
 1

Decoding the Robot’s Glance: How Robotic Gaze Validity Shapes Human Cognition and

Behavior

Devin Kruse

University of Twente

Bachelor’s Thesis (15EC) in Psychology

1st Supervisor: Dr Cesco Willemse

2nd Supervisor: Dr Simone Borsci

Word-Count: 14,775

30.06.2025

 2

Table of Contents
ABSTRACT .. 3
INTRODUCTION .. 4

GAZE AND JOINT ATTENTION IN HUMAN INTERACTION .. 5
GAZE AND JOINT ATTENTION IN HUMAN-ROBOT INTERACTION .. 8
JOINT ATTENTION IN GAZE CONTROL SYSTEMS .. 10
THESIS OUTLINE .. 15

METHODOLOGY ... 18
DESIGN ... 18
PARTICIPANTS .. 19
APPARATUS AND MATERIALS .. 19
PROCEDURE ... 26
DATA ANALYSIS .. 27

RESULTS ... 32
PERFORMANCE ANALYSIS .. 32
GAZE FOLLOWING ANALYSIS .. 34
EYE-TRACKING ANALYSIS .. 41
ANALYSIS OF SUBJECTIVE RATINGS .. 51

DISCUSSION ... 55
PERFORMANCE IMPACT .. 55
IMPACT AND PERSISTENCE OF GAZE FOLLOWING .. 56
IMPACT OF INITIATING JOINT ATTENTION ON GAZE PREDICTABILITY ... 59
IMPACT ON PERCEIVED SOCIAL ATTRIBUTES .. 61
STRENGTHS OF THE STUDY .. 62
FUTURE DIRECTIONS .. 64
PRACTICAL IMPLICATIONS ... 66
CONCLUSION .. 67

REFERENCES ... 69
APPENDIXES. ... 77

APPENDIX 1. ... 77
APPENDIX 2. ... 79
APPENDIX 3. ... 80
APPENDIX 4. ... 81
APPENDIX 5. ... 84
APPENDIX 6. ... 88
APPENDIX 7. ... 100

 3

Abstract

As humanoid robots move beyond automated tasks towards collaborative and interactive partners

in diverse fields such as healthcare or education, humans’ innate tendency to implicitly trust

robotic decisions can lead to suboptimal and even dangerous consequences. The uncritical

reliance on inaccurate robotic cues could override human judgment, potentially causing serious

errors, for example, administering the wrong medication based on the robot’s misleading

gestures or mishandling hazardous materials in a factory. This work investigated how the

reliability of a robot's referential gaze, in tasks of varying complexity, affects human-robot

interaction. A self-constructed gaze control system for a screen-based robot was incorporated

within a classification game, where participants received attentional gaze cues from the robots.

These referential cues differed per robot in their reliability, leading to a high-validity robot

(Ryan), a low-validity robot (Ivan), and a third neutral robot, which did not execute any

referential gaze. Findings indicate that the existence of referential gaze, reliable or not, leads to

significantly higher gaze predictability and faster decision-making as participants develop their

own interaction strategies. We found that participants manifested a strong cognitive bias to trust

and follow the gaze of the high-validity robot, which was similarly preferred in subjective ratings

of anthropomorphism, likability, and intelligence.

 4

Introduction

The rapidly changing technological development has empowered machines and

autonomous systems to become increasingly adaptive to their environment. Recent

breakthroughs in areas such as artificial intelligence and neural networks have led to a

transformation in human-machine interaction, far beyond static screens and keyboards. AI-driven

systems can interpret speech, detect facial expressions, and navigate in physical environments

(Zhou et al., 2023). Leveraging these abilities, AI is fundamentally transforming the field of

robotics, enabling systems with advanced autonomy and cognitive functions. Consequently,

robotic systems will be increasingly designed with capabilities that extend beyond task

execution, emphasizing flexibility, adaptive behavior, and human likeness, particularly in

human-robot interaction (Breazeal, 2003).

As robots become an increasingly substantial part of our daily lives, they should arguably

behave in ways that feel natural, polite, and predictable to humans, much like how we interact

with each other. This social expectation stems from the fact that many of our everyday and

professional tasks rely on communication, collaboration, and emotional attunement, requiring

robots to behave not only functionally, but also socially appropriately (Breazeal, 2003).

Ultimately, a robot’s social and emotional awareness contributes to enhanced levels of trust and

acceptance (Fong et al., 2003) as well as increased task performance in cooperative settings

(Breazeal, 2003). Building on this, research and development in Human-Robot Interaction (HRI)

is required to investigate and equip robotics with the necessary verbal and non-verbal capabilities

to achieve effective communication.

One such central nonverbal tool that exerts a significant influence on our social

consciousness is eye gaze (Kleinke, 1986). However, despite recent advances in this area, many

 5

current robots still employ only simplistic or no gaze mechanisms at all (Mishra & Skantze,

2022). As shown in Figure 1, robots like Tesla’s ‘Optimus’ (Tesla, n.d.) or Boston Dynamics’

‘Atlas’ (Boston Dynamics, n.d.) omit facial features entirely, underlining the technical and

conceptual complexities of implementing expressive gaze behavior. To develop machine

awareness and implementation, a central, profound investigation of social gaze behavior in

human interaction is necessary.

Figure 1.

Examples of Recently Introduced Humanoid Robots.

Note. From left to right: Tesla's Optimus Gen 2, the Atlas robot from Boston Dynamics, and the

Furhat robot from Furhat Robotics. Of the robots shown, only Furhat includes an integrated gaze

system.

Gaze and Joint Attention in Human Interaction

The human gaze system is a dynamic and active mechanism that constantly interacts with

the world. To direct the human gaze, our eyes perform a variety of movements. Two central

processes are saccades, referring to rapid jumps between fixation points, and fixations, which

define periods of relatively still and stable movements where the brain actively processes visual

 6

information (Land & Hayhoe, 2001). Beyond our visual perception, the way and where we look

also conveys information about our mental states to others. In fact, gaze serves not only as a

perceptual tool but also as a powerful social signal. An individual’s gaze conveys information

about interest, emotional states, or potential intentions (Emery, 2000). In fact, the ability to

follow another’s gaze is a fundamental socio-cognitive skill, not only to determine someone’s

focus but also to enable more advanced social dynamics in human interaction. Joint attention is

one of these central building blocks that is highly acknowledged in human-human interaction.

Joint attention is a collaborative, cognitive, and nonverbal process in which two or more

individuals share their focus or attention on an external object or activity. What distinguishes

joint attention is particularly the mutual understanding that these individuals are attending to

something together (Mundy & Newell, 2007). Joint attention can be established when individual

A follows the gaze focus of individual B to look at the same object jointly. This process involves

two roles: an initiator who directs attention using gaze or gestures, and a responder who follows

these cues. In contrast to gaze following, joint attention ensures that both parties are focused on

the same object and aware of each other’s attention, maintaining a shared focus (Bayliss et al.,

2013). Hence, joint attention can be categorized into two components: Responding to Joint

Attention (RJA) and Initiating Joint Attention (IJA). RJA describes the role of the responder,

who attentively follows the gaze of the initiator. In contrast, IJA describes the role of the

initiator, which actively tries to direct the responder’s attention towards an object or event

(Mundy & Newell, 2007). Eye gaze in particular plays a central role here, acting as a pivotal cue

for directing and capturing joint attention. Upon that, joint attention can be achieved through a

range of nonverbal behaviors such as head orientation, vocalizations, or pointing gestures

(Mehlmann et al., 2014).

 7

To empirically investigate the role of joint attention in human interaction, particularly the

mechanisms of initiating and responding to joint attention, scientific research established the

gaze-cueing and gaze-leading paradigm. Originating from the Posner cueing paradigm, which

investigates the effects of symbolic and reflexive cues on spatial attention (Posner, 1980), the

gaze-cueing and gaze-leading paradigm incorporate social stimulus such as eye gaze to provide

cues that direct human attention (e.g., Bayliss et al., 2013; Friesen & Kingstone, 1998; Frischen

et al., 2007). To study the role of the responder (RJA), a gaze-cueing paradigm is used. In a

typical set-up, participants demonstrate faster reaction times while reacting to screen-based

targets that align with the cued direction from a human face. Conversely, the gaze-leading

paradigm shifts the focus towards the perspective of the gaze initiator, investigating the role of

IJA. An examination of this paradigm is more complex, typically involving eye-tracking

technology and a reactive screen-based stimulus (usually an avatar or virtual face) to study

mechanisms that allow recognition of joint attention (Pfeiffer et al., 2013).

The importance of joint attention in human-human interaction is underlined by its early

appearance in development. The ability to execute RJA begins to manifest around 6 to 9 months

of age when infants start to follow another person’s gaze or pointing gesture. This ability

demonstrates infants’ early understanding of attentional interest (Mundy & Newell, 2007).

Following on that, IJA typically develops between 9 and 12 months, showing a gradual transition

from a passive towards an active role in directing another’s attention (Tomasello, 1999). In this

early stage, IJA is often achieved through gestures like pointing or showing an object. From this

early development, IJA manifests itself as a powerful skill, reflecting the desire to share one’s

interest and exerting influence on another person’s mental state (Mundy, 2018).

 8

To further understand the need for joint attention in interpersonal communication,

additional insights from research on autism spectrum disorder (ASD) provide a crucial reference

point that underscores the critical role of initiating and responding to joint attention in human-

human communication (Mundy, 2018). Children with ASD have fundamental difficulties in

establishing shared attention, which challenges their ability to navigate through a social world.

This impairment creates a cascading effect, significantly hindering the development of social-

cognitive skills (Mundy & Newell, 2007). Remarkably, the ability to understand thoughts,

beliefs, desires, or emotions – known as the theory of mind – is grounded in the early

development of joint attention (Charman, 2000). Consequently, joint attention lays the

groundwork for essential social abilities such as sharing experiences and emotions, social

bonding, and facilitated turn-taking in interactions (Tomasello, 1999). Serving as a foundational

skill in human interaction from an early age (Mundy & Newell, 2007), we argue that joint

attention may also be a critical skill in human-robot interaction.

Gaze and Joint Attention in Human-Robot Interaction

Robots that will work and collaborate closely with humans must not only perform

programmed tasks, but also be able to understand and participate on a shared social stage

(Breazeal, 2003). Joint attention is a primary mechanism that requires the robot’s understanding

to recognize, respond to, and actively initiate a shared focus with a human partner in real-time

(Imai et al., 2003; Scassellati, 2002). The previously discussed concepts of initiating and

responding to joint attention are directly applicable, defining the robot’s ability to react and

trigger such behaviors (Mutlu et al., 2009).

As mentioned above, two paradigms are highly suitable for empirically assessing the

concepts of initiating (IJA) and responding (RJA) to joint attention. Similarly, the gaze-cueing

 9

paradigm is frequently applied in human-robot interaction, replacing human eyes or faces with

robotic cues. In other words, gaze-cueing tasks display the robot’s execution of IJA and measure

human reaction. In this context, “gaze cueing effects” describe a phenomenon where participants

respond faster to a target that appears in a location where the screen-based face is also looking

(Willemse et al., 2018). Combining the robot’s referential gaze with multiple modalities, such as

pointing, creates a more robust and practical effect of IJA (Mehlmann et al., 2014). In addition,

robots could exert a “gaze checking” behavior, where the robot looks towards the object and then

briefly back to the human face to verify whether the establishment of shared attention was

successful (Scassellati, 2002). The robotic capability to direct human attention through IJA has

shown significant improvements in task performance, particularly when humans are unfamiliar

with the task or situation (Andrist et al., 2017; Pan et al., 2020). On a more subtle level, studies

have revealed a powerful effect of IJA in guiding human decision-making as typically shown in

gaze-cueing paradigms, where participants’ reaction times are usually faster for cued targets

(Mutlu et al., 2009; Willemse et al., 2018). Further research has shown that proactive guidance of

attention facilitates learning of knowledge and skills as well as task learning and engagement

(Kanda et al., 2004).

On the other hand, the “gaze-leading paradigm” refers to the robot displaying a kind of

gaze response to the participant’s gaze direction (Willemse et al., 2018). Such tasks effectively

reverse the roles of the gaze-cueing paradigm, positioning the human as the initiator of joint

attention and the robot as the one responding to it. Scientific research has shown that robots with

the ability to respond to human gaze cues are often judged as increasingly competent, intelligent,

and socially present (Huang & Thomaz, 2011). Responsiveness fosters a sense of being

understood by the robot, directly affecting the social dynamics between the two interaction

 10

partners (Mutlu et al., 2009). Further, communication with attentionally responsive robots has

been shown to increase task performance and efficiency (Huang & Thomaz, 2011). Thus, a

central underlying mechanism lies in the robots’ ability to demonstrate an increased

understanding of human intentions, making the interaction more intuitive (Mehlmann et al.,

2014).

Joint Attention in Gaze Control Systems

Gaze-cueing and gaze-leading paradigms provide valuable insights into the human ability

to respond and initiate gaze. However, they are often limited to discrete, reaction-based tasks in

controlled settings that do not reflect the context-sensitive and continuous nature of real-world

human interaction (Pfeiffer et al., 2013). Gaze control systems (GCS) provide a more

comprehensive approach that incorporates perceptual input and dynamic gaze coordination

(Admoni & Scassellati, 2017). GCS can be categorized into data-driven and heuristic methods. A

data-driven GCS uses machine learning from datasets and adapts behaviors through neural

networks or reinforcement learning, while a heuristic GCS is based on predefined rules or logic

based on human intuition (Lemaignan et al., 2017; Mishra & Skantze, 2022). The underlying

architecture of a gaze control system enables the robot to manage its gaze behavior and react to

specific environmental events.

Initial research in the domain of joint attention in gaze control systems found a focus on

the robot’s execution of responding to joint attention (RJA), which displays a reactive behavior

(Hoffmann & Breazeal, 2004; Imai et al., 2003). Programming a robot to follow a human’s gaze

is technically less complex compared to a robot that engages in autonomous, attentional

decision-making (Admoni & Scassellati, 2017). Thus, the dynamic implementation of initiating

joint attention (IJA) is more challenging as it requires the robotic system to understand

 11

environmental context in real-time and direct the human’s attention in a socially meaningful way

(Admoni & Scassellati, 2017). However, the use of predefined tasks and scenarios can help

reactive systems to simulate a proactive-looking IJA behavior. For example, Pereira et al. (2019)

triggered IJA by programming a robot to automatically look at the correct puzzle piece a period

before it would give a spoken hint in a dialogue act. Similarly, Mehlmann et al. (2014) used a

two-step approach, where a robot would first look at the correct puzzle piece and then

immediately follow up with a physical pointing gesture to make the instruction clear. Further

research equipped the robot with a “gaze checking” tendency to simulate a check during the IJA

process by briefly looking at the participant, which made the robot seem increasingly engaging

and natural to the participants (Huang & Thomaz, 2011). While such implementation of IJA can

also be described as reaction-based behavior, more recent research has focused on building a

planned-based architecture, where the robot plans its referential gaze for a future rolling time

window rather than being purely reactive. The robot with the planning-based structure was

significantly preferred and rated as more interpretable (Mishra & Skantze, 2022).

Despite the above-mentioned advances in gaze control systems, research in this area of

joint attention is limited (Admoni & Scassellati, 2017; Lemaignan et al., 2017). Unlike isolated

gaze cues, joint attention and social mechanisms require tight temporal gaze coordination and

accountability of perceptual input, intention inference, or multimodal expression (Admoni &

Scassellati, 2017). Hence, a detailed review of existing studies is essential to validate and

investigate the role of joint attention in human-robot interaction.

The implementation of initiating joint attention in gaze control systems was typically

designed to be optimally helpful, meaning it consistently directs the participant to the correct

objective (e.g., Mehlmann et al., 2014; Mutlu et al., 2009; Pereira et al., 2019). In consequence,

 12

such systems would always assume that the robot knows the correct target and executes a correct

gaze cue. While foundational, this binary approach – switching IJA as a simple on/off behavior –

overlooks a critical aspect of social communication and trust: gaze reliability. In human-human

interaction, we do not just evaluate whether a partner provides an attentional cue, but also

whether that cue is trustworthy and accurate over time (Frischen et al., 2007). For instance,

Bayliss and colleagues (2013) found that participants were faster to reengage with faces that

provided a congruent and reliable gaze cue compared to an inaccurate gaze cue, which had cost

participants more time monitoring the face. Despite that, frequent HRI literature did not

differentiate between reliable and unreliable gaze cues. For example, Pereira et al. (2019)

developed a collaborative system in which the robot initiates referential gaze to provide hints for

a puzzle. Using a “helper search algorithm”, the robot in their manipulated condition always

pointed to the correct target, which designed an optimally helpful system. Similarly, Mehlmann

and colleagues (2014) investigated the role of referential gaze in a sorting task by comparing

accurate gaze cues with no gaze cues in the control condition.

However, a small body of research has begun to address this gap. Research from Admoni

et al. (2014) and Staudte and Crocker (2011) explored the complexities of referential gaze

reliability. Staudte and Crocker particularly concentrated on the impact of incongruent gaze cues

in combination with verbalized statements to investigate speech matching. They found that

incongruent gaze cues – where a robot looked at one object while speaking about a different one

– significantly disrupted utterance comprehension. Admoni et al. (2014) focused on the effective

production of robotic suggestions through the combination of gaze and physical actions. They

used incongruent gaze cues to measure compliance and found that a delay between gaze and

physical actions significantly increased the likelihood of complying with the robot’s suggestion

 13

about where to sort a colored block. Despite making significant contributions, the outlined

papers demonstrate a predominant focus on referential gaze applied with near-perfect accuracy

(e.g., Mehlmann et al., 2014; Pereira et al., 2019). In addition, research that accounted for gaze

reliability was primarily focused on measuring social dynamics rather than performance data

(Staudte & Crocker, 2011).

 A second limitation that has been only partially addressed in the literature is the

complexity of the experimental tasks in interaction with the robots (Chen & Barnes, 2014). In

more complex situations, people evaluate attentional cues differently than in simple ones (Lavie,

2005). While studies such as Pereira et al. (2019) or Pan et al. (2020) intentionally incorporated

varying levels of task difficulty through puzzle complexity or referential ambiguity, many

studies utilized a consistent, monotonous level of difficulty (Huang & Thomaz, 2011; Mehlmann

et al., 2014; Mutlu et al., 2009). Despite its usefulness in assessing further manipulated variables,

such task levels do not account for the complexity of the real world in which humanoid robots

will increasingly operate (Admoni & Scassellati, 2017). Table 1 provides an overview of

research papers that include the above-discussed variables, such as joint attention mechanisms,

gaze reliability, and task complexities.

 14

Table 1.

Overview of Experimental Design Features from Joint Attention Studies that Implemented Gaze

Control Systems in Human-Robot Interaction in Comparison to the Current Paper.

Paper RJA IJA Bidirectional

Flow A

Difficulty

Variation B

Gaze Reliability

Variation C

Mutlu et al. (2009) Yes Yes Yes No No

Huang & Thomaz (2011) Yes Yes No No No

Staudte & Crocker (2011) No Yes No Yes Yes

Mehlmann et al. (2014) Yes Yes Yes No No

Pereira et al. (2019) Yes Yes Yes Yes No

Pan et al. (2020) Yes No No No No

The current paper No Yes No Yes Yes

Note. IJA refers to Initiating Joint Attention, and RJA to Responding to Joint Attention.

A Bidirectional flow means that the experiment directly integrates responding joint attention and

initiating joint attention together, without separating the gaze skills. B Difficulty Variation is

given when the game or task that participants played had different difficulty or complexity

levels. C Gaze Reliability Variation refers to the fact that robots’ gaze behavior differed in terms

of pointing to the correct target, for example, also pointed in the wrong direction.

To conclude, research on joint attention mechanisms around human-robot interaction has

already highlighted its improved engagement, task performance, and efficiency (e.g., Huang &

Thomaz, 2011). However, the rapid development towards adaptive and social robots requires

more context-sensitive research, particularly considering a robot’s reliability in guiding human

 15

attention. While robots have become significantly more intelligent (Breazeal, 2003), we cannot

ideally rely on them in every situation, considering that they will play an increasingly

responsible role in our everyday lives. As a collaborative and interactive partner across various

fields, robots pose significant societal risks, as they can guide human decision-making through

misleading gaze cues. The implicit development of complete trust and automation bias

(Parasuraman & Manzey, 2010), even to the point of overriding one’s judgment, can lead to

blind following, resulting in costly errors. For instance, in factories, this could lead to increased

costs due to repeated errors. Of greater significance, such automation bias could also appear in

the health and care fields, posing dangerous consequences (Goddard et al., 2012). If we equip

robots with social intention tools like the initiation of joint attention, research must address the

consequences of such decisions.

Thesis Outline

The purpose of this research was to develop a reactive, screen-based gaze control system

that enables real-time interaction in a context-based task. In alignment with the research aim, this

context should provide the robot with the opportunity to direct the participant’s attention using

referential gaze. Finally, this mechanism of initiating joint attention to a specific side allowed for

control in its reliability and considered gaze quality. Taking this into account, the researcher

programmed a classification game with two categories on the right and left side, allowing

participants to drag and drop cards into one of the two categories. This involved internal

communication with the built gaze control system to enable the robot to plan its gaze. To

compare the conditions, three different robots were created, each displaying different gaze

behavior. Two of the three robots, ”Ryan” (high validity) and “Ivan” (low validity), displayed

referential gaze towards one of the classification categories. Conversely, the third one, “Carl”

 16

(neutral robot), did not apply any gaze. To account for differences in gaze reliability, “Ryan”

belonged to a “high-validity” condition, pointing to the correct classification in 80% of the trials.

At the same time, “Ivan” displayed the “low-validity” condition, pointing towards the incorrect

side in 80% of the trials. Finally, to account for complexity variation, statements were

categorized into easy and hard categories.

Consequently, this work establishes a unique triadic comparison that not only

concentrates on the existence of referential gaze but also its quality. Our study design moves

beyond simple dichotomies and accounts for task complexity and differing gaze accuracy. The

aim of this multifaceted approach is to enable more profound insights into the execution of joint

attention, guiding human attention and decision-making in human-robot interaction. The

following research question was formulated: “Given a varying task complexity, how does the

reliable execution of referential gaze impact humans’ cognitive and behavioral processes,

particularly their visual strategy and gaze-follow decisions? “

In line with the previously discussed literature, we formulated four hypotheses, each

aimed at assessing the research question from a different methodological viewpoint. The first

hypothesis pertains to the participants’ performance, particularly referring to their score of

correctly answered statements and their movement duration. This approach aligns with a body of

research demonstrating the advantages of responding and initiating joint attention in HRI (e.g.,

Huang & Thomaz, 2011; Mehlmann et al., 2014). The second hypothesis investigates

participants’ gaze-following behavior, referring to their classification decisions in

correspondence with the robotic gaze cue. This view is grounded in work by Staudte and Crocker

(2011), who found that participants trusted robotic gaze cues more than the factually correct

spoken utterance, indicating a kind of automation bias. Based on that, our second assumption

 17

examines participants’ strategic gaze-following behavior during both correct and incorrect

robotic gaze hints, while interacting with the high-validity and low-validity robot. Pursuing this

strategic path, the third hypothesis investigates participants’ eye-tracking data, focusing on gaze

patterns and eye movement predictability across the robotic conditions. While the first three

approaches had a behavioral nature, the fourth hypothesis examines self-reporting responses,

particularly about the social attributes of anthropomorphism, likability, intelligence, and trust.

This fourth assumption, measured through a post-experiment questionnaire, provides a more

subjective perspective on the participants’ perception of the robots, as observed in various

literature studies (e.g., Admoni & Scassellati, 2017; Mutlu et al., 2009). Accordingly, research

was guided by the following hypothesis:

H1: Participants will perform significantly better in interaction with the high-validity robot

H2: Participants’ strategic bias to follow the high-validity robot leads to a kind of ‘automation

bias’, causing users to follow its suggestion even if they are incorrect

H3: Participants will display more exploratory, unpredictable gaze behavior when interacting

with the neutral robot, while the existence of referential gaze cues, albeit potentially incorrect,

will lead to more predictable gaze patterns

H4: The reliability of a robot's gaze will positively influence the self-reporting social attributes

of likability, intelligence, anthropomorphism and trust.

 18

Methodology

Design

 The study used a 3 x 2 repeated-measures design. Three manipulated screen-based robots

were used in interaction with a classification game that featured two levels of complexity.

Accordingly, the first independent variable was robot identity, which implicitly varied in two key

aspects: the presence of Initiating Joint Attention (IJA, or referential gaze) and the reliability of

its gaze cues. In this case, IJA referred to the robot’s expressions of eye movement to the

classification categories, while reliability defined the degree to which these gaze behaviors were

directed to the correct or incorrect classification category. The first robot, ‘Ryan’, directed

referential gaze to the correct classification category for 80% of the trials (and 20% to the

incorrect side). Throughout this paper, we refer to this robot by its name or primarily as the "high

validity" robot. The second robot, ‘Ivan’, displayed referential gaze to the incorrect classification

category in 80% of the statements (and 20% to the correct side). Thus, Ivan was defined as the

“low validity” robot. The third robot, ‘Carl’, did not execute any IJA, serving as the ‘neutral’

robot. The second independent variable was statement difficulty, referring to the ‘easy’ and

‘hard’ statement categories. In total, 90 statements were presented across all conditions. The

dependent variables encompassed four measurement groups: (1) performance metrics (e.g.,

accuracy score in classification game), (2) gaze-following data (e.g., whether participants

followed the attentional cues), (3) eye-tracking data, capturing visual attention during interaction

and (4) self-reporting measures (via a post-interaction questionnaire).

 19

Participants

 A total of 33 participants (15 male participants, 18 female participants, Age: M = 23.00,

SD = 2.44) were recruited. Participants were selected using convenience sampling. All

participants were students at the University of Twente. Fourteen participants lived in the

Netherlands, and 19 participants lived in Germany. The inclusion criteria contained a sufficient

level of English to understand the game statements and questionnaires, as well as normal or

corrected-to-normal vision. No participants were excluded based on predefined criteria. The

study and its procedures were approved by the local ethics committee of the University of

Twente (request 250748).

Apparatus and Materials

Hardware

 The technical setup for this experiment includes an HP Z1 computer with an AOC

G2460PF 24-inch screen, which was connected to a Tobii Pro Fusion or Tobii X3 fixed eye-

tracker. Additionally, the computer was connected to a Brio 4K streaming camera, which was

mounted at the top of the screen. An iPad Air with a 9.7-inch screen was used to answer the

questionnaire. Participants were seated at a desk in a monitored laboratory room. Screen height

was individually adjusted so that its center aligned with the participant’s eye level. Participants

were approximately 50cm away from the monitor. A mouse and keyboard were connected to the

computer.

Software

 A questionnaire was designed and administered using Qualtrics Software (Qualtrics,

2025). The content of the questionnaire consisted of a briefing, informed consent, experimental

 20

information, and scale items to evaluate each robotic condition in the dimensions of

anthropomorphism, likability, perceived intelligence, and trust. To measure the first three

variables, three dimensions with five scale items of the Godspeed questionnaire were used. The

three dimensions were selected as they represent core and validated metrics for assessing the key

attributes of social perception in human-robot interaction (Bartneck et al., 2009). In addition, the

choice of metrics aligns with frequently used constructs to evaluate social robots (Admoni &

Scassellati, 2017). In the questionnaire, participants were for example asked to rate the robot

between the scale items of ‘fake’ vs. ‘natural’ or ‘incompetent vs. ‘competent’ (Bartneck et al.,

2009). While the original Godspeed questionnaire encompasses five dimensions, the research

team decided to exclude the dimensions of perceived safety and animacy as the robots displayed

limited expressive abilities and only screen-based interaction. Lastly, the questionnaire used the

brief 14-item version of Schaefer’s Trust-Perception Scale for HRI (TPS-HRI). While the

development of the full TPS-HRI involved the Army Research Laboratory, the 14-item concise

version is frequently used in Human-Robot literature to measure how participants trust the robot

(Schaefer, 2016). The TPS-HRI was answered on a seven-point Likert scale from ‘Strongly

Disagree’ to ‘Strongly Agree’. Items such as “The robot is reliable” or “The robot provides

feedback” were included in this version. The research team used Tobii Pro Lab for screen

recording, eye tracking calibration, and analysis of eye tracking variables. The experimental

game and gaze control system were programmed and designed by the research team using

HTML, CSS, JS, and Python as detailed below.

Robotic conditions

The three manipulated gaze conditions were allocated to similar-looking robot faces that

display a high resemblance in their facial features, such as a slight smile, eyebrows, nose, robotic

 21

ears, and a slightly positive facial expression. The robots were artificially generated using

OpenAI’s DALL·E 2 image-generation model via GPT-4 (OpenAI, 2025). They were

specifically designed to feature characteristics that already correspond to real humanoid robots,

such as the iCub (Metta et al., 2010). Prompting statements to generate robotic pictures can be

found in Appendix 1. Figure 2 shows an image of each generated robot.

Figure 2.

The Three Robots used in the Experiment overlaid with the Eyes of the Interactive Gaze System.

Note. Each static robotic picture was generated using OpenAI’s DALL-E 2 Image Generation

Model. Ryan (high validity) on the left side, Ivan (low validity) in the middle, and Carl (neutral/

control) on the right side.

The experimental game

 The experiment involved playing a classification game with a screen-based robot. A

picture of the experimental interface is shown in Figure 3. Participants were able to reveal a card

by clicking on the blue stack of cards and move and drop the card to one of the two categories on

the left or right side based on their intuition whether the statement was true or false. The mouse

was used to move a card around. The stack of cards consisted of 90 statements, with 45

categorized as easy and 45 categorized as hard. The statements were chosen from a public

 22

database of general facts hosted by the machine learning platform Hugging Face (L1Fthrasir,

2023). The list of all statements can be found in Appendix 5. An example of a simple statement

is “The Sun is more massive than the Earth”. A more complex question was “The respiratory

system prevents the exchange of gases between the body and the environment”. The researcher

initially selected and categorized each statement. Subsequently, a third-party reviewer

independently assessed and validated the categorization to ensure reliability. The order of

statements was randomized entirely for each participant. However, the algorithm considered

each robot to receive the same number of easy and hard questions. To enable bidirectional real-

time communication between user events, such as a card reveal or card drop, the program used a

WebSocket API on the local connected network, allowing the gaze control system and

classification game to interact in real-time.

 23

Figure 3.

The Interface of the Experimental Game and real-time animated Eyes (Gaze Control System)

that shows the current Robot, the Robot’s Name, the Cards to reveal, and the Categories True

(left side) and False (right side).

The gaze control system

 The gaze control system was built and implemented using HTML, CSS, JavaScript, and

Python. Using a static robotic picture, the interactive system encompasses the eyes and pupils.

As shown in Figure 4, the input system, written in Python and JavaScript, was locally connected

using the WebSocket API. The program received data input from the Brio 4K camera to detect

face and head position in real-time. Additionally, it received user events such as game start, card

reveal, or card drop. Such event messages not only contained the event name, but also additional

calculated information such as the statement, the correct side, or the following robotic condition.

 24

All these input parameters were checked and validated in the gaze control system, whose output

determined the robot’s gaze behavior in real-time. During the experiment, the gaze system

(output) was limited to three gaze behaviors: mutual gaze, gaze aversion, and Initiating Joint

Attention (IJA). Mutual gaze describes a condition in which the pupils of the robot are positioned

in alignment with the coordinates of the face in front of the screen. This created an illusion in

which it looked as if the robot was looking at the participant. In this situation, the robotic eyes

followed the participant’s head movement without a recognizable latency. Avoiding staring

behavior, the robot also applied gaze aversion within mutual gaze at randomized time intervals

between 1000 and 3000 milliseconds. Gaze aversion can be described as a periodically brief,

fixed-duration gaze shift toward a randomly determined off-center point. Gaze Aversion was

biased towards vertical rather than horizontal displacement to avoid confusion with IJA

behavior. Finally, IJA describes a triggered gaze behavior, in which the robot smoothly shifts its

gaze from its current position towards a designated direction and maintains its gaze fixed on that

side for 2000 milliseconds unless it smoothly transitions its gaze back towards the user’s

currently detected face position.

 25

Figure 4.

Overview of the Gaze Control System with Its Three Layers.

Note. The Perception layers detected real-time information from the participant’s face and the

experimental game. Information was processed and prioritized in the Priorization Layer to finally

calculate the eye movement, which was applied from the output layer.

During the game, mutual gaze was the default active behavior when a user was present,

and no higher-priority actions occurred. IJA was triggered for a card reveal event and, after a

short delay, explicitly interrupted and overridden mutual gaze until the IJA action was complete.

IJA was executed in the high-validity (Ryan) and low-validity (Ivan) robots only. This is also

visualized in Figure 4, which shows the algorithmic prioritization.

 26

Procedure

 Each participant was recruited individually and invited to sit in front of the researcher’s

laptop at a desk. After the introduction, the participant received the iPad with the Qualtrics

Questionnaire. After provision of electronic consent and a study briefing in the questionnaire,

participants received a second oral briefing about the experimental procedure as well as the

opportunity to ask remaining questions before the experimental game. If there were no more

questions, participants were instructed to begin calibrating the eye tracker by following a dot on

the screen. After successful calibration, defined by an average calibration accuracy of less than

0.5 degrees of visual angle, participants saw the web interface and were able to enter their

participant ID. Before the actual game, each participant was instructed to participate in a practice

round, in which they had to classify six statements. Participants were not able to see one of the

robots during the practice session. With the end of that session, participants were able to start the

real game. After the practice session, the researcher left the monitored room so that the

participant could play the game undisturbed. As visualized in Figure 5, participants always

started with the neutral robot (Carl), which was then randomly switched after each card drop,

considering that no robot appears twice in a row. This randomized process was repeated for a

total of 90 statements. After completing the statements, a pop-up window informed participants

about the end of the experimental game. Thereupon, participants were required to complete a

post-questionnaire with dimensional questions for each robot. The questionnaire order began

with the neutral robot (Carl), continued with the high-validity robot (Ryan), and ended with the

low-validity robot (Ivan). A debriefing followed.

 27

Figure 5.

The procedure of the entire experiment, starting with the informed consent and ending with an

evaluation questionnaire and debriefing.

Data Analysis

 All data analysis was conducted using Python in Visual Studio Code and R in RStudio.

During the experiment, a CSV file was created for each participant. This file contains event and

performance-related information as well as specific timestamps for each piece of information. A

Python script was used to combine each participant’s file into an overall CSV file.

An additional Python script was used to transform the raw Qualtrics data files into a

suitable CSV file, which included demographic variables, consent information, and numerically

 28

converted values. In this script, three reversely coded trust items (Item 9, Item 11, Item 14) from

the TPS-HRI scale (Schaefer, 2016) were converted appropriately.

For the eye-tracking data, specific areas of interest were marked on the screen recordings

in Tobii Pro lab. Figure 6 shows a picture of the relevant areas of interest. For every participant,

a TSV file was downloaded separately from Tobii Pro lab. A Python script was used to combine

the relevant eye-tracking data for each participant with the event CSV file. This script, located in

Appendix 7, enables differentiation of eye-tracking data for each game event.

