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Management Summary  
This thesis presents the development of a data-driven model, which is designed for StockWatch to 

improve their stock selection process and identify outperforming stocks. StockWatch is a startup from 

Amsterdam that creates content about stocks. They write articles, make podcasts, and conduct thorough 

analyses about stocks. The company operates with a subscription model, with paid subscribers having 

access to all exclusive content, including stock portfolios on StockWatch’s platform.  

Objective 

The motivation for this project comes from the current stock selection process, which lacks a clear 

systematic approach. StockWatch has access to an extensive LSEG database, which they do not fully 

utilize. This leads to their stock selection process being time-consuming, as there is no clear pre-selection 

of interesting stocks. Additionally, this leads to StockWatch’s portfolios being unable to outperform the 

benchmark. The goal of this study is to develop a model, using the quantitative data from the LSEG 

database, to improve the stock selection process and identify outperforming stocks for StockWatch to 

support them in outperforming the benchmark on a risk-adjusted basis.  

Methodology 

We conduct this research using an adapted version of the Managerial Problem Solving Method (MPSM). 

This process begins with an introduction of the core problem faced by the company, which results in the 

following research question:  

How can a data-driven model be developed to support StockWatch in systematically identifying 

outperforming stocks? 

This is followed by a literature review, which is conducted using a Systematic Literature Review (SLR) 

methodology. This literature review consists of studying traditional asset pricing models, such as CAPM 

and the Fama-French models, as well as more recent Machine Learning models applied in the context 

of stock selection. Based on these insights, we design the solution planning and execute the modelling 

phase based on the CRISP-ML framework.  

Results 

During the model development phase, we develop three different models: one based on an Ordinary 

Least Squares (OLS) regression using the Fama-French 6-factor characteristics, and two Machine 

Learning models (a Random Forest and a Neural Network model) using a larger set of 19 stock-specific 

and 5 macroeconomic characteristics. All models aim to predict excess returns and support StockWatch 

in selecting outperforming stocks for its portfolios. Additionally, we develop an ensemble model, which 

combines the Random Forest and Neural Networks models with a 50/50 weight, which proves to be the 

optimal configuration among all experiments. To evaluate this model, we sort all stocks from the dataset 

into deciles based on their expected excess returns, we depict the realized excess returns of each decile 

in Figure 1, which shows the strong ranking ability of the model. This final ensemble model achieves a 

9.6% R-squared value on an out-of-sample test and a Sharpe ratio of 0.94 for the top decile, producing 

22.6% excess returns per year. In a cross-validation test, the model achieves a 15.3% R-squared value, 

and a Sharpe ratio of 1.13 for the top decile, delivering 68% higher returns per unit of volatility than the 

dataset average. The consistency across the decile rankings across both validation tests shows the 

predictive ability and robustness of the model.  
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Figure 1: Decile performance graph out-of-sample 

Conclusions and Recommendations 

To make the model more practical for StockWatch, we develop a screener to further streamline their 

stock selection process. This tool generates a ranked list of all stocks from the S&P 500, AEX and EURO 

STOXX 50, ordered by predicted excess returns. The screener functionality includes filtering options to 

help users narrow down the set of stocks in an efficient way. We set up a Google Drive to practically 

implement this model for StockWatch, to use in their stock selection process, without the requirement 

of having technical software or coding knowledge.  

This thesis concludes with an interesting recommendation for StockWatch: to launch a Big Data 

portfolio using this model as a foundation. This would provide additional value to subscribers and could 

be a valuable addition to the portfolios on the company’s platform. This Big Data portfolio would require 

some additional tweaking of the model but is something interesting for StockWatch to pursue in the near 

future. 
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1 Introduction 
This first chapter introduces the company StockWatch, together with the problem they are currently 

facing, which is the core of this thesis. Section 1.1 identifies the problem by means of a problem cluster, 

which ultimately identifies the company’s core problem. In Section 1.2, we describe the problem-solving 

approach adopted in this thesis. Section 1.3 introduces the central knowledge question and the sub-

questions that guide this study. We discuss the scope and limitations, and validity and reliability in 

Sections 1.4 and 1.5. This chapter concludes with the main deliverables this thesis aims to produce, in 

Section 1.6.  

1.1 Problem Identification 

StockWatch1 is a startup from Amsterdam that creates content about stocks. They write articles, make 

quantitative analyses and podcasts about stocks. StockWatch generates revenue through a subscription 

model, with paid subscribers being able to access all exclusive content. Additionally, they allow paid 

advertisements on their website and during their podcasts. StockWatch has some stock portfolios on 

their website, which they also invest in. With the goal of maximizing stock returns, the company aims 

to develop a quantitative model to identify outperforming stocks. For that, the company aims to use a 

wide range of quantitative data, ranging from macroeconomic data to financial data about companies, 

such as their dividend yield and profit margins. Although StockWatch has access to an extensive LSEG2 

database containing all this data, it is not fully utilized yet. 

1.1.1 Problem Description and Action Problem 

StockWatch has some stock portfolios on their website, visible for paid subscribers. To select potential 

stocks for this portfolio, manual research is conducted about a lot of different stocks. This research is 

time-consuming, and additionally, it is not a trivial task to find stocks that are interesting for 

StockWatch’s subscribers which also outperform the market.  

Based on informal interviews with an expert from the company (Koerts, 2025), we identified the current 

situation at StockWatch. Currently, StockWatch selects stocks for further investigation without any 

systematic methodology. Stocks that look interesting based on their financial data or stocks that are 

popular amongst StockWatch subscribers are investigated (Koerts, 2025). This approach results in an 

extensive list of potential stocks. On all of these stocks, StockWatch performs thorough research, 

including an evaluation of the company’s business model, financials, and the company’s valuation. 

Based on this assessment, StockWatch decides whether to add the company to the portfolio. For all these 

stocks, even the ones not making it into the portfolio, StockWatch monitors earnings quarterly and 

closely follows the news and the stock price (Koerts, 2025). Despite this process being very time-

consuming, many of these stocks turn out to lack investment potential and fail to outperform the 

benchmark. 

The most important Key Performance Indicator (KPI) for StockWatch is that their portfolios perform 

well, this means performing better than the benchmark3 on a risk-adjusted4 basis. The primary reason 

relates to the need to attract subscribers, as potential customers do not want to subscribe to a stock 

information platform whose portfolios perform poorly. The two portfolios currently on StockWatch’s 

platform are: an ETF portfolio, which is not the focus of this thesis, and a stock-only portfolio with 

around 20 different stocks from companies mainly from Europe and the United States (U.S.). Since 

StockWatch is a relatively new company, the portfolios on their website do not yet have a long enough 

track record (two years) to enable conclusions related to the performance of the portfolio in a long term. 

 
1Link to StockWatch website: https://www.stockwatch.nl/  
2 Link to LSEG website: https://www.lseg.com/en  
3 Benchmark: MSCI World Index. Section 1.1.3 gives a more detailed explanation.  
4 We adjust by using β. Section 2.1 gives a more detailed explanation.  

https://www.stockwatch.nl/
https://www.lseg.com/en
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But since their inception, the portfolios have performed in line with the benchmark. The goal of 

StockWatch is to outperform the benchmark in the future, on a risk-adjusted basis. Thus, this goal can 

be achieved by tackling an action problem. We define an action problem as: “The discrepancy between 

norm and reality as perceived by the problem owner” (Heerkens, 2017). For StockWatch we identified 

the following action problem: The StockWatch portfolios are not able to outperform the benchmark. 

1.1.2 Problem Cluster and Core Problem 

Figure 2 identifies the root cause of the action problem presented in Section 1.1.1 through a problem 

cluster.  

The core problem is the root problem of the problem cluster (Heerkens, 2017). The problem cluster 

depicts that the core problem resulting in the portfolios being unable to outperform the benchmark is as 

follows: StockWatch researches and selects stocks manually from a large number of potential stocks.  

The core problem has two negative causes, namely the inability to consistently select outperforming 

stocks and the stock selection process being time-consuming. The latter results in increased costs for 

StockWatch. Additionally, because such a large number of stocks must be analysed, the time available 

to analyse one individual stock decreases, which lowers the quality of the analysis. This, in turn, makes 

it more difficult to outperform the market. Therefore, addressing the core problem of having to select 

stocks manually from a large set of stocks would benefit StockWatch in two ways.  

1.1.3 Norm and Reality 

Since StockWatch is a relatively new company, the portfolios that are on their website do not yet have 

a long enough track record to determine whether they outperform the benchmark in the long run. 

However, since their inception, the portfolios have performed in line with the benchmark, and have not 

been able to outperform it. Based on the current context at StockWatch, norm and reality are defined as:  

Reality: StockWatch’s portfolios perform in line with the benchmark 

Figure 2: Problem cluster 
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Norm: StockWatch’s portfolios should outperform the benchmark on a risk-adjusted basis.  

The benchmark we compare to in this study is the MSCI World index5, since StockWatch invests in the 

U.S. as well as in Europe. For risk, this study utilizes the beta (𝛽) of the stock, similar to CAPM (Sharpe, 

1964). We provide more information about this in Section 2.1. 

1.2 Problem-Solving Approach 

The problem-solving approach adopted in this research is a deviation from the Managerial Problem-

Solving Method (MSPM) model. The MPSM is a framework developed by Heerkens and used to solve 

engineering problems in a series of phases (Heerkens, 2017). 

- Phase 1: Problem Identification  

- Phase 2: Problem Approach 

- Phase 3: Literature Review 

- Phase 4: Solution Planning 

- Phase 5: Model Development 

- Phase 6: Model Testing and Evaluation  

- Phase 7: Model Implementation 

We use these phases to address the problem described in Section 1.1.2. First, we identify the problem, 

which is done in Section 1.1. Then we formulate the problem approach. After these two phases, this 

research slightly alters the MSPM to better suit the problem-solving approach. Since the problem itself 

is already clear, a more suitable approach is to switch to the research cycle in phase three and conduct 

literature review, to eventually plan out the solution in phase four. Chapter 2 contains the planning of 

the solution, and Chapter 3 includes the literature review. In Chapter 4, we develop the model as part of 

phase five of the problem-solving approach. We test and evaluate the performance of this model in 

Chapter 5. Finally, Chapter 6 describes the implementation of the model for StockWatch. This structured 

approach results in a data-driven model with screener that enables StockWatch to select outperforming 

stocks.  

1.3 Knowledge Problem and Research Questions  

Following the problem-solving approach from the previous section, we formulate the following 

knowledge problem to address the core problem identified in the problem cluster in Section 1.1.2:  

How can a data-driven model be developed to support StockWatch in systematically identifying 

outperforming stocks? 

This research aims to develop a model, using quantitative data, which provides StockWatch with a 

smaller set of stocks to investigate, rather than manually analysing a large number of stocks. While 

developing this model, we aim to find a methodology that identifies stocks that potentially outperform 

the market. This enables StockWatch to find outperforming stocks and additionally save hours of human 

work that need to investigate a lower number of stocks, since the data-driven model functions as a 

supporting tool that reduces the number of stocks to be researched. For this, we define five sub-questions 

and discuss how we tackle them below:  

I. How is the stock selection process currently done by StockWatch? 

While solving this question, we aim to gain insight into the current way of selecting stocks, which is 

done through observation and an informal interview with the company supervisor. We provide an answer 

to this question in Section 1.1.1. The description of the current process helps with identifying which 

 
5 MSCI World Index factsheet: https://www.msci.com/documents/10199/178e6643-6ae6-47b9-82be-
e1fc565ededb  

https://www.msci.com/documents/10199/178e6643-6ae6-47b9-82be-e1fc565ededb
https://www.msci.com/documents/10199/178e6643-6ae6-47b9-82be-e1fc565ededb
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improvements could be made in the stock selection process and highlights where the quantitative model 

will add value.  

II. Which asset pricing models exist that predict an outperformance for certain stocks?  

This second question aims to explore which asset pricing models have already been developed to explain 

stock outperformance. We tackle this question by performing a literature review conducted in a 

systematic way (SLR), we explain this procedure in Appendix G. Classical models like CAPM and 

Fama-French, which are commonly used in the literature are analysed. Additionally, more recently 

developed Machine Learning (ML) algorithms are discussed as well. Chapter 3 presents this theoretical 

foundation and belongs to the third and fourth phase of the problem-solving approach.  

III. Which stock-specific and macroeconomic characteristics are useful for predicting stock 

outperformance? 

The third question focuses on identifying which stock-specific and macroeconomic characteristics are 

useful for predicting stock outperformance. We explore this by conducting literature review, 

supplemented with data analysis through the usage of the LSEG database. We answer this question, 

which belongs to the third and fourth phase of the problem-solving approach, in Section 4.1.1.  

