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Abstract

The reconstruction of undersampled spatially and temporally undersampled dy-
namic inverse problems remains a challenge due to the trade-off between spatial and
temporal resolution. Specifically, this occurs in MRI, where rapid anatomical motion
and physiological changes demand high temporal fidelity, creating a trade-off between
high spatial and temporal fidelity. An emerging direction in accelerated MRI recon-
struction is the integration of deep learning techniques. Compared to more iterative
methods like compressed sensing, deep learning methods offer improved reconstruction
quality and also enable the possibility of real-time imaging. From the deep learning
architectures, unsupervised learning strategies using neural networks have been pro-
posed, as they do not require large datasets. Among these approaches, implicit neural
representations (INRs) offer a strong framework by modeling data as continuous func-
tions that map spatial and temporal coordinates to signal values. However, most
existing approaches rely on positional encoding of the input coordinates, latent mo-
tion codes, and deformation networks to enhance temporal consistency in the presence
of spatial undersampling. In this work, we incorporate an Optimal Transport-based
regularization strategy into an implicit neural representation (INR) framework to en-
able higher spatiotemporal undersampling for physically plausible transitions between
frames. Specifically, we incorporate temporal prior into the model through optimal
transport (OT) regularization. We introduce two types of regularization: one based on
the Wasserstein distance between consecutive frames and another based on a barycen-
ter formulation. We demonstrate that both regularizers promote temporally coher-
ent reconstructions and improve performance under high spatiotemporal subsampling
rates.

Keywords: Dynamic MRI, Implicit Neural Networks, Optimal Transport, Inverse Prob-
lems, Spatiotemporal Regularization
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1. Introduction

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive, high-resolution imaging modality
that uses the principles of nuclear magnetic resonance. In clinical practice, MRI is widely
used for the detection and characterization of a broad range of conditions such as brain
tumor growth [1], atrophy [2], and neurodegenerative disorders like Alzheimer [3]. MRI
suffers from long acquisition times due to rapid signal decay [4] and hardware limits [5].
As a consequence, MRI scans are slow, discomfort patients (e.g., vulnerable groups such as
pediatric, elderly, or claustrophobic patients), and have limited capacity. [6] Furthermore,
the long scan times are susceptible to motion artifacts created by physiological processes
such as respiration and cardiac activity, as well as involuntary patient movement. [7]

These issues have driven efforts to accelerate MRI scan times. Examples include the
use of multiple receiver coils [8], increasing magnetic field strength [9], and improving
hardware. [10] An alternative approach, in addition to the earlier hardware enhancements,
is the MRI reconstruction of undersampled data, which is the focus of this research. The
reconstruction of the image is an inverse problem, as the measured data consists of sampled
Fourier coefficients rather than the image itself.

In efforts to reduce scan time, compressed sensing (CS) has become an essential technique
over the past two decades. [11, 12] CS exploits the fact that redundant structures in
MRI images become sparse in an appropriate transform domain, enabling accurate recon-
struction from fewer measurements. Redundancy in the spatial domain is often achieved
through methods such as Total Variation (TV) [13], or wavelet transforms [14]. In dy-
namic MRI, sparsity is exploited both spatially and temporally. Temporal redundancy
can be captured using Fourier transforms for periodic motion, while Principal Compo-
nent Analysis (PCA) for more irregular dynamics. Methods like k-t SPARSE [15] and k-t
FOCUSS ()[16] combine spatial and temporal transforms to enhance reconstruction from
undersampled data.

A special regularization strategy for spatiotemporal reconstruction, and not limited to
MRI, is Optimal Transport (OT). OT models the transformation of probability densi-
ties by using a transport map, minimizing the total cost under conditions such as spatial
continuity and mass conservation constrain. This makes it a compelling prior for non-
linear, non-rigid time series across various modalities, including cardiac MRI, dynamic
computed tomography (CT), and others. For example, earlier work in [17] jointly esti-
mates both the image sequence and a motion field regularized by dynamic OT, minimizing
total kinetic energy over time to encourage temporally consistent and physically plausible
reconstructions. Subsequent approaches include a template matching framework in [18]
that quantifies frame differences by transport cost, and [19], which extends this approach
by using adjacent frames as reference templates. In all these approaches, the emphasis lies
on mitigating the impact of spatial undersampling within each frame. Temporal sampling
between frames remains intact.

While these methods are applied without machine learning techniques, an emerging di-
rection in accelerated MRI reconstruction is the integration of deep learning techniques.
Compared to compressed sensing, deep learning methods offer improved reconstruction
quality and also enable the possibility of real-time imaging [20]. However, deep learning
learning models have poor generalization outside the trained dataset. [21]. Additionally,
acquiring a large amount of high-quality data can be challenging due to the high costs and
lengthy duration of scans [22]. Lastly, deep learning models may generate hallucinated
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1.1 Contributions

structures, which can be difficult to identify using conventional evaluation metrics [21].

To overcome the challenges associated with extensive training datasets, recent work has
explored untrained neural networks that are directly fitted to individual patient measure-
ments. The network is used as an implicit prior by capturing structural properties of
the data through its architectural bias. A notable example is Deep Image Prior (DIP)
[23], which uses a randomly initialized Convolutional Neural Network (CNN). The ap-
proach is extended to dynamic MRI to capture temporal consistency across frames.[24]
However, CNNs rely on discrete grid representations, which limit their ability to model
the continuous nature of dynamic MRI. Implicit Neural Representations (INRs) address
this limitation by learning continuous mappings from spatial and temporal coordinates to
image intensities, enabling memory-efficient storage and flexible sampling [25].

INRs have been applied to MRI reconstruction in several ways. In [26], Neural Implicit
k-space (NIK) was introduced, learning a mapping from k-space coordinates (kx, ky, t) to
complex k-space values. Within this category, a further distinction can be made between
methods that rely on binned data and those that operate directly on raw, unbinned k-
space. Binned data refers to dynamic MRI data temporally grouped into discrete time
frames. This is used in [27]. The other group [26, 28] uses raw k-space to fit the INR
directly to the original measurements. The work [29, 28] is a further extension of [26],
utilizing additional regularization techniques such as total variation and nuclear norms.

The second option is to utilize the network to predict the image itself, and then use a
Non-uniform Fast Fourier transform (NUFFT) to transform the prediction back to the
measurement space [30, 31, 32, 30, 33]. These methods commonly employ compressed
sensing regularization, typically applied in the spatial domain, to promote sparsity and
improve reconstruction.

The previously mentioned INR methods above impose some form of temporal regularization
through the positional encoding of input coordinates, latent-motion codes, and deformation
networks. Nonetheless, these approaches do not guarantee physically meaningful or con-
sistent motion patterns. By contrast, the Optimal Transport (OT) formulation enforces
continuity and mass conservation, yielding geodesic interpolations even with irregularly
sampled spatial coordinates or missing time points. Therefore, we extend an INR with
an OT prior: the INR addresses spatial undersampling, and OT provides a mathemati-
cal temporal constraint that aligns consecutive frames, producing reconstructions that are
possibly both sharper and more consistent than existing deep learning approaches.

1.1 Contributions

In this thesis, we develop a dynamic MRI reconstruction framework based on implicit neural
representations (INRs). The INR is used on spatial and spatial-temporal undersampled
k-space data. The focus is on improving temporal coherence across frames. To achieve
this, we explore two different temporal priors based on Optimal Transport (OT) methods.
The temporal priors are based on Optimal Transport (OT) methods.

The first is the total Wasserstein distance between consecutive frames in the image domain.
The second prior utilizes Wasserstein barycenters of the missing frames and measures the
L2 difference relative to the INR prediction. Our objective is to evaluate whether the
combination of INRs with an OT prior can lead to improved temporal consistency and
overall reconstruction quality in undersampled dynamic MRI data.
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1.2 Thesis outline

1.2 Thesis outline

This thesis begins in Chapter 2 with the theoretical background. It introduces inverse
problems and describes the MRI acquisition process. This is followed by an overview
of implicit neural representations (INRs), including SIREN architectures, and a formal
introduction to Optimal Transport (OT), with a focus on the Wasserstein distance and
barycenters.

Chapter 3 presents the proposed model, which combines coordinate-based neural networks
with loss functions inspired by optimal transport. It details the architecture of the im-
plicit neural representation (INR), the motivation for incorporating optimal transport, the
inference procedure, and the implementation aspects of the method.

Chapter 4 evaluates the method through experiments on synthetic and real MRI datasets.
The results are discussed in Chapter 5, and Chapter 6 concludes the thesis with a summary
of the main findings and directions for future work.
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2. Theoretical Background

2 Theoretical Background

In this section, we will review the main components of MRI reconstruction. Since MRI
reconstruction is fundamentally an inverse problem, we start by presenting its general
mathematical formulation. This is followed by a brief overview of the MRI acquisition
process and its inverse formulation. We then discuss the non-machine learning baseline
used for comparison. Next, we describe the deep learning model used for reconstruction.
Finally, we introduce the concept of Optimal Transport.

2.1 Inverse problems

An inverse problem refers to the task of estimating an unknown signal or image u from the
measurements f δ, where the data is generated via a (possibly non-linear) forward operator
A and contaminated by noise ϵ. This process is described by the equation:

f δ = A(u) + ϵ, (1)

where f δ is the noisy data measurements, A models the underlying physical measurement:
A : U → F between the Banach spaces U and F , with their respective norm ∥ · ∥U and
∥ · ∥F . The term ϵ represents the combined measurement error and is assumed to satisfy:
||ϵ|| ≤ δ.

Finding the solution becomes challenging when a small perturbation in the data f δ, like
noise, results in significant variations in the solution u. The problem is then referred to
as ill-posed. A problem is considered ill-posed when one or more of the conditions for a
well-posed problem are not satisfied. According to Hadamard, a problem is well-posed if
it satisfies the following three properties:

Definition 2.1 (Well-posedness inverse problems). An inverse problem is called well-posed
if the following three conditions hold:

1. Existence: For every admissible measurement f there exists at least one solution
u ∈ U such that A(u) = f .

2. Uniqueness: For every measurement f the solution is unique.

3. Stability (continuous dependence): There exists a constant C > 0 such that for
all data pairs f1, f2 ∈ F with corresponding solutions u1, u2 ∈ U ,

∥u1 − u2∥U ≤ C ∥f1 − f2∥F .