 29

Figure 6.

A Screenshot of the Screen recording with the Areas of Interest highlighted in different Colors.

Note. The areas ‘true_category’ and ‘false_category’ on the left and right sides were combined

into ‘classification_category’. The ‘robot’ AOI encompasses the green shape, the ‘face’ AOI

encompasses the oval ‘slate-blue’ shape, and the ‘eyes’ AOI shapes the central, white-bordered

rectangle.

Performance and Move Duration Analyses

The analysis of performance data encompassed the proportion of correctly answered

statements (accuracy score, ranging from 0 to 1) and move duration, which defined the time

(seconds) it took participants to drop a card into a classification category after card reveal. The

effects of these variables were examined using a 3 (Robot: High-validity, low-validity, neutral) x

2 (Difficulty: Easy, hard) repeated-measures Analysis of Variance (ANOVA). Significant main

effects were further investigated using post-hoc comparisons with Bonferroni correction.

 30

Gaze following analysis

For the gaze following analysis, a participant’s gaze follow was defined for every trial,

where the participant moved the item to the identical side to which the robot applied referential

gaze before. Since the neutral robot did not use any referential gaze, this was only calculated for

the high-validity and low-validity robots. Descriptive statistics (frequencies and percentages)

were computed for participants’ gaze-following behavior (followed, not followed). Participants’

data were segmented by robotic identity, gaze correctness (I.e., did the robot look to the correct

side?), and difficulty level (hard or easy statements). Gaze following behavior was further

analyzed using the framework of signal detection theory (SDT). Therefore, the two key metrics

of sensitivity (d’) and response criterion (c’) were computed. To investigate how these measures

were affected by robotic identity and difficulty level, a 2 (Robot: High-validity, low-validity) x 2

(Difficulty: Easy, hard) repeated-measures ANOVA was calculated for the metric d’ and c’,

respectively.

Eye-Tracking analyses

 Participants’ visual attention and gaze patterns were analyzed using a variety of eye-

tracking metrics. Heatmaps were created to visualize participants’ gaze concentrations during

each robotic and difficulty condition. Previously defined AOIs (see Figure 6) were used to

investigate total dwell time and frequency of visits. The influence of the experimental conditions

on these metrics was assessed using a series of 3 (Robot: High-validity, low-validity, neutral) x 2

(Difficulty: Easy, hard) repeated-measures ANOVAs. Subsequently, an advanced AOI transition

analysis was applied to examine participants’ attentional shifts and gaze transitions. This was

further visualized for the AOIs using transition probabilities. Chi-squared tests were employed to

determine if the observed transition patterns differed significantly as a function of robot identity

 31

and difficulty. Finally, a Recurrence Quantification Analysis (RQA) was applied to assess the

predictability and structure of participants’ gaze patterns. The RQA computed a Determinism

(DET) score, which quantifies the extent to which a pattern or sequence of states repeats itself

(Anderson et al., 2013). A high DET score, usually for values above 70%, indicates a structured

and repeated gaze frequency. A lower DET score, usually less than 40%, suggests more random,

unstructured gaze movement. A 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty:

Easy, hard) repeated-measures ANOVA was conducted on the DET scores.

Self-report questionnaire analysis plan

For the self-report analysis of Qualtrics data, ratings for the following variables were

computed respectively for each robot: Anthropomorphism, Likability, Intelligence, and Trust. To

compare participants’ subjective ratings across the three robots (High-validity, low-validity,

neutral), a series of four separate one-way repeated-measures ANOVAs was conducted.

Significant effects were further examined using post-hoc pairwise comparisons with a

Bonferroni correction.

 32

Results

Performance Analysis

The performance data encompasses the participants’ accuracy scores of correctly

answered statements as well as their move durations to classify a statement. Based on a 2.5

standard deviation rule applied to each participant’s data, 82 trials (2.76% of the total) were

removed as outliers from the move duration variable prior to the main analysis. Participants

scored consistently higher on ‘easy’ (M = 0.93, SD = 0.25) compared to ‘hard’ (M = 0.62, SD =

0.47) statements across all robots. As visualized in Figure 7, this trend is also reflected in the

movement duration scores, with participants showing shorter durations for statements

categorized as easy (M = 4.82s, SD = 3.94) compared to those marked as hard (M = 8.55s, SD =

5.92s).

 33

Figure 7.

Bar Chart of Mean Move Duration across the Three Robots and Easy and Hard Difficulty

Levels.

Note. The bar chart displays the mean time in seconds that participants took to complete a trial

for each of the three robots and two difficulty levels. The data shown are from trials remaining

after the removal of outliers. Error bars represent ±1 standard error of the mean. *** p < .001.

A 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty: easy, hard) repeated-

measures ANOVA was conducted to examine effects on task accuracy percentage. The analysis

revealed no significant main effect of robot on the accuracy score (F(2, 64) = 0.26, p = .76, ηg² =

.003), suggesting that the performance did not differ significantly across the three robots. As

 34

expected, there was a significant main effect of Difficulty (F(1, 32) = 333.66, p < .001, ηg² =

.670), with participants displaying significantly higher accuracy on easy tasks (M = 93.2%, SD =

7.25%) compared to ‘hard’ tasks (M = 62.5%, SD = 13.8%; Mean Diff = 30.8, 95% CI [27.3,

34.2]). The Robot x Difficulty interaction effect was not statistically significant (F(2, 64) = 2.75,

p = .072, generalized η² = .023).

For move duration, a 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty: easy,

hard) repeated-measures ANOVA was conducted. The analysis revealed a statistically significant

main effect of robot on move duration (F(2, 64) = 6.19, p = .003, ηg² = .017). Post-hoc pairwise

comparisons with Bonferroni correction displayed participants having significantly longer move

durations when interacting with the neutral robot (M = 6.69s, SD = 2.83s) compared to the high-

validity robot (M = 6.00s, SD = 2.64s;	Mean Diff = 0.69s, 95% CI [0.15, 1.22], p = .008). No

other pairwise differences for the main effect reached statistical significance (High-validity vs.

low-validity: p = .712; low-validity vs. neutral: p = .097). As expected, there was also a

significant main effect of Difficulty, F(1, 32) = 234.96, p < .001, ηg² = .352. Participants

exhibited significantly shorter move durations on ‘easy’ tasks (M = 4.70s, SD = 1.77s) compared

to 'hard' tasks (M = 7.90s, SD = 2.56s; Mean Diff = -3.19s, 95% CI [-3.62, -2.77]). The Robot x

Difficulty interaction effect was not statistically significant (F(2, 64) = 0.79, p = .459, ηg² =

.001).

Gaze Following Analysis

The experimental design for the high-validity robot (Ryan) aimed for its gaze cues to

point in the correct direction in 80% of instances, with the remaining 20% being incorrect. For

the low-validity robot (Ivan), the gaze was programmed to look in the incorrect direction in 80%

of cases. To enhance internal validity, the assignment process of correct and incorrect gaze hints

 35

was randomized by chance for each trial. Hence, analysis of the collected data revealed that gaze

cues from Ryan were correct in 77.2% of trials (n = 770 out of 998), while Ivan displayed gaze

towards the correct side in only 20.9% of trials (n = 205 out of 982). A ‘gaze follow behavior’

was defined as an instance where a participant’s choice of side was congruent with the direction

of the robot’s referential gaze cue.

Figure 8 illustrates the proportional frequency with which participants chose the

classification category indicated by the robotic gaze cue. When the high-validity robots’ gaze

was correct, participants followed in 80.8% of cases (n = 622 out of 770 total correct gaze trials;

easy statements: 94.3%, hard statements: 67.4%). In terms of incorrect robotic execution from

the high-validity robot, participants followed its misleading gaze in 34.2% of cases (n = 78 out of

228 total incorrect gaze trials; easy statements: 12.3%, hard statements: 56.1%). For the low-

validity robot, when gaze was correct, participants followed in 75.1% of cases (n = 154 out of

205 total correct gaze trials; easy statements: 91.6%, hard statements: 57.1%). When gaze was

incorrect, participants followed this misleading gaze in 21.2% of cases (n = 165 out of 777 total

incorrect gaze trials; easy statements: 7.3%, hard statements: 34.6%).

 36

Figure 8.

Bar Charts showing the Percentage of Participants that followed the Robotic Gaze Hints in their

Decision-Making Process for the High-Validity (Ryan) and Low-Validity (Ivan) Robots across

Easy and Hard Statements.

Note. The bar chart on the left side visualizes this behavior, when the robotic gaze hints pointed

to the correct category, while the right chart indicates behavior when robotic cues were

misleading. Error bars represent ±1 standard error of the mean (SEM). *** p < .001.

To gain detailed insight into participants’ gaze-following behavior, the inferential

analysis was approached from the perspective of Signal Detection Theory (SDT). This method

allowed the separation of two key processes. The metric of sensitivity (d’) represents how well

participants could tell whether a robot’s gaze cue pointed to the correct location. Secondly, the

response criterion (c’) measures the participants’ general bias to follow the gaze cue. For d’, a

 37

value of zero would indicate a complete inability to distinguish between correct and incorrect

gaze cues. Hence, a value of 1.0 is considered to reflect a moderate sensitivity, while a value of

3.0 or higher would indicate a near-perfect discrimination. For the c’ value, the number zero

would represent a neutral bias or a neutral strategy of the participants. In alignment with SDT,

every c’ value below the zero line can be defined as liberal bias, a tendency to follow the robot.

Positive values instead can be defined as conservative bias, a tendency not to follow the robotic

gaze cue. Although this is not strictly bounded, values for c’ typically fall between -1 and +1,

with values further from zero indicating a stronger bias. For both sensitivity and response

criterion, two separate 2 (Robot: High-validity vs. low-validity) x 2 (Difficulty: Easy vs Hard)

repeated-measures ANOVAs were computed.

 The analysis of sensitivity revealed a significant main effect of difficulty (F(1,32) =

137.64, p < .001, ηg² = .54) with participants being significantly less able to distinguish between

correct and incorrect gaze cues during the ‘hard’ category (M = 0.45, SD = 0.77) compared to the

‘easy’ condition (M = 2.25, SD = 0.67; Mean Diff = 1.81, 95% CI [1.49, 2.12]). However, no

significant differences emerged between the robot (p = .320) and sensitivity, nor was there a

significant interaction between the robot and difficulty (p = .169). This is highlighted in Figure 9,

where participants achieved a significantly higher sensitivity across the easy condition compared

to the hard one. These findings suggest that the robot did not affect how well participants could

distinguish between correct and incorrect gaze cues. Instead, task difficulty was the primary

driver impairing participants’ ability to evaluate the quality of gaze hints.

 38

Figure 9.

Bar Chart of the Mean Sensitivity (d’) from Signal Detection Theory Method as a Function of

Task difficulty for the High-validity and Low-validity Robot.

Note. Bars represent mean sensitivity scores for participants while discriminating between

correct and incorrect gaze cues. Higher values indicate better discrimination. Error bars represent

±1 standard error of the mean (SEM).

However, the analysis of response criterion showed a significant main effect of robot

(F(1,32) = 37.67, p < .001, ηg² =.28). Consequently, participants adopted a different strategic

bias towards the robots. As visualized in Figure 10, participants were significantly more inclined

to follow gaze cues from the high-validity robot compared to the low-validity robot (Mean Diff =

 39

0.48, 95% CI [0.32, 0.64], p < .001). Both bars of Figure 10 for the low-validity robot are

positive, showing participants’ conservative bias towards the unreliable gaze (M = 0.18, SD =

0.40). For the high-validity robot, the two bars position themselves consistently below the zero

line, reflecting participants’ willingness to follow its gaze (M = -0.30, SD = 0.33). This finding

suggests that participants developed a consistent strategic preference for trusting the reliable,

high-validity robot. Apart from that, neither task difficulty (p = .421) nor the interaction between

robot and difficulty (p = .814) had a significant effect, reflecting that this strategic preference

was adopted consistently regardless of task difficulty.

 40

Figure 10.

Bar Chart of Response Bias (c’) criterion from Signal Detection Theory Method as a Function of

Task difficulty for the High-validity and Low-validity Robot.

Note. Bars represent participants’ average response bias. Negative values reflect tendencies to

follow the cue, while positive values reflect a tendency to ignore the cue. Error bars represent ±1

standard error of the mean (SEM).

To summarize, the above analyses and use of Signal Detection Theory revealed that task

difficulty significantly reduced participants’ ability to distinguish between correct and incorrect

cues (sensitivity), regardless of the robot identity. However, the strategic response bias showed

strong preferences to follow the high-validity robot’s gaze more than that of its counterpart (low-

 41

validity), regardless of task difficulty, which indicates a strategic trust in the more reliable robot,

even when cues were misleading.

Eye-tracking analysis

Analysis of Areas of Interest

 To examine participants’ visual attention, gaze data were analyzed based on predefined

Areas of Interest (AOI). As mentioned in the methodology, the main AOI groups encompassed

the blue cards (“cards”), the two classification category fields (“Classification”), and the robot

(represented by the AOIs of “eyes”, “face” and “robot”, while the last one accounted for the

entire robot picture with the grey background). An overview of the AOI can be found in the data

analysis part of the methodology (Figure 6). To illustrate visual attention, Figure 11 shows a

heatmap of where participants looked most frequently. Heatmaps for further conditions can be

found in Appendix 4. Figure 11 shows the high-validity robot for ‘hard’ statements only but can

be considered representative as basic visual allocation across all conditions.

 42

Figure 11.

Heatmap of Participants’ Visual Fixation for the High-Validity Robot During Hard Statements.

Note. This heatmap shows an overview of participants’ visual allocation. Higher concentration of

fixations is represented by ‘darker’ colors.

 To investigate participants’ eye movements in alignment with the defined AOIs, we

started the eye-tracking data analysis with an examination of proportional dwell times (the

percentage of total trial time spent looking at an area) and fixation frequency (the percentage of

total fixations within an area). As highlighted in Figure 11, our analysis focused on three

representational areas: the cards, the robotic face, and the classification category (including the

right and left classification sides). For each metric and AOI, we conducted a 3 (robot) x 2

(difficulty) repeated-measures ANOVA.

Starting with the cards, a dwell analysis revealed only a significant effect of difficulty

(F(1, 31) = 200.27, p < .001, ηg² = .144), indicating that participants spent a larger amount of

 43

time focusing on hard statements (M = 58.7%, SD = 10.9%) compared to easy ones (M = 44.1%,

SD = 10.1%; Mean Diff = -14.6, 95% CI [-17.0, -12.2]). No significant differences between the

robots (p = .087), nor an interaction effect (p = .119) were found. This trend continues for the

proportional fixation frequencies, showing only a significant impact of difficulty level (F(1, 31)

= 230.27, p < .001, ηg² = .196) but no effect of robot (p = .231), or an interaction (p = .161)

An analysis of participants dwell time towards the classification categories indicated a

significant effect of difficulty (F(1, 31) = 78.51, p < .001, ηg² = .172) as well as a substantial

impact of robot identity (F(2, 62) = 5.71, p = .005, ηg² = .018). However, the interaction was not

significant (p = .280). Post-hoc comparisons showed that participants spent significantly more

time examining the classification categories when interacting with the low-validity robot (M =

15.1%, SD = 5.4%) compared to both the high-validity robot (M = 12.5%, SD = 4.3%; Mean Diff

= -2.6, 95% CI [-3.0, -1.0], p = .012), and compared the neutral robot (M = 12.0%, SD = 4.9%;

Mean Diff = 3.1, 95% CI [1.0, 4.0], p = .013). This finding, also highlighted in Figure 12,

indicates participants’ uncertainty and their stronger verification after misleading gaze cues from

the robot. A similar result was obtained in the proportional fixation frequency analysis, showing

a significant effect of robot (F(2, 62) = 5.55, p = .006, ηg² = .004) and difficulty (F(1, 31) =

94.97, p < .001, ηg² = .080) with no interaction effect (p = .543). For the significant effect of

difficulty, participants dwelled longer during hard statements (M = 16.2%, SD = 5.6%) than easy

statements (M = 10.2%, SD = 3.5%; Mean Diff = 6.0, 95% CI [5.0,8.0], p < .001).

 44

Figure 12

Bar Chart of the Proportional Dwell Time that Participants spent on the AOI Classification

Categories.

Note. The classification category AOI includes the left and right classification boxes on the sides

of the experimental game. Outliers greater than 2.5 standard deviations from the mean were

removed prior to analysis. Error bars represent ±1 standard error of the mean (SEM). *p < .05.

Finally, the analysis of dwell time for the “face” AOI showed a significant main effect of

both robot identity (F(2, 62) = 10.84, p < .001, ηg² = .019) and difficulty level (F(1, 31) = 82.08,

p < .001, ηg² = .081). In contrast to the previous analyses, an interaction effect between robot and

difficulty level was also found (F(2, 62) = 11.49, p < .001, ηg² = .010), suggesting that the

amount of time participants looked at the robot was influenced by statement complexity. Post-

 45

hoc testing revealed that participants spent a significantly greater proportion of time looking at

the face while interacting with the neutral robot (M = 23.3%, SD = 9.8%) compared to both the

high-validity robot (M = 18.8%, SD = 8.1%; Mean Diff = -4.5, 95% CI [-7.0, -2.0], p = .007) and

the low-validity robot (M = 18.2%, SD = 8.7%; Mean Diff = 5.1, 95% CI [3.0, 9.0], p = .003).

This is also visualized in Figure 13. Further, this finding found support from the analysis of

proportional fixation frequency, showing a significant effect of robot (F(2, 62) = 5.03, p = .009,

ηg² = .009) and difficulty (F(1, 31) = 84.09, p < .001, ηg² = .126) as well as an interaction effect

(F(2, 62) = 4.46, p = .015, ηg²= .004). Post-hoc analysis of main effects revealed that while

participants fixated more on the face during hard statements for all robots, this effect was most

pronounced for the neutral robot.

 46

Figure 13.

Bar Chart of the proportional Dwell Time that Participants spent on the Face AOI during the

experiment for the three robots for easy and hard statements.

Note. Outliers greater than 2.5 standard deviations from the mean were removed prior to

analysis. Error bars represent ±1 standard error of the mean (SEM). *p < .05.

Advanced AOI Transition Analysis

 The previous and initial eye-tracking analysis focused on where and how frequently

participants looked at the AOIs. Taking it a step further, this section applied an advanced AOI

transition analysis to investigate the dynamics of attentional shifts, particularly the transitions

between AOIs and their directionality. Hence, the previously examined AOIs - “cards”, “face”,

and “classification categories” - were used. Figure 14 illustrates two representative transition

 47

probability maps for the neutral robot. Additional transition maps of the high-validity and low-

validity robots can be found in Appendix 4 (Figure 2).

 Accounting for an investigation of fixation-sustaining and strategical transition patterns,

two underlying behavioral gaze patterns were identified using the transition maps. These

strategic patterns consistently dominated across all complexity levels and robotic identities. First

and most frequently, a dominant self-transition to stay at the ‘cards’ AOI was observed. As

visualized in Figure 14, the cards AOI became a gaze focus, with participants being extremely

likely to remain at that area with their gaze, even more likely for ‘hard’ statements (from ‘easy’

to ‘hard’: high-validity robot: 83% → 91%, low-validity robot: 83% → 91%, neutral robot: 83%

→ 92%). This finding suggests that participants allocated more cognitive effort and processing

time to read and understand more difficult statements. Apart from that, the most significant

transitional pattern was a loop between the robot and classification categories. In contrast to the

first pattern, transitions from the robot to the classification AOI diminished during ‘hard’

statements (from ‘easy’ to ‘hard’: high-validity robot: 21% → 16%, low-validity robot: 22% →

17%, neutral robot: 17% → 13%). Such a decrease could imply a strategic trade-off, where

participants made more use of social or referential cues from the robot in ‘easier’ trials, while

they relied more heavily on prolonged fixations on the statement assumptions during ‘hard’

tasks. In addition, this demonstrates a strategic shift towards more sustained fixations during

more complex statements, rather than assessing the robotic cues.

 48

Figure 14.

AOI Transition Probabilities for the Neutral Robot (Carl) in Easy and Hard Scenarios,

highlighting the Gaze Transition Dynamics for Participants in the Experimental Game.

Note. Matrices show the likelihood of gaze moving from a starting AOI (y-axis) to an AOI

destination (x-axis).

 Besides the visualized differences, a Chi-Squared test was applied to formally assess

whether participants’ gaze strategies varied across the experimental conditions. The analysis

revealed a significant effect of both difficulty level (χ(10)² = 38782.38, p < .001) and robot

identity (χ(16)² = 38721.37, p < .001), confirming that participants altered their visual gaze

strategy in response to task complexity and robot.

 A post-hoc analysis using standardized residuals found that participants adapted a more

focused strategy during ‘hard’ trials as the ‘Cards → Cards’ self-transition occurred significantly

more frequently than expected (Residual = +53.61). In contrast, ‘easy’ statements were

characterized by more social monitoring as the ‘Classification → Robot’ transition occurred

 49

significantly more often (Residual = +18.28). Examining the robot identity, our analysis showed

a “stickier” gaze behavior towards the neutral robot as the ‘Robot → Robot’ self-transition

showed significantly more trials (Residual = +63.29). Conversely, participants displayed

significantly more interaction between the ‘Robot → Classification’ loop when interacting with

the high-validity (Residual = +10.09) and low-validity robots (Residual = +10.83). Hence,

participants engaged significantly more in the ‘Robot ↔ classification’ loop and displayed a

more integrative back-and-forth strategy when the robot displayed a kind of referential gaze, no

matter if reliable or not.

Recurrence Quantification Analysis

 The previous transition analysis identified specific strategic moves and detailed gaze

patterns applied by the participants. Upon this, the following analysis shifted to a macro-level

understanding of the general gaze strategy. Particularly, the Recurrence Quantification Analysis

(RQA) assessed the broader structure and the predictability of the entire strategic sequence for

each trial. The RQA primarily focused on the metric of Determinism, which states how

predictable and structured the participants’ gaze strategy is (Anderson et al., 2013). A high

Determinism score indicates a structured and more similar gaze strategy, while a low

Determinism score would suggest a more chaotic and exploratory gaze path. Determinism rates

were analyzed using a 3 (Robot: High-validity, low-validity, neutral) x 2 (Difficulty: Easy, hard)

repeated-measures ANOVA. Before analysis, 1.76% (n = 50) of the data was removed based on

the previously defined 2.5SD rule.

 The ANOVA revealed a significant main effect of robot identity (F(2, 62) = 5.79, p

= .005, ηg² = .009) and difficulty (F(1, 31) = 72.20, p < .001, ηg² = .091). No significant

interaction effect was observed (p = .909). Post-hoc comparisons (with Bonferroni correction)

 50

revealed that gaze patterns in the presence of the low-validity robot (M = 0.77, SD = 0.19) were

significantly more deterministic compared to the neutral robot (M = 0.74, SD = 0.22; Mean Diff

= 0.03, 95% CI [0.01, 0.05], p = .012). No significant differences emerged between the high-

validity and low-validity robots (p = .065), nor between the high-validity and neutral robots (p =

.360). As visualized in Figure 15, the results demonstrate apparent differences in determinism

according to the complexity level, but also represent the neutral robot with the lowest mean

results, suggesting that participants adopted a marginally more exploratory approach for these

and more difficult trials.

 51

Figure 15.

Bar Chart of the Mean Determinism (DET) Scores for the Three Robots and Difficulty Levels.

Note. A high DET indicates higher predictability of gaze patterns. Data points identified as

outliers were removed prior to analysis. Error bars represent ±1 standard error of the mean

(SEM). *p < .05.

Analysis of Subjective Ratings

Across all subjective assessments from the Qualtrics Questionnaire, the high-validity

robots’ performance consistently surpassed that of the other two. As visualized in Figure 16, the

high-validity robot (Ryan) obtained the highest ratings in anthropomorphism (M = 3.15, SD =

1.02), likability (M = 3.70, SD = 1.05), intelligence (M = 3.48, SD = 0.91), and trust (M = 4.12,

SD = 1.03). The neutral robot (Carl) displayed the lowest average ratings for anthropomorphism

 52

(M = 2.49, SD = 0.83) and trust (M = 3.50, SD = 0.74), while the low-validity robot (Ivan) was

the weakest for likability (M = 2.40, SD = 0.84) and intelligence (M = 2.53, SD = 0.84).

Figure 16.

Bar charts of the Average Ratings for Anthropomorphism, Likability, Intelligence, and Trust for

each of the three Robots.

Note. Error bars represent the 95% confidence interval of the mean. p < .05, ** p < .01, *** p <

.001, **** p < .0001.

In terms of reliability, the internal consistency of the assessment scales for each robot

was evaluated using Cronbach’s Alpha. Overall, all scales demonstrated acceptable to excellent

internal consistency. All scales across the high-validity robot demonstrated excellent reliability,

 53

ranging from α = .895 for trust to α = .951. The intelligence ratings for the low-validity robot

showed the lowest value of α = .787, which can still be considered between acceptable and good.

To compare participants’ subjective ratings of the robots, a series of one-way repeated

measures ANOVAs was conducted across the four scales. In addition to the previously tested

normality, Mauchly’s test to check equality of the variances of the differences between all pairs

of conditions was examined.

For the first scale, Anthropomorphism, Mauchly’s test showed no violations of sphericity

(W=.962, p=.545). A repeated-measures ANOVA revealed significant differences between the

robots (F(2,64) = 4.98, p = .010, ηg² = .083). Post-hoc comparisons using Bonferroni correction

showed the high-validity robot (M = 3.15, SD = 1.02) rated significantly higher on

anthropomorphism compared to the neutral robot (M = 2.49, SD = 0.83; Mean Diff = 0.66, 95%

CI [0.19, 1.13], p = .021). No significant differences were found between low-validity (M =

2.77) and the neutral robot (p = .531), or between the high-validity and low-validity robots (p =

.184).

For likability, a significant main effect across the robots was found (F(2,64) = 17.07, p <

.001, ηg² = .281). While Mauchly’s test indicated a violation of sphericity (W= .810, p = .038), a

Greenhouse-Geisser estimate of sphericity was used to correct the degrees of freedom (ϵ = .84).

The corrected ANOVA result also showed a main effect (F(1.68, 53.79) = 17.07, p < .001).

Consequently, post-hoc comparisons showed the high-validity robot (M = 3.70, SD = 1.05) being

significantly more likable than the low-validity one (M = 2.40, SD = 0.84; Mean Diff = 1.30,

95% CI [0.78, 1.82], p < .001). Similarly, the neutral robot (M = 3.40, SD = 0.81) showed

significantly more likability compared to the low-validity robot (Mean Diff = 1.00, 95% CI

 54

[0.64, 1.36], p < .001). No significant differences emerged between the high-validity and neutral

robot (p = .750).

When it comes to perceived intelligence, a significant main effect of robot was observed

during ANOVA testing (F(2,64) = 11.49, p < .001, ηg² = .202). However, Mauchly’s test

indicated a violation of sphericity (W = 0.794, p = .028), leading to a Greenhouse-Geisser

estimate of sphericity to correct the degrees of freedom (ϵ = 0.83). The corrected ANOVA

showed a significant main effect as well (F(1.66, 53.08) = 11.49, p < .001). Post-hoc

comparisons showed that the high-validity robot (M = 3.48, SD = 0.91) was rated significantly

higher on intelligence than both the neutral robot (M = 2.62, SD = 0.84; Mean Diff = 0.86, 95%

CI [0.33, 1.39], p = .007), and the low-validity robot (M = 2.53, SD = 0.84; Mean Diff = 0.95,

95% CI [0.52, 1.38], p < .001). However, no significant difference emerged between neutral and

low-validity robots (p = 1.00).

A similar pattern emerged for trust scores as significant differences emerged during

ANOVA testing (F(2, 64) = 5.59, p = .006, ηg² = .096). Next, Mauchly’s test indicated a

violation of sphericity (W = 0.326, p < .001), leading to the Greenhouse Geisser correction (ϵ =

.60). The ANOVA revealed a significant main effect of robot identity (F(1.19,38.23) = 5.59, p =

.018). Consequently, post-hoc analysis showed that participants trusted the high-validity robot

(M = 4.12) significantly more than the low-validity robot (M = 3.66, SD = 0.63; Mean Diff =

0.46, 95% CI [0.14, 0.78], p = .019). No significant differences were found in trust ratings

between the neutral robot (M = 3.50) and the high-validity robot (p = .069), nor between the

neutral and low-validity robot (p = .780).

 55

Discussion

The current study aimed to investigate the influence of joint attention in Human-Robot

Interaction (HRI), particularly the social mechanism of initiating joint attention from a screen-

based robot towards a human. The conducted experiment accounted for the unique consideration

of various independent factors such as complexity variation and gaze reliability, allowing a more

dynamic and complex design. Our findings indicate that participants strategically adapted to the

robot’s reliability, developing a clear bias to trust and follow the gaze of the high-validity robot,

while ignoring the low-validity one.

Performance Impact

 The first hypothesis of this work examined the gaze impact on task performance,

claiming that “Participants will perform significantly better in interaction with the high-validity

robot”. The current study findings partly contradict this hypothesis, as participants did not

display a significantly higher or different score across one of the other robots. However,

significant time differences during the classification process revealed that it took participants

longer to make a decision when gaze cues were absent. In contrast to other conditions,

participants were unable to devise a strategy and had to decide for themselves which statement

was correct or incorrect. They had to rely on their knowledge and intuition.

The increased decision time in interaction with the neutral robot, which lacked external

gaze hints, aligns with foundational literature. Mehlmann et al. (2014) found that the execution

of referential gaze made a collaborative task twice as fast and significantly reduced errors.

Similarly, Staudte & Crocker (2011) demonstrated that congruent gaze cues provide a clear

performance benefit by speeding up comprehension. However, the same study introduced a

‘benefit-disruption spectrum’, stating that the robot’s incongruent gaze cue demonstrated the

 56

slowest understanding times. Our results showed no significant time differences between the

congruent (high-validity) and incongruent (low-validity) robots, and generally no differences in

accuracy scores, which highlights a clear difference from the paper by Staudte and Crocker

(2011). This difference can likely be attributed to the experimental design, as they used a single

robot that applied congruent and incongruent gaze executions, while the current research used

multiple robots. Consequently, it became easier for participants in our experiment to strategically

trust or distrust the differing robots, as discussed in the following paragraphs.

Impact and Persistence of Gaze Following

The second hypothesis formulated was that “Participants’ strategic bias to follow the

high-validity robot leads to a kind of ‘automation bias’, causing users to follow its suggestion

even if they are incorrect”. This assumption emphasized gaze-following behavior, referring to

participants’ alignment of side choice with the robotic hints from the high-validity and low-

validity robots. Our analysis underscored a strong support for that hypothesis. Fundamentally,

participants followed the high-validity robot for incorrect gaze cues in 34.2% of trials. As

expected, this trend increased for more complex tasks as participants followed incorrect gaze

hints from the high-validity robot in 57.1% of the hard statements. Our findings indicate a

substantial level of trust in the reliable robot, enough to override a participant’s judgment when

the task becomes more complex. This behavior can be characterized as an example of

automation bias, defined as the human tendency to over-rely on suggestions from automated

systems (Skitka et al., 1999).

The finding that participants followed the misleading gaze cue from a generally reliable

robot is supported by previously conducted research. A similar study design from Staudte and

Crocker (2011) found that participants would ‘correct’ a factually true statement when the

 57

referential gaze of a reliable robot pointed to a conflicting direction. The findings of this study

confirm this tendency to trust robots’ nonverbal cues, even to the point of questioning objective

facts. Further, this finding is supported by Admoni and Scassellati (2017), who highlighted the

role of humans in interpreting the robot’s gaze as a direct signal of intention and focus of

attention. In addition, our study revealed that this bias increased by task complexity, with

participants’ reliance on the robot enhancing from 34.2% to 57.1% of gaze following. In line

with previous research, this finding underscores that humans are more likely to offload cognitive

effort to an automated partner when this partner is perceived as competent (Lee & See, 2004;

Risko & Gilbert, 2016).

These findings can also be interpreted within the framework of top-down and bottom-up

processing (Katsuki & Constantinidis, 2014). Hence, the increased gaze following during more

complex tasks can be interpreted by considering the interplay between reflexive and strategic

attention. The robot’s referential gaze hints could act as a salient, bottom-up cue, which naturally

triggers a reflexive tendency to follow. Conversely, participants may have used their knowledge

of the robot’s identity as a strategic top-down process to either inhibit or trust this reflex. During

easier trials, participants arguably displayed lower cognitive effort for the primary task –

classifying the statement – and could use remaining resources to suppress a bottom-up reflex to

follow the robotic gaze when it was incorrect. In contrast, for more complex statements,

participants required increasing levels of mental effort in the primary task, which may have left

fewer mental resources to suppress the bottom-up reflex to ignore the robotic gaze cue when it

was misleading. This integrative approach, which allows for consideration of bottom-up and top-

down processing, displays parallels with research conducted by Kompatsiari et al. (2018). In

their study, mutual gaze was used to activate participants’ engagement, which arguably increased

 58

the bottom-up urge of gaze following. Pursuing their argumentation, gaze-following behavior

increased as the robots’ eye contact strengthened participants’ engagement and focus on the

experimental game. Our findings extend this framework by suggesting that task complexity

could be a key factor that is able to temporarily shift the balance from top-down towards more

reflexive, bottom-up processing in human-robot interaction. Both studies highlight the dynamic

interplay between bottom-up orienting and top-down control in shaping social attention.

In addition, our analysis considered gaze following behavior through the lens of signal

detection theory (SDT). We employed the SDT framework to measure decision-making under

uncertainty, particularly to measure an individual’s ability to distinguish between signal and

noise (Green & Swets, 1966). In the current context, SDT was applied to separate perceptual

sensitivity from strategic bias in participants’ decision-making process regarding the referential

gaze applied. Our findings indicate a lower sensitivity (d’) in the hard difficulty relative to the

easy statements, suggesting that participants increasingly struggled with more complex tasks to

judge if the referential gaze was correct. In other words, when the task became difficult,

participants struggled to tell whether the robot was helping them or tricking them. Further, this

score showed no differences between the high-validity and low-validity robots, indicating that

participants were equally good at discriminating correct and incorrect gaze across the robots.

More relevant in alignment with our assumption was an investigation of the response criterion

(c’), which assesses participants’ tendency and willingness to follow the robots. The results of

this analysis represent one of the most critical findings of our research. As expected, participants

tended to follow the high-validity robot and resist following the low-validity robot. However,

this tendency also remained when the robots’ gaze cues were misleading and incorrect. The

participants simply ‘stuck’ with their previous strategy, no matter how difficult the statements

 59

got. Instead of trial-by-trial calculation, participants operated on a pre-established cognitive

heuristic that was shaped by the robot’s identity. Participants did not abandon their previously

developed strategy in times of uncertainty. They strongly relied on it.

