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Abstract

Metal artifacts in computed tomography (CT) significantly degrade image quality, poten-
tially introducing challenges in diagnostic evaluations. This study investigates the applica-
tion of advanced diffusion-based deep learning models for metal artifact reduction (MAR)
in CT images. Conditional Denoising Diffusion Probabilistic Models (CDDPM), Brownian
Bridge Diffusion Models (BBDM), and their superconditional variant (SBBDM) were im-
plemented in this research, trained on a large simulated dataset of CT slices with synthetic
metal artifacts.

The comparative analysis includes an ablation study with the UNet backbone of the
diffusion models, the clinically verified DL-MAR model, and the commercialized O-MAR
method. Experiments on 30 clinical CT scans with unilateral hip prostheses demonstrate
that diffusion models achieve superior artifact reduction compared to O-MAR and compa-
rable performance to UNet-based approaches.

While diffusion models show promise in MAR applications, their computational exhaus-
tion currently outweighs their occasional performance gains over more efficient UNet-based
methods. This research provides insights into the strengths and limitations of diffusion-
based approaches for MAR. Future research will be necessary to explore the potential
clinical value of diffusion based techniques in the field CT imaging.

Keywords: Metal Artifact Reduction, Computed Tomography, DDPM, BBDM, Clinical
Evaluation



Chapter 1

Introduction

Computed Tomography (CT) has revolutionized medical imaging by enabling non-invasive
cross-sectional visualization of anatomical structures [8]. However, the presence of metallic
implants introduces severe streaking artifacts through physical phenomena including beam
hardening, photon starvation, and scatter effects [2]. These artifacts degrade image quality
by up to 30% in adjacent soft tissues, potentially obscuring critical diagnostic information
and compromising radiotherapy planning accuracy [28].

Traditional metal artifact reduction (MAR) techniques employ sinogram interpolation
strategies such as normalized MAR (NMAR) [20] and frequency-split approaches such as
FSNMAR [21]. Commercialized implementations of sinogram interpolation techniques like
Orthopedic MAR (O-MAR) demonstrate some artifact reduction , but they struggle with
complex implant geometries and often introduce secondary artifacts. [28]

Deep learning approaches using UNet architectures [25] marked a shift in the MAR
research field, achieving superior performance through learned artifact representations.
However, their clinical deployment faces a critical challenge. The absence of paired clinical
training data necessitates reliance on simulated metal artifacts [41]. The proposed UNet-
based model DL-MAR, by M. Selles, was trained on simulated data and clinically verified
as a strict improvement to commercialized methods like O-MAR [29].

Denoising Diffusion Probabilistic Models (DDPMs) [11] offer interesting advantages
through their iterative denoising process and inherent uncertainty quantification. By learn-
ing the manifold of artifact-free CT images through progressive denoising and conditioning
on the artifact affected image, Conditional DDPMs achieve state-of-the-art performance
in image restoration tasks [26]. Brownian Bridge Diffusion Models (BBDMs) [15] present
an alternative approach through direct input-output domain mapping, though their math-
ematical foundation remains problematic for exact image-to-image translations.

This research implements and evaluates Conditional DDPM (CDDPM), BBDM and
superconditional BBDM (SBBDM) architectures using a simulated dataset of 113,462 CT
slices with synthetic metal artifacts [28]. A comparative experimental analysis with the
UNet backbone of the diffusion models as an ablation study (UNET), clinically verified
UNet-based DL-MAR and commercialized O-MAR was conducted in this research on 30
clinical CT scans with a unilateral hip prosthesis. It was demonstrated that diffusion
models achieve superior artifact reduction with respect to the commercialized method (O-
MAR), and comparable state-of-the-art performance with respect to UNet based models
like the ablation study (UNET) and DL-MAR. The clinical validation in this research
introduces a contra-lateral consistency metric and a pixel-wise variance map to quantify
uncertainty. However, the performance of the diffusion based methods presented in this
research do not outweigh their computational expense.
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Chapter 2

Problem Description

Computed tomography (CT) is a widely used technique to quickly obtain cross-sectional
images of a patient. The technique is based on shooting narrow x-ray beams through the
patient, which are detected opposite to the x-ray source. Sophisticated mathematical algo-
rithms then calculate a two-dimensional image of the slice of the patient. Metal implants in
the imaged area of the body can cause so-called metal artifacts in the reconstructed image,
which is a generic term for several types of image-corrupting effects caused by the metal
present. In this chapter, computed tomography and metal artifacts will be introduced to
provide context on this topic for the rest of this report. In the last section of this chapter,
the generalized problem of this research will be mathematically formulated.

2.1 Computed Tomography

An illustration of a CT scanner is depicted in Figure 2.1. Photons are accelerated from
the x-ray source towards a target. The number of photons that reach the detectors are
registered as a one-dimensional projection of the target. The gantry is rotated to obtain
projection data from multiple angles. [7]

When a photon travels through a medium, there is a probability that the photon will
be absorbed by the medium or scattered off the original trajectory. The attenuation of the
photons is dependent on the energy of the photons and the medium it is traveling through.
This probability of attenuation is a medium characteristic, described by the Beer-Lambert
law [12]:

I =

∫
I0(E)e−

∫
µ(E,s)dsdE, (2.1)

with intensity I of the photon beam measured by the detector, initial intensity I0(E) of the
photon beam depending on the energy level E of the photons, linear attenuation coefficient
µ(E, s) describing the probability of the photon attenuating over a unit distance depending
on energy E and position s, the integral

∫
ds over the line the photon beam traveled and

integral
∫
dE over the energy range over which the photon source generates photons.

The different attenuation characteristics of materials provide a way to differentiate
between materials within a scan. The intensity of a pixel in a scan is typically represented
in Hounsfield Units (HU):

HU = 1000
µ− µwater

µwater − µair
, (2.2)

which is the linear attenuation µ of the scanned material scaled such that air is −1000 HU
and water is 0 HU. In a CT scan of the body, human tissue values will usually lie between
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Figure 2.1: Figure demonstrating the main components of a CT machine, in-
cluding the gantry, x-ray source, detector array, and the table for translating the
patient. [7]

−700 HU (typical intensity of the lung) and 1800 HU (typical intensity of the cortical
bone). [12]

The x-ray beams are shot at a fixed angle with the target. By repeating the projec-
tion process, conventionally over an equally spaced angular partition, projection data is
obtained for multiple angles covering 360 degrees. This set of projection data is called
a sinogram, from which the two dimensional image is reconstructed. An example of a
sinogram of a simple oval body phantom can be found in Figure 2.2. In this sinogram
one horizontal line is a one dimensional projection of a particular angle. The complete
sinogram is a vertical stack of projections [12].

The mathematical foundation that relates the two-dimensional image domain to the
sinogram domain is the Radon transform. The Radon transform Rf is defined as integrat-
ing a function f on Rn over its hyperplanes [23]. In two dimensions, the Radon transform
consists of parallel line integrals over all angles. Let an image be the result of a function
f(x1, x2) defined on R2, with Cartesian coordinates x1 and x2. Let a straight line L be
defined by line coordinates ρ and θ, where ρ is the signed distance of the line to the origin
and θ is the angle of the line with the x1-axis. A set of parallel lines is easily constructed by
fixing θ and varying ρ. Now Radon transform R of f(x1, x2), denoted by f̂(ρ, θ), is defined
to be the line integral

∫
dτ for all straight lines defined by angle θ and displacement ρ:

f̂(ρ, θ) = (Rf)(ρ, θ) =
∫ ∞

−∞
f(τcos(θ)− ρsin(θ), τsin(θ) + ρcos(θ))dτ, (2.3)

with 0 ≤ θ < 2π,−∞ ≤ ρ ≤ ∞.
A visual example of the formalization of the Radon transform can be found in Figure

2.3. Now it can be clearly seen that a computed tomography scan is a discretized physical
way to measure the Radon transforms of particular image slices. In other words, a sinogram
is a measurement of a Radon-transformed cross-section of a patient [23].

To obtain the two dimensional image from the measured sinogram, filtered backprojec-
tion (FBP) is typically used in clinical CT. This method provides a fast, simple and suffi-
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Figure 2.2: (a) An oval body phantom, represented in the two-dimensional Carte-
sian plane. (b) The corresponding sinogram, with the scan angles on the vertical
axis and the detector bins on the horizontal axis. The horizontal width d repre-
sents the detector width of the scanner, i.e. the number of detector bins. Vertical
length r is the full angular range of the scanner, typically and in this case set to
r = 2π for a full rotation. Resolution of (a) corresponds to the detector width in
(b), x1 × x2 = d× d. [12]

ciently precise reconstruction, which are all highly desirable in clinical applications. The
projection data is filtered to remove most of the noise and then back-projected from each
projection angle to form the cross-sectional image. The basic idea of the back-projection is
based on the inverse of the Radon transform and illustrated in Figure 2.4, One can see that
each pixel in the reconstructed image is dependent on all x-ray paths that passed through
the respective area (pixel) in the patient [12].

2.2 Metal Artifacts

When metal is present in the body, several types of artifacts can occur, corrupting the
reconstructed image and reducing the diagnostic capacity. [2] An example of severe metal
artifacts caused by bilateral hip prostheses can be found in Figure 2.5 (a).

Metal artifacts are typically dark and bright streaks originating from the implant. Due
to the different types and sizes of metal present in the body, the severity of the artifacts
can be very different. The artifacts are caused by a wide variety of phenomena. Poisson
noise, beam-hardening and scatter effects are caused by the metal itself. The metal edges
partially entering slices causes undersampling and motion artifacts [2]. Examples of the
different artifacts are shown in Figure 2.5.

When inspecting the x-ray beam on a photon level, One can see that the beam actually
consists of individually independent photons. Therefore, the photons arrive independently
at the detectors following a Poisson process. Poisson noise is the statistical error caused by
the independent arrivals of photons, thus a property of the signal itself. Statistical errors
are larger when the sample size is smaller, so the Poisson noise is larger in detector bins
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Figure 2.3: A two-dimensional object f(x1, x2) and its projections f̂(ρ, θ). Carte-
sian (x1, x2) and line (ρ, θ) coordinates are indicated. Continuously traveling over
a line L via τ . [23]

Figure 2.4: Illustration of the backprojection concept. Intensities of the measured
sinogram represent the line integrals of the attenuation coefficients of the object
along x-ray paths shown by the black dashed arrows. A measured sinogram intensity
is backprojected along the exact x-ray path that produced the measurement. [12]
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Figure 2.5: (a) Dark streak hip prosteses caused by beam-hardening and scatter.
(b) Sharp thin altering streaks surrounding an aneurysm coil caused by motion and
undersampling artifacts. [2]

with fewer photon counts. Poisson noise causes random thin dark and bright streaks. A
high Poission noise may obscure soft tissue boundaries, while high contrast objects (metal,
bone) are still visible [2][12].

Beam-hardening and scatter are two different physical phenomenon, both causing dark
and bright streaks after reconstruction. When a high attenuating medium (high atomic
number), like metal, is present in the body, low energy photons are attenuated more easily
than high energy photons. This will lead to an x-ray beam primarily consisting of higher
energy photons ‘hardening’ the beam, causing the beam-hardening effect. Scatter, or more
precisely Compton scatter, is the effect caused by higher energy photons that attenuate by
changing direction instead of absorption. Changing direction will sometimes mean that the
photon ends up in a different detector than expected, this will lead to a large error when
that detector would otherwise have very few photons. Both beam-hardening and scatter
result in more photons being detected than expected, which causes the dark streaks. The
bright streaks are a byproduct of the high pass filter in the FBP algorithm exaggerating
differences between adjacent detectors [2][8][12].

When the desired area of a patient is moving while scanning, motion artifacts can cause
blurring and long range streaks. The long range streaks are situated between high contrast
edges and the position of the x-ray source at the time of movement, therefore metal present
in the body can increase corruption by motion artifacts [2][10].

Undersampling is a problem for any discretized measurement of the continuous world.
Ideally in computed tomography, the slice thickness and detector bin width approach
zero to approximate the Radon transform. However, since this is clearly not reachable,
undersampling artifacts can occur after image reconstruction. For example, the partial
volume effect is a direct consequence of undersampling. The slice volume which is measured
as if it was a plane has room for multiple tissues to partially enter the same pixel. To
illustrate, when a high contrast volume partially enters the measured slice, the detector
bins measure a mixed attenuation, blurring the image. This will cause more prominent
artifacts with a higher contrast between tissues. The partial volume effect is often visible
near small metals, like dental fillings, surgical clips and needles [2][21][13].
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2.3 Problem Formulation

For any patient, an image of a single two dimensional slice s ∈ R2 is desired. For a
finite set of angles Θ ⊂ R and displacements P ⊂ R, CT measurements of the Radon
transformed slice Rs are stored in sinogram f̃(ρ, θ) including measurement error ϵ ∈ R for
all θ ∈ Θ, ρ ∈ P :

f̃(ρ, θ) = (Rs)(ρ, θ) + ϵ, with θ ∈ Θ, ρ ∈ P, ϵ ∈ R. (2.4)

The discretized measurements will result in a discretized representation s̃(x1, x2) of slice
s, with (x1, x2) from finite discrete set X2 ⊂ R2. Observing from the Radon transform,
the highest resolution without interpolation would be when the length of X is equal to the
length of P , i.e. |X| = |P |.