A popular method for solving the problem is to use a variational formulation. The vari-
ational problem minimizes two different parts. The first part, data fidelity D, which en-
forces consistency between estimated measurements (A(u)) and the measured data f . For
additive Gaussian noise, the following data consistency term is typically used: D(u, f) =
1
2∥u−f∥22 is used. This choice corresponds to the negative log-likelihood of a Gaussian noise
model. It leads to a statistically unbiased estimator under the assumption that the noise
is zero-mean and independent. The second part is the regularization R(u) and imposes
prior knowledge or desired properties on the solution. The final variational formulation is
as follows:
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2.2 MRI

û = min
u∈U

D(u, f) + λR(u) (2)

2.2 MRI

2.2.1 Signal formation and spatial encoding

This section describes the magnetization dynamics during a short and specific moment
of signal acquisition in MRI. We refer to Medical Image Reconstruction: A Conceptual
Tutorial for a more detailed explanation of how this state is physically prepared.

We consider a two-dimensional plane in which each location r⃗ = (x, y) contains hydrogen
nuclei. Each hydrogen nucleus consists of a single proton with a quantum property called
“spin.” In a magnetic field, these spins behave like tiny rotating magnetic dipoles. The
combined effect of many such spins in a small region gives rise to a measurable magneti-
zation vector. At each point, we assume the presence of a transverse magnetization vector
that rotates in the plane along a circular path. This vector represents the combined effect
of many spins in phase at that location. Initially, we assume that the transverse magne-
tization vectors at all positions share the same phase and rotate at the same frequency,
resulting in a coherent rotating field across the entire plane. The direction of this vector
evolves, while its magnitude remains constant throughout the acquisition. We denote this
rotating vector field by a complex-valued function:

u(r⃗) = ux(r⃗) + iuy(r⃗),

where the real and imaginary parts correspond to the x- and y-components of the transverse
magnetization.

We apply gradient fields that slightly modify the magnetic field across space to encode
spatial information into the measured signal. A gradient field is a magnetic field whose
strength varies linearly with position in a given direction. For example, a gradient in the
y-direction with gradient amplitude Gy creates a magnetic field

B(y) = B0 +Gyy,

where B0 is the main static magnetic field of the MRI scanner, and Gy is the strength of
the applied gradient along the y-axis. Spins at different y-positions thus experience slightly
different magnetic field strengths, resulting in position-dependent precession frequencies.
Similarly, a gradient in the x-direction with gradient amplitude Gx creates

B(x) = B0 +Gxx,

encoding spatial information along the x-axis. By applying gradients Gx and Gy during
the acquisition, we can distinguish spatial locations based on the unique frequency and
phase evolution of the spins, enabling the reconstruction of two-dimensional images.

The first step is to apply a magnetic field gradient in the y-direction for a short time.
This changes the local magnetic field strength as a function of y, which temporarily shifts
each spin’s frequency. Although the frequency returns to its original value afterward,
each position y has accumulated a different phase. This leads to a position-dependent
modulation of the vector field:

u(r⃗) → u(r⃗) · exp
(
−i

∫ T

0
γGyy dt

)
= u(r⃗) · exp(−iγGyTy).
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2.2 MRI

After this, a magnetic field gradient in the x-direction is applied during the signal acquisi-
tion period. This gradient modifies the rotation frequency of the magnetization depending
on the x-position. During the acquisition period, the gradient field induces a new frequency
that remains constant at each spatial location. The following exponential modulation of
the magnetization can describe this frequency:

u(r⃗) → u(r⃗) · exp
(
−i

∫ t

T
γGxx dt

′
)

= u(r⃗) → u(r⃗) · exp (γGx(t− T ))

Combining both steps, the transverse magnetization at time t and position r⃗ = (x, y) is
given by:

mxy(t, r⃗) = u(r⃗) · exp (−i [γGyTy + γGx(t− T )]) .

The MRI receiver coil does not measure each position separately. Instead, it captures the
global magnetic field of all transverse magnetization vectors combined. This collective field
rotates over time, and according to Faraday’s law of induction, any time-varying magnetic
field passing through a conducting loop induces an electrical voltage. The receiver coil in
MRI is such a loop placed around object that measures the total induced voltage. The
received signal can be written as

s(t) =

∫
R2

mxy(t, r⃗) dr⃗ =

∫
R2

u(r⃗) · exp (−i [γGyTy + γGx(t− T )x]) dr⃗,

which represents the two-dimensional Fourier transform of the transverse magnetization
u(r⃗), evaluated at spatial frequencies kx(t) and ky.

We now define the spatial frequency coordinates:

ky =
γ

2π
GyT, kx(t) =

γ

2π
Gx(t− T ),

where kx and ky represent the positions in Fourier space sampled by the MRI scanner at
time t. These values form the coordinate pair

k⃗(t) = (kx(t), ky),

which traces out a line in k-space as time progresses during the readout.

By repeating this measurement for different values of the y-gradient Gy, we obtain multiple
lines in the spatial frequency domain, known as k -space. Each measurement corresponds
to a different fixed ky-value, while the variation in time during acquisition traces a line in
the kx-direction. Once enough lines are collected, the image can be reconstructed using
an inverse Fourier transform. The resulting image typically corresponds to the magnitude
|u(r⃗)|, which reflects the local signal intensity in clinical MRI scans. Figure 1 is a fully
sampled k-space displayed with the corresponding Fourier transform.

2.2.2 MRI as an inverse problem

In static MRI, the goal is to reconstruct a complex-valued image u ∈ Cm from a subset of
its Fourier coefficients f δ ∈ Cn, where n ≪ m. The measurement process is modeled by
a forward operator A ∈ Cn×m, which typically consists of a subsampled discrete Fourier
transform, possibly modulated by coil sensitivities. The measurement model is given by:

f δ = A(u) + ϵ, (3)
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2.3 Traditional Reconstruction: IGRASP

Figure 1: Left: The fully sampled k-space data, representing spatial frequency information
acquired during MRI. Right: The corresponding image-space representation obtained by
applying an inverse Fourier transform.

where ϵ ∼ NC(0, σ
2I) represents additive complex Gaussian noise [4]. The inverse problem

involves reconstructing u from the noisy and incomplete data f , which is ill-posed due to
undersampling.

Dynamic MRI In dynamic MRI the goal is to reconstruct a time-varying image u :
Ω× [0, T ] → C. Each time frame may be sampled differently, resulting in a time-dependent
sampling mask St : Σ → {0, 1}, where Σ ⊂ R2 is the k-space domain. Let u(·, t) denote
the image at time t, F be the non-uniform Fast Fourier Transform (F), then the forward
model becomes:

yt = At(u(·, t)) + ϵt = F(Stu(·, t)) + ϵt. (4)

Due to the trade-off between temporal and spatial resolution in dynamic MRI, k-space
data are often grouped into temporal bins of duration ∆t. This binning increases the effec-
tive sampling density per frame, enabling reconstruction with adequate spatial resolution.
Without binning, the undersampling per frame would be too severe.

2.3 Traditional Reconstruction: IGRASP

For comparison with our proposed method, we use the iterative Golden-angle Radial Sparse
Parallel (IGRASP) approach, as it has been successfully translated into clinical use and
evaluated on a large scale for clinical feasibility, yielding convincing results for patients
with regular breathing activity. [34]

The IGRSAP is an iterative reconstruction method that combines the classic parallel imag-
ing (PI) approach with compressed sensing (CS). Here PI estimates the spatial sensitivity
profile of the data, improving the noise reduction in the classical iterative approach [35].
Then compressed sensing is used in the temporal direction to promote sparsity. The original
study by Feng et al. [36] demonstrated that this joint approach significantly outperforms
either PI or CS alone, particularly in highly undersampled radial acquisitions.

The reconstruction problem is formulated as a variational problem:

x̂ = argmin
x

∥FSu− f∥22 + λ ∥T (u)∥1 , (5)

12



2.4 Implicit neural networks

Where u is the image time series in x–y–t space, f are the acquired multi coil k-space data,
S are the coil sensitivity maps, F denotes the non-uniform FFT operator (NUFFT) defined
on the radial trajectory, and T (u) applies temporal total variation as a sparsity constrain
promoting gradual change between frames. The parameter λ controls the tradeoff between
data consistency and temporal regularity. The temporal total variation operator T (u) is
defined as:

∥T (u)∥1 =
∑
x,y,t

|u(x, y, t+ 1)− u(x, y, t)| . (6)

Following the original iGRASP implementation, the regularization weight is set to λ =
0.05 ·M0, where M0 refers to the maximum magnitude of the initial image reconstructed
from the undersampled data. However, a slight difference lies in how the weights are
updated, as the original paper employs a nonlinear conjugate gradient (CG) method. In
contrast, we use the standard conjugate gradient method due to the support provided by
the TensorFlow-MRI library.

2.4 Implicit neural networks

Implicit Neural Representation (INR) is a neural network representing a signal. Rather
than storing discrete samples, an INR maps a measured continuous input (e.g., a coordi-
nate, angle, time, or combination) to a signal value, enabling efficient representation. [25]
For this, a multilayer perceptrons (MLP) are used. However, the classic use of the ReLU
activation function has a spectral bias towards learning lower frequencies, resulting in a
blurry image, as shown in 2b. To address this limitation, two common approaches have
emerged: the use of alternative activation functions and the application of positional en-
coding. These strategies will be discussed after first introducing the standard multi-layer
perceptron (MLP). Lastly, the specific model architecture used in this work (SIREN) is
presented.

(a) Target (b) MLP-ReLU (c) ReLU + Positional
encoding

(d) SIREN

Figure 2: Reconstruction example of a Shepp-Logan phantom using the approaches de-
scribed in model section. Each network was optimized for 5000 iterations. The displayed
PSNR values reflect the reconstruction quality achieved after training.