Participants’ strong persistence in strategy deserves deeper reflection. Our findings

provide an example of how humans interact with robots under uncertain conditions. The

development of strong heuristics toward the high-validity and low-validity robot (e.g., “Ryan is

helpful,” “Ivan is not”) became more relevant in complex and demanding tasks. As described by

researchers like Kahneman (2011) and Gigerenzer and Gaissmaier (2011), this provides an

example of how humans shift from analytical processing to more efficient heuristic-based

strategies. In addition, humans are susceptible to the predictive validity of gaze cues. They are

efficiently able to learn to inhibit reflexive orienting towards unreliable sources such as the low-

validity robot (Friesen & Kingstone, 1998). As revealed in the Signal Detection Theory analysis,

the observed automation bias was not a passive choice, but an active cognitive strategy powerful

enough to override conflicting evidence.

Impact of Initiating Joint Attention on Gaze Predictability

 The third hypothesis aimed to investigate gaze patterns and gaze strategies in depth. The

hypothesis stated that “Participants will display more exploratory, unpredictable gaze behavior

when interacting with the neutral robot, while the existence of referential gaze cues, albeit

potentially incorrect, will lead to more predictable gaze patterns”. The use of eye tracking

analysis built a strong foundation to analyze not only basic features like dwell time but also to

gain a deeper understanding of gaze strategies through advanced transition and recurrence

analysis. Our analyses indicate a strong support for this hypothesis, showing that the

determinism of gaze patterns was significantly lower when interacting with a robot that did not

 60

apply referential gaze. The absence of referential gaze and attentional guiding forced participants

to adopt a more variable and exploratory search strategy. Further, this is supported by the AOI

analysis, which reveals longer and more frequent visual attention towards the neutral robot.

Taken together, the eye-tracking data represent a distinct trend: The presence of referential gaze,

reliable or not, encourages participants to adopt a strategy during human-robot interaction, while

its non-existence forces participants to adopt a more exploratory approach accompanied by a

higher cognitive demand.

 Previous work that included eye-tracking data provided evidence that the robot’s

referential gaze acts as a compelling guide for human attention. In other words, people

automatically look where the robots look, even if the robotic cue is incorrect (Staudte & Crocker,

2011). Our recurrence analysis assigns a number to this effect as a significantly higher

“determinism” score for gaze-referring robots proved a more predictable, structured pattern.

These findings further align with established theories of visual attention, such as the “Guided

Search” paradigm (Wolfe, 1994). From that perspective, the high-validity and low-validity

robots provided a salient cue to ‘guide’ participants’ search, which further simplifies the task and

cognitive workload (Wolfe & Horowitz, 2017). Moreover, such a search strategy would be more

structured, which explains its higher determinism scores. Conversely, the neutral robot represents

an “unguided search”, shaped by participants’ cognitive load and less predictable gaze patterns

(Liversedge & Findlay, 2000; Wolfe & Horowitz, 2017).

Our eye-tracking analysis also revealed an effect of participants displaying a “stickier”

gaze towards the neutral robot. This was evidenced not only by more prolonged and more

frequent dwell times, but also by a significantly higher probability of a ‘Robot to Robot’ self-

transition. Given the robot’s role as an active driver in conditions of referential gaze, we interpret

 61

the lingering human eye movement on the neutral robot as a behavioral marker for participants’

uncertainty. Participants were naturally oriented towards the robot, expecting guidance from it.

However, upon receiving no referential gaze, participants’ gaze remained on the robot as they

were forced to disengage from a simply reactive strategy and instead engage in a more

cognitively demanding process. Eye-tracking literature indicates longer fixation durations as a

primary indication of cognitive load or more difficult mental processing (Rayner, 2009).

Impact on perceived social attributes

 Finally, the fourth hypothesis investigated the subjective ratings of interaction, stating

that “The reliability of a robot's gaze will positively influence the self-reporting social attributes

of likability, intelligence, anthropomorphism and trust”. Analysis of the self-reporting

questionnaires supported this assumption as the high-validity robot, Ryan, consistently received

the most favorable ratings across all four measured attributes: anthropomorphism, likability,

intelligence, and trust. This outcome supports the overarching effect of reliable referential gaze

on social perception in human-robot interaction. It aligns with previous scientific research,

linking context-aware gaze to robots being perceived as more natural, likable, and intelligent

(Admoni & Scassellati, 2017).

However, post-hoc analyses revealed a more nuanced picture, adding value to the

understanding of the importance of reliability in joint attention as well as the consequences of its

absence. Pairwise comparisons displayed an unlikability or off-putting nature to the low-validity

robot, whereas the high-validity and neutral robots did not show major preferences in terms of

likability. While a trend towards the high-validity robot was identified, the non-significance

compared to the neutral robot can be attributed to the robots’ general limitations, as participants

saw only a static picture with interactive eyes, which were also limited in their gaze application.

 62

However, the significant differences remained stable across scores of anthropomorphism and

intelligence, with the reliable robot showing higher ratings. Moreover, perceived intelligence was

rated significantly higher for the high-validity robot compared to the other robots, which further

strengthens literature insights that reliable referential gaze leads robots to appear more competent

(Admoni & Scassellati, 2017).

Interestingly, this study found no significant differences across self-perceived trust

scores. This finding contradicts previous scientific work, which frequently reported higher scores

of robots that applied referential gaze (Mutlu et al., 2009). Counterintuitively, the non-

significances in the self-reporting data also contrast with our behavioral findings, as the gaze-

following and eye-tracking analysis revealed significant preferences for following the high-

validity robot, shaped by more predictable strategies of trustworthiness. In consistency with our

behavioral data and literature context, it’s plausible that the Trust-Perception Scale for HRI

(TPS-HRI) from Schaefer (2016) could not adequately reflect participants’ trust level. Following

the arguments for a participatory and context-aware approach (Korpan, 2024), a universal or

generic trust scale might oversimplify nuanced ways in which trust is formed. Moreover, a scale

that was validated primarily for a military simulation context may fail to capture the dynamic

and social dimensions of joint attention (Korpan, 2024).

Strengths of the Study

 Unlike previous studies, this research examines the mechanism of initiating joint

attention in a more complex consideration, accounting for its reliability and its influence on task

complexity. While using a 3 x 2 study design to examine joint attention with three robots in

complexity-varying tasks, the robots implicitly varied in two key aspects: the presence of

Initiating Joint Attention and the reliability of the gaze cues. This variation allowed us to

 63

investigate what is rarely reported in HRI literature: the consequences of incorrect application of

referential gaze (Admoni & Scassellati, 2017). If humans increasingly interact with intelligent

machines and robots, blind trust can lead to high costs or dangerous accidents, due to an over-

reliance on the robot’s indication (Parasuraman & Manzey, 2010). Our study addresses this gap,

acknowledging the varying reliability of attentional cues.

 In addition, a substantial strength of this study is the use of a within-subjects repeated-

measures design. This experimental design allowed each participant to act as their own baseline,

thereby comparing the three robots directly, which strengthens the internal validity of our

conclusions. Further, the procedure for presenting the classification statements and robots was

randomized. While still algorithmically accounting for the same amount of “easy” and “hard”

statements for each of the three robots, the randomization procedure prevented confounding

variables related to specific order or content effects (Shadish et al., 2002). Similarly, it ensured a

fair and balanced comparison of the robots. Upon this, the construction of our experiment

connected the experimental game via a local network to the robotic gaze system, which enabled

robotic gaze cues to be linked directly and intentionally to the task. Even when the robots’ gaze

was unreliable, it was not randomly looking at one target, which makes an incorrect gaze cue

also task relevant. In addition, the task was arguably more naturalistic compared to other

research (Huang & Thomaz, 2011), while we still maintained experimental control.

 Finally, our experiment provided a range of measurement metrics, allowing for increased

validity. Using the self-constructed classification game and gaze control system, this research

accounted for participants’ performance and gaze-following data but additionally incorporated

their gaze behavior through eye-tracking metrics. In addition, a post-questionnaire measured

participants’ self-reporting tendencies regarding the social attributes of the robots. Such

 64

methodological triangulation revealed more nuanced insights and provided a richer, more

comprehensive understanding of human-robot interaction.

Future Directions

The findings of this study are considered in light of some methodological limitations,

which in turn suggest valuable directions for future research. First, the experimental setup

consisted of a static screen-based robot face with an interactive gaze system on a monitor. The

robot was therefore neither an embodied agent nor was it particularly flexible in its facial

movements. The lack of physical embodiment can be a significant consideration, as scientific

literature suggests that people perceive and behave differently towards physically embodied

robots compared to virtual agents, primarily with increased attention and stronger social

engagement (Li, 2015). However, the use of screen-based robots in human-robot interaction

literature is a standard and commonly used methodology, often to achieve high experimental

control over variables such as gaze cues (Admoni & Scassellati, 2017). Despite that, future

research could examine and validate our results using a physically embodied robot. Socially

embodied robots such as “Furhat” (Furhat Robotics, n.d.) provide flexible and straightforward

API connections, enabling the use of a similar gaze control system in humanoid robots. In

addition, such studies could investigate the effects of embodiment, potentially strengthening or

weakening the effects of joint attention in human-robot interaction.

A second limitation refers to the self-constructed gaze control system. Building a

complete human-like gaze system, which perceives its environment and reacts accordingly, is

still very limited (Admoni & Scassellati, 2017; Mishra & Skantze, 2022). Our system

specifically focused on joint attention and perceived its environment only in a very limited way:

by interpreting game events and the presence of human faces. Further, the execution of

 65

referential gaze was triggered to appear in a static timeframe after a card reveal automatically.

While this is beneficial in terms of overview and controlled manipulation, it also limits the

interactivity and reactivity of the robot in communication with humans, which is often a

significant factor in engagement, natural movements, and social feelings towards the robot (Fong

et al., 2003). Future studies might extend the gaze control system to become more flexible. One

example of such direction is highlighted in the paper by Mishra and Skantze (2022), who

developed a planned gaze control system, which plans the robot’s gaze for a future, rolling time

window instead of being purely reactive. Like Pereira et al (2019), their gaze system not only

used a proactive layer for referential gaze, but also integrated a responsive layer to display

responsive gaze. In alignment with the recent breakthroughs in areas of deep and reinforcement

learning (LeCun et al., 2015), an additional exemplary approach might use not only a

heuristically driven system, but instead build a combination or even a fully data-driven system.

Furthermore, the sample size was modest (n = 33) and consisted only of university

students, decreasing the generalizability to a broader population. In consideration of the context

that humanoid robots will interact in various fields with various people, further investigation

could account for a larger sample size with different demographic characteristics.

Finally, additional review and investigation are needed to assess the bidirectionality of

combining the mechanisms of responding and initiating joint attention, but also to assess them

separately as we did. These two mechanisms of joint attention can be very different and may

prove to be useful or less useful in different contexts. Thus, the last recommendation of this

paper is to test the social mechanisms of joint attention in varying contexts and objectives. For

example, on a production line, the versatile use of referential gaze is likely to be advantageous

 66

due to increased speed and fewer errors, whereas in school, reciting instructions could hinder

independent learning.

Practical Implications

 Beyond theoretical relevance, the results also offer insights for practical applications in

the field of research and development of humanoid robots. One essential finding of this overall

research for designers and engineers is the prioritizing of reliability when it comes to the

implementation of referential gaze or initiating joint attention. Our results clearly indicate that a

low-validity robot was not only seen as less capable, but it was also actively disliked and

distrusted. For several social attributes, such as likability, intelligence, anthropomorphism, or

trust, participants did not show any significant preferences towards the low-validity robot

compared to the neutral robot, which did not apply any kind of referential gaze. However, a

high-validity gaze behavior evoked social preferences and performance improvements. In other

words, the practical implication of this research could be formulated in the manner of “Do it

right or don’t do it at all”.

 More critically, our research outcomes highlight how humans develop strategies and

automation bias to trust humanoid robots. In a societal context, this underscores the particular

risk to over-rely on machines and robotics, even to override one’s own judgment. This research

can be used to raise awareness of this automation bias and overreliance, particularly to treat

human-robot interaction with caution in certain fields such as healthcare and education

(Breazeal, 2003).

 67

Conclusion

 This research emphasized the role of reliable referential gaze in Human-Robot

Interaction. Our central finding lies in the gaze-following analysis, which indicates humans’

development of powerful strategic bias, learning to consistently trust a reliable robotic gaze, and

even overriding their own judgment. Trust towards a high-validity robot has led to a kind of

automation bias, causing participants to follow the robot’s suggestions. This was particularly the

case for more complex tasks, as participants arguably experienced a higher cognitive workload,

leaving them with less mental capacity to judge the correctness of the robotic hints. Upon that, a

more detailed look through the eye-tracking data confirmed participants’ strategic approach, as

the existence of referential gaze, albeit of its validity, revealed more structured and organized

gaze patterns. The absence of referential gaze significantly altered participants’ gaze behavior,

showing less structured and more explorative gaze strategies. Despite that, participants spent

more time looking towards the robot without the initiation of joint attention, arguably in

expectation of receiving a gaze cue or reaction. Further, the eye-tracking data provided powerful

support for participants’ strategic development towards the robots that applied initiating joint

attention. Hence, participants developed a more predictable gaze strategy when interacting with

robots that execute referential gaze. For example, we observed participants switching their gaze

between the robot and classification theory more frequently when the robot provided initiated

joint attention. Despite many similarities in the eye-tracking data, particularly from a strategic

and predictable nature, the reliability of gaze cues showed not only significant differences in the

gaze following, but also in the self-reporting tendencies. Our results show that participants

substantially preferred a robot that applied a reliable gaze compared to one with frequently

misleading gaze hints. Notably for likability, the robot with unreliable gaze cues showed

 68

significantly worse values compared to both the reliable robot and the robot without referential

gaze. Participants' tendency to trust the robot with a reliable gaze, as opposed to one that displays

an unreliable gaze, is also supported by our behavioral data, as the gaze-following analysis

reveals a clear preference for following the reliable, high-validity robot.

 69

References

Admoni, H., Dragan, A., Scassellati, B., & Srinivasa, S. (2014). Deliberate delays during robot-

to-human handovers improve compliance with gaze communication. In Proceedings of

the 2014 ACM/IEEE International Conference on Human-Robot Interaction (HRI '14).

Association for Computing Machinery. https://doi.org/10.1145/2559636.2559682

Admoni, H., & Scassellati, B. (2017). Social eye gaze in human-robot interaction: A

review. Annual Review of Control, Robotics, and Autonomous Systems, 4(1), 6.1-

6.23. https://doi.org/10.5898/JHRI.6.1.Admoni

Anderson, N. C., Bischof, W. F., Laidlaw, K. E. W., Risko, E. F., & Kingstone, A. (2013).

Recurrence quantification analysis of eye movements. Behavior Research

Methods, 45(3), 842–856. https://doi.org/10.3758/s13428-012-0299-5

Andrist, S., Gleicher, M., & Mutlu, B. (2017). Looking coordinated: Bidirectional gaze

mechanisms for collaborative interaction with virtual characters. In Proceedings of the

2017 CHI Conference on Human Factors in Computing Systems (CHI '17). Association

for Computing Machinery. https://doi.org/10.1145/3025453.3026033

Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the

anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of

robots. International Journal of Social Robotics, 1(1), 71–81.

https://doi.org/10.1007/s12369-008-0001-3

Bayliss, A. P., Murphy, E., Naughtin, C. K., Kritikos, A., Schilbach, L., & Becker, S. I. (2013).

Gaze leading: Initiating simulated joint attention influences eye movements and choice

https://doi.org/10.1145/2559636.2559682
https://doi.org/10.5898/JHRI.6.1.Admoni
https://doi.org/10.3758/s13428-012-0299-5
https://doi.org/10.1145/3025453.3026033
https://doi.org/10.1007/s12369-008-0001-3

 70

behaviour. Journal of Experimental Psychology: General, 142(1), 76–92.

https://doi.org/10.1037/A0029286

Boston Dynamics. (n.d.). Atlas. Retrieved from https://bostondynamics.com/atlas/

Breazeal, C. (2003). Toward sociable robots. Robotics and Autonomous Systems, 42(3-4), 167–

175. https://doi.org/10.1016/S0921-8890(02)00373-1

Charman, T. (2000). Theory of mind and the early diagnosis of autism. In S. Baron-Cohen, H.

Tager-Flusberg, & D. J. Cohen (Eds.), Understanding other minds: Perspectives from

developmental cognitive neuroscience (2nd ed., pp. 422–441). Oxford University Press.

Chen, J. Y. C., & Barnes, M. J. (2014). Human–agent teaming for multirobot control: A review

of human–agent teaming research. Human Factors: The Journal of the Human Factors

and Ergonomics Society, 56(2), 293-315. https://doi.org/10.1109/THMS.2013.2293535

Emery, N. J. (2000). The eyes have it: The neuroethology, function, and evolution of social

gaze. Annual Review of Neuroscience, 23(1), 527–563. https://doi.org/10.1016/S0149-

7634(00)00025-7

Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive

robots. Robotics and Autonomous Systems, 42(3-4), 143–

166. https://doi.org/10.1016/S0921-8890(02)00372-X

Friesen, C. K., & Kingstone, A. (1998). The eyes have it! Reflexive orienting is triggered by

nonpredictive gaze. Psychonomic Bulletin & Review, 5(3), 490–495.

Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: Visual attention,

social cognition, and individual differences. Psychological Bulletin, 133(4), 694–

724. https://doi.org/10.1037/0033-2909.133.4.694

https://doi.org/10.1037/A0029286
https://bostondynamics.com/atlas/
https://doi.org/10.1016/S0921-8890(02)00373-1
https://doi.org/10.1109/THMS.2013.2293535
https://doi.org/10.1016/S0149-7634(00)00025-7
https://doi.org/10.1016/S0149-7634(00)00025-7
https://doi.org/10.1016/S0921-8890(02)00372-X
https://doi.org/10.1037/0033-2909.133.4.694

 71

Furhat Robotics. (n.d.). Furhat Robotics. Retrieved June 7, 2025,

from https://furhatrobotics.com/

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of

Psychology, 62(1), 451–482. http://dx.doi.org/10.1146/annurev-psych-120709-145346

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Wiley.

Goddard, K., Roudsari, A., & Wyatt, J. C. (2012). Automation bias: a systematic review of

frequency, effect mediators, and mitigators. Journal of the American Medical Informatics

Association: JAMIA, 19(1), 121–127. https://doi.org/10.1136/amiajnl-2011-000089

Hoffmann, G., & Breazeal, C. (2004). Collaboration in human-robot teams. CHI '04 Extended

Abstracts on Human Factors in Computing Systems, 1167-

1170. https://doi.org/10.2514/6.2004-6434

Huang, C.-M., & Thomaz, A. L. (2011). Effects of responding to, initiating and ensuring joint

attention in human-robot interaction. In 2011 RO-MAN: The 20th IEEE International

Symposium on Robot and Human Interactive Communication (pp. 65–70). IEEE.

https://doi.org/10.1109/ROMAN.2011.6005230

Imai, M., Ono, T., & Ishiguro, H. (2003). Physical relation and expression: Joint attention for

human-robot interaction. IEEE Transactions on Industrial Electronics, 50(4), 636–

643. https://doi.org/10.1109/TIE.2003.814769

Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.

Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and

peer tutors for children: A field trial. Human-Computer Interaction, 19(1-2), 61–

84. https://doi.org/10.1207/s15327051hci1901&2_4

https://furhatrobotics.com/
http://dx.doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1136/amiajnl-2011-000089
https://doi.org/10.2514/6.2004-6434
https://doi.org/10.1109/ROMAN.2011.6005230
https://doi.org/10.1109/TIE.2003.814769
https://doi.org/10.1207/s15327051hci1901&2_4

 72

Katsuki, F., & Constantinidis, C. (2014). Bottom-up and top-down attention: different processes

and overlapping neural systems: Different processes and overlapping neural systems. The

Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and

Psychiatry, 20(5), 509–521. https://doi.org/10.1177/1073858413514136

Kleinke, C. L. (1986). Gaze and eye contact: A research review. Psychological Bulletin, 100(1),

78–100. https://doi.org/10.1037/0033-2909.100.1.78

Kompatsiari, K., Ciardo, F., Tikhanoff, V., Metta, G., & Wykowska, A. (2018). On the role of

eye contact in gaze cueing. Scientific Reports, 8(1), 17842.

https://doi.org/10.1038/s41598-018-36136-2

Korpan, R. (2024). Towards a participatory and social justice-oriented measure of human-robot

trust. In arXiv [cs.RO]. http://arxiv.org/abs/2402.15671

Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday

activities? Vision Research, 41(25–26), 3559–3565. https://doi.org/10.1016/s0042-

6989(01)00102-x

Lavie, N. (2005). Distraction, task difficulty, and focused attention: A perceptual load

perspective. Trends in Cognitive Sciences, 9(2), 75–

82. https://doi.org/10.1016/j.tics.2004.12.008

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human

Factors, 46(1), 50–80. https://doi.org/10.1518/hfes.46.1.50_30392

https://doi.org/10.1177/1073858413514136
https://doi.org/10.1037/0033-2909.100.1.78
https://doi.org/10.1038/s41598-018-36136-2
https://doi.org/10.1016/j.tics.2004.12.008
https://doi.org/10.1038/nature14539
https://doi.org/10.1518/hfes.46.1.50_30392

 73

Lemaignan, S., Warnier, M., Sisbot, E. A., Clodic, A., & Alami, R. (2017). Artificial cognition

for social human–robot interaction: An implementation. Frontiers in Robotics and AI,

4. https://doi.org/10.1016/j.tics.2004.12.004

Li, J. (2015). The benefit of being physically present: A meta-analysis of the physical

embodiment effect in human-robot interaction. In Proceedings of the 24th IEEE

International Symposium on Robot and Human Interactive Communication (RO-

MAN) (pp. 124-131). IEEE. http://dx.doi.org/10.1016/j.ijhcs.2015.01.001

Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in

Cognitive Sciences, 4(1), 6–14. https://doi.org/10.1016/S1364-6613(99)01428-7

L1Fthrasir. (2023). Facts-true-falsts- [Data set]. Hugging Face.

https://huggingface.co/datasets/L1Fthrasir/Facts-true-false

Mehlmann, G., Häring, M., Janowski, K., Baur, T., Gebhard, P., & André, E. (2014). Exploring a

model of gaze for grounding in multimodal hri. In Proceedings of the 16th international

conference on multimodal interaction (pp. 247–254).

https://doi.org/10.1145/2663204.2663275

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010). The iCub

humanoid robot: an open-systems platform for research in cognitive development. Neural

Netw. 23, 1125–1134. https://doi.org/10.1016/j.neunet.2010.08.010

Mishra, C., & Skantze, G. (2022). Knowing where to look: A planning-based architecture to

automate the gaze behavior of social robots. In Proceedings of the 31st IEEE

International Conference on Robot & Human Interactive Communication (RO-MAN

2022) (pp. 481-488). IEEE. https://doi.org/10.1109/RO-MAN53752.2022.9900740

https://doi.org/10.1016/j.tics.2004.12.004
http://dx.doi.org/10.1016/j.ijhcs.2015.01.001
https://www.google.com/search?q=https://doi.org/10.1016/S1364-6613(99)01428-7
https://huggingface.co/datasets/L1Fthrasir/Facts-true-false
https://doi.org/10.1145/2663204.2663275
https://doi.org/10.1016/j.neunet.2010.08.010
https://www.google.com/search?q=https://doi.org/10.1109/RO-MAN53752.2022.9900740

 74

Mundy, P. (2018). A review of joint attention and social-cognitive brain systems in typical

development and autism spectrum disorder. European Journal of Neuroscience, 47(6),

497–514. https://doi.org/10.1111/ejn.13720

Mundy, P., & Newell, L. (2007). Attention, joint attention, and social cognition. Current

Directions in Psychological Science, 16(5), 269–274. https://doi.org/10.1111/j.1467-

8721.2007.00518.x

Mutlu, B., Shiwa, T., Kanda, T., Ishida, T., & Hagita, N. (2009). Footing in human-robot

conversations: how robot gaze affects participant ratings and conversational

floor. Proceedings of the 4th ACM/IEEE international conference on Human-robot

interaction, 61-68. https://doi.org/10.1145/1514095.1514109

OpenAI. (2025). ChatGPT (DALL·E 3 version) [Large language model]. https://chatgpt.com

Pan, M. K. X. J., Choi, S., Kennedy, J., McIntosh, K., Zamora, D. C., Niemeyer, G., Kim, J.,

Wieland, A., & Christensen, D. (2020). Realistic and interactive robot gaze. In 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp.

11072–11078). IEEE. https://doi.org/10.1109/IROS45743.2020.9341297

, M. K. X. J., Choi, S., Kennedy, J., McIntosh, K., Zamora, D. C., Niemeyer, G., Kim, J.,

Wieland, A., & Christensen, D. (2020). Realistic and interactive robot gaze. In 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp.

11072–11078). IEEE. https://doi.org/10.1109/IROS45743.2020.9341297

Parasuraman, R., & Manzey, D. H. (2010). Complacency and bias in human use of automation:

An attentional integration. Human Factors, 52(3), 381–

410. https://doi.org/10.1177/0018720810376055

https://doi.org/10.1111/ejn.13720
https://doi.org/10.1111/j.1467-8721.2007.00518.x
https://doi.org/10.1111/j.1467-8721.2007.00518.x
https://doi.org/10.1145/1514095.1514109
https://chatgpt.com/
https://doi.org/10.1109/IROS45743.2020.9341297
https://doi.org/10.1109/IROS45743.2020.9341297
https://doi.org/10.1177/0018720810376055

 75

Pereira, A., Oertel, C., Fermoselle, L., Mendelson, J., & Gustafson, J. (2019). Responsive joint

attention in human-robot interaction. In Proceedings of the 2019 ieee/rsj international

conference on intelligent robots and systems (iros) (pp. 1080–1087).

IEEE.https://doi.org/10.1109/IROS40897.2019.8968130

Pfeiffer, U. J., Vogeley, K., & Schilbach, L. (2013). From gaze cueing to dual eye-tracking:

Novel approaches to investigate the neural correlates of gaze in social

interaction. Neuroscience & Biobehavioral Reviews, 37(10 Pt 2), 2516–

2528. https://doi.org/10.1016/j.neubiorev.2013.07.017

Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology,

32(1), 3–25. https://doi.org/10.1080/00335558008248231

Qualtrics. (2025). Qualtrics [Software]. https://www.qualtrics.com

Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual

search. Quarterly Journal of Experimental Psychology, 62(8), 1457–

1506. https://doi.org/10.1080/17470210902816461

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. Trends in Cognitive Sciences, 20(9),

676–688. https://doi.org/10.1016/j.tics.2016.07.002

Scassellati, B. (2002). Theory of mind for a humanoid robot [Doctoral dissertation,

Massachusetts Institute of Technology]. MIT

Libraries. https://dspace.mit.edu/handle/1721.1/8381

Schaefer, K. E. (2016). Measuring trust in human-robot interactions: Development of the trust

perception scale-HRI. In Proceedings of the 11th ACM/IEEE International Conference

on Human-Robot Interaction – Trust Workshop. http://dx.doi.org/10.1007/978-1-4899-

7668-0_10

https://doi.org/10.1109/IROS40897.2019.8968130
https://doi.org/10.1016/j.neubiorev.2013.07.017
https://psycnet.apa.org/doi/10.1080/00335558008248231
https://doi.org/10.1080/17470210902816461
https://doi.org/10.1016/j.tics.2016.07.002
https://www.google.com/search?q=https://dspace.mit.edu/handle/1721.1/8381
http://dx.doi.org/10.1007/978-1-4899-7668-0_10
http://dx.doi.org/10.1007/978-1-4899-7668-0_10

 76

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental

designs for generalized causal inference. Houghton, Mifflin and Company

Skitka, L. J., Mosier, K. L., & Burdick, M. D. (1999). Does automation bias decision-

making? International Journal of Human-Computer Studies, 51(5), 991–

1006. https://doi.org/10.1006/ijhc.1999.0252

Staudte, M., & Crocker, M. W. (2011). Investigating joint attention mechanisms through spoken

human–robot interaction. Cognition, 120(2), 268–

291. https://doi.org/10.1016/j.cognition.2011.05.005

Tesla. (n.d.). Optimus. Retrieved from https://www.tesla.com/en_eu/AI

Tomasello, M. (1999). The cultural origins of human cognition. Harvard University Press.

Willemse, C., Marchesi, S., & Wykowska, A. (2018). Robot faces that follow gaze facilitate

attentional engagement and increase their likeability. Frontiers in Psychology, 9, Article

70. https://doi.org/10.3389/fpsyg.2018.00070

Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin

& Review, 1(2), 202–238. https://doi.org/10.3758/BF03200774

Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature

Human Behaviour, 1(3), 0058. https://doi.org/10.1038/s41562-017-0058

Zhou, Y., Wang, D., Yu, Y., & Zhang, Z. (2023). Vision-based static gesture recognition for

human–computer interaction. Electronics, 12(13),

2805. https://doi.org/10.3390/electronics12132805

https://doi.org/10.1006/ijhc.1999.0252
https://doi.org/10.1016/j.cognition.2011.05.005
https://doi.org/10.3389/fpsyg.2018.00070
https://doi.org/10.3758/BF03200774
https://doi.org/10.1038/s41562-017-0058
https://doi.org/10.3390/electronics12132805

 77

Appendixes.

Appendix 1.

Prompting to generate the three static pictures for a robots face that account for each of the

three different gaze conditions in the gaze control system in OpenAI’s image-generation model

DALL E 2 via the GPT-4 console.

Primary prompt for the robot with high reliability gaze:

- “Create a 3D picture of a realistic, friendly humanoid robot that looks directly at the

camera with a straight face. The robot should display a gentle, approachable expression.

Further, it has a smooth, rounded face with large, expressive, and realistic eyes that

convey a sense of curiosity. The neck is exposed and contrasts with the smooth face,

revealing intricate black and grey mechanical joints and wiring. The overall design

should show strong similarities to the iCub robot. The overall picture should display the

robots face, his neck and partly his shoulders”

Further prompting for the low-reliability robot and control robot:

- “Based on the previous picture, please generate additional 3D pictures of similar-looking

robots, that display the same gentle, approachable expression with a smooth, rounded

face with large, expressive and realistic eyes and similarities to the iCub robot. The

robotic shape and its expression should be similar to the previous picture, but the robot

should look differently. Imagine a scenario where this robot could be a cousin or another

relative of the previous robot. “

- “Generate an alternative picture based on the previously used prompt”

 78

 79

Appendix 2.

Codebase for the Gaze Control System and Experimental Game.

Valid link: https://github.com/Devin037/Bachelor-Thesis/tree/main/experiment

https://github.com/Devin037/Bachelor-Thesis/tree/main/experiment

 80

Appendix 3.

Barcode for Data Analysis as well as Data Cleaning and Data Transformation in Python and R.

Barcode for Scripts of Data Preprocessing and Data Cleaning before actual data analysis:

Valid link: https://github.com/Devin037/Bachelor-Thesis/tree/main/data-transformation-and-
cleaning

Barcodes for Data Analyses Scripts in R for the analyses of performance, gaze following,
Qualtrics questionnaire and for the Python Scripts for the Eye-tracking Analyses:

Python Scripts (Eye-tracking)

R-Scripts:

https://github.com/Devin037/Bachelor-
Thesis/tree/main/data-analysis/python-eye-

tracking

https://github.com/Devin037/Bachelor-
Thesis/tree/main/data-analysis/R

Note. The raw code of data cleaning, transformation and analysis can also be found in
Appendix 7.

https://github.com/Devin037/Bachelor-Thesis/tree/main/data-transformation-and-cleaning
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-transformation-and-cleaning
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/python-eye-tracking
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/python-eye-tracking
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/python-eye-tracking
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/R
https://github.com/Devin037/Bachelor-Thesis/tree/main/data-analysis/R

 81

Appendix 4.

Heatmaps and advanced AOI transition maps for each robotic and difficulty condition as

additional data of the Results Section next to the shown visualizations.

Figure 1.

Heatmaps of each robotic condition for “easy” and “hard” difficulties

Note. The row with the first two pictures shows the high-validity robot (Ryan) for both

categories (‘easy’ on the left side, ‘hard’ on the right side). The second row shows two pictures

for the low-validity Robot (Ivan) with the easy category on the left and hard on the right side.

The third row shows the heatmaps for the neutral robot (Carl), also with easy statements on the

left and hard statements on the right side.

 82

Figure 2.

Advanced AOI maps for each robot and difficulty level, starting with the high-validity Robot

(Ryan) in the first row, followed by the low-validity Robot (Ivan) in the second row.

 83

Note. Pictures on the left side refer to the “easy” category, while pictures on the right side can be
marked as “hard”.

 84

Appendix 5.

Table of the questions used for the classification game.

Round type difficulty category question correct_answer
default boolean easy General

Knowledge
Move statement to one of the sides to start the actual game! TRUE

1 boolean easy General
Knowledge

The Sun is more massive than earth TRUE

1 boolean easy General
Knowledge

The Eiffel Tower is located in Paris France. TRUE

1 boolean easy General
Knowledge

The fastest fish in the world is the goldfish FALSE

1 boolean easy General
Knowledge

French is an official language in Canada. TRUE

1 boolean easy General
Knowledge

Ananas is mostly used as the word for Pineapple in other languages. TRUE

1 boolean easy General
Knowledge

The color orange is named after the fruit. TRUE

1 boolean easy General
Knowledge

Mount Everest is the highest mountain in the world TRUE

1 boolean easy General
Knowledge

Earth has multiple moons FALSE

1 boolean easy General
Knowledge

The Sun rises from the North. FALSE

1 boolean easy General
Knowledge

Coral reefs are located underwater. TRUE

1 boolean hard General
Knowledge

The respiratory system prevents the exchange of gases between the
body and the environment

TRUE

1 boolean hard General
Knowledge

The smallest volcano in the world is located in Hawaii. FALSE

1 boolean hard General
Knowledge

Light can exhibit neither wave-like nor particle-like properties. FALSE

1 boolean hard General
Knowledge

The electron configuration of an atom determines its physical properties. FALSE

1 boolean hard General
Knowledge

The Doppler effect causes the change in frequency or wavelength of a
wave in relation to an observer

TRUE

1 boolean hard General
Knowledge

The first successful human heart transplant was performed in 1967 TRUE

1 boolean hard General
Knowledge

The carbon cycle disrupts the balance of nitrogen in Earth's
atmosphere, oceans, and biosphere

FALSE

1 boolean hard General
Knowledge

The three types of blood vessels in the human body are arteries, veins,
and capillaries

TRUE

1 boolean hard General
Knowledge

Human digestion begins in the hand and ends in the large intestine FALSE

1 boolean hard General
Knowledge

The human digestive system breaks down food into nutrients. TRUE

1 boolean easy General
Knowledge

Adolf Hitler was born in Australia. FALSE

1 boolean easy General
Knowledge

The Sahara is the largest hot desert TRUE

 85

1 boolean easy General
Knowledge

The sky is blue. TRUE

1 boolean easy General
Knowledge

The Mona Lisa is a famous painting by Leonardo da Vinci. TRUE

1 boolean easy General
Knowledge

Cars need soap to run. FALSE

1 boolean easy General
Knowledge

The greenhouse effect influences Earth's temperature. TRUE

1 boolean easy General
Knowledge

Apples are a type of fruit. TRUE

1 boolean easy General
Knowledge

Humans have five basic senses. TRUE

1 boolean easy General
Knowledge

The shortest river in the world is the Amazon River. FALSE

1 boolean easy General
Knowledge

Fossils destroy evidence of past life on Earth. FALSE

1 boolean hard General
Knowledge

Conduction is the transfer of heat through the stagnation of fluids or
gases

FALSE

1 boolean hard General
Knowledge

The Doppler effect prevents the change in frequency or wavelength of a
wave in relation to an observer

FALSE

1 boolean hard General
Knowledge

The process by which a solid turns directly into a gas is called
sublimation

TRUE

1 boolean hard General
Knowledge

The Krebs cycle is a series of chemical reactions that generate energy in
cells.

