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Summary

Head and Neck cancer (HNC) patients often experience dysphagia (difficulty swallowing). To diagnose
dysphagia it is important to evaluation the swallow quality. The golden standards for this evaluation are
the videofluoroscopic swallowing study (VFSS) and fiberoptic endoscopic evaluation of swallowing (FEES).
The problem with these kinds of studies are their reliance on subjective analysis of data, meaning that
the accuracy of diagnosis greatly depends on clinician’s expertise. High-resolution impedance manometry
(HRIM) provides a more quantitive approach to analysing swallow quality. The altered anatomy of HNC
patients can make it difficult to recognise the different anatomical regions needed to perform this analysis,
however. To solve this issue, we can combine HRIM with VFSS to obtain additional information about the
locations of these sensors and cross-reference these locations with the HRIM data. Cross-referencing the
data from HRIM and VFSS manually is very time-consuming, however, so an automatic way of extracting
the sensor locations from the VFSS video frame is necessary in order to streamline the process. This study
attempts to develop such an algorithm using a ground truth mask containing the manometer as a starting
point. We developed a technique based on adaptive thresholding, which was able to locate these sensors
most of the time (F1-score = F1-score = 87.08 ± 15.55 for IoU ≥ 0.5). We also tried an approach using
template matching but our method of extracting sensor locations from the template matching response map
proved flawed. The adaptive thresholding algorithm was able to accurately determine sensor length (average
error = 1.43 ± 1.13 mm) and sensor centres (average error = 1.08 ± 0.58 mm). Which suggests that the
algorithm described in this study could prove very successful in the future.
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1 List of Abbreviations

Abbreviation Definition

AT Adaptive Thresholding
CLAHE Contrast Limited Adaptive Histogram Equalisation
CT Computer Tomography
FEES Fiberoptic Endoscopic Evaluation of Swallowing
GT Ground Truth
HNC Head and Neck Cancer
HRIM High-Resolution Impedance Manometry
IBP Intrabolus Pressure
IBP-slope Intrabolus Pressure-slope
IoU Intersection over Union
IPP Impedance at Peak Pressure
NI Nadir Impedance
NKI Netherlands Cancer Institute
OD Oropharyngeal Dysphagia
PNI Pressure at Nadir Impedance
PP Peak Pressure
SRG Seeded Region Growing
TM Template Matching
TNI-PP Time from Nadir Impedance to Peak Pressure
VFSS Video-Fluoroscopic Swallowing Study
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2 Introduction

2.1 Clinical Background

2.1.1 Head and Neck Cancer

Head and neck cancer (HNC) broadly refers to cancers found in the oral cavity, sinonasal cavity, pharynx
and larynx (see Figure 1) [1]. It is one of the more common and deadly types of cancer being the sixth
most common type of cancer and making up about 9.3 percent of all cancer deaths in 2024 [2]. Due to the
inherent location of HNC, the tumour itself or its associated treatment can often lead to dysphagia (difficulty
swallowing) [3]. The most common type of dysphagia affecting HNC patients is oropharyngeal dysphagia
(OD) which refers to dysphagia during the oral and/or pharyngeal phase of the swallow [4]. OD can often
result in dysphonia, pain, respiratory obstruction, malnutrition, and an overall decrease in the quality of life
of the patient [5]. So it is very important to properly diagnose OD in order to treat these complications or
prevent further ones.

Figure 1: Schematic view of anatomical structures around the upper aerodigestive tract [1]