Obtaining discretized approximation s̃(x1, x2) of slice s from f̃(ρ, θ), can be formulated
as a variational inverse problem:

min
s̃∈R2

D(s̃, f̃) + αR(s̃), (2.5)

with data fidelity term D and regularization term R weighted by scalar α ∈ R. The
forward operator is the Radon transform R, so the data fidelity term D should be a
distance measure between Rs̃ and f̃ . Because noise is typically present in the data, One
should take a regularization term in consideration. Data fidelity term D and regularization
term αR are not further specified, since the scope of this research is metal artifact reduction
on top of existing reconstruction algorithms.

An algorithm that finds optimal solutions for a variant of the variational inverse problem
(2.5), is from now on called the reconstruction algorithm Q. Taking as input the measured
sinogram f̃ and giving a discretized optimized reconstruction s∗ ∈ R2 of s as output:

Q(f̃) = s∗ (2.6)

For typical reconstruction algorithms, like the FBP algorithm, s∗ could still be cor-
rupted by metal artifacts a ∈ R2. The true clinical discretized representation of the desired
slice s(x1, x2) ∈ R2 is without metal artifacts. Therefore, reconstructed image s∗ could be
written as a superposition of the true representation of the patient slice s and the metal
artifacts a still present in s∗:

s∗ = s+ a (2.7)

The metal artifact reduction problem can now be formulated. Find metal artifact
disentanglement model MQ for reconstruction algorithm Q, such that for any given image
s∗ reconstructed by Q:

MQ(s
∗) = s. (2.8)

The actually used reconstruction algorithm is not specified further in the formulation,
therefore the model MQ suffices for any Q. It should be mentioned that the present metal
artifacts in s∗ are very dependent on the reconstruction algorithm, so a dedicated model
MQ should be considered per reconstruction algorithm Q.
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Chapter 3

Theory and Related Work

Since CT was introduced in the 1970s, improving its image quality has been a popular
research topic. The physical inconvenience of metal objects significantly attenuating or
completely blocking x-rays remains a major problem in the reconstruction of CT images,
which has received a lot of attention in the field of medical image reconstruction [8].

In the first section of this chapter the different approaches of conventional methods will
be elaborated on. The remaining sections explain advances in machine learning and their
application in metal artifact reduction. Within the domain of machine learning, several
important image-to-image (I2I) techniques and generative models will be discussed. The
last section will focus on state-of-the-art machine learning models and the scope of this
research: diffusion models.

3.1 Conventional Metal Artifact Reduction

Obviously, One could choose for a very invasive method by removing the metal implants
prior to the scan. The removal of dental fillings prior to the CT scan of the patient has
been studied by Gray et al. [10]. Not surprisingly, this completely stopped metal artifacts
from occurring, but is clearly not a realistic approach when the implants are hip prostheses,
for example. Invasive surgery is in itself a problem with additional complications and non-
metal alternatives to prostheses are often inadequate. Conventional MAR methods focus
on correction techniques later in the image reconstruction process [8][29].

The first noninvasive moment metal artifacts can be reduced is during the scan. Ad-
justing the parameters to minimize metal artifacts has been investigated. For example, the
photon energy in the x-ray could be increased to reduce beam-hardening and noise. Unfor-
tunately, an increase in photon energy means an increase in radiation dose for the patient.
Usually, adjusting parameters to increase image quality means an increase in radiation
or it gives rise to other image corrupting effects. Overall, in standard CT this approach
is not sufficient for many severe metal artifact cases. However, it should be mentioned
that new x-ray tomography techniques, like dual energy computed tomography (DECT)
[31] and spectral photon counting computed tomography (SPCCT) [33], show promising
improvements towards image quality and reducing metal artifacts as well. Few facilities
use these techniques in practice yet, so an improvement of MAR in standard CT is still
desired [8].

Post-scan MAR techniques are based on improving the reconstruction technique and/or
correcting the raw projection data. These techniques are non invasive and by far the
most researched. The first projection based MAR technique was proposed by Kalender
et al. in 1987 [13]. Their technique identified the metal trace in the sinogram domain
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and linear interpolation was used to replace the data in the metal trace. This technique
and other early techniques based on interpolation had notable disadvantages. Anatomical
areas suffered from blurring and due to a lack of smoothness in the sinogram, interpolating
caused new streaking artifacts [13].

Meyer et al. proposed normalized metal artifact reduction (NMAR) in 2010, which was
a significant improvement to prior models [20]. In NMAR, the interpolation is computed
in a normalized sinogram. First, a prior image is created by segmenting the image into
basic tissues like air, soft tissue and bone. Then the sinogram was transformed into its
normalized represenation, dividing the sinogram by the projection data of the prior image.
As a result of the normalization, anatomical variations are minimized, while the metal trace
in the sinogram is masked. When interpolation is performed in this normalized domain, it
is less likely to create abrupt transitions or misrepresent underlying anatomical structures.
Finally, the sinogram is denormalized to reintroduce the correct anatomical variations.
Meyer et al. showed that this reduced blurring and new streaking artifacts substantially
[20].

In 2012, the same authors improved their own model with the proposition of frequency-
split normalized metal artifact reduction (FSNMAR) [21]. FSNMAR combines the uncor-
rected image with the corrected image from NMAR through filtering. They observed that
artifacts caused by beam-hardening and scatter often have relatively low frequencies, so
high-pass filtering the uncorrected image would extract edge information about anatomical
structures. FSNMAR then combined the high-pass filtered uncorrected image with a more
reliable low-pass filtered NMAR corrected image. Compared to NMAR, FSNMAR showed
less blurring and improved depiction of anatomical structures near the metal [21].

Leading companies commercialized their own version of interpolation-based MAR, all
inspired by NMAR or FSNMAR. Orthopedic MAR (O-MAR) by Philips, iterative MAR by
Siemens Healthineers (iMAR), Single Energy MAR (SEMAR) by Canon and Smart-MAR
(MARS) by GE Healthcare. The commercial algorithms have been extensively reviewed.
Strong metal artifact reduction is achieved by these models. However, in the corrected
image some artifacts may still be present corrupting small anatomical structures. Further-
more, additional secondary artifacts may be introduced [29].

3.2 Machine Learning

Machine learning has revolutionized the field of computer vision, enabling systems to au-
tomatically learn and make predictions from visual data. In the imaging field, machine
learning models play a crucial role in tasks such as image classification, generation and
object detection. Additionally, many problems in computer vision can be formulated as an
image-to-image (I2I) translation task. Image segmentation, enhancement and denoising
are exemplary tasks for which machine learning was successfully applied [26][41].

Machine learning typically consists of a network model Mθ that performs a desired
approximation or generative task, with learnable parameters θ. A loss function L penalizes
the model iteratively during training for incorrect predictions, updating θ accordingly by
back-propagating the loss over the network.

Machine learning models can be categorized by their learning method. In unsuper-
vised learning, the model is trained on an unlabeled dataset. This means that image
models must identify the meaningful features without any explicit guidance. Unsupervised
image-to-image translation advanced significantly with CycleGAN [43], which extended
generative adversarial networks (GANs) [9] by introducing bidirectional cyclic consistency.

In supervised learning, the algorithm is trained on a labeled dataset. Each data
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Figure 3.1: The structure of a U-Net, as proposed by Ronneberger et al. The left
and downward contracting encoder path with convolutional and max pooling steps
learns to represent the input image in features, stored in an increasing number of
feature channels. The right and upward expanding decoder path with the addition
of up-convolutions steps learns to visualize the learned features by decoding the
features into higher resolution pixel representations using the horizontal skip con-
nections for spatial information. [25]

point, like an image, in the training set is paired with a corresponding label. This label
can be anything the model should predict, like a class or another image. Image models learn
to map the input images to their respective labels during the training process by identifying
meaningful features. Once trained, the model should be able to predict the labels of unseen
images. For image-to-image translation tasks, deep convolutional architecture types are
a popular supervised approach. The deep convolutional U-Net architecture was a major
breakthrough in I2I translation. The U-Net was first proposed by Ronneberger et al. for
biomedical image segmentation. [25]

3.2.1 UNET

A U-Net consists of a contracting path with encoder blocks and an expansive path with
decoder blocks. The model gets its name from the symmetric design, since the encoder
and decoder blocks can be represented as a U-shaped architecture. In the encoder blocks,
images are convoluted to extract features and downsampled via pooling operations. The
number of feature channels increase in each encoding block. In the decoder blocks, the
feature channels are upsampled and convoluted, reducing the number of feature channels.
Each decoder block gets spatial information from the corresponding higher resolution en-
coder block on the other side of the U-shape via skip connections. The diagram of the
originally proposed U-Net architecture can be found in Figure 3.1. [25]

The original U-Net model could achieve good results with a limited amount of data.
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Figure 3.2: Schematic of an additive attention gate (AG). Input features (xt) are
scaled with attention coefficients (α) computed in AG. Spatial regions are selected
by analyzing both the activations and contextual information provided by the gating
signal (g) which is collected from a coarser scale. Grid resampling of attention
coefficients is done using trilinear interpolation. [22]

However, some applications required more depth in the U-Net framework to achieve the
desired performance. Simply adding more layers, deepening the U-Net, resulted in a drastic
increase in training time or a degradation of accuracy. Most subsequent U-Net architec-
tures are based on additional residual components and attention mechanisms to the skip
connections, to be able to upscale the model efficiently and improve accuracy. Since the
publication of Ronneberger et al. many improvements have been made to the original
U-Net architecture. ResUNet [5], RU-Net [32], Attention UNet [22], AResU-Net [40] and
Residual-Attention UNet++ [17] are some of the wide variety of publications proposing
an improved U-Net architecture based on residual and attention learning.

Residual Attention

Deep neural networks are prone to vanishing gradients, which residual blocks help mitigate.
Residual components follow the form:

H(x) = F (x) + x (3.1)

where F (x) represents learned transformations. This design enables direct gradient flow
through identity mappings. [5]

The attention mechanism, as proposed in Attention U-Net [22], introduces learnable
gating to focus on relevant image regions. An attention gate (Figure 3.2) computes coeffi-
cients α that weight encoder features x based on both local features and global contextual
information g. Vector g is the output from the next lower resolutional layer, so the features
in g are better represented. The vector x is the higher dimensional output from the encoder
on the other side of the U-Net and goes via the skip connection into the attention gate.
After convolutions to bring the vectors to the same dimensions, the vectors are summed
element-wise. The summed vectors go through more activation functions and convolutions
to end up with attention coefficients α ranging between 0 and 1. A higher attention coef-
ficient indicates more relevancy. The attention coefficients α are multiplied element wise
with the encoder features x. The attention weighted spatial information will go in the next
decoder together with the output g of the lower dimensional decoder and will be handled
like in a normal U-Net.
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Figure 3.3: Forward (x0 → z) and backwards (x0 ← z) process of diffusion
models.

Timestep Embedding

Diffusion models, introduced in the next section, require timestep conditioning of the
denoising backbone to guide the iterative denoising process across timesteps with time
dependent noise levels.

The timestep embedding process uses sinusoidal positional encoding, which maps dis-
crete timesteps t to continuous vector representations through frequency-modulated sine
and cosine functions. For a timestep t and embedding dimension i ∈ {0, ..., d− 1}:

γ(t)(i) =

sin
(

t
100002k/d

)
if i = 2k

cos
(

t
100002k/d

)
if i = 2k + 1

(3.2)

where d is the embedding dimension and k ∈ {0, ..., d/2−1}. This produces a d-dimensional
vector γ(t) ∈ Rd. The vector representation γ(t) preserves relative time relationships,
because neighbouring timesteps have smoothly varying embeddings [11].

3.3 Diffusion Models

Although being a recent addition to the generative field, diffusion models have proven
to be a valuable approach across various applications [11] [1] [35]. The diffusion models
are already widely adopted by society through applications like the pioneering DallE by
OpenAI.

