False) 
            print(f"\nSuccessfully combined {len(list_of_dfs)} files into '{output_filename}'.") 
            print(f"The combined file has {combined_df.shape[0]} rows and 
{combined_df.shape[1]} columns.") 
        except Exception as e: 
            print(f"Error writing the combined file '{output_filename}': {e}") 
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Python Script for Data Cleaning and Data Transformation of the Eye-tracking Data 
 
#!/usr/bin/env python3 
import pandas as pd 
import os 
import re 
from pathlib import Path 
 
# --- MASTER CONFIGURATION --- 
# === Inputs === 
# Directory for original eye-tracking TSV files (from script 1) 
EYETRACKING_INPUT_DIR = Path('eyetracking_files')  
# Directory for gaze log CSV files (from script 2) 
GAZE_LOG_DIR = Path('gaze_files') 
 
# === Output === 
# Final combined CSV file name (from script 3) 
FINAL_OUTPUT_CSV = "combined_eyetracking_data.csv" 
 
# === Processing Parameters (from scripts 1 & 2) === 
# Main AOI categories to look for in eye-tracking data 
AOI_CATEGORIES = [ 
    'cards', 'eyes', 'face', 'false_category', 
    'robot', 'robot_name', 'true_category' 
] 
 
# Columns needed for timestamp calculation 
TIMESTAMP_COLUMNS = ['Recording date UTC', 'Recording start time UTC', 'Recording 
timestamp'] 
 
# Columns from gaze_log files essential for processing 
BASE_REQUIRED_GAZE_COLS = ['timestamp', 'move_duration', 'participant'] 
 
# Additional columns from gaze_log to merge into the final output 
GAZE_COLS_TO_MERGE = [ 
    'difficulty', 'correct_answer', 'correct_side', 
    'participants_side_choice', 'Robot', 'gazeDecision' 
] 
 
# Define the EXACT final columns for the output file 
FINAL_OUTPUT_COLUMNS = [ 
    'Eyetracker timestamp', 'Gaze point X (MCSnorm)', 'Gaze point Y (MCSnorm)', 
    'Pupil diameter left', 'Pupil diameter right', 'Validity left', 'Validity right', 
    'Eye movement type', 'Eye movement event duration', 
    'Fixation point X (MCSnorm)', 'Fixation point Y (MCSnorm)', 
    'Event', 'Event value', 'Mouse position X', 'Mouse position Y', 
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    'ts_utc', 
    'is_cards', 'is_eyes', 'is_face', 'is_false_category', 'is_robot', 
    'is_robot_name', 'is_true_category', 'active_areas', 
    'ParticipantID', 
    'classification_timeframe_number', 
    'robot_appearance_timeframe_number' 
] + GAZE_COLS_TO_MERGE 
 
 
# --- HELPER & PROCESSING FUNCTIONS (Combined from all scripts) --- 
 
def get_participant_id_from_filename(filename_str): 
    """Extracts participant ID (e.g., 'p1') from a filename.""" 
    match = re.search(r'_p(\d+)', filename_str) 
    if match: 
        return f"p{match.group(1)}" 
    match_direct = re.match(r'p(\d+)', Path(filename_str).stem.split('_')[-1]) 
    if match_direct: 
        return f"p{match_direct.group(1)}" 
    return Path(filename_str).stem 
 
def add_aoi_columns(df, aoi_categories_list): 
    """ 
    (From Script 1) Adds boolean AOI and 'active_areas' columns to a DataFrame in memory. 
    """ 
    print("  Step 1a: Processing AOI categories to create boolean flags...") 
    for category in aoi_categories_list: 
        # Regex to find the column for a specific AOI category 
        regex_pattern = re.compile(f"AOI hit \\[Web Page Recording.*? - {re.escape(category)}\\]", 
re.IGNORECASE) 
         
        potential_aoi_columns = [col for col in df.columns if regex_pattern.fullmatch(col)] 
        selected_column_for_category = None 
 
        if potential_aoi_columns: 
            for col_name in potential_aoi_columns: 
                # Check if the column has any non-null, non-zero data 
                if df[col_name].notna().any(): 
                    series_numeric = pd.to_numeric(df[col_name], errors='coerce') 
                    if series_numeric[series_numeric.notna()].astype(bool).any(): 
                        selected_column_for_category = col_name 
                        break 
         
        bool_col_name = f"is_{category}" 
        if selected_column_for_category: 
            numeric_series = pd.to_numeric(df[selected_column_for_category], errors='coerce') 
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            df[bool_col_name] = numeric_series.notna() & numeric_series.astype(bool) 
            print(f"    - Created boolean column '{bool_col_name}' from 
'{selected_column_for_category}'.") 
        else: 
            df[bool_col_name] = False 
            print(f"    - No active AOI column found for '{category}'. '{bool_col_name}' set to 
False.") 
 
    # Create 'active_areas' column 
    def determine_active_areas(row): 
        active_names = [cat for cat in aoi_categories_list if row.get(f"is_{cat}", False)] 
        return ", ".join(active_names) if active_names else pd.NA 
 
    df['active_areas'] = df.apply(determine_active_areas, axis=1) 
    print("    - Generated 'active_areas' column.") 
    return df 
 
def process_single_participant(participant_id, raw_tobii_filepath, gaze_log_filepath): 
    """ 
    (Combines logic from scripts 1 & 2) 
    Processes a single participant's data from raw files to a final, merged DataFrame. 
    Returns a DataFrame for one participant, or None if an error occurs. 
    """ 
    print(f"\n--- Processing Participant: {participant_id} ---") 
 
    # 1. LOAD GAZE LOG DATA (from Script 2) 
    print(f"  Loading gaze log: {gaze_log_filepath.name}") 
    try: 
        gaze_df = pd.read_csv(gaze_log_filepath) 
        # Check for essential columns 
        if any(col not in gaze_df.columns for col in BASE_REQUIRED_GAZE_COLS): 
            print(f"  Error: Gaze log is missing one of required columns: 
{BASE_REQUIRED_GAZE_COLS}. Skipping.") 
            return None 
        participant_id_col = int(gaze_df['participant'].dropna().iloc[0]) 
    except Exception as e: 
        print(f"  Error reading or parsing gaze log file {gaze_log_filepath.name}: {e}. Skipping.") 
        return None 
 
    # Ensure all columns to be merged exist, adding them as NA if not 
    for col in GAZE_COLS_TO_MERGE: 
        if col not in gaze_df.columns: 
            gaze_df[col] = pd.NA 
 
    # 2. DEFINE TIMEFRAMES FROM GAZE LOG (from Script 2) 
    print("  Step 1b: Defining timeframes from gaze log...") 



 114 

    try: 
        gaze_df['ts_utc'] = pd.to_datetime(gaze_df['timestamp'], utc=True, errors='coerce') 
        gaze_df['move_duration'] = pd.to_numeric(gaze_df['move_duration'], errors='coerce') 
        gaze_df.dropna(subset=['ts_utc', 'move_duration'], inplace=True) 
        gaze_df = gaze_df.sort_values('ts_utc').reset_index(drop=True) 
 
        gaze_df['classification_time_start'] = gaze_df['ts_utc'] 
        gaze_df['classification_time_end'] = gaze_df['ts_utc'] + 
pd.to_timedelta(gaze_df['move_duration'], unit='s') 
        gaze_df['classification_timeframe_number_val'] = range(1, len(gaze_df) + 1) 
 
        gaze_df['robot_appearance_time_start'] = gaze_df['classification_time_end'].shift(1) 
        gaze_df['robot_appearance_time_end'] = gaze_df['classification_time_end'] 
        gaze_df['robot_appearance_timeframe_number_val'] = range(1, len(gaze_df) + 1) 
         
        gaze_df.dropna(subset=['classification_time_start', 'classification_time_end', 
'robot_appearance_time_end'], inplace=True) 
        if gaze_df.empty: 
            print("  Error: No valid timeframes could be defined from gaze log. Skipping.") 
            return None 
         
        overall_start = gaze_df['classification_time_start'].min() 
        overall_end = gaze_df['classification_time_end'].max() 
    except Exception as e: 
        print(f"  Error defining timeframes for {participant_id}: {e}. Skipping.") 
        return None 
 
    # 3. LOAD & PROCESS RAW EYE-TRACKING DATA (combining scripts 1 & 2) 
    print(f"  Loading raw eye-tracking data: {raw_tobii_filepath.name}") 
    try: 
        et_df = pd.read_csv(raw_tobii_filepath, sep='\t', low_memory=False) 
        if any(col not in et_df.columns for col in TIMESTAMP_COLUMNS): 
            print(f"  Error: Eye-tracking file is missing timestamp columns: 
{TIMESTAMP_COLUMNS}. Skipping.") 
            return None 
    except Exception as e: 
        print(f"  Error reading eye-tracking file {raw_tobii_filepath.name}: {e}. Skipping.") 
        return None 
 
    # Perform in-memory processing from Script 1 
    et_df = add_aoi_columns(et_df, AOI_CATEGORIES) 
 
    # Calculate timestamps (from Script 2) 
    print("  Step 2: Calculating precise timestamps (ts_utc)...") 
    try: 
        et_df['start_dt_utc'] = pd.to_datetime( 
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            et_df['Recording date UTC'] + ' ' + et_df['Recording start time UTC'], 
            format='%d-%m-%Y %H:%M:%S.%f', utc=True, errors='coerce' 
        ) 
        et_df['ts_utc'] = et_df['start_dt_utc'] + pd.to_timedelta( 
            pd.to_numeric(et_df['Recording timestamp'], errors='coerce'), unit='us' 
        ) 
        et_df.dropna(subset=['ts_utc'], inplace=True) 
        et_df = et_df.sort_values('ts_utc').reset_index(drop=True) 
    except Exception as e: 
        print(f"  Error calculating timestamps for {participant_id}: {e}. Skipping.") 
        return None 
 
    # 4. FILTER, MAP & MERGE (from Script 2) 
    print(f"  Step 3: Filtering eye-tracking data to range: {overall_start} to {overall_end}") 
    et_df_filtered = et_df[ 
        (et_df['ts_utc'] >= overall_start) & (et_df['ts_utc'] < overall_end) 
    ].copy() 
 
    if et_df_filtered.empty: 
        print(f"  Warning: No eye-tracking data found within the defined timeframes for 
{participant_id}.") 
        return None 
     
    print("  Step 4: Mapping eye-tracking samples to timeframe numbers...") 
    et_df_filtered['classification_timeframe_number'] = pd.NA 
    et_df_filtered['robot_appearance_timeframe_number'] = pd.NA 
 
    for _, event_row in gaze_df.iterrows(): 
        # Map classification timeframe 
        ct_mask = (et_df_filtered['ts_utc'] >= event_row['classification_time_start']) & 
(et_df_filtered['ts_utc'] < event_row['classification_time_end']) 
        et_df_filtered.loc[ct_mask, 'classification_timeframe_number'] = 
event_row['classification_timeframe_number_val'] 
         
        # Map robot appearance timeframe 
        if pd.notna(event_row['robot_appearance_time_start']): 
            rat_mask = (et_df_filtered['ts_utc'] >= event_row['robot_appearance_time_start']) & 
(et_df_filtered['ts_utc'] < event_row['robot_appearance_time_end']) 
            et_df_filtered.loc[rat_mask, 'robot_appearance_timeframe_number'] = 
event_row['robot_appearance_timeframe_number_val'] 
 
    et_df_filtered['ParticipantID'] = participant_id_col 
 
    # Merge additional data from gaze log 
    gaze_to_merge = gaze_df[['classification_timeframe_number_val'] + 
GAZE_COLS_TO_MERGE].rename( 
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        columns={'classification_timeframe_number_val': 'classification_timeframe_number'} 
    ) 
    final_df = pd.merge(et_df_filtered, gaze_to_merge, on='classification_timeframe_number', 
how='left') 
 
    # 5. FINALIZE AND RETURN 
    # Ensure all required columns exist and are in the correct order 
    for col in FINAL_OUTPUT_COLUMNS: 
        if col not in final_df.columns: 
            final_df[col] = pd.NA 
 
    print(f"  Successfully processed participant {participant_id}. Found {len(final_df)} data 
rows.") 
    return final_df[FINAL_OUTPUT_COLUMNS] 
 
 
# --- SCRIPT EXECUTION --- 
if __name__ == "__main__": 
    # Validate input directories 
    if not EYETRACKING_INPUT_DIR.is_dir(): 
        print(f"Error: Eye-tracking input directory not found: {EYETRACKING_INPUT_DIR}") 
        exit() 
    if not GAZE_LOG_DIR.is_dir(): 
        print(f"Error: Gaze log directory not found: {GAZE_LOG_DIR}") 
        exit() 
 
    # Find gaze logs to drive the processing 
    gaze_log_files = list(GAZE_LOG_DIR.glob("gaze_log_p*.csv")) 
    if not gaze_log_files: 
        print(f"No gaze log files found in {GAZE_LOG_DIR} matching 'gaze_log_p*.csv'.") 
        exit() 
     
    print(f"Found {len(gaze_log_files)} participant gaze logs to process.") 
     
    all_participants_data = [] 
     
    # Main loop to process each participant 
    for gaze_filepath in gaze_log_files: 
        p_id = get_participant_id_from_filename(gaze_filepath.name) 
        if not p_id: 
            print(f"Could not extract participant ID from gaze file: {gaze_filepath.name}. Skipping.") 
            continue 
 
        # Find the matching raw eye-tracking file 
        tobii_filepath = EYETRACKING_INPUT_DIR / f"eyetracking_{p_id}.tsv" 
        if not tobii_filepath.exists(): 
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            print(f"Warning: Matching eye-tracking file not found for {p_id} at {tobii_filepath}. 
Skipping.") 
            continue 
             
        try: 
            # Process this participant's data 
            participant_df = process_single_participant(p_id, tobii_filepath, gaze_filepath) 
             
            # If processing was successful, add the resulting DataFrame to our list 
            if participant_df is not None and not participant_df.empty: 
                all_participants_data.append(participant_df) 
        except Exception as e: 
            print(f"CRITICAL UNHANDLED ERROR processing participant {p_id}: {e}") 
            import traceback 
            traceback.print_exc() 
 
    # Final combination step (from Script 3) 
    if not all_participants_data: 
        print("\n--- Processing Finished: No data was successfully processed for any participant. ---
") 
    else: 
        print(f"\n--- Combining data from {len(all_participants_data)} successfully processed 
participants... ---") 
        try: 
            # Concatenate all the individual DataFrames into one master DataFrame 
            master_df = pd.concat(all_participants_data, ignore_index=True) 
 
            # Save the final combined data to a CSV file 
            master_df.to_csv(FINAL_OUTPUT_CSV, sep=',', index=False, na_rep='NaN') 
 
            print(f"\n✅ Success! Combined data saved to: '{FINAL_OUTPUT_CSV}'") 
            print(f"   The final dataset has {master_df.shape[0]} rows and {master_df.shape[1]} 
columns.") 
            print("\n--- First 5 rows of the final combined data ---") 
            print(master_df.head()) 
        except Exception as e: 
            print(f"Error during final combination or saving: {e}") 
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R Script for Performance Analysis 
 
# ----------------------------------------------------------------------------- 
# Script: statistics_performance_analysis.R 
# Purpose: Load raw trial-level data (totalgaze.csv), process variables 
#          for task performance (score, move duration), calculate extensive 
#          descriptive statistics, conduct outlier checks for move duration. 
#          Aggregate key performance DVs per participant per condition, 
#          check ANOVA assumptions, perform 3x2 repeated measures ANOVA, 
#          and visualize final results. 
# 
# UPDATED: This script now filters move_duration outliers based on a 
#          2.5 SD rule per participant, analyzes accuracy as a percentage, 
#          and generates a final bar chart for accuracy results. 
# 
# UPDATED AGAIN: Robot conditions renamed and reordered. Plots are now grouped 
#           by difficulty within each robot condition. 
# ----------------------------------------------------------------------------- 
 
# --- 1. SETUP: Load Necessary Packages --- 
# install.packages(c("tidyverse", "patchwork", "scales", "rstatix", "ggpubr", "emmeans")) 
 
library(tidyverse) 
library(patchwork) 
library(scales) 
library(rstatix) 
library(ggpubr) 
library(emmeans) 
 
# --- 2. LOAD DATA --- 
file_path <- "totalgaze.csv" 
data_raw <- NULL 
 
cat(paste0("--- Attempting to load '", file_path, "' ---\n")) 
tryCatch({ 
  data_raw <- read_csv(file_path) 
  cat(paste0("--- Successfully loaded '", file_path, "'. ---\n")) 
}, error = function(e) { 
  cat(paste0("--- ERROR: Could not load '", file_path, "'. ---\n")) 
  cat("Error message: ", e$message, "\n") 
}) 
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if (is.null(data_raw)) { 
  stop("Script cannot proceed because data_raw was not loaded.") 
} 
 
cat("\n--- Initial Data Inspection (First few rows of raw data) ---\n"); print(head(data_raw)) 
cat("\n--- Initial Structure of the raw data (str) ---\n"); str(data_raw) 
 
# --- 3. STANDARDIZE COLUMN NAMES & INITIAL TRANSFORMATIONS --- 
participant_id_original_name <- "participant" 
robot_col_original_name <- "Robot" 
difficulty_input_col_name <- "difficulty" 
correct_side_original_name <- "correct_side" 
participants_side_choice_original_name <- "participants_side_choice" 
move_duration_original_name <- "move_duration" 
 
data <- data_raw 
 
participant_id_col <- participant_id_original_name 
robot_col <- robot_col_original_name 
difficulty_original_col <- difficulty_input_col_name 
correct_side_col <- correct_side_original_name 
participant_choice_col <- participants_side_choice_original_name 
move_duration_col <- move_duration_original_name 
 
score_col <- "task_score" 
difficulty_labelled_col <- "Difficulty_Condition" 
 
if (difficulty_original_col %in% colnames(data)) { 
  data <- data %>% 
    mutate( 
      !!sym(difficulty_original_col) := case_when( 
        tolower(.data[[difficulty_original_col]]) == "easy" ~ 0, 
        tolower(.data[[difficulty_original_col]]) == "hard" ~ 1, 
        TRUE ~ NA_real_ 
      ) 
    ) 
  data[[difficulty_original_col]] <- as.numeric(data[[difficulty_original_col]]) 
} 
 
if (correct_side_col %in% colnames(data) && participant_choice_col %in% colnames(data)) { 
  data <- data %>% 
    mutate( 
      !!sym(score_col) := ifelse( 
        is.na(!!sym(correct_side_col)) | is.na(!!sym(participant_choice_col)), 
        NA_integer_, 
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        ifelse(as.character(!!sym(correct_side_col)) == as.character(!!sym(participant_choice_col)), 
1, 0) 
      ) 
    ) 
  data[[score_col]] <- as.integer(data[[score_col]]) 
} 
 