IV. How can existing asset pricing models be enhanced by ML to develop a practical stock 

selection model for StockWatch? 

The fourth question investigates how existing asset pricing models can be enhanced by ML techniques, 

which involves some literature research building on sub-question two. The aim is to build the model 

based on the characteristics selected from sub-question three and then enhance the model using ML 

algorithms. We answer this question, which belongs to the fourth and fifth phase of the problem-solving 

approach, in Section 4.3.  

V. How can the performance of the developed model be tested and evaluated against the 

benchmark? 

The last question focuses on how the performance of the developed model can be evaluated. This 

involves proving that the stocks that are selected as outperformers, actually perform better on a risk-

adjusted basis than the benchmark index. We conduct a literature review to find the definitions and 

methods to compare the developed model against other existing models and support the evaluation and 

conclusions of this thesis. We answer this question, which belongs to the sixth phase of the problem-

solving approach, in Chapter 5.  

1.4 Scope and Limitations 

An important limitation of this study is that the developed model is trained exclusively on the S&P 500 

index from the U.S., since this makes it much easier to have a complete dataset. However, this choice 

might limit the model’s applicability to other equity markets. We give an explanation for this choice in 

Section 4.1. This study focuses on stock-specific characteristics as well as macroeconomic 

characteristics. The macroeconomic characteristics used are likewise limited to data from the U.S. These 

variables are all quantitative, so as a result qualitative factors like sentiment, breaking news or statements 

by political actors are beyond the scope of this model, even though they might influence market 

movements (Tetlock, 2007). This represents another limitation of the model, and the inclusion of 

qualitative factors in this model would be an interesting addition for future work.  

Another limitation is that the final model is not a perfect tool to solely decide which stocks to select. 

The primary goal of the model is to identify potentially interesting stocks for StockWatch, providing a 

basis for further investigation and portfolio selection. It is intended as a supporting tool, rather than one 

that directly indicates which stocks to buy. Reasons for this are that the stocks with the highest expected 
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excess returns are shown, but this does not mean that it is optimal to only buy these stocks, as this 

imposes a significant risk of portfolio overlap caused by holding many similar stocks. This would mean 

that company-specific risk is not sufficiently reduced and therefore the portfolio cannot be optimal 

(Sharpe, 1964). Moreover, this model is just a predictor of excess returns and relying solely on the model 

for portfolio selection is not advised.  

1.5 Validity and Reliability 

This study defines validity as: “Extent to which data collection methods accurately measure what they 

are intended to measure” (Saunders, 2019). To ensure validity, we choose stock-specific and 

macroeconomic characteristics carefully using academic literature. Moreover, we critically evaluate our 

model using industry standard evaluation metrics such as the R-squared value and the Sharpe ratio, 

additionally we construct deciles to test whether the selected stocks actually outperform. We perform 

these tests on an out-of-sample as well as a cross-validation basis.  

We define reliability as: “Extent to which data collection technique or techniques will yield consistent 

findings, similar observations would be made or conclusions reached by other researchers or there is 

transparency in how sense was made from the raw data” (Saunders, 2019).  To ensure reliability, the 

data collection process and the method of developing the model is thoroughly documented. Such that 

other researchers can replicate the model development and obtain the same results as this research does. 

This includes clearly describing the data and characteristics used, the stocks included and the analysed 

time period. Additionally, we include an explanation of how the ML model was trained and tested. We 

evaluate the model’s performance using academically accepted metrics to make comparisons between 

models possible, and ensure findings are consistent.  

1.6 Deliverables  

Building on the problem analysis from the previous sections, this chapter explains the main deliverables 

of this study. The following four deliverables contribute directly to solving the core problem faced by 

StockWatch, and together form a complete answer to the main research question: 

- Review of existing models: Analysis of the most important existing asset pricing models, 

including both traditional asset pricing models and ML algorithms applied in the context of asset 

pricing. 

  

- ML model: An ML model that ranks all stocks based on their expected excess returns, making 

use of the stock-specific and macroeconomic characteristics selected from the LSEG database.  

 

- Model validation: Validation of this model by comparing the risk-adjusted performance of the 

selected stocks to other stocks by means of out-of-sample and cross-validation. This includes 

critical evaluation done by experts from StockWatch, and a discussion of limitations of the 

model.  

 

- Stock selection tool: A practical tool for StockWatch developed in Python, which implements 

this ML model to rank a list of inputted stocks based on their predicted performance. This tool, 

which also includes screening functionalities, can be used by StockWatch to streamline their 

stock selection process.  
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2 Theoretical Framework 
In this chapter, we outline the theoretical framework on which this thesis is built. Section 2.1 defines the 

key concepts and variables according to academic literature. Section 2.2 outlines the theoretical 

perspective of this thesis, including the description of the CRISP-ML methodology used.  

2.1 Key Concepts and Variables 

An asset pricing model is a framework in finance that is used to determine the fair value of financial 

assets such as stocks. It explains the relationship between risk and expected return (Cochrane, 2001). In 

Chapter 3, we further explain the wide range of existing asset pricing models. This thesis limits the term 

asset pricing models to those concerning stocks.  

The stock selection process refers to the entire process of identifying which stocks to investigate, to 

ultimately deciding whether to buy a stock. This process includes screening for potential attractive 

stocks, conducting an analysis of the company’s fundamentals, management, financials, and valuation, 

and lastly assessing whether this company could be one to include in the portfolio. To solve research 

question one, we analyse the full process mainly by means of an informal interview with the company 

supervisor.  

For stock outperformance, we use the following definition: “Return on an investment that exceeds the 

return of a benchmark with similar risk” (Ying, T., Q. u., & Y., 2019). This thesis uses the terms excess 

returns and outperformance interchangeably, both referring to returns that are always risk-adjusted. 

Adjusting for risk can be done in various ways. This study uses 𝛽 as risk measure for a stock, with 𝛽 
being the sensitivity of a stock to market movements (Brealey, 2022). Another risk measure is the Sharpe 

ratio, which uses the standard deviation of returns and measures the return per unit of standard deviation, 

subtracting the risk-free rate (Sharpe, 1964). We use the Sharpe ratio as one of the evaluation metrics to 

evaluate the portfolio deciles from our model in Chapter 5.  

Stock-specific characteristics are attributes of a stock itself, like its dividend yield, its momentum, its 

earnings per share, and other variables. Macroeconomic characteristics are general variables like the 

current interest rate or unemployment (Wang, 2024).  

A well-known theory in the asset pricing field is the Efficient Market Hypothesis (EMH) by (Fama E. , 

1970), which states that stock prices already reflect all available information, making consistent 

outperformance nearly impossible (Fama E. , 1970). In this thesis we use EMH as a comparison 

benchmark, and the goal of our model is to disprove EMH, and to show that there are variables that 

actually influence stock prices. 

For ML we use the following definition: “The use of computer systems which are able to learn and adapt 

without following instructions, by using statistical models and algorithms to analyse and draw 

conclusions from patterns in data” (Oxford English Dictionary). This thesis uses ML to further enhance 

the model’s performance, we present more information about the specific ML algorithms used in this 

study in Section 3.6.  

2.2 Theoretical Perspective 

The theoretical perspective in this thesis links the theory of asset pricing using factor models6, with ML 

algorithms, to further strengthen the prediction of excess returns of stocks. The field of asset pricing 

links to accounting and finance, and the traditional way of valuing assets as described in Principles of 

Corporate Finance (Brealey, 2022). However, those asset pricing models can be further enhanced by 

ML algorithms as demonstrated by (Wang, 2024), which uses neural networks (NN) to predict stock 

 
6 Factor models are models that explain the return of a stock based on its exposure to certain 
factors/characteristics. We explain such models in Chapter 3.  
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outperformance. In addition to NN, this thesis uses random forests (RF) since their structure of 

combining multiple decision trees is well-suited for analysing the different characteristics which have 

been identified during the literature research. Finally, we explore combinations of the RF and NN 

algorithms to develop the optimal model for StockWatch.  

For the ML aspect of this thesis, which belongs to the fourth research question, the CRISP-ML7 

methodology depicted in Figure 3 is an appropriate framework. This structured process starts with a 

thorough business and data understanding and identifying the scope of the project as done in Section 1.4 

(Visengeriyeva, 2025). The next phase involves data engineering, including data selection, cleaning, and 

preparation (Visengeriyeva, 2025). This is followed by the model development phase, where the model 

is selected, specialised, and trained (Visengeriyeva, 2025). Subsequently, we evaluate the model before 

we deploy it for StockWatch. Finally, the model operations phase consists of implementing and 

maintaining the developed model in a practical way. For this, the screener model, which we explain in 

Chapter 6, is developed for StockWatch.  

 

Figure 3: CRISP-ML framework (Visengeriyeva, 2025) 

This thesis uses a deductive as well as an inductive approach. First, we apply a deductive approach to 

select the characteristics to include in the model. This starts by means of a literature review to form a 

hypothesis about the characteristics to use. Then, we evaluate this hypothesis to find out if the model 

has consistent predictive ability. Next to deduction, we also use induction during the development of the 

model in this study, since the vast amount of data from the LSEG dataset can reveal patterns itself, 

especially when using ML algorithms.  

  

 
7 CRISP-ML website: https://ml-ops.org/content/crisp-ml  

https://ml-ops.org/content/crisp-ml
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3 Literature Review 
This chapter reviews the literature on existing asset pricing models and provides an overview of these 

models and how they work. In the first section we introduce and explain some well-known existing 

models such as EMH, APT, CAPM, and Fama-French. In addition, we explore some more recent ML 

methods like NN and RF. We perform this review by conducting an SLR, we briefly explain this SLR 

protocol in Appendix G. The purpose of this literature review is to get insights into possible ways of 

developing asset pricing models, to subsequently use this in the development of the model for 

StockWatch.  

3.1 Existing Theories and Asset Pricing Models 

Stock outperformance has been a central theme in asset pricing research. The ability to explain and 

predict which stocks provide excess returns and why, has led the evolution of the development of many 

different asset pricing models. In a study from (Ying, T., Q. u., & Y., 2019), excess returns are defined 

as return on an investment that exceeds the return of a benchmark with similar risk.  

The foundation of asset pricing began with theories like the dividend discount model (DDM), which 

states that a stock price should equal the expected value of future dividends, discounted against a 

discount rate that reflects the risk of a certain stock (Brealey, 2022), as we show in Equation 1. 

𝑃0 = ∑
𝐷𝑖𝑣𝑡

(1 + 𝑟)𝑡

∞

𝑡=1

 

Equation 1: DDM 

Where P0  equals the price of a stock at time t = 0, and r is the discount rate.  

The first theory we draw upon is the Efficient Market Hypothesis (EMH), which states that stock prices 

already reflect all available information, making consistent outperformance nearly impossible (Fama E. 

, 1970). The EMH builds on the DDM, but it adds “given all information available at time t=0”, which 

is referred to as I0, in Equation 2.  

𝑃0 = ∑
𝐷𝑖𝑣𝑡

(1 + 𝑟)𝑡

∞

𝑡=1

|𝐼0 

Equation 2: EMH 

This implies that markets use all available information when predicting the future dividends of a 

company. If the EMH is true, it would be impossible to make excess returns by trading on already 

available information (Brealey, 2022). Since a lot of anomalies and market inefficiencies seemed to 

exist, alternative models to EMH were constructed to explain why and how these anomalies occurred, 

such as (Sharpe, 1964) with the Capital Asset Pricing Model (CAPM) and (Ross, 1976) with the 

Arbitrage Pricing Theory (APT), ultimately to predict excess returns of stocks.  

3.2 CAPM 

One of the very first asset pricing models contradicting the EMH was the CAPM, from (Sharpe, 1964). 

This model starts with the assumption that riskier stocks should have higher returns than stocks that 

have a lower amount of risk (Sharpe, 1964). An important parameter here is the 𝛽, which is the 

sensitivity of a stock to market movements (Brealey, 2022). In other words, how much a company’s 

stock goes up, on average, when the market goes up by 1%. Stocks with 𝛽s higher than 1.0 move more 

than one-for-one with the market, and stocks with 𝛽s lower than 1.0 move less than one-for-one with 
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the market. Since riskier stocks require a higher return and market risk is measured by 𝛽, the following 

formula was formulated: 

𝑟𝑖 − 𝑟𝑓 = 𝛽𝑖(𝑟𝑚 − 𝑟𝑓) 

Equation 3: Risk premium 

Equation 3 shows that the expected return on a stock minus the risk-free rate, so the expected risk 

premium of that stock, should equal 𝛽 times the expected market risk premium (Brealey, 2022). With 

the market risk premium or the equity risk premium being defined as the expected return on the market 

minus the risk-free rate (Sharpe, 1964). Equation 4 shows the implication of this for the return of a stock: 

𝑟𝑖 = 𝑟𝑓 + 𝛽𝑖(𝑟𝑚 − 𝑟𝑓) 

Equation 4: Return of a stock 

In this thesis, we use the 10-year yield on U.S. treasury bonds as the risk-free rate, since we assume 

these to be risk-free (Brealey, 2022).  