This section offers an exploration of the mathematical theory of diffusion models, cov-
ering the fundamental diffusion model Denoising Diffusion Probabilistic Model (DDPM)
[11] and an alternative approach for conditional diffusion modeling Brownian Bridge Dif-
fusion Model (BBDM) [15]. The DDPM is motivated from a variational perspective, then
BBDM is formulated analogously.

3.3.1 Denoising Diffusion Probabilistic Models (DDPMs)

Denoising Diffusion Probabilistic Models (DDPMs) were proposed by Ho et al. in 2020
[11]. The DDPMs consist of a forward and reverse process. The forward process is a
deterministic Markov chain to construct latent variables for each data sample by gradually
adding Gaussian noise at each time step. The reverse process approximates the inverse
to obtain a sample from the data distribution, starting from pure Gaussian noise. The
diffusion process is visualized in Figure 3.3.

Let q(x0) be the distribution of the noise-free data, latent variables x1, ..., xT are pro-
duced for sample x0 ∼ q(x0) by adding Gaussian noise at time t as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), ∀t∈{1,...,T}, (3.3)
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with T the number of time steps in the diffusion process, β1, ..., βT ∈ [0, 1) defining the
variance schedule for each timestep and I is the identity matrix. The normal distribution
is represented by N (x;µ, σ) with mean µ and covariance σ. Since this forward process is a
deterministic Markov chain, the transition to any xt can be formulated directly conditioned
on x0. Let αt = 1 − βt and αt =

∏t
s=0 αs, then the one step formulations for the latent

distributions are

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I),∀t∈{1,...,T}. (3.4)

Now for any input x0 One can sample a noise component ϵ ∼ N (0, I) to obtain any latent
variable xt as follows:

xt =
√
αtx0 + (1− αt)ϵ. (3.5)

With sufficiently large diffusion length T and according variance schedule β1, ..., βT , the
latent distribution q(xT ) at the end of the diffusion process should be approximately equal
to the normal distribution:

q(xT ) ≈ N (xT ; 0, I). (3.6)

Therefore the reverse process is modeled by starting at Gaussian noise and can be for-
mulated accordingly. Starting at p(xT ) = N (xT ; 0, I) the approximated reverse process is
formulated as follows:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3.7)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (3.8)

The goal for this model is that pθ(x0) approximates the true data distribution q(x0). Which
means that the parameters θ should be optimized such that it maximizes the likelihood that
the generated data samples from pθ(x0) belong to q(x0). However, using the negative log-
likelihood −log(pθ(x0)) as a loss function is not desirable. Calculating the log-likelihood for
high dimensional data with continuous values (like images) over T time steps is intractable.
To simplify the objective function the authors of DDPM take several steps, starting with
the variational lowerbound on the negative log likelihood:

E[− log(pθ(x0)] ≤ Eq

[
−log pθ(x0:T )

q(x1:T |x0)

]
= Eq

[
−log p(xT )−

∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

]
=: L (3.9)

This loss function L is then rewritten in time step components Lvlb = L0+L1+...+LT , using
the Kullback-Leibler divergence (DKL) as the statistical distance between distributions.
The derivation can be found in appendix A from the publication by Ho et al. [11], the
results follow here:

Lvlb = L0 + L1 + ...+ LT , (3.10)

with

L0 := Eq

[
− log pθ(x0|x1)

]
(3.11)
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Lt−1 := Eq

[
DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

]
,∀t∈{2,...,T} (3.12)

LT := Eq

[
DKL(q(xT |x0)||p(xT ))

]
. (3.13)

By experimental evidence of the authors the L0 component was discarded. The posterior
q could have learnable parameters, however by fixing the forward process variances βt to
sufficiently small constants relative to the data domain, the authors ensured an approxi-
mately equal functional form in the forward and reverse process while maintaining q(xT )
to be sufficiently close to the normal distribution. This causes LT to be a constant during
training, so LT could also be discarded. Now Lvlb only consists of the intermediate time
step components Lt−1 with t ∈ {2, ..., T}. These loss functions directly compare pθ(xt−1|xt)
against forward process posterior distributions q(xt−1|xt, x0) via the Kullback-Leibler di-
vergence. This means that the models task has been reduced to estimating the parameters
of q(xt−1|xt, x0), such that these Kullback-Leibler divergences in equations (3.12) are min-
imized. The posterior distribution can be written down in the same form as equation (3.8):

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), (3.14)

with

µ̃t(xt, x0) :=

√
αt−1βt
1− αt

x0 +

√
αt(1− αt−1)

1− αt
xt (3.15)

β̃t :=
1− αt−1

1− αt
βt. (3.16)

Since the authors decided to fix the variances βt to constants, equation (3.8) can be refor-
mulated by setting Σθ(xt, t) = σ2

t I:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I). (3.17)

With equations (3.14) and (3.17) with constant variances, minimizing the Kullback-Leibler
divergences of the loss functions in (3.12) come down to simply minimizing the distance
between the means of two Gaussian distributions. This can be done as follows:

Lt−1 = Eq

[ 1

2σ2
t

||µ̃t(xt, x0)− µθ(xt, t)||2
]
+C,∀t∈{2,...,T}, (3.18)

where C is a constant independent of θ. There are now several approaches to parameterize
µθ, the first one is to predict x0 directly and find µθ through equation (3.15). The second
approach is to predict the forward process posterior mean µ̃t(xt, x0) completely, which
would be the most intuitive approach. However, the authors of DDPM find a more elegant
third approach. Equation (3.4) can be reparameterized as xt(x0, ϵ) =

√
αtx0 + (1 − αt)ϵ

with ϵ ∼ N (0, I), which means with equation (3.15) the loss function could be written as:

Lt−1 − C = Ex0,ϵ

[ 1

2σ2
t

∣∣∣∣∣∣ 1
√
αt

(
xt(x0, ϵ)−

βt√
1− αt

ϵ
)
−µθ(xt(x0, t), t)

∣∣∣∣∣∣2]. (3.19)
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In this equation it can be clearly seen that µθ(xt(x0, t), t) should predict something de-
pending on xt. Since xt is an input to the model, µθ(xt(x0, t), t) could be parameterized
equivalently:

µθ(xt, t) =
1
√
αt

(
xt(x0, ϵ)−

βt√
1− αt

ϵθ(xt, t)
)
. (3.20)

Here ϵθ(xt, t) is a function approximator with the task to predict ϵ from xt, so the model
is reduced to finding the noise component of xt. Resulting in the following loss function:

Lt−1 − C = Ex0,ϵ

[ β2
t

2σ2
tαt(1− αt)

∣∣∣∣∣∣ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)

∣∣∣∣∣∣2]. (3.21)

A proof on differentiability of equation (3.21) and a more extended deduction can be found
in the publication by Ho et al. [11]. However, the main contribution of this paper is a
simplified version of equation (3.21):

Lsimple(θ) = Et,x0,ϵ

[∣∣∣∣∣∣ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)

∣∣∣∣∣∣2]. (3.22)

The authors of DDPM showed that this simple alternative to equation (3.21) was beneficial
for sampling quality. Now the model could just be trained on the simple objective to
minimize the mean squared distance between the noise component ϵ ∼ N (0, I) drawn in
the forward process and the models prediction of that noise ϵθ(xt, t). The complete training
algorithm can be found in Algorithm 1.

Algorithm 1 Training DDPM
1: repeat
2: Draw x0 ∼ q(x0).

In this step, a sample from the to be learned data distribution is selected.
3: Draw t ∼ Uniform({1, ..., T}).

In this step, a timestep t is randomly selected.
4: Draw ϵ ∼ N (0, I).

In this step, a Gaussian noise component is drawn.
5: Calculate αt =

∏t
s=0 1− βs

In this step, the cumulative product αt is calculated depending on the predefined variance
schedule βt and timestep t.

6: Take gradient descent step on:
∇θ||ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)||2

In this step, the image x0 from the to be learned distribution q(x0) and noise component
ϵ are scaled and summed to calculate xt. Then the noise prediction from the model
ϵθ(xt, t) is compared with the actual noise component ϵ in the loss function (here the l2
norm). Finally the gradient descent step is taken.

7: until converged

The reverse diffusion process or sampling procedure always starts with a random Gaus-
sian sample xT ∼ N (0, I). Then xt−1 can be iteratively sampled from the distribution
pθ(xt−1|xt), which is the same as computing xt−1 = 1√

αt

(
xt − 1−αt√

1−αt
ϵθ(xt, t)

)
+ σtz with

z ∼ N (0, I). The complete sampling algorithm can be found in Algorithm 2.
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Algorithm 2 Sampling DDPM
1: xT ∼ N (0, I)

In the sampling procedure xT is drawn as Gaussian noise.
2: for t = T, ..., 1 do

Traveling backwards over the diffusion bridge, the image xt is refined for each step.
3: z ∼ N (0, I) if t > 1, else z = 0

A Gaussian noise component z is drawn for each t > 1, else z = 0.
4: xt−1 =

1√
αt

(
xt − 1−αt√

1−αt
ϵθ(xt, t)

)
+ σtz

Then xt−1 is calculated, using trained predictor ϵθ to predict the noise component in
xt.

5: end for
6: return x0

3.3.2 Conditional DDPM

DDPM is a powerful generative framework, outperforming GANs in sample quality and
training stability. The DDPM model can learn the distribution of a training dataset well
enough to generate convincing samples during inference. However, image-to-image (I2I)
translation tasks require the possibility to condition on an input image. The impressive
generalizing qualities of DDPM inspired many publications to adapt the DDPM model for
I2I translation problems.

The model UNIT-DDPM [27] by Sasaki et al. proposed a dual-domain connected
Markov chain model based on DDPM. The two diffusion chains in each domain learned
standard denoising, like in DDPM, and translating partially denoised images between
domains. In inference, noise was added like in the forward diffusion of DDPM until a
certain release time was reached. Then the input image plus noise was translated to the
Markov chain in the other domain to be denoised like in the reversed diffusion of DDPM.

In Palette [26], proposed by Saharia et al. the input image was added as a condition
to the denoising network in each time step during training and inference. The model out-
performs GANs on colorization, inpainting, uncropping and JPEG restoration. Examples
of the results of Palette for each task can be found in Figure 3.4.

A publication by [34] Wolleb et al. adapts the approach of Palette for medical image
segmentation, where the input image is an additional condition for the denoising network
at each time step.

MedSegDiff [35], proposed by Wu et al. and SegDiff [1] proposed by Amit et al. also
propose conditioned diffusion models for segmentation tasks. MedSegDiff and SegDiff
propose a similar approach, where the conditional image is first encoded into features
before adding the conditional features in the bottleneck of the denoising network at each
time step.

Brownian Bridge Diffusion Models (BBDMs)

In comparison to most existing diffusion models, Li et al. propose an I2I translation
framework that directly builds the mapping between the input and output domains via
a Brownian bridge [15]. An illustration of the Brownian bridge process can be found in
Figure 3.5. In this section, formulations will be as consistent as possible with the previous
section on DDPMs.

A Brownian bridge is a stochastic model in which the start and end states are given,
the probability distribution during the diffusion process is conditioned on those start and
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Figure 3.4: Image-to-image diffusion model Palette generates high-fidelity sam-
ples for colorization, inpainting, uncropping and JPEG restoration. [26]

Figure 3.5: Forward and reverse Brownian Bridge process of the Brownian Bridge
Diffusion Model (BBDM). [15]

end states. The state distribution of intermediate states on the Brownian bridge, starting
from x0 ∼ q(x0) at t = 0 and ending at xT at t = T , can be formulated as:

p(xt|x0, xT ) = N ((1− t

T
)x0 +

t

T
xT ,

2t(T − t)

T 2
I). (3.23)

The formulation shows that the diffusion process is fixed at both ends with zero variance.
The process in between is a Brownian bridge, with most variance in the middle of the
bridge t = T/2.

Let (x, y) be a paired data point from the training dataset. Images x and y are from
the image domains A and B, respectively. The corresponding forward diffusion process of
BBDM can now be defined as:

qBB(xt|x0, y) = N (xt; (1−mt)x0 +mty, δtI), ∀t∈{1,...,T}, (3.24)

with x0 = x, xT = y, mt = t/T and T is the number of timesteps. The variance schedule
δt is designed by the authors as follows:

δt = 2s(mt −m2
t ), (3.25)
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with scaling factor s. This variance schedule is not following the definition from equation
(3.23), because this will induce a maximal variance at t = T

2 or δT/2 = T
4 . This would

become an extremely large variance for large T , so the variance schedule δt is designed to
have a maximal variance of:

δT/2 =
s

2
. (3.26)

The maximal variance in BBDM is therefore defined by s. This scaling factor s is set to 1
by default, the influence of s will be discussed in the next chapters.