# --- 4. PREPARE FACTORS & VERIFY COLUMN TYPES --- 
cat("\n\n--- 4. Preparing IVs as Factors & Ensuring DV Numeric Types for Performance 
Analysis ---\n") 
 
if (robot_col %in% colnames(data) && !is.factor(data[[robot_col]])) { 
   
  # <<< CHANGED: Renaming and reordering the robot conditions >>> 
  # 1. First, rename the existing values to the new desired names. 
  data <- data %>% 
    mutate(!!sym(robot_col) := recode(!!sym(robot_col), 
                                      "Ryan condition" = "Ryan (Joint)", 
                                      "Ivan condition" = "Ivan (Disjoint)", 
                                      "Carl condition" = "Carl (Control)")) 
   
  # 2. Then, create the factor with the new names in the desired order. 
  data[[robot_col]] <- factor(data[[robot_col]], levels = c("Ryan (Joint)", "Ivan (Disjoint)", "Carl 
(Control)")) 
   
  cat("--- Robot conditions have been renamed and reordered. New order: Ryan (Joint), Ivan 
(Disjoint), Carl (Control) ---\n") 
} 
 
if (participant_id_col %in% colnames(data) && !is.factor(data[[participant_id_col]])) { 
  data[[participant_id_col]] <- as.factor(data[[participant_id_col]]) 
} 
 
if (difficulty_original_col %in% colnames(data) && is.numeric(data[[difficulty_original_col]])) 
{ 
  data[[difficulty_labelled_col]] <- factor(data[[difficulty_original_col]], levels = c(0, 1), labels = 
c("Easy", "Hard")) 
} else if (difficulty_input_col_name %in% colnames(data) && 
is.character(data[[difficulty_input_col_name]])) { 
  data[[difficulty_labelled_col]] <- factor(tolower(data[[difficulty_input_col_name]]), levels = 
c("easy", "hard"), labels = c("Easy", "Hard")) 
} else { 
  stop(paste0("No usable difficulty column found to create the factor 
'",difficulty_labelled_col,"'.")) 
} 
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performance_dvs_to_ensure_numeric <- c(score_col, move_duration_col) 
for (dv_check in performance_dvs_to_ensure_numeric) { 
  if (dv_check %in% colnames(data)) { 
    if (!is.numeric(data[[dv_check]])) { 
      data[[dv_check]] <- suppressWarnings(as.numeric(as.character(data[[dv_check]]))) 
    } 
  } 
} 
cat("--- Performance data preparation complete. ---\n") 
 
# --- 5. TRIAL-LEVEL OUTLIER HANDLING (for 'move_duration') --- 
cat("\n\n--- 5. Trial-Level Outlier Visualization and Filtering for '", move_duration_col, "' ---") 
if (move_duration_col %in% colnames(data) && is.numeric(data[[move_duration_col]])) { 
   
  # --- 5.1 VISUALIZATION (using a Bar Chart of Means for Move Duration BEFORE 
Filtering) --- 
  cat(paste0("\n--- Visualizing Mean '", move_duration_col, "' with SD Error Bars (Trial-Level, 
BEFORE Filtering) ---\n")) 
  if (robot_col %in% colnames(data) && difficulty_labelled_col %in% colnames(data) ) { 
     
    # Calculate summary stats for plotting move_duration 
    summary_for_duration_plot <- data %>% 
      filter(!is.na(!!sym(move_duration_col))) %>% 
      group_by(!!sym(robot_col), !!sym(difficulty_labelled_col)) %>% 
      summarise( 
        Mean_Duration = mean(!!sym(move_duration_col), na.rm = TRUE), 
        SD_Duration = sd(!!sym(move_duration_col), na.rm = TRUE), 
        .groups = 'drop' 
      ) 
     
    # <<< CHANGED: Plot structure updated to group by difficulty >>> 
    md_by_condition_plot <- ggplot(summary_for_duration_plot, 
                                   aes(x = !!sym(robot_col), y = Mean_Duration, fill = 
!!sym(difficulty_labelled_col))) + 
      geom_bar(stat = "identity", position = position_dodge(width = 0.9)) + 
      geom_errorbar(aes(ymin = Mean_Duration - SD_Duration, ymax = Mean_Duration + 
SD_Duration), 
                    width = 0.25, position = position_dodge(width = 0.9)) + 
      scale_fill_brewer(palette = "Pastel1") + 
      labs(title = paste("Mean", move_duration_col, "by Condition (Before Outlier Filtering)"), 
           subtitle = "Error bars represent +/- 1 Standard Deviation", 
           y = paste("Mean", move_duration_col, "(seconds)"), 
           x = "Robot Condition", 
           fill = "Difficulty") + 
      theme_minimal() + 
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      theme(legend.position = "top", axis.text.x = element_text(angle = 45, hjust = 1)) 
    print(md_by_condition_plot) 
  } 
   
  # --- 5.2 FILTERING (2.5 SD Rule per Participant for move_duration) --- 
  cat(paste0("\n--- Filtering '", move_duration_col, "' outliers based on 2.5 SD rule per participant 
---\n")) 
  initial_rows <- nrow(data) 
  cat(paste0("Initial number of trials: ", initial_rows, "\n")) 
   
  data <- data %>% 
    group_by(!!sym(participant_id_col)) %>% 
    mutate( 
      mean_dur = mean(!!sym(move_duration_col), na.rm = TRUE), 
      sd_dur = sd(!!sym(move_duration_col), na.rm = TRUE), 
      upper_bound = mean_dur + (2.5 * sd_dur), 
      lower_bound = mean_dur - (2.5 * sd_dur) 
    ) %>% 
    filter( 
      is.na(!!sym(move_duration_col)) | (!!sym(move_duration_col) >= lower_bound & 
!!sym(move_duration_col) <= upper_bound) 
    ) %>% 
    ungroup() %>% 
    select(-mean_dur, -sd_dur, -upper_bound, -lower_bound) # Clean up helper columns 
   
  final_rows <- nrow(data) 
  rows_removed <- initial_rows - final_rows 
  percent_removed <- (rows_removed / initial_rows) * 100 
   
  cat(paste0("Filtered number of trials: ", final_rows, "\n")) 
  cat(paste0("Removed ", rows_removed, " trials (", round(percent_removed, 2), "%) as outliers 
from '", move_duration_col, "'.\n")) 
   
  # --- 5.3 VISUALIZATION (using a Bar Chart of Means for Move Duration AFTER Filtering) 
--- 
  cat(paste0("\n--- Visualizing Mean '", move_duration_col, "' with SE Error Bars (Trial-Level, 
AFTER Filtering) ---\n")) 
  if (robot_col %in% colnames(data) && difficulty_labelled_col %in% colnames(data) ) { 
     
    # Calculate summary stats for plotting move_duration from the CLEANED data 
    summary_for_duration_plot_after <- data %>% 
      filter(!is.na(!!sym(move_duration_col))) %>% 
      group_by(!!sym(robot_col), !!sym(difficulty_labelled_col)) %>% 
      summarise( 
        Mean_Duration = mean(!!sym(move_duration_col), na.rm = TRUE), 
        # Using Standard Error for the final plot is often better for inference 
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        SE_Duration = sd(!!sym(move_duration_col), na.rm = TRUE) / sqrt(n()), 
        .groups = 'drop' 
      ) 
     
    # <<< CHANGED: Plot structure updated to group by difficulty >>> 
    md_by_condition_plot_after <- ggplot(summary_for_duration_plot_after, 
                                         aes(x = !!sym(robot_col), y = Mean_Duration, fill = 
!!sym(difficulty_labelled_col))) + 
      geom_bar(stat = "identity", position = position_dodge(width = 0.9)) + 
      # Error bars now represent +/- 1 Standard Error 
      geom_errorbar(aes(ymin = Mean_Duration - SE_Duration, ymax = Mean_Duration + 
SE_Duration), 
                    width = 0.25, position = position_dodge(width = 0.9)) + 
      scale_fill_brewer(palette = "Pastel1") + 
      labs(title = paste("Mean", move_duration_col, "by Condition (After Outlier Filtering)"), 
           subtitle = "Error bars represent +/- 1 Standard Error", 
           y = paste("Mean", move_duration_col, "(seconds)"), 
           x = "Robot Condition", 
           fill = "Difficulty") + 
      theme_minimal() + 
      theme(legend.position = "top", axis.text.x = element_text(angle = 45, hjust = 1)) 
     
    print(md_by_condition_plot_after) 
  } 
   
} else {cat(paste0("\nNote: '", move_duration_col, "' column not found/specified or not numeric. 
Outlier handling for move_duration skipped.\n"))} 
 
 
# --- 6. DESCRIPTIVE STATISTICS (Trial-Level DVs on FILTERED data) --- 
cat("\n\n--- 6. Descriptive Statistics (Trial-Level Performance DVs on Filtered Data) ---\n") 
# 6.1 For 'task_score' 
if (score_col %in% colnames(data) && is.numeric(data[[score_col]])) { 
  cat(paste0("\n--- 6.1.1 Descriptive Statistics for '", score_col, "' by Robot x Difficulty ---\n")) 
  descriptive_stats_score_crossed <- data %>% group_by(!!sym(robot_col), 
!!sym(difficulty_labelled_col)) %>% 
    summarise(N_trials = n(), Mean_Score_Prop = mean(!!sym(score_col), na.rm = TRUE), 
SD_Score = sd(!!sym(score_col), na.rm = TRUE), .groups = 'drop') 
  print(descriptive_stats_score_crossed) 
} 
# 6.2 For 'move_duration' 
if (move_duration_col %in% colnames(data) && is.numeric(data[[move_duration_col]])) { 
  cat(paste0("\n--- 6.2.1 Descriptive Statistics for '", move_duration_col, "' by Robot x Difficulty 
---\n")) 
  descriptive_stats_duration_crossed <- data %>% group_by(!!sym(robot_col), 
!!sym(difficulty_labelled_col)) %>% 
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    summarise(N_trials = n(), Mean_Duration = mean(!!sym(move_duration_col), na.rm = 
TRUE), SD_Duration = sd(!!sym(move_duration_col), na.rm = TRUE), .groups = 'drop') 
  print(descriptive_stats_duration_crossed) 
} 
 
# --- 7. AGGREGATE PERFORMANCE DATA FOR ANOVA --- 
cat("\n\n--- 7. Aggregating Performance Data per Participant for ANOVA ---\n") 
 
data_agg_performance <- NULL # Initialize 
 
if (nrow(data) > 0) { 
  data_agg_performance <- data %>% 
    group_by(!!sym(participant_id_col), !!sym(robot_col), !!sym(difficulty_labelled_col)) %>% 
    summarise( 
      Mean_Accuracy_Percent = if(score_col %in% colnames(.)) mean(!!sym(score_col), na.rm = 
TRUE) * 100 else NA_real_, 
      Mean_move_duration = if(move_duration_col %in% colnames(.)) 
mean(!!sym(move_duration_col), na.rm = TRUE) else NA_real_, 
      N_Trials_Per_Condition = n(), 
      .groups = 'drop' 
    ) 
   
  cat("\n--- Aggregated Performance DVs for ANOVA (First few rows): ---\n") 
  print(head(data_agg_performance)) 
  cat("\nStructure of aggregated Performance DVs for ANOVA:\n") 
  str(data_agg_performance) 
} else { 
  stop("Error: No data remains after filtering. ANOVA cannot proceed.") 
} 
 
 
# --- 8. ANOVA DATA PREPARATION --- 
cat("\n\n--- 8. Preparing Aggregated Data for ANOVA ---\n") 
 
dv_accuracy_anova <- "Mean_Accuracy_Percent" 
dv_duration_anova <- "Mean_move_duration" 
 
if (!participant_id_col %in% colnames(data_agg_performance)) stop("Participant ID column 
missing in aggregated data.") 
if (!robot_col %in% colnames(data_agg_performance)) stop("Robot column missing in 
aggregated data.") 
if (!difficulty_labelled_col %in% colnames(data_agg_performance)) stop("Difficulty column 
missing in aggregated data.") 
 
if (!dv_accuracy_anova %in% colnames(data_agg_performance)) { 
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  warning(paste0("ANOVA DV '", dv_accuracy_anova, "' not found. Accuracy analyses 
skipped.")) 
  dv_accuracy_anova <- NULL 
} 
if (!dv_duration_anova %in% colnames(data_agg_performance)) { 
  warning(paste0("ANOVA DV '", dv_duration_anova, "' not found. Duration analyses 
skipped.")) 
  dv_duration_anova <- NULL 
} 
 
# --- 9. ASSUMPTION CHECKING (Normality per cell) --- 
check_normality_per_cell_anova <- function(df, dv_name, group1_name, group2_name) { 
  if (is.null(dv_name) || !dv_name %in% colnames(df)) { 
    cat(paste0("\nSkipping normality check: DV '", dv_name, "' not available.\n")) 
    return() 
  } 
  cat(paste0("\n--- Normality Check for ANOVA DV: ", dv_name, " (within each ", 
group1_name, " x ", group2_name, " cell) ---\n")) 
   
  # <<< CHANGED: Updated facetting to match new plot style (group by robot) >>> 
  hist_plot <- ggplot(df, aes(x = .data[[dv_name]])) + 
    geom_histogram(aes(y = after_stat(density)), bins=10, fill = "skyblue", color = "black", alpha 
= 0.7, na.rm = TRUE) + 
    geom_density(alpha = .2, fill = "#FF6666", na.rm = TRUE) + 
    facet_grid(as.formula(paste0("`", group2_name, "` ~ `", group1_name, "`")), scales = "free_y") 
+ 
    labs(title = paste("Histograms of", dv_name, "(Aggregated)"), x = dv_name, y = "Density") + 
theme_minimal() 
  print(hist_plot) 
   
  # <<< CHANGED: Updated facetting to match new plot style (group by robot) >>> 
  qq_plot <- ggpubr::ggqqplot(df, x = dv_name, conf.int = TRUE, ggtheme = theme_minimal(), 
title = paste("Q-Q Plots of", dv_name, "(Aggregated)")) + 
    facet_grid(as.formula(paste0("`", group2_name, "` ~ `", group1_name, "`")), scales = "free") 
  print(qq_plot) 
   
  normality_tests <- df %>% 
    group_by(!!sym(group1_name), !!sym(group2_name)) %>% 
    filter(sum(!is.na(.data[[dv_name]])) >= 3) %>% 
    summarise( shapiro_w = ifelse(sum(!is.na(.data[[dv_name]])) >=3, 
shapiro.test(.data[[dv_name]])$statistic, NA_real_), 
               shapiro_p = ifelse(sum(!is.na(.data[[dv_name]])) >=3, 
shapiro.test(.data[[dv_name]])$p.value, NA_real_), 
               n_for_test = sum(!is.na(.data[[dv_name]])), .groups = 'drop') 
  cat("\n  Shapiro-Wilk Test Results (p > 0.05 suggests normality):\n"); print(normality_tests) 
} 
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if (!is.null(dv_accuracy_anova)) { check_normality_per_cell_anova(data_agg_performance, 
dv_accuracy_anova, robot_col, difficulty_labelled_col) } 
if (!is.null(dv_duration_anova)) { check_normality_per_cell_anova(data_agg_performance, 
dv_duration_anova, robot_col, difficulty_labelled_col) } 
 
# --- 10. SIGNIFICANCE TESTING: 3x2 REPEATED MEASURES ANOVA --- 
perform_rm_anova_integrated <- function(df, dv_col, wid_col, within_factors_cols) { 
  if (is.null(dv_col) || !dv_col %in% colnames(df)) { 
    cat(paste0("\nSkipping ANOVA: DV '", dv_col, "' not available.\n")) 
    return(NULL) 
  } 
  cat(paste0("\n\n--- Repeated Measures ANOVA for: ", dv_col, " ---\n")) 
   
  if(!is.numeric(df[[dv_col]])) { 
    cat(paste0("  Warning: DV '", dv_col, "' is not numeric. Attempting conversion.\n")) 
    df[[dv_col]] <- suppressWarnings(as.numeric(as.character(df[[dv_col]]))) 
    if(all(is.na(df[[dv_col]]))) { 
      cat(paste0("  ERROR: DV '", dv_col, "' could not be converted to numeric or is all NA. 
Skipping ANOVA.\n")) 
      return(NULL) 
    } 
  } 
   
  n_within_levels <- df %>% select(all_of(within_factors_cols)) %>% n_distinct() 
   
  complete_cases_df <- df %>% 
    filter(!is.na(.data[[dv_col]])) %>% 
    group_by(!!sym(wid_col)) %>% 
    filter(n() == n_within_levels) %>% 
    ungroup() 
   
  n_complete_subjects <- length(unique(complete_cases_df[[wid_col]])) 
   
  if(n_complete_subjects < 2) { 
    cat(paste0("  Warning: Not enough subjects (found ", n_complete_subjects, ") with complete 
data for '", dv_col, "' across all conditions. Skipping ANOVA.\n")) 
    return(NULL) 
  } 
   
  cat(paste0("  Performing ANOVA on ", n_complete_subjects, " participants with complete data 
for ", dv_col, ".\n")) 
   
  res_aov_obj <- NULL 
  tryCatch({ 
    res_aov_obj <- anova_test( 
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      data = complete_cases_df, 
      dv = !!sym(dv_col), 
      wid = !!sym(wid_col), 
      within = within_factors_cols 
    ) 
    cat(paste0("\n  --- ANOVA Results for ", dv_col, " ---\n")) 
    print(res_aov_obj) 
     
    anova_table <- NULL 
    if (is.list(res_aov_obj) && "ANOVA" %in% names(res_aov_obj)) { 
      anova_table <- res_aov_obj$ANOVA 
    } else if (is.data.frame(res_aov_obj) || is_tibble(res_aov_obj)) { 
      anova_table <- res_aov_obj 
    } else { 
      cat("  Warning: Could not identify the ANOVA table within the anova_test result object.\n") 
      return(res_aov_obj) 
    } 
     
    cat("\n  Key P-values and GES from ANOVA table:\n"); print(anova_table %>% filter(Effect 
!= "(Intercept)") %>% select(Effect, p, ges)) 
     
    interaction_term_pattern <- paste(within_factors_cols, collapse=":") 
    interaction_effect_row <- anova_table %>% filter(Effect == interaction_term_pattern) 
     
    if (nrow(interaction_effect_row) == 1 && interaction_effect_row$p < 0.05) { 
      cat(paste0("\n  --- Interaction effect '", interaction_term_pattern, "' for '", dv_col, "' was 
significant (p = ", format(interaction_effect_row$p, digits=3),"). Probing simple effects... ---\n")) 
       
      cat(paste0("  Simple main effect of ", within_factors_cols[1], " at each level of ", 
within_factors_cols[2], ":\n")) 
      simple_effects_1 <- complete_cases_df %>% 
        group_by(!!sym(within_factors_cols[2])) %>% 
        anova_test(formula = as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[1], "`")), 
                   wid = !!sym(wid_col), within = !!sym(within_factors_cols[1])) %>% 
        get_anova_table() %>% 
        adjust_pvalue(method = "bonferroni") 
      print(simple_effects_1) 
       
      cat(paste0("\n  Simple main effect of ", within_factors_cols[2], " at each level of ", 
within_factors_cols[1], ":\n")) 
      simple_effects_2 <- complete_cases_df %>% 
        group_by(!!sym(within_factors_cols[1])) %>% 
        anova_test(formula = as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[2], "`")), 
                   wid = !!sym(wid_col), within = !!sym(within_factors_cols[2])) %>% 
        get_anova_table() %>% 
        adjust_pvalue(method = "bonferroni") 
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      print(simple_effects_2) 
       
      cat("\n  Consider further pairwise comparisons for significant simple effects with >2 levels 
using emmeans or pairwise_t_test.\n") 
       