2.4.1 Multi-layer perceptron

Multi-layer perceptrons are a fundamental building block of modern machine learning.
Inspired by the functioning of biological neurons, these models are used to represent com-
plex, nonlinear functions. Their versatility has led to widespread use in domains such as
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2.4 Implicit neural networks

denoising of X-ray images corrupted with additive white Gaussian noise [37] or PET Image
Reconstruction [38].

An MLP consists of three types of layers: an input layer, one or more hidden layers, and an
output layer. The input layer receives features or dimensions of the input data, and its size
corresponds to the input dimensionality. Each neuron in a hidden layer receives input from
all neurons in the previous layer and passes its output to the next layer. The number of
hidden layers and the number of neurons per layer are hyperparameters determined during
the model design phase. The output layer produces the final prediction, the dimensionality
of which depends on the specific task. [39]

For a layer t with nt neurons, the output for the i-th neuron in layer t is computed as:

ati = σ
(
zti
)
, zti =

nt−1∑
j=1

wt
ij a

t−1
j + bti, (7)

where:

• at−1
j is the activation (output) of neuron j from the previous layer t− 1

• wt
ij is the weight of the connection from neuron j to neuron i

• bti is the bias term for neuron i

• zti is the pre-activation (linear combination)

• σ(·) is a nonlinear activation function

This neuron-wise computation can be expressed more compactly by viewing the entire
network as a composition of nonlinear functions. For an n-layer network, we define:

F (x) = (φn ◦ φn−1 ◦ · · · ◦ φ1)(x), φi(x) = σ(Wix+ bi). (8)

Here, a(i−1) ∈ Rwi−1 denotes the input vector to layer i, W(i) ∈ Rwi×wi−1 is the weight
matrix, and b(i) ∈ Rwi is the corresponding bias vector. The output of the layer is denoted
by a(i) ∈ Rwi .

Regarding the choice of the activation function σ(), the linear mapping σ(x) = x is avoided
because it results in an affine transformation, limiting the representation of the network
to linear functions. Hence, nonlinear activation functions are essential for approximating
complex relations. Common choices for activation functions includes sigmoid and ReLU
[39], with sine [25] and Gaussian activations [40] being particularly relevant for implicit
neural representations. The functions are visualized in figure 3.

For the final layer, a different activation function is often applied depending on the task.
The output o ∈ Rm of the neural network can be computed as:

o = σo

(
Wo a

(n) + bo

)
, (9)

Where:
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2.4 Implicit neural networks

Figure 3: Common activation functions used in neural networks. From left to right: Sig-
moid, ReLU, sine, and Gaussian. Each function introduces nonlinearity differently, influ-
encing the network’s ability to approximate complex functions.

• a(n) ∈ Rwn is the output of the last hidden layer, where wn denotes the number of
neurons in that layer

• Wo ∈ Rm×wn is the weight matrix connecting the last hidden layer to the output
layer

• bo ∈ Rm is the bias vector for the output layer

• σo is the activation function applied to the output layer.

When we deal with a regression task, one might take the identity function as σ(x) = x. The
network can produce continuous valued outputs without constraining them to a specific
range, often needed for pixel intensities predictions.

2.4.2 INRs and spectral bias

The MLP networks tend to learn primarily the low-frequency attributes of the training
data.[41] The phenomenon is known as spectral basis, which causes blurry reconstructions,
particularly when high-frequency spatial details are underrepresented [41]. Two different
strategies are often used to address the spectral bias introduced by the network: alternative
activation functions or Fourier feature mapping. We further discuss the two approaches
below.

Fourier feature mapping The new network with Fourier mapping F
′
θ is a composition

of the encoding function γ and MLP network Fθ. The new formulation becomes: F ′
θ(x) =

(Fθ ◦ γ)(x) . The most basic form of Fourier feature mapping wraps input coordinates
around the circle.

γ(x) = [sin(2πx), cos(2πx)]T (10)

An extension is to introduce a Gaussian matrix B:

γ(x) = [sin(2πBx), cos(2πBx)]T , (11)

where x ∈ Rd is the input coordinate, and B ∈ Rm×d is sampled from N (0, σ2) and
σ2 is chosen for each task and dataset with a hyperparameter sweep. The size of input
coordinate increases to 2m · d.

An alternative to the random Gaussian matrix is to construct the encoding matrix B as a
diagonal matrix with log-linearly spaced frequency values:
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2.4 Implicit neural networks

B = diag(σ0, σ1, . . . , σm−1), with σj = σ · 2j/m,

where σ is a base frequency scale chosen through hyperparameter tuning. This formulation
encodes each input dimension independently and is often referred to as positional encoding
[42]. It is commonly used in applications such as NeRF [43], where the fixed frequency
structure provides a strong prior over the type of signal expected.

All three approaches show an improvement over no mapping at all; however, experiments
indicate that the Gaussian matrix produces the best performance. [42]

A more recent approach is the use of multi-scale hash encoding [44], which has shown
impressive results in real-time geometry representation. However, the paper is focused
on dense, supervised signals without complex forward models. Since our dynamic MRI
reconstruction problem involves undersampled measurements and a non-trivial forward
model, we do not look at hash encoding in this thesis.

Periodic Activation Functions This approach for modeling high-frequency signals
utilizes periodic activation functions. This idea, introduced in SIREN [25], substitutes the
commonly used ReLu activation with sine activations for every layer:

Φ(x) = (φn ◦ · · · ◦ φ1)(x), φi(x) = sin(ω(Wix+ bi)), (12)

Where ω is a hyperparameter. While this approach further enhances high-frequency learn-
ing, it also enables modeling capabilities that positional encoding + ReLU alone cannot
provide, such as the ability to represent non-zero higher-order derivatives. In contrast,
ReLU networks, which are piecewise linear, have derivatives of order two and higher that
are always zero.

Alternative activation functions have also been proposed, such as Gaussian (exp(−(sx)2)
[45], Gabor wavelet (exp(−(sx)+iωx)) [40], hosc (tanh(β sin())) [46], sinc ( sin(ωx)x ) [47],
where s, ω, β are hyperparameter and x the input. We adopt the SIREN network approach.

The performance of a siren can be seen in Figure 2. Here, it can be visually seen and by
the performance metric that the siren network outperforms the positional one. Therefore,
we use a SIREN network for the neural implicit representations in this thesis.

SIREN is an MLP perceptron with space-time coordinates (x,y,t) as input to predict
the signal intensity. The activation is sin(ω(Wix + bi)), where ω is the hyperparameter
balancing the convergence and expressiveness of the network. We use ω = 30 following the
original paper [25].

Siren requires a modified initialization scheme to ensure stability during training. The
weights of the first layer are sampled from a uniform distribution given by:

W
(1)
ij ∼ U

(
− 1

n
,
1

n

)
,
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2.5 Optimal transport

where n is the number of hidden neurons of the previous layer. For the rest of the layers
is, the following distribution is used:

W
(l)
ij ∼ U

(
−
√

6

n
· 1
ω
,

√
6

n
· 1
ω

)
, for l > 1,

2.5 Optimal transport

Optimal Transport quantifies the minimal amount of work required to transform one prob-
ability measure into another, given a specified cost function. Before formulating the op-
timal transport problem, we first introduce key definitions from measure theory to define
the function spaces in which the optimization problem is posed. Optimal transport has
two formulations: Monge’s formulation and Kantorovich’s formulation. Kantorovich’s for-
mulation can be seen as a relaxation of Monge’s original problem. While Monge seeks a
deterministic transport map that moves mass directly from source to target, Kantorovich
allows for probabilistic couplings between the two measures, which makes the problem
convex and always admits a solution under mild conditions.[48] In this thesis, we start
with Monge’s formulation, followed by Kantorovich’s formulation. For the calculation of
the Kantorovich formulation, an approximation of the exact solution is used. For dis-
crete probability measures supported on n points, solving the exact optimal transport
problem requires O(n3log(n)) time.[48] To address this, [49] proposed adding an entropic
regularization term to the Kantorovich objective, leading to a strictly convex and smooth
optimization problem that can be solved efficiently via the Sinkhorn algorithm.[49]

2.5.1 Measure theory

Measure theory formalizes the notion of size for abstract sets, enabling flexible definitions
of length across different contexts. The key concepts used here follow [50], to which we
refer for more detailed exposition.

Definition 2.2 (power set). Let X be a finite set. The power set of X, denoted by P (X),
is the set of all subsets of Ω, including the empty set ∅ and X itself.

Definition 2.3 (σ-algebra). Let X be a non–empty set. A σ-algebra subset on X, denoted
as Σ ⊆ P (X) where P () is the powerset, only if the properties of an algebra set hold (i-iii)
and in addition property (iv):

(i) full and empty set: ∅, X ∈ Σ

(ii) closed under finite intersections E1, E2 ∈ Σ then E1 ∩ E2 ∈ Σ

(iii) closed under complement A ∈ Σ =⇒ X \A ∈ Σ

(iv) closed under countable unions {An}∞n=1 ⊆ Σ =⇒
∞⋃
n=1

An ∈ Σ

Definition 2.4 (Measurable space). Given a set X and itself σ-algebra set (Σ ⊂ X). Then
the tuple (X,Σ) is called the measurable space, where the elements of Σ are called the
measurable set.
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2.5 Optimal transport

Definition 2.5 (Borel σ-algebra). If X carries a topology τ , the Borel σ-algebra on X,
denoted B(X), is the smallest σ-algebra that contains all open sets:

B(X) = σ(τ) =
⋂{

Σ ⊆ P (X) : Σ is a σ-algebra and τ ⊆ Σ
}
.

The measurable space (X,B(X)) is called a Borel space, and the sets in B(X) are called
Borel sets.

Definition 2.6 (Measure). Let (X,Σ) be a measurable space. A map µ : Σ → [0,∞] is a
measure if

1. µ(∅) = 0;

2. µ(A) ≥ 0 for every A ∈ Σ;

3. σ-additivity: For any pairwise-disjoint sequence {An}∞n=1 ⊆ Σ,

µ
( ∞⋃

n=1

An

)
=

∞∑
n=1

µ(An).