Now for any input (x0, y) and timestep t ∈ {1, ..., T} One can sample a noise component
ϵt ∼ N (0, I) to obtain any latent variable xt as follows:

xt = (1−mt)x0 +mty +
√

δtϵt. (3.27)

For the reverse process, BBDM sets xT = y. Input y is available during training in the
data pair (x, y) and during inference as the conditioning image for the generative process.
The goal is now to predict xt−1 given xt, the approximated reverse process is formulated
as follows:

pθ(xt−1|xt, y) = N (xt−1;µθ(xt, t), δ̃tI) (3.28)

with predicted mean µθ(xt, t) and δ̃t the variance of the noise. Like in DDPM, µθ(xt, t)
will be learned via maximum likelihood criterion. One can observe that only for t = T ,
the condition y is actually a condition for the distribution pθ.

Analogously to DDPM, the model is trained by optimizing the variational lower bound
Lvlb. This is constructed and rewritten in time step components using the Kullback-Leibler
divergence:

Lvlb = L0 + L1 + L2 + ...+ LT , (3.29)

with

L0 = EqBB [− log pθ(x0|x1, y)], (3.30)

Lt−1 = EqBB [DKL(qBB(xt−1|xt, x0, y)||pθ(xt−1|xt, y))], ∀t∈2,...,T , (3.31)

LT = EqBB [DKL(qBB(xT |x0, y)||p(xT |y))]. (3.32)

The L0 term is discarded analogously to DDPM. Since in BBDM xT is equal to y, the LT

term is constant and can be discarded. The remaining terms are handled by obtaining the
distribution formula for qBB(xt−1|xt, x0, y):

qBB(xt−1|xt, x0, y) = N (xt−1; µ̃t(xt, x0, y), δ̃tI), (3.33)

with

µ̃t(xt, x0, y) =
δt−1

δt

1−mt

1−mt−1
xt+(1−mt−1

δt|t−1

δt
)x0+(mt−1−mt

1−mt

1−mt−1

δt−1

δt
)y (3.34)
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and variance term

δ̃t =
δt|t−1δt−1

δt
. (3.35)

An elaborate deduction can be found in Appendix A of BBDM [15]. During inference x0 is
unknown, so similarly to DDPM µ̃ is reparametrized, by substituting equation (3.27) into
equation (3.34). By reformulating equation (3.27) we get

x0 =
xt −mty −

√
δtϵt

1−mt
. (3.36)

Substituting this expression of x0 into equation (3.34) gives us

µ̃t(xt, x0, y) = µ̃t(xt, y) =
δt−1

δt

1−mt

1−mt−1
xt (3.37)

+(1−mt−1

δt|t−1

δt
)(
xt −mty −

√
δtϵt

1−mt
) + (mt−1 −mt

1−mt

1−mt−1

δt−1

δt
)y.

The authors of BBDM state that equation (3.34) is equal to:

µ̃t(xt, y) = cxtxt + cyty + cϵt(mt(y − x0) +
√

δtϵ), (3.38)

with the introduction of the following constants.

cxt =
δt−1

δt

1−mt

1−mt−1
, (3.39)

cyt = (mt−1 −mt
1−mt

1−mt−1

δt−1

δt
) (3.40)

and

cϵt = (1−mt−1

δt|t−1

δt
). (3.41)

To verify this, it should be possible to get from equation (3.34) to equation (3.38). First
the constants cxt, cyt and cϵt can be substituted directly into equation (3.34):

µ̃t(xt, y) = cxtxt + cϵtx0 + cyty. (3.42)

Now, One could see easily that the new expression of µ̃t in equation (3.38) is only true if
x0 = mt(y − x0) +

√
δtϵ. This is clearly problematic.

For example, when t = T , recalling mt =
t
T and δt = 2s(mt −m2

t ), the equation (3.38)
is true if and only if x0 = 1

2y.
In this research, the gap in the BBDM paper is ignored in the application of the model.

This will also be brievely mentioned in the discussion of this research, chapter 6.
The authors of BBDM simplify the loss function with respect to their representation

of µ̃t(xt, y). This simplified loss function for BBDM is as follows:

Lsimple = Ex0,y,ϵ[cϵt||mt(y − x0) +
√
δtϵ− ϵθ(xt, t)||2], (3.43)

where the constant cϵt is discarded in the training algorithm, so:

Lsimple = Ex0,y,ϵ[||mt(y − x0) +
√

δtϵ− ϵθ(xt, t)||2]. (3.44)
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Now predictor ϵθ(xt, t) is the network to be trained. The BBDM paper calls this the noise
predictor, but that is not completely true. The predictor does more than that. Recalling
equation (3.27), Lsimple can be reformulated in a more readable way:

Lsimple = Ex0,y,ϵ[||xt − x0 − ϵθ(xt, t)||2]. (3.45)

Now it is obvious that the predictor needs to estimate the difference between xt and x0.
This difference consists of the noise component and the mean difference component:

xt − x0 =
√

δtϵ+ µ̃t(xt, x0, y)− x0. (3.46)

The proposed training and sampling algorithm can be found in Algorithm 3 and 4, respec-
tively.

Algorithm 3 Training BBDM
1: repeat
2: x0 ∼ q(x0), y ∼ q(y)

In this step, a training pair x0 and y is randomly selected from data distributions
q(x0), q(y).

3: t ∼ Uniform({1, ..., T})
In this step, a timestep t is randomly selected.

4: ϵ ∼ N (0, I)
In this step, a Gaussian noise component is drawn.

5: Take gradient descent step on:
∇θ||mt(y − x0) +

√
δtϵ− ϵθ(xt, t)||2

In this step, the prediction of predictor ϵθ is compared with the noise component plus
the mean difference component via the l2 norm. Then the gradient decent step is taken.

6: until converged

Algorithm 4 Sampling BBDM
1: xT = y ∼ q(y)

In the sampling procedure xT is selected from the known distribution q(y).
2: for t = T, ..., 1 do

Traveling backwards over the Brownian bridge, the image xt is moving in a noisy path
towards the desired distribution q(x0).

3: z ∼ N (0, I) if t > 1, else z = 0
A Gaussian noise component z is drawn for each t > 1, else z = 0.

4: xt−1 = cxtxt + cyty + cϵtϵθ(xt, t) +
√

δ̃tz
Then xt−1 is calculated.

5: end for
6: return x0
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Chapter 4

Methods

To find the added value of diffusion frameworks on metal artifact reduction, two models
are considered. Both models are trained on a simulated paired dataset. For validation of
the results a clinical dataset is obtained from the Isala hospital in Zwolle. The first model
is a conditional adaptation of DDPM, as done by Wolleb et al. [34] and Saharia et al. [26].
The second model is based on the idea of the BBDM model by Li et al. [15], leveraging
on the concept of directly mapping the input and target domain by a Brownian bridge. In
this chapter, the datasets and models explored in this research will be discussed in detail
to ensure reproducibility.

4.1 Dataset

4.1.1 Simulated Data

To obtain a large amount of paired training data for metal artifact reduction, simulating
metal artifacts is required. Metal-free images were obtained from the open source Deep
Lesion dataset [37]. The metal artifact simulation method was first proposed by Zhang et
al. [41] and adapted by Selles et al. [28]. An overview of the simulation process can be
found in Figure 4.1.

A subset of 2279 patients from the Deep Lesion dataset were included, with a total of
113,462 CT-images of 512x512 pixels. Manual segmentation has been done to acquire 35
different metal masks, consisting of smaller implants like surgical metal clips and larger
implants like hip prostheses.

Different kinds of metal implants are bound to different anatomical areas. To auto-
matically find the corresponding anatomical area in a CT-image, a residual neural network
was trained by Selles et al. with an accuracy of 99.2% on the validation dataset.

For a certain metal free CT-image x, the residual neural network finds an implant from
the 35 metal masks to fit with the anatomy in the image x. To determine the location of
the metal mask, a bone probability map is obtained to ensure the metal implant is placed
near or in bone structures. Now a mask xm is constructed for the desired implant in the
desired location.

Then beam-hardening and Poisson noise artifacts are simulated as proposed by Zhang
et al. [41]. By using the principles of CT, projection data can be simulated by computing
line integrals simulating x-ray projections. To be able to compute the line integrals, in
each pixel the material has to be known to determine attenuation coefficients. Therefore,
the CT-image x is divided in a water image xw and bone image xb by a soft threshold-
based method [41]. Projection data of xw, xb and xm are obtained by simulation, using
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Figure 4.1: A flowchart of the simulation of metal artifacts in an artifact-free CT
image slice, proposed by Selles [29]. This algorithm allows the artificial construction
of a paired dataset to train a MAR model.

the attenuation coefficient of iron in place of the metal mask. A metal affected sinogram
is obtained by first combining the water sinogram and bone sinogram, then all nonzero
values in the metal sinogram are substituted into the metal affected sinogram. Finally,
FBP is used to get the metal artifact image xa. Similarly, the ground truth image xg is
obtained by combining the water and bone sinogram. The metal-free image is obtained
again by FBP, then the metal mask is used to replace the values in the location of the
implant by CT values of iron.

For each of the 113,462 Deep Lesion CT-images, the simulation process is applied to
obtain 113,462 data pairs with a ground truth image and a metal artifact image. The
obtained simulated paired dataset is divided by patient into a train, validation and test
partition pursuing a 80 : 10 : 10 split. The exact division of the dataset can be found in
Table 4.1.

Table 4.1: Partition of simulated dataset.

Partition Patients Image Pairs %
Train 1852 91547 80.7
Validation 210 11477 10.1
Test 217 10438 9.2

4.1.2 Clinical Data

For evaluation purposes, a clinical dataset is obtained from the Isala hospital in Zwolle.
Thirty patients with a unilateral hip prosthesis that were scanned between August 2022
and April 2023 are included retrospectively in this dataset. The patients were scanned on
a Philips Spectral CT 7500 system.
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4.2 Conditional Denoising Diffusion Probabilistic Model

By conditioning on the artifact affected image, as done by Wolleb et al. [34] and Saharia et
al. [26], the DDPM framework is adapted for the I2I problem of metal artifact reduction.

The training and sampling algorithms for conditional DDPM (CDDPM) change slightly,
by adding the conditional image as an input to the denoising network in each timestep.
The algorithms used in this research for training and sampling are found in Algorithm 5
and 6 respectively.

Hyperparameters

The CDDPM model consists of the following hyper parameters:

• Number of timesteps T

• Noise schedule βt, ∀t ∈ {0, ..., T}

• Denoising network ϵθ

The denoising network will be later discussed in its own section.

Algorithm 5 Training CDDPM
1: repeat
2: paired data x0 ∼ q(x0), y ∼ q(y)
3: t ∼ Uniform({1, ..., T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on:
∇θ||ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, y, t)||2

6: until converged

Algorithm 6 Sampling CDDPM
1: input y ∼ q(y)
2: xT ∼ N (0, I)
3: for t = T, ..., 1 do
4: z ∼ N (0, I) if t > 1, else z = 0

5: xt−1 =
1√
αt

(
xt − 1−αt√

1−αt
ϵθ(xt, y, t)

)
+ σtz

6: end for
7: return x0

4.3 Superconditional Brownian Bridge Diffusion Model

The BBDM training and sampling algorithms from the previous chapter, Algorithm 3
and 4 respectively, are implemented identically to BBDM and applied to metal artifact
reduction.

Similarly to CDDPM, the BBDM denoising network can be conditioned on the artifact
affected image in each timestep. Since BBDM is already conditioned on an input image,
the additionally conditioned BBDM model is therefore called Superconditional BBDM
(SBBDM). This model comes with slightly altered training and sampling algorithms, which
can be found in Algorithm 7 and 8 respectively.

23



Hyperparameters

The (S)BBDM model consists of the following hyper parameters:

• Number of timesteps T .

• Maximal variance parameter s, defining the noise schedule δt.

• Denoising network ϵθ.

The denoising network will be later discussed in its own section.

Algorithm 7 Training SBBDM
1: repeat
2: x0 ∼ q(x0), y ∼ q(y)
3: t ∼ Uniform({1, ..., T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on:
∇θ||mt(y − x0) +

√
δtϵ− ϵθ(xt, y, t)||2

6: until converged

Algorithm 8 Sampling SBBDM
1: xT = y ∼ q(y)
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = cxtxt + cyty + cϵtϵθ(xt, y, t) +
√
δ̃tz

5: end for
6: return x0

4.4 Denoising Network Architecture

The denoising network ϵθ is yet to be defined. To be able to compare the models CDDPM
and (S)BBDM, the denoising network will be defined once and used consistently. However,
the denoising network is trained separately for each model and experiment.