    } else { 
      cat(paste0("\n  --- Interaction effect '", interaction_term_pattern, "' for '", dv_col, "' was NOT 
significant or not found. Checking main effects... ---\n")) 
       
      main_effect_1_row <- anova_table %>% filter(Effect == within_factors_cols[1]) # Robot 
      if (nrow(main_effect_1_row) == 1 && main_effect_1_row$p < 0.05) { 
        cat(paste0("\n  --- Main effect of '", within_factors_cols[1], "' for '", dv_col, "' was 
significant (p = ", format(main_effect_1_row$p, digits=3), "). Pairwise comparisons 
(Bonferroni)... ---\n")) 
        pwc_1 <- complete_cases_df %>% 
          pairwise_t_test(as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[1], "`")), 
                          paired = TRUE, p.adjust.method = "bonferroni") 
        print(pwc_1) 
      } else if (nrow(main_effect_1_row) == 1) { 
        cat(paste0("\n  --- Main effect of '", within_factors_cols[1], "' for '", dv_col, "' was NOT 
significant (p = ", format(main_effect_1_row$p, digits=3), "). ---\n")) 
      } 
       
      main_effect_2_row <- anova_table %>% filter(Effect == within_factors_cols[2]) # Difficulty 
      if (nrow(main_effect_2_row) == 1 && main_effect_2_row$p < 0.05) { 
        cat(paste0("\n  --- Main effect of '", within_factors_cols[2], "' for '", dv_col, "' was 
significant (p = ", format(main_effect_2_row$p, digits=3), "). ---\n")) 
        pwc_2 <- complete_cases_df %>% 
          pairwise_t_test(as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[2], "`")), 
                          paired = TRUE, p.adjust.method = "bonferroni") 
        print(pwc_2) 
      } else if (nrow(main_effect_2_row) == 1) { 
        cat(paste0("\n  --- Main effect of '", within_factors_cols[2], "' for '", dv_col, "' was NOT 
significant (p = ", format(main_effect_2_row$p, digits=3), "). ---\n")) 
      } 
    } 
    return(res_aov_obj) 
     
  }, error = function(e) { 
    cat(paste0("  --- ERROR during Repeated Measures ANOVA for '", dv_col, "': ", e$message, " 
---\n")) 
    return(NULL) 
  }) 
} 
 
# Perform ANOVA for Mean Accuracy 
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if (!is.null(data_agg_performance) && !is.null(dv_accuracy_anova)) { 
  results_accuracy_anova <- perform_rm_anova_integrated(data_agg_performance, 
dv_accuracy_anova, participant_id_col, c(robot_col, difficulty_labelled_col)) 
} 
 
# Perform ANOVA for Mean Duration 
if (!is.null(data_agg_performance) && !is.null(dv_duration_anova)) { 
  results_duration_anova <- perform_rm_anova_integrated(data_agg_performance, 
dv_duration_anova, participant_id_col, c(robot_col, difficulty_labelled_col)) 
} 
 
cat("\n\n--- Performance Analysis Script (with ANOVA) Finished ---\n") 
 
# --- 11. VISUALIZE AGGREGATED ACCURACY RESULTS --- 
cat("\n\n--- 11. Visualizing Aggregated Accuracy Performance ---\n") 
if (!is.null(data_agg_performance) && dv_accuracy_anova %in% 
colnames(data_agg_performance)) { 
   
  # Calculate summary statistics for the accuracy plot (Mean and Standard Error) 
  accuracy_summary_for_plot <- data_agg_performance %>% 
    group_by(!!sym(robot_col), !!sym(difficulty_labelled_col)) %>% 
    summarise( 
      Mean_Accuracy = mean(!!sym(dv_accuracy_anova), na.rm = TRUE), 
      SE_Accuracy = sd(!!sym(dv_accuracy_anova), na.rm = TRUE) / sqrt(n()), 
      .groups = 'drop' 
    ) 
  cat("\nSummary statistics for accuracy plot:\n") 
  print(accuracy_summary_for_plot) 
   
  # <<< NOTE: This plot already had the correct structure and will update automatically with the 
new names/order >>> 
  # Create the bar chart for Mean Accuracy Percentage 
  accuracy_plot <- ggplot(accuracy_summary_for_plot, 
                          aes(x = !!sym(robot_col), y = Mean_Accuracy, fill = 
!!sym(difficulty_labelled_col))) + 
    geom_bar(stat = "identity", position = position_dodge(width = 0.9)) + 
    geom_errorbar(aes(ymin = Mean_Accuracy - SE_Accuracy, ymax = Mean_Accuracy + 
SE_Accuracy), 
                  width = 0.25, position = position_dodge(width = 0.9)) + 
    scale_fill_brewer(palette = "Pastel1") + # Using a color-blind friendly palette 
    labs(title = "Mean Task Accuracy by Robot and Difficulty", 
         x = "Robot Condition", 
         y = "Mean Accuracy (%)", 
         fill = "Difficulty") + 
    theme_minimal(base_size = 14) + 
    theme(legend.position = "top", 
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          axis.text.x = element_text(angle = 45, hjust = 1), 
          plot.title = element_text(hjust = 0.5), 
          panel.grid.major.x = element_blank(), # Cleaner look 
          panel.grid.minor.y = element_blank()) + 
    coord_cartesian(ylim = c(0, 100)) # Ensure Y axis goes from 0 to 100 
   
  print(accuracy_plot) 
  cat("\n--- Accuracy bar chart generated. ---\n") 
   
} else { 
  cat("\n--- Skipping accuracy bar chart: Aggregated data or accuracy DV not available. ---\n") 
} 
 
cat("\n--- Full Analysis Script Finished ---\n") 
cat("Review all ANOVA tables, Mauchly's test results, post-hoc tests, and generated plots 
carefully.\n") 
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Script for Gaze Follow Analysis 
 
# ----------------------------------------------------------------------------- 
# Script: statistics_gaze_follow_analysis.R 
# Purpose: Load raw trial-level data (totalgaze.csv), process variables 
#          relevant to gaze following behavior, calculate descriptive 
#          statistics with plots, and conduct inferential statistics 
#          (GLMM and SDT) for gaze following. 
# ----------------------------------------------------------------------------- 
 
# --- 1. SETUP: Load Necessary Packages --- 
library(tidyverse) 
library(lme4)      # For GLMM 
library(car)       # For Anova function 
library(emmeans)   # For post-hoc tests and plotting interactions 
library(scales)    # For percent_format 
library(afex)      # For repeated-measures ANOVA (for SDT) 
library(patchwork) # For combining plots into a single figure 
 
# --- 2. LOAD DATA --- 
file_path <- "totalgaze.csv" 
data_raw <- NULL 
 
cat(paste0("--- Attempting to load '", file_path, "' ---\n")) 
tryCatch({ 
  data_raw <- read_csv(file_path) 
  cat(paste0("--- Successfully loaded '", file_path, "'. ---\n")) 
}, error = function(e) { 
  cat(paste0("--- ERROR: Could not load '", file_path, "'. ---\n")) 
  cat("Error message: ", e$message, "\n") 
}) 
 
if (is.null(data_raw)) { 
  stop("Script cannot proceed because data_raw was not loaded.") 
} 
 
cat("\n--- Initial Data Inspection (First few rows of raw data) ---\n"); print(head(data_raw)) 
 
# --- 3. STANDARDIZE COLUMN NAMES & INITIAL TRANSFORMATIONS --- 
participant_id_original_name <- "participant" 
robot_col_original_name <- "Robot" 
difficulty_input_col_name <- "difficulty" 
correct_side_original_name <- "correct_side" 
participants_side_choice_original_name <- "participants_side_choice" 
gaze_decision_original_name <- "gazeDecision" 
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data_gaze_following <- data_raw 
 
participant_id_col <- participant_id_original_name 
robot_col <- robot_col_original_name 
difficulty_original_col <- difficulty_input_col_name 
correct_side_col <- correct_side_original_name 
participant_choice_col <- participants_side_choice_original_name 
gaze_decision_col <- gaze_decision_original_name 
 
difficulty_labelled_col <- "Difficulty_Condition" 
 
# --- 4. PREPARE FACTORS --- 
cat("\n\n--- 4. Preparing IVs as Factors for Gaze Following Analysis ---\n") 
 
if (robot_col %in% colnames(data_gaze_following) && 
!is.factor(data_gaze_following[[robot_col]])) { 
  data_gaze_following[[robot_col]] <- factor(data_gaze_following[[robot_col]], levels = c("Carl 
condition", "Ivan condition", "Ryan condition")) 
  cat(paste0("Converted '", robot_col, "' to factor.\n")) 
} 
if (participant_id_col %in% colnames(data_gaze_following) && 
!is.factor(data_gaze_following[[participant_id_col]])) { 
  data_gaze_following[[participant_id_col]] <- 
as.factor(data_gaze_following[[participant_id_col]]) 
  cat(paste0("Converted '", participant_id_col, "' to factor.\n")) 
} 
 
if (difficulty_original_col %in% colnames(data_gaze_following)) { 
  data_gaze_following[[difficulty_labelled_col]] <- 
factor(tolower(data_gaze_following[[difficulty_original_col]]), 
                                                           levels = c("easy", "hard"), 
                                                           labels = c("Easy", "Hard")) 
  cat(paste0("Created '", difficulty_labelled_col, "'.\n")) 
} else { 
  stop(paste0("Original difficulty column '",difficulty_original_col,"' not found.")) 
} 
cat("--- Gaze following data preparation complete. ---\n") 
 
# --- DATASET FOR MODELS (used in all subsequent analyses) --- 
model_data_gaze <- data_gaze_following %>% 
  filter(tolower(!!sym(gaze_decision_col)) %in% c("left", "right")) %>% 
  mutate( 
    robot_gaze_correct_val = ifelse(is.na(!!sym(gaze_decision_col)) | 
is.na(!!sym(correct_side_col)), NA_integer_, 
                                    ifelse(as.character(!!sym(gaze_decision_col)) == 
as.character(!!sym(correct_side_col)), 1, 0)), 



 133 

    robot_gaze_correct = factor(robot_gaze_correct_val, levels = c(0,1), labels = c("Incorrect 
Gaze", "Correct Gaze")), 
    gaze_followed_val = ifelse(is.na(!!sym(participant_choice_col)) | 
is.na(!!sym(gaze_decision_col)), NA_integer_, 
                               ifelse(as.character(!!sym(participant_choice_col)) == 
as.character(!!sym(gaze_decision_col)), 1, 0)) 
  ) %>% 
  filter(!!sym(robot_col) %in% c("Ryan condition", "Ivan condition")) %>% 
  filter(!is.na(gaze_followed_val) & !is.na(robot_gaze_correct) & 
           !is.na(!!sym(difficulty_labelled_col)) & !is.na(!!sym(participant_id_col))) %>% 
  mutate( 
    Robot_Condition_Model = droplevels(factor(.data[[robot_col]])), 
    Difficulty_Model = factor(.data[[difficulty_labelled_col]]), 
    Participant_ID_Model = factor(.data[[participant_id_col]]), 
    Gaze_Correctness_Model = factor(robot_gaze_correct) 
  ) 
 
# --- 5. DESCRIPTIVE STATISTICS & VISUALIZATION --- 
cat("\n\n--- 5. Generating Descriptive Statistics and Plots ---\n") 
 
if (exists("model_data_gaze") && nrow(model_data_gaze) > 0) { 
  # Calculate counts for each condition (Easy/Hard) 
  descriptive_summary <- model_data_gaze %>% 
    group_by(Robot_Condition_Model, Gaze_Correctness_Model, Difficulty_Model) %>% 
    summarise( 
      n_followed = sum(gaze_followed_val, na.rm = TRUE), 
      n_total_trials = n(), 
      .groups = 'drop' 
    ) 
   
  # --- [NEW] 5.0.1 DISPLAY DESCRIPTIVE PERCENTAGES IN CONSOLE --- 
  cat("\n\n--- 5.0.1. Gaze Following Percentages by Condition ---\n") 
   
  # Calculate and format percentages for clear console output 
  descriptive_percentages <- descriptive_summary %>% 
    mutate( 
      percentage_followed = (n_followed / n_total_trials), 
      # Format for printing 
      percentage_str = scales::percent(percentage_followed, accuracy = 0.1), 
      # Relabel robot conditions to "Joint" and "Disjoint" for clarity 
      Robot_Condition_Display = case_when( 
        Robot_Condition_Model == "Ryan condition" ~ "Joint (Ryan)", 
        Robot_Condition_Model == "Ivan condition" ~ "Disjoint (Ivan)", 
        TRUE ~ as.character(Robot_Condition_Model) 
      ) 
    ) %>% 
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    # Select and reorder columns for a clean table view 
    select( 
      Robot_Condition_Display,  
      Difficulty_Model,  
      Gaze_Correctness_Model,  
      percentage_str, 
      n_followed, 
      n_total_trials 
    ) %>% 
    # Arrange for easy reading 
    arrange(Robot_Condition_Display, Difficulty_Model, Gaze_Correctness_Model) 
   
  print(descriptive_percentages, n = Inf) # n = Inf ensures all rows are printed 
  # --- [END NEW SECTION] --- 
   
  # --- 5.1 Visualization of Descriptive Statistics --- 
  cat("\n\n--- 5.1. Creating Bar Charts for Descriptive Gaze Following ---\n") 
   
  # Prepare data for plotting by calculating percentages and relabeling 
  descriptive_plot_data <- descriptive_summary %>% 
    mutate( 
      percentage_followed = (n_followed / n_total_trials), 
      # Relabel robot conditions to "Joint" and "Disjoint" 
      Robot_Condition_Plot = case_when( 
        Robot_Condition_Model == "Ryan condition" ~ "Joint", 
        Robot_Condition_Model == "Ivan condition" ~ "Disjoint", 
        TRUE ~ as.character(Robot_Condition_Model) 
      ) 
    ) %>% 
    # Set the order for the factor so the legend and colors are correct 
    mutate(Robot_Condition_Plot = factor(Robot_Condition_Plot, levels = c("Joint", "Disjoint"))) 
   
  # Custom theme to match the python plot style 
  theme_custom_style <- function() { 
    theme_minimal(base_size = 12) + 
      theme( 
        plot.title = element_text(hjust = 0.5, face = "bold"), # Center title 
        panel.border = element_rect(colour = "black", fill=NA, linewidth=1), # Add border 
        panel.grid.major.x = element_blank(), 
        panel.grid.minor.x = element_blank(), 
        panel.grid.major.y = element_line(linetype = "dashed", color = "grey80"), 
        panel.grid.minor.y = element_blank(), 
        legend.title = element_blank(), # Remove legend title 
        axis.title.x = element_blank() # Remove x-axis title from individual plots 
      ) 
  } 
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  # Plot 1: Gaze Following after CORRECT Gaze Cues 
  plot_desc_correct <- descriptive_plot_data %>% 
    filter(Gaze_Correctness_Model == "Correct Gaze") %>% 
    ggplot(aes(x = Difficulty_Model, y = percentage_followed, fill = Robot_Condition_Plot)) + 
    geom_bar(stat = "identity", position = position_dodge(0.8), width = 0.7) + 
    scale_y_continuous(labels = scales::percent_format(accuracy=1), limits = c(0, 1.01), expand = 
c(0, 0)) + 
    scale_fill_manual(values = c("Joint" = "skyblue", "Disjoint" = "steelblue")) + 
    labs(title = "Correct Gaze Following", y = "Percentage") + 
    theme_custom_style() 
   
  # Plot 2: Gaze Following after INCORRECT Gaze Cues 
  plot_desc_incorrect <- descriptive_plot_data %>% 
    filter(Gaze_Correctness_Model == "Incorrect Gaze") %>% 
    ggplot(aes(x = Difficulty_Model, y = percentage_followed, fill = Robot_Condition_Plot)) + 
    geom_bar(stat = "identity", position = position_dodge(0.8), width = 0.7) + 
    scale_y_continuous(labels = scales::percent_format(accuracy=1), limits = c(0, 1.01), expand = 
c(0, 0)) + 
    scale_fill_manual(values = c("Joint" = "lightcoral", "Disjoint" = "indianred")) + 
    labs(title = "Incorrect Gaze Following", y = NULL) + # Remove y-axis title for shared axis 
    theme_custom_style() 
   
  # Combine the plots side-by-side using patchwork 
  combined_plot <- plot_desc_correct + plot_desc_incorrect + 
    plot_annotation( 
      title = 'Gaze Following Behavior (Easy vs Hard)', 
      theme = theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold")) 
    ) 
   
  cat("\n--- Displaying Combined Descriptive Plot ---\n") 
  print(combined_plot) 
   
   
} else { 
  cat("\n--- Skipping Descriptive Statistics & Plots: 'model_data_gaze' not available or empty. ---
\n") 
} 
 
# --- 6. COMPLEMENTARY GLMM ANALYSIS (FOR APPENDIX) --- 
cat("\n\n--- 6. Complementary GLMM Analysis (For Appendix) ---\n") 
 
if (nrow(model_data_gaze) > 50 && n_distinct(model_data_gaze$Participant_ID_Model) > 1) { 
  options(contrasts = c("contr.sum", "contr.poly")) 
  gaze_follow_glmm <- NULL 
  tryCatch({ 
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    formula_str <- "gaze_followed_val ~ Robot_Condition_Model * Gaze_Correctness_Model * 
Difficulty_Model + (1 | Participant_ID_Model)" 
    gaze_follow_glmm <- glmer( as.formula(formula_str), data = model_data_gaze, 
                               family = binomial(link = "logit"), control = glmerControl(optimizer = 
"bobyqa", optCtrl = list(maxfun = 2e5))) 
    cat("--- GLMM fitting successful. ---\n") 
    cat("\n--- ANOVA Table (Type III Wald Chi-square tests) for GLMM ---\n") 
    print(Anova(gaze_follow_glmm, type = "III")) 
  }, error = function(e) { cat("--- ERROR during GLMM fitting: ---\n"); print(e) }) 
} 
 