TRUE

1 boolean hard General
Knowledge

Mars has a thin atmosphere. TRUE

1 boolean hard General
Knowledge

Saturn's largest moon is Titan. TRUE

1 boolean hard General
Knowledge

Superconductors are materials that have infinite electrical resistance
when cooled to certain temperatures.

FALSE

1 boolean hard General
Knowledge

Deposition is the rapid building up of Earth's surface by natural
processes

FALSE

1 boolean hard General
Knowledge

Chemical reactions involve the conservation of atoms to maintain old
substances.

FALSE

1 boolean hard General
Knowledge

The water cycle includes evaporation, convection, precipitation, and
collection.

TRUE

1 boolean easy General
Knowledge

Humans do not use their brains. FALSE

1 boolean easy General
Knowledge

The coldest place on Earth is the equator. FALSE

1 boolean easy General
Knowledge

There are no planets in our solar system. FALSE

1 boolean easy General
Knowledge

Birds are not animals FALSE

1 boolean easy General
Knowledge

Water is poisonous to humans. FALSE

1 boolean easy General
Knowledge

Cows are mammals that produce milk. TRUE

1 boolean easy General
Knowledge

The Earth is located in the Milky Way galaxy. TRUE

1 boolean easy General
Knowledge

The sky is often cloudy when it's going to rain. TRUE

 86

1 boolean easy General
Knowledge

Mount Everest is the shortest mountain in the world. FALSE

1 boolean easy General
Knowledge

The Nile River is located in South America. FALSE

1 boolean hard General
Knowledge

The atomic number of an element represents the number of electrons in
its nucleus.

FALSE

1 boolean hard General
Knowledge

Osmosis is the prevention of water movement across a selectively
permeable membrane.

FALSE

1 boolean hard General
Knowledge

Stars appear steady due to Earth's atmosphere. FALSE

1 boolean hard General
Knowledge

Polar ice caps are primarily made of fresh water. TRUE

1 boolean hard General
Knowledge

The planet Pluto has five known moons. TRUE

1 boolean hard General
Knowledge

The tallest tree in the world is a redwood tree named Hyperion. TRUE

1 boolean hard General
Knowledge

The four fundamental forces of nature are gravity, electromagnetism, the
strong nuclear force, and the weak nuclear force.

TRUE

1 boolean hard General
Knowledge

The planet Saturn is named after the Roman god of agriculture. TRUE

1 boolean hard General
Knowledge

The freezing point of water decreases as altitude increases FALSE

1 boolean hard General
Knowledge

The first successful powered flight was made by the Wright Brothers in
1903.

TRUE

1 boolean easy General
Knowledge

Snow is cold TRUE

1 boolean easy General
Knowledge

Penguins can fly FALSE

1 boolean easy General
Knowledge

All animals are colorblind FALSE

1 boolean easy General
Knowledge

Earth is 71% land. FALSE

1 boolean easy General
Knowledge

The earth is round TRUE

1 boolean easy General
Knowledge

Dogs are not mammals FALSE

1 boolean easy General
Knowledge

Birds can fly TRUE

1 boolean easy General
Knowledge

The human body has bones TRUE

1 boolean easy General
Knowledge

A circle has 200 degrees FALSE

1 boolean easy General
Knowledge

Vaccines promote infectious diseases. FALSE

1 boolean easy General
Knowledge

Cats can bark like dogs FALSE

1 boolean easy General
Knowledge

Choclate is a popular dessert. TRUE

1 boolean easy General
Knowledge

Earth has a magnetic field TRUE

1 boolean easy General
Knowledge

Honey is produced by bees. TRUE

 87

1 boolean easy General
Knowledge

Gravity makes things fall down TRUE

1 boolean hard General
Knowledge

Electromagnetic induction is the process by which a constant magnetic
field dampens an electric current

FALSE

1 boolean hard General
Knowledge

The planet Venus is often referred to as the "morning star" or the
"evening star."

TRUE

1 boolean hard General
Knowledge

The two main types of cells are prokaryotic and eukaryotic TRUE

1 boolean hard General
Knowledge

Our solar system consists of eight stars: Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, and Neptune

FALSE

1 boolean hard General
Knowledge

A substance that can be broken down into simpler substances by
chemical means is called an element.

FALSE

1 boolean hard General
Knowledge

Water freezes at 0 degrees Celsius (32 °F) and boils at 100 degrees
Celsius (212 °F)

TRUE

1 boolean hard General
Knowledge

The process by which a gas turns directly into a solid, without becoming
a liquid, is called sublimation

FALSE

1 boolean hard General
Knowledge

Metamorphosis is a biological process in which an organism undergoes
a significant change in form during its life cycle

TRUE

1 boolean hard General
Knowledge

The auroras, or polar lights, are natural light displays caused by the
interaction of solar particles with Earth's magnetic field

TRUE

1 boolean hard General
Knowledge

The first law of thermodynamics states that energy cannot be created or
destroyed, only converted from one form to another

TRUE

1 boolean hard General
Knowledge

The planet Mars is known as the "Red Planet" due to its iron oxide-rich
surface

TRUE

1 boolean hard General
Knowledge

Radioactive decay occurs when stable atomic nuclei transform into
more stable forms by emitting particles or radiation

FALSE

1 boolean hard General
Knowledge

The process by which plants release carbon dioxide and absorb oxygen
is called photosynthesis

FALSE

1 boolean hard General
Knowledge

Sound waves require a medium to travel, such as air, water, or solids TRUE

1 boolean hard General
Knowledge

Black holes are regions of space where gravity is so strong that nothing,
not even light, can escape

TRUE

test boolean
General
Knowledge

Apples grow on vines. FALSE

test boolean
General
Knowledge

The smallest animal in the world is the elephant. FALSE

test boolean
General
Knowledge

Comets are icy celestial objects. TRUE

test boolean
General
Knowledge

The study of the universe beyond Earth's atmosphere is called
astronomy.

TRUE

test boolean
General
Knowledge

The fastest bird in the world is the penguin. FALSE

test boolean
General
Knowledge

Mars has two small moons, Phobos and Deimos. TRUE

 88

Appendix 6.

Post questionnaire about self-reporting tendencies.

Bachelor-Thesis - complete randomization

Start of Block: Introduction_and_Consent

[Briefing]
Dear Participant, Welcome to this study. The purpose of this research is to investigate robotic gaze behavior and joint attention in human-robot interaction and collaboration. In
this study, you play a simple classification game where you have to sort cards into one out of two categories while interacting with a screen-based robot. Study Design: In this
repeated-measures study, you will be randomly assigned to robots that display different gaze skills. In interaction with every robot, you will classify statements from a stack of
cards into True or False categories. In total, you will answer 90 statements. After the experimental game, you have to answer a survey regarding your experience in the game.
Support: Please note that you can withdraw from this study at any point. If you feel the need to talk to someone about the presented information, do not hesitate to call the
following number. The Netherlands: 0800 0113. Confidentiality: We understand that the information you provide is sensitive. Thus, we want to ensure that all your data will be
kept confidential. Any data or other information that could directly identify you will be removed from your responses before analysis. All data collected during this study will be
stored securely. Data access will be provided only to the research team of this study. Anonymisation: Your name and any other information that could directly identify you will
be removed from your responses before analysis. We will assign you a unique code number to track your data throughout the study. Secure Storage: All data collected during
this study will be stored securely on a password-protected computer of the researcher. Only the research team will have access to this data. Reporting: Any reports or
publications resulting from this study will not include any information that could identify you. Contact Information and Right to Withdraw: In case you have any further
questions about the study, or if you want to withdraw from the study after you have consented, you can always contact one of the researchers at the following E-mail address. You
can also contact the University of Twente Psychology Department Ethics Committee at ethicscommittee-hss@utwente.nl if you have any concerns about how the study is being
conducted. Researcher: Devin Kruse (d.kruse-1@student.utwente.nl) +49 162 337 2000

[Consent]
Please tick the appropriate boxes

[understandingStudy]
I have read (or it has been read to me) and understood the study information. I have been able to ask questions about the study and my questions have been answered to my
satisfaction.

o Yes (1)

o No (2)

[voluntaryConsent]
I consent voluntarily to be a participant in this study and understand that I can refuse to answer questions and I can withdraw from the study at any time, without having to give a
reason.

o Yes (1)

o No (2)

[understandingDesign]
I understand that taking part in the study involves the interaction with a screen-based, real-time animated robot in an experimental game.

o Yes (1)

o No (2)

 89

[publication]
I understand that information I provide will be used for publication on scientific databases.

o Yes (1)

o No (2)

[dataStoring]
I give permission for the unpersonalised questionnaire data that I provide to be archived in the database of the University of Twente so it can be used for future research and
learning.

o Yes (1)

o No (2)

End of Block: Introduction_and_Consent

Start of Block: Demographics

[Age]
What is your date of birth? "Please enter in the format: DD-MM-YYYY"

__

[residence]
Country of Residence:

o The Netherlands (1)

o Germany (2)

o Other (3) __

[gender]
What is your Gender Identity?

o Male (1)

o Female (2)

o Non-binary / third gender (3)

o Prefer not to say (4)

 90

[student]
Are you currently a student in a University/College?

o Yes (1)

o No (2)

[participantID]
What is your Participant-ID?

__

End of Block: Demographics

Start of Block: Game Instruction

[explanation]
 Experimental Set-Up: In the game, you will see the TRUE category in the box on the left and the FALSE category in the box on the right. These categories remain the same
during the entire experiment. In the lower half of the screen, you'll see a stack of cards. Once you tap one of the cards, it will be revealed and can then be pushed to one of the
sides. For each card reveal, you will see one of three different robots. The robots display different skills and behaviors. After you have dropped the statement into one of the
categories, you will see a different robot. Note that you will not see the same robot for two questions in a row. In total, you have to categorize 90 statements for this game. Before
you start the game, you can do a test round with 6 statements. For testing and the very first card, you will not see the robot but a black box which displays the text "ready?!" How
the game works: As mentioned above, you can see two categories, TRUE and FALSE, on your left and right sides. In the game, your task is to classify the revealing cards. A card
is revealed when you touch on the stack of cards. When you consider the statement to be true, move it to the left category. When you consider the statement to be false, move it to
the right category. Before you move a card, try to build eye contact with the robot and be attentive to the robots behavioral cues. Important: There's no time limit on the game.
However, you should try to categorize each statement as quickly as possible, so do not overthink too much and try to listen to your intuition. For us, it is more important to see how
you interact with the robot and maintain eye contact during the game rather than how you scored in the game. Try to create eye-contact with the robot after each card reveal.
Note: The robots beliefs can be based on a random belief model, so you have to decide whether you trust the robot or not.

End of Block: Game Instruction

Start of Block: Robot_Introduction

[RobotIntroduction]
As mentioned above, you will play the game together with 3 different robots, that have different skills. The robots that you will meet in the game are Carl, Ryan and Ivan. Take a
moment and have a look on the pictures to get familiar with them. After that, go to the next page. The robots can look a little bit similar, so try to remember some of the differences
from these pictures. During the game, you will also see the name of each robot in the top left corner. Your goal is to interact with each of the robots during the game. This
is Carl: This is Ryan: And this is Ivan:

End of Block: Robot_Introduction

Start of Block: ready1

You can start the experiment now. Please tell the researcher that you are ready before you continue with this questionnaire!

End of Block: ready1

Start of Block: finishGame

Thanks for your participation in the experimental game. In the following minutes, we will ask you for your perception on the 3 robots. There is no right or wrong. Simply share
your own intuition and perception of the robots regarding the questions and statements. Please go to the next page when you are ready.

End of Block: finishGame

Start of Block: Carl_evaluation

Lets start with Carl: Please rate your overall impression of Carl based on the following descriptive words. For each pair of words, please indicate where you feel Carl falls on the
spectrum between them.

 91

[anthropomorphism]
How did you perceive Carl on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Fake o o o o o Natural

Machinelike o o o o o Humanlike

Unconscious o o o o o Conscious

Artificial o o o o o Lifelike

Moving rigidly o o o o o Moving elegantly

[likability]
How did you perceive Carl on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Dislike o o o o o Like

Unfriendly o o o o o Friendly

Unkind o o o o o Kind

Unpleasant o o o o o Pleasant

Awful o o o o o Nice

 92

[intelligence]
How did you perceive Carl on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Incompetent o o o o o Competent

Ignorant o o o o o Knowledgeable

Irresponsive o o o o o Responsible

Unintelligent o o o o o Intelligent

Foolish o o o o o Sensible

 93

[trust]
Please rate your agreement with the following statements about Carl:

 Strongly
Disagree (1) Disagree (2) Somewhat

Disagree (3) Neutral (4) Somewhat Agree
(5) Agree (6) Strongly Agree

(7)

The robot
functions

successfully. (1) o o o o o o o
The robot acts
consistently (2) o o o o o o o

The robot is
reliable (3) o o o o o o o
The robot is

predictable. (4) o o o o o o o
The robot is

dependable. (5) o o o o o o o
The robot follows

directions. (6) o o o o o o o
The robot meets
the needs of the

mission. (7) o o o o o o o
The robot

performs exactly
as instructed. (8) o o o o o o o

The robot has
errors (9) o o o o o o o
The robot
provides

appropriate
information. (10) o o o o o o o

The robot
malfunctions.

(11) o o o o o o o
The robot

communicates
with people. (12) o o o o o o o

The robot
provides

feedback. (13) o o o o o o o
The robot is

unresponsive.
(14) o o o o o o o

End of Block: Carl_evaluation

Start of Block: Ryan_evaluation

Lets continue with Ryan:Please rate your overall impression of Ryan based on the following descriptive words. For each pair of words, please indicate where you feel Ryan falls
on the spectrum between them.

 94

[anthropomorphism]
How did you perceive Ryan on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Fake o o o o o Natural

Machinelike o o o o o Humanlike

Unconscious o o o o o Conscious

Artificial o o o o o Lifelike

Moving rigidly o o o o o Moving elegantly

[likability]
How did you perceive Ryan on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Dislike o o o o o Like

Unfriendly o o o o o Friendly

Unkind o o o o o Kind

Unpleasant o o o o o Pleasant

Awful o o o o o Nice

 95

[intelligence]
How did you perceive Ryan on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Incompetent o o o o o Competent

Ignorant o o o o o Knowledgeable

Irresponsive o o o o o Responsible

Unintelligent o o o o o Intelligent

Foolish o o o o o Sensible

 96

[trust]
Please rate your agreement with the following statements about Ryan:

 Strongly
Disagree (1) Disagree (2) Somewhat

Disagree (3) Neutral (4) Somewhat Agree
(5) Agree (6) Strongly Agree

(7)

The robot
functions

successfully. (1) o o o o o o o
The robot acts
consistently (2) o o o o o o o

The robot is
reliable (3) o o o o o o o
The robot is

predictable. (4) o o o o o o o
The robot is

dependable. (5) o o o o o o o
The robot follows

directions. (6) o o o o o o o
The robot meets
the needs of the

mission. (7) o o o o o o o
The robot

performs exactly
as instructed. (8) o o o o o o o

The robot has
errors (9) o o o o o o o
The robot
provides

appropriate
information. (10) o o o o o o o

The robot
malfunctions.

(11) o o o o o o o
The robot

communicates
with people. (12) o o o o o o o

The robot
provides

feedback. (13) o o o o o o o
The robot is

unresponsive.
(14) o o o o o o o

End of Block: Ryan_evaluation

Start of Block: Ivan_evaluation

Lets continue with Ivan: Please rate your overall impression of Ivan based on the following descriptive words. For each pair of words, please indicate where you feel Ivan falls on
the spectrum between them.

 97

[anthropomorphism]
How did you perceive Ivan on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Fake o o o o o Natural

Machinelike o o o o o Humanlike

Unconscious o o o o o Conscious

Artificial o o o o o Lifelike

Moving rigidly o o o o o Moving elegantly

[likability]
How did you perceive Ivan on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Dislike o o o o o Like

Unfriendly o o o o o Friendly

Unkind o o o o o Kind

Unpleasant o o o o o Pleasant

Awful o o o o o Nice

 98

[intelligence]
How did you perceive Ivan on the following spectra:

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5)

Incompetent o o o o o Competent

Ignorant o o o o o Knowledgeable

Irresponsive o o o o o Responsible

Unintelligent o o o o o Intelligent

Foolish o o o o o Sensible

 99

[trust]
Please rate your agreement with the following statements about Ivan:

 Strongly
Disagree (1) Disagree (2) Somewhat

Disagree (3) Neutral (4) Somewhat
Agree (5) Agree (6) Strongly Agree

(7)

The robot
functions

successfully.
(1) o o o o o o o

The robot acts
consistently (2) o o o o o o o

The robot is
reliable (3) o o o o o o o
The robot is

predictable. (4) o o o o o o o
The robot is

dependable. (5) o o o o o o o
The robot
follows

directions. (6) o o o o o o o
The robot

meets the needs
of the mission.

(7) o o o o o o o
The robot
performs
exactly as

instructed. (8) o o o o o o o
The robot has

errors (9) o o o o o o o
The robot
provides

appropriate
information.

(10)
o o o o o o o

The robot
malfunctions.

(11) o o o o o o o
The robot

communicates
with people.

(12) o o o o o o o
The robot
provides

feedback. (13) o o o o o o o
The robot is

unresponsive.
(14) o o o o o o o

End of Block: Ivan_evaluation

 100

Appendix 7.

Included Data Analysis Scripts.

Note. The Data Analysis Scripts should be also find online using the links or barcodes provided
in Appendix 3.

Python Script for Data Cleaning and Transformation for the Post-Questionnaire Qualtrics Data

import pandas as pd
import numpy as np
import re

--- Configuration ---
Input file from the original first script
INPUT_CSV_FILE = 'qualtrics_questionnaire.csv'
Final output file from the original second script
OUTPUT_CSV_FILE = 'qualtrics_data_final.csv'

--- Part 1: Configuration from the first script ---
Define the initial columns you absolutely want to keep by their base name
INITIAL_COLS_TO_KEEP = [
 'understandingStudy', 'voluntaryConsent', 'understandingDesign',
 'publication', 'dataStoring', 'Age', 'residence', 'gender',
 'student', 'participantID'
]

Likert scale mapping for TRUST variables
LIKERT_MAPPING_TRUST = {
 "Strongly Disagree": 1,
 "Disagree": 2,
 "Somewhat Disagree": 3,
 "Neutral": 4,
 "Somewhat Agree": 5,
 "Agree": 6,
 "Strongly Agree": 7
}

Base names of TRUST items to be reverse-coded
TRUST_ITEMS_TO_REVERSE = ['trust_9', 'trust_11', 'trust_14']

--- Part 2: Configuration from the second script ---
Manual override for column types during imputation.
Set to a list of column names to override auto-detection, otherwise leave as None.
MANUAL_NUMERIC_COLS = None

 101

MANUAL_CATEGORICAL_COLS = None

--- Helper Functions (from Script 1) ---
def clean_column_name(col_name):
 """Cleans a column name by stripping whitespace and replacing non-breaking spaces."""
 if pd.isna(col_name):
 return f"Unnamed_Column_{pd.Timestamp.now().nanosecond}"
 return str(col_name).strip().replace('\xa0', ' ')

def generate_new_column_names(original_headers, metadata_row_values):
 """Generates new, unique column names based on metadata."""
 cleaned_original_headers = [clean_column_name(h) for h in original_headers]
 pid_cleaned_name = clean_column_name('participantID')

 try:
 pid_idx = cleaned_original_headers.index(pid_cleaned_name)
 except ValueError:
 print(f"CRITICAL ERROR: '{pid_cleaned_name}' column not found in the CSV headers.
Cannot proceed.")
 return None

 new_names = []
 for i, name in enumerate(cleaned_original_headers):
 new_name = name
 if i > pid_idx:
 metadata_str = str(metadata_row_values[i]).lower()
 suffix = ""
 if "carl" in metadata_str: suffix = "_carl"
 elif "ryan" in metadata_str: suffix = "_ryan"
 elif "ivan" in metadata_str: suffix = "_ivan"
 if suffix: new_name = name + suffix
 new_names.append(new_name)

 # Ensure final names are unique by appending .1, .2, etc. if needed
 final_unique_names = []
 counts = {}
 for name in new_names:
 if name not in counts:
 counts[name] = 0
 final_unique_names.append(name)
 else:
 counts[name] += 1
 final_unique_names.append(f"{name}.{counts[name]}")

 return final_unique_names

 102

--- Processing Functions (from Script 1) ---
def convert_likert_scales(df, column_prefix, mapping):
 """Converts columns with Likert scale text to numeric values."""
 print(f"\n--- Converting Likert Scales for columns starting with '{column_prefix}' ---")
 converted_cols_count = 0
 for col in df.columns:
 if str(col).lower().startswith(column_prefix.lower()):
 print(f" Converting column: {col}")
 df[col] = df[col].astype(str).map(mapping)
 df[col] = pd.to_numeric(df[col], errors='coerce')
 converted_cols_count += 1
 if df[col].isnull().any():
 print(f" Note: Some values in '{col}' became NaN (could not be mapped or were
already NaN).")
 if converted_cols_count == 0:
 print(f" No columns found starting with '{column_prefix}' for Likert conversion.")
 else:
 print(f" Successfully attempted Likert conversion for {converted_cols_count} columns.")
 return df

def reverse_code_items(df, items_to_reverse_bases, scale_min=1, scale_max=7):
 """Reverse codes specified numeric columns based on a scale."""
 print("\n--- Reverse Coding Specific Trust Items ---")
 reverse_value = scale_min + scale_max
 reversed_cols_found_count = 0

 for col in df.columns:
 for base_item in items_to_reverse_bases:
 # Regex to match base_item, optional suffix, and optional duplicate number (.1)
 pattern = rf"^{re.escape(base_item)}(_carl|_ryan|_ivan)?(\.\d+)?$"
 if re.match(pattern, str(col).lower()):
 if pd.api.types.is_numeric_dtype(df[col]):
 if df[col].notna().any():
 print(f" Reverse coding column: {col} (Original mean: {df[col].mean():.2f})")
 df[col] = reverse_value - df[col]
 print(f" New mean for {col}: {df[col].mean():.2f}")
 else:
 print(f" Column {col} contains all NaNs, skipping reverse coding logic.")
 reversed_cols_found_count += 1
 else:
 print(f" Warning: Column '{col}' identified for reverse coding is not numeric.
Skipping.")
 break

 if reversed_cols_found_count == 0:
 print(" No columns found matching the criteria for reverse coding.")

 103

 else:
 print(f" Successfully attempted reverse coding for {reversed_cols_found_count}
columns.")
 return df

def reorder_columns(df, first_col_name_base):
 """Moves a specified column to the first position in the DataFrame."""
 print(f"\n--- Reordering Columns to make '{first_col_name_base}' first ---")
 target_first_col_final_name = None
 cleaned_first_col_base = clean_column_name(first_col_name_base)

 if cleaned_first_col_base in df.columns:
 target_first_col_final_name = cleaned_first_col_base
 else:
 for col_name_in_df in df.columns:
 if str(col_name_in_df).startswith(cleaned_first_col_base):
 target_first_col_final_name = col_name_in_df
 print(f" Found '{first_col_name_base}' as column '{target_first_col_final_name}'.")
 break

 if target_first_col_final_name and target_first_col_final_name in df.columns:
 cols = [target_first_col_final_name] + [col for col in df.columns if col !=
target_first_col_final_name]
 df = df[cols]
 print(f" Column '{target_first_col_final_name}' moved to the first position.")
 else:
 print(f" Warning: Column based on '{first_col_name_base}' not found. No reordering
done.")
 return df

--- Imputation Functions (from Script 2) ---
def report_missing_values(df, title="Missing Value Report"):
 """Prints a report of missing values (count and percentage) for each column."""
 print(f"\n--- {title} ---")
 missing_count = df.isnull().sum()
 missing_percentage = (missing_count / len(df)) * 100
 missing_df = pd.DataFrame({
 'Missing Count': missing_count,
 'Missing Percentage (%)': missing_percentage
 })
 missing_df = missing_df[missing_df['Missing Count'] > 0].sort_values(by='Missing
Percentage (%)', ascending=False)

 if missing_df.empty:
 print("No missing values found in the dataset.")
 else:

 104

 print(missing_df)
 return missing_df

def impute_missing_data(df, numeric_cols_override=None, categorical_cols_override=None):
 """Imputes missing data: median for numeric, mode for categorical."""
 print("\n--- Starting Data Imputation ---")
 df_imputed = df.copy()

 # Determine numeric columns for imputation
 if numeric_cols_override is not None:
 numeric_cols = [col for col in numeric_cols_override if col in df_imputed.columns]
 print(f"Using manually specified numeric columns: {numeric_cols}")
 else:
 numeric_cols = df_imputed.select_dtypes(include=np.number).columns.tolist()
 print(f"Auto-detected numeric columns for imputation: {numeric_cols}")

 # Determine categorical/object columns for imputation
 if categorical_cols_override is not None:
 categorical_cols = [col for col in categorical_cols_override if col in df_imputed.columns]
 print(f"Using manually specified categorical columns: {categorical_cols}")
 else:
 all_cols = df_imputed.columns.tolist()
 categorical_cols = [col for col in all_cols if col not in numeric_cols]
 print(f"Auto-detecting categorical/object columns (all non-numeric): {categorical_cols}")

 # Impute numeric columns with MEDIAN
 for col in numeric_cols:
 if df_imputed[col].isnull().any():
 median_val = df_imputed[col].median()
 df_imputed[col].fillna(median_val, inplace=True)
 print(f" Numeric column '{col}': Imputed NaNs with median ({median_val:.2f})")

 # Impute categorical/object columns with MODE
 for col in categorical_cols:
 if df_imputed[col].isnull().any():
 if df_imputed[col].dtype == 'object' or
pd.api.types.is_categorical_dtype(df_imputed[col]):
 mode_val = df_imputed[col].mode()
 if not mode_val.empty:
 mode_val = mode_val[0]
 df_imputed[col].fillna(mode_val, inplace=True)
 print(f" Categorical column '{col}': Imputed NaNs with mode ('{mode_val}')")
 else:
 print(f" Categorical column '{col}': Mode could not be determined. NaNs remain.")
 else:
 print(f" Skipping imputation for '{col}' as it is not an object/category type.")

 105

 print("--- Imputation Attempt Finished ---")
 return df_imputed

--- Main Script Execution ---
def main():
 print(f"--- Starting Full Pipeline: Processing {INPUT_CSV_FILE} ---")

 #
===
====
 # STAGE 1: DATA LOADING AND CLEANING (from Script 1)
 #
===
====
 try:
 df_headers = pd.read_csv(INPUT_CSV_FILE, header=None, nrows=1, encoding='utf-8')
 original_headers = df_headers.iloc[0].tolist()
 df_metadata_row = pd.read_csv(INPUT_CSV_FILE, header=None, nrows=1,
skiprows=[0], encoding='utf-8')
 metadata_row_values = df_metadata_row.iloc[0].tolist()
 except FileNotFoundError:
 print(f"Error: Input file '{INPUT_CSV_FILE}' not found.")
 return
 except Exception as e:
 print(f"Error reading header/metadata rows: {e}")
 return

 final_column_names = generate_new_column_names(original_headers,
metadata_row_values)
 if final_column_names is None: return

 try:
 df_data = pd.read_csv(INPUT_CSV_FILE, header=None, skiprows=2,
names=final_column_names, encoding='utf-8', dtype=str, keep_default_na=False)
 except Exception as e:
 print(f"Error reading main data: {e}")
 return

 df_data.replace('', np.nan, inplace=True)
 print(f"\nDataFrame loaded with {df_data.shape[0]} data rows and {df_data.shape[1]}
columns.")

 # --- Column Selection ---
 columns_to_keep_final = []
 initial_cols_cleaned = [clean_column_name(col) for col in INITIAL_COLS_TO_KEEP]

 106

 original_headers_cleaned_for_selection = [clean_column_name(h) for h in original_headers]

 for initial_col_name_to_find in initial_cols_cleaned:
 found_in_original = False
 for i, original_cleaned_h in enumerate(original_headers_cleaned_for_selection):
 if original_cleaned_h == initial_col_name_to_find:
 if final_column_names[i] not in columns_to_keep_final:
 columns_to_keep_final.append(final_column_names[i])
 found_in_original = True
 break
 if not found_in_original:
 print(f"Warning during selection: Initial column '{initial_col_name_to_find}' was not
found.")

 pid_original_cleaned_name = clean_column_name('participantID')
 try:
 pid_original_idx =
original_headers_cleaned_for_selection.index(pid_original_cleaned_name)
 for i in range(pid_original_idx, len(final_column_names)):
 if final_column_names[i] not in columns_to_keep_final:
 columns_to_keep_final.append(final_column_names[i])
 except ValueError:
 print(f"CRITICAL ERROR: Original '{pid_original_cleaned_name}' column not found.")
 return

 print(f"\nColumns selected (count: {len(columns_to_keep_final)}):
{str(columns_to_keep_final[:10])[:200]}...")

 try:
 df_selected = df_data[columns_to_keep_final].copy()
 except KeyError as e:
 print(f"KeyError during final column selection: {e}.")
 return

 print(f"Shape after column selection: {df_selected.shape}")

 # --- Data Processing ---
 df_processed = convert_likert_scales(df_selected, "trust", LIKERT_MAPPING_TRUST)
 df_processed = reverse_code_items(df_processed, TRUST_ITEMS_TO_REVERSE)
 df_processed_reordered = reorder_columns(df_processed, 'participantID')

 # --- Remove first data row ---
 if not df_processed_reordered.empty:
 print("\n--- Removing the first data row (metadata/test row) ---")
 df_processed_final = df_processed_reordered.iloc[1:].reset_index(drop=True)
 print(f"Shape after removing first data row: {df_processed_final.shape}")

 107

 else:
 print("\nDataFrame is empty prior to removal of the first data row.")
 df_processed_final = df_processed_reordered

 #
===
====
 # STAGE 2: DATA IMPUTATION (from Script 2)
 #
===
====

 # Initial missing value report on the processed data
 report_missing_values(df_processed_final, title="Missing Value Report (Before Imputation)")

 # Perform imputation
 df_imputed = impute_missing_data(df_processed_final,
 numeric_cols_override=MANUAL_NUMERIC_COLS,
 categorical_cols_override=MANUAL_CATEGORICAL_COLS)

 # Final missing value report after imputation
 report_missing_values(df_imputed, title="Missing Value Report (After Imputation)")

 #
===
====
 # STAGE 3: SAVE FINAL OUTPUT
 #
===
====
 try:
 df_imputed.to_csv(OUTPUT_CSV_FILE, index=False, encoding='utf-8')
 print(f"\nSuccessfully saved final data to '{OUTPUT_CSV_FILE}'.")
 print(f"Final shape of saved data: {df_imputed.shape}")
 print(f"Final columns (first 10): {list(df_imputed.columns)[:10]}")
 print("\nFirst 5 rows of the final imputed data:")
 print(df_imputed.head())

 # Final info and stats
 print("\nInfo for final data:")
 df_imputed.info()
 trust_cols_final = [col for col in df_imputed.columns if str(col).lower().startswith('trust')
and pd.api.types.is_numeric_dtype(df_imputed[col])]
 if trust_cols_final:
 print("\nDescriptive statistics for numeric 'trust' columns in the final data:")
 print(df_imputed[trust_cols_final].describe())

 108

 except Exception as e:
 print(f"\nError saving final imputed data to CSV: {e}")

if __name__ == '__main__':
 main()

 109

Python Script for Data Cleaning and Transformation from the Performance and Gaze Following
Data

Import necessary libraries
import os
import glob
import pandas as pd

Define the path to the folder containing the gaze log files
Assumes the 'gaze_logs' folder is in the same directory as the script
folder_path = 'gaze_logs'

Define the pattern for the gaze log files
It looks for files starting with 'gaze_log_p' and ending with '.csv'
file_pattern = os.path.join(folder_path, 'gaze_log_p*.csv')

Find all files in the folder that match the pattern
all_files = glob.glob(file_pattern)

Check if any files were found
if not all_files:
 print(f"No files matching the pattern '{file_pattern}' found in the folder '{folder_path}'.")
else:
 print(f"Found {len(all_files)} files to combine:")
 for f in all_files:
 print(f" - {os.path.basename(f)}")

 # Initialize an empty list to hold DataFrames
 list_of_dfs = []

 # Loop through the list of files found
 for filename in all_files:
 try:
 # Read the current CSV file into a DataFrame
 df = pd.read_csv(filename, index_col=None, header=0)
 # Add the DataFrame to the list
 list_of_dfs.append(df)
 print(f"Successfully read {os.path.basename(filename)}")
 except Exception as e:
 print(f"Error reading {os.path.basename(filename)}: {e}")

 # Check if any DataFrames were successfully read
 if not list_of_dfs:
 print("No dataframes were created. Cannot proceed.")
 else:
 # Concatenate all DataFrames in the list into a single DataFrame

 110

 combined_df = pd.concat(list_of_dfs, axis=0, ignore_index=True)

 # Define the name for the output file
 output_filename = 'total_gaze.csv'

 # Save the combined DataFrame to a new CSV file
 try:
 combined_df.to_csv(output_filename, index=False)
 print(f"\nSuccessfully combined {len(list_of_dfs)} files into '{output_filename}'.")
 print(f"The combined file has {combined_df.shape[0]} rows and
{combined_df.shape[1]} columns.")
 except Exception as e:
 print(f"Error writing the combined file '{output_filename}': {e}")

 111

Python Script for Data Cleaning and Data Transformation of the Eye-tracking Data

#!/usr/bin/env python3
import pandas as pd
import os
import re
from pathlib import Path

--- MASTER CONFIGURATION ---
=== Inputs ===
Directory for original eye-tracking TSV files (from script 1)
EYETRACKING_INPUT_DIR = Path('eyetracking_files')
Directory for gaze log CSV files (from script 2)
GAZE_LOG_DIR = Path('gaze_files')

=== Output ===
Final combined CSV file name (from script 3)
FINAL_OUTPUT_CSV = "combined_eyetracking_data.csv"

=== Processing Parameters (from scripts 1 & 2) ===
Main AOI categories to look for in eye-tracking data
AOI_CATEGORIES = [
 'cards', 'eyes', 'face', 'false_category',
 'robot', 'robot_name', 'true_category'
]

Columns needed for timestamp calculation
TIMESTAMP_COLUMNS = ['Recording date UTC', 'Recording start time UTC', 'Recording
timestamp']

Columns from gaze_log files essential for processing
BASE_REQUIRED_GAZE_COLS = ['timestamp', 'move_duration', 'participant']

Additional columns from gaze_log to merge into the final output
GAZE_COLS_TO_MERGE = [
 'difficulty', 'correct_answer', 'correct_side',
 'participants_side_choice', 'Robot', 'gazeDecision'
]

Define the EXACT final columns for the output file
FINAL_OUTPUT_COLUMNS = [
 'Eyetracker timestamp', 'Gaze point X (MCSnorm)', 'Gaze point Y (MCSnorm)',
 'Pupil diameter left', 'Pupil diameter right', 'Validity left', 'Validity right',
 'Eye movement type', 'Eye movement event duration',
 'Fixation point X (MCSnorm)', 'Fixation point Y (MCSnorm)',
 'Event', 'Event value', 'Mouse position X', 'Mouse position Y',

 112

 'ts_utc',
 'is_cards', 'is_eyes', 'is_face', 'is_false_category', 'is_robot',
 'is_robot_name', 'is_true_category', 'active_areas',
 'ParticipantID',
 'classification_timeframe_number',
 'robot_appearance_timeframe_number'
] + GAZE_COLS_TO_MERGE

--- HELPER & PROCESSING FUNCTIONS (Combined from all scripts) ---

def get_participant_id_from_filename(filename_str):
 """Extracts participant ID (e.g., 'p1') from a filename."""
 match = re.search(r'_p(\d+)', filename_str)
 if match:
 return f"p{match.group(1)}"
 match_direct = re.match(r'p(\d+)', Path(filename_str).stem.split('_')[-1])
 if match_direct:
 return f"p{match_direct.group(1)}"
 return Path(filename_str).stem

def add_aoi_columns(df, aoi_categories_list):
 """
 (From Script 1) Adds boolean AOI and 'active_areas' columns to a DataFrame in memory.
 """
 print(" Step 1a: Processing AOI categories to create boolean flags...")
 for category in aoi_categories_list:
 # Regex to find the column for a specific AOI category
 regex_pattern = re.compile(f"AOI hit \\[Web Page Recording.*? - {re.escape(category)}\\]",
re.IGNORECASE)

 potential_aoi_columns = [col for col in df.columns if regex_pattern.fullmatch(col)]
 selected_column_for_category = None

 if potential_aoi_columns:
 for col_name in potential_aoi_columns:
 # Check if the column has any non-null, non-zero data
 if df[col_name].notna().any():
 series_numeric = pd.to_numeric(df[col_name], errors='coerce')
 if series_numeric[series_numeric.notna()].astype(bool).any():
 selected_column_for_category = col_name
 break

 bool_col_name = f"is_{category}"
 if selected_column_for_category:
 numeric_series = pd.to_numeric(df[selected_column_for_category], errors='coerce')

 113

 df[bool_col_name] = numeric_series.notna() & numeric_series.astype(bool)
 print(f" - Created boolean column '{bool_col_name}' from
'{selected_column_for_category}'.")
 else:
 df[bool_col_name] = False
 print(f" - No active AOI column found for '{category}'. '{bool_col_name}' set to
False.")