A residual attention U-Net with timestep embedding is used, this follows the theory
in section 3.2.1. To be consistent with BBDM and other related work, the widely used
implementation of OpenAI [24] is adapted. When not mentioned in this paper, the hyper-
parameters are fixed and consistent with the adaptation of BBDM. 1

4.5 Drawing Multiple Samples (n)

The diffusion based models discussed in this chapter, CDDPM and (S)BBDM, have in-
herent stochasticity due to the random noise component. During inference, the mod-
els predict an artifact-free image by iterative denoising, conditioned on a corresponding
artifact-affected image. Due to the random noise component that is used, multiple sam-
ples can be drawn to inspect the variability in the models’ predictions, like in the proposed
method of Wolleb et al. [34]

1https://github.com/xuekt98/BBDM
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For example, in MAR applications, repeated sampling could reveal if artifacts are
systematically over- or undercorrected. Additionally, repeated sampling could show if
the regions near the implants, where the information is most scarce, are inconsistently
reconstructed.

In the experimental phase of this research, an extension of the sampling algorithm is
considered by drawing n independent sample predictions {x(i)0 }ni=1. The pixel-wise average
x0 =

1
n

∑n
i=1 x

(i)
0 can then be computed for a more stable prediction.

The Manifold Hypothesis, states that it can be presumed that a data distribution from
the real world (like CT images) in a high-dimensional space (like the corresponding image
space) lies on a low-dimensional manifold. When the desired data distribution is learned
by a model, it can be assumed that any prediction x0 from the model is on the lower
dimensional manifold that covers the learned data distribution. However, without any
knowledge about the convexity of the manifold, it cannot be assumed that x0 is on the
manifold as well. Therefore, the added value of x0 will be discussed when evaluating the
results of this research. [18]

4.6 Evaluation Criteria

For the evaluation of the models, a validation/test partition of the simulated dataset can
be considered. In this dataset the ground truth is available, which makes an objective
analysis possible. However, the data is synthetic and can be considered as an insufficient
representation of real patient data. The clinical dataset can be used to showcase the value
of the models in clinical applications. A ground truth is not available in this dataset.
Therefore, evaluation criteria have to be defined for both datasets.

On the simulated dataset, the artifact-free prediction of the models can be compared to
the ground truth with the Structural Similarity Index Measure (SSIM). The SSIM metric
is closer to the human interpretation of similarity in images than standard metrics like the
l1 or l2 norm. [42] The ultimate goal is to give a human doctor an artifact-free image to
assess, so human interpretation is important. Therefore, SSIM is a suitable metric and will
be used to evaluate the performance of the models on the simulated data.

On the clinical dataset, evaluating the artifact-free predictions of the models is not so
straight forward due to the lack of ground truth data. Nevertheless, the following criteria
will be used to evaluate the performance of the models on the clinical dataset:

1. Subjective analysis.

2. Contra-lateral image consistency.

3. Region of Interest (ROI) analysis.

Since the clinical dataset consists of only 30 patients, a subjective analysis is feasible.
The goal is to find abnormal behaviour of the models and find a better understanding
of possible shortcomings of the models. Considering bone or soft tissue hallucination,
secondary artifacts and remaining artifacts.

The clinical dataset consists of patients with a unilateral hip prosthesis, so by the nature
of metal artifacts the contra-lateral side of the image (without prosthesis) is less corrupted.
To quantify the consistency of the anatomy in the artifact-free prediction by the models,
the contra-lateral side of the input image can be compared to the same side of the prediction
image with the SSIM metric. Compared to other verified methods, significantly different
contra-lateral consistency can numerically verify that a model is hallucinating. However,
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since the metal artifacts could reach the contra-lateral side, the optimal contra-lateral
consistency is unknown. Therefore, this evaluation criterion is very limited in drawing
conclusions.

The last evaluation criterion is based on the prior knowledge of the body. Regions
of Interest (ROIs) can be defined to be in certain types of body tissue. One ROI in the
bladder, one ROI in muscle tissue and one ROI in fatty tissue will be defined close to
the prosthesis for each patient. Contrast-to-noise ratios between the bladder and fat, and
between muscle and fat will be obtained to evaluate an improvement in readability of the
predicted images. The contrast-to-noise ratios (CNRs) between the bladder and fat, as
well as between muscle and fat, are determined by subtracting the average signal in the
lowest signal tissue (fat) from the average signal in the other considered tissue (bladder or
muscle), then dividing by the mean noise value of both tissues.
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Chapter 5

Experiments and Results

For all experiments, a model m is trained for a maximal number of epochs Em, so that
convergence is achieved at epoch e > 0 with e << Em. The maximal number of epochs
Em is picked by subjective experimental evidence. Explicitly,

Em = 50 ∗ 1

dfm
,

where data fraction dfm is the fraction of the training dataset on which model m is trained.
This is necessary to ensure the same maximal number of training iterations throughout all
experiments.

The epoch e∗, where the model is performing best on the validation dataset, is consid-
ered optimal. This is done without the complete sampling procedure since this is a very
computationally exhaustive process. Like in the training algorithm a random timestep t is
uniformly drawn from {1, ..., T}, then the prediction of the estimator eθ is tested against
the ground truth images and included in the overall performance of the model on the
validation dataset.

Due to the fact that diffusion models learn a distribution, the effect of drawing multiple
samples is investigated as explained in section 4.5. To be able to evaluate the effect of
repeated sampling, drawing 1, 5 and 10 independent sample predictions is considered for
the diffusion models CDDPM and (S)BBDM. As promised in section 4.5, the average
of these repeated sample predictions is computed as well and evaluated. Theoretically,
the average will be more stable, but it should be verified as a feasible correction of an
artifact-affected CT image.

5.1 Benchmark models

The presented experimental models in this research are benchmarked by comparing the
predictions of experimental models with the predictions of the commercialized metal ar-
tifact reduction algorithm O-MAR (Philips) and clinically validated UNET based model
DL-MAR (PhD. M. Selles) in the experiments on clinical data.

UNET

A second UNET model is trained and included in the experiments as an ablation study.
The same UNET architecture is used for the denoising in the (S)BBDM and CDDPM
models, but without the timestep embedding. This enables the investigation of the effect
of the diffusion component in the experimental diffusion models. The UNET models are
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trained on df = 100, 10, 1 percent of the synthetic training dataset. The models are named
accordingly:

• UNET (df = 100%)

• UNET (df = 10%)

• UNET (df = 1%)

5.2 CDDPM Experiments

For CDDPM models, the estimator ϵθ estimates the drawn noise component ϵ. The l2-norm
is conventionally used in diffusion models, so during inference this metric is also used to
obtain the distance between the noise component and the estimated noise of the CDDPM
models.

The CDDPM models in the experiments are conditioned on the artifact affected image.
So we consider the Conditional DDPM (CDDPM) as a framework. These models are
trained on df = 100, 10, 1 percent of the simulated training dataset to be able to assess the
robustness of the models. The models are named accordingly, where df stands for data
fraction:

• CDDPM (df = 100%)

• CDDPM (df = 10%)

• CDDPM (df = 1%)

5.2.1 Synthetic Data Results

For computational reasons, only 50 data points from the test dataset are considered to be
able to perform the whole 1000 step sampling procedure.

The overall results can be found in Table 5.1, supported by multiple figures in Appendix
A. Figure A.1 to A.3, show a boxplot for each CDDPM model, showcasing the effect on
the average prediction for 1, 5 and 10 sample predictions.

The UNET (df = 100%) model is performing slightly better than the CDDPM models
on the synthetic dataset. The UNET models are included in this diffusion research as an
ablation study, since the same UNET architecture is used as a denoising backbone in the
diffusion based models. On the synthetic validation data, there seems to be no added value
by the diffusion component of CDDPM models.

By increasing the number of sample predictions drawn during inference, the perfor-
mance of the average prediction increases for CDDPM.

Training on a Fraction of the Dataset (df)

The stochasticity of the CDDPM models should enable a higher generalizing capacity
compared to the UNET models. Furthermore, it could be that the training dataset is too
densely populated. A strong generalizing capacity would then be redundant, since the
model is trained on a sufficient coverage of the input domain. The hypothesis would be
that the UNET models would not be able to outperform the robustness of the CDDPM
models when the population of the training data is less dense. Therefore, experiments
on the size of the training dataset were included (df = 100%, 10%, 1%) for UNET and
CDDPM.

28



Table 5.1: Performance (SSIM) of the CDDPM and UNET models, trained on
100, 10 and 1 percent of the train partition of the simulated dataset. The per-
formance was measured on 50 data points from the test partition. Each diffusion
based model’s performance is measured on the average of 1, 5 and 10 drawn samples
during inference. In the first column the trained models are listed, in the second col-
umn the number of drawn samples are shown with the corresponding performance
in the final column.

Model Samples Performance (SSIM)
CDDPM (df = 100%) 1 0.9965

5 0.9972
10 0.9973

CDDPM (df = 10%) 1 0.9965
5 0.9972
10 0.9972

CDDPM (df = 1%) 1 0.9956
5 0.9960
10 0.9960

UNET (df = 100%) - 0.9983
UNET (df = 10%) - 0.9975
UNET (df = 1%) - 0.9956

The UNET models behave as expected, reducing the size of the dataset has a negative
influence on the performance. The CDDPM models trained on 100 and 10 percent of the
train partition of the synthetic dataset perform very similar. The CDDPM model trained
on 1 percent of the training data shows that the CDDPM model slightly outperforms the
UNET model trained on 1 percent.

The generalizing capacity of CDDPM actually seems to make the size of the dataset less
important. This could be a motivation for diffusion based models in other image-to-image
related research where training data is scarce. A clinical validation would strengthen this
claim.

5.2.2 Clinical Data Results

The subjective evaluation is done for 5 of the 30 patients in the clinical dataset, by selecting
a single slice containing a significant portion of the metal implant for each patient. Then
the artifact-free predictions of each CDDPM model is compared with the predictions from
the benchmark models O-MAR and DL-MAR.

The objective evaluation is done for all 30 patients in the clinical dataset, by selecting
a single slice containing a significant portion of the metal implant for each patient. Then
the artifact-free predictions of each CDDPM model and the predictions of the benchmark
models are tested on the objective evaluation criteria.

Predictions

As mentioned, 10 sample predictions are obtained from the CDDPM models. The average
of these 10 sample prediction is recalled to as the average prediction of the CDDPM models.
All separate sample predictions of the diffusion based models can be found in Appendix B
for a single image slice of 5 patients with a hip prosthesis.
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In Figure 5.4, the (average) predictions of the CDDPM, UNET and benchmark models
O-MAR and DL-MAR can be compared for the 5 clinical cases. In Figure 5.5 and 5.6,
the (average) predictions for CDDPM and UNET are shown respectively. This double
presentation of the results will help the reader navigate through the substantial number of
experimental models.

Subjective Analysis

In the subjective performance analysis, the predictions of the models were analyzed on hal-
lucinations, secondary artifacts and remaining artifacts. Any additional abnormal behavior
will also be discussed in this section.

All CDDPM and UNET models show no clear sign of hallucinating bone structures
or reshaping of soft tissue, which is a very good sign towards clinical applicability. The
CDDPM models also show no hallucinations in the details of the average predictions. One
could argue that some models may be hallucinating very close to the metal. However,
due to the large disturbance by the metal artifacts close to the metal and the absence
of a ground truth, it is not possible to confidently say how the bone should be restored
underneath the heavy artifacts. Additionally, the shape of the metal is probably not correct
in most cases, but this is of less importance with respect to the anatomical areas in the
image.

All CDDPM and UNET models show no sign of secondary artifacts, which is a strict
improvement from the commercialized model O-MAR.

All CDDPM and UNET models show some remaining artifacts, both the bigger shadow
cast by the metal implant and the long thinner artifact streaks are occasionally present.
The models CDDPM (df = 100%) and UNET (df = 100%) show most remaining artifacts
in their predictions. The models CDDPM (df = 1%), UNET (df = 1%) show the least
remaining artifacts and are outperforming both O-MAR and DL-MAR on this criterion.

The CDDPM and UNET model trained on 1% of the training data are convincingly
outperforming their respective identical model trained on 100% of the training data, this
contradicts the performance on the synthetic dataset.

Stochastic Analysis

For the CDDPM models, one could also calculate the standard deviation for each pixel,
which could be seen as an uncertainty heat-map. In Figure 5.9, the average prediction,
standard deviation and the average prediction with highlighted standard deviation is shown
for 1 clinical case for each CDDPM model. The set of sample predictions for all 5 patients
and all experimental diffusion models are included in Appendix B.