# --- 7. PRIMARY ANALYSIS: SIGNAL DETECTION THEORY (SDT) --- 
cat("\n\n\n--- 7. Primary Analysis: Signal Detection Theory (SDT) ---\n") 
 
if (exists("model_data_gaze") && nrow(model_data_gaze) > 0) { 
   
  # --- 7.1. Calculate SDT Counts --- 
  cat("\n--- 7.1. Calculating SDT counts per participant and condition ---\n") 
  sdt_counts <- model_data_gaze %>% 
    mutate( 
      sdt_outcome = case_when( 
        gaze_followed_val == 1 & robot_gaze_correct_val == 1 ~ "Hit", 
        gaze_followed_val == 0 & robot_gaze_correct_val == 1 ~ "Miss", 
        gaze_followed_val == 1 & robot_gaze_correct_val == 0 ~ "False Alarm", 
        gaze_followed_val == 0 & robot_gaze_correct_val == 0 ~ "Correct Rejection" 
      ) 
    ) %>% 
    group_by(Participant_ID_Model, Robot_Condition_Model, Difficulty_Model) %>% 
    summarise( 
      n_hits = sum(sdt_outcome == "Hit", na.rm = TRUE), 
      n_misses = sum(sdt_outcome == "Miss", na.rm = TRUE), 
      n_fas = sum(sdt_outcome == "False Alarm", na.rm = TRUE), 
      n_crs = sum(sdt_outcome == "Correct Rejection", na.rm = TRUE), 
      .groups = 'drop' 
    ) 
   
  # --- 7.2. Calculate d' and c --- 
  cat("\n--- 7.2. Calculating d' (sensitivity) and c (criterion) ---\n") 
  sdt_results <- sdt_counts %>% 
    mutate( 
      # Apply log-linear correction to prevent infinite values 
      H = (n_hits + 0.5) / (n_hits + n_misses + 1), 
      FA = (n_fas + 0.5) / (n_fas + n_crs + 1), 
      d_prime = qnorm(H) - qnorm(FA), 
      criterion_c = -0.5 * (qnorm(H) + qnorm(FA)) 
    ) 
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  # --- 7.3. Inferential Statistics on d' and c --- 
  cat("\n--- 7.3. Running Repeated Measures ANOVAs on d' and c ---\n") 
   
  # Analysis 1: Sensitivity (d'). 
  cat("\n--- ANOVA on d' (Sensitivity) ---\n") 
  anova_d_prime <- aov_ez( 
    id = "Participant_ID_Model", dv = "d_prime", data = sdt_results, 
    within = c("Robot_Condition_Model", "Difficulty_Model") 
  ) 
  print(summary(anova_d_prime)) 
   
  # Analysis 2: Bias (c). 
  cat("\n--- ANOVA on c (Bias/Criterion) ---\n") 
  anova_criterion_c <- aov_ez( 
    id = "Participant_ID_Model", dv = "criterion_c", data = sdt_results, 
    within = c("Robot_Condition_Model", "Difficulty_Model") 
  ) 
  print(summary(anova_criterion_c)) 
   
  # --- 7.4. Post-Hoc Analysis for Significant Main Effects --- 
  cat("\n--- 7.4. Post-Hoc analysis for significant main effect of Robot on Criterion (c) ---\n") 
  emm_c_robot <- emmeans(anova_criterion_c, ~ Robot_Condition_Model) 
  print(summary(emm_c_robot)) 
   
  # --- 7.5. Visualization of SDT Results --- 
  cat("\n--- 7.5. Creating Bar Charts for d' and c ---\n") 
   
  # Create a summary dataframe with means and CIs for plotting 
  sdt_summary_for_plotting <- sdt_results %>% 
    group_by(Robot_Condition_Model, Difficulty_Model) %>% 
    summarise( 
      mean_d_prime = mean(d_prime, na.rm = TRUE), 
      se_d_prime = sd(d_prime, na.rm = TRUE) / sqrt(n()), 
      ci_d_prime = se_d_prime * qt(0.975, df = n() - 1), 
      mean_c = mean(criterion_c, na.rm = TRUE), 
      se_c = sd(criterion_c, na.rm = TRUE) / sqrt(n()), 
      ci_c = se_c * qt(0.975, df = n() - 1), 
      .groups = 'drop' 
    ) %>% 
    # RENAME AND REORDER the Robot Condition factor for plotting 
    mutate( 
      Robot_Condition_Model = case_when( 
        Robot_Condition_Model == "Ryan condition" ~ "Joint Condition", 
        Robot_Condition_Model == "Ivan condition" ~ "Disjoint Condition", 
        TRUE ~ as.character(Robot_Condition_Model) 
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      ), 
      Robot_Condition_Model = factor(Robot_Condition_Model, levels = c("Joint Condition", 
"Disjoint Condition")) 
    ) 
   
  # Plot 1: Sensitivity (d') - Now with updated names and order 
  plot_d_prime <- ggplot(sdt_summary_for_plotting, 
                         aes(x = Difficulty_Model, y = mean_d_prime, fill = Robot_Condition_Model)) + 
    geom_bar(stat = "identity", position = position_dodge(0.9), color = "black", width = 0.8) + 
    geom_errorbar(aes(ymin = mean_d_prime - ci_d_prime, ymax = mean_d_prime + 
ci_d_prime), 
                  position = position_dodge(0.9), width = 0.25, linewidth = 0.5) + 
    scale_fill_brewer(palette = "Pastel1", name = "Robot Condition") + 
    labs(title = "Sensitivity to Gaze Cue Validity", 
         subtitle = "Participants' ability to discriminate correct from incorrect gaze cues.", 
         x = "Task Difficulty", 
         y = "Sensitivity (d')") + 
    theme_minimal(base_size = 14) + 
    theme(legend.position = "top", 
          plot.title = element_text(face = "bold"), 
          axis.title = element_text(face = "bold")) 
   
  cat("\n--- Displaying Sensitivity (d') Plot ---\n") 
  print(plot_d_prime) 
   
  # Plot 2: Response Criterion (c) - Now with updated names and order 
  plot_criterion_c <- ggplot(sdt_summary_for_plotting, 
                             aes(x = Robot_Condition_Model, y = mean_c, fill = Difficulty_Model)) + 
    geom_bar(stat = "identity", position = position_dodge(0.9), color = "black", width = 0.8) + 
    geom_errorbar(aes(ymin = mean_c - ci_c, ymax = mean_c + ci_c), 
                  position = position_dodge(0.9), width = 0.25, linewidth = 0.5) + 
    geom_hline(yintercept = 0, linetype = "dashed", color = "grey30") + 
    scale_fill_brewer(palette = "Pastel2", name = "Task Difficulty") + 
    labs(title = "Response Bias for Following Gaze Cues", 
         subtitle = "A negative value indicates a liberal bias (tendency to follow).", 
         x = "Robot Condition", 
         y = "Response Criterion (c)") + 
    theme_minimal(base_size = 14) + 
    theme(legend.position = "top", 
          plot.title = element_text(face = "bold"), 
          axis.title = element_text(face = "bold")) 
   
  cat("\n--- Displaying Response Criterion (c) Plot ---\n") 
  print(plot_criterion_c) 
   
} else { 
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  cat("\n--- Skipping SDT analysis: 'model_data_gaze' not available or empty. ---\n") 
} 
 
cat("\n\n--- End of script processing. ---\n") 
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Script for Qualtrics Analysis 
 
# ----------------------------------------------------------------------------- 
# FULLY CONSOLIDATED SCRIPT FOR QUALTRICS SUBJECTIVE DATA ANALYSIS 
(v2) 
# Combines: 
# 1. Loading of qualtrics_data_final.csv and robust participantID handling 
# 2. Demographic Variable Processing (Age, Gender, Residence) 
# 3. Calculation of Composite Scale Scores (Anthro, Like, Intel, Trust for Carl, Ryan, Ivan) 
# 4. Descriptive Statistics & ALL Visualizations (including new faceted Bar Chart) 
# 5. Outlier Identification for Composite Scores 
# 6. Normality Assumption Checks for Composite Scores 
# 7. Reliability Analysis (Cronbach's Alpha) 
# 8. Parametric Testing (Repeated Measures ANOVA for each construct) 
# 9. Saving final dataset with all processed data and composite scores 
# ----------------------------------------------------------------------------- 
 
# --- 1. SETUP: Load Necessary Packages --- 
# Ensure these are installed by running install.packages("package_name") in your console once. 
library(tidyverse) 
library(lubridate) # For date parsing (Age) 
library(psych)     # For Cronbach's Alpha 
library(rstatix)   # For anova_test and other convenient stats functions 
library(ggpubr)    # For ggqqplot 
 
# --- 2. LOAD INITIAL RAW DATA --- 
file_path <- "qualtrics_data_final.csv" 
data <- NULL 
 
cat(paste0("--- Attempting to load '", file_path, "' ---\n")) 
tryCatch({ 
  data <- read_csv(file_path) 
  cat(paste0("--- Successfully loaded '", file_path, "'. ---\n")) 
}, error = function(e) { 
  cat(paste0("--- ERROR: Could not load '", file_path, "'. ---\n")) 
  cat("Error message: ", e$message, "\n") 
}) 
 
if (is.null(data)) { 
  stop("Script cannot proceed because data was not loaded.") 
} 
 
# --- Handle Participant ID --- 
# Robustly find and set the participant ID column, which is essential for repeated measures 
ANOVA. 
if ("participant" %in% colnames(data) && !"participantID" %in% colnames(data)) { 
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  data <- data %>% rename(participantID = participant) 
  cat("Renamed 'participant' column to 'participantID' for compatibility.\n") 
} else if (!"participantID" %in% colnames(data)) { 
  data$participantID <- 1:nrow(data) 
  cat("Warning: No 'participant' or 'participantID' column found. Created a new 'participantID' 
column.\n") 
} 
 
 
cat("\n--- Initial Data Inspection (First few rows) ---\n"); print(head(data)) 
cat("\n--- Initial Structure of the data (str) ---\n"); str(data) 
cat("\n--- Initial Summary of the data ---\n"); print(summary(data)) 
cat("\n--- Column names in the loaded data: ---\n"); print(colnames(data)) 
 
 
# --- 3. PROCESS DEMOGRAPHIC VARIABLES --- 
cat("\n\n--- 3. Processing Demographic Variables ---\n") 
 
# --- 3.1 Variable: Age --- 
cat("\n--- Processing 'Age' (Date of Birth) Column ---\n") 
if ("Age" %in% colnames(data)) { 
  data$DOB_original <- data$Age # Keep a copy 
   
  cat("Attempting to parse DOBs with multiple formats...\n") 
  data$DOB_parsed <- parse_date_time(data$DOB_original,  
                                     orders = c( 
                                       "d-m-Y", "d/m/Y", "d.m.Y",  
                                       "d-m-y", "d/m/y", "d.m.y",  
                                       "m-d-Y", "m/d/Y", "m-d-y", "m/d/y", 
                                       "Y-m-d", "Y/m/d", "Ymd", 
                                       "d-m-Y HMS", "d/m/Y HMS", "Y-m-d HMS", "Y/m/d HMS" 
                                     ),  
                                     quiet = TRUE)  
   
  parsed_count <- sum(!is.na(data$DOB_parsed)) 
  total_count <- nrow(data) 
  cat(paste0(parsed_count, " out of ", total_count, " DOBs successfully parsed.\n")) 
   
  if (parsed_count < total_count) { 
    failed_to_parse <- data$DOB_original[is.na(data$DOB_parsed) & 
!is.na(data$DOB_original)] 
    if(length(failed_to_parse) > 0) { 
      cat("DOBs that failed to parse (first few shown):\n"); print(head(failed_to_parse)) 
    } 
  } 
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  data$Age_years <- NA  
  valid_dob_indices <- !is.na(data$DOB_parsed) 
   
  if(any(valid_dob_indices)) { 
    data$Age_years[valid_dob_indices] <- floor(as.numeric(difftime(Sys.Date(), 
data$DOB_parsed[valid_dob_indices], units = "days")) / 365.25) 
     
    cat("\n--- Descriptive Statistics for Calculated Age (in years) ---\n") 
    print(summary(data$Age_years)) 
    cat("Standard Deviation of Age (years):", sd(data$Age_years, na.rm = TRUE), "\n") 
     
    if (sum(!is.na(data$Age_years)) > 0) {  
      cat("Generating Age Histogram...\n") 
      print(ggplot(data[!is.na(data$Age_years), ], aes(x = Age_years)) + 
              geom_histogram(binwidth = 1, fill = "skyblue", color = "black") + 
              labs(title = "Distribution of Calculated Age", x = "Age (Years)", y = "Frequency") + 
              theme_minimal()) 
      cat("Generating Age Boxplot...\n") 
      print(ggplot(data[!is.na(data$Age_years), ], aes(y = Age_years)) +  
              geom_boxplot(fill = "skyblue") + 
              labs(title = "Boxplot of Calculated Age", y = "Age (Years)") + 
              theme_minimal() + coord_flip()) 
    } 
  } else { 
    cat("No DOBs were successfully parsed, so 'Age_years' could not be calculated.\n") 
  } 
} else { 
  cat("\n'Age' column (for DOB) not found in the dataset.\n") 
} 
 
# --- 3.2 Variable: Gender --- 
cat("\n\n--- Processing 'gender' Column ---\n") 
if ("gender" %in% colnames(data)) { 
  if (!is.factor(data$gender)) { data$gender <- as.factor(data$gender) } 
  cat("\n--- Frequency Table for Gender ---\n") 
  gender_counts <- table(data$gender, useNA = "ifany") 
  gender_percentages <- prop.table(gender_counts) * 100 
  gender_levels <- names(gender_counts); if (any(is.na(gender_levels))) { 
gender_levels[is.na(gender_levels)] <- "NA_Category" } 
  if (length(gender_counts) > 0) { 
    gender_summary_df <- data.frame(Category = gender_levels, Count = 
as.integer(gender_counts), Percentage = as.numeric(gender_percentages)) 
    print(gender_summary_df) 
  } 
  if (sum(!is.na(data$gender)) > 0) { 
    cat("Generating Gender Bar Chart...\n") 
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    print(ggplot(data[!is.na(data$gender), ], aes(x = gender, fill = gender)) + 
            geom_bar(show.legend = FALSE) +  
            geom_text(stat='count', aes(label=after_stat(count)), vjust=-0.5, size=3) + 
            labs(title = "Distribution of Gender", x = "Gender", y = "Count") + 
            theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1))) 
  } 
} else { 
  cat("\n'gender' column not found.\n") 
} 
 
# --- 3.3 Variable: Country of Residence --- 
cat("\n\n--- Processing 'residence' Column ---\n") 
if ("residence" %in% colnames(data)) { 
  if (!is.factor(data$residence)) { data$residence <- as.factor(data$residence) } 
  cat("\n--- Frequency Table for Residence ---\n") 
  residence_counts <- table(data$residence, useNA = "ifany")  
  residence_percentages <- prop.table(residence_counts) * 100 
  category_names_res <- names(residence_counts) 
  if (any(is.na(category_names_res))) { category_names_res[is.na(category_names_res)] <- "NA 
(Missing)" } # Handles NA level name 
   
  if (length(residence_counts) > 0) {  
    residence_summary_df <- data.frame( 
      Category = category_names_res,  
      Count = as.integer(residence_counts),  
      Percentage = as.numeric(residence_percentages) 
    ) 
    residence_summary_df <- residence_summary_df[order(-residence_summary_df$Count), ] 
     
    cat("\nSummary Table for Residence:\n") 
    print(residence_summary_df, row.names = FALSE)  
  } else { 
    cat("No data (or only NA values) found in 'residence' column to create summary table.\n") 
  } 
} else { 
  cat("\n'residence' column not found.\n") 
} 
cat("\n--- Demographic processing finished. ---\n") 
 
# --- 4. DEFINE ITEMS FOR EACH SCALE AND ROBOT --- 
cat("\n\n--- 4. Defining Scale Items ---\n") 
anthro_carl_items <- paste0("anthropomorphism _", 1:5, "_carl"); like_carl_items <- 
paste0("likability _", 1:5, "_carl"); intel_carl_items <- paste0("intelligence _", 1:5, "_carl"); 
trust_carl_items <- paste0("trust _", 1:14, "_carl") 
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anthro_ryan_items <- paste0("anthropomorphism _", 1:5, "_ryan"); like_ryan_items <- 
paste0("likability _", 1:5, "_ryan"); intel_ryan_items <- paste0("intelligence _", 1:5, "_ryan"); 
trust_ryan_items <- paste0("trust _", 1:14, "_ryan") 
anthro_ivan_items <- paste0("anthropomorphism _", 1:5, "_ivan"); like_ivan_items <- 
paste0("likability _", 1:5, "_ivan"); intel_ivan_items <- paste0("intelligence _", 1:5, "_ivan"); 
trust_ivan_items <- paste0("trust _", 1:14, "_ivan") 
 
# --- 5. CALCULATE COMPOSITE SCORES (ROW MEANS) --- 
cat("\n\n--- 5. Calculating Composite Scores ---\n") 
check_and_calculate_mean <- function(df, items_list, new_col_name) { 
  existing_items <- intersect(items_list, colnames(df)) 
  if (length(existing_items) == 0) { cat(paste0("Warning: No items for '", new_col_name, "'. 
Skipping.\n")); return(df) } 
  if (length(existing_items) < length(items_list)) { cat(paste0("Warning: Not all items for '", 
new_col_name, "' found. Using: ", paste(existing_items, collapse=", "), "\n")) } 
  df <- df %>% mutate(across(all_of(existing_items), as.numeric)) # Ensure items are numeric 
before rowMeans 
  df <- df %>% mutate(!!new_col_name := rowMeans(select(., all_of(existing_items)), na.rm = 
TRUE)) 
  cat(paste0("Calculated: ", new_col_name, "\n")) 
  return(df) 
} 
data <- check_and_calculate_mean(data, anthro_carl_items, "Anthro_Carl_Score"); data <- 
check_and_calculate_mean(data, like_carl_items, "Like_Carl_Score"); data <- 
check_and_calculate_mean(data, intel_carl_items, "Intel_Carl_Score"); data <- 
check_and_calculate_mean(data, trust_carl_items, "Trust_Carl_Score") 
data <- check_and_calculate_mean(data, anthro_ryan_items, "Anthro_Ryan_Score"); data <- 
check_and_calculate_mean(data, like_ryan_items, "Like_Ryan_Score"); data <- 
check_and_calculate_mean(data, intel_ryan_items, "Intel_Ryan_Score"); data <- 
check_and_calculate_mean(data, trust_ryan_items, "Trust_Ryan_Score") 
data <- check_and_calculate_mean(data, anthro_ivan_items, "Anthro_Ivan_Score"); data <- 
check_and_calculate_mean(data, like_ivan_items, "Like_Ivan_Score"); data <- 
check_and_calculate_mean(data, intel_ivan_items, "Intel_Ivan_Score"); data <- 
check_and_calculate_mean(data, trust_ivan_items, "Trust_Ivan_Score") 
cat("\n--- Composite score calculation finished. ---\n") 
 