However, CAPM is criticised on its ability to predict the expected returns of stocks. Some studies such 

as (Barillas & Shanken, 2018) and (Wang, 2024) developed models that outperform CAPM, but also 

earlier studies like (Fama & French, 1992) who developed the Fama-French model, and (Alexis Akira 

Toda, 2017) which assesses CCAPM, have shown that CAPM does not fully predict expected returns of 

stocks.  

Some more sophisticated versions of CAPM have been developed, such as CCAPM, the Consumption 

Capital Asset Pricing Model by (Breeden, Gibbons, & Litzenberger, 1989). This is an extension of 

CAPM that uses a consumption 𝛽 instead of the market 𝛽. The consumption 𝛽 is the coefficient of a 

regression of an asset’s returns and consumption growth (Breeden, Gibbons, & Litzenberger, 1989). 

Another extension of CAPM is the ZCAPM which uses a zero-𝛽 portfolio as a benchmark for asset 

pricing, and has been proven to outperform CAPM in predicting excess returns (Kolari, Liu, & Huang, 

2021).  

3.3 Fama-French 

CAPM states that returns are uncorrelated with firm-specific characteristics, but this implication of 

CAPM has also been criticized (Sharpe, 1964). The first real evidence of firm-specific characteristics 

that were able to predict outperformance of stocks, were so-called SMB8 (small-firm minus big-firm) 

and HML9 (high minus low book-to-market value) factors (Fama & French, 1992). The first Fama-

French model is the three-factor model (FF-3), see Equation 5. The first factor in this model is the same 

as in CAPM, namely the market risk: 𝑟𝑚 − 𝑟𝑓, which is the excess return of a market portfolio over the 

risk-free rate (Brealey, 2022). The second and third factors are the SMB and HML factors. The way 

these factors were computed was by constructing different portfolios based on the market capitalization 

and the book-to-market value (Fama & French, 1992). In FF-3 this was done by creating ten deciles on 

size and ten on book-to-market value, these combinations resulted in one-hundred different portfolios 

based on the two factors. Furthermore, the authors measured the average monthly returns of these 

portfolios from 1963 to 1990, and a large difference was found between the portfolios with small-firms 

with low book-to-market value and the large firms with high book-to-market value (Fama & French, 

1992).  

 
8 SMB implies that small firms outperform large firms.  
9 HML implies that companies with a high book value compared to its market value (value stocks) outperform 
companies with a low book-to-market value (growth stocks).  
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𝑟𝑖 − 𝑟𝑓 = 𝛽1,𝑖(𝑟𝑚 − 𝑟𝑓) + 𝛽2,𝑖 ∗ 𝑆𝑀𝐵 + 𝛽3,𝑖 ∗ 𝐻𝑀𝐿 

Equation 5: Three-factor model (FF-3) 

In Equation 5 the 𝛽s measure the sensitivity of a specific stock to a certain factor, and the SMB and 

HML are the size and value factors (Fama & French, 1992). SMB is the size factor, which represents 

the historical excess returns of small cap stocks over large cap stocks. And HML being the value factor, 

representing the historical excess returns of value stocks over growth stocks.  

The 𝛽s or coefficients in Equation 5 are estimated using an Ordinary Least Squares (OLS) regression. 

OLS is a statistical method that estimates the relationship between a dependent variable and one or more 

independent variables by minimizing the sum of the squared differences between the observed and 

predicted values (Wooditch, Johnson, Solymosi, Ariza, & Langton, 2021). In Equation 5, the regression 

estimates how well the SMB and HML factors explain the variation in excess stock returns (Fama & 

French, 1992). By applying this method, the model calculates the coefficients, which allow for 

interpretation of the explanatory power of the HML and SMB coefficients.  

Upon the proposal of Equation 5, extended versions of FF-3 have been published. Momentum has been 

added to this model as a fourth factor in the Carhart model, which added a WML factor (winners minus 

losers) which explained the outperformance for previous ‘winners’ (Carhart, 1997). Some years later 

Eugene Fama and Kenneth French, the authors of FF-3, proposed their extended version namely the FF-

5 model, which includes two extra factors, namely profitability and investment (Fama & French, 2015). 

3.4 Arbitrage Pricing Theory 

Another theory that contradicts CAPM is the Arbitrage Pricing Theory (APT). This general model states 

that returns of a stock depend on several risk factors (Ross, 1976), which we show in Equation 6. 

𝑟𝑖 = 𝑎𝑖 + 𝛽1,𝑖(𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 1) + 𝛽2,𝑖(𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 2) + 𝛽𝑛,𝑖(𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 𝑛) +  𝑛𝑜𝑖𝑠𝑒  

Equation 6: APT 

Where 𝑛 can take many values depending on how many risk factors have been modelled. The APT states 

that the expected risk premium on a stock depends on the expected risk premium associated with each 

risk factor and the stock’s sensitivity to each of these risk factors (Brealey, 2022). This yields the formula 

from Equation 7 for the expected risk premium:  

𝑟𝑖 − 𝑟𝑓 = 𝑎𝑖 + 𝛽1,𝑖(𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 1 −  𝑟𝑓) + 𝛽2,𝑖(𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 2 −  𝑟𝑓) 

+ 𝛽𝑛,𝑖(𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 𝑛 −  𝑟𝑓) + 𝑛𝑜𝑖𝑠𝑒 

Equation 7: Risk premium according to APT 

It is important to highlight that APT itself does not state what these risk factors are, but it serves as a 

general model for later research (Brealey, 2022).  

3.5 Other Models 

While the previously described models serve as foundational theories for asset pricing, numerous 

extensions and alternative models have been developed, all aiming to improve the prediction of excess 

returns. One of these models is the Stochastic Discount Factor (SDF), which states that the price of an 

asset today is equal to the expected value of its future payoff, discounted by a stochastic discount factor 

(Cochrane, 2001). The SDF explains why stocks that have a high covariance with the economy have 

lower expected returns, and it is also the basis for the economic theory of the marginal rate of 

substitution. Additionally, the previously mentioned CCAPM is built upon the SDF framework. The 

drawback of this approach is that estimating the SDF function is significantly more challenging than 

using the market 𝛽 from CAPM (Cochrane, 2001). Although a large number of models have been 
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developed, most of these models have already been outperformed by newer extensions or completely 

new models that provide better estimates of stock outperformance. Furthermore, recent studies that 

compare and evaluate different factor models and propose improvements, include (Avramov, Cheng, 

Metzker, & Voigt, 2023), (Fletcher, 2018) and (Barillas & Shanken, 2018).  

3.6 Machine Learning 

Since model development occurs at a fast pace, and new advanced extensions of asset pricing models 

come out almost every year, the development of having self-learning models is a great invention for 

asset pricing theory. ML and its ability to process vast amounts of data and identify complex patterns is 

a suitable tool for asset pricing like done by (Wang, 2024). Given that asset pricing relies on extensive 

historical data and is aimed at forecasting future returns, ML techniques provide new insights and ways 

to discover relationships that previous asset pricing models could not (Wang, 2024).  

ML can be used in all aspects of asset pricing, from predicting returns based on historical data to 

explaining and recalculating the factors or firm-specific characteristics of already established models. 

ML can also be used to identify new factors which affect stock prices, or find complex relationships 

between certain factors (Meiyun Wang, 2024).  

One of these ML applications is NN, this is an ML technique that is inspired by the human brain. Neural 

networks consist of interconnected nodes or neurons that process and transmit information (Wang, 

2024). These networks are organized into layers: the input layer receives the initial data, the hidden layer 

or layers process the data, and the output layer produces the final results (Wang, 2024), we depict these 

layers in Figure 4. The connections between the neurons have weights that determine the strength of the 

signals, and the neural network learns by constantly adjusting these weights to improve accuracy.  

(Wang, 2024) used NN to develop a new asset pricing model based on macroeconomic and firm-specific 

variables. A common drawback of NN is overfitting, where models perform well on training data, but 

underperform on the test data. This means the model is not able to generalize training data onto a new, 

unseen dataset (Wang, 2024).  

Another ML technique that is frequently used in asset pricing is RF. This is a technique that combines 

several decision trees into one model (Kaczmaczyk & Hernes, 2020). The model learns and identifies 

patterns and relations in the data and these decision trees are used to classify output (for example in 

groups of stocks with low expected returns and groups with high expected returns). An advantage of RF 

compared to NN is that it has a lower chance of overfitting, since the RF averages all decision trees into 

one model (Qian & Zhang, 2025). Since the RF model relies on decision trees that split data based on 

Figure 4: Layers of a neural network (Wang, 2024) 
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whether values are higher or lower than a certain threshold, it is also very robust against outliers, which 

are common in the LSEG dataset we use in this study.  

3.7. Implications for Model Development 

The pursuit of understanding and predicting stock performance and excess returns has led to the 

evolution of several asset pricing models, which started with simpler models and gradually involved 

into more sophisticated models using ML algorithms. For this study, we develop an OLS model using 

Fama-French characteristics as a benchmark model for FF-6, which extends the FF-5 model by adding 

a momentum factor, following the approach of (Carhart, 1997). This benchmark model predicts excess 

returns, defined as the difference between a stock’s actual return and its expected return under the CAPM 

framework from Equation 4 (Sharpe, 1964).  

To enhance the predictive ability of the model, we incorporate additional characteristics and develop 

two ML models: an RF and an NN model. We include an NN model in line with (Wang, 2024) and other 

recent financial studies. The RF model complements this by offering more robustness to outliers and 

having a lower chance of overfitting. Finally, we construct an ensemble model, combining the 

predictions of the RF and NN models.  
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4 Model Development 
This chapter corresponds to the fifth phase of the problem-solving approach, the model development 

phase. Figure 5 illustrates the overall structure of this phase through a flowchart that presents each step 

taken from the literature review to the final model evaluation and implementation.  

This chapter begins with data collection in Section 4.1, consisting of characteristic selection, outlier 

removal, handling of missing values, and data scaling. In Section 4.2, we introduce a baseline model 

using an OLS regression. This model is based on the Fama-French six factor model (FF-6) (Fama & 

French, 2018). This FF-6 based model serves as a comparison for evaluating the more advanced models 

developed later in this study. 

Section 4.3 explains the ML algorithms used to develop the more extended models. First, we develop 

an RF model, followed by an NN model. For each algorithm, we construct two versions: one using only 

stock-specific characteristics, and another that incorporates macroeconomic characteristics as well. 

Finally, we construct an ensemble model which combines both the RF and the NN models into a single 

predictive model.  

 

 

Figure 5: Flowchart of model development 
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4.1 Data Collection 

The data used for the development of the models consist of all S&P 500 stocks from 2000 until 2025, 

following the approach of several other studies such as (Qian & Zhang, 2025). We selected the S&P 500 

since this is the largest and most influential stock index in the world, and it is used as a benchmark by 

investors all over the world (S&P Dow Jones Indices S&P500, 2025). The S&P 500 represents the top 

500 companies from the U.S. stock market and offers by far the most complete data for many 

characteristics, which enhances the quality of the model development. Many earlier studies such as 

(Ross, 1976), (Fama & French, 1992) and (Carhart, 1997) also limited themselves to stocks from the 

U.S. For StockWatch, the model is implemented on stocks from the U.S., as well as European (mainly 

Dutch) stocks.  

For selecting a suitable timeframe, the trade-off here was having more years of data with more missing 

values or opting for a shorter timeframe with more complete data. From 2000 onwards the LSEG data 

was relatively complete, so in total 25 complete years of data are used as done by (Fabian Hollstein, 

2020) and (Fama & French, 1992). This is more than enough to have a reliable amount of data, although 

using additional years would be preferred for more reliability. The dataset is structured such that, for 

each stock and for each year there is a corresponding value for each characteristic. Some of these 

characteristics could directly be obtained from the LSEG database, while we had to compute others 

using Python. To ensure the most up-to-date input, we use April 18, 2025 as the endpoint for all input 

data. For consistency and to create a fair starting point, we set April 18, 2000 as the starting point, 

ensuring exactly 25 years of data.10  

4.1.1 Characteristics 

To select the stock-specific characteristics to use in this model, we started with the FF-6 model (Fama 

& French, 2018), which uses the SMB and HML factors as explained in Section 3.3, plus a profitability 

and investment factor. In our study we include the SMB factor by using the market capitalization, and 

the HML factor by means of the Price-to-Book value. We replaced the profitability factor with Gross 

Profit as done by (Novy-Marx, 2013) and this study uses the Return on Invested Capital (ROIC) as 

investment factor. Lastly, we use the stock price Momentum, which is one of the most well-known 

market anomalies (Carhart, 1997). This study includes the 6-month as well as the 1-year Momentum. 