2.1.2 Current Diagnostics

The current gold standard in the determination of swallow quality and diagnosis of dysphagia are the
videofluoroscopic swallowing study (VFSS) and the fiberoptic endoscopic evaluation of swallowing (FEES) [3].
VFSS is a real-time radiological study of the oral cavity, pharynx, larynx and oesophagus where the patient
swallows a contrasting agent. This helps clinicians visualise the anatomical structures of the aerodigestive
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tract and dynamics during the swallowing process (see Figure 2) [6, 7]. To diagnose OD, clinicians determine
the swallow quality by looking for certain indicators [6]. Most importantly, VFSS allows for observing if parts
of the bolus pass through the airways and to distinguish between penetration: the bolus enters the larynx but
does not pass the vocal cords; and aspiration: the bolus passes through the vocal cords and enters the inferior
airways. Other examples of indicators in the oral phase of the swallow include: labial competence; lingual
control: the ability of the tongue to move the bolus towards the pharynx; palatoglossal closure: closing of the
passage between the oral cavity and oropharynx by the palatoglossus muscle; presence of fractional deglution;
patient needs to swallow multiple times in order to pass the bolus; and the presence of bolus residue in the
oral cavity after the swallow [6]. Indicators for the pharyngeal phase include: inadequate palato-pharyngeal
closure; triggering of the swallowing reflex when the bolus reaches the base of the tongue; hyoid and laryngial
elevation; epilogical tilting; residue of the bolus in the pharyngeal cavity after the swallow; and abnormaities
in the opening of the upper oesophageal sphincter [6]. VFSS allows for detailed examination of all these
indicators, however this analysis can often be time-consuming [8]. Furthermore, the interpretation of these
studies is subjective, meaning that accuracy of the diagnosis can be greatly influenced by the clinician’s
expertise, often leading to unreliable diagnoses [8].

Figure 2: Two frames from a VFSS video from A) oral phase and B) pharyngeal phase [9]

FEES uses a flexible endoscope to asses the swallow from inside the pharynx, usually with the aid of
coloured liquids or a solid bolus [10]. Due to the constriction of the pharynx, vision is obstructed during
certain points of the swallow. Most notably, this makes it difficult to detect aspiration [11]. Much like VFSS
interpretation of the data obtained from FEES is subjective, making resulting diagnoses inconsistent [12,
13].

2.1.3 High-Resolution Impedance Manometry

High-resolution impedance manometry (HRIM) offers great insight on the pharyngeal and oesophageal func-
tion and provides a more objective approach to characterising dysphagia [14]. HRIM uses a flexible catheter
lined with numerous pressure sensors to measure the pressure and impedance along the pharynx and oe-
sophageal sphincter during swallows [15]. The result of this measurement is a time-pressure plot where the
y-axis indicates the sensor number, an example of which can be seen in Figure 3). From these plots, clini-
cians can derive a multitude of relevant variables including: Nadir impedance (NI): lowest impedance value,
indicating the baseline impedance from the bolus; peak pressure (PP): the maximum recorded pressure;
impedance at peak pressure (IPP): the bolus presence at maximum contraction; intrabolus pressure (IBP):
pressure during luminal emptying; intrabolus pressure-slope (IBP-slope): rate of change of IBP; pressure at
nadir impedance (PNI): IBP recorded when the bolus volume in the lumen is maximum; and time from nadir
impedance to peak pressure (TNI-PP): the time from when the bolus volume in the lumen is maximum until
peak contraction [16, 17]. These values need to be determined for the different anatomical regions involved
in the swallow (see Figure 4) to increase the reliability of HRIM analysis [18].

6



Figure 3: Example of a HRIM time-pressure plot of the pharyngeal and oesophageal phase of the swallow.
The red areas indicate high pressure while blue areas indicate low pressure [19].

Although HRIM is able to provide more objective metrics for the diagnosis of OD, there are a couple
limitations involved in this technique [18]. Firstly, there is currently no way to automatically perform this
analysis. Secondly, the anatomical structures in the pharynx are not round, meaning the resulting pressure
may not be accurate if the catheter is not in the middle. Finally, some data is lost when transitioning from
a visual examination like VFSS and FEES to HRIM, for example it is not possible to detect aspiration or
determine the amount of residue left after the swallow [18]. Another specific challenge with HNC patients is
the fact that, due to the anatomical changes associated with the tumour or its treatments, the time-pressure
plots become misshapen. The result is that it is no longer possible to distinguish the different anatomical
regions needed to accurately determine the swallow quality. An example of this is provided in Figure 4,
where plots of a healthy patient are compared to those of a HNC patient.

Figure 4: Comparison of two HRIM time-pressure plots of A) a healthy patient with distinct anatomic
regions marked and B) a HNC patient with altered anatomy where distinct regions are not clear.