Now we can finally define the object where optimal transport operates, called the proba-
bility space. The space given as tuple triple (X,Σ, µ), where µ is the measure on (X,Σ)
with the extra condition µ(X) = 1.

2.5.2 From Monge formulation to Kantorovich relaxation

The contents of this section draw from the theory in [50, 48]. The last definition we need is
the formal definition of a mapping from the distribution called the push-forward measure.
Let (Ω1,F1) and (Ω2,F2) be borel measurable spaces, and let T : Ω1 → Ω2 be a measurable
map. Given a probability measure µ on Ω1, we define the push-forward measure as follows:

Definition 2.7 (Push-forward operator). Let µ be a probability measure on (Ω1,F1) and
let T : Ω1 → Ω2 be a measurable map. The push-forward measure T#µ is a probability
measure on (Ω2,F2) defined by:

T#µ(A) := µ(T−1(A)), for all A ∈ F2.

Intuitively, the push-forward measure describes how mass is transported from the source
space to the target space via the map T . We now introduce the Monge formulation of the
optimal transport problem.

The Monge problem is given as:

Definition 2.8 (Monge problem). Given two probability measures µ ∈ P(Rd) and ν ∈
P(Rd) the space of Borel probability measures, and a cost function c : Rd × Rd → R, the
Monge problem is to find a transport map T : Rd → Rd such that T#µ = ν, and such that
the total transport cost is minimized:

inf
T#µ=ν

∫
Rd

c(x, T (x)) dµ(x).

A frequently used cost function in optimal transport is the p-th power of the Euclidean
norm, which gives rise to the so-called p-Wasserstein distance. The total transport cost
induced by this choice is denoted by Wp(µ, ν), and is formulated as:
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2.5 Optimal transport

Definition 2.9 (Monge formulation with p-Wasserstein distance). Let µ, ν ∈ Pp(Rd) be
probability measures with finite p-th moments, and let p ∈ [1,∞). The Monge formulation
of the p-Wasserstein distance is given by

Wp(µ, ν) :=

(
inf

T#µ=ν

∫
Rd

∥x− T (x)∥p dµ(x)
)1/p

,

where the infimum is taken over all measurable maps T : Rd → Rd such that T#µ = ν.

The Monge formulation is limited in two important ways: It does not allow for mass to
be split; each point x must be mapped to a single destination T (x). Second, it leads to
a non-convex optimization problem, which is often ill-posed or lacks solutions in practical
settings. To overcome these issues, Kantorovich introduced a relaxed formulation based
on transport plans rather than maps.

Definition 2.10 (Kantorovich relaxation). Let µ, ν ∈ P(Rd) be Borel probability mea-
sures, and let p ∈ [1,∞). The p-Wasserstein distance between µ and ν is defined via the
Kantorovich relaxation as:

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥p dπ(x, y)
)1/p

,

where Π(µ, ν) denotes the set of all transport plans (couplings) between µ and ν, i.e.,

Definition 2.11. The set of transport plans between µ and ν is defined as:

Π(µ, ν) :=

π ∈ P(Rd × Rd)

∣∣∣∣∣∣∣
π(A× Rd) = µ(A),

π(Rd ×B) = ν(B),

for all measurable A,B ⊂ Rd

 .

If we take the probability measures to lie in real space and use the squared p = 2 Wasser-
stein distance, the resulting quantity can be interpreted as the minimal kinetic energy
required to transport one measure into the other. The dynamic formulation introduces
(αt)

1
t=0, the minimal-length path of intermediate measures, and vt, a time-dependent ve-

locity field. This leads to the Benamou–Brenier formulation [51]:

W 2
2 (µ, ν) = min

αt, vt

∫ 1

0

∫
Rd

∥vt(x)∥2 dαt(x) dt

= min
αt, vt

∫ 1

0
∥vt(x)∥2L2(αt)

dt

s.t.
{

∂αt
∂t +∇ · (αtvt) = 0, αt=0 = µ, αt=1 = ν.

(13)

2.5.3 Sinkhorn approximation

Finding the exact Wp distance is an expensive computation with a big O(n3 log(n)) where
n is the elements of the distribution. Therefore, the Sinkhorn approximation is used. The
approximation introduces a Shannon entropic regularization term into the Kantorovich
formulation, yielding a strictly convex optimization problem that can be solved efficiently
through iterative updates, thereby reducing the complexity to O(n2).
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2.5 Optimal transport

The Sinkhorn approximation is presented here for the 2D case, since we are interested in
2D images. Assuming there are a total of n bins with positions {xi}ni=1, the discretized
distributions of interest can be written as

P =

n∑
i=1

pi δxi , Q =

n∑
i=1

qi δxi ,

where δxi denotes the Dirac delta function at location xi ∈ R2. For the p = 2 Wasserstein
distance, the cost matrix is defined by cij = ∥xi − xj∥2,

and the transport plan is given by T ∈ Rn×n. The entropic optimal transport formulation
in this discretized setting becomes

W ε
p = min

Π

n∑
i=1

n∑
j=1

πij cij + ε

n∑
i=1

n∑
j=1

πij log πij

s.t.
n∑

j=1

πij = ai,

n∑
i=1

πij = bj , πij ≥ 0.

Where ε is the entropic regularization parameter, often referred to as the temperature. As
ε → 0, the approximation converges to the original Kantorovich optimal transport solution.
The computational complexity of the Sinkhorn algorithm in this setting is approximately
Õ
(
n2

ε

)
[52].

Figure 4 illustrates the transportation plans Π obtained for increasing values of the en-
tropic regularization parameter ε between two Gaussian distributions. As ε increases, the
couplings become progressively smoother, resulting in blurrier transport plans. The first
image shows the cost matrix, defined by cij = ∥xi − xj∥2.

Figure 4: Cost matrix C (with cij = ∥xi − xj∥2) and transportation plans for different
entropic regularizations γ, computed using the 1D Wasserstein distance with p = 2. The
marginal distributions P,Q ∈ Prob([0, 1]) are shown alongside each transport plan.

2.5.4 Wasserstein barycenters

Wasserstein barycenters provide a structured approximation for interpolating between two
or more probability distributions (images) based on the previously described Wasserstein
distance. The barycenter accounts for underlying mass transport and spatial structure.
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2.5 Optimal transport

In the context of dynamic imaging, this enables the generation of meaningful intermedi-
ate frames to guide the model’s prediction for missing frames, thereby enforcing realistic
transformations between measured time steps that lie along a geodesic path. One such
application is in manifold learning of dynamic images [53]. We now provide the formal
definition of the Wasserstein barycenter:

Definition 2.12 (Wasserstein barycenters). Let µi ∈ P (Rd) for i ∈ {1, . . . , n}. Then for
some sequence αi with

∑n
i=1 αi = 1, a Wasserstein bary center µ is defined as

µ = argmin
µ∈P (Rd)

n∑
i=1

αiW
ϵ
2(µi, µ) (14)

In particular, if we only have two reference images with positions 0 and 1 respectively, then
λ ∈ [0, 1], we can rewrite it to the following equation:

B(µ1, µ2, t) = argmin
µ∈P (Rd)

(1− λ)W ϵ
2(µ1, µ) + λW ϵ

2(µ2, µ) (15)

For the calculations, the Convolutional Wasserstein Distances approach [54] is used. The
implementation by [53] is employed for the experiments. To intuitively demonstrate the
concept of a Wasserstein barycenter, consider two probability measures µ0 = N (m0, σ

2
0)

and µ1 = N (m1, σ
2
1) defined on R. The Wasserstein barycenter µλ, with interpolation

parameter λ ∈ [0, 1], is defined as the distribution that minimizes the weighted sum of
squared Wasserstein distances to µ0 and µ1:

µλ = argmin
µ

(1− λ)W 2
2 (µ, µ0) + λW 2

2 (µ, µ1). (16)

In the one-dimensional Gaussian case, the barycenter is also Gaussian [50]. Figure 5
shows two input Gaussians and their barycenter for λ = 0.2. The plot illustrates how the
barycenter lies between the two inputs, both in terms of mean and standard deviation.
Crucially, this interpolation follows the geodesic under the L2-Wasserstein metric, rather
than a pointwise (density) average.

(a) Originele distributies (b) L2-barycenter (c) Wasserstein-barycenter

Figure 5: (a) shows the original input distributions A0 and A1. (b) displays the interpo-
lation in L2 space, which performs pointwise averaging. (c) illustrates the interpolation in
Wasserstein space, which captures smooth mass transport between distributions.
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3 Model

This chapter introduces two types of INR models for the MRI reconstruction problem.
The first model uses the forward operator for the prediction. The forward operator is
a computationally intensive operation; therefore, we will also examine an approach that
directly predicts the k-space value, bypassing the forward operator. The data consistency
term for both methods is the same, namely 1

2 || · ||
2
2 as explained in section 2.1. Note

that in [26, 29], they proposed a relative L2 loss due to the order of magnitude difference
between the absolute values in k-space data; however, in [27], they did not find a significant
performance difference.

3.1 Image INR

The image INR, denoted as Fθ, where θ are the trainable model parameters, directly learns
the spatiotemporal image content. The learned image is then mapped to k-space using the
forward operator described in Section 2.2.2. The network takes as input spatiotemporal
coordinates v = (x, y, t) ∈ [−1, 1]2 × [0, T ] and outputs complex-valued image intensities:

xt(r) = Fθ(x, y︸︷︷︸
r

, t), r = (x, y).

To simulate multi-coil acquisitions, the predicted image series is element-wise multiplied
with coil sensitivity maps Si(r), yielding coil-specific spatial images for each time frame.
These are then transformed to the frequency domain using a non-uniform fast Fourier
transform (NUFFT). The NUFFT maps the spatial images onto a set of non-Cartesian
k-space coordinates vk = (kx, ky, t), where the same sampling pattern is assumed for each
time step.