# --- 6. DESCRIPTIVE STATISTICS & VISUALIZATIONS OF COMPOSITE SCORES --- 
cat("\n\n--- 6. Descriptive Statistics & Visualizations of Composite Scores ---\n") 
composite_score_columns <- c(grep("_Score$", colnames(data), value = TRUE)) # Dynamically 
get all score columns 
existing_composite_score_columns <- intersect(composite_score_columns, colnames(data)) 
 
if(length(existing_composite_score_columns) > 0){ 
  data <- data %>% mutate(across(all_of(existing_composite_score_columns), as.numeric)) # 
Ensure numeric 
  cat("\n--- Summary (Min, Q1, Median, Mean, Q3, Max) for Composite Scores ---\n") 
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  print(summary(data[, existing_composite_score_columns])) 
  cat("\n--- Mean, SD, N for Composite Scores ---\n") 
  desc_stats_mean_sd <- data %>% 
    select(all_of(existing_composite_score_columns)) %>% 
    pivot_longer(cols = everything(), names_to = "Score_Name", values_to = "Value") %>% 
    group_by(Score_Name) %>% 
    summarise(Mean = mean(Value, na.rm = TRUE), SD = sd(Value, na.rm = TRUE), N_obs = 
sum(!is.na(Value))) %>% 
    arrange(Score_Name)  
  print(desc_stats_mean_sd, n = Inf) 
} else { cat("No composite score columns found to summarize.\n")} 
 
# --- Define names and orders for plotting --- 
construct_name_map <- c(Anthro = "Anthropomorphism", Like = "Likability", Intel = 
"Intelligence", Trust = "Trust") 
constructs_short_names_for_iteration <- names(construct_name_map)  
 
# This order is used for original plots and for the ANOVA calculations later 
robots_order <- c("Carl", "Ryan", "Ivan")  
 
# --- Define new orders, display names, and colors for the faceted plots --- 
robots_order_original_faceted <- c("Ryan", "Ivan", "Carl") 
robot_display_names_faceted <- c("Joint", "Disjoint", "Control") 
robot_colors_faceted <- c("Joint" = "#029e73", "Disjoint" = "#d55e00", "Control" = "#cc78bc") 
 
 
cat("\n\n--- 6.1 Generating Individual Boxplots for Each Composite Score ---\n") 
if (length(existing_composite_score_columns) > 0) { 
  for (score_col_indiv_plot in existing_composite_score_columns) { 
    if (sum(!is.na(data[[score_col_indiv_plot]])) > 0) { 
      short_construct_name_plot <- str_extract(score_col_indiv_plot, "^(Anthro|Like|Intel|Trust)") 
      robot_name_plot <- str_extract(score_col_indiv_plot, "(Carl|Ryan|Ivan)") 
      full_construct_display_name_plot <- construct_name_map[[short_construct_name_plot]] 
      plot_title_desc <- paste("Boxplot of", full_construct_display_name_plot, "(Robot:", 
robot_name_plot, ")") 
      if (is.na(full_construct_display_name_plot) || is.na(robot_name_plot)) { plot_title_desc <- 
paste("Boxplot of", score_col_indiv_plot) } 
       
      p_i <- ggplot(data, aes(y = .data[[score_col_indiv_plot]])) + 
        geom_boxplot(fill = "skyblue", outlier.colour = "red", outlier.shape = 16, outlier.size = 2) + 
        labs(title = plot_title_desc, y = "Score", x = "") + theme_minimal() + theme(axis.text.x = 
element_blank(), axis.ticks.x = element_blank()) 
      print(p_i); cat(paste("Boxplot for:", score_col_indiv_plot, "\n")) 
    } else { cat(paste("Skipping boxplot for:", score_col_indiv_plot, "- All values are NA.\n"))} 
  } 
} 



 146 

 
cat("\n\n--- 6.2 Generating Grouped Boxplots for Each Construct ---\n") 
if ("participantID" %in% colnames(data)) { 
  for (short_construct_name_grp_plot in constructs_short_names_for_iteration) { 
    full_construct_display_name_grp_plot <- 
construct_name_map[[short_construct_name_grp_plot]] 
    cat(paste0("\n--- Grouped Boxplot for: ", full_construct_display_name_grp_plot, " Scores ---
\n")) 
    score_cols_for_grp_plot <- existing_composite_score_columns[grep(paste0("^", 
short_construct_name_grp_plot, "_"), existing_composite_score_columns)] 
    if (length(score_cols_for_grp_plot) > 0) { 
      data_long_construct_grp_plot <- data %>% 
        select(participantID, all_of(score_cols_for_grp_plot)) %>% 
        pivot_longer(cols = all_of(score_cols_for_grp_plot), names_to = "Scale_Version", 
values_to = "Score") %>% 
        mutate(Robot = str_extract(Scale_Version, paste(robots_order, collapse="|")), Robot = 
factor(Robot, levels = robots_order))  
      if (sum(!is.na(data_long_construct_grp_plot$Score)) > 0) { 
        grouped_plot_render <- ggplot(data_long_construct_grp_plot, aes(x = Robot, y = Score, fill 
= Robot)) + 
          geom_boxplot(outlier.colour = "red", outlier.shape = 16, outlier.size = 2) + 
          labs(title = paste(full_construct_display_name_grp_plot, "Scores by Robot"), x = "Robot", 
y = paste(full_construct_display_name_grp_plot, "Score")) + 
          theme_minimal() + theme(legend.position = "none")  
        print(grouped_plot_render) 
      } else { cat(paste("No non-NA data for grouped", full_construct_display_name_grp_plot, 
"boxplot.\n")) } 
    } else { cat(paste("No '", full_construct_display_name_grp_plot, "' score columns found.\n")) 
} 
  } 
} else { cat("Warning: 'participantID' column not found. Skipping grouped boxplots.\n")} 
 
 
cat("\n\n--- 6.3 Generating Combined Faceted Boxplot for All Constructs (with New Labels) ---
\n") 
if ("participantID" %in% colnames(data) && length(existing_composite_score_columns) > 0) { 
  data_long_all_constructs_viz <- data %>%  
    select(participantID, all_of(existing_composite_score_columns)) %>% 
    pivot_longer(cols = all_of(existing_composite_score_columns), names_to = "Score_Name", 
values_to = "ScoreValue") %>% 
    mutate( 
      Short_Construct_Name = str_extract(Score_Name, "^(Anthro|Like|Intel|Trust)"), 
      Robot = str_extract(Score_Name, "(Carl|Ryan|Ivan)"), 
      Robot = factor(Robot, levels = robots_order_original_faceted), # Use new order 
       
      # Create new column for plot labels based on the original Robot column 
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      Robot_Plot_Label = recode(Robot, "Ryan" = "Joint", "Ivan" = "Disjoint", "Carl" = 
"Control"), 
      # Factor the new column with the new display names for correct ordering in plots 
      Robot_Plot_Label = factor(Robot_Plot_Label, levels = robot_display_names_faceted), 
       
      Construct_Display = recode(Short_Construct_Name, !!!construct_name_map), 
      Construct_Display = factor(Construct_Display, levels = unname(construct_name_map)) 
    ) %>% 
    filter(!is.na(Robot) & !is.na(Construct_Display) & !is.na(ScoreValue))  
   
  if (nrow(data_long_all_constructs_viz) > 0) { 
    combined_faceted_plot_final <- ggplot(data_long_all_constructs_viz, aes(x = 
Robot_Plot_Label, y = ScoreValue, fill = Robot_Plot_Label)) + 
      geom_boxplot(outlier.colour = "red", outlier.shape = 16, outlier.size = 1.5, width = 0.7) + 
      scale_fill_manual(values = robot_colors_faceted) + # Use the new color palette 
      facet_wrap(~Construct_Display, scales = "free", ncol = 2) +  
      labs(title = "Comparison of Subjective Ratings by Robot Condition", x = "Robot Condition", 
y = "Mean Score") + 
      theme_minimal(base_size = 12) + 
      theme(legend.position = "none", strip.text = element_text(face="bold",size=11), 
axis.text.x=element_text(angle=45,hjust=1,size=10), axis.title=element_text(size=11), 
plot.title=element_text(hjust=0.5,size=14,face="bold"), panel.spacing=unit(1.5,"lines"))  
    print(combined_faceted_plot_final) 
  } else { cat("No data for combined faceted plot.\n")} 
} else { cat("Warning: 'participantID' or composite scores missing. Skipping combined faceted 
boxplot.\n")} 
 
 
# --- 6.4 [NEW] Generating Combined Faceted Bar Chart with 95% Confidence Intervals --- 
cat("\n\n--- 6.4 Generating Combined Bar Chart with 95% Confidence Intervals ---\n") 
if (exists("data_long_all_constructs_viz") && nrow(data_long_all_constructs_viz) > 0) { 
   
  # Group by the new Robot_Plot_Label column to calculate stats 
  summary_stats_for_plot <- data_long_all_constructs_viz %>% 
    group_by(Construct_Display, Robot_Plot_Label) %>% 
    summarise( 
      Mean = mean(ScoreValue, na.rm = TRUE), 
      SD = sd(ScoreValue, na.rm = TRUE), 
      N = n(), 
      .groups = 'drop' 
    ) %>% 
    mutate( 
      SE = SD / sqrt(N), 
      CI_lower = Mean - 1.96 * SE, 
      CI_upper = Mean + 1.96 * SE 
    ) 
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  # Use Robot_Plot_Label for x and fill aesthetics 
  combined_faceted_barchart <- ggplot(summary_stats_for_plot, aes(x = Robot_Plot_Label, y = 
Mean, fill = Robot_Plot_Label)) + 
    geom_bar(stat = "identity", color = "black", width = 0.8) + 
    geom_errorbar( 
      aes(ymin = CI_lower, ymax = CI_upper), 
      width = 0.25, 
      linewidth = 0.5, 
      color = "black" 
    ) + 
    geom_text( 
      aes(label = sprintf("M = %.2f", Mean)), 
      vjust = -2.5, 
      color = "black", 
      size = 3.5 
    ) + 
    facet_wrap(~Construct_Display, scales = "free", ncol = 2) + 
    labs( 
      title = "Mean Subjective Ratings by Robot Condition", 
      subtitle = "Error bars represent 95% Confidence Intervals", 
      x = "Robot Condition", 
      y = "Mean Score" 
    ) + 
    scale_fill_manual(values = robot_colors_faceted) + # Use the new color palette 
    scale_y_continuous(expand = expansion(mult = c(0, .15))) + # Give space for text labels 
    theme_minimal(base_size = 12) + 
    theme( 
      legend.position = "none", 
      strip.text = element_text(face = "bold", size = 11), 
      axis.text.x = element_text(angle = 45, hjust = 1, size = 10), 
      axis.title = element_text(size = 11), 
      plot.title = element_text(hjust = 0.5, size = 14, face = "bold"), 
      plot.subtitle = element_text(hjust = 0.5, size = 10), 
      panel.spacing = unit(1.5, "lines"), 
      panel.grid.major.x = element_blank() # Clean up grid lines 
    ) 
   
  print(combined_faceted_barchart) 
  cat("\n--- Bar chart with CIs generated successfully. ---\n") 
   
} else { 
  cat("Warning: Could not generate bar chart because the initial data processing step (6.3) failed 
to produce data.\n") 
} 
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# --- 7. IDENTIFY POTENTIAL OUTLIERS (1.5 * IQR Rule) --- 
cat("\n\n--- 7. Identifying Potential Outliers for Composite Scores ---\n") 
if (length(existing_composite_score_columns) > 0 && "participantID" %in% colnames(data)) { 
  for (score_col_outlier_check in existing_composite_score_columns) { 
    cat(paste0("\nChecking outliers for: ", score_col_outlier_check, "\n")) 
    scores_vector_check <- 
data[[score_col_outlier_check]][!is.na(data[[score_col_outlier_check]])] 
    if (length(scores_vector_check) < 5) { cat("Not enough data.\n"); next } 
    Q1_check <- quantile(scores_vector_check, 0.25); Q3_check <- 
quantile(scores_vector_check, 0.75); IQR_val_check <- Q3_check - Q1_check 
    lower_b_check <- Q1_check - 1.5 * IQR_val_check; upper_b_check <- Q3_check + 1.5 * 
IQR_val_check 
    potential_outliers_found <- data %>% 
      filter((!!sym(score_col_outlier_check) < lower_b_check | !!sym(score_col_outlier_check) > 
upper_b_check) & !is.na(!!sym(score_col_outlier_check))) %>% 
      select(participantID, !!sym(score_col_outlier_check)) 
    if (nrow(potential_outliers_found) > 0) { cat("Potential outliers:\n"); 
print(potential_outliers_found) } else { cat("No outliers found.\n") } 
  } 
} 
cat("\n--- Outlier Identification Complete. ---\n") 
 
# --- 8. CHECK NORMALITY FOR EACH COMPOSITE SCORE --- 
cat("\n\n--- 8. Checking Normality for Composite Scores ---\n") 
for (score_col_norm_final in existing_composite_score_columns) {  
  short_construct_final <- str_extract(score_col_norm_final, "^(Anthro|Like|Intel|Trust)") 
  robot_name_final <- str_extract(score_col_norm_final, "(Carl|Ryan|Ivan)") 
  full_construct_final <- construct_name_map[[short_construct_final]] 
  plot_title_hist_final <- paste("Hist & Density:", full_construct_final, "-", robot_name_final) 
  if (is.na(full_construct_final)) plot_title_hist_final <- paste("Hist & Density:", 
score_col_norm_final) 
   
  cat(paste0("\n--- Normality Check for: ", score_col_norm_final, " ---\n")) 
  score_values_for_norm <- data[[score_col_norm_final]][!is.na(data[[score_col_norm_final]])] 
  if (length(score_values_for_norm) >= 3) { 
    hist_plot_final_render <- ggplot(data, aes(x = .data[[score_col_norm_final]])) +  
      geom_histogram(aes(y=after_stat(density)), binwidth = 0.5, fill="cornflowerblue", 
color="black", alpha=0.7, na.rm=TRUE) +  
      geom_density(alpha = 0.5, fill="darkorange", colour="darkorange", na.rm=TRUE) +  
      labs(title=plot_title_hist_final, x = "Score", y = "Density") + theme_minimal() 
    print(hist_plot_final_render) 
     
    qq_plot_title_final <- paste("Q-Q Plot:", full_construct_final, "-", robot_name_final) 
    if (is.na(full_construct_final)) qq_plot_title_final <- paste("Q-Q Plot:", score_col_norm_final) 
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    qq_plot_final_render <- ggqqplot(data, x=score_col_norm_final, conf.int = TRUE, ggtheme = 
theme_minimal(), ylab="SampleQ", xlab="TheoreticalQ", title=qq_plot_title_final) 
    print(qq_plot_final_render) 
     
    if (length(score_values_for_norm) <= 5000) {  
      shapiro_test_final <- shapiro.test(score_values_for_norm) 
      cat(paste0("Shapiro-Wilk for ", score_col_norm_final, ": 
W=",round(shapiro_test_final$statistic,3),", p=",round(shapiro_test_final$p.value,3),"\n")) 
    } else { cat("N > 5000, Shapiro-Wilk may not be optimal.\n") } 
  } else { cat("Not enough data for normality check.\n")} 
} 
cat("\n--- Normality Assessment Complete. ---\n") 
 
# --- 9. CRONBACH'S ALPHA FOR SCALE RELIABILITY --- 
cat("\n\n--- 9. Calculating Cronbach's Alpha ---\n") 
all_item_sets_orig_alpha_final <- list( 
  Anthro_Carl = anthro_carl_items, Like_Carl = like_carl_items, Intel_Carl = intel_carl_items, 
Trust_Carl = trust_carl_items, 
  Anthro_Ryan = anthro_ryan_items, Like_Ryan = like_ryan_items, Intel_Ryan = 
intel_ryan_items, Trust_Ryan = trust_ryan_items, 
  Anthro_Ivan = anthro_ivan_items, Like_Ivan = like_ivan_items, Intel_Ivan = intel_ivan_items, 
Trust_Ivan = trust_ivan_items 
) 
alpha_results_list_full <- list() 
for (scale_name_alpha_run in names(all_item_sets_orig_alpha_final)) { 
  items_for_alpha_run <- all_item_sets_orig_alpha_final[[scale_name_alpha_run]] 
  present_items_for_alpha_run <- items_for_alpha_run[items_for_alpha_run %in% 
colnames(data)] 
  if (length(present_items_for_alpha_run) >= 2) { 
    data_subset_for_alpha_run <- data %>% select(all_of(present_items_for_alpha_run)) %>% 
mutate(across(everything(), as.numeric)) 
    data_subset_complete_for_alpha_run <- 
data_subset_for_alpha_run[rowSums(is.na(data_subset_for_alpha_run)) < 
ncol(data_subset_for_alpha_run), ] # Keep rows with at least one non-NA value 
    if(nrow(data_subset_complete_for_alpha_run) >=2 && 
ncol(data_subset_complete_for_alpha_run) >=2) { # Check if still valid after NA row removal 
      alpha_obj_run_final <- psych::alpha(data_subset_complete_for_alpha_run, 
check.keys=TRUE, use="pairwise.complete.obs") # pairwise for robustness 
      alpha_results_list_full[[scale_name_alpha_run]] <- alpha_obj_run_final$total 
    } else { alpha_results_list_full[[scale_name_alpha_run]] <- list(std.alpha = NA_real_) } 
  } else { alpha_results_list_full[[scale_name_alpha_run]] <- list(std.alpha = NA_real_) } 
} 
alpha_summary_df_to_show <- tibble(Scale=names(alpha_results_list_full), 
Std_Alpha=sapply(alpha_results_list_full, function(x) if(is.list(x) && "std.alpha" %in% 
names(x)) round(x$std.alpha,3) else NA_real_)) 
print(alpha_summary_df_to_show, n=Inf) 
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cat("\n--- Cronbach's Alpha calculation finished. ---\n") 
 
# --- 10. PARAMETRIC TESTING - REPEATED MEASURES ANOVA --- 
cat("\n\n--- 10. Parametric Testing (Repeated Measures ANOVAs) ---\n") 
if (!"participantID" %in% colnames(data)) { stop("Error: 'participantID' column required for 
ANOVA.") } 
 
for (construct_short_final_anova in constructs_short_names_for_iteration) { 
  full_construct_final_anova <- construct_name_map[[construct_short_final_anova]] 
  cat(paste0("\n\n--- RM ANOVA for: ", full_construct_final_anova, " Scores ---\n")) 
   