It should be possible to remove this last limitation by combining HRIM with VFSS in order to cross-
reference the sensors in the time-pressure plots of HRIM and their anatomical location in the VFSS. Doing
this manually is a time-consuming process however. Thus, an automated way to cross-reference these sensors
could speed up this process significantly. Ultimately contributing to the automation of simultaneous HRIM
and VFSS analysis, and a better OD diagnosis.
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2.2 Technical Background

Image segmentation is the process of segmenting an image into different regions with the goal of making
them more workable, processable and interpretable [20]. An example of this is given in Figure 5. In the
world of medical imaging, image segmentation allows for more accurate diagnoses and pre-surgical planning
[21].

Figure 5: A simple representation of image segmentation using thresholding (see Section 2.2.1)

Although segmentation approaches based on deep-learning play an important role in the segmentation
of medical images, this study will focus on traditional segmentation approaches due to the relative ease of
their implementation and lower resource consumption [21].

Xu et al. list five main segmentation techniques in traditional segmentation of images: thresholding,
edge-based segmentation, region-based segmentation, clustering-based segmentation and graphic-based seg-
mentation [21]. These techniques along with template matching could be valuable tools in achieving proper
segmentation of the manometer sensors.

2.2.1 Thresholding

Thresholding is a fairly basic technique where pixels of a greyscale image are individually evaluated and
set to either 0 or 1 depending on if the intensity reaches a certain threshold [21]. Thresholding methods
can be divided in two categories: global thresholding and local thresholding, though hybrid methods do
exist. Global thresholding uses a single unchanging threshold for the whole image while local thresholding
employs a variable threshold dependent on the characteristics of surrounding pixels [22]. Local thresholding,
also referred to as adaptive thresholding, offers more control which can increase the segmentation quality in
similar medical images [23].

Adaptive thresholding computes the threshold based on the mean of a specified window size around each
pixel [24]. There are different ways to calculate these means, one such way is the use of Gaussian weights,
where pixels nearer to the centre contribute more than those farther away. This threshold is mathematically
described in equations 1 and 2. Here, b(x, y) is represents the pixel at position (x, y) in the thresholded
image, T (x, y) represents the threshold value for the pixel at position (x, y), W is the window in which the
mean is calculated, G(i, j) is the Gaussian weight assigned to the pixel at position (i, j) in W , I(i, j) is
the greyscale intensity of the pixel at position (i, j) in W , and C is a constant used to manually adjust the
threshold [24].

b(x, y) =

{
0, if f(x, y) ≤ T (x, y)
1, if f(x, y) > T (x, y)

(1)

T (x, y) =
∑

(i,j)∈W

G(i, j) · I(i, j)− C (2)
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2.2.2 Template Matching

Template matching involves comparing parts of the total image with a smaller, predetermined template.
A response map is generated based on which parts of the image are most similar to the template. Differ-
ent template matching algorithms often differ in how they measure the similarity between the image and
the template. For instance, some of the simpler comparison methods calculate the total sum of absolute
differences or cross-correlation coefficients [25].

2.2.3 Pre-Processing Techniques

Before applying any segmentation techniques, we can first apply different methods of pre-processing to
enhance segmentation. A Gaussian blur can be applied to reduce image noise, for example [26]. Another
useful technique is contrast limited adaptive histogram equalisation (CLAHE) [27]. CLAHE can be used
to enhance contrast in an image. It does this by first dividing the image into multiple ’tiles’ and then
redistributing the intensity values within the image to span a wider range of intensities, usually between 0
and 255 [28].

2.3 Related Work

In the world of medicine, image segmentation and object detection are powerful tools for the identification
of certain structures to assist in diagnoses. The aforementioned Xu et al. [21] outline many such examples,
including ones using deep learning. Kiran et al. [23] also outline various segmentation techniques, including
thresholding, clustering, and edge-detection methods, and compare their ability to segment the lungs from
chest X-rays. Larhmam et al. [29] use Canny edge-detection and a generalised Hough transform to determine
the locations of vertebrae in the spine from X-ray images.

For HRIM and VFSS specifically, Geiger et al. [19] have worked on HRIM catheter segmentation and
sensor localisation in VFSS videos for similar purposes as outlined here. Their approach uses template
matching (see section 2.2.2) to determine the highest probability sensor locations with great results. Their
research is focused on sensor localisation during the oesophageal phase of the swallow, however, while this
study focuses solely on localisation during the pharyngeal phase. Furthermore, their particular dataset has
consistent image dimensions and as a result a consistent sensor size between images. We want a way to
automatically determine the sensor length so sensor localisation can be done for a more wide variety of
conditions.