The NUFFT consists of a two-step process: first, a fast Fourier transform (FFT) is applied
on a uniform grid; then, interpolation using a precomputed kernel is used to estimate the
values at the non-Cartesian k-space coordinates.[55]

The complete training objective can be written as:

θ = argmin
θ

1

2

∥∥∥FSFθ(v)− f δ
∥∥∥2
2
+R(Fθ(v)) (17)

where S applies coil sensitivities, F denotes the NUFFT operator, and f δ are the measured
noisy k-space samples and R is the regularization term.

3.2 k-space INR

The k-space implicit neural representation (INR), denoted as Gθ, directly learns to map
spatiotemporal frequency coordinates to complex-valued k-space measurements. The train-
able parameters θ are optimized such that the INR matches the acquired k-space data at
the sampled locations. The input to the network consists of coordinates vk = (kx, ky, t) ∈
[−1, 1]2×[0, T ], and the output corresponds to the predicted k-space value at that location.

This formulation eliminates the need for an explicit image-domain representation, instead
operating directly in the frequency domain. In the multi-coil setting, the network can
either take the coil index c as an additional input to the network: Gθ(kx, ky, t, c)or have
directly prediting all coil values together INR. Here, we opt for the latter approach, as it
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3.3 Regularization

reduces training time and leverages the fact that the coils overlap significantly in k-space,
especially in the low-frequency regions.

The training objective minimizes the discrepancy between predicted and measured k-space
data:

θ = argmin
θ

1

2

∥∥∥Gθ(vk)− f δ(vk)
∥∥∥2
2
+R(Gθ(vk)), (18)

where f δ(vk) denotes the measured noisy k-space samples at coordinates vk, and R is a
regularization term that can encourage smoothness, temporal consistency, or sparsity in
the learned k-space function.

3.3 Regularization

The optimal transport regularization is chosen to provide better geometric alignment with
human visual perception compared to pixel-wise losses, such as L2.[56] As described in
2.5.2 equation 13, the Wasserstein distance can be interpreted as minimizing the kinetic
energy between two distributions, helping guide the network to a meaningful physical
reconstruction. A variation of OT-based losses is the concept of Wasserstein barycenters,
which yield non-linear yet semantically coherent averages of probability distributions. The
Wasserstein barycenters can be used as a template and compared to the model’s prediction
to learn plausible transitions.

To ensure numerical stability when using the Sinkhorn based approximation of the Wasser-
stein distance (W ϵ

2), the reconstructed outputs are normalized to have equal total mass.
The normalization can have unwanted effects. For example, if frame t contains a bright
artifact not present in frame t-1, normalization would reduce the mass associated with
shared structures to maintain a total mass equal to 1. This could potentially lead to in-
correct interpolations or intensity changes in regions that should remain unchanged. To
mitigate such effects, Unbalanced Optimal Transport is often preferred, as it allows partial
mass matching and penalizes the creation or destruction of mass rather than forcing full
normalization. In our case, we verified that the total intensity differences across frames
remain small (less than 1.06%), and therefore, we initially applied standard normalization
without introducing significant bias. To further improve robustness against rare bright
artifacts and intensity fluctuations, we incorporate Optimal Transport only in the later
stages of training once the base reconstruction has stabilized.

3.3.1 Wasserstein barycenter

For the calculation of the barycenter between predicted images, we choose two times of
the original time points with one frame in between. The INR is used to query the model
after the predictions made at t0 and t2 have been combined into a real-valued image in the
spatial domain. The images are chosen to cast digital images as probability distributions
through normalization, i.e., dividing each pixel value by the sum of all pixel values, to
achieve a total sum (density) of 1. The formulation of the barycenter as described in 15 is
used with the alpha parameter set to 0.5.
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Image INR. For the image model, the three probability measures are obtained directly
from the INR output:

µ0(x, y) = Fθ(x, y, t), µ1(x, y) = Fθ(x, y, t1), µ2(x, y) = Fθ(x, y, t2),

Each image is defined on a uniform spatial grid (x, y) ∈ [−1, 1]2, discretized into m × m
points. The complex image values are normalized per frame by their global maximum
magnitude. The image INR predicts complex-valued images, allowing for the potential in-
corporation of coil sensitivity maps and preserving phase information. Therefore, normal-
ization is performed on the absolute values of the complex predictions to ensure consistent
scaling across frames while retaining both magnitude and phase information.

For training, we randomly select an initial time point t, and construct a sequence of
three consecutive frames (t, t + 1, t + 2), sampled from the full temporal resolution. The
normalization of the complex value image is done by:

µ̃i(x, y) =
|µi(x, y)|∑m

j=1

∑m
k=1 |µi(xj , yk)|

,

The Wasserstein barycenter is then given as

B(µ̃0, µ̃2) = arg min
µ∈P (R2)

1
2W

ε
2 (µ̃1, µ) +

1
2W

ε
2 (µ̃2, µ)

Then the L2 loss is used to calculate the difference between the model prediction on t1

R(Fθ(x, y, t)) = ∥µ̃1 −B(µ̂0, µ̂2)∥2

K-space INR. The k-space model Gθ takes as input coordinates (kx, ky, t), where (kx, ky)
form a uniform Cartesian grid over [−1, 1]2, corresponding to the Fourier domain reso-
lution, and t ∈ [−1, 1]. It predicts complex-valued coil data Gθ(kx, ky, t) for each coil
c ∈ {1, . . . , C}. Although this Cartesian grid does not align with the actual sampling tra-
jectory (e.g., radial sampling), it is used solely for the regularization loss because it enables
the efficient computation of the inverse Fourier transform via the fast Fourier transform
(FFT). This practical choice enables imposing spatial consistency through image-domain
losses while training on arbitrary sampling patterns.

To obtain real-valued images for barycenter computation, the predicted k-space is first
transformed to the image domain using an inverse FFT, followed by a sum-of-squares
(SoS) operation across the coil dimension:

µ̂i(x, y, ti) =

√√√√ C∑
c=1

|F−1Gθ,c(kx, ky, ti)|2. i = 1, 2

These images are normalised as

µ̃i(x, y) =
|µi(x, y)|∑m

j=1

∑m
k=1 |µi(xj , yk)|

,
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The Wasserstein barycenter is then given as

B(µ̃0, µ̃2) = arg min
µ∈P (R2)

1
2W

ε
2 (µ̃0, µ) +

1
2W

ε
2 (µ̃2, µ)

Then the L2 loss is used to calculated the difference between the model prediction on t1
(µ̃1)and the predicted barrycenter B(µ̃0, µ̃2)

R(Gθ(x, y, t)) = ∥µ̃1 −B(µ̂0, µ̂2)∥2

3.3.2 Wasserstein distance

The Wasserstein distance is calculated between consecutive frames in the dynamic MRI
sequence at the acquired time points. To evaluate the temporal consistency of the predicted
image sequence, we compute the cumulative Wasserstein distance between consecutive
normalized frames, we use the same notation used in the barycenter seciton:

R=

m−1∑
i=0

Wϵ
2 (µ̃i, µ̃i+1) ,

where µ̃i denotes the normalized image predicted by the INR model at time step ti. Each
µ̃i is a discretized probability distribution over a spatial grid, as defined by:

µ̃i(x, y) =
|µi(x, y)|∑m

j=1

∑m
k=1 |µi(xj , yk)|

,

with µi(x, y) = Fθ(x, y, ti) being the raw complex-valued output of the model before nor-
malization.

3.4 Inference

After training, we query the INR on a dense grid to render a high-resolution image matching
the resolution of the ground truth. For the MRI dataset, due to the radial sampling pattern,
no training data is available outside the unit disk. To avoid unreliable extrapolation, all
coordinates for which k2x + k2y > 1.0 are considered outside the training domain and set to
zero.

3.5 Implementation details model

The model is implemented with the PyTorch library (version 2.7.0). We used an SIREN
model with periodic activations sin(ω0 ·). A total of three hidden layers are used, each
containing 256 neurons; the final layer is linear and outputs the real and imaginary parts
separately, following the approach of Sitzmann et al. [25], we set the ω0 = 30 and apply
the recommended weight initialization as described in 2.4.2. The weights of the network
are updated using the Adam optimizer [57] with a learning rate of 1× 10−3 , other Adam
hyperparameters are left at default values ( β1 = 0.9, β2 = 0.999, and ϵ = 10−7). The
non-uniform Fast Fourier Transform (NUFFT) for MRI imaging is implemented based on
the torchkbnufft package with the standard settings [55].

During the optimization process, all spatiotemporal coordinates were gathered in a single
batch, with a batch size of 1. The input coordinates (x, y, t) were isotropically normalized
to the range [0, 1] for faster convergence.
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4 Results and experiments

In this section, we present the reconstruction results obtained with our implicit neural net-
work (INR) model using two different optimal transport priors: the Wasserstein distance
and the Wasserstein barycenter. These regularized INRs are compared to the IGRASP
method described in Section 2.3, as well as to a baseline INR model without any regu-
larization. A more detailed analysis and interpretation of the results are provided in the
section 5.

Experiments are conducted on a synthetic and a 2D dynamic cardiac MRI dataset. For
the synthetic datasets, the models are first trained using spatially undersampled k-space
data, followed by temporal k-space undersampling, where no spatial undersampling is per-
formed on the remaining time frame. The MRI dataset is spatially k-space undersampled
and extended to temporal subsampling by skipping every other frame, combined with
the previous spatial undersampling strategy. The reconstruction quality is quantitatively
evaluated using the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise
Ratio (PSNR).

4.1 Evaluation metrics

The following two full-reference metrics are used to evaluate the reconstruction: Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM). Those
metrics are widely considered the de facto standard for quantitative evaluation in computer
vision and medical imaging tasks, including MRI reconstruction [58].

Although PSNR, and SSIM are commonly used for quantitative image quality evaluation,
they do not always align with clinical utility or expert perception. Kastryulin et al. [58]
show a moderate correlation between these metrics and radiologist assessments (correla-
tion coefficients around 0.5). In particular, they emphasize that global metrics frequently
overlook the diagnostic quality of specific anatomical regions.