Since these were not available in LSEG, we calculated these Momentum variables in Python, using 

Equation 8 and 9, where t is in years.  

 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 1𝑦𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑𝑒𝑥𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑𝑒𝑥𝑡−1

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑𝑒𝑥𝑡−1
 

Equation 8: 1-YearMomentum formula 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 6𝑚𝑡 =

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑𝑒𝑥𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑𝑒𝑥
𝑡−

1
2

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑑𝑒𝑥
𝑡−

1
2

 

Equation 9: 6-Month Momentum formula 

This study uses the Total Return Index for computing the Momentum values, this means that the total 

shareholder return is used, consisting of stock price appreciation and dividends. Figure 6 presents a 

histogram with all raw data for the 1-year stock returns.   

 
10 It is easily possible for StockWatch to refresh all data sheets (for example every quarter) to ensure the most up 
to date info is used for their model. To keep all evaluation and analysis fair, this study does not refresh data after 
April 18, 2025.  
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Figure 6: Histogram of 1-year Stock Returns 

These two Momentum factors calculated from the Total Return Index, combined with four factors from 

the FF-5 model (excluding the 𝛽-factor, since we study excess returns), form the six factors used in the 

basic OLS model, which serves as a benchmark for the more sophisticated models later.  

The ML models developed in this study are capable of working with many more variables than just these 

six, therefore we selected an extended list of company-specific as well as macroeconomic 

characteristics. These additional characteristics are based on studies from (Avramov, Cheng, Metzker, 

& Voigt, 2023), (Wang, 2024) and (Gu, Kelly, & Xiu, 2020). Not all these characteristics were used, 

after testing and assessing whether these variables or a close enough replacement was available in LSEG, 

we selected a final set of 19 stock-specific and 5 macroeconomic characteristics. Table 1 shows this final 

set of characteristics along with their abbreviations used in this study.  

Company-specific characteristics Abbreviation 

6-Month Momentum* 11 Momentum6M 

1-Year Momentum* Momentum1Y 

Return on Invested Capital* ROIC 

Gross Profit Margin* GrossProfitMargin 

Dividend Yield DividendYield 

Market Capitalization* MarketCap 

12-Month Forward Earnings Yield ForwardEarningsYield 

Price-to-Book Value* PriceToBook 

Dividend per Share 5-year CAGR DPSCAGR5y 

Earnings per Share 5-year CAGR EPSCAGR5y 

Environmental, Social, and Governance Score ESG 

Enterprise Value to 12-month forward EBITDA 

Ratio 

EVEBITDA 

12-Month forward Net Debt to EBITDA Ratio DebtEBITDA 

Return on Assets ROA 

Net Profit Margin NetProfitMargin 

Dividend Payout Ratio as percentage of Earnings PayoutRatio 

 
11 Characteristics indicated with a * are used in the FF-6 OLS model.  
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Capital Expenditures as percentage of Total Sales  Capex 

Trading Volume (7-day average) TradingVolume 

Current Ratio CurrentRatio 

  

Macroeconomic characteristics  

US Consumer Price Index all Items Annual 

Inflation Rate 

CPI Annual Inflation Rate 

US Consumer Confidence Index Consumer Confidence Index 

US Unemployment Rate Unemployment Rate 

US Federal Funds Target Rate  Federal Funds Target Rate  

US Personal Consumption Expenditures Price 

Index excluding Food and Energy 

PCE Index 

Table 1: Characteristics used in this study 

We selected these characteristics to fully capture the key financial aspects of a firm. They include 

profitability measures such as Return on Assets (ROA) and Gross Profit Margin; investment-related 

factors like ROIC and Capital Expenditures; valuation metrics including the Price-to-Book value and 

Forward Earnings Yield; leverage indicators such as the Net Debt to EBITDA ratio, as well as stock-

related features like Momentum and Trading Volume.  

This final set of characteristics incorporates forward-looking metrics such as the 12-month Forward 

Earnings Yield and 12-month Forward Net Debt to EBITDA ratio, which are estimated using analyst 

expectations. We also included backward-looking metrics such as the Dividend and Earnings per Share 

growth over the last 5 years, which is expressed as a compound annual growth rate (CAGR). To avoid 

look-ahead bias, only data that is available at or before time t is used to predict year t+1 returns. 

This thesis derives the macroeconomic characteristics from the same studies as the stock-specific 

characteristics. We designed these macroeconomic characteristics to capture the broader economic 

environment of the U.S. These include the Consumer Price Index (CPI) as a measure of inflation, the 

Unemployment Ratio to represent labour market conditions and the Federal Funds Target Rate 

representing the stance of monetary policy in the U.S. Lastly, we used two consumer-related variables: 

the Personal Consumption Expenditure (PCE) Index, reflecting consumer spending trends, and the 

Consumer Confidence Index, indicating household confidence. All these macroeconomic indicators are 

updated annually and are consistent across all stocks in a given year.  

Table 2 shows some descriptive statistics for the stock-specific characteristics used in this study. This 

table shows the raw values, before any outliers were removed from the model.  

Characteristic Mean Min Q1 Median Q3 Max 

Momentum6M (%) 10.50 -85.44 -1.83 8.79 20.68 760.84 

Momentum1Y (%) 17.88 -96.59 -4.89 12.58 32.16 6180.89 

ROIC (%) 12.51 -1092.34 5.67 10.21 16.74 3877.00 

GrossProfitMargin (%) 40.49 -3878.08 27.65 41.20 57.11 100.00 

DividendYield (%) 1.74 0.00 0.00 1.42 2.70 15.88 

MarketCap 4.34e+10 1.14e+07 6.68e+09 1.57e+10 3.69e+10 3.79e+12 

ForwardEarningsYield 

(%) 

5.37 -2568.78 4.18 5.75 7.58 353.57 

PriceToBook 3.31 -2147.35 1.73 2.83 4.93 1164.93 
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DPSCAGR5y (%) 5.83 -100.00 0.00 5.11 12.17 168.67 

EPSCAGR5y (%) 11.73 -100.00 1.86 9.96 19.08 261.33 

ESG 53.01 0.60 37.20 55.08 69.64 95.16 

EVEBITDA 11.94 -1276.92 7.97 10.63 14.66 1022.03 

DebtEBITDA 1.20 -321.76 -0.13 1.04 2.35 72.82 

ROA (%) 7.37 -150.45 3.44 6.66 11.21 157.56 

NetProfitMargin (%) -36.08 -246377 4.59 9.51 16.21 422.31 

PayoutRatio (%) 25.44 0.00 0.00 21.50 41.83 100.00 

Capex (%) 72.86 0.00 2.32 4.25 10.00 516919.50 

TradingVolume 1.34e+06 38.00 2.42e+05 5.93e+05 1.24e+06 1.83e+08 

CurrentRatio 1.95 0.14 1.04 1.45 2.19 529.42 

Table 2: Descriptive statistics for characteristics used in this study 

4.1.2 Multicollinearity 

Figure 7 shows the correlation between all stock-specific characteristics. ROIC and ROA have a high 

correlation coefficient (0.89). Additionally, the Payout Ratio and the Dividend Yield (0.75) and Market 

Capitalization and Trading Volume (0.75), also show high correlations.  

While multicollinearity might pose some challenges in interpreting OLS values, our main focus lies on 

the ML models, which do not have problems with multicollinearity. Given that all of these characteristics 

do measure different features of a company and they all provide unique information for the model, this 

Figure 7: Correlation matrix 
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study keeps all variables in the model (Ghanoum, 2021). Additionally, we calculated Variance Inflation 

Factors, and these values were low (< 5) as can be seen in Appendix C.  

4.1.3 Outliers and Missing Value Handling 

For the NN and the OLS model, we removed outliers from the dataset since these models are very 

sensitive to extreme outliers, resulting in a decrease in forecasting performance. (Khamis, Ismail, Haron, 

& Mohammed, 2005). We chose this approach because certain financial ratios like the EPS growth were 

skewed by a very low starting point, yielding an unreasonably high growth percentage. The RF model 

is more robust to outliers and performed well on the full dataset, therefore we retained the outliers in 

this model.  

We removed outliers according to financial knowledge and talks with experts from StockWatch (Koerts, 

Outlier removal, 2025). Examples of such outliers include a 1-year stock return worse than -95% or 

better than +200%, or negative Price-to-Book values. A complete overview of all outlier conditions for 

the NN and OLS model is given in Table 12 in Appendix D, along with the number of outliers that were 

removed by the given conditions.   

We handled missing values12 according to the SimpleImputer class from scikit-learn (Pedregosa, 2011). 

Each feature’s missing value is replaced by the median value of that feature calculated across the training 

data like done in (Gu, Kelly, & Xiu, 2020) and (Leippold, Wang, & Zhou, 2022). We preferred the 

median values over the mean values because they are more robust to skewed distributions and outliers. 

This approach of imputation allows observations with limited missing values to still be included in the 

model, thereby preserving a larger number of observations, improving the robustness of the model.  

In this study, we adopt threshold-based missing value removal (Hvitfeldt, 2024). If one observation has 

more than three missing values, which means more than 20% of the data is missing for that specific 

observation, we exclude this entire observation from the model, as this would impose that a significant 

portion of the observation’s data is imputed, which increases the risk of introducing unwanted noise into 

the model (Hvitfeldt, 2024). In context of this study, one observation corresponds to one year of data for 

one specific stock, consisting of all 19 stock-specific characteristics. 

4.1.4 Scaling 

Before training the NN model, we standardized all input features using z-score normalization via the 

StandardScaler from scikit-learn (Pedregosa, 2011), as done by (Wang, 2024). This transforms each 

feature by subtracting its mean and dividing by the standard deviation from the training set (Pedregosa, 

2011). This ensures that all features have a zero mean and a variance of one. We scaled the target 

variable, the 1-year excess return, using this same method as well. We reversed this transformation to 

interpret the final results in original units. For NN models, scaling is necessary to train and forecast more 

effectively, especially in time-series and dynamic forecasting models (Bhanja & Das, 2019). Since RF 

is a tree-based model, scaling is not necessary as decisions of these trees are made by comparing values 

and their ordering to certain thresholds, not by computing absolute distances between feature values 

(Biau & Scornet, 2015). This means that in this study we scaled all input variables for the NN models, 

while keeping the values in original units for the RF models.  

4.2 OLS Model 

We designed the OLS model to predict the excess returns of individual stocks. We define the excess 

return of stock i in year t according to Equation 10, consistent with the CAPM framework (Sharpe, 

1964). 

 
12 Missing values occur in the LSEG database because certain stock data was not available in specific years. This 
could be due to companies not having reported this data, or because the company was not yet publicly traded in 
the given year.  
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𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖,𝑡 = 𝑟𝑒𝑡𝑢𝑟𝑛𝑖,𝑡 − 𝛽𝑖,𝑡 ∗ 𝑚𝑎𝑟𝑘𝑒𝑡 𝑟𝑖𝑠𝑘 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 − 𝑟𝑓𝑡  

Equation 10: Excess return formula 

Here the market risk premium refers to the excess return of the market above the risk-free rate, as 

explained in Section 3.2. In this formula, we adjust the stock’s return for the stock’s exposure to market 

risk, reflected by its 𝛽 value and the risk-free rate in a given year. In theory, if CAPM holds and the 

market risk premium used is correct, the average excess return of any stock should be zero (Brealey, 

2022).  

In this study we choose 𝛽 as the risk measure, following CAPM (Sharpe, 1964) and aligned with the 

methodology StockWatch uses in their analyses. The 𝛽 we use is the 5-year 𝛽 of the stock, from LSEG. 

Since we use 𝛽 to adjust for market risk when calculating the excess returns, the resulting excess returns 

are already risk-adjusted. We assume the U.S. market risk premium to be 6% based on the long-run 

average estimated by (Ritholtz Wealth Management, 2024) over the past 30 years. We use the U.S. 10-

year treasury yield as risk-free rate, also from the LSEG database. With this information the excess 

return for each stock is calculated annually, using Equation 10. 

The objective of the models in this study is to predict these excess returns using the characteristics listed 

in Table 1, ultimately to be able to select stocks with the highest excess returns, to result in risk-adjusted 

outperformance for StockWatch. The model’s goal is to predict excess returns for the upcoming year 

based on the observed characteristic values in the current year. To achieve this, we trained the model on 

historical data, using all observations in the training set to learn relationships between the predictor 

variables and excess returns. These learned patterns are then applied to the test set to generate out-of-

sample predictions. We choose to predict yearly excess returns rather than monthly returns, as this aligns 

with StockWatch’s methodology of longer-term stock selection. Additionally, companies typically report 

financial data quarterly or sometimes semi-annually, making monthly predictions less suitable. Our 

model can be viewed as a time-series model, with Momentum1Y as lagged indicator since it reflects the 

information of the predictor variable from the previous year (although excess return, being risk-adjusted, 

is not exactly identical to stock performance from the prior year).  