In the pixel wise standard deviation image for the CDDPM models, only artifacts and
the negative shape of the metal can be found. Therefore, the models seem to be very ca-
pable of identifying the areas in the image which are affected by the metal artifacts. While
the models are not so consistent in restoring these affected areas, drawing multiple sam-
ples enabled the quantification of their uncertainty. Identifying artifacts and quantifying
uncertainty are both very important aspects towards clinical applications.

Unfortunately, consistently making the same error is still an error and this would not be
visible in the pixel-wise uncertainty heat map. Therefore, the pixel wise uncertainty heat
map should only be used to understand the models behavior and not directly to support
clinical diagnostic decisions. This will be discussed in the limitations of this research.
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Contra-lateral Consistency

For each of the 30 patients in the clinical dataset, the consistency between the image
affected by artifacts and the artifact-free prediction on the contra-lateral side relative to
the implant was evaluated (SSIM). The contra-lateral consistency of the average predictions
from experimental models CDDPM (df = 100%), CDDPM (df = 10%), CDDPM (df =
1%) and the predictions from the models UNET (df = 100%), UNET (df = 10%), UNET
(df = 1%) together with the predictions of the benchmark models O-MAR and DL-MAR
can be found in Figure 5.12.

The O-MAR model is more consistent in the contralateral side than DL-MAR, while
it was clinically verified that DL-MAR outperforms OMAR. This implies that the con-
tralateral consistency is not essentially positively correlated with performance. The MAR
models should be able to reduce minor artifacts in the contralateral side with respect to
unilateral hip prostheses, so the optimal contralateral consistency depends on the severity
of the artifacts. However, a very low contralateral consistency is still a sign of halluci-
nations. Additionally, this metric could help interpret the behavior of the experimental
models.

The model CDDPM (df = 100%) is even more consistent in the contralateral side than
O-MAR, this suggests that in the predictions of this model most minor artifacts are still
present in the contralateral side. While inspecting the models respective column of Figure
5.5, One could see that for all included patients a large portion of the artifacts still remain.
This supports the claim that CDDPM (df = 100%) undercorrects the contralateral side of
patients with a unilateral hip prosthesis.

The models CDDPM (df = 10%), CDDPM (df = 1%), UNET (df = 100%), UNET
(df = 10%) and UNET (df = 1%) score very similar to DL-MAR on contralateral con-
sistency. Looking at the respective columns in Figures 5.5 and 5.6, it can be seen that
the correction of the minor artifacts in the contralateral side has improved with respect to
CDDPM (df = 100%).

Image Quality

For each of the 30 patients in the clinical dataset, three circular regions of interest (ROI)
were drawn in the selected image slice by a clinically experienced PhD candidate. One was
placed in the bladder at the medial side of the hip prosthesis, another was placed at the
lateral side within the muscle area exhibiting the most pronounced artifacts, and a third
was placed in the gluteal subcutaneous fat adjacent to the hip prosthesis.

The bladder-fat and muscle-fat CNRs are calculated for the average predictions from
experimental models CDDPM (df = 100%), CDDPM (df = 10%), CDDPM (df = 1%)
and the predictions from the models UNET (df = 100%), UNET (df = 10%), UNET
(df = 1%) together with the predictions of the benchmark models O-MAR and DL-MAR.
The results for these models can be compared in Figures 5.13 and 5.14. These Figures
show boxplots for the bladder-fat and muscle-fat CNRs, respectively.

A higher contrast to noise ratio means that the different anatomical areas are clearly
separable and less corrupted by noise. The box plots cover a wide range of values, which
shows inconsistent performance for different patients. Therefore, model specific conclusions
are limited on CNR.

The evaluation of the CNRs show that the models CDDPM and UNET trained on 100%
of the training data are underperforming with respect to DL-MAR. All other CDDPM
and UNET models score similar or even better than DL-MAR. This suggests that the
predictions of these experimental models are at least as readable as the predictions of DL-
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MAR. The best performing models on this evaluation metric are CDDPM (df = 1%) and
UNET (df = 1%).

5.3 BBDM Experiments

For the BBDM models, the estimator is estimating the difference between the input and
the artifact-free image. From which the estimation of the artifact-free image is easily
obtained. The (estimation of an) artifact-free image consists of spatial information, so
during inference the SSIM metric is used to obtain the distance between the ground truth
artifact-free image and the estimation of the BBDM models.

The BBDM models in the experiments are by design conditioned on the artifact affected
image via the Brownian Bridge (BBDM). The BBDM model is trained with maximal
variance parameter s = 10, 1, 0.1 percent, referring to these models is done as follows:

• BBDM (s = 10%),

• BBDM (s = 1%),

• BBDM (s = 0.1%).

5.3.1 Synthetic Data Results

For computational reasons, only 50 data points from the test dataset are considered to be
able to perform the whole 1000 step sampling procedure.

The overall results can be found in Table 5.2, supported by multiple figures in Appendix
A. Figure A.7 to A.9, show a boxplot for each BBDM model, showcasing the effect on the
average prediction for 1, 5 and 10 sample predictions. Averaging more samples during
inference has a positive influence on all BBDM models.

Overall, it is obvious that the BBDM models seem to perform significantly worse than
other experimental models or benchmark models.

Table 5.2: Performance (SSIM) of the BBDM models, trained with maximal
variance parameter equal to 10, 1 and 0.1 percent. The performance was measured
on 50 data points from the test partition. Each model’s performance is measured
on the average of 1, 5 and 10 drawn samples during inference. In the first column
the trained models are listed, in the second column the number of drawn samples
are shown with the corresponding performance in the final column.

Model Samples Performance (SSIM)
BBDM (s = 10%) 1 0.8810

5 0.9178
10 0.9260

BBDM (s = 1%) 1 0.9379
5 0.9617
10 0.9656

BBDM (s = 0.1%) 1 0.9710
5 0.9838
10 0.9856

UNET (df = 100%) - 0.9983
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Maximal Variance Parameter (s)

A boxplot for each of the BBDM models with averaging 10 independent sample predictions
can be found in Figure 5.3.

Decreasing s increases the performance of the BBDM models substantially. Parameter
s maximizes variance in the Brownian Bridge, so this directly means that the BBDM model
has less noisy inputs and therefore more information about anatomical structures during
inference. Training BBDM with a low s seems desirable, but clinical validation is necessary
to continue the experiments with this architecture.

5.3.2 Clinical Data Results

In Figure 5.7 the average predictions of the BBDM models are depicted for 5 patients with
a unilateral hip prosthesis.

The predictions from the model with a higher maximal variance parameter s lose a
lot of anatomical structures which are clearly visible in the input image. Only the shape
of the metal and some bone structures are present in the prediction. Clearly, only the
information of high contrast edges withstand the addition of noise during the Brownian
bridge process. When reducing the maximal noise in the Brownian bridge by reducing s,
more details become visible in the prediction.

However, even a maximal variance parameter of s = 0.1% is still adding enough noise
to let the model be very uncertain about the more detailed anatomical structures in the
body. This is supported by the stochastic analysis presented in Figure 5.10, where the case
s = 0.1% shows uncertainty about almost all fine details in the image.

5.3.3 Conclusion (BBDM)

The synthetic performance of the BBDM models was already problematic. The clinical
results of the BBDM models also lack anatomical consistency with the input image. Even
with low s, important details during the Brownian bridge process are lost and therefore
the BBDM model is not suitable for clinical applications. The BBDM model was designed
to learn a direct mapping between two image domains with diverse image generation, but
exact image-to-image translation tasks are too demanding for this generative model.

Removing all stochasticity by setting s = 0 will solve the problem of losing informa-
tion, but this will reduce the BBDM architecture to just T = 1000 UNET evaluations.
Benchmark model DL-MAR already showed good results with only 1 UNET evaluation,
so setting s = 0 or closer to 0 is not considered as a valuable experiment.

By superconditioning the BBDM architecture on the input image at each timestep, the
model will have all anatomical information available during the Brownian Bridge process.
This is done in exactly the same way as conditioning the DDPM architecture. The results
of the Superconditional Brownian Bridge Diffusion Model (SBBDM) experiments will be
discussed in the remainder of this chapter.

5.4 SBBDM Experiments

The SBBDM experiments are, analogously to BBDM, evaluated during inference with the
SSIM metric to obtain the distance between the ground truth artifact-free image and the
estimation of the SBBDM models.

To overcome the problematic results of the BBDM experiments, the model is addi-
tionally conditioned in each timestep on the artifact affected image, like in the CDDPM
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models. This superconditional model is called Superconditional BBDM (SBBDM).
The model is trained with s = 10, 1, 0.1 percent maximal variance in the Brownian

Bridge to be able to inspect the effect of variance in the model. The models are named
accordingly:

• SBBDM (s = 10%)

• SBBDM (s = 1%)

• SBBDM (s = 0.1%)

5.4.1 Synthetic Data Results

For computational reasons, only 50 data points from the test dataset are considered to be
able to perform the whole 1000 step sampling procedure.

The overall results can be found in Table 5.3, supported by multiple figures in Appendix
A. Figure A.4 to A.6, show a boxplot for each SBBDM model, showcasing the effect on
the average prediction for 1, 5 and 10 sample predictions.

The performance of the SBBDM models come very close to the best performing model
UNET (df = 100%). Varying maximal variance parameter s or the number of samples n is
not significantly influencing the performance of SBBDM on the synthetic validation data.

The SBBDM architecture seems to perform a lot better than BBDM. The added value
of SBBDM with respect to computationally efficient UNET is yet to be found. Clinical
validation is required to find supporting evidence.

Table 5.3: Performance (SSIM) of the SBBDM models, trained with maximal
variance parameter equal to 10, 1 and 0.1 percent. The performance was measured
on 50 data points from the test partition. Each model’s performance is measured
on the average of 1, 5 and 10 drawn samples during inference. In the first column
the trained models are listed, in the second column the number of drawn samples
are shown with the corresponding performance in the final column.

Model Samples Performance (SSIM)
SBBDM (s = 10%) 1 0.9979

5 0.9980
10 0.9980

SBBDM (s = 1%) 1 0.9975
5 0.9979
10 0.9979

SBBDM (s = 0.1%) 1 0.9972
5 0.9978
10 0.9978

UNET (df = 100%) - 0.9983

5.4.2 Clinical Data Results

The subjective evaluation is done for 5 of the 30 patients in the clinical dataset, by selecting
a single slice containing a significant portion of the metal implant for each patient. Then
the artifact-free predictions of each SBBDM model is compared with the predictions from
the benchmark models O-MAR and DL-MAR.
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The objective evaluation is done for all 30 patients in the clinical dataset, by selecting a
single slice containing a significant portion of the metal implant for each patient. Then the
artifact-free predictions of each SBBDM model and the predictions from the benchmark
models are tested on the objective evaluation criteria.

Predictions

The synthetic data results did not show significant improvements for the SBBDM models
when taking the average of multiple samples n drawn during inference. Nevertheless,
n = 10 in the clinical evaluation to be able to consistently compare different experimental
models and inspect stochasticity.

The average of these 10 sample predictions is recalled to as the average prediction of
the SBBDM models. All separate sample predictions of the diffusion based models can be
found in Appendix B for a single image slice of 5 patients with a hip prosthesis.

In Figure 5.4, the (average) predictions of the SBBDM, UNET and benchmark models
O-MAR and DL-MAR can be compared for the 5 clinical cases. In Figure 5.8 the average
predictions for SBBDM are shown separately.

Subjective Analysis

In the subjective performance analysis, the predictions of the experimental models were
analyzed on hallucinations, secondary artifacts and remaining artifacts. Any additional
abnormal behavior will also be discussed in this section.

All SBBDM models show no clear sign of hallucinating bone structures or anatomical
structures, which is a very good sign towards clinical applicability. However, the thin edges
between regions are sometimes more faded than in the input image, which is probably the
effect of averaging slight inconsistencies between the multiple samples. Analogously to the
CDDPM results, One could argue that the SBBDM models may be hallucinating in and
close to the metal implant. However, due to the large disturbance by the metal artifacts
close to the metal and the absence of a ground truth, it is not possible to confidently
assume how the bone and the implant should be restored underneath the heavy artifacts.

All SBBDM models show no clear sign of secondary artifacts, which is a strict im-
provement to the commercialized model O-MAR. While in the average predictions of the
SBBDM (s = 1%) model no clear secondary artifacts are visible, the individual samples
show the introduction of secondary horizontal strike artifacts. The other SBBDM models
do not show the same kind of behavior, so this is probably an optimization imperfection.
There are different artifacts visible in the different sample predictions of the other SBBDM
models, but these look more like remaining artifacts. All SBBDM models show some re-
maining artifacts, both the bigger shadow cast by the metal implant and the long thinner
artifact streaks are considered. The predictions of the models SBBDM (s = 10%) and
SBBDM (s = 0.1%) are comparable to CDDPM (df = 1%) and UNET (df = 1%) on
remaining artifacts. These four models show the least remaining artifacts and are outper-
forming both O-MAR and DL-MAR on this criterion.