Therefore, while higher PSNR or SSIM scores generally indicate better image quality,
they should be interpreted cautiously. In many clinical applications, the visibility of task-
relevant structures (e.g., vessel walls, lesions, or motion artifacts) is more important than
global fidelity.[58]

4.1.1 Peak Signal to Noise Ratio (PSNR)

PSNR is defined by Mean Squared Error (MSE) and defines the ratio between the maximum
possible power of the signal and the power of the distorting noise in decibels. The MSE gives
the average squared difference between the reconstructed image u(x, y) and the original
image û(x, y). Let the image domain consist of M rows and N columns. Then, the MSE
is defined as:

MSE(û, u) =
1

MN

M−1∑
y=0

N−1∑
x=0

[û(x, y)− u(x, y)]2 (19)

then the PSNR is defined as:
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4.1 Evaluation metrics

PSNR(û, u) = 10 log10

(
MAX2

I

MSE

)

where MAXI is the maximum pixel value.

4.1.2 Structural Similarity Index Measure (SSIM)

The Structural Similarity Index Measure (SSIM) combines three distinct components. The
first component, l, compares the brightness between two images, c evaluates the contrast
between the dark and light regions, and s evaluates the pattern between the two images.
The SSIM for the reconstructed image û and its ground truth u is given by: [59]

SSIM(û, u) = [l(û, u)]α · [c(û, u)]β · [s(û, u)]γ , α, β, γ > 0

Where l(û, u), c(û, u), (û, u) are given by:

l(û, u) =
2µûµu + C1

µ2
û + µ2

u + C1
, C1 = (k1L)

2

c(û, u) =
2σûσu + C1

σ2
û + σ2

u + C1
, C2 = (k2L)

2

s(û, u) =
2σûu + C3

σûσu + C3
, C3 = (k3L)

2

Here, µû and µu represent the average intensity values of the predicted and reference
images, respectively. The terms σû and σu denote the standard deviations of the intensity.
The term σûu is the cross-correlation coefficient.

The constants Ci for i = 1, 2, 3 are introduced for numerical stability, preventing division
by small values where ki << 1 and L is the dynamic range of the pixel values (255 for
8-bit grayscale images).

For the SSIM metric, higher values indicate better image quality. The following properties
hold, ensuring that the order of inputs is irrelevant, the maximum value is 1, and there
exists a unique maximum:

1. Symmetry: SSIM(ŷ, y) = SSIM(y, ŷ)

2. Boundedness: SSIM(ŷ, y) ≤ 1

3. Unique Maximum: SSIM(ŷ, y) = 1 ⇐⇒ ŷ = y

The settings used in the thesis are α = β = gamma = 1 and C3 = C2
2 , which are the

default settings when comparing images. [59]
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4.2 Synthetic data

This section presents the numerical results obtained using a synthetic dataset. The syn-
thetic data consists of a sequence of 10 small Gaussian images of size 32 × 32, where the
Gaussian blob gradually moves from left to right while increasing and decreasing in size,
see figure 6. This mimics simple dynamic motion over time. To simulate MRI-like measure-
ments, each frame is transformed to the frequency domain using a Fast Fourier Transform
(FFT).

Figure 6: The full dynamic sequence consists of 10 time frames of size 32× 32 pixels.

Each model is trained for a total of 5,000 iterations. The optimal transport (OT) regular-
ization is only applied during the final 500 iterations. Since the model’s early predictions
are dominated by noise, applying optimal transport regularization too early causes the
model to align artifacts instead of meaningful structures. For the regularization strength
(λ), both regularization approaches are set to 1.

We first investigate how the use of optimal transport regularization affects reconstruction
quality under standard k-space spatial subsampling. For each time frame, a subset of the
ky lines is used for the training, also known as Cartesian sampling. A fixed number of
central lines, referred to as the calibration region, is retained across all frames to ensure
stability and simulate the standard sampling procedure in MRI. The central lines are
often used for estimating sensitivity maps. The remaining lines are selected randomly for
each frame, resulting in different sampling patterns over time. This temporal variability
increases the incoherence of the sampling scheme, which is known to improve reconstruction
in compressed sensing and deep learning frameworks. Figure 7 shows the sampling mask
of an individual frame and the distribution of sampling patterns across time. Additionally,
the inverse Fourier transform of the undersampled k-space data, with missing samples
zero-filled, is used as a baseline for comparison.

In the second experiment, we introduce temporal subsampling, where only every other
time frame is used during training, creating reduced temporal coherence in the acquisition
process. This scenario enables us to assess the model’s ability to interpolate intermediate
frames and determine whether OT regularization enhances temporal consistency in the
reconstructed sequence.

4.2.1 Barycentric OT regularization results

k-space subsampling Figure 8 shows the reconstruction results under spatial subsam-
pling for both the k-space and image INR models, with and without barycenter optimal
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4.2 Synthetic data

Figure 7: Sampling pattern used for spatial k-space undersampling. Left: Sampling mask
for a single frame (frame 1), where blue dots indicate the sampled ky-lines in the frame.
The central calibration region (central band) is fully sampled and preserved identically
across all frames. The remaining outer ky-lines are randomly and uniformly selected per
frame, resulting in a time-varying sampling pattern. Right: Visualization of the temporal
variation in the sampling masks across all time frames, illustrating how the outer lines
change randomly over time while the central region remains constant.

transport (OT) regularization. The barycenter is computed for every uneven index and
compared to the model’s prediction at those time steps. The k-space INR (row 2) shows
noticeable noise, both in the corners and inside the Gaussian blob. By adding the OT loss
(row 3), we observe not only an apparent reduction in noise at the predicted barycenter
frames (t = 1, 3, 5, . . . ) but also an improvement across other frames. The blob boundaries
remain smooth, and the noise pattern better matches the expected structure at every loca-
tion. The image INR already produces well-defined shapes and accurate intensity within
the Gaussian blob. As a result, applying OT regularization yields little to no visible im-
provement in the reconstruction.

Temporal k-space subsampling Figure 9 presents the results comparing the unreg-
ulated networks with those trained using the Wasserstein barycenter optimal transport
regularization. Without OT (row 2 k-space INR, row 4 image INR), every observed frame
is reproduced almost perfectly, yet the interpolated frames give only random noise. This
behavior is expected: in the absence of any explicit temporal constraint, the INR is free
to assign arbitrary values at time-points for which no k-space measurements exist, and the
optimizer drifts toward high-frequency artifacts that do not affect the MSE on the sampled
frames. Once OT is introduced (rows 3 and 5), the global shape and motion trajectory
are recovered. However, a noticeable amount of residual noise remains, particularly in the
reconstructions from the direct k-space fitting (row 3), both inside the object and in the
background. Interestingly, the forward model approach (row 5) exhibits far fewer of these
artifacts, indicating that the direct k-space formulation struggles more with denoising and
temporal consistency, even when guided by OT.

In Figure 10, every third frame is retained, and we observe similar reconstruction behavior
for the missing frames across both models as described previously when every second frame
was maintained. One notable difference, however, is that the model now consistently
underestimates the size of the predicted shapes.
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4.2 Synthetic data

Figure 8: K-space undersampled data reconstruction for barycenter regulariza-
tion Visual comparison of reconstruction results on synthetic data. The top row displays
the ground-truth images. The second row shows the zero-filled inverse FFT reconstruc-
tion from the undersampled k-space data. The third row shows the output of the k-space
INR model without Optimal Transport (OT) regularization, and the fourth row shows the
k-space INR with OT regularization. The fifth row shows the image-domain INR without
OT, and the sixth row shows the image-domain INR with OT regularization. Each column
corresponds to a different time frame.
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4.2 Synthetic data

Figure 9: Temporal undersampled reconstruction for barycenter regularization
visual comparison of reconstruction results on synthetic data. The top row shows the
ground truth images, the middle row shows the output from the INR model without reg-
ularization, and the bottom row shows the INR model with Optimal Transport (OT)
regularization. Each column represents a different time step, where every third image (1,
4, 7, 10) is used for training.
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4.2 Synthetic data

Figure 10: Temporal undersampled reconstruction for barycenter regulariza-
tion visual comparison of reconstruction results on synthetic data. The top row shows
the ground truth images, the middle row shows the output from the INR model without
regularization, and the bottom row shows the INR model with Optimal Transport (OT)
regularization. Each column represents a different time step, where every third image (1,
4, 7, 10) is used for training.
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4.2 Synthetic data

4.2.2 Wasserstein OT regularization results

k-space subsampling Figure 11 shows the results of k-space en image INR, with and
without Wasserstein regularization. For k-space, INR showed the Wasserstein distance;
however, the noise present in the corners was removed. Nevertheless, some noise remains
above and below the object. The shape reconstruction for the step-wise borders is not
recovered, and the intensity of the object is only slightly improved for 2, 4, 5, 6. The image
INR shows no visible effect with OT regularization, where the sharp borders and intensity
of the object remain unchanged, and no extra noise is added.

Temporal k-space subsampling Figure 12 shows the summed Wasserstein distance
calculated between every pair of consecutive frames. When the model is trained without
any regularization, both the k-space and image domain INR models (rows 2 and 4) predict
noise for the missing time frames. For the sampled time frames, the predicted shapes are
correct, although the k-space INR exhibits a consistent intensity offset.

The k-space INR with Wasserstein regularization reconstructs the missing Gaussian blob
(at uneven indices) with smooth borders and a slight, spatially varying intensity mismatch
noticeable in the center. However, the Wasserstein loss does not significantly affect the
reconstruction of previously sampled frames, and some intensity mismatch remains between
frames 3 and 5.

The image INR with Wasserstein regularization shows similar behavior. The guided recon-
structions at the missing time steps (uneven indices) appear slightly distorted, with more
pronounced flattening of intensities across different regions. Additionally, the reconstruc-
tion quality for sampled frames (e.g., frame 7) shows slight color intensity shifts, resulting
in a minor drop in PSNR.