  # IMPORTANT: This section uses the original `robots_order` to find the correct columns 
  composite_cols_final_anova <- paste0(construct_short_final_anova, "_", robots_order, 
"_Score")  
  existing_cols_final_anova <- intersect(composite_cols_final_anova, colnames(data)) 
  if (length(existing_cols_final_anova) != length(robots_order)) { cat(paste0("Skipping ", 
full_construct_final_anova, ": not all score columns found.\n")); next } 
   
  data_long_final_anova <- data %>% select(participantID, all_of(existing_cols_final_anova)) 
%>% 
    pivot_longer(cols = all_of(existing_cols_final_anova), names_to = "Robot_Condition_Raw", 
values_to = "ScoreValue") %>%  
    mutate(Robot = str_extract(Robot_Condition_Raw, paste(robots_order, collapse="|")), Robot 
= factor(Robot, levels = robots_order))  
   
  data_long_complete_final_anova <- data_long_final_anova %>% filter(!is.na(ScoreValue)) 
  if(nrow(data_long_complete_final_anova) == 0) { cat(paste0("Skipping ", 
full_construct_final_anova, ": no data after NA removal.\n")); next } 
   
  n_distinct_robots_final_anova <- 
n_distinct(data_long_complete_final_anova$Robot[!is.na(data_long_complete_final_anova$Rob
ot)]) 
  if (n_distinct_robots_final_anova < length(robots_order)) { cat(paste0("Skipping ", 
full_construct_final_anova, ": not all robots present.\n")); next } 
   
  subject_counts_final_anova <- data_long_complete_final_anova %>% group_by(participantID) 
%>% summarise(n_cond_answered = n_distinct(Robot), .groups = 'drop') 
  complete_subjects_final_anova <- subject_counts_final_anova %>% filter(n_cond_answered 
== n_distinct_robots_final_anova) %>% pull(participantID) 
  if (length(complete_subjects_final_anova) < 2) { cat(paste0("Skipping ", 
full_construct_final_anova, ": <2 subjects with complete data.\n")); next } 
   
  data_anova_for_rstatix <- data_long_complete_final_anova %>% filter(participantID %in% 
complete_subjects_final_anova) 
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  cat(paste0("RM ANOVA for '", full_construct_final_anova, "' (N=", 
length(complete_subjects_final_anova), " subjects)...\n")) 
  tryCatch({ 
    res_aov_actual <- rstatix::anova_test(data = data_anova_for_rstatix, dv = ScoreValue, wid = 
participantID, within = Robot, effect.size = "ges" ) 
    print(res_aov_actual) 
     
    p_val_aov_actual <- NA; anova_table_from_rstatix <- NULL 
    if(is.list(res_aov_actual) && "ANOVA" %in% names(res_aov_actual)) { 
anova_table_from_rstatix <- res_aov_actual$ANOVA } 
    else if(is.data.frame(res_aov_actual)) { anova_table_from_rstatix <- res_aov_actual } 
    if(!is.null(anova_table_from_rstatix) && "p" %in% colnames(anova_table_from_rstatix) && 
"Effect" %in% colnames(anova_table_from_rstatix)) { 
      p_row_val_actual <- anova_table_from_rstatix[anova_table_from_rstatix$Effect == 
"Robot",]; if(nrow(p_row_val_actual) == 1) p_val_aov_actual <- p_row_val_actual$p 
    } 
    if (!is.na(p_val_aov_actual) && p_val_aov_actual < 0.05) { 
      cat(paste0("ANOVA for '", full_construct_final_anova, "' significant. Pairwise 
(Bonferroni):\n")) 
      print(data_anova_for_rstatix %>% rstatix::pairwise_t_test(ScoreValue ~ Robot, paired = 
TRUE, p.adjust.method = "bonferroni")) 
    } else { cat(paste0("ANOVA for '", full_construct_final_anova, "' NOT significant or p-value 
not extracted.\n")) } 
  }, error = function(e) { cat(paste0("ERROR RM ANOVA for '", full_construct_final_anova, "': 
", e$message, "\n")) }) 
} 
cat("\n--- Parametric testing finished. ---\n") 
 
# --- 11. SAVE FINAL DATASET --- 
final_output_filename <- "qualtrics_data_fully_processed_with_all_analyses.csv" 
cat(paste0("\n\n--- 11. Saving final data to '", final_output_filename, "' ---\n")) 
write_csv(data, final_output_filename) 
cat("--- Script finished. Final data saved. ---\n") 
  



 153 

Python-Script for generating Heatmaps 
 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import matplotlib.image as mpimg 
 
# --- USER CONFIGURATION --- 
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv" 
BACKGROUND_IMAGE_FILE = "carl.png" 
 
def generate_heatmap(data_filepath, image_filepath, target_robot, target_difficulty): 
    """ 
    Generates a high-visibility heatmap with a shorter, closer colorbar legend. 
    """ 
    print(f"Generating heatmap for: {target_robot} / {target_difficulty}...") 
     
    # --- 1. Load and Prepare Data --- 
    try: 
        df = pd.read_csv(data_filepath, decimal=',') 
        bg_img = mpimg.imread(image_filepath) 
        img_height, img_width, _ = bg_img.shape 
    except FileNotFoundError as e: 
        print(f"FATAL ERROR: Could not find a required file. {e}") 
        return 
 
    coord_cols = ['Fixation point X (MCSnorm)', 'Fixation point Y (MCSnorm)'] 
    for col in coord_cols: 
        df[col] = pd.to_numeric(df[col], errors='coerce') 
 
    condition_df = df[ 
        (df['Robot'] == target_robot) &  
        (df['difficulty'] == target_difficulty) & 
        (df['Eye movement type'] == 'Fixation') 
    ].dropna(subset=coord_cols).copy() 
     
    if condition_df.empty: 
        print("No fixation data found for the selected condition.") 
        return 
         
    print(f"Found {len(condition_df)} fixations for this condition.") 
 
    condition_df['x_pixel'] = condition_df['Fixation point X (MCSnorm)'] * img_width 
    condition_df['y_pixel'] = condition_df['Fixation point Y (MCSnorm)'] * img_height 
 
    # --- 2. Create the Heatmap Plot --- 
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    fig, ax = plt.subplots(figsize=(12, 9)) 
     
    # Display the background image 
    ax.imshow(bg_img) 
     
    # --- UPDATED: Final adjustments for legend size and position --- 
    sns.kdeplot( 
        x=condition_df['x_pixel'], 
        y=condition_df['y_pixel'], 
        ax=ax, 
        fill=True, 
        cmap="rocket_r", 
        alpha=0.75, 
        thresh=0.05, 
        bw_adjust=0.8, 
        cbar=True, 
        cbar_kws={ 
            'label': 'Fixation Density', 
            'shrink': 0.4,    # --- REDUCED: Makes the colorbar even shorter (40% of plot height) --- 
            'pad': 0.02       # --- ADDED: Moves the colorbar closer to the plot --- 
        } 
    ) 
     
    ax.set_title(f"Fixation Heatmap for: {target_robot} / {target_difficulty}", fontsize=16) 
    ax.axis('off') 
     
    plt.tight_layout() 
    plt.show() 
 
 
# --- Main Execution Block (Set to compare Carl: Easy vs. Hard) --- 
if __name__ == "__main__": 
    print("--- Generating heatmap for carl / easy ---") 
    generate_heatmap(data_filepath=FULL_DATA_FILE, 
                     image_filepath=BACKGROUND_IMAGE_FILE, 
                     target_robot='Carl condition', 
                     target_difficulty='easy') 
 
    print("\n--- Generating a second heatmap for comparison ---") 
    generate_heatmap(data_filepath=FULL_DATA_FILE, 
                     image_filepath=BACKGROUND_IMAGE_FILE, 
                     target_robot='Carl condition', 
                     target_difficulty='hard') 
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Python Script for Analysis of Dwell Time 
 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
import pingouin as pg 
import os 
 
# --- USER CONFIGURATION --- 
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv" 
# The directory where results will be saved 
OUTPUT_DIR = "analysis_results" 
 
# Outlier threshold 
SD_THRESHOLD = 2.5 
 
def run_analysis_for_aoi(df, target_aoi_col, target_aoi_name, sd_thresh): 
    """ 
    Calculates Proportional Dwell Time for a given AOI, removes outliers, 
    runs a 2x3 repeated-measures ANOVA, and generates visualizations. 
    """ 
    print("\n" + "="*80) 
    print(f"Running Analysis for AOI: '{target_aoi_name}' (Column: {target_aoi_col})") 
    print("="*80) 
 
    # --- 1. Calculate Proportional Dwell Time --- 
    print("\n[Step 1] Calculating Proportional Dwell Time...") 
    # Isolate only fixation events 
    fixations_df = df[df['Eye movement type'] == 'Fixation'].copy() 
    # Filter for fixations on the current target AOI 
    aoi_fixations = fixations_df[fixations_df[target_aoi_col] == True] 
    # Group by trial and SUM the DURATION of fixations for the AOI 
    dwell_times = aoi_fixations.groupby(['ParticipantID', 
'classification_timeframe_number'])['Eye movement event 
duration'].sum().to_frame(name='Dwell_Time_ms').reset_index() 
 
    # Calculate Total Trial Duration from the main df 
    total_trial_durations = df.groupby(['ParticipantID', 'classification_timeframe_number'])['Eye 
movement event duration'].sum().to_frame(name='Total_Trial_Duration_ms').reset_index() 
 
    # Create a complete list of all trials to merge onto 
    all_trials = df[['ParticipantID', 'classification_timeframe_number', 'Robot', 
'difficulty']].drop_duplicates() 
    # Merge AOI dwell times and total trial durations 
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    analysis_df = pd.merge(all_trials, dwell_times, on=['ParticipantID', 
'classification_timeframe_number'], how='left') 
    analysis_df = pd.merge(analysis_df, total_trial_durations, on=['ParticipantID', 
'classification_timeframe_number'], how='left') 
 
    # Fill NaNs and calculate the proportion 
    analysis_df['Dwell_Time_ms'].fillna(0, inplace=True) 
    analysis_df['Proportional_Dwell_Time'] = np.where(analysis_df['Total_Trial_Duration_ms'] > 
0, 
                                                      analysis_df['Dwell_Time_ms'] / 
analysis_df['Total_Trial_Duration_ms'], 
                                                      0) 
    print(f"Proportional Dwell Time calculated for {len(analysis_df)} trials.") 
 
    # --- 2. Outlier Removal --- 
    print(f"\n[Step 2] Checking for outliers in 'Proportional_Dwell_Time' for 
'{target_aoi_name}'...") 
    original_rows = len(analysis_df) 
    def remove_outliers_by_sd(df, group_cols, value_col, threshold): 
        def remove_group_outliers(group): 
            mean = group[value_col].mean() 
            std_dev = group[value_col].std() 
            if pd.isna(std_dev) or std_dev == 0: return group 
            lower_bound = mean - threshold * std_dev 
            upper_bound = mean + threshold * std_dev 
            return group[(group[value_col] >= lower_bound) & (group[value_col] <= upper_bound)] 
        return df.groupby(group_cols, group_keys=False).apply(remove_group_outliers) 
 
    analysis_df = remove_outliers_by_sd(analysis_df, 
                                          group_cols=['Robot', 'difficulty', 'ParticipantID'], 
                                          value_col='Proportional_Dwell_Time', 
                                          threshold=sd_thresh) 
    outliers_removed = original_rows - len(analysis_df) 
    percentage_lost = (outliers_removed / original_rows) * 100 if original_rows > 0 else 0 
    print(f" Removed {outliers_removed} outlier(s) ({percentage_lost:.2f}% of the data).") 
     
    # Save the cleaned data to a unique file 
    output_filename = f"proportional_dwell_time_{target_aoi_name.replace(' ', 
'_').lower()}_results.csv" 
    output_filepath = os.path.join(OUTPUT_DIR, output_filename) 
    analysis_df.to_csv(output_filepath, index=False) 
    print(f"Cleaned results for '{target_aoi_name}' saved to '{output_filepath}'.") 
 
    # --- 3. Visualize and Analyze --- 
    print(f"\n[Step 3] Visualizing and running ANOVA for '{target_aoi_name}'...") 
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    analysis_df['Proportional_Dwell_Time_Percent'] = analysis_df['Proportional_Dwell_Time'] * 
100.0 
     
    robot_name_map = { 
        "Ryan condition": "Joint condition", 
        "Ivan condition": "Disjoint condition", 
        "Carl condition": "Control condition" 
    } 
    analysis_df['Robot'] = analysis_df['Robot'].map(robot_name_map) 
    robot_order = ["Joint condition", "Disjoint condition", "Control condition"] 
    if all(robot in analysis_df['Robot'].unique() for robot in robot_order): 
        analysis_df['Robot'] = pd.Categorical(analysis_df['Robot'], categories=robot_order, 
ordered=True) 
 
    # Create grouped bar chart 
    plt.figure(figsize=(12, 8)) 
    sns.barplot(x='Robot', y='Proportional_Dwell_Time_Percent', hue='difficulty', 
data=analysis_df, palette="viridis", capsize=.05, errorbar="se") 
    plt.title(f"Mean Proportional Dwell Time on {target_aoi_name}\nby Condition and 
Difficulty") 
    plt.ylabel('Mean Proportional Dwell Time (%)') 
    plt.xlabel('Robotic Condition') 
    plt.legend(title='Difficulty') 
    # Save the plot to a file 
    plot_filename = f"plot_{target_aoi_name.replace(' ', '_').lower()}.png" 
    plot_filepath = os.path.join(OUTPUT_DIR, plot_filename) 
    plt.savefig(plot_filepath) 
    plt.show() 
    print(f"Plot for '{target_aoi_name}' saved to '{plot_filepath}'.") 
 
 
    # Perform ANOVA 
    aov = pg.rm_anova(data=analysis_df, 
                      dv='Proportional_Dwell_Time',  
                      within=['Robot', 'difficulty'], 
                      subject='ParticipantID', 
                      detailed=True) 
    print(f"\n--- ANOVA Results for Proportional Dwell Time on '{target_aoi_name}' ---") 
    pg.print_table(aov) 
 
    # Conditional Post-Hoc tests 
    is_robot_sig = aov.loc[aov['Source'] == 'Robot', 'p-unc'].iloc[0] < 0.05 
    is_interaction_sig = aov.loc[aov['Source'] == 'Robot * difficulty', 'p-unc'].iloc[0] < 0.05 
    if is_robot_sig or is_interaction_sig: 
        print(f"\n--- Post-Hoc Tests for Proportional Dwell Time on '{target_aoi_name}' ---") 
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        posthocs = pg.pairwise_tests(data=analysis_df, dv='Proportional_Dwell_Time', 
within=['Robot', 'difficulty'], subject='ParticipantID', padjust='bonf') 
        print(posthocs) 
 
 
# --- Main Execution Block --- 
if __name__ == "__main__": 
    # --- 1. Load and Prepare Data ONCE --- 
    print("Loading and preparing main data file...") 
    try: 
        main_df = pd.read_csv(FULL_DATA_FILE, decimal=',') 
    except FileNotFoundError: 
        print(f"FATAL ERROR: Could not find '{FULL_DATA_FILE}'") 
        exit() # Use exit() in main block 
 
    # Create the output directory if it doesn't exist 
    if not os.path.exists(OUTPUT_DIR): 
        os.makedirs(OUTPUT_DIR) 
 
    # Standard data cleaning 
    main_df['classification_timeframe_number'] = 
pd.to_numeric(main_df['classification_timeframe_number'], errors='coerce') 
    main_df['Eye movement event duration'] = pd.to_numeric(main_df['Eye movement event 
duration'], errors='coerce') 
    main_df.dropna(subset=['classification_timeframe_number', 'Eye movement event duration'], 
inplace=True) 
    main_df['classification_timeframe_number'] = 
main_df['classification_timeframe_number'].astype('Int64') 
    if 'ParticipantID' not in main_df.columns: main_df['ParticipantID'] = 'Unknown' 
    else: main_df['ParticipantID'] = main_df['ParticipantID'].ffill().bfill() 
    grouping_cols_for_ffill = ['ParticipantID', 'classification_timeframe_number'] 
    cols_to_ffill = ['Robot', 'difficulty'] 
    for col_ffill in cols_to_ffill: 
        if col_ffill in main_df.columns: 
            main_df[col_ffill] = main_df.groupby(grouping_cols_for_ffill, 
group_keys=False)[col_ffill].ffill().bfill() 
    print("Data loaded and prepared.") 
 
    # --- 2. Create Combined AOI Column --- 
    # The | operator works as a boolean OR for pandas columns. 
    print("\nCreating combined 'Classification Buttons' AOI...") 
    main_df['classification_buttons'] = main_df['is_true_category'] | main_df['is_false_category'] 
    print("Combined AOI created.") 
 
 
    # --- 3. Define AOIs and Run Analysis for Each --- 
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    aois_to_analyze = [ 
        {'col': 'is_face', 'name': 'Robot Face'}, 
        {'col': 'is_cards', 'name': 'Cards'}, 
        {'col': 'classification_buttons', 'name': 'Classification Buttons'} 
    ] 
 
    for aoi in aois_to_analyze: 
        run_analysis_for_aoi(df=main_df.copy(), # Pass a copy to ensure original df is unchanged 
                             target_aoi_col=aoi['col'],  
                             target_aoi_name=aoi['name'],  
                             sd_thresh=SD_THRESHOLD) 
 
    print("\nAll analyses completed”) 
 
 
Python Script for AOI Frequency Analysis 
 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
import pingouin as pg 
import os 
 
# --- USER CONFIGURATION --- 
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv" 
# The directory where results will be saved 
OUTPUT_DIR = "analysis_results_fixation_count" 
 
# Outlier threshold 
SD_THRESHOLD = 2.5 
 
def run_proportional_fixation_analysis(df, target_aoi_col, target_aoi_name, sd_thresh): 
    """ 
    Calculates Proportional Fixation Count for a given AOI, removes outliers, 
    runs a 2x3 repeated-measures ANOVA, and generates visualizations. 
    """ 
    print("\n" + "="*80) 
    print(f"Running Analysis for AOI: '{target_aoi_name}' (Column: {target_aoi_col})") 
    print("="*80) 
 
    # --- 1. Calculate Proportional Fixation Count --- 
    print("\n[Step 1] Calculating Proportional Fixation Count...") 
     
    # Isolate only fixation events from the main dataframe 
    fixations_df = df[df['Eye movement type'] == 'Fixation'].copy() 
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    # Filter for fixations on the current target AOI 
    aoi_fixations = fixations_df[fixations_df[target_aoi_col] == True] 
     
    # Group by trial and COUNT the fixations for the AOI 
    aoi_fix_counts = aoi_fixations.groupby(['ParticipantID', 
'classification_timeframe_number']).size().to_frame(name='AOI_Fixation_Count').reset_index() 
 
    # Calculate TOTAL number of fixations for each trial 
    total_fix_counts = fixations_df.groupby(['ParticipantID', 
'classification_timeframe_number']).size().to_frame(name='Total_Trial_Fixation_Count').reset_i
ndex() 
 
    # Create a complete list of all trials to merge onto 
    all_trials = df[['ParticipantID', 'classification_timeframe_number', 'Robot', 
'difficulty']].drop_duplicates() 
     
    # Merge AOI counts and total trial counts 
    analysis_df = pd.merge(all_trials, aoi_fix_counts, on=['ParticipantID', 
'classification_timeframe_number'], how='left') 
    analysis_df = pd.merge(analysis_df, total_fix_counts, on=['ParticipantID', 
'classification_timeframe_number'], how='left') 
 
    # Fill NaNs and calculate the proportion 
    analysis_df['AOI_Fixation_Count'].fillna(0, inplace=True) 
    analysis_df['Total_Trial_Fixation_Count'].fillna(0, inplace=True) # A trial might have no 
fixations at all 
    analysis_df['Proportional_Fixation_Count'] = 
np.where(analysis_df['Total_Trial_Fixation_Count'] > 0, 
                                                          analysis_df['AOI_Fixation_Count'] / 
analysis_df['Total_Trial_Fixation_Count'], 
                                                          0) 
    print(f"Proportional Fixation Count calculated for {len(analysis_df)} trials.") 
 