 # Create 'active_areas' column
 def determine_active_areas(row):
 active_names = [cat for cat in aoi_categories_list if row.get(f"is_{cat}", False)]
 return ", ".join(active_names) if active_names else pd.NA

 df['active_areas'] = df.apply(determine_active_areas, axis=1)
 print(" - Generated 'active_areas' column.")
 return df

def process_single_participant(participant_id, raw_tobii_filepath, gaze_log_filepath):
 """
 (Combines logic from scripts 1 & 2)
 Processes a single participant's data from raw files to a final, merged DataFrame.
 Returns a DataFrame for one participant, or None if an error occurs.
 """
 print(f"\n--- Processing Participant: {participant_id} ---")

 # 1. LOAD GAZE LOG DATA (from Script 2)
 print(f" Loading gaze log: {gaze_log_filepath.name}")
 try:
 gaze_df = pd.read_csv(gaze_log_filepath)
 # Check for essential columns
 if any(col not in gaze_df.columns for col in BASE_REQUIRED_GAZE_COLS):
 print(f" Error: Gaze log is missing one of required columns:
{BASE_REQUIRED_GAZE_COLS}. Skipping.")
 return None
 participant_id_col = int(gaze_df['participant'].dropna().iloc[0])
 except Exception as e:
 print(f" Error reading or parsing gaze log file {gaze_log_filepath.name}: {e}. Skipping.")
 return None

 # Ensure all columns to be merged exist, adding them as NA if not
 for col in GAZE_COLS_TO_MERGE:
 if col not in gaze_df.columns:
 gaze_df[col] = pd.NA

 # 2. DEFINE TIMEFRAMES FROM GAZE LOG (from Script 2)
 print(" Step 1b: Defining timeframes from gaze log...")

 114

 try:
 gaze_df['ts_utc'] = pd.to_datetime(gaze_df['timestamp'], utc=True, errors='coerce')
 gaze_df['move_duration'] = pd.to_numeric(gaze_df['move_duration'], errors='coerce')
 gaze_df.dropna(subset=['ts_utc', 'move_duration'], inplace=True)
 gaze_df = gaze_df.sort_values('ts_utc').reset_index(drop=True)

 gaze_df['classification_time_start'] = gaze_df['ts_utc']
 gaze_df['classification_time_end'] = gaze_df['ts_utc'] +
pd.to_timedelta(gaze_df['move_duration'], unit='s')
 gaze_df['classification_timeframe_number_val'] = range(1, len(gaze_df) + 1)

 gaze_df['robot_appearance_time_start'] = gaze_df['classification_time_end'].shift(1)
 gaze_df['robot_appearance_time_end'] = gaze_df['classification_time_end']
 gaze_df['robot_appearance_timeframe_number_val'] = range(1, len(gaze_df) + 1)

 gaze_df.dropna(subset=['classification_time_start', 'classification_time_end',
'robot_appearance_time_end'], inplace=True)
 if gaze_df.empty:
 print(" Error: No valid timeframes could be defined from gaze log. Skipping.")
 return None

 overall_start = gaze_df['classification_time_start'].min()
 overall_end = gaze_df['classification_time_end'].max()
 except Exception as e:
 print(f" Error defining timeframes for {participant_id}: {e}. Skipping.")
 return None

 # 3. LOAD & PROCESS RAW EYE-TRACKING DATA (combining scripts 1 & 2)
 print(f" Loading raw eye-tracking data: {raw_tobii_filepath.name}")
 try:
 et_df = pd.read_csv(raw_tobii_filepath, sep='\t', low_memory=False)
 if any(col not in et_df.columns for col in TIMESTAMP_COLUMNS):
 print(f" Error: Eye-tracking file is missing timestamp columns:
{TIMESTAMP_COLUMNS}. Skipping.")
 return None
 except Exception as e:
 print(f" Error reading eye-tracking file {raw_tobii_filepath.name}: {e}. Skipping.")
 return None

 # Perform in-memory processing from Script 1
 et_df = add_aoi_columns(et_df, AOI_CATEGORIES)

 # Calculate timestamps (from Script 2)
 print(" Step 2: Calculating precise timestamps (ts_utc)...")
 try:
 et_df['start_dt_utc'] = pd.to_datetime(

 115

 et_df['Recording date UTC'] + ' ' + et_df['Recording start time UTC'],
 format='%d-%m-%Y %H:%M:%S.%f', utc=True, errors='coerce'
)
 et_df['ts_utc'] = et_df['start_dt_utc'] + pd.to_timedelta(
 pd.to_numeric(et_df['Recording timestamp'], errors='coerce'), unit='us'
)
 et_df.dropna(subset=['ts_utc'], inplace=True)
 et_df = et_df.sort_values('ts_utc').reset_index(drop=True)
 except Exception as e:
 print(f" Error calculating timestamps for {participant_id}: {e}. Skipping.")
 return None

 # 4. FILTER, MAP & MERGE (from Script 2)
 print(f" Step 3: Filtering eye-tracking data to range: {overall_start} to {overall_end}")
 et_df_filtered = et_df[
 (et_df['ts_utc'] >= overall_start) & (et_df['ts_utc'] < overall_end)
].copy()

 if et_df_filtered.empty:
 print(f" Warning: No eye-tracking data found within the defined timeframes for
{participant_id}.")
 return None

 print(" Step 4: Mapping eye-tracking samples to timeframe numbers...")
 et_df_filtered['classification_timeframe_number'] = pd.NA
 et_df_filtered['robot_appearance_timeframe_number'] = pd.NA

 for _, event_row in gaze_df.iterrows():
 # Map classification timeframe
 ct_mask = (et_df_filtered['ts_utc'] >= event_row['classification_time_start']) &
(et_df_filtered['ts_utc'] < event_row['classification_time_end'])
 et_df_filtered.loc[ct_mask, 'classification_timeframe_number'] =
event_row['classification_timeframe_number_val']

 # Map robot appearance timeframe
 if pd.notna(event_row['robot_appearance_time_start']):
 rat_mask = (et_df_filtered['ts_utc'] >= event_row['robot_appearance_time_start']) &
(et_df_filtered['ts_utc'] < event_row['robot_appearance_time_end'])
 et_df_filtered.loc[rat_mask, 'robot_appearance_timeframe_number'] =
event_row['robot_appearance_timeframe_number_val']

 et_df_filtered['ParticipantID'] = participant_id_col

 # Merge additional data from gaze log
 gaze_to_merge = gaze_df[['classification_timeframe_number_val'] +
GAZE_COLS_TO_MERGE].rename(

 116

 columns={'classification_timeframe_number_val': 'classification_timeframe_number'}
)
 final_df = pd.merge(et_df_filtered, gaze_to_merge, on='classification_timeframe_number',
how='left')

 # 5. FINALIZE AND RETURN
 # Ensure all required columns exist and are in the correct order
 for col in FINAL_OUTPUT_COLUMNS:
 if col not in final_df.columns:
 final_df[col] = pd.NA

 print(f" Successfully processed participant {participant_id}. Found {len(final_df)} data
rows.")
 return final_df[FINAL_OUTPUT_COLUMNS]

--- SCRIPT EXECUTION ---
if __name__ == "__main__":
 # Validate input directories
 if not EYETRACKING_INPUT_DIR.is_dir():
 print(f"Error: Eye-tracking input directory not found: {EYETRACKING_INPUT_DIR}")
 exit()
 if not GAZE_LOG_DIR.is_dir():
 print(f"Error: Gaze log directory not found: {GAZE_LOG_DIR}")
 exit()

 # Find gaze logs to drive the processing
 gaze_log_files = list(GAZE_LOG_DIR.glob("gaze_log_p*.csv"))
 if not gaze_log_files:
 print(f"No gaze log files found in {GAZE_LOG_DIR} matching 'gaze_log_p*.csv'.")
 exit()

 print(f"Found {len(gaze_log_files)} participant gaze logs to process.")

 all_participants_data = []

 # Main loop to process each participant
 for gaze_filepath in gaze_log_files:
 p_id = get_participant_id_from_filename(gaze_filepath.name)
 if not p_id:
 print(f"Could not extract participant ID from gaze file: {gaze_filepath.name}. Skipping.")
 continue

 # Find the matching raw eye-tracking file
 tobii_filepath = EYETRACKING_INPUT_DIR / f"eyetracking_{p_id}.tsv"
 if not tobii_filepath.exists():

 117

 print(f"Warning: Matching eye-tracking file not found for {p_id} at {tobii_filepath}.
Skipping.")
 continue

 try:
 # Process this participant's data
 participant_df = process_single_participant(p_id, tobii_filepath, gaze_filepath)

 # If processing was successful, add the resulting DataFrame to our list
 if participant_df is not None and not participant_df.empty:
 all_participants_data.append(participant_df)
 except Exception as e:
 print(f"CRITICAL UNHANDLED ERROR processing participant {p_id}: {e}")
 import traceback
 traceback.print_exc()

 # Final combination step (from Script 3)
 if not all_participants_data:
 print("\n--- Processing Finished: No data was successfully processed for any participant. ---
")
 else:
 print(f"\n--- Combining data from {len(all_participants_data)} successfully processed
participants... ---")
 try:
 # Concatenate all the individual DataFrames into one master DataFrame
 master_df = pd.concat(all_participants_data, ignore_index=True)

 # Save the final combined data to a CSV file
 master_df.to_csv(FINAL_OUTPUT_CSV, sep=',', index=False, na_rep='NaN')

 print(f"\n✅ Success! Combined data saved to: '{FINAL_OUTPUT_CSV}'")
 print(f" The final dataset has {master_df.shape[0]} rows and {master_df.shape[1]}
columns.")
 print("\n--- First 5 rows of the final combined data ---")
 print(master_df.head())
 except Exception as e:
 print(f"Error during final combination or saving: {e}")

 118

R Script for Performance Analysis

Script: statistics_performance_analysis.R
Purpose: Load raw trial-level data (totalgaze.csv), process variables
for task performance (score, move duration), calculate extensive
descriptive statistics, conduct outlier checks for move duration.
Aggregate key performance DVs per participant per condition,
check ANOVA assumptions, perform 3x2 repeated measures ANOVA,
and visualize final results.

UPDATED: This script now filters move_duration outliers based on a
2.5 SD rule per participant, analyzes accuracy as a percentage,
and generates a final bar chart for accuracy results.

UPDATED AGAIN: Robot conditions renamed and reordered. Plots are now grouped
by difficulty within each robot condition.

--- 1. SETUP: Load Necessary Packages ---
install.packages(c("tidyverse", "patchwork", "scales", "rstatix", "ggpubr", "emmeans"))

library(tidyverse)
library(patchwork)
library(scales)
library(rstatix)
library(ggpubr)
library(emmeans)

--- 2. LOAD DATA ---
file_path <- "totalgaze.csv"
data_raw <- NULL

cat(paste0("--- Attempting to load '", file_path, "' ---\n"))
tryCatch({
 data_raw <- read_csv(file_path)
 cat(paste0("--- Successfully loaded '", file_path, "'. ---\n"))
}, error = function(e) {
 cat(paste0("--- ERROR: Could not load '", file_path, "'. ---\n"))
 cat("Error message: ", e$message, "\n")
})

 119

if (is.null(data_raw)) {
 stop("Script cannot proceed because data_raw was not loaded.")
}

cat("\n--- Initial Data Inspection (First few rows of raw data) ---\n"); print(head(data_raw))
cat("\n--- Initial Structure of the raw data (str) ---\n"); str(data_raw)

--- 3. STANDARDIZE COLUMN NAMES & INITIAL TRANSFORMATIONS ---
participant_id_original_name <- "participant"
robot_col_original_name <- "Robot"
difficulty_input_col_name <- "difficulty"
correct_side_original_name <- "correct_side"
participants_side_choice_original_name <- "participants_side_choice"
move_duration_original_name <- "move_duration"

data <- data_raw

participant_id_col <- participant_id_original_name
robot_col <- robot_col_original_name
difficulty_original_col <- difficulty_input_col_name
correct_side_col <- correct_side_original_name
participant_choice_col <- participants_side_choice_original_name
move_duration_col <- move_duration_original_name

score_col <- "task_score"
difficulty_labelled_col <- "Difficulty_Condition"

if (difficulty_original_col %in% colnames(data)) {
 data <- data %>%
 mutate(
 !!sym(difficulty_original_col) := case_when(
 tolower(.data[[difficulty_original_col]]) == "easy" ~ 0,
 tolower(.data[[difficulty_original_col]]) == "hard" ~ 1,
 TRUE ~ NA_real_
)
)
 data[[difficulty_original_col]] <- as.numeric(data[[difficulty_original_col]])
}

if (correct_side_col %in% colnames(data) && participant_choice_col %in% colnames(data)) {
 data <- data %>%
 mutate(
 !!sym(score_col) := ifelse(
 is.na(!!sym(correct_side_col)) | is.na(!!sym(participant_choice_col)),
 NA_integer_,

 120

 ifelse(as.character(!!sym(correct_side_col)) == as.character(!!sym(participant_choice_col)),
1, 0)
)
)
 data[[score_col]] <- as.integer(data[[score_col]])
}

--- 4. PREPARE FACTORS & VERIFY COLUMN TYPES ---
cat("\n\n--- 4. Preparing IVs as Factors & Ensuring DV Numeric Types for Performance
Analysis ---\n")

if (robot_col %in% colnames(data) && !is.factor(data[[robot_col]])) {

 # <<< CHANGED: Renaming and reordering the robot conditions >>>
 # 1. First, rename the existing values to the new desired names.
 data <- data %>%
 mutate(!!sym(robot_col) := recode(!!sym(robot_col),
 "Ryan condition" = "Ryan (Joint)",
 "Ivan condition" = "Ivan (Disjoint)",
 "Carl condition" = "Carl (Control)"))

 # 2. Then, create the factor with the new names in the desired order.
 data[[robot_col]] <- factor(data[[robot_col]], levels = c("Ryan (Joint)", "Ivan (Disjoint)", "Carl
(Control)"))

 cat("--- Robot conditions have been renamed and reordered. New order: Ryan (Joint), Ivan
(Disjoint), Carl (Control) ---\n")
}

if (participant_id_col %in% colnames(data) && !is.factor(data[[participant_id_col]])) {
 data[[participant_id_col]] <- as.factor(data[[participant_id_col]])
}

if (difficulty_original_col %in% colnames(data) && is.numeric(data[[difficulty_original_col]]))
{
 data[[difficulty_labelled_col]] <- factor(data[[difficulty_original_col]], levels = c(0, 1), labels =
c("Easy", "Hard"))
} else if (difficulty_input_col_name %in% colnames(data) &&
is.character(data[[difficulty_input_col_name]])) {
 data[[difficulty_labelled_col]] <- factor(tolower(data[[difficulty_input_col_name]]), levels =
c("easy", "hard"), labels = c("Easy", "Hard"))
} else {
 stop(paste0("No usable difficulty column found to create the factor
'",difficulty_labelled_col,"'."))
}

 121

performance_dvs_to_ensure_numeric <- c(score_col, move_duration_col)
for (dv_check in performance_dvs_to_ensure_numeric) {
 if (dv_check %in% colnames(data)) {
 if (!is.numeric(data[[dv_check]])) {
 data[[dv_check]] <- suppressWarnings(as.numeric(as.character(data[[dv_check]])))
 }
 }
}
cat("--- Performance data preparation complete. ---\n")

--- 5. TRIAL-LEVEL OUTLIER HANDLING (for 'move_duration') ---
cat("\n\n--- 5. Trial-Level Outlier Visualization and Filtering for '", move_duration_col, "' ---")
if (move_duration_col %in% colnames(data) && is.numeric(data[[move_duration_col]])) {

 # --- 5.1 VISUALIZATION (using a Bar Chart of Means for Move Duration BEFORE
Filtering) ---
 cat(paste0("\n--- Visualizing Mean '", move_duration_col, "' with SD Error Bars (Trial-Level,
BEFORE Filtering) ---\n"))
 if (robot_col %in% colnames(data) && difficulty_labelled_col %in% colnames(data)) {

 # Calculate summary stats for plotting move_duration
 summary_for_duration_plot <- data %>%
 filter(!is.na(!!sym(move_duration_col))) %>%
 group_by(!!sym(robot_col), !!sym(difficulty_labelled_col)) %>%
 summarise(
 Mean_Duration = mean(!!sym(move_duration_col), na.rm = TRUE),
 SD_Duration = sd(!!sym(move_duration_col), na.rm = TRUE),
 .groups = 'drop'
)

 # <<< CHANGED: Plot structure updated to group by difficulty >>>
 md_by_condition_plot <- ggplot(summary_for_duration_plot,
 aes(x = !!sym(robot_col), y = Mean_Duration, fill =
!!sym(difficulty_labelled_col))) +
 geom_bar(stat = "identity", position = position_dodge(width = 0.9)) +
 geom_errorbar(aes(ymin = Mean_Duration - SD_Duration, ymax = Mean_Duration +
SD_Duration),
 width = 0.25, position = position_dodge(width = 0.9)) +
 scale_fill_brewer(palette = "Pastel1") +
 labs(title = paste("Mean", move_duration_col, "by Condition (Before Outlier Filtering)"),
 subtitle = "Error bars represent +/- 1 Standard Deviation",
 y = paste("Mean", move_duration_col, "(seconds)"),
 x = "Robot Condition",
 fill = "Difficulty") +
 theme_minimal() +

 122

 theme(legend.position = "top", axis.text.x = element_text(angle = 45, hjust = 1))
 print(md_by_condition_plot)
 }

 # --- 5.2 FILTERING (2.5 SD Rule per Participant for move_duration) ---
 cat(paste0("\n--- Filtering '", move_duration_col, "' outliers based on 2.5 SD rule per participant
---\n"))
 initial_rows <- nrow(data)
 cat(paste0("Initial number of trials: ", initial_rows, "\n"))

 data <- data %>%
 group_by(!!sym(participant_id_col)) %>%
 mutate(
 mean_dur = mean(!!sym(move_duration_col), na.rm = TRUE),
 sd_dur = sd(!!sym(move_duration_col), na.rm = TRUE),
 upper_bound = mean_dur + (2.5 * sd_dur),
 lower_bound = mean_dur - (2.5 * sd_dur)
) %>%
 filter(
 is.na(!!sym(move_duration_col)) | (!!sym(move_duration_col) >= lower_bound &
!!sym(move_duration_col) <= upper_bound)
) %>%
 ungroup() %>%
 select(-mean_dur, -sd_dur, -upper_bound, -lower_bound) # Clean up helper columns

 final_rows <- nrow(data)
 rows_removed <- initial_rows - final_rows
 percent_removed <- (rows_removed / initial_rows) * 100

 cat(paste0("Filtered number of trials: ", final_rows, "\n"))
 cat(paste0("Removed ", rows_removed, " trials (", round(percent_removed, 2), "%) as outliers
from '", move_duration_col, "'.\n"))

 # --- 5.3 VISUALIZATION (using a Bar Chart of Means for Move Duration AFTER Filtering)

 cat(paste0("\n--- Visualizing Mean '", move_duration_col, "' with SE Error Bars (Trial-Level,
AFTER Filtering) ---\n"))
 if (robot_col %in% colnames(data) && difficulty_labelled_col %in% colnames(data)) {

 # Calculate summary stats for plotting move_duration from the CLEANED data
 summary_for_duration_plot_after <- data %>%
 filter(!is.na(!!sym(move_duration_col))) %>%
 group_by(!!sym(robot_col), !!sym(difficulty_labelled_col)) %>%
 summarise(
 Mean_Duration = mean(!!sym(move_duration_col), na.rm = TRUE),
 # Using Standard Error for the final plot is often better for inference

 123

 SE_Duration = sd(!!sym(move_duration_col), na.rm = TRUE) / sqrt(n()),
 .groups = 'drop'
)

 # <<< CHANGED: Plot structure updated to group by difficulty >>>
 md_by_condition_plot_after <- ggplot(summary_for_duration_plot_after,
 aes(x = !!sym(robot_col), y = Mean_Duration, fill =
!!sym(difficulty_labelled_col))) +
 geom_bar(stat = "identity", position = position_dodge(width = 0.9)) +
 # Error bars now represent +/- 1 Standard Error
 geom_errorbar(aes(ymin = Mean_Duration - SE_Duration, ymax = Mean_Duration +
SE_Duration),
 width = 0.25, position = position_dodge(width = 0.9)) +
 scale_fill_brewer(palette = "Pastel1") +
 labs(title = paste("Mean", move_duration_col, "by Condition (After Outlier Filtering)"),
 subtitle = "Error bars represent +/- 1 Standard Error",
 y = paste("Mean", move_duration_col, "(seconds)"),
 x = "Robot Condition",
 fill = "Difficulty") +
 theme_minimal() +
 theme(legend.position = "top", axis.text.x = element_text(angle = 45, hjust = 1))

 print(md_by_condition_plot_after)
 }

} else {cat(paste0("\nNote: '", move_duration_col, "' column not found/specified or not numeric.
Outlier handling for move_duration skipped.\n"))}

--- 6. DESCRIPTIVE STATISTICS (Trial-Level DVs on FILTERED data) ---
cat("\n\n--- 6. Descriptive Statistics (Trial-Level Performance DVs on Filtered Data) ---\n")
6.1 For 'task_score'
if (score_col %in% colnames(data) && is.numeric(data[[score_col]])) {
 cat(paste0("\n--- 6.1.1 Descriptive Statistics for '", score_col, "' by Robot x Difficulty ---\n"))
 descriptive_stats_score_crossed <- data %>% group_by(!!sym(robot_col),
!!sym(difficulty_labelled_col)) %>%
 summarise(N_trials = n(), Mean_Score_Prop = mean(!!sym(score_col), na.rm = TRUE),
SD_Score = sd(!!sym(score_col), na.rm = TRUE), .groups = 'drop')
 print(descriptive_stats_score_crossed)
}
6.2 For 'move_duration'
if (move_duration_col %in% colnames(data) && is.numeric(data[[move_duration_col]])) {
 cat(paste0("\n--- 6.2.1 Descriptive Statistics for '", move_duration_col, "' by Robot x Difficulty
---\n"))
 descriptive_stats_duration_crossed <- data %>% group_by(!!sym(robot_col),
!!sym(difficulty_labelled_col)) %>%

 124

 summarise(N_trials = n(), Mean_Duration = mean(!!sym(move_duration_col), na.rm =
TRUE), SD_Duration = sd(!!sym(move_duration_col), na.rm = TRUE), .groups = 'drop')
 print(descriptive_stats_duration_crossed)
}

--- 7. AGGREGATE PERFORMANCE DATA FOR ANOVA ---
cat("\n\n--- 7. Aggregating Performance Data per Participant for ANOVA ---\n")

data_agg_performance <- NULL # Initialize

if (nrow(data) > 0) {
 data_agg_performance <- data %>%
 group_by(!!sym(participant_id_col), !!sym(robot_col), !!sym(difficulty_labelled_col)) %>%
 summarise(
 Mean_Accuracy_Percent = if(score_col %in% colnames(.)) mean(!!sym(score_col), na.rm =
TRUE) * 100 else NA_real_,
 Mean_move_duration = if(move_duration_col %in% colnames(.))
mean(!!sym(move_duration_col), na.rm = TRUE) else NA_real_,
 N_Trials_Per_Condition = n(),
 .groups = 'drop'
)

 cat("\n--- Aggregated Performance DVs for ANOVA (First few rows): ---\n")
 print(head(data_agg_performance))
 cat("\nStructure of aggregated Performance DVs for ANOVA:\n")
 str(data_agg_performance)
} else {
 stop("Error: No data remains after filtering. ANOVA cannot proceed.")
}

--- 8. ANOVA DATA PREPARATION ---
cat("\n\n--- 8. Preparing Aggregated Data for ANOVA ---\n")

dv_accuracy_anova <- "Mean_Accuracy_Percent"
dv_duration_anova <- "Mean_move_duration"

if (!participant_id_col %in% colnames(data_agg_performance)) stop("Participant ID column
missing in aggregated data.")
if (!robot_col %in% colnames(data_agg_performance)) stop("Robot column missing in
aggregated data.")
if (!difficulty_labelled_col %in% colnames(data_agg_performance)) stop("Difficulty column
missing in aggregated data.")

if (!dv_accuracy_anova %in% colnames(data_agg_performance)) {

 125

 warning(paste0("ANOVA DV '", dv_accuracy_anova, "' not found. Accuracy analyses
skipped."))
 dv_accuracy_anova <- NULL
}
if (!dv_duration_anova %in% colnames(data_agg_performance)) {
 warning(paste0("ANOVA DV '", dv_duration_anova, "' not found. Duration analyses
skipped."))
 dv_duration_anova <- NULL
}

--- 9. ASSUMPTION CHECKING (Normality per cell) ---
check_normality_per_cell_anova <- function(df, dv_name, group1_name, group2_name) {
 if (is.null(dv_name) || !dv_name %in% colnames(df)) {
 cat(paste0("\nSkipping normality check: DV '", dv_name, "' not available.\n"))
 return()
 }
 cat(paste0("\n--- Normality Check for ANOVA DV: ", dv_name, " (within each ",
group1_name, " x ", group2_name, " cell) ---\n"))

 # <<< CHANGED: Updated facetting to match new plot style (group by robot) >>>
 hist_plot <- ggplot(df, aes(x = .data[[dv_name]])) +
 geom_histogram(aes(y = after_stat(density)), bins=10, fill = "skyblue", color = "black", alpha
= 0.7, na.rm = TRUE) +
 geom_density(alpha = .2, fill = "#FF6666", na.rm = TRUE) +
 facet_grid(as.formula(paste0("`", group2_name, "` ~ `", group1_name, "`")), scales = "free_y")
+
 labs(title = paste("Histograms of", dv_name, "(Aggregated)"), x = dv_name, y = "Density") +
theme_minimal()
 print(hist_plot)

 # <<< CHANGED: Updated facetting to match new plot style (group by robot) >>>
 qq_plot <- ggpubr::ggqqplot(df, x = dv_name, conf.int = TRUE, ggtheme = theme_minimal(),
title = paste("Q-Q Plots of", dv_name, "(Aggregated)")) +
 facet_grid(as.formula(paste0("`", group2_name, "` ~ `", group1_name, "`")), scales = "free")
 print(qq_plot)

 normality_tests <- df %>%
 group_by(!!sym(group1_name), !!sym(group2_name)) %>%
 filter(sum(!is.na(.data[[dv_name]])) >= 3) %>%
 summarise(shapiro_w = ifelse(sum(!is.na(.data[[dv_name]])) >=3,
shapiro.test(.data[[dv_name]])$statistic, NA_real_),
 shapiro_p = ifelse(sum(!is.na(.data[[dv_name]])) >=3,
shapiro.test(.data[[dv_name]])$p.value, NA_real_),
 n_for_test = sum(!is.na(.data[[dv_name]])), .groups = 'drop')
 cat("\n Shapiro-Wilk Test Results (p > 0.05 suggests normality):\n"); print(normality_tests)
}

 126

if (!is.null(dv_accuracy_anova)) { check_normality_per_cell_anova(data_agg_performance,
dv_accuracy_anova, robot_col, difficulty_labelled_col) }
if (!is.null(dv_duration_anova)) { check_normality_per_cell_anova(data_agg_performance,
dv_duration_anova, robot_col, difficulty_labelled_col) }

--- 10. SIGNIFICANCE TESTING: 3x2 REPEATED MEASURES ANOVA ---
perform_rm_anova_integrated <- function(df, dv_col, wid_col, within_factors_cols) {
 if (is.null(dv_col) || !dv_col %in% colnames(df)) {
 cat(paste0("\nSkipping ANOVA: DV '", dv_col, "' not available.\n"))
 return(NULL)
 }
 cat(paste0("\n\n--- Repeated Measures ANOVA for: ", dv_col, " ---\n"))

 if(!is.numeric(df[[dv_col]])) {
 cat(paste0(" Warning: DV '", dv_col, "' is not numeric. Attempting conversion.\n"))
 df[[dv_col]] <- suppressWarnings(as.numeric(as.character(df[[dv_col]])))
 if(all(is.na(df[[dv_col]]))) {
 cat(paste0(" ERROR: DV '", dv_col, "' could not be converted to numeric or is all NA.
Skipping ANOVA.\n"))
 return(NULL)
 }
 }

 n_within_levels <- df %>% select(all_of(within_factors_cols)) %>% n_distinct()

 complete_cases_df <- df %>%
 filter(!is.na(.data[[dv_col]])) %>%
 group_by(!!sym(wid_col)) %>%
 filter(n() == n_within_levels) %>%
 ungroup()

 n_complete_subjects <- length(unique(complete_cases_df[[wid_col]]))

 if(n_complete_subjects < 2) {
 cat(paste0(" Warning: Not enough subjects (found ", n_complete_subjects, ") with complete
data for '", dv_col, "' across all conditions. Skipping ANOVA.\n"))
 return(NULL)
 }

 cat(paste0(" Performing ANOVA on ", n_complete_subjects, " participants with complete data
for ", dv_col, ".\n"))

 res_aov_obj <- NULL
 tryCatch({
 res_aov_obj <- anova_test(

 127

 data = complete_cases_df,
 dv = !!sym(dv_col),
 wid = !!sym(wid_col),
 within = within_factors_cols
)
 cat(paste0("\n --- ANOVA Results for ", dv_col, " ---\n"))
 print(res_aov_obj)

 anova_table <- NULL
 if (is.list(res_aov_obj) && "ANOVA" %in% names(res_aov_obj)) {
 anova_table <- res_aov_obj$ANOVA
 } else if (is.data.frame(res_aov_obj) || is_tibble(res_aov_obj)) {
 anova_table <- res_aov_obj
 } else {
 cat(" Warning: Could not identify the ANOVA table within the anova_test result object.\n")
 return(res_aov_obj)
 }

 cat("\n Key P-values and GES from ANOVA table:\n"); print(anova_table %>% filter(Effect
!= "(Intercept)") %>% select(Effect, p, ges))

 interaction_term_pattern <- paste(within_factors_cols, collapse=":")
 interaction_effect_row <- anova_table %>% filter(Effect == interaction_term_pattern)

 if (nrow(interaction_effect_row) == 1 && interaction_effect_row$p < 0.05) {
 cat(paste0("\n --- Interaction effect '", interaction_term_pattern, "' for '", dv_col, "' was
significant (p = ", format(interaction_effect_row$p, digits=3),"). Probing simple effects... ---\n"))

 cat(paste0(" Simple main effect of ", within_factors_cols[1], " at each level of ",
within_factors_cols[2], ":\n"))
 simple_effects_1 <- complete_cases_df %>%
 group_by(!!sym(within_factors_cols[2])) %>%
 anova_test(formula = as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[1], "`")),
 wid = !!sym(wid_col), within = !!sym(within_factors_cols[1])) %>%
 get_anova_table() %>%
 adjust_pvalue(method = "bonferroni")
 print(simple_effects_1)

 cat(paste0("\n Simple main effect of ", within_factors_cols[2], " at each level of ",
within_factors_cols[1], ":\n"))
 simple_effects_2 <- complete_cases_df %>%
 group_by(!!sym(within_factors_cols[1])) %>%
 anova_test(formula = as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[2], "`")),
 wid = !!sym(wid_col), within = !!sym(within_factors_cols[2])) %>%
 get_anova_table() %>%
 adjust_pvalue(method = "bonferroni")

 128

 print(simple_effects_2)

 cat("\n Consider further pairwise comparisons for significant simple effects with >2 levels
using emmeans or pairwise_t_test.\n")

 } else {
 cat(paste0("\n --- Interaction effect '", interaction_term_pattern, "' for '", dv_col, "' was NOT
significant or not found. Checking main effects... ---\n"))

 main_effect_1_row <- anova_table %>% filter(Effect == within_factors_cols[1]) # Robot
 if (nrow(main_effect_1_row) == 1 && main_effect_1_row$p < 0.05) {
 cat(paste0("\n --- Main effect of '", within_factors_cols[1], "' for '", dv_col, "' was
significant (p = ", format(main_effect_1_row$p, digits=3), "). Pairwise comparisons
(Bonferroni)... ---\n"))
 pwc_1 <- complete_cases_df %>%
 pairwise_t_test(as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[1], "`")),
 paired = TRUE, p.adjust.method = "bonferroni")
 print(pwc_1)
 } else if (nrow(main_effect_1_row) == 1) {
 cat(paste0("\n --- Main effect of '", within_factors_cols[1], "' for '", dv_col, "' was NOT
significant (p = ", format(main_effect_1_row$p, digits=3), "). ---\n"))
 }

 main_effect_2_row <- anova_table %>% filter(Effect == within_factors_cols[2]) # Difficulty
 if (nrow(main_effect_2_row) == 1 && main_effect_2_row$p < 0.05) {
 cat(paste0("\n --- Main effect of '", within_factors_cols[2], "' for '", dv_col, "' was
significant (p = ", format(main_effect_2_row$p, digits=3), "). ---\n"))
 pwc_2 <- complete_cases_df %>%
 pairwise_t_test(as.formula(paste0("`", dv_col, "` ~ `", within_factors_cols[2], "`")),
 paired = TRUE, p.adjust.method = "bonferroni")
 print(pwc_2)
 } else if (nrow(main_effect_2_row) == 1) {
 cat(paste0("\n --- Main effect of '", within_factors_cols[2], "' for '", dv_col, "' was NOT
significant (p = ", format(main_effect_2_row$p, digits=3), "). ---\n"))
 }
 }
 return(res_aov_obj)

 }, error = function(e) {
 cat(paste0(" --- ERROR during Repeated Measures ANOVA for '", dv_col, "': ", e$message, "
---\n"))
 return(NULL)
 })
}

Perform ANOVA for Mean Accuracy

 129

if (!is.null(data_agg_performance) && !is.null(dv_accuracy_anova)) {
 results_accuracy_anova <- perform_rm_anova_integrated(data_agg_performance,
dv_accuracy_anova, participant_id_col, c(robot_col, difficulty_labelled_col))
}

Perform ANOVA for Mean Duration
if (!is.null(data_agg_performance) && !is.null(dv_duration_anova)) {
 results_duration_anova <- perform_rm_anova_integrated(data_agg_performance,
dv_duration_anova, participant_id_col, c(robot_col, difficulty_labelled_col))
}

cat("\n\n--- Performance Analysis Script (with ANOVA) Finished ---\n")

--- 11. VISUALIZE AGGREGATED ACCURACY RESULTS ---
cat("\n\n--- 11. Visualizing Aggregated Accuracy Performance ---\n")
if (!is.null(data_agg_performance) && dv_accuracy_anova %in%
colnames(data_agg_performance)) {

 # Calculate summary statistics for the accuracy plot (Mean and Standard Error)
 accuracy_summary_for_plot <- data_agg_performance %>%
 group_by(!!sym(robot_col), !!sym(difficulty_labelled_col)) %>%
 summarise(
 Mean_Accuracy = mean(!!sym(dv_accuracy_anova), na.rm = TRUE),
 SE_Accuracy = sd(!!sym(dv_accuracy_anova), na.rm = TRUE) / sqrt(n()),
 .groups = 'drop'
)
 cat("\nSummary statistics for accuracy plot:\n")
 print(accuracy_summary_for_plot)

 # <<< NOTE: This plot already had the correct structure and will update automatically with the
new names/order >>>
 # Create the bar chart for Mean Accuracy Percentage
 accuracy_plot <- ggplot(accuracy_summary_for_plot,
 aes(x = !!sym(robot_col), y = Mean_Accuracy, fill =
!!sym(difficulty_labelled_col))) +
 geom_bar(stat = "identity", position = position_dodge(width = 0.9)) +
 geom_errorbar(aes(ymin = Mean_Accuracy - SE_Accuracy, ymax = Mean_Accuracy +
SE_Accuracy),
 width = 0.25, position = position_dodge(width = 0.9)) +
 scale_fill_brewer(palette = "Pastel1") + # Using a color-blind friendly palette
 labs(title = "Mean Task Accuracy by Robot and Difficulty",
 x = "Robot Condition",
 y = "Mean Accuracy (%)",
 fill = "Difficulty") +
 theme_minimal(base_size = 14) +
 theme(legend.position = "top",

 130

 axis.text.x = element_text(angle = 45, hjust = 1),
 plot.title = element_text(hjust = 0.5),
 panel.grid.major.x = element_blank(), # Cleaner look
 panel.grid.minor.y = element_blank()) +
 coord_cartesian(ylim = c(0, 100)) # Ensure Y axis goes from 0 to 100

 print(accuracy_plot)
 cat("\n--- Accuracy bar chart generated. ---\n")

} else {
 cat("\n--- Skipping accuracy bar chart: Aggregated data or accuracy DV not available. ---\n")
}

cat("\n--- Full Analysis Script Finished ---\n")
cat("Review all ANOVA tables, Mauchly's test results, post-hoc tests, and generated plots
carefully.\n")

 131

Script for Gaze Follow Analysis

Script: statistics_gaze_follow_analysis.R
Purpose: Load raw trial-level data (totalgaze.csv), process variables
relevant to gaze following behavior, calculate descriptive
statistics with plots, and conduct inferential statistics
(GLMM and SDT) for gaze following.