Overall, the SBBDM models s = 10, 0.1% perform consistently good, the case s = 1%
performs slightly worse on patient 4 and 5. As mentioned, this could be explained by an
optimization imperfection.

Stochastic Analysis

Since multiple samples were drawn during inference for the SBBDM models, one could also
calculate standard deviation for each pixel, which could be seen as an uncertainty heat-
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map. In Figure 5.11, the average prediction, standard deviation and the average prediction
with highlighted standard deviation is shown for 1 clinical case for each SBBDM model.
The set of sample predictions for all 5 patients and all experimental diffusion models are
included in Appendix B.

In the pixel-wise standard deviation image for the SBBDM models, only artifacts and
the negative shape of the metal can be found. Therefore, the models seem to be very ca-
pable of identifying the areas in the image which are affected by the metal artifacts. While
the models are not so consistent in restoring these affected areas, drawing multiple sam-
ples enabled the quantification of their uncertainty. Identifying artifacts and quantifying
uncertainty are both very important aspects towards clinical applications.

Analogously remarking that consistently making the same error is still an error and
this would not be visible in the pixel wise uncertainty heat map.

Contra-lateral Consistency

The consistency with the input image in the contralateral side to the implant is depicted
in Figure 5.12 for all presented UNET, CDDPM, SBBDM and benchmark models.

The SBBDM models show significantly less contralateral consistency. As stated before,
it is not straightforward how to interpret this result. With close inspection of Figure 5.8
One can observe that most artifacts are removed and soft tissue regions are smooth. When
this is the only reason for the lower contralateral consistency, this could be a positive
result for SBBDM models. However, in the earlier sections this chapter, the introduction
of secondary horizontal artifacts by the SBBDM (s = 1%) model and smooth thinner edges
by all SBBDM models was found.

Together with the significantly lower contralateral consistency presented in this section,
this leans towards the conclusion that SBBDM is overcorrecting or miscorrecting in their
predictions. This could very well mean that in clinical applications SBBDM models are
more prone to removing tiny fractures or other anomalies than the DL-MAR, UNET and
DDPM approaches. Further investigation is required.

Image Quality

For each of the 30 patients in the clinical dataset, the same three circular regions of interest
are used with respect to the former experiments.

In Figure 5.13 and 5.14 the contrast to noise ratio for bladder minus fat and muscle
minus fat were depicted. Also for the SBBDM models, the box plots cover a wide range
of values. This shows inconsistent performance for different patients. Therefore, model
specific conclusions are limited on the CNR evaluation criterion.

The SBBDM (s = 0.1%) performs comparable to the best performing models CDDPM
(df = 1%) and UNET (df = 1%).
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Figure 5.1: The performance of the CDDPM and UNET models on 50 data
points from the test partition of the simulated dataset, when averaging 10 sample
predictions for the CDDPM models.
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Figure 5.2: The performance of the SBBDM models on 50 data points from
the test partition of the simulated dataset, when averaging 10 sample predictions.
Showcasing the effect of training the model with a maximal variance s of 10, 1 and
0.1%.

Figure 5.3: The performance of the BBDM models on 50 data points from the test
partition of the simulated dataset, when averaging 10 sample predictions. Showcas-
ing the effect of training the model with a maximal variance s of 10, 1 and 0.1%.

38



F
ig

u
r
e

5.
4:

F
iv

e
cl

in
ic

al
ca

se
s

w
it

h
se

ve
re

m
et

al
ar

ti
fa

ct
s

in
du

ce
d

by
m

et
al

hi
p

pr
os

th
es

es
an

d
th

e
pr

ed
ic

ti
on

s
of

th
e

be
nc

hm
ar

k
m

od
el

s
(O

-M
A

R
an

d
D

L-
M

A
R

)
an

d
th

e
pr

ed
ic

ti
on

s
of

th
e

ex
pe

ri
m

en
ta

lm
od

el
s

(C
D

D
P

M
(d
f
=

10
0%

),
C

D
D

P
M

(d
f
=

10
%

),
C

D
D

P
M

(d
f
=

1
%

),
U

N
E

T
(d
f
=

10
0
%

),
U

N
E

T
(d
f
=

10
%

),
U

N
E

T
(d
f
=

1%
),

SB
B

D
M

(s
=

10
%

),
SB

B
D

M
(s

=
1%

),
SB

B
D

M
(s

=
0
.1
%

))
.

T
he

ar
ti

fa
ct

aff
ec

te
d

im
ag

e
is

sh
ow

n
in

th
e

in
pu

t
co

lu
m

n.
[W

=
16

00
,L

=
40

0]

39



Figure 5.5: Five clinical cases with severe metal artifacts induced by metal hip
prostheses and the artifact-free prediction of the different CDDPM models, trained
on 100, 10 and 1% of the training dataset (df). The prediction of these models is
the average prediction of 10 drawn samples. [W = 1600, L = 400]
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Figure 5.6: Five clinical cases with severe metal artifacts induced by metal hip
prostheses and the artifact-free prediction of the different UNET models, trained
on 100, 10 and 1% of the training dataset (df). [W = 1600, L = 400]
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Figure 5.7: Five clinical cases with severe metal artifacts induced by metal hip
prostheses and the artifact-free prediction of the different BBDM models, trained
with a maximal variance of 10, 1 and 0.1% (s). The prediction of these models is
the average prediction of 10 drawn samples. [W = 1600, L = 400]
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Figure 5.8: Five clinical cases with severe metal artifacts induced by metal hip
prostheses and the artifact-free prediction of the different SBBDM models, trained
with a maximal variance of 10, 1 and 0.1% (s). The prediction of these models is
the average prediction of 10 drawn samples. [W = 1600, L = 400]
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CDDPM (df = 100%)

CDDPM (df = 10%)

CDDPM (df = 1%)

Figure 5.9: For each CDDPM model, 1 clinical example is included presenting the
input image, the mean prediction, the standard deviation per pixel and the mean
prediction with highlighted standard deviation in red. [W = 4000, L = 1000]
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BBDM (s = 10%)

BBDM (s = 1%)

BBDM (s = 0.1%)

Figure 5.10: For each BBDM model, 1 clinical example is included presenting the
input image, the mean prediction, the standard deviation per pixel and the mean
prediction with highlighted standard deviation in red. [W = 4000, L = 1000]

45



SBBDM (s = 10%)

SBBDM (s = 1%)

SBBDM (s = 0.1%)

Figure 5.11: For each SBBDM model, 1 clinical example is included presenting
the input image, the mean prediction, the standard deviation per pixel and the
mean prediction with highlighted standard deviation in red. [W = 4000, L = 1000]
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Figure 5.12: A boxplot comparison for the evaluation criterion: Contra-lateral
Consistency (SSIM). The performance of benchmarkmodels O-MAR and DL-MAR
next to the performance of each experimental model based on CDDPM, UNET and
SBBDM is shown.

Figure 5.13: Boxplot of the contrast to noise ratio in the bladder and fat of
the artifact-free predictions from O-MAR, DL-MAR, CDDPM (df = 100, 10, 1%),
UNET (df = 100, 10, 1%) and SBBDM (s = 10, 1, 0.1%).
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Figure 5.14: Boxplot of the signal to noise ratio in the muscle and fat of the
artifact-free predictions from O-MAR, DL-MAR, CDDPM (df = 100, 10, 1%),
UNET (df = 100, 10, 1%) and SBBDM (s = 10, 1, 0.1%).
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Chapter 6

Discussion and Conclusion

This study has explored the application of diffusion-based deep learning methods for re-
ducing metal artifacts in computed tomography (CT) images, specifically Conditional De-
noising Probabilistic Models (CDDPM), Brownian Bridge Diffusion Models (BBDM) and
their superconditional form (SBBDM). The CDDPM model is based on conditioning the
pioneering model DDPM by Ho et al. [11] on the input image at each timestep, as done
by Saharia et al. [26] and in a medical context by Wolleb et al. [34]. The BBDM model
by Li et al. [15] proposed an alternative to the standard conditioning of diffusion models.
They proposed to directly map the input domain to the output domain via a Brownian
bridge. The SBBDM model is a newly proposed method by this thesis, extending the
direct mapping of BBDM with conditioning at each timestep like in CDDPM.

In previous work, diffusion-based models outperformed UNET-based models in various
generative tasks and (medical) image-to-image translation tasks, demonstrating enhanced
generalizing capacity [1],[11],[26],[27],[34],[35]. Exploring diffusion-based methods for metal
artifact reduction (MAR) in CT was a logical progression following the success of the
clinically validated UNET-based DL-MAR method [29].

This research demonstrates that conditional diffusion-based models offer significant ad-
vantages over traditional commercial methods like OMAR for metal artifact reduction in
computed tomography. However, BBDM proved inadequate for precise image-to-image
translation, highlighting the need for anatomically consistent methodologies. Both CD-
DPM and SBBDM present more promising paths.

Since we could train and clinically evaluate on the same data as Selles et al. for DL-
MAR [29], we expected the diffusion-based methods to outperform DL-MAR and advance
the clinical applicability of deep learning methods in MAR. However, we found that while
the diffusion models can offer promising performance and generalization capabilities, they
are computationally exhaustive and do not (significantly) outperform UNET-based meth-
ods in this research.

While diffusion models are computationally more exhaustive than UNET-based ap-
proaches like DL-MAR, diffusion based models did not (significantly) outperform UNET
models during synthetic and clinical validation. An ablation study using the same UNET
model that was used as a backbone for the denoising in the diffusion models showed that it
slightly outperformed the diffusion-based models itself. Moreover, the UNET model out-
performed DL-MAR in certain scenarios, indicating that further refinements could improve
DL-MAR’s effectiveness on metal artifact reduction.

The fact that diffusion models did not outperform UNET-based methods in this re-
search may not be a result of an inherent limitation of diffusion models applied to MAR.
Metal artifact reduction is actually an ill-posed inverse problem, since the corrupted image
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could correspond to multiple anatomically plausible artifact-free images. A UNET-based
method tries to find a single point estimate, while a diffusion model learns the distribu-
tion of the plausible artifact-free image manifold. Therefore, it seems more likely that the
problem formulation of this thesis does not leverage the mathematical strengths of diffu-
sion models enough. The conditioning strategy of this thesis, concatenating the artifact-
affected image at each timestep to the noisy latent variable, moves away from the generative
strengths of diffusion models and moves towards a direct image-to-image translation task.
While this conditioning approach provides the denoising backbone of the diffusion models
with all available anatomical information, it could very well constraint a powerful genera-
tive model to learn a deterministic mapping. For these type of mappings, UNET models
are already highly optimized. This research could therefore also serve as an ablation study,
highlighting the performance ceiling when a generative model is constrained to solve a
problem formulated deterministically.

Recent publications support this claim, other diffusion-based approaches did outper-
form UNET-based methods. DDPM-MAR [14], proposed by Karageorgos et al., is a DDPM
based model that was unconditionally trained to estimate missing sinogram data. First of
all, the raw sinogram data does not suffer from reconstruction errors like the reconstructed
data (or CT-images) we used in our models. Secondly, DDPM-MAR reformulates the
problem as a generative inpainting task, leveraging the strengths of diffusion models. By
training an unconditional DDPM on clean sinograms, it learns a powerful prior of desired
metal-free projection data. Then DDPM-MAR uses the learned distribution to fill in the
regions corrupted by the metal. Therefore, DDPM-MAR could have an advantage with
respect to our diffusion models by choice of the denoising domain and by a more suitable
formulation of the problem leveraging the strengths of diffusion models.

DiffMAR [3], proposed by Cai et al., utilizes a linear degradation process to simulate
the physical phenomenon of metal artifact formation in CT. DiffMAR then learns the
simulated linear iterative mapping between the artifact-affected image domain and artifact-
free image domain, supported by the integration of Structural Information Extraction
(SIE) and Time Latent-variable Adjustment (TLA). In comparison to our conditioning
method, DiffMAR actually guides the sampling procedure of the diffusion model in a
physics-informed manner. The linear degradation process of DiffMAR resembles the direct
mapping of BBDM, leveraging a linear process instead of a Brownian motion to construct
the iterative mapping. We have seen that reducing the maximal variance parameter (s) in
BBDM, regulating the variance of the noise in the bridge, improved the BBDM predictions
drastically, recall Figure 5.7. DiffMAR conditions on extracted structural information from
a linearly interpolated prior of the artifact affected image, while we conditioned BBDM
on the artifact-affected image at each timestep to propose the model SBBDM. We showed
that the predictions of SBBDM were significantly better than the predictions of BBDM.
However, this negated the effects of the Brownian bridge, i.e. reducing parameter s did not
induce the same drastic improvement in performance as it did for BBDM. The physics-
informed guidance of DiffMAR and removing the noise from the mapping would be a
promising path to explore with the (S)BBDM framework in further research.