In Figure 13, every third frame is retained, and we observe similar reconstruction behavior
for the missing frames across both models as described previously when every second frame
was maintained. One notable difference, however, is that the model now consistently
underestimates the size of the predicted shapes.
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4.2 Synthetic data

Figure 11: K-space undersampled reconstruction for Wasserstein regularization
Visual comparison of reconstruction results on synthetic data. The top row displays the
ground-truth images. The second row shows the zero-filled inverse FFT reconstruction
from the undersampled k-space data. The third row shows the output of the k-space INR
model without (OT) regularization, and the fourth row shows the k-space INR with OT
regularization. The fifth row shows the image-domain INR without OT, and the sixth
row shows the image-domain INR with OT regularization. Each column corresponds to a
different time frame.

34



4.2 Synthetic data

Figure 12: Temporal undersampled reconstruction for Wasserstein regulariza-
tion Comparison of reconstructed dynamic MRI frames with different INR models. Each
column shows a single representative frame. Top row: Ground truth reconstruction. Sec-
ond row: k-space INR without Wasserstein regularization. Third row: k-space INR with
Wasserstein regularization as a temporal prior. Fourth row: image-domain INR without
Wasserstein regularization. Fifth row: image-domain INR with Wasserstein regulariza-
tion. Note: Even-numbered frames (e.g., frames 2, 4, 6) were omitted during training
and are only used for evaluation, highlighting the models’ ability to interpolate missing
temporal information.
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4.2 Synthetic data

Figure 13: Temporal undersampled reconstruction for Wasserstein regulariza-
tion Comparison of reconstructed dynamic frames with different INR models. Each col-
umn shows a single representative frame. Top row: Ground truth reconstruction. Sec-
ond row: k-space INR without Wasserstein regularization. Third row: k-space INR
with Wasserstein regularization as a temporal prior. Fourth row: image-domain INR
without Wasserstein regularization. Fifth row: image-domain INR with Wasserstein reg-
ularization. Note: Frames 2, 3, 5, and 6 were omitted during training and are only used
for evaluation, highlighting the models’ ability to interpolate missing temporal information
in unseen frames.
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4.3 MRI data

For the final MRI reconstruction experiments, we focused exclusively on the k-space INR
model with barycenter regularization, as it consistently showed the best performance in
both synthetic and real data experiments. We used 10,000 iterations for the k-space spatial
undersampling experiments and 20,000 iterations for the k-space spatiotemporal undersam-
pling experiments. Optimal Transport regularization was activated during the final 2,000
and 5,000 iterations of these experiments, respectively.

4.3.1 Dataset

We use a publicly available radial cardiac cine MRI dataset released via the Harvard
Dataverse [60]. The dataset comprises breath-held, retrospectively ECG-triggered, 2D
radial bSSFP acquisitions from 108 subjects (101 patients and 7 healthy controls), acquired
on a 3T MAGNETOM Vida system using body and spine phased-array coils. Imaging was
performed in a mid-ventricular slice with the following parameters: TR/TE = 3.06/1.4
ms, flip angle = 48°, FOV = 380 × 380 mm2, matrix size = 208 × 208, and slice thickness
= 8 mm. On average, 196 radial spokes were acquired per cardiac phase across 25 ECG-
binned time frames. Zero-padding was removed to avoid introducing implicit priors. [61].In
Appendix A, the individual coil images and the corresponding k-space values are visualized.

The 196 radial spokes are uniformly distributed across frames, with consistent angular po-
sitions reused. All receiver coils collect data simultaneously and have the same coordiates.
We implement spatial under-sampling by selecting every R-th spoke, resulting in a uniform
distribution. A one-spoke offset is applied for each subsequent frame to enhance temporal
diversity. Figure 14 displays the overall trajectory (left), showing the original spokes in
light gray and the black spokes indicating the R = 10 undersampling. On the right, the
sampling patterns for the first three frames illustrate the rotational progression over time.

The above use of the data differs from the recent INR-based approaches on radial cine data
[62, 31, 30]. In those studies, fully sampled scanner data is first transformed into the image
domain and then projected into k-space using a non-uniform Fourier transform (NUFFT)
to simulate golden-angle undersampling. The same forward operator is later used in the
training process, introducing bias in the results, a practice commonly referred to as a data
crime [61]. In addition, the simulated data contains less noise and the exact location of
the frequency measurement, whereas the original data can have a slight offset.

Figure 14: Visualization of the radial k-space sampling patterns. Left: Undersampling
pattern for frame 0; selected spokes in black, unselected in gray. Right: Overlay of selected
spokes for frames 0–2, each in a different color.
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4.3.2 Spatial k-space subsampling results

Figure 15 display the reconstruction of spatially undersampled k-space data. In the figure,
it becomes evident that both the IGRASP reconstruction and the INR-based method tend
to smooth out fine details compared to the reference. However, while the IGRASP method
shows a more balanced intensity distribution across the image, the INR reconstruction
exhibits a noticeable bright cross in the center that was not present in the synthetic dataset,
making this a plotting error. Despite these differences, quantitative metrics such as SSIM
and PSNR indicate that both methods produce reconstructions of comparable quality. The
INR with barycenter-based reconstruction yields an average PSNR in the image series of
21.89±0.07 and an SSIM of 0.78±0.03. compared to GRASP with a PSNR of 19.04±0.06
and an SSIM of 19.05± 0.05.

Figure 15: Spatially undersampled MRI reconstruction. Reconstruction results
on cardiac MRI data with spatial undersampling, where every 5th spoke in k-space is
selected. The top row shows the fully sampled reference images. The second row shows
the reconstruction from the implicit neural representation (INR) model with barycenter
regularization. The third row shows the reconstruction using the iGRASP method.
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4.3.3 Spatialtemporal k-space subsampling results

In previous figures, we displayed the first, middle, and last frames to illustrate the full
dynamic range of the cardiac motion. In Figure 16, however, we show the first three
consecutive frames to specifically highlight the effect of temporal undersampling, where
every other frame is skipped, in combination with spatial undersampling by selecting only
every fifth spoke. This results in using only approximately 10% of the fully sampled data,
allowing us to demonstrate the impact of missing frames during a particular phase of
the cardiac cycle. Without any temporal regularization, the INR model produces only
a faint outline of the heart and struggles to generalize across the missing frames. In
contrast, adding regularization helps the network produce more meaningful intermediate
representations.

The INR model barycenter-based regularization achieves similar performance to the ref-
erence IGRASP method on the retained frames, suggesting that both methods effectively
reconstruct the static structures. However, for the missing frames, the barycenter-based
regularization provides additional guidance that improves the temporal consistency of the
reconstruction. In this example, the central dynamic region is the heart chamber, while
the rest of the anatomy remains relatively static. Notably, the INR reconstruction still
exhibits a considerable amount of noise in the region where motion is present, indicating
that the model struggles to capture the fine-grained temporal dynamics despite the added
regularization.

Figure 16: spatial-temporal k-space undersampling Reconstruction results on cardiac
MRI data where both spatial and temporal undersampling were applied: every 5th spoke
was selected in the spatial domain, and only every other frame was sampled in time. The
top row shows the fully sampled reference images. The second row shows the reconstruction
from the implicit neural representation (INR) model with barycenter regularization. The
third row shows the reconstruction using the iGRASP method.
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5 Discussion

5.1 Computation time

The current INR training time is approximately 15 minutes, with an additional 1 hour
when including optimal transport regularization—covering both Wasserstein distance and
barycenter calculations—for a single slice. In comparison, even reconstruction speeds of
10 to 15 minutes per slice already result in several hours of processing time for a full
MRI exam. Meanwhile, the latest IGRASP implementation, as cited in [63], achieves
reconstruction times of approximately one minute per slice. Similar INR-based approaches
require anywhere between 15 minutes to several hours per slice, depending on hardware
configuration, image resolution, number of coils, and temporal range [27, 26, 30].

Possible strategies to reduce training time include the use of fully fused MLPs, which
have demonstrated a speed-up of up to 2× or 3× in classical NeRF applications [64].
A potential drawback of this approach is its limited network depth and width, resulting
from high memory consumption. Additionally, reducing the number of coils or applying
coil compression can significantly reduce training time. Finally, transfer learning may
offer further gains by pretraining on a reference image and fine-tuning on new frames or
subjects,[65] shows a created performance gain in the natural image domain.

5.2 Barycenter vs. Wasserstein distance regularization performance

In our experiments, we observe that pairwise Wasserstein distance regularization applied to
synthetic data yields realistic interpolations for the missing frames. However, when applied
to the MRI data set, it does not necessarily follow the anatomical motion we aim to capture.
When the temporal gap between sampled frames is large, skipping a frame causes the model
to learn a smooth, uniform distribution between the frames rather than the predicted noise
without regularization. The new smooth interpolation without any further priors gets the
INR stuck. In contrast, the barycenter interpolation explicitly forces each missing frame
toward the Wasserstein barycenter, where significant deviations are penalized by the l2
norm. This additional constraint sharpens the reconstructed dynamics at the skipped
time points. Nevertheless, it is achieved at the expense of slightly reduced spatial detail
in the sampled images.

5.3 Image vs k-space INR performance synthetic data

Although image and k-space INR both use the same model and are trained with and
without optimal transport regularization, we observe a consistent performance gap favoring
the image-space approach. A possible explanation for this lies in the structure of the
k-space data. Unlike image-space representations, where spatial features are localized, k-
space encodes global frequency information in a highly interdependent manner. This makes
learning in the k-space domain significantly more sensitive to local variations, especially
in high-frequency components. While the optimal transport regularization aims to enforce
temporal consistency, it does not sufficiently constrain the correlations among k-space
coefficients. As a result, the k-space INR tends to overfit to the observed measurements
without learning a smooth or physically consistent latent representation. The loss surface
for the k-space model remains highly irregular, preventing convergence to a meaningful
reconstruction.

In contrast, the image-space INR benefits from the use of the Fast Fourier Transform
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(FFT) during training to simulate measurements. This introduces a form of implicit regu-
larization: the model is not directly learning unconstrained frequency components, but is
instead constrained to produce spatial structures that, when transformed via FFT, yield
realistic k-space data. This indirect constraint stabilizes the learning dynamics, helping
the model better capture high-frequency variations, such as edges and delicate anatomical
structures.