--- 1. SETUP: Load Necessary Packages ---
library(tidyverse)
library(lme4) # For GLMM
library(car) # For Anova function
library(emmeans) # For post-hoc tests and plotting interactions
library(scales) # For percent_format
library(afex) # For repeated-measures ANOVA (for SDT)
library(patchwork) # For combining plots into a single figure

--- 2. LOAD DATA ---
file_path <- "totalgaze.csv"
data_raw <- NULL

cat(paste0("--- Attempting to load '", file_path, "' ---\n"))
tryCatch({
 data_raw <- read_csv(file_path)
 cat(paste0("--- Successfully loaded '", file_path, "'. ---\n"))
}, error = function(e) {
 cat(paste0("--- ERROR: Could not load '", file_path, "'. ---\n"))
 cat("Error message: ", e$message, "\n")
})

if (is.null(data_raw)) {
 stop("Script cannot proceed because data_raw was not loaded.")
}

cat("\n--- Initial Data Inspection (First few rows of raw data) ---\n"); print(head(data_raw))

--- 3. STANDARDIZE COLUMN NAMES & INITIAL TRANSFORMATIONS ---
participant_id_original_name <- "participant"
robot_col_original_name <- "Robot"
difficulty_input_col_name <- "difficulty"
correct_side_original_name <- "correct_side"
participants_side_choice_original_name <- "participants_side_choice"
gaze_decision_original_name <- "gazeDecision"

 132

data_gaze_following <- data_raw

participant_id_col <- participant_id_original_name
robot_col <- robot_col_original_name
difficulty_original_col <- difficulty_input_col_name
correct_side_col <- correct_side_original_name
participant_choice_col <- participants_side_choice_original_name
gaze_decision_col <- gaze_decision_original_name

difficulty_labelled_col <- "Difficulty_Condition"

--- 4. PREPARE FACTORS ---
cat("\n\n--- 4. Preparing IVs as Factors for Gaze Following Analysis ---\n")

if (robot_col %in% colnames(data_gaze_following) &&
!is.factor(data_gaze_following[[robot_col]])) {
 data_gaze_following[[robot_col]] <- factor(data_gaze_following[[robot_col]], levels = c("Carl
condition", "Ivan condition", "Ryan condition"))
 cat(paste0("Converted '", robot_col, "' to factor.\n"))
}
if (participant_id_col %in% colnames(data_gaze_following) &&
!is.factor(data_gaze_following[[participant_id_col]])) {
 data_gaze_following[[participant_id_col]] <-
as.factor(data_gaze_following[[participant_id_col]])
 cat(paste0("Converted '", participant_id_col, "' to factor.\n"))
}

if (difficulty_original_col %in% colnames(data_gaze_following)) {
 data_gaze_following[[difficulty_labelled_col]] <-
factor(tolower(data_gaze_following[[difficulty_original_col]]),
 levels = c("easy", "hard"),
 labels = c("Easy", "Hard"))
 cat(paste0("Created '", difficulty_labelled_col, "'.\n"))
} else {
 stop(paste0("Original difficulty column '",difficulty_original_col,"' not found."))
}
cat("--- Gaze following data preparation complete. ---\n")

--- DATASET FOR MODELS (used in all subsequent analyses) ---
model_data_gaze <- data_gaze_following %>%
 filter(tolower(!!sym(gaze_decision_col)) %in% c("left", "right")) %>%
 mutate(
 robot_gaze_correct_val = ifelse(is.na(!!sym(gaze_decision_col)) |
is.na(!!sym(correct_side_col)), NA_integer_,
 ifelse(as.character(!!sym(gaze_decision_col)) ==
as.character(!!sym(correct_side_col)), 1, 0)),

 133

 robot_gaze_correct = factor(robot_gaze_correct_val, levels = c(0,1), labels = c("Incorrect
Gaze", "Correct Gaze")),
 gaze_followed_val = ifelse(is.na(!!sym(participant_choice_col)) |
is.na(!!sym(gaze_decision_col)), NA_integer_,
 ifelse(as.character(!!sym(participant_choice_col)) ==
as.character(!!sym(gaze_decision_col)), 1, 0))
) %>%
 filter(!!sym(robot_col) %in% c("Ryan condition", "Ivan condition")) %>%
 filter(!is.na(gaze_followed_val) & !is.na(robot_gaze_correct) &
 !is.na(!!sym(difficulty_labelled_col)) & !is.na(!!sym(participant_id_col))) %>%
 mutate(
 Robot_Condition_Model = droplevels(factor(.data[[robot_col]])),
 Difficulty_Model = factor(.data[[difficulty_labelled_col]]),
 Participant_ID_Model = factor(.data[[participant_id_col]]),
 Gaze_Correctness_Model = factor(robot_gaze_correct)
)

--- 5. DESCRIPTIVE STATISTICS & VISUALIZATION ---
cat("\n\n--- 5. Generating Descriptive Statistics and Plots ---\n")

if (exists("model_data_gaze") && nrow(model_data_gaze) > 0) {
 # Calculate counts for each condition (Easy/Hard)
 descriptive_summary <- model_data_gaze %>%
 group_by(Robot_Condition_Model, Gaze_Correctness_Model, Difficulty_Model) %>%
 summarise(
 n_followed = sum(gaze_followed_val, na.rm = TRUE),
 n_total_trials = n(),
 .groups = 'drop'
)

 # --- [NEW] 5.0.1 DISPLAY DESCRIPTIVE PERCENTAGES IN CONSOLE ---
 cat("\n\n--- 5.0.1. Gaze Following Percentages by Condition ---\n")

 # Calculate and format percentages for clear console output
 descriptive_percentages <- descriptive_summary %>%
 mutate(
 percentage_followed = (n_followed / n_total_trials),
 # Format for printing
 percentage_str = scales::percent(percentage_followed, accuracy = 0.1),
 # Relabel robot conditions to "Joint" and "Disjoint" for clarity
 Robot_Condition_Display = case_when(
 Robot_Condition_Model == "Ryan condition" ~ "Joint (Ryan)",
 Robot_Condition_Model == "Ivan condition" ~ "Disjoint (Ivan)",
 TRUE ~ as.character(Robot_Condition_Model)
)
) %>%

 134

 # Select and reorder columns for a clean table view
 select(
 Robot_Condition_Display,
 Difficulty_Model,
 Gaze_Correctness_Model,
 percentage_str,
 n_followed,
 n_total_trials
) %>%
 # Arrange for easy reading
 arrange(Robot_Condition_Display, Difficulty_Model, Gaze_Correctness_Model)

 print(descriptive_percentages, n = Inf) # n = Inf ensures all rows are printed
 # --- [END NEW SECTION] ---

 # --- 5.1 Visualization of Descriptive Statistics ---
 cat("\n\n--- 5.1. Creating Bar Charts for Descriptive Gaze Following ---\n")

 # Prepare data for plotting by calculating percentages and relabeling
 descriptive_plot_data <- descriptive_summary %>%
 mutate(
 percentage_followed = (n_followed / n_total_trials),
 # Relabel robot conditions to "Joint" and "Disjoint"
 Robot_Condition_Plot = case_when(
 Robot_Condition_Model == "Ryan condition" ~ "Joint",
 Robot_Condition_Model == "Ivan condition" ~ "Disjoint",
 TRUE ~ as.character(Robot_Condition_Model)
)
) %>%
 # Set the order for the factor so the legend and colors are correct
 mutate(Robot_Condition_Plot = factor(Robot_Condition_Plot, levels = c("Joint", "Disjoint")))

 # Custom theme to match the python plot style
 theme_custom_style <- function() {
 theme_minimal(base_size = 12) +
 theme(
 plot.title = element_text(hjust = 0.5, face = "bold"), # Center title
 panel.border = element_rect(colour = "black", fill=NA, linewidth=1), # Add border
 panel.grid.major.x = element_blank(),
 panel.grid.minor.x = element_blank(),
 panel.grid.major.y = element_line(linetype = "dashed", color = "grey80"),
 panel.grid.minor.y = element_blank(),
 legend.title = element_blank(), # Remove legend title
 axis.title.x = element_blank() # Remove x-axis title from individual plots
)
 }

 135

 # Plot 1: Gaze Following after CORRECT Gaze Cues
 plot_desc_correct <- descriptive_plot_data %>%
 filter(Gaze_Correctness_Model == "Correct Gaze") %>%
 ggplot(aes(x = Difficulty_Model, y = percentage_followed, fill = Robot_Condition_Plot)) +
 geom_bar(stat = "identity", position = position_dodge(0.8), width = 0.7) +
 scale_y_continuous(labels = scales::percent_format(accuracy=1), limits = c(0, 1.01), expand =
c(0, 0)) +
 scale_fill_manual(values = c("Joint" = "skyblue", "Disjoint" = "steelblue")) +
 labs(title = "Correct Gaze Following", y = "Percentage") +
 theme_custom_style()

 # Plot 2: Gaze Following after INCORRECT Gaze Cues
 plot_desc_incorrect <- descriptive_plot_data %>%
 filter(Gaze_Correctness_Model == "Incorrect Gaze") %>%
 ggplot(aes(x = Difficulty_Model, y = percentage_followed, fill = Robot_Condition_Plot)) +
 geom_bar(stat = "identity", position = position_dodge(0.8), width = 0.7) +
 scale_y_continuous(labels = scales::percent_format(accuracy=1), limits = c(0, 1.01), expand =
c(0, 0)) +
 scale_fill_manual(values = c("Joint" = "lightcoral", "Disjoint" = "indianred")) +
 labs(title = "Incorrect Gaze Following", y = NULL) + # Remove y-axis title for shared axis
 theme_custom_style()

 # Combine the plots side-by-side using patchwork
 combined_plot <- plot_desc_correct + plot_desc_incorrect +
 plot_annotation(
 title = 'Gaze Following Behavior (Easy vs Hard)',
 theme = theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"))
)

 cat("\n--- Displaying Combined Descriptive Plot ---\n")
 print(combined_plot)

} else {
 cat("\n--- Skipping Descriptive Statistics & Plots: 'model_data_gaze' not available or empty. ---
\n")
}

--- 6. COMPLEMENTARY GLMM ANALYSIS (FOR APPENDIX) ---
cat("\n\n--- 6. Complementary GLMM Analysis (For Appendix) ---\n")

if (nrow(model_data_gaze) > 50 && n_distinct(model_data_gaze$Participant_ID_Model) > 1) {
 options(contrasts = c("contr.sum", "contr.poly"))
 gaze_follow_glmm <- NULL
 tryCatch({

 136

 formula_str <- "gaze_followed_val ~ Robot_Condition_Model * Gaze_Correctness_Model *
Difficulty_Model + (1 | Participant_ID_Model)"
 gaze_follow_glmm <- glmer(as.formula(formula_str), data = model_data_gaze,
 family = binomial(link = "logit"), control = glmerControl(optimizer =
"bobyqa", optCtrl = list(maxfun = 2e5)))
 cat("--- GLMM fitting successful. ---\n")
 cat("\n--- ANOVA Table (Type III Wald Chi-square tests) for GLMM ---\n")
 print(Anova(gaze_follow_glmm, type = "III"))
 }, error = function(e) { cat("--- ERROR during GLMM fitting: ---\n"); print(e) })
}

--- 7. PRIMARY ANALYSIS: SIGNAL DETECTION THEORY (SDT) ---
cat("\n\n\n--- 7. Primary Analysis: Signal Detection Theory (SDT) ---\n")

if (exists("model_data_gaze") && nrow(model_data_gaze) > 0) {

 # --- 7.1. Calculate SDT Counts ---
 cat("\n--- 7.1. Calculating SDT counts per participant and condition ---\n")
 sdt_counts <- model_data_gaze %>%
 mutate(
 sdt_outcome = case_when(
 gaze_followed_val == 1 & robot_gaze_correct_val == 1 ~ "Hit",
 gaze_followed_val == 0 & robot_gaze_correct_val == 1 ~ "Miss",
 gaze_followed_val == 1 & robot_gaze_correct_val == 0 ~ "False Alarm",
 gaze_followed_val == 0 & robot_gaze_correct_val == 0 ~ "Correct Rejection"
)
) %>%
 group_by(Participant_ID_Model, Robot_Condition_Model, Difficulty_Model) %>%
 summarise(
 n_hits = sum(sdt_outcome == "Hit", na.rm = TRUE),
 n_misses = sum(sdt_outcome == "Miss", na.rm = TRUE),
 n_fas = sum(sdt_outcome == "False Alarm", na.rm = TRUE),
 n_crs = sum(sdt_outcome == "Correct Rejection", na.rm = TRUE),
 .groups = 'drop'
)

 # --- 7.2. Calculate d' and c ---
 cat("\n--- 7.2. Calculating d' (sensitivity) and c (criterion) ---\n")
 sdt_results <- sdt_counts %>%
 mutate(
 # Apply log-linear correction to prevent infinite values
 H = (n_hits + 0.5) / (n_hits + n_misses + 1),
 FA = (n_fas + 0.5) / (n_fas + n_crs + 1),
 d_prime = qnorm(H) - qnorm(FA),
 criterion_c = -0.5 * (qnorm(H) + qnorm(FA))
)

 137

 # --- 7.3. Inferential Statistics on d' and c ---
 cat("\n--- 7.3. Running Repeated Measures ANOVAs on d' and c ---\n")

 # Analysis 1: Sensitivity (d').
 cat("\n--- ANOVA on d' (Sensitivity) ---\n")
 anova_d_prime <- aov_ez(
 id = "Participant_ID_Model", dv = "d_prime", data = sdt_results,
 within = c("Robot_Condition_Model", "Difficulty_Model")
)
 print(summary(anova_d_prime))

 # Analysis 2: Bias (c).
 cat("\n--- ANOVA on c (Bias/Criterion) ---\n")
 anova_criterion_c <- aov_ez(
 id = "Participant_ID_Model", dv = "criterion_c", data = sdt_results,
 within = c("Robot_Condition_Model", "Difficulty_Model")
)
 print(summary(anova_criterion_c))

 # --- 7.4. Post-Hoc Analysis for Significant Main Effects ---
 cat("\n--- 7.4. Post-Hoc analysis for significant main effect of Robot on Criterion (c) ---\n")
 emm_c_robot <- emmeans(anova_criterion_c, ~ Robot_Condition_Model)
 print(summary(emm_c_robot))

 # --- 7.5. Visualization of SDT Results ---
 cat("\n--- 7.5. Creating Bar Charts for d' and c ---\n")

 # Create a summary dataframe with means and CIs for plotting
 sdt_summary_for_plotting <- sdt_results %>%
 group_by(Robot_Condition_Model, Difficulty_Model) %>%
 summarise(
 mean_d_prime = mean(d_prime, na.rm = TRUE),
 se_d_prime = sd(d_prime, na.rm = TRUE) / sqrt(n()),
 ci_d_prime = se_d_prime * qt(0.975, df = n() - 1),
 mean_c = mean(criterion_c, na.rm = TRUE),
 se_c = sd(criterion_c, na.rm = TRUE) / sqrt(n()),
 ci_c = se_c * qt(0.975, df = n() - 1),
 .groups = 'drop'
) %>%
 # RENAME AND REORDER the Robot Condition factor for plotting
 mutate(
 Robot_Condition_Model = case_when(
 Robot_Condition_Model == "Ryan condition" ~ "Joint Condition",
 Robot_Condition_Model == "Ivan condition" ~ "Disjoint Condition",
 TRUE ~ as.character(Robot_Condition_Model)

 138

),
 Robot_Condition_Model = factor(Robot_Condition_Model, levels = c("Joint Condition",
"Disjoint Condition"))
)

 # Plot 1: Sensitivity (d') - Now with updated names and order
 plot_d_prime <- ggplot(sdt_summary_for_plotting,
 aes(x = Difficulty_Model, y = mean_d_prime, fill = Robot_Condition_Model)) +
 geom_bar(stat = "identity", position = position_dodge(0.9), color = "black", width = 0.8) +
 geom_errorbar(aes(ymin = mean_d_prime - ci_d_prime, ymax = mean_d_prime +
ci_d_prime),
 position = position_dodge(0.9), width = 0.25, linewidth = 0.5) +
 scale_fill_brewer(palette = "Pastel1", name = "Robot Condition") +
 labs(title = "Sensitivity to Gaze Cue Validity",
 subtitle = "Participants' ability to discriminate correct from incorrect gaze cues.",
 x = "Task Difficulty",
 y = "Sensitivity (d')") +
 theme_minimal(base_size = 14) +
 theme(legend.position = "top",
 plot.title = element_text(face = "bold"),
 axis.title = element_text(face = "bold"))

 cat("\n--- Displaying Sensitivity (d') Plot ---\n")
 print(plot_d_prime)

 # Plot 2: Response Criterion (c) - Now with updated names and order
 plot_criterion_c <- ggplot(sdt_summary_for_plotting,
 aes(x = Robot_Condition_Model, y = mean_c, fill = Difficulty_Model)) +
 geom_bar(stat = "identity", position = position_dodge(0.9), color = "black", width = 0.8) +
 geom_errorbar(aes(ymin = mean_c - ci_c, ymax = mean_c + ci_c),
 position = position_dodge(0.9), width = 0.25, linewidth = 0.5) +
 geom_hline(yintercept = 0, linetype = "dashed", color = "grey30") +
 scale_fill_brewer(palette = "Pastel2", name = "Task Difficulty") +
 labs(title = "Response Bias for Following Gaze Cues",
 subtitle = "A negative value indicates a liberal bias (tendency to follow).",
 x = "Robot Condition",
 y = "Response Criterion (c)") +
 theme_minimal(base_size = 14) +
 theme(legend.position = "top",
 plot.title = element_text(face = "bold"),
 axis.title = element_text(face = "bold"))

 cat("\n--- Displaying Response Criterion (c) Plot ---\n")
 print(plot_criterion_c)

} else {

 139

 cat("\n--- Skipping SDT analysis: 'model_data_gaze' not available or empty. ---\n")
}

cat("\n\n--- End of script processing. ---\n")

 140

Script for Qualtrics Analysis

FULLY CONSOLIDATED SCRIPT FOR QUALTRICS SUBJECTIVE DATA ANALYSIS
(v2)
Combines:
1. Loading of qualtrics_data_final.csv and robust participantID handling
2. Demographic Variable Processing (Age, Gender, Residence)
3. Calculation of Composite Scale Scores (Anthro, Like, Intel, Trust for Carl, Ryan, Ivan)
4. Descriptive Statistics & ALL Visualizations (including new faceted Bar Chart)
5. Outlier Identification for Composite Scores
6. Normality Assumption Checks for Composite Scores
7. Reliability Analysis (Cronbach's Alpha)
8. Parametric Testing (Repeated Measures ANOVA for each construct)
9. Saving final dataset with all processed data and composite scores

--- 1. SETUP: Load Necessary Packages ---
Ensure these are installed by running install.packages("package_name") in your console once.
library(tidyverse)
library(lubridate) # For date parsing (Age)
library(psych) # For Cronbach's Alpha
library(rstatix) # For anova_test and other convenient stats functions
library(ggpubr) # For ggqqplot

--- 2. LOAD INITIAL RAW DATA ---
file_path <- "qualtrics_data_final.csv"
data <- NULL

cat(paste0("--- Attempting to load '", file_path, "' ---\n"))
tryCatch({
 data <- read_csv(file_path)
 cat(paste0("--- Successfully loaded '", file_path, "'. ---\n"))
}, error = function(e) {
 cat(paste0("--- ERROR: Could not load '", file_path, "'. ---\n"))
 cat("Error message: ", e$message, "\n")
})

if (is.null(data)) {
 stop("Script cannot proceed because data was not loaded.")
}

--- Handle Participant ID ---
Robustly find and set the participant ID column, which is essential for repeated measures
ANOVA.
if ("participant" %in% colnames(data) && !"participantID" %in% colnames(data)) {

 141

 data <- data %>% rename(participantID = participant)
 cat("Renamed 'participant' column to 'participantID' for compatibility.\n")
} else if (!"participantID" %in% colnames(data)) {
 data$participantID <- 1:nrow(data)
 cat("Warning: No 'participant' or 'participantID' column found. Created a new 'participantID'
column.\n")
}

cat("\n--- Initial Data Inspection (First few rows) ---\n"); print(head(data))
cat("\n--- Initial Structure of the data (str) ---\n"); str(data)
cat("\n--- Initial Summary of the data ---\n"); print(summary(data))
cat("\n--- Column names in the loaded data: ---\n"); print(colnames(data))

--- 3. PROCESS DEMOGRAPHIC VARIABLES ---
cat("\n\n--- 3. Processing Demographic Variables ---\n")

--- 3.1 Variable: Age ---
cat("\n--- Processing 'Age' (Date of Birth) Column ---\n")
if ("Age" %in% colnames(data)) {
 data$DOB_original <- data$Age # Keep a copy

 cat("Attempting to parse DOBs with multiple formats...\n")
 data$DOB_parsed <- parse_date_time(data$DOB_original,
 orders = c(
 "d-m-Y", "d/m/Y", "d.m.Y",
 "d-m-y", "d/m/y", "d.m.y",
 "m-d-Y", "m/d/Y", "m-d-y", "m/d/y",
 "Y-m-d", "Y/m/d", "Ymd",
 "d-m-Y HMS", "d/m/Y HMS", "Y-m-d HMS", "Y/m/d HMS"
),
 quiet = TRUE)

 parsed_count <- sum(!is.na(data$DOB_parsed))
 total_count <- nrow(data)
 cat(paste0(parsed_count, " out of ", total_count, " DOBs successfully parsed.\n"))

 if (parsed_count < total_count) {
 failed_to_parse <- data$DOB_original[is.na(data$DOB_parsed) &
!is.na(data$DOB_original)]
 if(length(failed_to_parse) > 0) {
 cat("DOBs that failed to parse (first few shown):\n"); print(head(failed_to_parse))
 }
 }

 142

 data$Age_years <- NA
 valid_dob_indices <- !is.na(data$DOB_parsed)

 if(any(valid_dob_indices)) {
 data$Age_years[valid_dob_indices] <- floor(as.numeric(difftime(Sys.Date(),
data$DOB_parsed[valid_dob_indices], units = "days")) / 365.25)

 cat("\n--- Descriptive Statistics for Calculated Age (in years) ---\n")
 print(summary(data$Age_years))
 cat("Standard Deviation of Age (years):", sd(data$Age_years, na.rm = TRUE), "\n")

 if (sum(!is.na(data$Age_years)) > 0) {
 cat("Generating Age Histogram...\n")
 print(ggplot(data[!is.na(data$Age_years),], aes(x = Age_years)) +
 geom_histogram(binwidth = 1, fill = "skyblue", color = "black") +
 labs(title = "Distribution of Calculated Age", x = "Age (Years)", y = "Frequency") +
 theme_minimal())
 cat("Generating Age Boxplot...\n")
 print(ggplot(data[!is.na(data$Age_years),], aes(y = Age_years)) +
 geom_boxplot(fill = "skyblue") +
 labs(title = "Boxplot of Calculated Age", y = "Age (Years)") +
 theme_minimal() + coord_flip())
 }
 } else {
 cat("No DOBs were successfully parsed, so 'Age_years' could not be calculated.\n")
 }
} else {
 cat("\n'Age' column (for DOB) not found in the dataset.\n")
}

--- 3.2 Variable: Gender ---
cat("\n\n--- Processing 'gender' Column ---\n")
if ("gender" %in% colnames(data)) {
 if (!is.factor(data$gender)) { data$gender <- as.factor(data$gender) }
 cat("\n--- Frequency Table for Gender ---\n")
 gender_counts <- table(data$gender, useNA = "ifany")
 gender_percentages <- prop.table(gender_counts) * 100
 gender_levels <- names(gender_counts); if (any(is.na(gender_levels))) {
gender_levels[is.na(gender_levels)] <- "NA_Category" }
 if (length(gender_counts) > 0) {
 gender_summary_df <- data.frame(Category = gender_levels, Count =
as.integer(gender_counts), Percentage = as.numeric(gender_percentages))
 print(gender_summary_df)
 }
 if (sum(!is.na(data$gender)) > 0) {
 cat("Generating Gender Bar Chart...\n")

 143

 print(ggplot(data[!is.na(data$gender),], aes(x = gender, fill = gender)) +
 geom_bar(show.legend = FALSE) +
 geom_text(stat='count', aes(label=after_stat(count)), vjust=-0.5, size=3) +
 labs(title = "Distribution of Gender", x = "Gender", y = "Count") +
 theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1)))
 }
} else {
 cat("\n'gender' column not found.\n")
}

--- 3.3 Variable: Country of Residence ---
cat("\n\n--- Processing 'residence' Column ---\n")
if ("residence" %in% colnames(data)) {
 if (!is.factor(data$residence)) { data$residence <- as.factor(data$residence) }
 cat("\n--- Frequency Table for Residence ---\n")
 residence_counts <- table(data$residence, useNA = "ifany")
 residence_percentages <- prop.table(residence_counts) * 100
 category_names_res <- names(residence_counts)
 if (any(is.na(category_names_res))) { category_names_res[is.na(category_names_res)] <- "NA
(Missing)" } # Handles NA level name

 if (length(residence_counts) > 0) {
 residence_summary_df <- data.frame(
 Category = category_names_res,
 Count = as.integer(residence_counts),
 Percentage = as.numeric(residence_percentages)
)
 residence_summary_df <- residence_summary_df[order(-residence_summary_df$Count),]

 cat("\nSummary Table for Residence:\n")
 print(residence_summary_df, row.names = FALSE)
 } else {
 cat("No data (or only NA values) found in 'residence' column to create summary table.\n")
 }
} else {
 cat("\n'residence' column not found.\n")
}
cat("\n--- Demographic processing finished. ---\n")

--- 4. DEFINE ITEMS FOR EACH SCALE AND ROBOT ---
cat("\n\n--- 4. Defining Scale Items ---\n")
anthro_carl_items <- paste0("anthropomorphism _", 1:5, "_carl"); like_carl_items <-
paste0("likability _", 1:5, "_carl"); intel_carl_items <- paste0("intelligence _", 1:5, "_carl");
trust_carl_items <- paste0("trust _", 1:14, "_carl")

 144

anthro_ryan_items <- paste0("anthropomorphism _", 1:5, "_ryan"); like_ryan_items <-
paste0("likability _", 1:5, "_ryan"); intel_ryan_items <- paste0("intelligence _", 1:5, "_ryan");
trust_ryan_items <- paste0("trust _", 1:14, "_ryan")
anthro_ivan_items <- paste0("anthropomorphism _", 1:5, "_ivan"); like_ivan_items <-
paste0("likability _", 1:5, "_ivan"); intel_ivan_items <- paste0("intelligence _", 1:5, "_ivan");
trust_ivan_items <- paste0("trust _", 1:14, "_ivan")

--- 5. CALCULATE COMPOSITE SCORES (ROW MEANS) ---
cat("\n\n--- 5. Calculating Composite Scores ---\n")
check_and_calculate_mean <- function(df, items_list, new_col_name) {
 existing_items <- intersect(items_list, colnames(df))
 if (length(existing_items) == 0) { cat(paste0("Warning: No items for '", new_col_name, "'.
Skipping.\n")); return(df) }
 if (length(existing_items) < length(items_list)) { cat(paste0("Warning: Not all items for '",
new_col_name, "' found. Using: ", paste(existing_items, collapse=", "), "\n")) }
 df <- df %>% mutate(across(all_of(existing_items), as.numeric)) # Ensure items are numeric
before rowMeans
 df <- df %>% mutate(!!new_col_name := rowMeans(select(., all_of(existing_items)), na.rm =
TRUE))
 cat(paste0("Calculated: ", new_col_name, "\n"))
 return(df)
}
data <- check_and_calculate_mean(data, anthro_carl_items, "Anthro_Carl_Score"); data <-
check_and_calculate_mean(data, like_carl_items, "Like_Carl_Score"); data <-
check_and_calculate_mean(data, intel_carl_items, "Intel_Carl_Score"); data <-
check_and_calculate_mean(data, trust_carl_items, "Trust_Carl_Score")
data <- check_and_calculate_mean(data, anthro_ryan_items, "Anthro_Ryan_Score"); data <-
check_and_calculate_mean(data, like_ryan_items, "Like_Ryan_Score"); data <-
check_and_calculate_mean(data, intel_ryan_items, "Intel_Ryan_Score"); data <-
check_and_calculate_mean(data, trust_ryan_items, "Trust_Ryan_Score")
data <- check_and_calculate_mean(data, anthro_ivan_items, "Anthro_Ivan_Score"); data <-
check_and_calculate_mean(data, like_ivan_items, "Like_Ivan_Score"); data <-
check_and_calculate_mean(data, intel_ivan_items, "Intel_Ivan_Score"); data <-
check_and_calculate_mean(data, trust_ivan_items, "Trust_Ivan_Score")
cat("\n--- Composite score calculation finished. ---\n")

--- 6. DESCRIPTIVE STATISTICS & VISUALIZATIONS OF COMPOSITE SCORES ---
cat("\n\n--- 6. Descriptive Statistics & Visualizations of Composite Scores ---\n")
composite_score_columns <- c(grep("_Score$", colnames(data), value = TRUE)) # Dynamically
get all score columns
existing_composite_score_columns <- intersect(composite_score_columns, colnames(data))

if(length(existing_composite_score_columns) > 0){
 data <- data %>% mutate(across(all_of(existing_composite_score_columns), as.numeric)) #
Ensure numeric
 cat("\n--- Summary (Min, Q1, Median, Mean, Q3, Max) for Composite Scores ---\n")

 145

 print(summary(data[, existing_composite_score_columns]))
 cat("\n--- Mean, SD, N for Composite Scores ---\n")
 desc_stats_mean_sd <- data %>%
 select(all_of(existing_composite_score_columns)) %>%
 pivot_longer(cols = everything(), names_to = "Score_Name", values_to = "Value") %>%
 group_by(Score_Name) %>%
 summarise(Mean = mean(Value, na.rm = TRUE), SD = sd(Value, na.rm = TRUE), N_obs =
sum(!is.na(Value))) %>%
 arrange(Score_Name)
 print(desc_stats_mean_sd, n = Inf)
} else { cat("No composite score columns found to summarize.\n")}