2.4 Research Goal

Despite the fact that HRIM can provide a much needed quantitive approach to OD diagnosis, there are still
limitations that prevent its use in the clinical practice for HNC patients. Firstly, there is the fact that there
is currently no way to automatically analyse HRIM data [18]. Secondly, the anatomical changes caused by
the tumour or its treatment can make it difficult to distinguish the multiple anatomical landmarks during
the swallow, which is a crucial step in determining swallow quality using HRIM [18].

In this study we aim to develop an algorithm that is capable of extracting the HRIM sensor locations
from VFSS video frames in order to cross-reference them to the HRIM data with these locations to make
determining the anatomical landmarks easy and fast. An example of this is provided in Figure 6. In this
study, we will extract the sensor locations from a mask of the HRIM catheter and not the entire VFSS image.
Furthermore, this study will be solely focused on traditional segmentation techniques.
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Figure 6: The sensor locations are detected and labelled in VFSS, then overlaid on the HRIM time-pressure
plots so anatomical landmarks can be easily determined. (The VFSS frame and HRIM time-pressure plot in
this figure are not from the same research or patient so the anatomy/pressure may not correspond perfectly
and are merely used to provide an example of the research goal.)

3 Methods

3.1 Dataset

A total of 102 swallowing videos from 16 patients were provided from the Netherlands Cancer Institute
(NKI). Two frames from each video were randomly selected resulting in 204 video frames. Along with these,
the ground truth mask outlining the catheter was provided (cf. Figure 7) To further test the algorithm in
real-world conditions we obtained the the catheter mask predictions from a different algorithm developed by
Rocha et al. [30].

Figure 7: Example of numerous VFSS frames with the provided ground truth masks overlayed in blue.

3.2 Segmentation Algorithm

The segmentation can be roughly divided into four main steps: pre-processing, adaptive thresholding, tem-
plate selection, and template matching. A general overview of the steps is given in Figure 8. The rest of this
section will be dedicated to explaining each step in more detail.
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Figure 8: A general overview of the segmentation algorithm and its four main steps: pre-processing, adaptive
thresholding, template selection, and template matching.

3.2.1 Pre-Processing

This algorithm assumes that the catheter region has been previously segmented. For testing purposes,
the dataset used for this study contained the original VFSS video frames and their corresponding catheter
annotation masks (see Figure 9). The first step is to prepare our images for processing. Firstly, we apply
Gaussian blur to the image to reduce noise. Then we use Contrast Limited Adaptive Histogram Equalization
(CLAHE) [27] to improve contrast within the image, with the goal to improve sensor visibility (see Figure
10). Applying CLAHE can cause undesired dark patches to appear in the background, so we remove these
patches by setting the intensity of all pixels below a certain intensity value to 255. We do this because the
sensors are darker than the background and we do not want these dark patches to interfere with the next
step: adaptive thresholding. In this step we also obtain the skeleton of the catheter from the mask, that is
to say a list of points describing a line that runs through the middle of the catheter. We use this skeleton in
the next steps.
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Figure 9: Startpoint of the algorithm: A) Original frame from VFSS video B) (Ground truth) mask con-
taining HRIM catheter.

Figure 10: Pre-Processing used for sensor localisation. A) Original VFSS frame. B) Gaussian blur. C)
CLAHE (cliplimit=2).