As a benchmark for the developed models, we first developed a simple OLS regression using six 

characteristics similar to those of the FF-6 model, to enable fair comparison. Equation 11 shows the 

formula for this OLS model, where 𝛽0 represents the intercept and 𝜀𝑖,𝑡  the error term capturing the 

unexplained variation.  

𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖,𝑡 

=  𝛽0 + 𝛽1 ∗ 𝑅𝑂𝐼𝐶𝑖,𝑡 + 𝛽2 ∗ 𝐺𝑟𝑜𝑠𝑠𝑃𝑟𝑜𝑓𝑖𝑡𝑀𝑎𝑟𝑔𝑖𝑛 𝑖,𝑡 + 𝛽3 ∗ 𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑎𝑝𝑖,𝑡  + 𝛽4

∗ 𝑃𝑟𝑖𝑐𝑒𝑇𝑜𝐵𝑜𝑜𝑘𝑖,𝑡  + 𝛽5 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚1𝑌𝑖,𝑡  + 𝛽6 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚6𝑀𝑖,𝑡 + 𝜀𝑖,𝑡 

Equation 11: OLS FF-6 regression formula 

Unlike the Fama-French framework explained in Section 3.3, which relies on factor portfolios to 

estimate the 𝛽s and primarily aims to explain past return anomalies and factors, this study applies a 

direct OLS regression at individual stock levels. The focus for StockWatch lies on predicting future 

excess returns and not on explaining historical factor premia. And while the Fama-French method offers 

insights into the historical performance of a few factors, it is not suited for modelling future returns 

using a broad set of characteristics like done in our study. Moreover, the Fama-French framework is 

linear and limited in flexibility, making it less compatible with the ML models later in this study, which 

aim to explore more complex and non-linear relationships. Therefore, we do not make use of the factor 

portfolio method to calculate the 𝛽s, but we use a direct OLS regression, which we later on extend into 

ML models.  



28 

 

Therefore, we solved this regression model using a regular OLS regression in Python for the 𝛽s, which 

results in Equation 12 for a stock’s predicted excess return.  

𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖,𝑡 

=  0.0423 +  0.0029 ∗ 𝑅𝑂𝐼𝐶𝑖,𝑡 + 0.0004 ∗ 𝐺𝑟𝑜𝑠𝑠𝑃𝑟𝑜𝑓𝑖𝑡𝑀𝑎𝑟𝑔𝑖𝑛 𝑖,𝑡 + 2.912 ∗ 10−11

∗ 𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑎𝑝𝑖,𝑡  − 0.0034 ∗ 𝑃𝑟𝑖𝑐𝑒𝑇𝑜𝐵𝑜𝑜𝑘𝑖,𝑡 − 0.1159 ∗ 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚1𝑌𝑖,𝑡 + 0.0167

∗ 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚6𝑀𝑖,𝑡 + 𝜀𝑖,𝑡
13 

Equation 12: OLS FF-6 formula 

This OLS model explains and quantifies the relationship between the six stock-specific characteristics 

and their influence on expected excess returns. When trained on data from 2000-2019 and evaluated 

out-of-sample on 2020-2024, the FF-6 OLS model performs quite poorly with an R-squared value of 

0.73%, indicating limited predictive power. We compare this model against the ML models in Chapter 

6, to assess if these more flexible ML models can deliver improved performance. 

To explore whether adding additional characteristics enhances predictive ability, we constructed a 

second OLS model using all 19 stock-specific characteristics. This extended model achieved a 

significantly higher R-squared value of 3.15% in the same out-of-sample test, suggesting that 

incorporating a broader set of characteristics enhances explanatory power beyond the traditional FF-

factors. The addition of the 13 additional characteristics yields an F-value of 3.60, with a p-value < 0.01, 

indicating that the addition of the extra characteristics is statistically significant at a 5% significance 

level. A table with summary statistics of both OLS models including p-values and the model F-test is 

provided in Appendix A.  

4.3 Machine Learning Model 

To further enhance the predictive ability of the model, we use ML. In the literature review done in 

Section 3.6, we identified RF and NN as the most suitable algorithms to use for these asset pricing 

models. These two algorithms can find complex non-linear relationships between variables as opposed 

to only linear relationships found in the OLS model. Moreover, RF and NN are able to capture 

interactions between the independent variables, something that a regression using OLS is not able to.  

For the RF and NN models, we use the same dataset, with 19 stock-specific characteristics. Additionally, 

we constructed two models using the stock-specific characteristics as well as the 5 macroeconomic 

characteristics. This results in the following four models: RF, RF+Macro, NN and NN+Macro.  

4.3.1 Test and Training Split  

For the training and test split of the models, it is common to use 80% of the data for training and hold 

out 20% for testing (Géron, 2017). This means that for the development of the model, the training set 

consists of the years 2000-2019, which we subsequently test on the 2020-2024 period. This allows us to 

obtain initial out-of-sample results for the R-squared value of the models. We perform more rigorous 

out-of-sample and cross-validation testing in Chapter 5.  

4.3.2 Model Architecture and Hyperparameters  

RF model: We implement the RF model using the RandomForestRegressor from scikit-learn 

(Pedregosa, 2011). This regressor fits a number of decision tree regressors on various sub-samples of 

the dataset and then averages them to improve the predictive accuracy and to control overfitting 

(Pedregosa, 2011). Three important hyperparameters that determine the structure of this model are: 

n_estimators, max_depth, and max_features. The n_estimators parameter determines the number of trees 

in the forest, where more trees reduce variance of the model, but increase computational difficulty 

(Pedregosa, 2011). Max_depth is the maximum depth of one tree, deeper trees can find more complex 

 
13 MarketCap and Momentum6M are not significant at a 5% significance level.  
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relationships but might run into the problem of overfitting (Pedregosa, 2011). Max_features is the 

number of features which can be considered at a split of the decision tree, if max_features is set smaller 

than 1, not all features are taken into account at each split (Pedregosa, 2011).  

NN model: We implement the NN model using the MLPRegressor also from scikit-learn. This regressor 

is a feedforward neural network that maps inputs to outputs using one or more hidden layers (Pedregosa, 

2011). Three hyperparameters that define the structure and behaviour of this model are: 

hidden_layer_sizes, alpha, and learning_rate_init. The hidden_layer_sizes determines the number of 

layers and the number of neurons in each layer, where more neurons or adding additional layers allows 

the model to learn more complex relationships, but increases the training time and the chance of 

overfitting (Pedregosa, 2011). The alpha parameter is a regularization term that penalizes large weights 

in the model to reduce overfitting (Pedregosa, 2011). The learning_rate_init sets the initial step size in 

updating the weights, when setting this value lower, the convergence of the model will be slower, but 

training will be more stable (Pedregosa, 2011).  

4.3.3 Hyperparameter Tuning 

To optimize the hyperparameters explained in the previous section, we use RandomizedSearchCV, also 

imported from scikit-learn (Pedregosa, 2011). This randomized search method involves randomly 

sampling a specified number of combinations from a defined parameter space (Géron, 2017). This 

method allows us to find out the best combination of hyperparameters in an efficient way. This study 

evaluated combinations of hyperparameters on their R-squared value. We prefer the randomized search 

over the grid search, because of its ability to explore a high number of combinations (100 in this study), 

without having to evaluate every single combination (Pedregosa, 2011). 

We selected the ranges of the hyperparameters from the scikit-learn library. Additionally, we tested 

commonly used parameter ranges in Python through observation and careful inspection into signs of 

underfitting or overfitting (Pedregosa, 2011). Table 3 shows the full search ranges and optimal values 

identified for each model. The last column shows the out-of-sample R-squared obtained in the same way 

as done for the OLS model, we interpret these results in Chapter 5.  

Model Hyperparameter Range Optimal 

value  

R-

squared  

RF N_estimators {100,150,200,250,300,350,400,450,500,550,600,650,700,750} 500 8.0% 

 Max_depth {5,10,15,20,25,None} 25  

 Max_Features {sqrt, log2, None} sqrt  

RF + 

MACRO 

N_estimators {100,150,200,250,300,350,400,450,500,550,600,650,700,750} 300 -10.5% 

 Max_depth {5,10,15,20,25,None} 5  

 Max_Features {sqrt, log2, None} sqrt   

NN Hidden_layer_sizes {(16,), (32,), (64,), (32,16), (64,32)} (32,) 7.5% 

 Alpha  {0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5,1,1.5,2,3,5} 1  

 Learning_rate_init {0.0001,0.0005,0.001,0.005,0.01,0.05} 0.0001  

NN + 

MACRO 

Hidden_layer_sizes {(16,), (32,), (64,), (32,16), (64,32)} (16,) -9.7% 

 Alpha  {0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5,1,1.5,2,3,5} 2  

 Learning_rate_init {0.0001,0.0005,0.001,0.005,0.01,0.05} 0.0001  

Table 3: Hyperparameter ranges used 
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4.3.4 Ensemble Model Simple Average  

To further enhance the predictive ability of the model, we construct an ensemble model. This model uses 

both the RF and the NN model, and predicts excess returns based on the weighted average of the two 

models. Since both models perform almost equally well individually (R-squared of 8.0% and 7.5%), we 

start with a weight of 50% for both models as shown in Equation 13. We did not use the models with 

macroeconomic characteristics since the predictive ability of these models was found to be significantly 

lower than those without these characteristics. 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 = 0.5 ∗ 𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛(𝑅𝐹) + 0.5 ∗ 𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛(𝑁𝑁) 

Equation 13: Ensemble model 

For this model, we performed hyperparameter tuning with the same ranges from Table 3, Table 4 shows 

the optimal values identified here. 

Hyperparameter Optimal value R-squared 

RF  9.6% 

N_estimators 200  

Max_depth None  

Max_features None  

NN   

Hidden_layer_sizes (32,)  

Alpha 0.0005  

Learning_rate_init 0.0001  

Table 4: Hyperparameters and performance of the ensemble model 

4.3.5 Ridge Stacking 

An effective approach to determine the optimal weights for combining predictions from two ML models 

is through a Ridge regression, a linear stacking technique. Ridge regression is a linear regression model 

which includes an L2 regularization term. It tries to shrink the error term plus a penalty term to shrink 

the size of the coefficients (Pedregosa, 2011). Equation 14 presents the objective function of the Ridge 

approach, where 𝛼 controls the strength of the regularization, the 𝛽s are the model coefficients and the  

�̂�s are the predicted values (Pedregosa, 2011).  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:  min ∑(𝑦𝑖 − �̂�𝑖)2 + 𝛼 ∑ 𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

 

Equation 14: Ridge formula 

In this model, the Ridge regression assigns a 93.7% weight to the RF model and a 18.5% weight to the 

NN model, using an alpha value of 1. As expected in a Ridge regression, these weights do not sum up 

to one, since the optimization is unconstrained. The resulting R-squared value was 7.2%, which did not 

improve upon the simple average model.  

4.3.6 Spearman IC 

Another approach, commonly used in finance, to determine optimal weights for combining ML models 

is by using the Spearman Information Coefficient, which uses the Spearman rank correlation (Spearman, 

1904). We develop a Python model that evaluates all combinations of weights of the RF and NN models 

and selects the best combination based on the correlation between the predicted and actual values 

(Spearman, 1904). The final result assigns a weight of 87% to the RF model and 13% to the NN model 

and achieves an R-squared value of 7.1% on the test set.  
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5 Model Evaluation 
As we outline in Section 5.1 on the evaluation procedure, we validate all models thoroughly. In Section 

5.2, we evaluate the models using an out-of-sample test and select the best performing model. To assess 

ranking performance, we divide stocks into deciles based on predicted returns. From these decile 

portfolios we analyse the realized returns and Sharpe ratios. In Section 5.3, we evaluate the selected 

model using a Monte Carlo cross-validation across the entire 25-year dataset. This ensures assessment 

of the model’s robustness over both time and cross-sectional variation. Finally, Section 5.4 examines 

Feature Importances to better understand the individual characteristics used and their role in the 

predictive model. This thesis adopts two different methods for that: the Feature Importance scores from 

scikit-learn (Pedregosa, 2011) and SHAP (SHapley Additive exPlanations) values from (Lundberg & 

Lee, 2017).  