--- Define names and orders for plotting ---
construct_name_map <- c(Anthro = "Anthropomorphism", Like = "Likability", Intel =
"Intelligence", Trust = "Trust")
constructs_short_names_for_iteration <- names(construct_name_map)

This order is used for original plots and for the ANOVA calculations later
robots_order <- c("Carl", "Ryan", "Ivan")

--- Define new orders, display names, and colors for the faceted plots ---
robots_order_original_faceted <- c("Ryan", "Ivan", "Carl")
robot_display_names_faceted <- c("Joint", "Disjoint", "Control")
robot_colors_faceted <- c("Joint" = "#029e73", "Disjoint" = "#d55e00", "Control" = "#cc78bc")

cat("\n\n--- 6.1 Generating Individual Boxplots for Each Composite Score ---\n")
if (length(existing_composite_score_columns) > 0) {
 for (score_col_indiv_plot in existing_composite_score_columns) {
 if (sum(!is.na(data[[score_col_indiv_plot]])) > 0) {
 short_construct_name_plot <- str_extract(score_col_indiv_plot, "^(Anthro|Like|Intel|Trust)")
 robot_name_plot <- str_extract(score_col_indiv_plot, "(Carl|Ryan|Ivan)")
 full_construct_display_name_plot <- construct_name_map[[short_construct_name_plot]]
 plot_title_desc <- paste("Boxplot of", full_construct_display_name_plot, "(Robot:",
robot_name_plot, ")")
 if (is.na(full_construct_display_name_plot) || is.na(robot_name_plot)) { plot_title_desc <-
paste("Boxplot of", score_col_indiv_plot) }

 p_i <- ggplot(data, aes(y = .data[[score_col_indiv_plot]])) +
 geom_boxplot(fill = "skyblue", outlier.colour = "red", outlier.shape = 16, outlier.size = 2) +
 labs(title = plot_title_desc, y = "Score", x = "") + theme_minimal() + theme(axis.text.x =
element_blank(), axis.ticks.x = element_blank())
 print(p_i); cat(paste("Boxplot for:", score_col_indiv_plot, "\n"))
 } else { cat(paste("Skipping boxplot for:", score_col_indiv_plot, "- All values are NA.\n"))}
 }
}

 146

cat("\n\n--- 6.2 Generating Grouped Boxplots for Each Construct ---\n")
if ("participantID" %in% colnames(data)) {
 for (short_construct_name_grp_plot in constructs_short_names_for_iteration) {
 full_construct_display_name_grp_plot <-
construct_name_map[[short_construct_name_grp_plot]]
 cat(paste0("\n--- Grouped Boxplot for: ", full_construct_display_name_grp_plot, " Scores ---
\n"))
 score_cols_for_grp_plot <- existing_composite_score_columns[grep(paste0("^",
short_construct_name_grp_plot, "_"), existing_composite_score_columns)]
 if (length(score_cols_for_grp_plot) > 0) {
 data_long_construct_grp_plot <- data %>%
 select(participantID, all_of(score_cols_for_grp_plot)) %>%
 pivot_longer(cols = all_of(score_cols_for_grp_plot), names_to = "Scale_Version",
values_to = "Score") %>%
 mutate(Robot = str_extract(Scale_Version, paste(robots_order, collapse="|")), Robot =
factor(Robot, levels = robots_order))
 if (sum(!is.na(data_long_construct_grp_plot$Score)) > 0) {
 grouped_plot_render <- ggplot(data_long_construct_grp_plot, aes(x = Robot, y = Score, fill
= Robot)) +
 geom_boxplot(outlier.colour = "red", outlier.shape = 16, outlier.size = 2) +
 labs(title = paste(full_construct_display_name_grp_plot, "Scores by Robot"), x = "Robot",
y = paste(full_construct_display_name_grp_plot, "Score")) +
 theme_minimal() + theme(legend.position = "none")
 print(grouped_plot_render)
 } else { cat(paste("No non-NA data for grouped", full_construct_display_name_grp_plot,
"boxplot.\n")) }
 } else { cat(paste("No '", full_construct_display_name_grp_plot, "' score columns found.\n"))
}
 }
} else { cat("Warning: 'participantID' column not found. Skipping grouped boxplots.\n")}

cat("\n\n--- 6.3 Generating Combined Faceted Boxplot for All Constructs (with New Labels) ---
\n")
if ("participantID" %in% colnames(data) && length(existing_composite_score_columns) > 0) {
 data_long_all_constructs_viz <- data %>%
 select(participantID, all_of(existing_composite_score_columns)) %>%
 pivot_longer(cols = all_of(existing_composite_score_columns), names_to = "Score_Name",
values_to = "ScoreValue") %>%
 mutate(
 Short_Construct_Name = str_extract(Score_Name, "^(Anthro|Like|Intel|Trust)"),
 Robot = str_extract(Score_Name, "(Carl|Ryan|Ivan)"),
 Robot = factor(Robot, levels = robots_order_original_faceted), # Use new order

 # Create new column for plot labels based on the original Robot column

 147

 Robot_Plot_Label = recode(Robot, "Ryan" = "Joint", "Ivan" = "Disjoint", "Carl" =
"Control"),
 # Factor the new column with the new display names for correct ordering in plots
 Robot_Plot_Label = factor(Robot_Plot_Label, levels = robot_display_names_faceted),

 Construct_Display = recode(Short_Construct_Name, !!!construct_name_map),
 Construct_Display = factor(Construct_Display, levels = unname(construct_name_map))
) %>%
 filter(!is.na(Robot) & !is.na(Construct_Display) & !is.na(ScoreValue))

 if (nrow(data_long_all_constructs_viz) > 0) {
 combined_faceted_plot_final <- ggplot(data_long_all_constructs_viz, aes(x =
Robot_Plot_Label, y = ScoreValue, fill = Robot_Plot_Label)) +
 geom_boxplot(outlier.colour = "red", outlier.shape = 16, outlier.size = 1.5, width = 0.7) +
 scale_fill_manual(values = robot_colors_faceted) + # Use the new color palette
 facet_wrap(~Construct_Display, scales = "free", ncol = 2) +
 labs(title = "Comparison of Subjective Ratings by Robot Condition", x = "Robot Condition",
y = "Mean Score") +
 theme_minimal(base_size = 12) +
 theme(legend.position = "none", strip.text = element_text(face="bold",size=11),
axis.text.x=element_text(angle=45,hjust=1,size=10), axis.title=element_text(size=11),
plot.title=element_text(hjust=0.5,size=14,face="bold"), panel.spacing=unit(1.5,"lines"))
 print(combined_faceted_plot_final)
 } else { cat("No data for combined faceted plot.\n")}
} else { cat("Warning: 'participantID' or composite scores missing. Skipping combined faceted
boxplot.\n")}

--- 6.4 [NEW] Generating Combined Faceted Bar Chart with 95% Confidence Intervals ---
cat("\n\n--- 6.4 Generating Combined Bar Chart with 95% Confidence Intervals ---\n")
if (exists("data_long_all_constructs_viz") && nrow(data_long_all_constructs_viz) > 0) {

 # Group by the new Robot_Plot_Label column to calculate stats
 summary_stats_for_plot <- data_long_all_constructs_viz %>%
 group_by(Construct_Display, Robot_Plot_Label) %>%
 summarise(
 Mean = mean(ScoreValue, na.rm = TRUE),
 SD = sd(ScoreValue, na.rm = TRUE),
 N = n(),
 .groups = 'drop'
) %>%
 mutate(
 SE = SD / sqrt(N),
 CI_lower = Mean - 1.96 * SE,
 CI_upper = Mean + 1.96 * SE
)

 148

 # Use Robot_Plot_Label for x and fill aesthetics
 combined_faceted_barchart <- ggplot(summary_stats_for_plot, aes(x = Robot_Plot_Label, y =
Mean, fill = Robot_Plot_Label)) +
 geom_bar(stat = "identity", color = "black", width = 0.8) +
 geom_errorbar(
 aes(ymin = CI_lower, ymax = CI_upper),
 width = 0.25,
 linewidth = 0.5,
 color = "black"
) +
 geom_text(
 aes(label = sprintf("M = %.2f", Mean)),
 vjust = -2.5,
 color = "black",
 size = 3.5
) +
 facet_wrap(~Construct_Display, scales = "free", ncol = 2) +
 labs(
 title = "Mean Subjective Ratings by Robot Condition",
 subtitle = "Error bars represent 95% Confidence Intervals",
 x = "Robot Condition",
 y = "Mean Score"
) +
 scale_fill_manual(values = robot_colors_faceted) + # Use the new color palette
 scale_y_continuous(expand = expansion(mult = c(0, .15))) + # Give space for text labels
 theme_minimal(base_size = 12) +
 theme(
 legend.position = "none",
 strip.text = element_text(face = "bold", size = 11),
 axis.text.x = element_text(angle = 45, hjust = 1, size = 10),
 axis.title = element_text(size = 11),
 plot.title = element_text(hjust = 0.5, size = 14, face = "bold"),
 plot.subtitle = element_text(hjust = 0.5, size = 10),
 panel.spacing = unit(1.5, "lines"),
 panel.grid.major.x = element_blank() # Clean up grid lines
)

 print(combined_faceted_barchart)
 cat("\n--- Bar chart with CIs generated successfully. ---\n")

} else {
 cat("Warning: Could not generate bar chart because the initial data processing step (6.3) failed
to produce data.\n")
}

 149

--- 7. IDENTIFY POTENTIAL OUTLIERS (1.5 * IQR Rule) ---
cat("\n\n--- 7. Identifying Potential Outliers for Composite Scores ---\n")
if (length(existing_composite_score_columns) > 0 && "participantID" %in% colnames(data)) {
 for (score_col_outlier_check in existing_composite_score_columns) {
 cat(paste0("\nChecking outliers for: ", score_col_outlier_check, "\n"))
 scores_vector_check <-
data[[score_col_outlier_check]][!is.na(data[[score_col_outlier_check]])]
 if (length(scores_vector_check) < 5) { cat("Not enough data.\n"); next }
 Q1_check <- quantile(scores_vector_check, 0.25); Q3_check <-
quantile(scores_vector_check, 0.75); IQR_val_check <- Q3_check - Q1_check
 lower_b_check <- Q1_check - 1.5 * IQR_val_check; upper_b_check <- Q3_check + 1.5 *
IQR_val_check
 potential_outliers_found <- data %>%
 filter((!!sym(score_col_outlier_check) < lower_b_check | !!sym(score_col_outlier_check) >
upper_b_check) & !is.na(!!sym(score_col_outlier_check))) %>%
 select(participantID, !!sym(score_col_outlier_check))
 if (nrow(potential_outliers_found) > 0) { cat("Potential outliers:\n");
print(potential_outliers_found) } else { cat("No outliers found.\n") }
 }
}
cat("\n--- Outlier Identification Complete. ---\n")

--- 8. CHECK NORMALITY FOR EACH COMPOSITE SCORE ---
cat("\n\n--- 8. Checking Normality for Composite Scores ---\n")
for (score_col_norm_final in existing_composite_score_columns) {
 short_construct_final <- str_extract(score_col_norm_final, "^(Anthro|Like|Intel|Trust)")
 robot_name_final <- str_extract(score_col_norm_final, "(Carl|Ryan|Ivan)")
 full_construct_final <- construct_name_map[[short_construct_final]]
 plot_title_hist_final <- paste("Hist & Density:", full_construct_final, "-", robot_name_final)
 if (is.na(full_construct_final)) plot_title_hist_final <- paste("Hist & Density:",
score_col_norm_final)

 cat(paste0("\n--- Normality Check for: ", score_col_norm_final, " ---\n"))
 score_values_for_norm <- data[[score_col_norm_final]][!is.na(data[[score_col_norm_final]])]
 if (length(score_values_for_norm) >= 3) {
 hist_plot_final_render <- ggplot(data, aes(x = .data[[score_col_norm_final]])) +
 geom_histogram(aes(y=after_stat(density)), binwidth = 0.5, fill="cornflowerblue",
color="black", alpha=0.7, na.rm=TRUE) +
 geom_density(alpha = 0.5, fill="darkorange", colour="darkorange", na.rm=TRUE) +
 labs(title=plot_title_hist_final, x = "Score", y = "Density") + theme_minimal()
 print(hist_plot_final_render)

 qq_plot_title_final <- paste("Q-Q Plot:", full_construct_final, "-", robot_name_final)
 if (is.na(full_construct_final)) qq_plot_title_final <- paste("Q-Q Plot:", score_col_norm_final)

 150

 qq_plot_final_render <- ggqqplot(data, x=score_col_norm_final, conf.int = TRUE, ggtheme =
theme_minimal(), ylab="SampleQ", xlab="TheoreticalQ", title=qq_plot_title_final)
 print(qq_plot_final_render)

 if (length(score_values_for_norm) <= 5000) {
 shapiro_test_final <- shapiro.test(score_values_for_norm)
 cat(paste0("Shapiro-Wilk for ", score_col_norm_final, ":
W=",round(shapiro_test_final$statistic,3),", p=",round(shapiro_test_final$p.value,3),"\n"))
 } else { cat("N > 5000, Shapiro-Wilk may not be optimal.\n") }
 } else { cat("Not enough data for normality check.\n")}
}
cat("\n--- Normality Assessment Complete. ---\n")

--- 9. CRONBACH'S ALPHA FOR SCALE RELIABILITY ---
cat("\n\n--- 9. Calculating Cronbach's Alpha ---\n")
all_item_sets_orig_alpha_final <- list(
 Anthro_Carl = anthro_carl_items, Like_Carl = like_carl_items, Intel_Carl = intel_carl_items,
Trust_Carl = trust_carl_items,
 Anthro_Ryan = anthro_ryan_items, Like_Ryan = like_ryan_items, Intel_Ryan =
intel_ryan_items, Trust_Ryan = trust_ryan_items,
 Anthro_Ivan = anthro_ivan_items, Like_Ivan = like_ivan_items, Intel_Ivan = intel_ivan_items,
Trust_Ivan = trust_ivan_items
)
alpha_results_list_full <- list()
for (scale_name_alpha_run in names(all_item_sets_orig_alpha_final)) {
 items_for_alpha_run <- all_item_sets_orig_alpha_final[[scale_name_alpha_run]]
 present_items_for_alpha_run <- items_for_alpha_run[items_for_alpha_run %in%
colnames(data)]
 if (length(present_items_for_alpha_run) >= 2) {
 data_subset_for_alpha_run <- data %>% select(all_of(present_items_for_alpha_run)) %>%
mutate(across(everything(), as.numeric))
 data_subset_complete_for_alpha_run <-
data_subset_for_alpha_run[rowSums(is.na(data_subset_for_alpha_run)) <
ncol(data_subset_for_alpha_run),] # Keep rows with at least one non-NA value
 if(nrow(data_subset_complete_for_alpha_run) >=2 &&
ncol(data_subset_complete_for_alpha_run) >=2) { # Check if still valid after NA row removal
 alpha_obj_run_final <- psych::alpha(data_subset_complete_for_alpha_run,
check.keys=TRUE, use="pairwise.complete.obs") # pairwise for robustness
 alpha_results_list_full[[scale_name_alpha_run]] <- alpha_obj_run_final$total
 } else { alpha_results_list_full[[scale_name_alpha_run]] <- list(std.alpha = NA_real_) }
 } else { alpha_results_list_full[[scale_name_alpha_run]] <- list(std.alpha = NA_real_) }
}
alpha_summary_df_to_show <- tibble(Scale=names(alpha_results_list_full),
Std_Alpha=sapply(alpha_results_list_full, function(x) if(is.list(x) && "std.alpha" %in%
names(x)) round(x$std.alpha,3) else NA_real_))
print(alpha_summary_df_to_show, n=Inf)

 151

cat("\n--- Cronbach's Alpha calculation finished. ---\n")

--- 10. PARAMETRIC TESTING - REPEATED MEASURES ANOVA ---
cat("\n\n--- 10. Parametric Testing (Repeated Measures ANOVAs) ---\n")
if (!"participantID" %in% colnames(data)) { stop("Error: 'participantID' column required for
ANOVA.") }

for (construct_short_final_anova in constructs_short_names_for_iteration) {
 full_construct_final_anova <- construct_name_map[[construct_short_final_anova]]
 cat(paste0("\n\n--- RM ANOVA for: ", full_construct_final_anova, " Scores ---\n"))

 # IMPORTANT: This section uses the original `robots_order` to find the correct columns
 composite_cols_final_anova <- paste0(construct_short_final_anova, "_", robots_order,
"_Score")
 existing_cols_final_anova <- intersect(composite_cols_final_anova, colnames(data))
 if (length(existing_cols_final_anova) != length(robots_order)) { cat(paste0("Skipping ",
full_construct_final_anova, ": not all score columns found.\n")); next }

 data_long_final_anova <- data %>% select(participantID, all_of(existing_cols_final_anova))
%>%
 pivot_longer(cols = all_of(existing_cols_final_anova), names_to = "Robot_Condition_Raw",
values_to = "ScoreValue") %>%
 mutate(Robot = str_extract(Robot_Condition_Raw, paste(robots_order, collapse="|")), Robot
= factor(Robot, levels = robots_order))

 data_long_complete_final_anova <- data_long_final_anova %>% filter(!is.na(ScoreValue))
 if(nrow(data_long_complete_final_anova) == 0) { cat(paste0("Skipping ",
full_construct_final_anova, ": no data after NA removal.\n")); next }

 n_distinct_robots_final_anova <-
n_distinct(data_long_complete_final_anova$Robot[!is.na(data_long_complete_final_anova$Rob
ot)])
 if (n_distinct_robots_final_anova < length(robots_order)) { cat(paste0("Skipping ",
full_construct_final_anova, ": not all robots present.\n")); next }

 subject_counts_final_anova <- data_long_complete_final_anova %>% group_by(participantID)
%>% summarise(n_cond_answered = n_distinct(Robot), .groups = 'drop')
 complete_subjects_final_anova <- subject_counts_final_anova %>% filter(n_cond_answered
== n_distinct_robots_final_anova) %>% pull(participantID)
 if (length(complete_subjects_final_anova) < 2) { cat(paste0("Skipping ",
full_construct_final_anova, ": <2 subjects with complete data.\n")); next }

 data_anova_for_rstatix <- data_long_complete_final_anova %>% filter(participantID %in%
complete_subjects_final_anova)

 152

 cat(paste0("RM ANOVA for '", full_construct_final_anova, "' (N=",
length(complete_subjects_final_anova), " subjects)...\n"))
 tryCatch({
 res_aov_actual <- rstatix::anova_test(data = data_anova_for_rstatix, dv = ScoreValue, wid =
participantID, within = Robot, effect.size = "ges")
 print(res_aov_actual)

 p_val_aov_actual <- NA; anova_table_from_rstatix <- NULL
 if(is.list(res_aov_actual) && "ANOVA" %in% names(res_aov_actual)) {
anova_table_from_rstatix <- res_aov_actual$ANOVA }
 else if(is.data.frame(res_aov_actual)) { anova_table_from_rstatix <- res_aov_actual }
 if(!is.null(anova_table_from_rstatix) && "p" %in% colnames(anova_table_from_rstatix) &&
"Effect" %in% colnames(anova_table_from_rstatix)) {
 p_row_val_actual <- anova_table_from_rstatix[anova_table_from_rstatix$Effect ==
"Robot",]; if(nrow(p_row_val_actual) == 1) p_val_aov_actual <- p_row_val_actual$p
 }
 if (!is.na(p_val_aov_actual) && p_val_aov_actual < 0.05) {
 cat(paste0("ANOVA for '", full_construct_final_anova, "' significant. Pairwise
(Bonferroni):\n"))
 print(data_anova_for_rstatix %>% rstatix::pairwise_t_test(ScoreValue ~ Robot, paired =
TRUE, p.adjust.method = "bonferroni"))
 } else { cat(paste0("ANOVA for '", full_construct_final_anova, "' NOT significant or p-value
not extracted.\n")) }
 }, error = function(e) { cat(paste0("ERROR RM ANOVA for '", full_construct_final_anova, "':
", e$message, "\n")) })
}
cat("\n--- Parametric testing finished. ---\n")

--- 11. SAVE FINAL DATASET ---
final_output_filename <- "qualtrics_data_fully_processed_with_all_analyses.csv"
cat(paste0("\n\n--- 11. Saving final data to '", final_output_filename, "' ---\n"))
write_csv(data, final_output_filename)
cat("--- Script finished. Final data saved. ---\n")

 153

Python-Script for generating Heatmaps

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

--- USER CONFIGURATION ---
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv"
BACKGROUND_IMAGE_FILE = "carl.png"

def generate_heatmap(data_filepath, image_filepath, target_robot, target_difficulty):
 """
 Generates a high-visibility heatmap with a shorter, closer colorbar legend.
 """
 print(f"Generating heatmap for: {target_robot} / {target_difficulty}...")

 # --- 1. Load and Prepare Data ---
 try:
 df = pd.read_csv(data_filepath, decimal=',')
 bg_img = mpimg.imread(image_filepath)
 img_height, img_width, _ = bg_img.shape
 except FileNotFoundError as e:
 print(f"FATAL ERROR: Could not find a required file. {e}")
 return

 coord_cols = ['Fixation point X (MCSnorm)', 'Fixation point Y (MCSnorm)']
 for col in coord_cols:
 df[col] = pd.to_numeric(df[col], errors='coerce')

 condition_df = df[
 (df['Robot'] == target_robot) &
 (df['difficulty'] == target_difficulty) &
 (df['Eye movement type'] == 'Fixation')
].dropna(subset=coord_cols).copy()

 if condition_df.empty:
 print("No fixation data found for the selected condition.")
 return

 print(f"Found {len(condition_df)} fixations for this condition.")

 condition_df['x_pixel'] = condition_df['Fixation point X (MCSnorm)'] * img_width
 condition_df['y_pixel'] = condition_df['Fixation point Y (MCSnorm)'] * img_height

 # --- 2. Create the Heatmap Plot ---

 154

 fig, ax = plt.subplots(figsize=(12, 9))

 # Display the background image
 ax.imshow(bg_img)

 # --- UPDATED: Final adjustments for legend size and position ---
 sns.kdeplot(
 x=condition_df['x_pixel'],
 y=condition_df['y_pixel'],
 ax=ax,
 fill=True,
 cmap="rocket_r",
 alpha=0.75,
 thresh=0.05,
 bw_adjust=0.8,
 cbar=True,
 cbar_kws={
 'label': 'Fixation Density',
 'shrink': 0.4, # --- REDUCED: Makes the colorbar even shorter (40% of plot height) ---
 'pad': 0.02 # --- ADDED: Moves the colorbar closer to the plot ---
 }
)

 ax.set_title(f"Fixation Heatmap for: {target_robot} / {target_difficulty}", fontsize=16)
 ax.axis('off')

 plt.tight_layout()
 plt.show()

--- Main Execution Block (Set to compare Carl: Easy vs. Hard) ---
if __name__ == "__main__":
 print("--- Generating heatmap for carl / easy ---")
 generate_heatmap(data_filepath=FULL_DATA_FILE,
 image_filepath=BACKGROUND_IMAGE_FILE,
 target_robot='Carl condition',
 target_difficulty='easy')

 print("\n--- Generating a second heatmap for comparison ---")
 generate_heatmap(data_filepath=FULL_DATA_FILE,
 image_filepath=BACKGROUND_IMAGE_FILE,
 target_robot='Carl condition',
 target_difficulty='hard')

 155

Python Script for Analysis of Dwell Time

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pingouin as pg
import os

--- USER CONFIGURATION ---
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv"
The directory where results will be saved
OUTPUT_DIR = "analysis_results"

Outlier threshold
SD_THRESHOLD = 2.5

def run_analysis_for_aoi(df, target_aoi_col, target_aoi_name, sd_thresh):
 """
 Calculates Proportional Dwell Time for a given AOI, removes outliers,
 runs a 2x3 repeated-measures ANOVA, and generates visualizations.
 """
 print("\n" + "="*80)
 print(f"Running Analysis for AOI: '{target_aoi_name}' (Column: {target_aoi_col})")
 print("="*80)

 # --- 1. Calculate Proportional Dwell Time ---
 print("\n[Step 1] Calculating Proportional Dwell Time...")
 # Isolate only fixation events
 fixations_df = df[df['Eye movement type'] == 'Fixation'].copy()
 # Filter for fixations on the current target AOI
 aoi_fixations = fixations_df[fixations_df[target_aoi_col] == True]
 # Group by trial and SUM the DURATION of fixations for the AOI
 dwell_times = aoi_fixations.groupby(['ParticipantID',
'classification_timeframe_number'])['Eye movement event
duration'].sum().to_frame(name='Dwell_Time_ms').reset_index()

 # Calculate Total Trial Duration from the main df
 total_trial_durations = df.groupby(['ParticipantID', 'classification_timeframe_number'])['Eye
movement event duration'].sum().to_frame(name='Total_Trial_Duration_ms').reset_index()

 # Create a complete list of all trials to merge onto
 all_trials = df[['ParticipantID', 'classification_timeframe_number', 'Robot',
'difficulty']].drop_duplicates()
 # Merge AOI dwell times and total trial durations

 156

 analysis_df = pd.merge(all_trials, dwell_times, on=['ParticipantID',
'classification_timeframe_number'], how='left')
 analysis_df = pd.merge(analysis_df, total_trial_durations, on=['ParticipantID',
'classification_timeframe_number'], how='left')

 # Fill NaNs and calculate the proportion
 analysis_df['Dwell_Time_ms'].fillna(0, inplace=True)
 analysis_df['Proportional_Dwell_Time'] = np.where(analysis_df['Total_Trial_Duration_ms'] >
0,
 analysis_df['Dwell_Time_ms'] /
analysis_df['Total_Trial_Duration_ms'],
 0)
 print(f"Proportional Dwell Time calculated for {len(analysis_df)} trials.")

 # --- 2. Outlier Removal ---
 print(f"\n[Step 2] Checking for outliers in 'Proportional_Dwell_Time' for
'{target_aoi_name}'...")
 original_rows = len(analysis_df)
 def remove_outliers_by_sd(df, group_cols, value_col, threshold):
 def remove_group_outliers(group):
 mean = group[value_col].mean()
 std_dev = group[value_col].std()
 if pd.isna(std_dev) or std_dev == 0: return group
 lower_bound = mean - threshold * std_dev
 upper_bound = mean + threshold * std_dev
 return group[(group[value_col] >= lower_bound) & (group[value_col] <= upper_bound)]
 return df.groupby(group_cols, group_keys=False).apply(remove_group_outliers)

 analysis_df = remove_outliers_by_sd(analysis_df,
 group_cols=['Robot', 'difficulty', 'ParticipantID'],
 value_col='Proportional_Dwell_Time',
 threshold=sd_thresh)
 outliers_removed = original_rows - len(analysis_df)
 percentage_lost = (outliers_removed / original_rows) * 100 if original_rows > 0 else 0
 print(f" Removed {outliers_removed} outlier(s) ({percentage_lost:.2f}% of the data).")

 # Save the cleaned data to a unique file
 output_filename = f"proportional_dwell_time_{target_aoi_name.replace(' ',
'_').lower()}_results.csv"
 output_filepath = os.path.join(OUTPUT_DIR, output_filename)
 analysis_df.to_csv(output_filepath, index=False)
 print(f"Cleaned results for '{target_aoi_name}' saved to '{output_filepath}'.")

 # --- 3. Visualize and Analyze ---
 print(f"\n[Step 3] Visualizing and running ANOVA for '{target_aoi_name}'...")

 157

 analysis_df['Proportional_Dwell_Time_Percent'] = analysis_df['Proportional_Dwell_Time'] *
100.0

 robot_name_map = {
 "Ryan condition": "Joint condition",
 "Ivan condition": "Disjoint condition",
 "Carl condition": "Control condition"
 }
 analysis_df['Robot'] = analysis_df['Robot'].map(robot_name_map)
 robot_order = ["Joint condition", "Disjoint condition", "Control condition"]
 if all(robot in analysis_df['Robot'].unique() for robot in robot_order):
 analysis_df['Robot'] = pd.Categorical(analysis_df['Robot'], categories=robot_order,
ordered=True)

 # Create grouped bar chart
 plt.figure(figsize=(12, 8))
 sns.barplot(x='Robot', y='Proportional_Dwell_Time_Percent', hue='difficulty',
data=analysis_df, palette="viridis", capsize=.05, errorbar="se")
 plt.title(f"Mean Proportional Dwell Time on {target_aoi_name}\nby Condition and
Difficulty")
 plt.ylabel('Mean Proportional Dwell Time (%)')
 plt.xlabel('Robotic Condition')
 plt.legend(title='Difficulty')
 # Save the plot to a file
 plot_filename = f"plot_{target_aoi_name.replace(' ', '_').lower()}.png"
 plot_filepath = os.path.join(OUTPUT_DIR, plot_filename)
 plt.savefig(plot_filepath)
 plt.show()
 print(f"Plot for '{target_aoi_name}' saved to '{plot_filepath}'.")

 # Perform ANOVA
 aov = pg.rm_anova(data=analysis_df,
 dv='Proportional_Dwell_Time',
 within=['Robot', 'difficulty'],
 subject='ParticipantID',
 detailed=True)
 print(f"\n--- ANOVA Results for Proportional Dwell Time on '{target_aoi_name}' ---")
 pg.print_table(aov)

 # Conditional Post-Hoc tests
 is_robot_sig = aov.loc[aov['Source'] == 'Robot', 'p-unc'].iloc[0] < 0.05
 is_interaction_sig = aov.loc[aov['Source'] == 'Robot * difficulty', 'p-unc'].iloc[0] < 0.05
 if is_robot_sig or is_interaction_sig:
 print(f"\n--- Post-Hoc Tests for Proportional Dwell Time on '{target_aoi_name}' ---")

 158

 posthocs = pg.pairwise_tests(data=analysis_df, dv='Proportional_Dwell_Time',
within=['Robot', 'difficulty'], subject='ParticipantID', padjust='bonf')
 print(posthocs)

--- Main Execution Block ---
if __name__ == "__main__":
 # --- 1. Load and Prepare Data ONCE ---
 print("Loading and preparing main data file...")
 try:
 main_df = pd.read_csv(FULL_DATA_FILE, decimal=',')
 except FileNotFoundError:
 print(f"FATAL ERROR: Could not find '{FULL_DATA_FILE}'")
 exit() # Use exit() in main block

 # Create the output directory if it doesn't exist
 if not os.path.exists(OUTPUT_DIR):
 os.makedirs(OUTPUT_DIR)

 # Standard data cleaning
 main_df['classification_timeframe_number'] =
pd.to_numeric(main_df['classification_timeframe_number'], errors='coerce')
 main_df['Eye movement event duration'] = pd.to_numeric(main_df['Eye movement event
duration'], errors='coerce')
 main_df.dropna(subset=['classification_timeframe_number', 'Eye movement event duration'],
inplace=True)
 main_df['classification_timeframe_number'] =
main_df['classification_timeframe_number'].astype('Int64')
 if 'ParticipantID' not in main_df.columns: main_df['ParticipantID'] = 'Unknown'
 else: main_df['ParticipantID'] = main_df['ParticipantID'].ffill().bfill()
 grouping_cols_for_ffill = ['ParticipantID', 'classification_timeframe_number']
 cols_to_ffill = ['Robot', 'difficulty']
 for col_ffill in cols_to_ffill:
 if col_ffill in main_df.columns:
 main_df[col_ffill] = main_df.groupby(grouping_cols_for_ffill,
group_keys=False)[col_ffill].ffill().bfill()
 print("Data loaded and prepared.")

 # --- 2. Create Combined AOI Column ---
 # The | operator works as a boolean OR for pandas columns.
 print("\nCreating combined 'Classification Buttons' AOI...")
 main_df['classification_buttons'] = main_df['is_true_category'] | main_df['is_false_category']
 print("Combined AOI created.")

 # --- 3. Define AOIs and Run Analysis for Each ---

 159

 aois_to_analyze = [
 {'col': 'is_face', 'name': 'Robot Face'},
 {'col': 'is_cards', 'name': 'Cards'},
 {'col': 'classification_buttons', 'name': 'Classification Buttons'}
]

 for aoi in aois_to_analyze:
 run_analysis_for_aoi(df=main_df.copy(), # Pass a copy to ensure original df is unchanged
 target_aoi_col=aoi['col'],
 target_aoi_name=aoi['name'],
 sd_thresh=SD_THRESHOLD)

 print("\nAll analyses completed”)

Python Script for AOI Frequency Analysis

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pingouin as pg
import os

--- USER CONFIGURATION ---
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv"
The directory where results will be saved
OUTPUT_DIR = "analysis_results_fixation_count"

Outlier threshold
SD_THRESHOLD = 2.5

def run_proportional_fixation_analysis(df, target_aoi_col, target_aoi_name, sd_thresh):
 """
 Calculates Proportional Fixation Count for a given AOI, removes outliers,
 runs a 2x3 repeated-measures ANOVA, and generates visualizations.
 """
 print("\n" + "="*80)
 print(f"Running Analysis for AOI: '{target_aoi_name}' (Column: {target_aoi_col})")
 print("="*80)

 # --- 1. Calculate Proportional Fixation Count ---
 print("\n[Step 1] Calculating Proportional Fixation Count...")

 # Isolate only fixation events from the main dataframe
 fixations_df = df[df['Eye movement type'] == 'Fixation'].copy()

 160

 # Filter for fixations on the current target AOI
 aoi_fixations = fixations_df[fixations_df[target_aoi_col] == True]

 # Group by trial and COUNT the fixations for the AOI
 aoi_fix_counts = aoi_fixations.groupby(['ParticipantID',
'classification_timeframe_number']).size().to_frame(name='AOI_Fixation_Count').reset_index()

 # Calculate TOTAL number of fixations for each trial
 total_fix_counts = fixations_df.groupby(['ParticipantID',
'classification_timeframe_number']).size().to_frame(name='Total_Trial_Fixation_Count').reset_i
ndex()

 # Create a complete list of all trials to merge onto
 all_trials = df[['ParticipantID', 'classification_timeframe_number', 'Robot',
'difficulty']].drop_duplicates()

 # Merge AOI counts and total trial counts
 analysis_df = pd.merge(all_trials, aoi_fix_counts, on=['ParticipantID',
'classification_timeframe_number'], how='left')
 analysis_df = pd.merge(analysis_df, total_fix_counts, on=['ParticipantID',
'classification_timeframe_number'], how='left')

 # Fill NaNs and calculate the proportion
 analysis_df['AOI_Fixation_Count'].fillna(0, inplace=True)
 analysis_df['Total_Trial_Fixation_Count'].fillna(0, inplace=True) # A trial might have no
fixations at all
 analysis_df['Proportional_Fixation_Count'] =
np.where(analysis_df['Total_Trial_Fixation_Count'] > 0,
 analysis_df['AOI_Fixation_Count'] /
analysis_df['Total_Trial_Fixation_Count'],
 0)
 print(f"Proportional Fixation Count calculated for {len(analysis_df)} trials.")