    # --- 2. Outlier Removal --- 
    print(f"\n[Step 2] Checking for outliers in 'Proportional_Fixation_Count' for 
'{target_aoi_name}'...") 
    original_rows = len(analysis_df) 
    def remove_outliers_by_sd(df, group_cols, value_col, threshold): 
        def remove_group_outliers(group): 
            mean = group[value_col].mean() 
            std_dev = group[value_col].std() 
            if pd.isna(std_dev) or std_dev == 0: return group 
            lower_bound = mean - threshold * std_dev 
            upper_bound = mean + threshold * std_dev 
            return group[(group[value_col] >= lower_bound) & (group[value_col] <= upper_bound)] 
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        return df.groupby(group_cols, group_keys=False).apply(remove_group_outliers) 
 
    analysis_df = remove_outliers_by_sd(analysis_df, 
                                          group_cols=['Robot', 'difficulty', 'ParticipantID'], 
                                          value_col='Proportional_Fixation_Count', 
                                          threshold=sd_thresh) 
    outliers_removed = original_rows - len(analysis_df) 
    percentage_lost = (outliers_removed / original_rows) * 100 if original_rows > 0 else 0 
    print(f" Removed {outliers_removed} outlier(s) ({percentage_lost:.2f}% of the data).") 
     
    # Save the cleaned data to a unique file 
    output_filename = f"proportional_fixation_count_{target_aoi_name.replace(' ', 
'_').lower()}_results.csv" 
    output_filepath = os.path.join(OUTPUT_DIR, output_filename) 
    analysis_df.to_csv(output_filepath, index=False) 
    print(f"Cleaned results for '{target_aoi_name}' saved to '{output_filepath}'.") 
 
    # --- 3. Visualize and Analyze --- 
    print(f"\n[Step 3] Visualizing and running ANOVA for '{target_aoi_name}'...") 
    analysis_df['Proportional_Fixation_Count_Percent'] = 
analysis_df['Proportional_Fixation_Count'] * 100.0 
     
    robot_name_map = { 
        "Ryan condition": "Joint condition", 
        "Ivan condition": "Disjoint condition", 
        "Carl condition": "Control condition" 
    } 
    analysis_df['Robot'] = analysis_df['Robot'].map(robot_name_map) 
    robot_order = ["Joint condition", "Disjoint condition", "Control condition"] 
    if all(robot in analysis_df['Robot'].unique() for robot in robot_order): 
        analysis_df['Robot'] = pd.Categorical(analysis_df['Robot'], categories=robot_order, 
ordered=True) 
 
    # Create grouped bar chart 
    plt.figure(figsize=(12, 8)) 
    sns.barplot(x='Robot', y='Proportional_Fixation_Count_Percent', hue='difficulty', 
data=analysis_df, palette="magma", capsize=.05, errorbar="se") 
    plt.title(f"Mean Proportional Fixation Count on {target_aoi_name}\nby Condition and 
Difficulty") 
    plt.ylabel('Mean Proportional Fixation Count (%)') 
    plt.xlabel('Robotic Condition') 
    plt.legend(title='Difficulty') 
    # Save the plot to a file 
    plot_filename = f"plot_fixation_count_{target_aoi_name.replace(' ', '_').lower()}.png" 
    plot_filepath = os.path.join(OUTPUT_DIR, plot_filename) 
    plt.savefig(plot_filepath) 
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    plt.show() 
    print(f"Plot for '{target_aoi_name}' saved to '{plot_filepath}'.") 
 
    # Perform ANOVA 
    aov = pg.rm_anova(data=analysis_df, 
                      dv='Proportional_Fixation_Count',  
                      within=['Robot', 'difficulty'], 
                      subject='ParticipantID', 
                      detailed=True) 
    print(f"\n--- ANOVA Results for Proportional Fixation Count on '{target_aoi_name}' ---") 
    pg.print_table(aov) 
 
    # Conditional Post-Hoc tests 
    is_robot_sig = aov.loc[aov['Source'] == 'Robot', 'p-unc'].iloc[0] < 0.05 
    is_interaction_sig = aov.loc[aov['Source'] == 'Robot * difficulty', 'p-unc'].iloc[0] < 0.05 
    if is_robot_sig or is_interaction_sig: 
        print(f"\n--- Post-Hoc Tests for Proportional Fixation Count on '{target_aoi_name}' ---") 
        posthocs = pg.pairwise_tests(data=analysis_df, dv='Proportional_Fixation_Count', 
within=['Robot', 'difficulty'], subject='ParticipantID', padjust='bonf') 
        print(posthocs) 
 
# --- Main Execution Block --- 
if __name__ == "__main__": 
    # --- 1. Load and Prepare Data ONCE --- 
    print("Loading and preparing main data file...") 
    try: 
        main_df = pd.read_csv(FULL_DATA_FILE, decimal=',') 
    except FileNotFoundError: 
        print(f"FATAL ERROR: Could not find '{FULL_DATA_FILE}'") 
        exit() 
 
    # Create the output directory if it doesn't exist 
    if not os.path.exists(OUTPUT_DIR): 
        os.makedirs(OUTPUT_DIR) 
 
    # Standard data cleaning 
    main_df['classification_timeframe_number'] = 
pd.to_numeric(main_df['classification_timeframe_number'], errors='coerce') 
    main_df.dropna(subset=['classification_timeframe_number'], inplace=True) 
    main_df['classification_timeframe_number'] = 
main_df['classification_timeframe_number'].astype('Int64') 
    if 'ParticipantID' not in main_df.columns: main_df['ParticipantID'] = 'Unknown' 
    else: main_df['ParticipantID'] = main_df['ParticipantID'].ffill().bfill() 
    grouping_cols_for_ffill = ['ParticipantID', 'classification_timeframe_number'] 
    cols_to_ffill = ['Robot', 'difficulty'] 
    for col_ffill in cols_to_ffill: 
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        if col_ffill in main_df.columns: 
            main_df[col_ffill] = main_df.groupby(grouping_cols_for_ffill, 
group_keys=False)[col_ffill].ffill().bfill() 
    print("Data loaded and prepared.") 
 
    # --- 2. Create Combined AOI Column --- 
    print("\nCreating combined 'Classification Buttons' AOI...") 
    main_df['classification_buttons'] = main_df['is_true_category'] | main_df['is_false_category'] 
    print("Combined AOI created.") 
 
    # --- 3. Define AOIs and Run Analysis for Each --- 
    aois_to_analyze = [ 
        {'col': 'is_face', 'name': 'Robot Face'}, 
        {'col': 'is_cards', 'name': 'Cards'}, 
        {'col': 'classification_buttons', 'name': 'Classification Buttons'} 
    ] 
 
    for aoi in aois_to_analyze: 
        run_proportional_fixation_analysis(df=main_df.copy(), 
                                           target_aoi_col=aoi['col'],  
                                           target_aoi_name=aoi['name'],  
                                           sd_thresh=SD_THRESHOLD) 
 
    print("\nAll fixation count analyses complete.") 
 
 
 
 
Python Script for Advancced AOI Transition Analysis 
 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
from scipy.stats import chi2_contingency 
 
# --- USER CONFIGURATION --- 
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv" 
 
# Define your key AOIs and give them short names for the matrix 
AOI_DEFINITIONS = { 
    'Robot': 'is_robot', 
    'Cards': 'is_cards', 
    'Classification': 'classification_category' 
} 
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def run_full_transition_analysis(data_filepath, aoi_defs): 
    """ 
    Calculates effective AOI transitions, runs statistical tests (Chi-Squared) 
    with post-hoc analysis, and then visualizes the results. 
    """ 
    # --- 1. Load and Prepare Data --- 
    print("[Step 1] Loading data and calculating all transitions...") 
    try: 
        df = pd.read_csv(data_filepath, decimal=',') 
    except FileNotFoundError as e: 
        print(f"FATAL ERROR: Could not find the data file. {e}") 
        return 
 
    # Standard data cleaning 
    df.dropna(subset=['robot_appearance_timeframe_number', 'Robot', 'difficulty'], inplace=True) 
    df['classification_category'] = (df.get('is_false_category', False) | df.get('is_true_category', 
False)) 
 
    def get_aoi_state(row, aoi_definitions): 
        for aoi_name, col_name in aoi_definitions.items(): 
            if col_name in row and row[col_name]: 
                return aoi_name 
        return 'Outside' 
    df['aoi_state'] = df.apply(lambda row: get_aoi_state(row, aoi_defs), axis=1) 
 
    # --- 2. Build a Master List of ALL Transitions --- 
    all_transitions = [] 
    for name, group in df.groupby(['ParticipantID', 'robot_appearance_timeframe_number']): 
        robot_condition = group['Robot'].iloc[0] 
        difficulty_level = group['difficulty'].iloc[0] 
 
        simplified_sequence = group['aoi_state'][group['aoi_state'].shift() != group['aoi_state']] 
        effective_sequence = simplified_sequence[simplified_sequence != 'Outside'] 
 
        if len(effective_sequence) > 1: 
            trial_transitions = list(zip(effective_sequence, effective_sequence.iloc[1:])) 
            for trans_from, trans_to in trial_transitions: 
                all_transitions.append({ 
                    'From': trans_from, 
                    'To': trans_to, 
                    'Robot': robot_condition, 
                    'Difficulty': difficulty_level 
                }) 
 
    if not all_transitions: 
        print("No transitions were found.") 
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        return 
 
    master_transition_df = pd.DataFrame(all_transitions) 
    print("Master list of all transitions created successfully.") 
 
    # --- 3. Perform Overall Statistical Tests (Chi-Squared) --- 
    print("\n[Step 3] Performing Chi-Squared tests for overall significance...") 
 
    # Test 1: Does the transition pattern depend on the Robot? 
    print("\n--- Test 1: Do transition patterns differ by ROBOT? ---") 
    # The crosstab function creates the contingency table of observed counts 
    contingency_table_robot = pd.crosstab(master_transition_df['From'], 
[master_transition_df['To'], master_transition_df['Robot']]) 
    chi2, p, dof, expected_robot = chi2_contingency(contingency_table_robot) 
    print(f"Chi-Squared Statistic: {chi2:.2f}, p-value: {p:.4f}") 
    if p < 0.05: 
        print("Conclusion: YES, the pattern of transitions is significantly different across the robot 
conditions.") 
        # --- MODIFICATION START: POST-HOC FOR ROBOT CONDITION --- 
        print("\n--- Post-Hoc Analysis: Standardized Residuals for Robot Condition ---") 
        print("This shows which specific transitions occurred significantly more or less often than 
expected for each robot.") 
        # Rule of thumb: A residual > 1.96 or < -1.96 is significant at p < .05 
        residuals_robot = (contingency_table_robot - expected_robot) / np.sqrt(expected_robot) 
         
        # Flatten the table for easier parsing 
        stacked_residuals_robot = residuals_robot.stack(level=[0, 1]).reset_index() 
        stacked_residuals_robot.columns = ['From', 'To', 'Robot', 'Residual'] 
         
        # Filter for significant results 
        significant_residuals_robot = 
stacked_residuals_robot[np.abs(stacked_residuals_robot['Residual']) > 1.96] 
         
        for index, row in significant_residuals_robot.sort_values(by='Residual', 
ascending=False).iterrows(): 
            direction = "more" if row['Residual'] > 0 else "less" 
            print(f"  - In '{row['Robot']}', transitions from '{row['From']}' to '{row['To']}' occurred 
{direction} frequently than expected (Residual: {row['Residual']:.2f})") 
        # --- MODIFICATION END --- 
    else: 
        print("Conclusion: NO, the pattern of transitions is not significantly different across the 
robot conditions.") 
 
 
    # Test 2: Does the transition pattern depend on Difficulty? 
    print("\n--- Test 2: Do transition patterns differ by DIFFICULTY? ---") 
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    contingency_table_difficulty = pd.crosstab(master_transition_df['From'], 
[master_transition_df['To'], master_transition_df['Difficulty']]) 
    chi2, p, dof, expected_difficulty = chi2_contingency(contingency_table_difficulty) 
    print(f"Chi-Squared Statistic: {chi2:.2f}, p-value: {p:.4f}") 
    if p < 0.05: 
        print("Conclusion: YES, the pattern of transitions is significantly different between easy 
and hard trials.") 
        # --- MODIFICATION START: POST-HOC FOR DIFFICULTY --- 
        print("\n--- Post-Hoc Analysis: Standardized Residuals for Difficulty ---") 
        print("This shows which specific transitions occurred significantly more or less often than 
expected for each difficulty level.") 
         
        residuals_difficulty = (contingency_table_difficulty - expected_difficulty) / 
np.sqrt(expected_difficulty) 
         
        # Flatten the table for easier parsing 
        stacked_residuals_difficulty = residuals_difficulty.stack(level=[0, 1]).reset_index() 
        stacked_residuals_difficulty.columns = ['From', 'To', 'Difficulty', 'Residual'] 
         
        # Filter for significant results 
        significant_residuals_difficulty = 
stacked_residuals_difficulty[np.abs(stacked_residuals_difficulty['Residual']) > 1.96] 
 
        for index, row in significant_residuals_difficulty.sort_values(by='Residual', 
ascending=False).iterrows(): 
            direction = "more" if row['Residual'] > 0 else "less" 
            print(f"  - In '{row['Difficulty']}' trials, transitions from '{row['From']}' to '{row['To']}' 
occurred {direction} frequently than expected (Residual: {row['Residual']:.2f})") 
        # --- MODIFICATION END --- 
    else: 
        print("Conclusion: NO, the pattern of transitions is not significantly different between easy 
and hard trials.") 
 
 
    # --- 4. Generate Descriptive Heatmaps for Each Condition --- 
    print("\n[Step 4] Generating descriptive probability matrices and heatmaps for each 
condition...") 
     
    robot_name_map = { 
        "Ryan condition": "Joint Condition (Ryan)", 
        "Ivan condition": "Disjoint Condition (Ivan)", 
        "Carl condition": "Control Condition (Carl)" 
    } 
     
    # Loop through each condition to generate its specific matrix and heatmap 
    for difficulty in ['easy', 'hard']: 
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        print("\n" + "#"*30 + f"\n#   ANALYSIS FOR {difficulty.upper()} TRIALS   #\n" + "#"*30 
+ "\n") 
        for robot in ["Ryan condition", "Ivan condition", "Carl condition"]: 
            print("\n" + "="*80) 
            print(f"CONDITION: {robot} / {difficulty}") 
            print("="*80) 
             
            condition_subset_df = master_transition_df[ 
                (master_transition_df['Robot'] == robot) & 
                (master_transition_df['Difficulty'] == difficulty) 
            ] 
             
            if condition_subset_df.empty: 
                print("No transitions found for this specific condition.") 
                continue 
 
            count_matrix = pd.crosstab(condition_subset_df['From'], condition_subset_df['To']) 
            prob_matrix = count_matrix.div(count_matrix.sum(axis=1), axis=0).fillna(0) 
             
            print("\n--- Effective AOI Transition PROBABILITY Matrix ---") 
            print(prob_matrix.to_string(float_format="%.2f")) 
             
            descriptive_name = robot_name_map.get(robot, robot) 
             
            plt.figure(figsize=(10, 8)) 
            sns.heatmap(prob_matrix, annot=True, fmt=".2f", cmap="YlGnBu", linewidths=.5, 
vmin=0, vmax=1) 
            plt.title(f"AOI Transition Probabilities for {descriptive_name} in '{difficulty}' 
statements") 
             
            plt.xlabel("To AOI") 
            plt.ylabel("From AOI") 
            plt.show() 
 
# --- Main Execution Block --- 
if __name__ == "__main__": 
    run_full_transition_analysis(data_filepath=FULL_DATA_FILE, 
                                 aoi_defs=AOI_DEFINITIONS) 
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First Python Script for Recurrence Quantification Anlaysis (Preparation) 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from pyrqa.time_series import TimeSeries 
from pyrqa.settings import Settings 
from pyrqa.analysis_type import Classic 
from pyrqa.neighbourhood import FixedRadius 
from pyrqa.metric import EuclideanMetric 
from pyrqa.computation import RQAComputation 
from pyrqa.image_generator import ImageGenerator 
import traceback # For printing detailed error information 
 
# --- USER: Define your parameters here --- 
 
# 1. Name of the column containing the time series data you want to analyze for RQA 
TIME_SERIES_COLUMN_FOR_RQA = 'Gaze point X (MCSnorm)' 
 
# 2. RQA Parameters: 
embedding_dim = 3 
time_del = 10 
threshold_radius_type = 'std_fraction' 
threshold_value = 0.1 
 
# Minimum number of data points in a trial required to perform RQA 
MIN_DATA_POINTS_PER_TRIAL = 50 
 
# --- Helper function to perform RQA --- 
def calculate_rqa_for_series(series_data, emb_dim, t_delay, thresh_type, thresh_val): 
    """Calculates RQA measures for a given time series.""" 
    if len(series_data) < MIN_DATA_POINTS_PER_TRIAL: 
        print(f"    Skipping RQA: Not enough data points ({len(series_data)} < 
{MIN_DATA_POINTS_PER_TRIAL})") 
        return None, None 
 
    time_series_obj = TimeSeries(series_data, embedding_dimension=emb_dim, 
time_delay=t_delay) 
 
    current_radius = 0.0 
    if thresh_type == 'std_fraction': 
        series_std = np.std(series_data) 
        if series_std > 0: 
            current_radius = thresh_val * series_std 
        else: 
            print(f"    Warning: Standard deviation is zero. Using a small fixed radius (0.01).") 
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            current_radius = 0.01 
    elif thresh_type == 'fixed': 
        current_radius = thresh_val 
    else: 
        print(f"    Warning: Unknown threshold_radius_type '{thresh_type}'. Defaulting to 
'std_fraction'.") 
        series_std = np.std(series_data) 
        if series_std > 0: 
            current_radius = thresh_val * series_std 
        else: 
            print(f"    Warning: Standard deviation is zero. Using a small fixed radius (0.01).") 
            current_radius = 0.01 
 
    if current_radius <= 0: 
        print(f"    Warning: Calculated radius is non-positive ({current_radius}). Setting to a small 
positive value (0.001).") 
        current_radius = 0.001 
 
    settings = Settings(time_series_obj, 
                        analysis_type=Classic, 
                        neighbourhood=FixedRadius(current_radius), 
                        similarity_measure=EuclideanMetric, 
                        theiler_corrector=1) 
    try: 
        computation = RQAComputation.create(settings, verbose=False) 
        result = computation.run() 
         
        rqa_measures = { 
            'RR': result.recurrence_rate, 
            'DET': result.determinism, 
            'L_avg': result.average_diagonal_line, 
            'L_max': result.longest_diagonal_line, 
            'L_entr': result.entropy_diagonal_lines, 
            'LAM': result.laminarity, 
            'TT': result.trapping_time, 
            'V_max': result.longest_vertical_line, 
            'RP_threshold': current_radius 
        } 
         
        rp_matrix = None 
        if hasattr(result, 'recurrence_matrix_reverse'): 
            rp_matrix = result.recurrence_matrix_reverse 
        else: 
            print("    Warning: Recurrence matrix not found in result. Plotting will be skipped for this 
trial.") 
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        return rqa_measures, rp_matrix 
 
    except Exception as e: 
        print(f"    An unrecoverable error occurred during RQA computation: {e}") 
        return None, None 
 
 
# --- Main analysis script --- 
def main_analysis(csv_filepath, output_rqa_csv_file="rqa_results.csv", 
example_plot_trial_id=1): 
    """ 
    Main function to load data, preprocess, run RQA per trial, and save results. 
    """ 
    print("Starting eye-tracking RQA analysis...") 
 
    try: 
        df = pd.read_csv(csv_filepath, decimal=',', na_values=['NA', '']) 
        print(f"CSV data loaded successfully from: {csv_filepath}") 
    except FileNotFoundError: 
        print(f"Error: The file '{csv_filepath}' was not found.") 
        return 
    except Exception as e: 
        print(f"Error loading CSV file '{csv_filepath}': {e}") 
        return 
 
    print("Performing initial data cleaning and preprocessing...") 
 
    cols_to_convert_numeric = [ 
        'Gaze point X (MCSnorm)', 'Gaze point Y (MCSnorm)', 
        'Pupil diameter left', 'Pupil diameter right', 
        'Fixation point X (MCSnorm)', 'Fixation point Y (MCSnorm)' 
    ] 
    for col in cols_to_convert_numeric: 
        if col in df.columns: 
            df[col] = pd.to_numeric(df[col], errors='coerce') 
        else: 
            print(f"Warning: Expected numeric column '{col}' not found in CSV.") 
 