5.1 Evaluation Procedure and Metrics 

The main evaluation metric used to evaluate and quantify the predictive ability of the developed models 

is the R-squared value, as employed in almost all comparable studies such as (Wang, 2024),  (Gu, Kelly, 

& Xiu, 2020) and (Fama & French, 2015). R-squared measures the goodness-of-fit of the model and 

represents the proportion of variance in the dependent variable that is explained by the independent 

variables (Géron, 2017). In stock return prediction, the focus is not to precisely forecast exact returns, 

which is an unrealistic objective given the inherent noise that is present in financial markets, but rather 

to find systematic relationships between stock characteristics and excess returns. R-squared is therefore 

a suitable metric for evaluating the explanatory power of our model. Equation 15 shows the formula of 

the R-squared value, where 𝑦𝑖 is the actual value of the target variable (excess return), �̂�𝑖  is the predicted 

value of excess returns from the model, and ȳ is the mean of all observed excess return values.  

𝑅2 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − ȳ)2𝑛
𝑖=1

 

Equation 15: R-squared formula 

In addition to R-squared, we use two other evaluation metrics for evaluating the model: the Mean 

Absolute Error (MAE) and the Mean Squared Error (MSE). The MAE calculates the average absolute 

difference between the observed and predicted values, while the Mean Squared Error (MSE) computes 

the average of the squared differences (Géron, 2017). Their respective formulas are shown in Equation 

16 and 17.  

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

Equation 16: MAE formula 

 

           𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 

Equation 17: MSE formula 

 

We evaluate these metrics on an out-of-sample basis, using the 80/20 train/test split, as we explained in 

Section 5.3.1 (Géron, 2017). This means using the first 80% of the available years for training the model, 

while reserving the remaining 20% for testing the model. This setup simulates actual model 

implementation, by forecasting on a previously unseen period.  
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In addition to this time-based split, we perform a Monte Carlo cross-validation. Where in each iteration 

of this procedure, we randomly select 80% of the stocks for training, and we test the model on the 

remaining 20% of the stocks. This method allows for testing the model across the full 25-year time 

period, providing a robust assessment of the model’s predictive ability over different market conditions.  

Furthermore, we construct decile portfolios for both these testing methods, by ranking stocks based on 

their predicted excess returns. Subsequently, we analyse the actual realized returns of each decile to 

assess the model’s raking ability. If the top deciles consistently outperform the lower deciles, this 

indicates that the model is successful in identifying outperforming stocks.  

From these decile portfolios, another important evaluation metric is calculated: the Sharpe ratio. The 

Sharpe ratio is a measure of an investment’s risk-adjusted performance, calculated by comparing this 

risk-adjusted performance with the risk-free rate (Sharpe, 1966). We calculate the Sharpe ratio using 

Equation 18, where 𝑅𝑝 is the return of the portfolio, rf is the risk-free rate and 𝜎𝑝 is the standard deviation 

of portfolio returns (Sharpe, 1966).  

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑟𝑓

𝜎𝑝
 

Equation 18: Sharpe ratio formula 

The final performance metric, which we also calculate based on the decile portfolios is the Sortino 

ratio. The Sortino ratio is similar to the Sharpe ratio, however it only considers downside risk by 

replacing the overall standard deviation with the downside standard deviation (Red Rock Capital, 

2010). This downside standard deviation is denoted as 𝜎𝑑𝑝, which measures only the volatility of 

returns falling below a certain threshold (Minimum Acceptable Return or MAR), for which we use the 

risk-free rate in this study. Equation 19 shows the formula we use for calculating the Sortino ratio. The 

key advantage of the Sortino ratio compared to the Sharpe ratio is that it only includes harmful 

downside volatility, while ignoring upside fluctuations (Red Rock Capital, 2010). 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑟𝑓

𝜎𝑑𝑝
 

Equation 19: Sortino ratio 
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5.2 Out-of-Sample Validation 

Figures 8 and 9 show the results of the out-of-sample test using an 80/20 training/test split. The ensemble 

model where RF and NN both got a weight of 50% has the highest out-of-sample R-squared value of 

9.6%. This model also has the lowest MAE value among all developed models of 0.260 and the second 

lowest MSE value of 0.135.   

 

The two models that included macroeconomic characteristics both produced a negative R-squared value 

on the test set, indicating they have performed worse than simply predicting the mean of the target 
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Figure 9: MAE and MSE comparison out-of-sample 



34 

 

variable. This suggests that the model failed to identify patterns beyond the training data and may have 

been affected by overfitting. In the case of the RF + Macro model, the best performing configuration of 

hyperparameters selected a Max_Depth of only 5, which means that trees only grow up to 5 branches 

thus avoiding more complex relationships. Thus, regularization was already applied to prevent 

overfitting, but this did not result in a reliable performance. For the NN + Macro model, the Alpha value 

was 2, which would typically help to reduce overfitting by penalizing large weights. Despite attempts 

to improve the models by removing some macroeconomic characteristics and expanding the 

hyperparameter search space, no configuration achieved a positive R-squared. Furthermore, when 

sorting stocks into decile portfolios, no clear ranking became visible between the top and bottom deciles. 

As a result, we deemed the macroeconomic characteristics ineffective in this study and excluded those 

from further models. The ineffectiveness of the macroeconomic characteristics is in line with the EMH, 

which suggests that this public information is already reflected in the stock prices. However, this 

outcome contrasts with findings from other studies such as (Wang, 2024), where macroeconomic 

characteristics did show predictive power. One explanation for this contrast is the shorter time span of 

our study of 25 years, which included several macroeconomic shocks such as the dot-com bubble, the 

2008 financial crisis, periods of zero interest rate levels, and the COVID-19 pandemic. These events 

might have introduced so much noise into the macroeconomic variables and therefore broken the 

relationships discovered in other studies.  

5.2.1 Ensemble Model 

To select the best-performing method for ensembling the two models (Zhou, 2012) recommends simply 

using the average of the models, when the two constituent models have similar performance. In this 

study, the RF and NN models perform quite similarly with R-squared values of 8.0% and 7.5%. 

Additionally, the attempts of using Ridge stacking in Section 4.3.5 and Spearman IC in Section 4.3.6, 

did not improve the R-squared value of 9.6% from the simple average model. This could be due to the 

fact that Spearman IC focuses more on correlation with the actual values, which does not mean the R-

squared value will be optimized.  

In an additional effort to find the best weights for the RF and NN models in this study, we built a Python 

loop to find the best configuration, resulting in 50/50 being one of the optimal configurations as we 

show in Appendix E. Therefore, this is the final model on which we build the StockWatch screener. 

Table 5 presents the results of the selected ensemble model, showing the average predicted and actual 

excess returns, and the Sharpe and Sortino ratios per decile, from the out-of-sample test. The deciles are 

ranked perfectly according to their predicted excess returns, with decile 1 outperforming decile 2, decile 

2 outperforming decile 3, and so on. This indicates that the model is effective at ranking stocks based 

on excess returns, which are already risk-adjusted through the model’s construction.  

Decile Predicted excess 

return 

Actual excess 

return 

Sharpe ratio Sortino ratio 

1 28.02% 22.61% 0.94 2.33 

2 14.71% 14.49% 0.63 1.53 

3 10.15% 9.69% 0.63 1.17 

4 7.33% 7.63% 0.63 1.43 

5 5.12% 6.21% 0.63 1.20 

6 3.22% 5.96% 0.62 1.20 

7 1.30% 5.48% 0.68 0.84 

8 -0.77% 3.59% 0.55 0.89 

9 -3.56% 0.53% 0.43 0.80 

10 -11.08% -7.84% 0.03 0.05 
Table 5: Decile performance out-of-sample test 
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Decile 1 achieves a Sharpe ratio of 0.94, which indicates strong risk-adjusted performance. While a 

Sharpe ratio above 1 is generally considered very good in literature, a value of 0.94 is acceptable, 

especially considering the high volatility in the given test period, including the COVID-19 market crash 

and the Russia-Ukraine war with a period of high inflation (Gu, Kelly, & Xiu, 2020). This is also 

reflected by the average Sharpe ratio of the entire set of stocks, which is only 0.62, meaning that decile 

1 achieves more than 50% higher excess return per unit of volatility, compared to the average stock in 

the dataset (Sharpe, 1966). Furthermore, the model’s performance compares favourably against 

benchmarks from the literature. For instance, (Gu, Kelly, & Xiu, 2020) report an out-of-sample Sharpe 

ratio of 0.77 for their ML model, while a simple buy-and-hold investor achieves only 0.51 on their 

dataset (Gu, Kelly, & Xiu, 2020). 

The Sortino ratios show the same patterns as the Sharpe ratio, generally decreasing across deciles. Decile 

1 achieves a Sortino ratio of  2.33, which is considered very strong. Sortino ratios above 2 indicate very 

good risk-adjusted returns (Charles Schwab, 2024), while a Sortino ratio below 1 is deemed 

unacceptable. These results show the model’s strong performance in ranking stocks based on downside-

adjusted performance.  

Figure 10 shows the compounded excess returns of investing in each decile for the entire test period. 

This assumes buying the stocks in a given decile each year, with no transaction costs and no short selling. 

This graph also shows that decile 1 easily outperforms the other deciles, with decile 10 performing the 

worst with negative excess returns.  

 

Figure 10: Decile performance graph out-of-sample 

We performed these tests on the average of 10 random seeds for the RF and NN models, to ensure 

robustness. In Appendix B, we included out-of-sample tests in a rolling time window, showing also other 

time periods. This rolling window test yields similar results as the 80/20 training/test split from Figure 

10 and proves the model’s test results remain stable under varying conditions.  

5.3 Monte Carlo Cross-Validation 

In addition to the out-of-sample tests, we also use cross-validation to verify the model’s performance. 

Here we can use the entire 25-year time period, using an 80/20 training/test split on the stocks. This 

Monte Carlo simulation randomly selects 400 stocks to be part of the training set and reserves the 
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remaining 100 stocks for the test set. We run this simulation for 50 repetitions, with random seeds for 

the RF and NN models as well. This test yields an R-squared value of 15.29%, an MAE of 0.219, and 

an MSE of 0.093.  

The decile results of this evaluation in Table 6 are quite similar to the out-of-sample test, demonstrating 

again that the top deciles outperform the bottom ones on a consistent basis. In this case, the realized 

Sharpe ratio of the top decile was even higher, at 1.13, indicating very strong risk-adjusted performance. 

Compared to the Sharpe ratio of the overall dataset of 0.67, this represents a gain of over 68% in excess 

return per unit of volatility.  

The Sortino ratio for decile 1 remains very strong (2.78). In contrast, Sortino ratios for the lower deciles 

are remarkably lower. The bottom six deciles all report Sortino ratios below 1, which we interpret as 

having less than 1% excess return per unit of downside deviation.  

Decile Predicted excess 

return 

Actual excess 

return 

Sharpe ratio Sortino ratio 

1 26.32% 21.21% 1.13 2.78 

2 15.52% 12.98% 0.87 1.16 

3 11.60% 10.62% 0.82 1.18 

4 8.94% 8.89% 0.82 0.95 

5 6.79% 7.01% 0.76 0.82 

6 3.89% 5.23% 0.65 0.65 

7 3.07% 3.16% 0.57 0.62 

8 0.98% 1.20% 0.46 0.50 

9 -1.71% -2.00% 0.26 0.42 

10 -7.66% -7.54% -0.02 -0.02 
Table 6: Decile performance cross-validation test 

Figure 11 shows a graph of decile performances for this Monte Carlo cross validation, it uses a 

logarithmic scale to clearly see the bottom performing deciles as well.  

 

Figure 11: Decile performance graph cross-validation 
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5.4 Feature Importances 

We derive Feature Importances for RF directly from the RandomForestRegressor from scikit-learn 

(Pedregosa, 2011). These Feature Importances reflect how much each feature contributes to decreasing 

impurity in the model, or in other words, to reducing the variance in the regression (Pedregosa, 2011). 

For NN this approach is not possible, therefore we used Permutation Importances instead, which are 

more computationally costly, but allow to find a proxy for assessing Feature Importances (Pedregosa, 

2011). Table 7 shows the average Feature Importances from the RF and the NN model, which were 

computed to approximate the Feature Importances of the ensemble model.  

Characteristic Average Feature Importance  

MarketCap 0.209 

TradingVolume 0.202 

Momentum1Y 0.098 

PriceToBook 0.070 

NetProfitMargin 0.043 

EVEBITDA 0.040 

ROIC 0.032 

DividendYield 0.031 

EPSCAGR5Y 0.030 

ForwardEarningsYield 0.030 

CurrentRatio 0.030 

Momentum6M 0.029 

GrossProfitMargin 0.028 

ROA 0.027 

Capex 0.023 

DebtEBITDA 0.023 

ESG 0.022 

PayoutRatio 0.021 

DPSCAGR5Y 0.013 
Table 7: Feature Importances 

To gain deeper insight into the direction of each feature, we used SHAP values to interpret the 

contribution of each individual characteristic to the model.  