3.2.2 Adaptive Thresholding

An adaptive thresholding methodology is applied to the contrast-enhanced image. After this, we also limit
the search region by applying the ground truth (GT) mask (cf. Figure 9b). An example of the result is
shown in Figure 11b. We then perform numerous morphological operations to fine-tune the thresholding.
Initially, we use a single morphological closing operation, where all white regions grow in each direction by
one pixel, to get rid of any gaps. Then we perform numerous morphological opening operations, where all
white regions shrink by one pixel. Finally, we apply a final closing operation to isolate each individual sensor.
The result can be seen in Figure 11c. The number of morphological openings can differ between images.
The base value is 4 but if the number of sensors after these operations is too low, which can happen if the
opening operations get rid of sensors entirely, we reduce this number to 3. Conversely, when the number of
sensors detected is too high, this likely means that the current number of morphological opening operations
do not remove the part of the catheter where no sensors are present. To get around this we increase the
number of opening operations to 5. The final closing operations are always performed two times. We also
use thresholded image (cf. Figures 11b and 12a) to compute the orthogonal distance from each skeleton
point to the background. We then use a Savgol filter to reduce noise. The result is a graph like shown in
Figure 12b. Each sensor is an oval shape with two dark bars inside. In the thresholded image this means
that each sensor is connected at a very thin point, and has a small indent in the middle of where the space
between the two dark bars would be. In the plot of these distances (cf. Figure 12b) this translates to an
”M”-like shape for each sensor. By detecting each of the lower valleys in the graph, we can estimate the
sensor length lsens by taking the median of the distances between these valleys.
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Figure 11: An example of a frame where adaptive thresholding is applied: A) Contrast-enhanced image
obtained through CLAHE. B) Adaptive threshold with windowsize = 31, c = 2 (see Section 2.2.1) after
limiting the search region with the ground truth mask (cf. Figure 9b). C) Adaptive thresholding after
morphological operations: 1x closing, 3x opening and 2x closing.

Figure 12: Orthogonal distance from the skeleton to the background: A) Numerous sensors where the
orthogonal distance from the skeleton (red) to the background is visualised with blue lines. B) All distances
plotted against their corresponding position along the skeleton, filtered with a Savgol filter. Each sensor is
indicated by a red bracket.

We can now simplify the problem of locating each sensor by plotting the intensity of the thresholded
image after performing the morphological operations (cf. Figure 14) for each point in the skeleton (cf. Figure
13). From this plot we can easily infer the start- and endpoints of each segment. So now we only need to
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consider the intensity values for the points in the skeleton, effectively reducing the problem to one dimension.
Each segment does not directly translate to one sensor, however. Sometimes these morphological operations
can cause sensors to split in two or merge together (cf. Figure 11c) in the thresholded image, so we use
lsens to determine when to group these segments together or split them apart. We also determine when we
detect only half a sensor, by looking if we have a single shorter segment next to a larger gap. We can also
use this plot to further refine the number of morphological closing operations by determining the length of
each detected segment, and inferring if the segmented image contains more half sensors than whole ones
(determined by the estimated sensor length). In that case, we apply an additional morphological closing
operation.

Figure 13: Plot of pixel intensity of the thresholded image after morphological operations (cf. Figure 2c) for
each point in the skeleton.

Figure 14: An example of splitting and merging of thresholded segments is necessary. The red dots denote
the centres of the detected sensors. A) An example of a merged segment where we need to apply splitting.
B) An example of multiple split segments where we need to apply merging.

As a final check we plot the intensity of the contrast-enhanced (CLAHE) image along the skeleton within
each individual detected sensor (cf. Figure 15). Each sensor contains within it a dark-light-dark pattern (cf.
Figure 15a). We want to make sure that the sensor we detected is actually a sensor. To do this we take
the main peak and valleys from this intensity plot (cf. Figure 15b) and calculate the difference in intensity
between the peak and the average of the valleys. When this difference is large enough we know this is a valid
sensor.
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This check mainly exists to remove the false positives on the part of the catheter where no sensors are
present (cf. Figure 9a). This is only the case in before the first sensor on the catheter, so we only need to
perform this check until we detect two valid sensors. We need to detect two to account for the reference
sensor (cf. Figure 9a).

Figure 15: A) Example of HRIM sensor after applying CLAHE, clearly displaying the dark-light-dark pattern.
B) Intensity of contrast-enhanced image along a part of the skeleton corresponding with a single sensor. The
main peak is denoted by the green dot and the main valleys are denoted by the red dots.

3.2.3 Template Selection

In order to perform template matching, we first need to obtain the templates. As opposed to the work
of Geiger et al. [19], we propose an automated template selection algorithm. For this, we refer back to
the graph in Figure 15. We can use the sensor intensity plot to quantify the sensor quality, based on four
parameters:

1. The difference in intensity between the peak and the average of the valleys Ipeak; this should be
maximized.

2. The difference in intensity between the two main valleys Ivalleys; this should be minimized.

3. The difference in the distance between the first valley to the peak and the distance between the second
valley to the peak xvalleys; this should be minimized.