 # --- 2. Outlier Removal ---
 print(f"\n[Step 2] Checking for outliers in 'Proportional_Fixation_Count' for
'{target_aoi_name}'...")
 original_rows = len(analysis_df)
 def remove_outliers_by_sd(df, group_cols, value_col, threshold):
 def remove_group_outliers(group):
 mean = group[value_col].mean()
 std_dev = group[value_col].std()
 if pd.isna(std_dev) or std_dev == 0: return group
 lower_bound = mean - threshold * std_dev
 upper_bound = mean + threshold * std_dev
 return group[(group[value_col] >= lower_bound) & (group[value_col] <= upper_bound)]

 161

 return df.groupby(group_cols, group_keys=False).apply(remove_group_outliers)

 analysis_df = remove_outliers_by_sd(analysis_df,
 group_cols=['Robot', 'difficulty', 'ParticipantID'],
 value_col='Proportional_Fixation_Count',
 threshold=sd_thresh)
 outliers_removed = original_rows - len(analysis_df)
 percentage_lost = (outliers_removed / original_rows) * 100 if original_rows > 0 else 0
 print(f" Removed {outliers_removed} outlier(s) ({percentage_lost:.2f}% of the data).")

 # Save the cleaned data to a unique file
 output_filename = f"proportional_fixation_count_{target_aoi_name.replace(' ',
'_').lower()}_results.csv"
 output_filepath = os.path.join(OUTPUT_DIR, output_filename)
 analysis_df.to_csv(output_filepath, index=False)
 print(f"Cleaned results for '{target_aoi_name}' saved to '{output_filepath}'.")

 # --- 3. Visualize and Analyze ---
 print(f"\n[Step 3] Visualizing and running ANOVA for '{target_aoi_name}'...")
 analysis_df['Proportional_Fixation_Count_Percent'] =
analysis_df['Proportional_Fixation_Count'] * 100.0

 robot_name_map = {
 "Ryan condition": "Joint condition",
 "Ivan condition": "Disjoint condition",
 "Carl condition": "Control condition"
 }
 analysis_df['Robot'] = analysis_df['Robot'].map(robot_name_map)
 robot_order = ["Joint condition", "Disjoint condition", "Control condition"]
 if all(robot in analysis_df['Robot'].unique() for robot in robot_order):
 analysis_df['Robot'] = pd.Categorical(analysis_df['Robot'], categories=robot_order,
ordered=True)

 # Create grouped bar chart
 plt.figure(figsize=(12, 8))
 sns.barplot(x='Robot', y='Proportional_Fixation_Count_Percent', hue='difficulty',
data=analysis_df, palette="magma", capsize=.05, errorbar="se")
 plt.title(f"Mean Proportional Fixation Count on {target_aoi_name}\nby Condition and
Difficulty")
 plt.ylabel('Mean Proportional Fixation Count (%)')
 plt.xlabel('Robotic Condition')
 plt.legend(title='Difficulty')
 # Save the plot to a file
 plot_filename = f"plot_fixation_count_{target_aoi_name.replace(' ', '_').lower()}.png"
 plot_filepath = os.path.join(OUTPUT_DIR, plot_filename)
 plt.savefig(plot_filepath)

 162

 plt.show()
 print(f"Plot for '{target_aoi_name}' saved to '{plot_filepath}'.")

 # Perform ANOVA
 aov = pg.rm_anova(data=analysis_df,
 dv='Proportional_Fixation_Count',
 within=['Robot', 'difficulty'],
 subject='ParticipantID',
 detailed=True)
 print(f"\n--- ANOVA Results for Proportional Fixation Count on '{target_aoi_name}' ---")
 pg.print_table(aov)

 # Conditional Post-Hoc tests
 is_robot_sig = aov.loc[aov['Source'] == 'Robot', 'p-unc'].iloc[0] < 0.05
 is_interaction_sig = aov.loc[aov['Source'] == 'Robot * difficulty', 'p-unc'].iloc[0] < 0.05
 if is_robot_sig or is_interaction_sig:
 print(f"\n--- Post-Hoc Tests for Proportional Fixation Count on '{target_aoi_name}' ---")
 posthocs = pg.pairwise_tests(data=analysis_df, dv='Proportional_Fixation_Count',
within=['Robot', 'difficulty'], subject='ParticipantID', padjust='bonf')
 print(posthocs)

--- Main Execution Block ---
if __name__ == "__main__":
 # --- 1. Load and Prepare Data ONCE ---
 print("Loading and preparing main data file...")
 try:
 main_df = pd.read_csv(FULL_DATA_FILE, decimal=',')
 except FileNotFoundError:
 print(f"FATAL ERROR: Could not find '{FULL_DATA_FILE}'")
 exit()

 # Create the output directory if it doesn't exist
 if not os.path.exists(OUTPUT_DIR):
 os.makedirs(OUTPUT_DIR)

 # Standard data cleaning
 main_df['classification_timeframe_number'] =
pd.to_numeric(main_df['classification_timeframe_number'], errors='coerce')
 main_df.dropna(subset=['classification_timeframe_number'], inplace=True)
 main_df['classification_timeframe_number'] =
main_df['classification_timeframe_number'].astype('Int64')
 if 'ParticipantID' not in main_df.columns: main_df['ParticipantID'] = 'Unknown'
 else: main_df['ParticipantID'] = main_df['ParticipantID'].ffill().bfill()
 grouping_cols_for_ffill = ['ParticipantID', 'classification_timeframe_number']
 cols_to_ffill = ['Robot', 'difficulty']
 for col_ffill in cols_to_ffill:

 163

 if col_ffill in main_df.columns:
 main_df[col_ffill] = main_df.groupby(grouping_cols_for_ffill,
group_keys=False)[col_ffill].ffill().bfill()
 print("Data loaded and prepared.")

 # --- 2. Create Combined AOI Column ---
 print("\nCreating combined 'Classification Buttons' AOI...")
 main_df['classification_buttons'] = main_df['is_true_category'] | main_df['is_false_category']
 print("Combined AOI created.")

 # --- 3. Define AOIs and Run Analysis for Each ---
 aois_to_analyze = [
 {'col': 'is_face', 'name': 'Robot Face'},
 {'col': 'is_cards', 'name': 'Cards'},
 {'col': 'classification_buttons', 'name': 'Classification Buttons'}
]

 for aoi in aois_to_analyze:
 run_proportional_fixation_analysis(df=main_df.copy(),
 target_aoi_col=aoi['col'],
 target_aoi_name=aoi['name'],
 sd_thresh=SD_THRESHOLD)

 print("\nAll fixation count analyses complete.")

Python Script for Advancced AOI Transition Analysis

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import chi2_contingency

--- USER CONFIGURATION ---
FULL_DATA_FILE = "newest_combined_eyetracking_data.csv"

Define your key AOIs and give them short names for the matrix
AOI_DEFINITIONS = {
 'Robot': 'is_robot',
 'Cards': 'is_cards',
 'Classification': 'classification_category'
}

 164

def run_full_transition_analysis(data_filepath, aoi_defs):
 """
 Calculates effective AOI transitions, runs statistical tests (Chi-Squared)
 with post-hoc analysis, and then visualizes the results.
 """
 # --- 1. Load and Prepare Data ---
 print("[Step 1] Loading data and calculating all transitions...")
 try:
 df = pd.read_csv(data_filepath, decimal=',')
 except FileNotFoundError as e:
 print(f"FATAL ERROR: Could not find the data file. {e}")
 return

 # Standard data cleaning
 df.dropna(subset=['robot_appearance_timeframe_number', 'Robot', 'difficulty'], inplace=True)
 df['classification_category'] = (df.get('is_false_category', False) | df.get('is_true_category',
False))

 def get_aoi_state(row, aoi_definitions):
 for aoi_name, col_name in aoi_definitions.items():
 if col_name in row and row[col_name]:
 return aoi_name
 return 'Outside'
 df['aoi_state'] = df.apply(lambda row: get_aoi_state(row, aoi_defs), axis=1)

 # --- 2. Build a Master List of ALL Transitions ---
 all_transitions = []
 for name, group in df.groupby(['ParticipantID', 'robot_appearance_timeframe_number']):
 robot_condition = group['Robot'].iloc[0]
 difficulty_level = group['difficulty'].iloc[0]

 simplified_sequence = group['aoi_state'][group['aoi_state'].shift() != group['aoi_state']]
 effective_sequence = simplified_sequence[simplified_sequence != 'Outside']

 if len(effective_sequence) > 1:
 trial_transitions = list(zip(effective_sequence, effective_sequence.iloc[1:]))
 for trans_from, trans_to in trial_transitions:
 all_transitions.append({
 'From': trans_from,
 'To': trans_to,
 'Robot': robot_condition,
 'Difficulty': difficulty_level
 })

 if not all_transitions:
 print("No transitions were found.")

 165

 return

 master_transition_df = pd.DataFrame(all_transitions)
 print("Master list of all transitions created successfully.")

 # --- 3. Perform Overall Statistical Tests (Chi-Squared) ---
 print("\n[Step 3] Performing Chi-Squared tests for overall significance...")

 # Test 1: Does the transition pattern depend on the Robot?
 print("\n--- Test 1: Do transition patterns differ by ROBOT? ---")
 # The crosstab function creates the contingency table of observed counts
 contingency_table_robot = pd.crosstab(master_transition_df['From'],
[master_transition_df['To'], master_transition_df['Robot']])
 chi2, p, dof, expected_robot = chi2_contingency(contingency_table_robot)
 print(f"Chi-Squared Statistic: {chi2:.2f}, p-value: {p:.4f}")
 if p < 0.05:
 print("Conclusion: YES, the pattern of transitions is significantly different across the robot
conditions.")
 # --- MODIFICATION START: POST-HOC FOR ROBOT CONDITION ---
 print("\n--- Post-Hoc Analysis: Standardized Residuals for Robot Condition ---")
 print("This shows which specific transitions occurred significantly more or less often than
expected for each robot.")
 # Rule of thumb: A residual > 1.96 or < -1.96 is significant at p < .05
 residuals_robot = (contingency_table_robot - expected_robot) / np.sqrt(expected_robot)

 # Flatten the table for easier parsing
 stacked_residuals_robot = residuals_robot.stack(level=[0, 1]).reset_index()
 stacked_residuals_robot.columns = ['From', 'To', 'Robot', 'Residual']

 # Filter for significant results
 significant_residuals_robot =
stacked_residuals_robot[np.abs(stacked_residuals_robot['Residual']) > 1.96]

 for index, row in significant_residuals_robot.sort_values(by='Residual',
ascending=False).iterrows():
 direction = "more" if row['Residual'] > 0 else "less"
 print(f" - In '{row['Robot']}', transitions from '{row['From']}' to '{row['To']}' occurred
{direction} frequently than expected (Residual: {row['Residual']:.2f})")
 # --- MODIFICATION END ---
 else:
 print("Conclusion: NO, the pattern of transitions is not significantly different across the
robot conditions.")

 # Test 2: Does the transition pattern depend on Difficulty?
 print("\n--- Test 2: Do transition patterns differ by DIFFICULTY? ---")

 166

 contingency_table_difficulty = pd.crosstab(master_transition_df['From'],
[master_transition_df['To'], master_transition_df['Difficulty']])
 chi2, p, dof, expected_difficulty = chi2_contingency(contingency_table_difficulty)
 print(f"Chi-Squared Statistic: {chi2:.2f}, p-value: {p:.4f}")
 if p < 0.05:
 print("Conclusion: YES, the pattern of transitions is significantly different between easy
and hard trials.")
 # --- MODIFICATION START: POST-HOC FOR DIFFICULTY ---
 print("\n--- Post-Hoc Analysis: Standardized Residuals for Difficulty ---")
 print("This shows which specific transitions occurred significantly more or less often than
expected for each difficulty level.")

 residuals_difficulty = (contingency_table_difficulty - expected_difficulty) /
np.sqrt(expected_difficulty)

 # Flatten the table for easier parsing
 stacked_residuals_difficulty = residuals_difficulty.stack(level=[0, 1]).reset_index()
 stacked_residuals_difficulty.columns = ['From', 'To', 'Difficulty', 'Residual']

 # Filter for significant results
 significant_residuals_difficulty =
stacked_residuals_difficulty[np.abs(stacked_residuals_difficulty['Residual']) > 1.96]

 for index, row in significant_residuals_difficulty.sort_values(by='Residual',
ascending=False).iterrows():
 direction = "more" if row['Residual'] > 0 else "less"
 print(f" - In '{row['Difficulty']}' trials, transitions from '{row['From']}' to '{row['To']}'
occurred {direction} frequently than expected (Residual: {row['Residual']:.2f})")
 # --- MODIFICATION END ---
 else:
 print("Conclusion: NO, the pattern of transitions is not significantly different between easy
and hard trials.")

 # --- 4. Generate Descriptive Heatmaps for Each Condition ---
 print("\n[Step 4] Generating descriptive probability matrices and heatmaps for each
condition...")

 robot_name_map = {
 "Ryan condition": "Joint Condition (Ryan)",
 "Ivan condition": "Disjoint Condition (Ivan)",
 "Carl condition": "Control Condition (Carl)"
 }

 # Loop through each condition to generate its specific matrix and heatmap
 for difficulty in ['easy', 'hard']:

 167

 print("\n" + "#"*30 + f"\n# ANALYSIS FOR {difficulty.upper()} TRIALS #\n" + "#"*30
+ "\n")
 for robot in ["Ryan condition", "Ivan condition", "Carl condition"]:
 print("\n" + "="*80)
 print(f"CONDITION: {robot} / {difficulty}")
 print("="*80)

 condition_subset_df = master_transition_df[
 (master_transition_df['Robot'] == robot) &
 (master_transition_df['Difficulty'] == difficulty)
]

 if condition_subset_df.empty:
 print("No transitions found for this specific condition.")
 continue

 count_matrix = pd.crosstab(condition_subset_df['From'], condition_subset_df['To'])
 prob_matrix = count_matrix.div(count_matrix.sum(axis=1), axis=0).fillna(0)

 print("\n--- Effective AOI Transition PROBABILITY Matrix ---")
 print(prob_matrix.to_string(float_format="%.2f"))

 descriptive_name = robot_name_map.get(robot, robot)

 plt.figure(figsize=(10, 8))
 sns.heatmap(prob_matrix, annot=True, fmt=".2f", cmap="YlGnBu", linewidths=.5,
vmin=0, vmax=1)
 plt.title(f"AOI Transition Probabilities for {descriptive_name} in '{difficulty}'
statements")

 plt.xlabel("To AOI")
 plt.ylabel("From AOI")
 plt.show()

--- Main Execution Block ---
if __name__ == "__main__":
 run_full_transition_analysis(data_filepath=FULL_DATA_FILE,
 aoi_defs=AOI_DEFINITIONS)

 168

First Python Script for Recurrence Quantification Anlaysis (Preparation)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pyrqa.time_series import TimeSeries
from pyrqa.settings import Settings
from pyrqa.analysis_type import Classic
from pyrqa.neighbourhood import FixedRadius
from pyrqa.metric import EuclideanMetric
from pyrqa.computation import RQAComputation
from pyrqa.image_generator import ImageGenerator
import traceback # For printing detailed error information

--- USER: Define your parameters here ---

1. Name of the column containing the time series data you want to analyze for RQA
TIME_SERIES_COLUMN_FOR_RQA = 'Gaze point X (MCSnorm)'

2. RQA Parameters:
embedding_dim = 3
time_del = 10
threshold_radius_type = 'std_fraction'
threshold_value = 0.1

Minimum number of data points in a trial required to perform RQA
MIN_DATA_POINTS_PER_TRIAL = 50

--- Helper function to perform RQA ---
def calculate_rqa_for_series(series_data, emb_dim, t_delay, thresh_type, thresh_val):
 """Calculates RQA measures for a given time series."""
 if len(series_data) < MIN_DATA_POINTS_PER_TRIAL:
 print(f" Skipping RQA: Not enough data points ({len(series_data)} <
{MIN_DATA_POINTS_PER_TRIAL})")
 return None, None

 time_series_obj = TimeSeries(series_data, embedding_dimension=emb_dim,
time_delay=t_delay)

 current_radius = 0.0
 if thresh_type == 'std_fraction':
 series_std = np.std(series_data)
 if series_std > 0:
 current_radius = thresh_val * series_std
 else:
 print(f" Warning: Standard deviation is zero. Using a small fixed radius (0.01).")

 169

 current_radius = 0.01
 elif thresh_type == 'fixed':
 current_radius = thresh_val
 else:
 print(f" Warning: Unknown threshold_radius_type '{thresh_type}'. Defaulting to
'std_fraction'.")
 series_std = np.std(series_data)
 if series_std > 0:
 current_radius = thresh_val * series_std
 else:
 print(f" Warning: Standard deviation is zero. Using a small fixed radius (0.01).")
 current_radius = 0.01

 if current_radius <= 0:
 print(f" Warning: Calculated radius is non-positive ({current_radius}). Setting to a small
positive value (0.001).")
 current_radius = 0.001

 settings = Settings(time_series_obj,
 analysis_type=Classic,
 neighbourhood=FixedRadius(current_radius),
 similarity_measure=EuclideanMetric,
 theiler_corrector=1)
 try:
 computation = RQAComputation.create(settings, verbose=False)
 result = computation.run()

 rqa_measures = {
 'RR': result.recurrence_rate,
 'DET': result.determinism,
 'L_avg': result.average_diagonal_line,
 'L_max': result.longest_diagonal_line,
 'L_entr': result.entropy_diagonal_lines,
 'LAM': result.laminarity,
 'TT': result.trapping_time,
 'V_max': result.longest_vertical_line,
 'RP_threshold': current_radius
 }

 rp_matrix = None
 if hasattr(result, 'recurrence_matrix_reverse'):
 rp_matrix = result.recurrence_matrix_reverse
 else:
 print(" Warning: Recurrence matrix not found in result. Plotting will be skipped for this
trial.")

 170

 return rqa_measures, rp_matrix

 except Exception as e:
 print(f" An unrecoverable error occurred during RQA computation: {e}")
 return None, None

--- Main analysis script ---
def main_analysis(csv_filepath, output_rqa_csv_file="rqa_results.csv",
example_plot_trial_id=1):
 """
 Main function to load data, preprocess, run RQA per trial, and save results.
 """
 print("Starting eye-tracking RQA analysis...")

 try:
 df = pd.read_csv(csv_filepath, decimal=',', na_values=['NA', ''])
 print(f"CSV data loaded successfully from: {csv_filepath}")
 except FileNotFoundError:
 print(f"Error: The file '{csv_filepath}' was not found.")
 return
 except Exception as e:
 print(f"Error loading CSV file '{csv_filepath}': {e}")
 return

 print("Performing initial data cleaning and preprocessing...")

 cols_to_convert_numeric = [
 'Gaze point X (MCSnorm)', 'Gaze point Y (MCSnorm)',
 'Pupil diameter left', 'Pupil diameter right',
 'Fixation point X (MCSnorm)', 'Fixation point Y (MCSnorm)'
]
 for col in cols_to_convert_numeric:
 if col in df.columns:
 df[col] = pd.to_numeric(df[col], errors='coerce')
 else:
 print(f"Warning: Expected numeric column '{col}' not found in CSV.")

 # UPDATED: Changed the required column name here
 required_columns = [TIME_SERIES_COLUMN_FOR_RQA, 'Eyetracker timestamp',
'robot_appearance_timeframe_number']
 for col in required_columns:
 if col not in df.columns:
 print(f"FATAL ERROR: A required column '{col}' is missing from the CSV. Cannot
proceed.")
 return

 171

 df.dropna(subset=[TIME_SERIES_COLUMN_FOR_RQA, 'Eyetracker timestamp'],
inplace=True)
 print(f" Rows after dropping essential NaNs (in '{TIME_SERIES_COLUMN_FOR_RQA}'
or 'Eyetracker timestamp'): {len(df)}")
 if df.empty:
 print(" DataFrame is empty after dropping essential NaNs. Cannot proceed.")
 return

 aoi_cols = ['is_cards', 'is_eyes', 'is_face', 'is_false_category',
 'is_robot', 'is_robot_name', 'is_true_category']
 for col in aoi_cols:
 if col in df.columns:
 if df[col].dtype == 'object':
 df[col] = df[col].str.lower().map({'true': True, 'false': False, '':
False}).fillna(False).astype(bool)
 else:
 df[col] = df[col].fillna(False).astype(bool)
 else:
 print(f"Warning: Expected AOI column '{col}' not found. It will be treated as False.")
 df[col] = False

 df['classification_category'] = (df.get('is_false_category', False) |
 df.get('is_true_category', False))
 print(" 'classification_category' column created.")

 # UPDATED: Using the new timeframe column
 df['robot_appearance_timeframe_number'] =
pd.to_numeric(df['robot_appearance_timeframe_number'], errors='coerce')
 df.dropna(subset=['robot_appearance_timeframe_number'], inplace=True)
 if df.empty:
 print(" DataFrame is empty after dropping NA 'robot_appearance_timeframe_number'. No
trials to process.")
 return
 df['robot_appearance_timeframe_number'] =
df['robot_appearance_timeframe_number'].astype('Int64')
 print(f" Rows after dropping NA trial numbers: {len(df)}")

 if 'ParticipantID' not in df.columns:
 print("Warning: 'ParticipantID' column not found. Creating a dummy 'Unknown'
ParticipantID.")
 df['ParticipantID'] = 'Unknown'
 else:
 df['ParticipantID'] = df['ParticipantID'].ffill().bfill()

 # UPDATED: Grouping for ffill now uses the new timeframe column

 172

 grouping_cols_for_ffill = ['ParticipantID', 'robot_appearance_timeframe_number']
 cols_to_ffill = ['Robot', 'difficulty']
 for col_ffill in cols_to_ffill:
 if col_ffill in df.columns:
 df[col_ffill] = df.groupby(grouping_cols_for_ffill, group_keys=False)[col_ffill].ffill()
 df[col_ffill] = df.groupby(grouping_cols_for_ffill, group_keys=False)[col_ffill].bfill()
 else:
 print(f"Warning: Column '{col_ffill}' for IV not found. It will not be included in
results.")
 df[col_ffill] = 'N/A'

 print(f" Using '{TIME_SERIES_COLUMN_FOR_RQA}' for RQA time series.")

 # --- 3. Perform RQA Trial-by-Trial ---
 all_rqa_results = []
 print("\nStarting RQA computation per trial...")

 # UPDATED: Main groupby now uses the new timeframe column
 grouped_trials = df.groupby(['ParticipantID', 'robot_appearance_timeframe_number'])

 for (participant_id, trial_num), trial_data in grouped_trials:
 print(f"\n Processing Participant: {participant_id}, Trial: {trial_num}")

 robot_condition = trial_data['Robot'].iloc[0] if not trial_data['Robot'].empty else 'N/A'
 difficulty_level = trial_data['difficulty'].iloc[0] if not trial_data['difficulty'].empty else 'N/A'

 print(f" Robot: {robot_condition}, Difficulty: {difficulty_level}")

 time_series_for_rqa = trial_data[TIME_SERIES_COLUMN_FOR_RQA].dropna().values

 rqa_output, rp_matrix = calculate_rqa_for_series(time_series_for_rqa,
 embedding_dim,
 time_del,
 threshold_radius_type,
 threshold_value)

 if rqa_output:
 print(f" RQA successful for P{participant_id}, Trial {trial_num}.")
 trial_results = {
 'ParticipantID': participant_id,
 'Trial': trial_num,
 'Robot': robot_condition,
 'Difficulty': difficulty_level,
 'NumDataPoints': len(time_series_for_rqa),
 **rqa_output
 }

 173

 all_rqa_results.append(trial_results)

 if trial_num == example_plot_trial_id and rp_matrix is not None:
 plot_filename =
f"recurrence_plot_participant_{participant_id}_trial_{trial_num}.png"
 try:
 ImageGenerator.save_recurrence_plot(rp_matrix, plot_filename)
 print(f" Example recurrence plot saved as {plot_filename}")

 img = plt.imread(plot_filename)
 plt.figure(figsize=(6, 6))
 plt.imshow(img, cmap='binary', origin='lower')
 plt.title(f"RP: P{participant_id}, T{trial_num}
({TIME_SERIES_COLUMN_FOR_RQA})\nRobot: {robot_condition}, Diff:
{difficulty_level}")
 plt.xlabel("Time Index")
 plt.ylabel("Time Index")
 plt.tight_layout()
 plt.show()
 except Exception as e:
 print(f" Could not display/save example recurrence plot: {e}")
 else:
 print(f" RQA failed or skipped for P{participant_id}, Trial {trial_num}.")

 # --- 4. Save Aggregated RQA Results ---
 if all_rqa_results:
 results_df = pd.DataFrame(all_rqa_results)
 results_df.to_csv(output_rqa_csv_file, index=False, decimal='.')
 print(f"\nAggregated RQA results saved to: {output_rqa_csv_file}")
 print("\n--- First 5 rows of RQA results ---")
 print(results_df.head())
 print("------------------------------------")
 else:
 print("\nNo RQA results were generated. Check data processing steps and trial lengths.")

 print("\nAnalysis complete.")
 print(f"Next steps: Analyze '{output_rqa_csv_file}' with your second script.")

--- Run the analysis with your actual CSV file ---
if __name__ == "__main__":
 # Define the path to your data file and the name for your output file.
 actual_csv_filepath = "newest_combined_eyetracking_data.csv"
 output_filename = "robot_appearance_rqa_results_newest_data.csv"
 example_trial_to_plot = 1

 174

 print(f"--- Attempting to run analysis with data from: {actual_csv_filepath} ---")

 try:
 main_analysis(csv_filepath=actual_csv_filepath,
 output_rqa_csv_file=output_filename,
 example_plot_trial_id=example_trial_to_plot)
 except FileNotFoundError:
 print(f"!!")
 print(f"Error: The file '{actual_csv_filepath}' was not found.")
 print(f"Please ensure the file is in the same directory as the Python script,")
 print(f"or provide the full path to the file (e.g., '/path/to/your/{actual_csv_filepath}').")
 print(f"!!")
 except Exception as e:
 print(f"An unexpected error occurred during the analysis: {e}")
 traceback.print_exc()

 175

Second Python Script for Recurrence Quantification Analysis (Exploration)

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import pingouin as pg

--- SCRIPT INSTRUCTIONS ---

1. Make sure your data file 'rqa_results_newest_data.csv' is in the same directory.

2. Install necessary libraries if you haven't already:
pip install seaborn pingouin

3. The script is set up to remove outliers > 2.5 SD from the mean. You can change
the SD_THRESHOLD variable if you wish.

4. To analyze a different RQA measure, change the RQA_MEASURE_TO_ANALYZE
variable.

5. Run this script from your terminal: python analyze_rqa_results.py

--- USER CONFIGURATION ---
The RQA measure you want to analyze from your CSV file
RQA_MEASURE_TO_ANALYZE = 'DET' # Options: 'RR', 'DET', 'L_avg', 'LAM', 'TT', etc.

The Standard Deviation threshold for outlier removal
SD_THRESHOLD = 2.5

def run_statistical_analysis(data_filepath, dv_measure, sd_thresh):
 """
 Loads RQA results, removes outliers using the SD method, and performs
 visualization and statistical analysis.
 """
 # --- Load the Data ---
 try:
 df = pd.read_csv(data_filepath)
 print(f"Successfully loaded RQA results from: {data_filepath}")
 if dv_measure not in df.columns:
 print(f"FATAL ERROR: The measure '{dv_measure}' is not a column in your data file.")
 print(f"Available columns are: {df.columns.tolist()}")
 return
 except FileNotFoundError:
 print(f"FATAL ERROR: The file '{data_filepath}' was not found.")

 176

 return
 except Exception as e:
 print(f"An error occurred while loading the data: {e}")
 return

 print(f"\n--- Analysis started for RQA measure: {dv_measure} ---")

 # --- STEP 1: IDENTIFY AND REMOVE OUTLIERS ---
 print(f"\n[Step 1] Checking for outliers using the {sd_thresh} SD rule...")

 original_trial_count = len(df)

 def remove_outliers_by_sd(df, group_cols, value_col, threshold):
 """Identifies and removes outliers from a dataframe based on the SD rule."""
 def remove_group_outliers(group):
 mean = group[value_col].mean()
 std_dev = group[value_col].std()
 if pd.isna(std_dev) or std_dev == 0:
 return group
 lower_bound = mean - threshold * std_dev
 upper_bound = mean + threshold * std_dev
 return group[(group[value_col] >= lower_bound) & (group[value_col] <= upper_bound)]
 return df.groupby(group_cols, group_keys=False).apply(remove_group_outliers)

 df_cleaned = remove_outliers_by_sd(df,
 group_cols=['Robot', 'Difficulty', 'ParticipantID'],
 value_col=dv_measure,
 threshold=sd_thresh)

 final_trial_count = len(df_cleaned)
 outliers_removed_count = original_trial_count - final_trial_count

 if original_trial_count > 0:
 percentage_lost = (outliers_removed_count / original_trial_count) * 100
 print(f" Original trial count: {original_trial_count}")
 print(f" Removed {outliers_removed_count} outlier(s), which is {percentage_lost:.2f}% of
the data.")
 print(f" Final trial count for analysis: {final_trial_count}")
 else:
 print(" No trials to process.")

 df = df_cleaned
 print("[Step 1] Outlier removal complete.")

 177

 # --- STEP 2: PREPARE DATA AND VISUALIZE ---
 print("\n[Step 2] Preparing data and generating plots...")

 # Define the mapping from old names to new, descriptive names
 robot_name_map = {
 "Ryan condition": "Joint condition",
 "Ivan condition": "Disjoint condition",
 "Carl condition": "Control condition"
 }
 # Apply the mapping to the 'Robot' column
 df['Robot'] = df['Robot'].map(robot_name_map)

 # Define the desired order for the new names
 robot_order = ["Joint condition", "Disjoint condition", "Control condition"]

 # Check if all expected robot conditions are present in the data after mapping
 actual_robots = df['Robot'].unique()
 if all(robot in actual_robots for robot in robot_order):
 df['Robot'] = pd.Categorical(df['Robot'], categories=robot_order, ordered=True)
 print(f" Condition names updated and custom plot order set: {robot_order}")
 else:
 print(f" Warning: Not all robots in 'robot_order' were found in the data after mapping.
Using default alphabetical order.")
 print(f" Robots in data: {list(actual_robots)}")

 sns.set(style="whitegrid", context="talk")

 # Box plot for the main effect of 'Robot'
 plt.figure(figsize=(12, 7))
 sns.boxplot(x='Robot', y=dv_measure, data=df, palette="pastel")
 sns.stripplot(x='Robot', y=dv_measure, data=df, color=".25", alpha=0.3)
 plt.title(f'Effect of Robot Condition on {dv_measure} (Outliers Removed)')
 plt.tight_layout()
 plt.show()

 # Box plot for the main effect of 'Difficulty'
 plt.figure(figsize=(10, 7))
 sns.boxplot(x='Difficulty', y=dv_measure, data=df, palette="pastel")
 sns.stripplot(x='Difficulty', y=dv_measure, data=df, color=".25", alpha=0.3)
 plt.title(f'Effect of Difficulty on {dv_measure} (Outliers Removed)')
 plt.tight_layout()
 plt.show()

 # --- MODIFICATION START: Replaced interaction plot with a bar chart ---
 # This bar chart shows the mean value for 'easy' and 'hard' conditions
 # side-by-side for each robot condition.

 178

 plt.figure(figsize=(12, 8))
 sns.barplot(x='Robot', y=dv_measure, hue='Difficulty', data=df,
 palette="colorblind", errorbar='se', capsize=.05)
 plt.title(f'Interaction of Robot and Difficulty on {dv_measure} (Outliers Removed)')
 plt.ylabel(f'Mean {dv_measure}')
 plt.legend(title='Difficulty')
 plt.tight_layout()
 plt.show()
 # --- MODIFICATION END ---

 print("[Step 2] Plots generated and displayed.")

 # --- STEP 3: PERFORM THE TWO-WAY REPEATED MEASURES ANOVA ---
 print(f"\n[Step 3] Performing Two-Way Repeated Measures ANOVA for '{dv_measure}'...")
 aov = pg.rm_anova(data=df, dv=dv_measure, within=['Robot', 'Difficulty'],
 subject='ParticipantID', detailed=True)
 print("\n--- ANOVA Results ---")
 print(aov)

 # --- STEP 4: PERFORM POST-HOC TESTS (IF NECESSARY) ---
 is_robot_significant = aov.loc[aov['Source'] == 'Robot', 'p-unc'].iloc[0] < 0.05
 is_interaction_significant = aov.loc[aov['Source'] == 'Robot * Difficulty', 'p-unc'].iloc[0] <
0.05

 if is_robot_significant or is_interaction_significant:
 print(f"\n[Step 4] ANOVA showed significant effects. Performing post-hoc pairwise
tests...")
 posthocs = pg.pairwise_tests(data=df, dv=dv_measure, within=['Robot', 'Difficulty'],
 subject='ParticipantID', padjust='bonf')
 print("\n--- Post-Hoc Test Results ---")
 pd.set_option('display.max_rows', None)
 print(posthocs)
 else:
 print("\n[Step 4] No significant effects requiring post-hoc tests were found in the main
ANOVA.")

 # --- STEP 5: SIMPLE MAIN EFFECTS ANALYSIS ---

print("\n\n===
==========")
 print("[Step 5] Simple Main Effects: Testing Robot effect at each Difficulty Level")

 179

print("==
=======\n")

 print("--- Analysis for 'hard' trials only ---")
 hard_df = df[df['Difficulty'] == 'hard'].copy()
 aov_hard = pg.rm_anova(data=hard_df, dv=dv_measure, within='Robot',
subject='ParticipantID', detailed=True)
 print("\n--- ANOVA for 'hard' trials only ---")
 print(aov_hard)
 posthocs_hard = pg.pairwise_tests(data=hard_df, dv=dv_measure, within='Robot',
subject='ParticipantID', padjust='bonf')
 print("\n--- Post-Hoc Tests for 'hard' trials only ---")
 print(posthocs_hard)

 print("\n\n--- Analysis for 'easy' trials only ---")
 easy_df = df[df['Difficulty'] == 'easy'].copy()
 aov_easy = pg.rm_anova(data=easy_df, dv=dv_measure, within='Robot',
subject='ParticipantID', detailed=True)
 print("\n--- ANOVA for 'easy' trials only ---")
 print(aov_easy)
 posthocs_easy = pg.pairwise_tests(data=easy_df, dv=dv_measure, within='Robot',
subject='ParticipantID', padjust='bonf')
 print("\n--- Post-Hoc Tests for 'easy' trials only ---")
 print(posthocs_easy)

 print(f"\n--- Analysis for '{dv_measure}' is complete. ---")

--- Main Execution Block ---
if __name__ == "__main__":
 data_file = "robot_appearance_rqa_results_newest_data.csv"

 # Run the entire analysis workflow using the parameters from the top of the script
 run_statistical_analysis(data_filepath=data_file,
 dv_measure=RQA_MEASURE_TO_ANALYZE,
 sd_thresh=SD_THRESHOLD)