It is also important to note that the same forward operator is used both to simulate
the k-space measurements and used in the image INR. This introduces a form of inverse
crime [61], potentially biasing the reconstructions. As highlighted by [66], such setups
where the forward and inverse models are perfectly matched can suppress artifacts and
hide instability, leading to results that may not fully reflect performance under real-world
conditions.

5.4 K-space INR vs IGRASP spatial-temporal undersampling perfor-
mance

In our experiments, we observed that the INR model with Optimal Transport (OT) regu-
larization outperformed the iGRASP method under combined spatial-temporal undersam-
pling. This can be attributed to the flexibility of the INR approach, which allows arbitrary
sampling in k-space and combined with Wasserstein barycenter to interpolate missing tem-
poral frames. In contrast, iGRASP is an iterative method that makes predictions based on
sampled data locations and has only sensitivity maps available for estimating the missing
frames.

For spatial undersampling, the motion between frames in our dataset is relatively small, and
the cardiac motion is periodic and consistent over time. This stability makes our dataset
particularly suitable for total variation regularization, as the regularity of the motion allows
us to utilize TV-based sparsity constraints effectively.[67] Under these conditions, both
iGRASP and the INR model with OT regularization can reconstruct the undersampled
k-space data with similar accuracy. Since temporal interpolation plays a minor role, both
methods can effectively leverage coil sensitivity information to fill in the missing spatial
data.

6 Conclusion

In this thesis, we investigate how optimal transport can be leveraged to regularize implicit
neural representations (INRs) in the context of dynamic MRI reconstruction under both
spatial and spatio-temporal undersampling regimes. To this end, we explored two types of
regularization: one based on the total Wasserstein distance between consecutive frames,
and one based on the L2 distance to a Wasserstein barycenter of the predictions of the INR
model. These regularizations are applied to two types of INR models: one that directly
predicts k-space, and one that includes a forward operator.

For k-space INR, barycenter regularization worked best: in spatial undersampling, it re-
duced some noise around the synthetic Gaussian blob, and in temporal undersampling, it
enabled good interpolation of the shape, albeit with a global intensity offset. Additionally,
we demonstrated that the model with missing time frames yields noisy interpolated images.

For image INR, Wasserstein distance introduced noise in the spatial undersampling case,
even though the unregularized INR already provided good reconstructions. In temporal un-
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dersampling, the Wasserstein distance alone produced noise within the object and smaller
interpolations of the shape, while barycenter regularization failed to recover a faithful
reconstruction.

6.1 Future work

Future work could further explore barycenter-based interpolation for dynamic MRI recon-
struction by looking at unprocessed k-space data. The current approach used discretely
processed time frames. If we use the raw data, it could enable the barycenter formulation
to exploit temporal continuity more effectively, as larger variations in the reconstructed
image domain are observed.

So far, we have assumed that each frame contains an equal amount of measurement data.
However, it would be interesting to investigate how models handle variations in the amount
of data per frame, as, in practice, the data volume can differ between frames in dynamic
acquisitions. [68]

We observed that while optimal transport enforces temporal consistency, it does not suf-
ficiently promote spatial sharpness or contrast within each frame. Therefore, combining
OT-based temporal regularization with classical spatial priors, such as total variation or
wavelet sparsity, could further enhance the spatial reconstruction quality.

In future work, we will consider several strategies to reduce training time and improve
reconstruction speed. These include the use of fused MLP architectures for faster inference
[64], transfer learning tailored to INR’s [65], and reducing the number of coils or applying
coil compression to lower the dimensionality of the input space.
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A. Dataset visualization

A Dataset visualization

Figure 17 shows a cropped region of the fully sampled image data from the first cardiac
frame for all coils, focusing on the area around the heart. The radial k-space data was
transformed to the image domain using a non-uniform fast Fourier transform (NUFFT).
In addition, the corresponding k-space values for each coil are shown in Figure 18, where
the square root of the absolute values is displayed to account for the large dynamic range
of the data.

Figure 17: Absolute value images of all 16 coils for the first cardiac frame. Each image
corresponds to the signal received by a different receiver coil, highlighting spatially varying
sensitivity profiles and localized signal reception.
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A. Dataset visualization

Figure 18: Log-magnitude k-space for the first frame across 16 coils. Log scaling highlights
both high- and low-frequency content received by each coil.
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B. Wasserstein barycenter code

B Wasserstein barycenter code

The code used for the Wasserstein barycenter where the default values of each function are
used.

import math
import torch
import numpy as np
from einops import rearrange , parse_shape
from torch.nn.functional import avg_pool2d , avg_pool3d , interpolate

SUBSAMPLE = {
2: (lambda x: 4 * avg_pool2d(x, 2)),
3: (lambda x: 8 * avg_pool3d(x, 2)),

}

def pyramid(img , dim=2, height =32):
img_s = [img]
for _ in range(int(math.log2(height))):

img = SUBSAMPLE[dim](img)
img_s.append(img)

img_s.reverse ()
return img_s

def epsilon_schedule(p, diameter , blur , scaling):
r""" Creates a list of values for the temperature "epsilon"

↪→ across Sinkhorn iterations.We use an aggressive strategy
↪→ with an exponential cooling

schedule: starting from a value of :math:‘\text{diameter }^p‘,
the temperature epsilon is divided
by :math:‘\text{scaling }^p‘ at every iteration until reaching
a minimum value of :math:‘\text{blur}^p‘.
Args:

p (integer or float): The exponent of the Euclidean
↪→ distance
:math:‘\|x_i -y_j\|‘ that defines the cost function
:math:‘\text{C}(x_i ,y_j) =\ tfrac {1}{p} \|x_i -y_j \|^p‘.

diameter (float , positive): Upper bound on the largest
↪→ distance between
points :math:‘x_i ‘ and :math:‘y_j ‘.

blur (float , positive): Target value for the entropic
↪→ regularization
(": math:‘\ varepsilon = \text{blur}^p‘").

scaling (float , in (0,1)): Ratio between two successive
values of the blur scale.

Returns:
list of float: list of values for the temperature epsilon.

"""

eps_list = (
[diameter ** p]
+ [

math.exp(e)
for e in np.arange(
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p * math.log(diameter), p * math.log(blur), p *
↪→ math.log(scaling)

)
]
+ [blur ** p]

)
return eps_list

def convolutional_barycenter_calculation(batch , weights=None ,
↪→ stab_thresh =1e-30, scaling =0.7, need_diffable=False):
"""
computes the batched convolutional barycenter2d debiased in

↪→ the log domain
:param batch: input shape (M, B, C, H, W, [D])
:param weights: the weight for each sample in the bary center

↪→ calculation
:param stab_thresh: default 1e-30, for not dividing by zero.
:return: the barycenter of the batch with prescribed weights
"""
def convol_img(_log_img , _kernel):

_log_img = torch.logsumexp(_kernel[None , None , None , :, :,
↪→ None] + _log_img[:, :, :, None , ...], dim=-2)

_log_img = torch.logsumexp(
_kernel[None , None , None , :, :, None] + _log_img[:, :,

↪→ :, None , ...]. permute(0, 1, 2, 3, -1, -2), dim=-2
).permute(0, 1, 2, -1, -2)
return _log_img

with torch.no_grad ():
if len(batch.shape) == 6:

raise NotImplementedError("This method is currently
↪→ not implemented for 3d")

nh = batch.shape [0] # number of histograms for each image
b = batch.shape [1] # batch size

if weights is None:
weights = 0.5 * torch.ones((nh , 1, 1, 1, 1),

↪→ dtype=batch.dtype , device=batch.device)

log_batch = torch.log(batch + stab_thresh)
log_batch = rearrange(log_batch , ’m b c h w -> (m b) c h

↪→ w’)
log_img_s = pyramid(log_batch ,

↪→ height=log_batch.shape [-1]) [3:]
log_img_s = [rearrange(log_img , ’(m b) c h w -> m b c h

↪→ w’, m=nh , b=b) for log_img in log_img_s]

_, b, c, h0 , w0 = parse_shape(log_img_s [0], ’m b c h
↪→ w’).values ()

db = torch.zeros((b, c, h0 , w0), dtype=log_batch.dtype ,
↪→ device=log_batch.device)

g = torch.zeros (* log_img_s [0]. shape ,
↪→ dtype=log_batch.dtype , device=log_batch.device)
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for s, log_img in enumerate(log_img_s):
n = log_img.shape [-1]
t = torch.linspace(0, 1, n, dtype=batch.dtype ,

↪→ device=batch.device)
C = - (t.view(n, 1) - (t.view(1, n))) ** 2
eps_list = epsilon_schedule (2, 2 / n, 1 / n, scaling)

for eps in eps_list:
for _ in range(

5 + 15 * (s == len(log_img_s) - 1 and eps
↪→ == eps_list [-1])

): # do only the last iteration twice
m = C / eps
log_ku = convol_img(log_img - convol_img(g,

↪→ m), m)
log_bar = db + torch.sum(weights * log_ku ,

↪→ dim =0)
db = 0.5 * (db + log_bar -

↪→ convol_img(db[None], m)[0])
g = log_bar[None , ...] - log_ku

# if not the last scale
if s != len(log_img_s) - 1:

# upscale log_bar , c and g
db = interpolate(db, scale_factor =2,

↪→ mode=’bilinear ’, align_corners=False)
g = rearrange(

interpolate(
rearrange(g, ’m b c h w -> (m b) c h w’),

↪→ scale_factor =2, mode=’bilinear ’,
↪→ align_corners=False),

’(m b) c h w -> m b c h w’, m=nh, b=b
)

log_bar = interpolate(log_bar , scale_factor =2,
↪→ mode=’bilinear ’, align_corners=False)

if need_diffable:
with torch.enable_grad ():

log_img = torch.log(batch + stab_thresh)
log_ku = convol_img(log_img - convol_img(g, m), m)
log_bar = db + torch.sum(weights * log_ku , dim=0)

return torch.exp(log_bar)
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