BCDMAR [19], proposed by Luo et al., finds a bi-constrained conditional DDPM
method for MAR where the conditioning method is very similar to the conditioning in
our CDDPM. BCDMAR also conditions on the denoising UNET in each timestep, but
with a pre-corrected image prior to guide the sampling process. Additionallly, BCDMAR
constructs a data fidelity term to ensure image consistency. The metal trace is projected
with a tissue segmented, timestep dependent, pre-corrected prior image onto the sinogram
domain and then via filterd backprojection the artifact-affected image is re-approximated
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and compared with the measured artifact-affected CT-image to compute the data fidelity
term in each timestep. With this formulation, BCDMAR allows itself to effectively explore
the solution manifold rather than approximating a single output. By leveraging more of
the generative power of diffusion models, BCDMAR shows state-of-the-art performance
and reliable tissue representation around metal regions.

Drawing multiple samples (n) and taking the average from diffusion models was adopted
from Wolleb et al. [34]. During experiments in this research, the effects of multi-sampling
was explored. Multiple samples enabled stochastic inspection of the models’ predictions
and the average consistently outperformed single samples during inference. As a remark, a
critical issue arises when a diffusion-based model predicts the same miss-correction n times.
In such cases, the stochastic interpretation of the results could be misleading. Therefore, it
is essential to consider the stochastic results as the confidence of the model instead of the
probability that it represents the truth. This nuance limits the added value of the stochastic
analysis. Instead of increasing the likelihood of clinical application, in this research the
stochastic analysis primarily contributes to interpreting the models‘ behaviour.

Another approach for the stochastic inspection would have been the widely adopted
and improved Monte-Carlo dropout [6], where random weights of the network are masked
during inference to approximate the Bayesian posterior over the models’ parameters. The
multiple sample method used in this research performs stochastic inspection without chang-
ing any weights during inference. Therefore, the generative trajectory is preserved and a
random noise input explores a new trajectory to a solution on the learned solution man-
ifold. In contrast, Monte-Carlo dropout creates local deformations in the model’s vector
field capturing local parameter uncertainty. In theory, this could lead to predictions out-
side of the learned solution manifold. A comparison of the multiple sample method and the
Monte-Carlo dropout during the experimental phase, would give model specific insight in
the practical difference of these methods. The computational costs of the two methods are
of the same order, so the multiple sample method suffices for stochastic inspection in the
absence of Monte-Carlo dropout. In further research, a combination of the two stochas-
ticity methods could be of added value, where the interaction between the two methods
would enable a more comprehensive exploration of the learned distributions’ support [39].

6.1 Limitations and Further Research

This research reveals several critical constraints that impact the findings. Key areas of
concern include computational efficiency, the available data and the mathematical foun-
dations of the models. Each of these factors presents challenges that may influence the
reliability and applicability of the results, highlighting the need for careful consideration
in interpreting the outcomes of this research. Moreover, the limitations often spark further
research directions, which will be discussed in this section as well with references to recent
publications.

6.1.1 Computational Efficiency

The UNET model can be tasked to perform the metal artifact reduction in one evaluation.
In diffusion models, a UNET backbone is used to denoise the image gradually, by evaluating
the UNET iteratively defined by the number of time steps T . In this research the number
of timesteps are set to T = 1000, based on the pioneering model DDPM [11]. Therefore,
diffusion models are 1000 times slower or computationally exhaustive during inference
compared to a UNET model. Drawing multiple samples n during inference improved the
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predictions and enabled a pixel-wise stochastic analysis of the experimental diffusion based
models. However, this increases the computation time again by a factor n, resulting in
10,000 UNET evaluations.

Overall this is a big limitation during the experimental phase, consuming a considerable
amount of time and resources compared to a single UNET evaluation. The applicability
of the trained diffusion models in clinical scenarios is also limited. The costs and compu-
tational time of these experimental diffusion models will be a large factor, especially when
a diffusion model is applied after a CT scan and all image slices with metal artifacts are
considered instead of a single image slice.

The model DDIM [30], proposed by Song et al., followed DDPM [11] with an implicit
method to sample during inference much more efficiently, without changing the training
algorithm. Recent works, Timestep Tuner [36] by Xia et al. and AutoDiffusion [16] by Li
et al., also propose more efficient timestep methods.

Timestep Tuner is a method that can be applied after training, like DDIM. Skipping
timesteps often leads to significantly worse predictions, Li et al. argue that this is partly
caused by an inaccurate integral direction applied to a timestep interval. With Timestep
Tuner a more accurate integral direction can be found at minimal costs, pushing the
sampling distribution to the real one. [36]

AutoDiffusion is proposed as a method to simultaneously find optimal timesteps and
an optimal architecture of the diffusion backbone in a predefined unified search space. In
AutoDiffusion, the timesteps and the architecture of the backbone of a pretrained diffusion
model are optimized via evolutionary search. [16]

In further research, applying more efficient timestep methods to diffusion models in
MAR, could be essential for clinical application. The mentioned timestep optimizers are
all post-training, so the tradeoff between accuracy and efficiency when optimizing timesteps
in our diffusion models could be quickly explored.

In the case of DDPM, the variance schedule defines how quickly the model denoises the
image in each timestep, from complete Gaussian noise to a sample prediction. The linear
variance schedule used in this research keeps the images very noisy for a large portion of the
timesteps in the backwards diffusion. It seems that, during this first noisy part, valuable
resources are wasted on little to no improvements. Different variance schedules can be
considered to increase efficiency or performance. In the case of (S)BBDM the maximal
variance parameter s was already analyzed, additionally the variance schedule could be
tweaked as well. [4]

Transforming the image domain to a latent space, where performing diffusion should
be more computationally efficient, could also be a further research direction to increase
efficiency. In most applications, the diffusion process is already applied to a lower dimen-
sional latent spaces. [24] However, less dimensional latent representations of the truth
will decrease the available information, which should be considered important in a clinical
problem where available information is scarce, like in MAR.

6.1.2 Synthetic and Clinical Datasets

To inspect the generalization capacity of diffusion models, the CDDPM and UNET models
were trained on 100, 10 and 1% of our training data. Our CDDPM (df = 1%) and
UNET (df = 1%) models were trained on 1% of the training data and their respective
models CDDPM (df = 100%) and UNET (df = 100%) were trained on 100% of the
training data. During the exact evaluation on synthetic test data, the models trained on
100% outperformed the models trained on 1%, as expected. When evaluating CDDPM
(df = 1%) and UNET (df = 1%) on our clinical dataset, the models now outperformed
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their respective models trained on 100%. It is an open question in this research why a
decrease in training data resulted in a better performance during our clinical evaluation.

While the synthetic dataset consists of different metal implants, the clinical dataset only
consists of cases with a unilateral hip prosthesis. A hypothesis for the open performance
question would be that the 1% of the training data used to train the df = 1% models
consisted of relatively more patients with a hip prosthesis, which would then specialize the
df = 1% models to remove artifacts from hip prosthesis. This would explain the inverted
performance of the CDDPM and UNET models during evaluation on our synthetic and
clinical datasets. However, the 1% partition of training data was picked randomly and
other implants (no hip prostheses) were found in the 1% during inspection of the training
data. A full inspection of the balance of different prostheses in the 1, 10 and 100% training
datasets is missing in this research. This limits us to take a confident position in this
discussion.

As mentioned, a clinical dataset is used in this study to evaluate the performance of our
models in real MAR problems. Most studies in the field of MAR lack a clinical evaluation of
their models [29], which elevates the findings of this study. Our clinical dataset exclusively
contains images of unilateral hip prostheses. These implants are known to cause the most
severe metal artifacts in computed tomography (CT) scans, providing a rigorous test for the
performance of our diffusion-based machine learning models. However, the hip prosthesis
generally has a relatively simple shape in two-dimensional image slices, aside from some
transitional regions in the implant. In contrast, other types of implants, such as screws or
dental fillings, exhibit finer and more complex details.

Although the models in this research were trained on a variety of implants, including
those with intricate details, they were not evaluated on more complex clinical cases other
than hip prostheses. Consequently, it was not possible to fully demonstrate the models’
capabilities. Additionally, the performance on the clinical dataset may have been hindered
by the training on other types of implants. This limitation restricts the comprehensive
evaluation of our models on the clinical dataset and leaves the full clinical evaluation for
further research.

6.1.3 Mathematical Motivation

The mathematical foundation provided by the authors of BBDM [15] was proven insuffi-
cient and incomplete in this research. While the approach to directly map between image
domains remains intriguing and interpretable, the results were presented without adequate
justification. Consequently, the BBDM gap persists as an unresolved issue, which signifi-
cantly limits the added value of the theoretical contributions made regarding (S)BBDM.

By exploring the applicability of generative diffusion based models to the specific clin-
ical image-to-image problem (MAR), experimental sidesteps were taken to provide the
model with enough information. For instance, the transformation of the models into (su-
per)conditional versions was included. This was done without providing the necessary
mathematical arguments to ensure that training effectively converges the models to the
desired function. In the theoretical framework of this research, only other experimental
evidence was presented as an argument for conditioning. This gap in mathematical proof
limits the reliability of the results and their implications for clinical practice.

6.1.4 Evaluation, Application and Optimization

Clearly, all untouched hyperparameters should be analyzed and optimized first. Due to
the inefficient nature of our models and our experimental setting, hyperparameter opti-
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mization and cross-validation were for example not viable. The models are now applied to
metal artifact reduction and clinically evaluated solely on hip prostheses. Completing the
clinical evaluation on other implants would obviously be beneficial to clinical application
with diffusion based modeling. Moreover, other (clinical) applications of diffusion based
models could be explored. If precise image-to-image translation is required and training
data is scarce, like cross-modality image-to-image translation in MRI [38], then we would
suggest diffusion-based models as a research direction, also motivated by recent publica-
tions discussed in this chapter [14], [3], [19]. Evaluating the results of the diffusion-based
models on other domains could add interesting insights to this research.

6.2 Conclusion

In conclusion, the current study demonstrates that although diffusion-based approaches
achieve state-of-the-art results for metal artifact reduction in computed tomography, they
do not surpass competing deep learning-based methods, while requiring significantly more
computational resources. Without a principled problem formulation and guiding strategy
for sampling diffusion models, the theoretical advantages of diffusion may not be leveraged
enough and more efficient deterministic models can prove just as effective. Therefore,
the value of diffusion models for metal artifact reduction may be limited and problem
dependent.
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Appendix A

Additional Performance Boxplots
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Figure A.1: The performance of the model CDDPM (df=100%) on 50 data points
of the test dataset, trained on 100% of the training dataset. Showcasing the effect
on the average prediction for 1, 5 and 10 sample predictions.

Figure A.2: The performance of the model CDDPM (df=10%) on 50 data points
of the test dataset, trained on 10% of the training dataset. Showcasing the effect
on the average prediction for 1, 5 and 10 sample predictions.
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Figure A.3: The performance of the model CDDPM (df=1%) on 50 data points
of the test dataset, trained on 1% of the training dataset. Showcasing the effect on
the average prediction for 1, 5 and 10 sample predictions.

Figure A.4: The performance of the model SBBDM (s=10%) on 50 data points
of the test dataset, with the maximal variance parameter equal to 10%. Showcasing
the effect on the average prediction for 1, 5 and 10 sample predictions.
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Figure A.5: The performance of the model SBBDM (s=1%) on 50 data points
of the test dataset, with the maximal variance parameter equal to 1%. Showcasing
the effect on the average prediction for 1, 5 and 10 sample predictions.

Figure A.6: The performance of the model SBBDM (s=0.1%) on 50 data points of
the test dataset, with the maximal variance parameter equal to 0.1%. Showcasing
the effect on the average prediction for 1, 5 and 10 sample predictions.
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Figure A.7: The performance of the model BBDM (s=10%) on 50 data points of
the test dataset, with the maximal variance parameter equal to 10%. Showcasing
the effect on the average prediction for 1, 5 and 10 sample predictions.

Figure A.8: The performance of the model BBDM (s=1%) on 50 data points of
the test dataset, with the maximal variance parameter equal to 1%. Showcasing
the effect on the average prediction for 1, 5 and 10 sample predictions.
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Figure A.9: The performance of the model BBDM (s=0.1%) on 50 data points of
the test dataset, with the maximal variance parameter equal to 0.1%. Showcasing
the effect on the average prediction for 1, 5 and 10 sample predictions.
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