    # UPDATED: Changed the required column name here 
    required_columns = [TIME_SERIES_COLUMN_FOR_RQA, 'Eyetracker timestamp', 
'robot_appearance_timeframe_number'] 
    for col in required_columns: 
        if col not in df.columns: 
            print(f"FATAL ERROR: A required column '{col}' is missing from the CSV. Cannot 
proceed.") 
            return 
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    df.dropna(subset=[TIME_SERIES_COLUMN_FOR_RQA, 'Eyetracker timestamp'], 
inplace=True) 
    print(f"  Rows after dropping essential NaNs (in '{TIME_SERIES_COLUMN_FOR_RQA}' 
or 'Eyetracker timestamp'): {len(df)}") 
    if df.empty: 
        print("  DataFrame is empty after dropping essential NaNs. Cannot proceed.") 
        return 
 
    aoi_cols = ['is_cards', 'is_eyes', 'is_face', 'is_false_category', 
                'is_robot', 'is_robot_name', 'is_true_category'] 
    for col in aoi_cols: 
        if col in df.columns: 
            if df[col].dtype == 'object': 
                df[col] = df[col].str.lower().map({'true': True, 'false': False, '': 
False}).fillna(False).astype(bool) 
            else: 
                df[col] = df[col].fillna(False).astype(bool) 
        else: 
            print(f"Warning: Expected AOI column '{col}' not found. It will be treated as False.") 
            df[col] = False 
 
    df['classification_category'] = (df.get('is_false_category', False) | 
                                     df.get('is_true_category', False)) 
    print("  'classification_category' column created.") 
 
    # UPDATED: Using the new timeframe column 
    df['robot_appearance_timeframe_number'] = 
pd.to_numeric(df['robot_appearance_timeframe_number'], errors='coerce') 
    df.dropna(subset=['robot_appearance_timeframe_number'], inplace=True) 
    if df.empty: 
        print("  DataFrame is empty after dropping NA 'robot_appearance_timeframe_number'. No 
trials to process.") 
        return 
    df['robot_appearance_timeframe_number'] = 
df['robot_appearance_timeframe_number'].astype('Int64') 
    print(f"  Rows after dropping NA trial numbers: {len(df)}") 
 
    if 'ParticipantID' not in df.columns: 
        print("Warning: 'ParticipantID' column not found. Creating a dummy 'Unknown' 
ParticipantID.") 
        df['ParticipantID'] = 'Unknown' 
    else: 
        df['ParticipantID'] = df['ParticipantID'].ffill().bfill() 
 
    # UPDATED: Grouping for ffill now uses the new timeframe column 
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    grouping_cols_for_ffill = ['ParticipantID', 'robot_appearance_timeframe_number'] 
    cols_to_ffill = ['Robot', 'difficulty'] 
    for col_ffill in cols_to_ffill: 
        if col_ffill in df.columns: 
             df[col_ffill] = df.groupby(grouping_cols_for_ffill, group_keys=False)[col_ffill].ffill() 
             df[col_ffill] = df.groupby(grouping_cols_for_ffill, group_keys=False)[col_ffill].bfill() 
        else: 
            print(f"Warning: Column '{col_ffill}' for IV not found. It will not be included in 
results.") 
            df[col_ffill] = 'N/A' 
 
    print(f"  Using '{TIME_SERIES_COLUMN_FOR_RQA}' for RQA time series.") 
 
    # --- 3. Perform RQA Trial-by-Trial --- 
    all_rqa_results = [] 
    print("\nStarting RQA computation per trial...") 
 
    # UPDATED: Main groupby now uses the new timeframe column 
    grouped_trials = df.groupby(['ParticipantID', 'robot_appearance_timeframe_number']) 
 
    for (participant_id, trial_num), trial_data in grouped_trials: 
        print(f"\n  Processing Participant: {participant_id}, Trial: {trial_num}") 
 
        robot_condition = trial_data['Robot'].iloc[0] if not trial_data['Robot'].empty else 'N/A' 
        difficulty_level = trial_data['difficulty'].iloc[0] if not trial_data['difficulty'].empty else 'N/A' 
 
        print(f"    Robot: {robot_condition}, Difficulty: {difficulty_level}") 
 
        time_series_for_rqa = trial_data[TIME_SERIES_COLUMN_FOR_RQA].dropna().values 
 
        rqa_output, rp_matrix = calculate_rqa_for_series(time_series_for_rqa, 
                                                       embedding_dim, 
                                                       time_del, 
                                                       threshold_radius_type, 
                                                       threshold_value) 
 
        if rqa_output: 
            print(f"    RQA successful for P{participant_id}, Trial {trial_num}.") 
            trial_results = { 
                'ParticipantID': participant_id, 
                'Trial': trial_num, 
                'Robot': robot_condition, 
                'Difficulty': difficulty_level, 
                'NumDataPoints': len(time_series_for_rqa), 
                **rqa_output 
            } 
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            all_rqa_results.append(trial_results) 
 
            if trial_num == example_plot_trial_id and rp_matrix is not None: 
                plot_filename = 
f"recurrence_plot_participant_{participant_id}_trial_{trial_num}.png" 
                try: 
                    ImageGenerator.save_recurrence_plot(rp_matrix, plot_filename) 
                    print(f"    Example recurrence plot saved as {plot_filename}") 
 
                    img = plt.imread(plot_filename) 
                    plt.figure(figsize=(6, 6)) 
                    plt.imshow(img, cmap='binary', origin='lower') 
                    plt.title(f"RP: P{participant_id}, T{trial_num} 
({TIME_SERIES_COLUMN_FOR_RQA})\nRobot: {robot_condition}, Diff: 
{difficulty_level}") 
                    plt.xlabel("Time Index") 
                    plt.ylabel("Time Index") 
                    plt.tight_layout() 
                    plt.show() 
                except Exception as e: 
                    print(f"    Could not display/save example recurrence plot: {e}") 
        else: 
            print(f"    RQA failed or skipped for P{participant_id}, Trial {trial_num}.") 
 
    # --- 4. Save Aggregated RQA Results --- 
    if all_rqa_results: 
        results_df = pd.DataFrame(all_rqa_results) 
        results_df.to_csv(output_rqa_csv_file, index=False, decimal='.') 
        print(f"\nAggregated RQA results saved to: {output_rqa_csv_file}") 
        print("\n--- First 5 rows of RQA results ---") 
        print(results_df.head()) 
        print("------------------------------------") 
    else: 
        print("\nNo RQA results were generated. Check data processing steps and trial lengths.") 
 
    print("\nAnalysis complete.") 
    print(f"Next steps: Analyze '{output_rqa_csv_file}' with your second script.") 
 
 
# --- Run the analysis with your actual CSV file --- 
if __name__ == "__main__": 
    # Define the path to your data file and the name for your output file. 
    actual_csv_filepath = "newest_combined_eyetracking_data.csv" 
    output_filename = "robot_appearance_rqa_results_newest_data.csv" 
    example_trial_to_plot = 1 
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    print(f"--- Attempting to run analysis with data from: {actual_csv_filepath} ---") 
 
    try: 
        main_analysis(csv_filepath=actual_csv_filepath, 
                      output_rqa_csv_file=output_filename, 
                      example_plot_trial_id=example_trial_to_plot) 
    except FileNotFoundError: 
        print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") 
        print(f"Error: The file '{actual_csv_filepath}' was not found.") 
        print(f"Please ensure the file is in the same directory as the Python script,") 
        print(f"or provide the full path to the file (e.g., '/path/to/your/{actual_csv_filepath}').") 
        print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") 
    except Exception as e: 
        print(f"An unexpected error occurred during the analysis: {e}") 
        traceback.print_exc() 
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Second Python Script for Recurrence Quantification Analysis (Exploration) 
 
 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import pingouin as pg 
 
# --- SCRIPT INSTRUCTIONS --- 
# 
# 1.  Make sure your data file 'rqa_results_newest_data.csv' is in the same directory. 
# 
# 2.  Install necessary libraries if you haven't already: 
#     pip install seaborn pingouin 
# 
# 3.  The script is set up to remove outliers > 2.5 SD from the mean. You can change 
#     the SD_THRESHOLD variable if you wish. 
# 
# 4.  To analyze a different RQA measure, change the RQA_MEASURE_TO_ANALYZE 
variable. 
# 
# 5.  Run this script from your terminal: python analyze_rqa_results.py 
 
# --- USER CONFIGURATION --- 
# The RQA measure you want to analyze from your CSV file 
RQA_MEASURE_TO_ANALYZE = 'DET'  # Options: 'RR', 'DET', 'L_avg', 'LAM', 'TT', etc. 
 
# The Standard Deviation threshold for outlier removal 
SD_THRESHOLD = 2.5 
 
 
def run_statistical_analysis(data_filepath, dv_measure, sd_thresh): 
    """ 
    Loads RQA results, removes outliers using the SD method, and performs 
    visualization and statistical analysis. 
    """ 
    # --- Load the Data --- 
    try: 
        df = pd.read_csv(data_filepath) 
        print(f"Successfully loaded RQA results from: {data_filepath}") 
        if dv_measure not in df.columns: 
            print(f"FATAL ERROR: The measure '{dv_measure}' is not a column in your data file.") 
            print(f"Available columns are: {df.columns.tolist()}") 
            return 
    except FileNotFoundError: 
        print(f"FATAL ERROR: The file '{data_filepath}' was not found.") 
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        return 
    except Exception as e: 
        print(f"An error occurred while loading the data: {e}") 
        return 
 
    print(f"\n--- Analysis started for RQA measure: {dv_measure} ---") 
 
 
    # --- STEP 1: IDENTIFY AND REMOVE OUTLIERS --- 
    print(f"\n[Step 1] Checking for outliers using the {sd_thresh} SD rule...") 
     
    original_trial_count = len(df) 
     
    def remove_outliers_by_sd(df, group_cols, value_col, threshold): 
        """Identifies and removes outliers from a dataframe based on the SD rule.""" 
        def remove_group_outliers(group): 
            mean = group[value_col].mean() 
            std_dev = group[value_col].std() 
            if pd.isna(std_dev) or std_dev == 0: 
                return group 
            lower_bound = mean - threshold * std_dev 
            upper_bound = mean + threshold * std_dev 
            return group[(group[value_col] >= lower_bound) & (group[value_col] <= upper_bound)] 
        return df.groupby(group_cols, group_keys=False).apply(remove_group_outliers) 
 
    df_cleaned = remove_outliers_by_sd(df,  
                                       group_cols=['Robot', 'Difficulty', 'ParticipantID'], 
                                       value_col=dv_measure, 
                                       threshold=sd_thresh) 
     
    final_trial_count = len(df_cleaned) 
    outliers_removed_count = original_trial_count - final_trial_count 
     
    if original_trial_count > 0: 
        percentage_lost = (outliers_removed_count / original_trial_count) * 100 
        print(f"  Original trial count: {original_trial_count}") 
        print(f"  Removed {outliers_removed_count} outlier(s), which is {percentage_lost:.2f}% of 
the data.") 
        print(f"  Final trial count for analysis: {final_trial_count}") 
    else: 
        print("  No trials to process.") 
         
    df = df_cleaned 
    print("[Step 1] Outlier removal complete.") 
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    # --- STEP 2: PREPARE DATA AND VISUALIZE --- 
    print("\n[Step 2] Preparing data and generating plots...") 
 
    # Define the mapping from old names to new, descriptive names 
    robot_name_map = { 
        "Ryan condition": "Joint condition", 
        "Ivan condition": "Disjoint condition", 
        "Carl condition": "Control condition" 
    } 
    # Apply the mapping to the 'Robot' column 
    df['Robot'] = df['Robot'].map(robot_name_map) 
     
    # Define the desired order for the new names 
    robot_order = ["Joint condition", "Disjoint condition", "Control condition"] 
     
    # Check if all expected robot conditions are present in the data after mapping 
    actual_robots = df['Robot'].unique() 
    if all(robot in actual_robots for robot in robot_order): 
        df['Robot'] = pd.Categorical(df['Robot'], categories=robot_order, ordered=True) 
        print(f"  Condition names updated and custom plot order set: {robot_order}") 
    else: 
        print(f"  Warning: Not all robots in 'robot_order' were found in the data after mapping. 
Using default alphabetical order.") 
        print(f"  Robots in data: {list(actual_robots)}") 
     
    sns.set(style="whitegrid", context="talk") 
 
    # Box plot for the main effect of 'Robot' 
    plt.figure(figsize=(12, 7)) 
    sns.boxplot(x='Robot', y=dv_measure, data=df, palette="pastel") 
    sns.stripplot(x='Robot', y=dv_measure, data=df, color=".25", alpha=0.3) 
    plt.title(f'Effect of Robot Condition on {dv_measure} (Outliers Removed)') 
    plt.tight_layout() 
    plt.show() 
 
    # Box plot for the main effect of 'Difficulty' 
    plt.figure(figsize=(10, 7)) 
    sns.boxplot(x='Difficulty', y=dv_measure, data=df, palette="pastel") 
    sns.stripplot(x='Difficulty', y=dv_measure, data=df, color=".25", alpha=0.3) 
    plt.title(f'Effect of Difficulty on {dv_measure} (Outliers Removed)') 
    plt.tight_layout() 
    plt.show() 
 
    # --- MODIFICATION START: Replaced interaction plot with a bar chart --- 
    # This bar chart shows the mean value for 'easy' and 'hard' conditions 
    # side-by-side for each robot condition. 
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    plt.figure(figsize=(12, 8)) 
    sns.barplot(x='Robot', y=dv_measure, hue='Difficulty', data=df, 
                palette="colorblind", errorbar='se', capsize=.05) 
    plt.title(f'Interaction of Robot and Difficulty on {dv_measure} (Outliers Removed)') 
    plt.ylabel(f'Mean {dv_measure}') 
    plt.legend(title='Difficulty') 
    plt.tight_layout() 
    plt.show() 
    # --- MODIFICATION END --- 
     
    print("[Step 2] Plots generated and displayed.") 
 
 
    # --- STEP 3: PERFORM THE TWO-WAY REPEATED MEASURES ANOVA --- 
    print(f"\n[Step 3] Performing Two-Way Repeated Measures ANOVA for '{dv_measure}'...") 
    aov = pg.rm_anova(data=df, dv=dv_measure, within=['Robot', 'Difficulty'], 
                      subject='ParticipantID', detailed=True) 
    print("\n--- ANOVA Results ---") 
    print(aov) 
 
 
    # --- STEP 4: PERFORM POST-HOC TESTS (IF NECESSARY) --- 
    is_robot_significant = aov.loc[aov['Source'] == 'Robot', 'p-unc'].iloc[0] < 0.05 
    is_interaction_significant = aov.loc[aov['Source'] == 'Robot * Difficulty', 'p-unc'].iloc[0] < 
0.05 
 
    if is_robot_significant or is_interaction_significant: 
        print(f"\n[Step 4] ANOVA showed significant effects. Performing post-hoc pairwise 
tests...") 
        posthocs = pg.pairwise_tests(data=df, dv=dv_measure, within=['Robot', 'Difficulty'], 
                                     subject='ParticipantID', padjust='bonf') 
        print("\n--- Post-Hoc Test Results ---") 
        pd.set_option('display.max_rows', None) 
        print(posthocs) 
    else: 
        print("\n[Step 4] No significant effects requiring post-hoc tests were found in the main 
ANOVA.") 
 
     
    # --- STEP 5: SIMPLE MAIN EFFECTS ANALYSIS --- 
    
print("\n\n=============================================================
==========") 
    print("[Step 5] Simple Main Effects: Testing Robot effect at each Difficulty Level") 
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print("================================================================
=======\n") 
     
    print("--- Analysis for 'hard' trials only ---") 
    hard_df = df[df['Difficulty'] == 'hard'].copy() 
    aov_hard = pg.rm_anova(data=hard_df, dv=dv_measure, within='Robot', 
subject='ParticipantID', detailed=True) 
    print("\n--- ANOVA for 'hard' trials only ---") 
    print(aov_hard) 
    posthocs_hard = pg.pairwise_tests(data=hard_df, dv=dv_measure, within='Robot', 
subject='ParticipantID', padjust='bonf') 
    print("\n--- Post-Hoc Tests for 'hard' trials only ---") 
    print(posthocs_hard) 
 
    print("\n\n--- Analysis for 'easy' trials only ---") 
    easy_df = df[df['Difficulty'] == 'easy'].copy() 
    aov_easy = pg.rm_anova(data=easy_df, dv=dv_measure, within='Robot', 
subject='ParticipantID', detailed=True) 
    print("\n--- ANOVA for 'easy' trials only ---") 
    print(aov_easy) 
    posthocs_easy = pg.pairwise_tests(data=easy_df, dv=dv_measure, within='Robot', 
subject='ParticipantID', padjust='bonf') 
    print("\n--- Post-Hoc Tests for 'easy' trials only ---") 
    print(posthocs_easy) 
 
 
    print(f"\n--- Analysis for '{dv_measure}' is complete. ---") 
 
 
# --- Main Execution Block --- 
if __name__ == "__main__": 
    data_file = "robot_appearance_rqa_results_newest_data.csv" 
     
    # Run the entire analysis workflow using the parameters from the top of the script 
    run_statistical_analysis(data_filepath=data_file, 
                             dv_measure=RQA_MEASURE_TO_ANALYZE, 
                             sd_thresh=SD_THRESHOLD) 
 
 
 
 
 