 

Figure 12: SHAP values RF 
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In the RF component of the ensemble model, shown in Figure 12, we find several interesting results. 

The TradingVolume and MarketCap SHAP plots appear to be near mirror images of each other, an 

expected outcome given their high correlation of 0.75. High values of TradingVolume reduce the 

model’s output predictions while high values of MarketCap increase output predictions. This combined 

suggests that stocks with a relatively low TradingVolume compared to its MarketCap, tend to 

outperform, whereas those with unusually high TradingVolume for their MarketCap may underperform. 

The latter conclusion might be explained by the fact that this group of stocks includes “hype stocks”, 

companies that receive excessive attention on social media or trading forums. This explains their high 

trading volume, driving prices above fundamental value leading to a bubble in the stock price, and 

therefore these stocks eventually underperform when the bubble bursts (Brealey, 2022). We draw the 

same conclusion from the NN model’s SHAP plot, depicted in Figure 13, where the inverse relationship 

between these variables is even more clear. Other interesting, but more expected results, are that low 

PriceToBook values tend to increase estimates of excess returns, in line with the FF-5 model’s HML 

factor (Fama & French, 2015). And that high Momentum6M values, increase predictions of excess 

returns, as explained in the FF-6 and (Carhart, 1997) models. Overall, the SHAP values of the RF and 

NN model show similar patterns, with high (red) and low (blue) feature values for a given characteristic 

generally appearing on the same side of the SHAP axis in both models, indicating that the feature 

contributes in the same direction across the ensemble model.  

 

Figure 13: SHAP values NN 

5.5 Summary  

This chapter evaluates the performance of the models developed in Chapter 4, as outlined in the 

evaluation procedure in Section 5.1. The findings show that the ensemble model, which equally weights 

the RF and the NN model, achieves the strongest predictive performance on the selected evaluation 

metrics.  

On the out-of-sample validation presented in Section 5.2, the ensemble model achieves an R-squared 

value of 9.6%, with an MAE of 0.260 and an MSE of 0.135, outperforming the other configurations. 

When sorting the stocks into decile portfolios, a clear ranking pattern emerges, confirming the model’s 

ability to rank stocks effectively. Decile 1 achieves a Sharpe ratio of 0.94, significantly outperforming 

the overall Sharpe ratio of 0.62 of the entire dataset and delivers 22.61% excess returns per year. We 

confirm the robustness of the model through a Monte Carlo cross-validation across the entire time 
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period. This simulation yields an even higher R-squared value of 15.29% with an MAE of 0.219 and an 

MSE of 0.093. Once again, the decile analysis confirms the ranking ability of the model with Decile 1 

achieving a Sharpe ratio of 1.13, compared to 0.67 for the entire dataset.  

The OLS model developed as a benchmark for the FF-6 model, scored much lower, with an R-squared 

value of 0.73%, showing the developed models in this thesis using ML, easily outperform traditional 

models. Furthermore, decile tests confirm that the developed model can pick outperforming stocks on a 

cross-validation as well as out-of-sample basis. These results justify the implementation of this model 

for StockWatch, supplemented with a screening tool to help them reduce time and effort on manual stock 

analysis, while improving the quality of the selected stocks. We discuss this implementation in Chapter 

6.  
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6 Model Implementation 

6.1 Screener Model 

To make the model more practical to use for StockWatch, we develop a stock ranking list based on the 

validated ensemble model from Section 4.3.4. Since this model showed strong performance across all 

validation tests, it is now selected to give recommendations and streamline StockWatch’s stock selection 

process by identifying interesting stocks. We achieve this by including a ranking list which orders all 

stocks based on their predicted excess return for the upcoming year.  

To handle missing data in this ranking list, we implement a fallback mechanism. This works as follows: 

if a data point is missing for the current year, the model uses (if available) the data point from the 

previous year from the same stock. If the data point from this previous year is also missing, it counts as 

a missing value, and the value is imputed similarly to the method proposed in Section 4.1.3. This 

approach ensures the use of recent data, while preserving enough data points for an accurate prediction. 

We made an exception for the momentum variables for which this mechanism would not work due to 

the time-sensitive nature of these values. Therefore, we manually verified momentum values to be 

complete for each stock across all years.  

For this ranking tool, we extend the model beyond the S&P 500 index, to include the AEX index and 

the EURO STOXX 50 index (EU50). The AEX index represents the largest 25 companies listed on the 

Dutch stock exchange, while the EU50 tracks the largest 50 stocks from the Eurozone (Stoxx, 2025). 

We include these additional indices since they are interesting for StockWatch’s subscriber base, who 

closely follow the Dutch and European markets as well. For the EU50 and AEX index, the missing value 

threshold is set to 5, instead of the 3 used in the model development for the S&P 500. This adjustment 

ensures that a sufficient number of stocks from these indices are kept in the ranking, since data for these 

indices was limited compared to the S&P 500. Since we do not use the EU50 and AEX index during  the 

training of the model, this relaxation does not introduce any biases into the model.  

To improve usability for StockWatch, we integrate some additional screening functionalities into the 

model and ranking list. These filters allow users of the model to screen the ranking list on specific 

criteria, such as selecting only stocks from the AEX index, or only including companies with a PE ratio 

lower than 30. These filters make it easier to navigate through the full ranking list and help streamline 

the stock selection process. By being able to narrow the search to focus on relevant or interesting stocks, 

the model becomes even more practical to use and more time-efficient for StockWatch. We provide an 

overview of the possible filters in Appendix F.  

6.2 Implementation 

To ensure easy implementation for StockWatch, we upload the final screening model to a newly created 

Google Drive, to run the model in the cloud without the need to install complex coding programmes. 

No further steps must be taken to implement the model, and the model can be used anytime in the stock 

selection process. For example, to support the identification of potential new stocks, or to assess the 

expected excess return of an interesting stock. The Python model is easy to run and does not require any 

coding skills to use in practice. The screening filters are given in the Command Line Input (CLI), and 

questions are asked which require a one-word answer to enable easy screening. It is also possible to skip 

the screener, by simply clicking enter.  

To maintain the most up-to-date data, it is important to update the Excel sheets containing the LSEG 

data periodically. For most variables, updating them quarterly is sufficient since companies also share 

their financial statements on a quarterly basis. However, for the momentum variables, it is advised to 

adopt monthly updates, especially in volatile times, since momentum can change rapidly if the stock 

price of a company has risen or fallen fast over the last month.  
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Although this model has been validated and achieved robust results on all tests, there are risks associated 

with using this model for individual stock selection. The model is not a perfect tool, it may still select 

stocks that underperform or give inaccurate predictions for certain stocks. While the average 

performance of the model is strong, we do not advise to make individual investment decisions solely on 

the model’s output. We discuss some more limitations in Section 7.3. Furthermore, it is important to 

keep monitoring the model’s performance (for example annually), by using the same evaluation metrics 

used in Chapter 5. Even though the model has performed well in all time periods of the rolling window 

tests, there is always a risk of the model’s predictive ability decreasing, for example during unusual 

economic events or market disruptions.  

Once the screener is implemented in StockWatch, an interesting opportunity for StockWatch to pursue 

with this screener, is to develop a Big Data or ML portfolio based on this model. We provide further 

details on this recommendation in Section 7.2. 

6.3 Validation 

While we validated the ensemble model and its performance already in Chapter 5, we provide additional 

validation of the screener model by an expert at StockWatch (Koerts, 2025) in this section. This provides 

practical insights and feedback into the usability of the screener model, and the potential of this model 

for the launch of a StockWatch Big Data portfolio.  

According to the expert, the screening functionalities are a useful addition to the ranking list, increasing 

time-efficiency by not having to go through the entire list of stocks (Koerts, 2025). The model’s results 

seem logical and in line with financial knowledge, for example the Momentum6M variable shows a 

positive relationship with expected excess returns as discovered in (Carhart, 1997), and stocks with a 

lower PriceToBook value tend to have higher expected excess returns as found in (Fama & French, 

1992). (Koerts, 2025) highlights the relationship between TradingVolume and MarketCap discovered in 

Section 5.4 as very interesting and worth of further investigation. A suggestion for future improvement 

is to add a ratio of TradingVolume as percentage of MarketCap to the model (Koerts, 2025).  

A drawback of the model for its use in a future Big Data portfolio is that the results are difficult to 

interpret, since the ML algorithms have a complex and non-linear structure. This makes it a challenging 

task to trace back individual characteristics and their influence on the model’s output. This makes it hard 

to explain to StockWatch’s subscribers why certain stocks were selected over others (Koerts, 2025). To 

address this issue, we propose some solutions in the recommendations in Section 7.2. Overall, the expert 

confirms that this model is a valuable tool for StockWatch and will definitely be used going forward. 

The Big Data portfolio is something StockWatch already wanted to implement, and this model provides 

a strong foundation for this portfolio to be launched in the near future (Koerts, 2025).  
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7 Conclusion and Recommendations 

7.1 Conclusion 

This research began with the central research question: How can a data-driven model be developed to 

support StockWatch in systematically identifying outperforming stocks? With the goal of creating a 

model for StockWatch that could improve the efficiency and quality of their stock selection process.  

In the introduction of this study, we outlined the current stock selection process at StockWatch. We found 

that no systematic procedure was used, and that the large set of potential stocks to investigate made it 

difficult for StockWatch to find outperforming stocks. A data-driven model which utilizes the extensive 

LSEG database that StockWatch has access to, was needed to improve this process and increase the 

performance of StockWatch’s portfolios. The literature review concluded that CAPM was suitable as a 

basis for the excess return formula, using 𝛽 as risk indicator, aligning with how StockWatch conducts 

their analyses. Furthermore, recent literature supported the use of ML algorithms to enhance these 

simpler asset pricing models.  

This study began with the FF-6 model as the basis for a first set of characteristics. Since ML can handle 

more characteristics, this initial set was extended to include a total of 19 stock-specific and 5 

macroeconomic characteristics, based on prior studies. These characteristics together cover a complete 

financial overview of a company, using forward as well as backward-looking data, including all financial 

dimensions such as profitability, growth, valuation, leverage, and momentum.  

To develop a model with these characteristics, we identified RF and NN as suitable ML algorithms to 

complement and enhance the OLS model. After developing all individual models and creating ensemble 

variants, we found that the ensemble model, using a 50/50 weight for RF/NN, excluding the 

macroeconomic characteristics, was the best performing model for StockWatch.  

We concluded in Section 5.1 that the main metrics to use for evaluating the models were the R-squared, 

MSE and MAE values. On top of that, to assess ranking ability, we constructed decile portfolios, using 

an out-of-sample as well as a cross-validation approach, with an 80/20 training/test split. From these 

decile portfolios, we calculated the excess returns of each decile portfolio, and the Sharpe and Sortino 

ratios of each decile, and assessed these to evaluate the risk-adjusted performance of our model.  

All in all, the final ensemble model achieved strong performance, achieving a 9.6% R-squared on the 

out-of-sample test and a Decile 1 Sharpe ratio of 0.94, delivering 22.61% excess returns per year. On 

the cross-validation test the model achieved a 15.3% R-squared value, and a Decile 1 Sharpe ratio of 

1.13, producing 68% higher returns per unit of volatility than the average of the entire dataset. A clear 

decile ranking emerged in both validation tests, showing the predictive ability and robustness of the 

model, which justifies the implementation of this model for StockWatch.  

7.2 Recommendations  

We recommend integrating the model developed in this study into StockWatch’s stock selection process. 

It can help find potential investments for the portfolios on their platform. The model’s filtering 

functionality allows users to narrow down the search space of potential stocks and make the stock 

selection process more efficient. Furthermore, the model has proven to be able to select outperforming 

stocks, so the performance of the portfolios on StockWatch’s platform can be increased as well using 

this model.  

When using this model, StockWatch must consider several crucial factors. As described in the 

implementation section, it is important to regularly update the input data to maintain accurate 

predictions. Additionally, the company should treat the model as a supporting tool, not as a replacement 
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for doing thorough research. Investment decisions should ultimately be decided on stock analysis done 

by experts.  

Another recommendation for StockWatch is to launch a Big Data portfolio, for which this model would 

be very suitable as a starting point. This is something that provides additional value for paid subscribers 

and is a valuable addition to the portfolios already on StockWatch’s platform. Since subscribers find it 

important to see why and how certain decisions were made, using our model for the Big Data portfolio 

would require some tweaking. A possibility is to remove some characteristics from the model, making 

explanations easier. Additionally, StockWatch could use SHAP and Feature Importances to explain to 

subscribers how the model works, instead of focusing on explaining every individual stock the model 

has selected. Lastly it is possible to simplify the model, for example only using one of the two ML 

algorithms instead of the ensemble model, to make it easier to give transparent explanations to 

subscribers. Before launching this ML-supported Big Data portfolio to subscribers, we recommend 

reviewing the model under the EU AI Act and related financial regulations, to ensure compliance with 

regulatory requirements regarding transparency, explainability, and risk management. 

7.2.1 Top 20 Stock Recommendations 

After reading this thesis, many readers are likely curious about the top stock recommendations from the 

model for 2025. Table 8 shows the top 20 stock recommendations generated by the final model for 2025. 

The last column shows the predicted excess return, which is based on the ensemble model, using all data 

available on or before April 18, 2025. Naturally, it is important to note that this tool is not a perfect 

predictor of stock prices, and that these results should not be interpreted as financial advice. 

Stock Index Predicted Excess Return 2025 

(%) 

COSTAR GP.  SP500 81.0 

MERCEDES-BENZ GROUP EU50 52.1 

LYONDELLBASELL INDS.CL.A  SP500 48.3 

DOW ORD SHS  SP500 46.9 

BMW EU50 45.3 

APA  SP500 44.4 

MICROCHIP TECH.  SP500 44.1 

TOTALENERGIES   EU50 43.3 

KERING  EU50 43.1 

ENI  EU50 34.2 

PERNOD-RICARD   EU50 31.4 

HOLOGIC SP500 30.4 

TESLA  SP500 30.4 

VALERO ENERGY  SP500 30.1 

HALLIBURTON SP500 30.0 

LVMH  EU50 29.6 
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STANLEY BLACK & DECKER SP500 28.7 

BALL SP500 27.0 

INTUITIVE SURGICAL SP500 26.0 

NUCOR SP500 25.6 

Table 8: Top 20 stocks for 2025 

7.3 Limitations and Future Work   

There are some limitations in this study which may affect the robustness of the model, or present 

opportunities for further research. First of all, the sample size could be enlarged, due to limitations in 

our dataset, this study includes only U.S. stocks from the S&P 500 from 2000-2025, as data before the 

year 2000 was incomplete. A larger dataset, including international stocks and data from before 2000, 

would have improved the model’s robustness, and allow for model training during different market 

conditions. Another addition would be to add non quantitative data as well, such as whether a company 

is founder-led or not, or other characteristics, for example about their management.  

Another limitation is the potential for survivorship bias, since the dataset includes stocks that are 

currently in the SP500, meaning stocks which have gone bankrupt during our sample period have been 

removed from the dataset. This does not compromise the decile ranking or the R-squared values but 

does help explain why even the lowest ranked deciles showed neutral or even positive excess returns, 

also partly due to an extremely strong stock market period in the included years. As a result, the MRP 

value of 6% might have been too low for this time period. However, since our model is developed to 

predict future performance, this value was kept stable at 6%. To mitigate survivorship bias in further 

research, using a fixed S&P 500 composition from 2000 is advised, which was unfortunately not 

available in the given LSEG dataset.  

Lastly, a suggestion for future work would be to improve the ensembling method. In this study a 50/50 

weight between RF and NN was found to be optimal, but more advanced techniques of combining 

models like boosting or developing a nested model (in which one model’s output serves as input to 

another model), would have possibly improved the model’s predictive ability. 
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Appendix A 

OLS Model FF-6 

Summary statistics out-of-sample test:  

Model F-statistic: 17.09, P-value: 1.09 ∗ 10−19, R-squared: 0.73%,  MSE: 0.134,  MAE: 0.270 

Variable Coefficient Std. 

Error 

t-

Statistic 

P-

Value 

95% CI 

Lower 

95% CI 

Upper 

Constant  0.0235 0.011     

ROIC 0.0029 0.001 5.856 0.000 0.002 0.004 

GrossProfitMargin 0.0007 0.000 3.714 0.000 0.000 0.001 

MarketCap*14 -5.425e-11 5.79e-11 -0.937 0.349 -1.68e-10 5.92e-11 

PriceToBook -0.0045 0.001 -4.240 0.000 -0.007 -0.002 

Momentum1Y -0.1101 0.015 -7.309 0.000 -0.140 -0.081 

Momentum6M 0.0874 0.025 3.486 0.000 0.038 0.137 

Table 9: OLS FF-6 output 

OLS Model all Characteristics 

Summary statistics out-of-sample test: 

Model F-statistic: 13.77, P-value: 5.62 ∗ 10−43, R-squared: 3.15%,  MSE: 0.183,  MAE: 0.269 

Variable Coefficient Std. 

Error 

t-

Statistic 

P-

Value 

95% CI 

Lower 

95% CI 

Upper 

Constant  0.2100 0.029     

Momentum6M* -0.0539 0.038 -1.435 0.151 -0.128 0.020 

ROIC* -5.862e-5 0.001 -0.075 0.940 -0.002 0.001 

GrossProfitMargin* 0.0003 0.000 1.108 0.268 -0.000 0.001 

DividendYield 0.0375 0.007 5.343 0.000 0.024 0.051 

MarketCap 3.734e-10 9.49e-11 3.935 0.000 1.87e-10 5.59e-10 

ForwardEarningsYield -0.0129 0.002 -5.893 0.000 -0.017 -0.009 

PriceToBook* 4.501e-5 0.000 0.435 0.664 -0.000 0.000 

Momentum1Y -0.1616 0.022 -7.246 0.000 -0.205 -0.118 

DPSCAGR5y -0.0016 0.000 -4.799 0.000 -0.002 -0.001 

EPSCAGR5y 0.0012 0.000 3.961 0.000 0.001 0.002 

ESG -0.0007 0.000 -2.579 0.010 -0.001 -0.000 

 
14 Characteristics indicated with a * are not significant at a 5% significance level.  
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EVEBITDA -0.0021 0.001 -2.259 0.024 -0.004 -0.000 

DebtEBITDA 0.0059 0.003 2.019 0.044 0.000 0.012 

ROA* 0.0022 0.002 1.270 0.204 -0.001 0.005 

NetProfitMargin -0.0015 0.001 -2.045 0.041 -0.003 -0.000 

PayoutRatio -0.0021 0.000 -5.260 0.000 -0.003 -0.001 

Capex* -0.0008 0.001 -1.663 0.096 -0.002 0.000 

TradingVolume* -6.4e-09 3.49e-09 -1.834 0.067 -1.32e-08 4.43e-10 

CurrentRatio 0.0150 0.005 3.198 0.001 0.006 0.024 

Table 10: OLS all characteristics output 

 

F-test on OLS Models 

𝐻0: The 13 additional variables do not significantly improve the OLS-FF6 model 

𝐻1: The 13 additional variables do significantly improve the OLS-FF6 model 

The F-statistic is calculated according to Equation 20: 

𝐹 =
(𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

2 − 𝑅𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 
2 )/(𝑘𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 − 𝑘𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)

(1 − 𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 
2 )/(𝑁 − 𝑘𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)

  

Equation 20: F-statistic 

Where: 

𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 
2  = model with 19 characteristics = 3.15% 

𝑅𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  
2 = model with 6 characteristics = 0.73% 

𝑘𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  = 19 characteristics + 1 = 20 

𝑘𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  = 6 characteristics + 1 = 7 

N = number of observations in test set = 1893 

𝐹 =
(0.0315 −  0.0073)/(20 − 7)

(1 −  0.0315)/(1893 − 20)
  

Equation 21: F-statistic 

𝐹 = 3.60 

Critical value for 𝑑𝑓1 = 13 and 𝑑𝑓2 = 1873 is 1.73. F-statistic from Equation 21 is 3.60.  

Since F = 3.60 > 1.73, we reject the null hypothesis at a 5% significance level, and we conclude that the 

13 additional characteristics contribute significantly to the model’s predictive power.   
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Appendix B 
Rolling Window Test Out-of-Sample

 

Figure 14: Compounded return of decile portfolios 2020-2025 

 

 

Figure 15: Compounded return of decile portfolios 2019-2024 
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Figure 16: Compounded return of decile portfolios 2018-2023 

 

 

Figure 17: Compounded return of decile portfolios 2017-2022 
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Figure 18: Compounded return of decile portfolios 2016-2021 

 

Figure 19: Compounded return of decile portfolios 2010-2025 
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Figure 20: Compounded return of decile portfolios 2013-2025 

 

 

 

 

Figure 21: Compounded return of decile portfolios 2016-2025 
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Figure 22: Compounded return of decile portfolios 2019-2025 

 

Appendix C  

Variance Inflation Factor (VIF) Values  

Characteristic VIF-value 

Momentum6M 1.61 

ROIC 3.91 

GrossProfitMargin 1.48 

DividendYield 4.33 

MarketCap 2.56 

ForwardEarningsYield 1.28 

PriceToBook 1.01 

Momentum1Y 1.68 

DPSCAGR5y 1.11 

EPSCAGR5y 1.35 

ESG 1.29 

EVEBITDA 1.50 

DebtEBITDA 1.74 

ROA 4.60 

NetProfitMargin 1.69 

PayoutRatio 4.14 

Capex 1.30 

TradingVolume 2.61 

CurrentRatio 1.39 
Table 11: Variance Inflation Factor values 
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Appendix D 

Outlier Removal Conditions  

Characteristic Outlier Condition Number of outliers 
removed15 

ROIC < 0 or > 80 23 
GrossProfitMargin < 0 or > 100 2 
DividendYield < 0 or > 10 1 
ForwardEarningsYield < 0 or > 25 9 
PriceToBook < 0 or > 50 18 
Momentum1Y < -0.95 or > 2 2 
Momentum6M < -0.95 or > 2 0 
ROA < 0 or > 80 22 
EPSCAGR5y > 100 2 
DPSCAGR5y > 100 1 
EVEBITDA < 0 or > 80 4 
DebtEBITDA > 30 0 
NetProfitMargin < 0 or > 80 33 
PayoutRatio > 110 0 
Capex > 50 13 
CurrentRatio < 0 or > 10 2 
TradingVolume - - 
MarketCap - - 
ESG - - 

Table 12: Outlier removal conditions 

 

Appendix E 

Results of Out-of-Sample Test Optimal Weights RF/ NN Ensemble Model   

RF Weight 

(%) 

NN Weight 

(%) 

R² MAE MSE 

0 100 0.068 0.266 0.139 

5 95 0.074 0.265 0.138 

10 90 0.079 0.264 0.138 

15 85 0.083 0.263 0.137 

20 80 0.087 0.262 0.136 

25 75 0.090 0.262 0.136 

30 70 0.092 0.261 0.136 

 
15 Number of outliers removed, shown as an average per year. If a stock has outlier values for multiple 
characteristics, it counts separately for both characteristics.  
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35 65 0.094 0.261 0.135 

40 60 0.095 0.260 0.135 

45 55 0.095 0.260 0.135 

50 50 0.096 0.260 0.135 

55 45 0.095 0.260 0.135 

60 40 0.091 0.260 0.136 

65 35 0.089 0.261 0.136 

70 30 0.085 0.261 0.137 

75 25 0.081 0.261 0.137 

80 20 0.076 0.262 0.138 

85 15 0.071 0.262 0.139 

90 10 0.065 0.263 0.140 

95 5 0.058 0.264 0.141 

100 0 0.050 0.265 0.142 

Table 13: Optimal configurations weights RF/NN 

 

Appendix F 

Overviews of Filters in Screener Model 

Stocks are ranked based on the ensemble model with a weight of 50/50 for both RF and NN. Additional 

filtering is possible based on the following filters in Table 14.  

Index: Choice between (S&P 500, AEX and EURO STOXX 50) 

Minimum MarketCap (in billions of dollars) 

Maximum MarketCap (in billions of dollars) 

Minimum PE-ratio  

Maximum PE-ratio 

Minimum Momentum6M (in %) 

Maximum Momentum6M (in %) 

Table 14: Filters in screener model 
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Appendix G 

SLR Protocol: 

This thesis uses a systematic approach to conduct the literature review included in Chapter 3. This SLR16 

consists of 7 steps to get a structured answer to the following knowledge question: Which asset pricing 

models exist that predict an outperformance for certain stocks?  

1. Definition of knowledge problem and research question. 

2. Defining inclusion and exclusion criteria. 

3. Identification and selection of academic databases and sources to use. 

4. Describing search terms and queries.  

5. Making a flowchart and table with number of search results, including screening. 

6. Making a conceptual matrix of all selected sources. 

7. Integrating the theory organized around concepts and answering the knowledge problem.  

We followed these 7 steps closely during the literature research involved in answering the given 

knowledge question.   

 

 
16 More information on how to perform an SLR is given in this practice guide: 
https://zenodo.org/records/7062727 (Cruz-Martínez & Rafael, 2022) 

https://zenodo.org/records/7062727