4. The distance from the main peak to the centre of the plot xpeak; this should be minimized.

We use these values to assign each possible template a score and take the three highest-scoring templates.
Equation 3 shows how these scores are calculated. w represents the weight of these parameters. We use: w1

= w2 = w3 = 1 and w4 = 2. The three best templates of the example frame are shown in Figure 16.

Score = w1 · Ipeak − w2 · Ivalleys − w3 · xpeak − w4 · xvalleys (3)
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Figure 16: Templates extracted from the contrast enhanced-image (CLAHE) using the described algorithm.

The templates are then pre-processed to make sure they can be used for template matching. Since we
will use python OpenCV’s matchTemplate function, which does not have the ability to perform rotation-
invariant template matching, we need to rotate the templates on our own. We obtain rotated forms of each
template for a range between 0◦ and 180◦ with increments of 5◦. We then pad each template for all rotations
so all templates are the same size. This ensures the output of template matching is also always the same
size. We also create a mask for each rotation so that we only use the non-padded parts of the image for
template matching.

3.2.4 Template Matching

We use the templates obtained in the previous step and perform template matching on the contrast-enhanced
(CLAHE) image by comparing the cross-correlation coefficient across all templates and rotations. For each
pixel, we take the highest intensity value of all rotations and then take the average of all templates, resulting
in a response map (cf. Figure 17a). To improve contrast in the response map, we remove all pixels below
a certain intensity threshold and normalise the remaining values(cf. Figure 17b). Finally, we threshold the
image to get the highest cross-correlation values along the search region defined by the GT mask (cf. Figure
9b). The result is shown in Figure 17c.

Figure 17: An example of a frame where template matching is applied: A) The template matching response
map in which each pixel represents the maximum value across all rotations and the average across all
templates. B) The response map after normalising the values. C) The response map after limiting search
area with ground truth mask (cf. Figure 9b) and applying a threshold

Then, to once again simplify the problem of sensor localisation, we turn the problem one-dimensional by
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taking the centres of all segments and compute the closest point within the skeleton. Next, we check the
validity of each sensor. We do this by making predictions of where we think other sensors will be based on
the average distance between points. We make three predictions on both sides of each segment and calculate
if another sensor is present within a certain distance of the predictions. We give each segment a score based
on how many predictions are within a certain distance of another detected segment in the response map.
If two or more predictions are within acceptable range of another segment in the response map, we assume
they are correct. If, after this, a two segments are still within a half lsens distance to each other, we remove
the segment with with fewer accurate predictions.

After removing all false detections, we can start inter/extrapolating the remaining sensors. We calculate
the number of sensors that need to be inter/extrapolated based on lsens. For extrapolation, the first and
last sensors detected using adaptive thresholding are used to set the boundary regions where extrapolation
is needed.

3.3 Validation

The bounding boxes were manually annotated for all 204 frames from the VFSS videos. These bounding
boxes were compared to those given by the algorithm output using the intersection over union (IoU) metric
(see Figure 18). When the IoU exceeds a predetermined threshold, the detection is considered correct. Using
this we can calculate a number of parameters: the precision, recall and F1-score (Equations 4-6). Precision
represents the amount of retrieved items that are correct, while recall (or sensitivity) represents the amount
of correctly detected items. The F1-score is the harmonic mean between precision and recall.

We also calculate: the average distance between the centres of the true positive bounding boxes and
ground truth bounding boxes for IoU ≥ 0.5, the error in the estimated sensor length lsens, and the accuracy
of the number of sensors detected without considering IoU (see Equation 7). The segmented frames are also
manually inspected to ensure the results are accurate and representative.

We compute these parameters for four different algorithms:

• A baseline algorithm using only adaptive thresholding (only the steps described in Section 3.2.1 and
3.2.2) that also uses a manual length estimation method instead of the one described in Section 3.2.2,
where the estimation is made by multiplying the image dimensions with a manually determined refer-
ence length.

• An algorithm using only adaptive thresholding with the ground truth mask.

• An algorithm that also uses the template matching steps described in sections 3.2.3 and 3.2.4.

• An algorithm that uses adaptive thresholding with the mask predictions instead of the ground truth
masks.

precision =
true positive

true positive + false positive
(4)

recall =
true positive

true positive + false negative
(5)

F1 =
2 · precision · recall
precision + recall

(6)
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Figure 18: Intersection over Union of two bounding boxes.

Accuracy =
true positive

true positive + false positive + false negative
(7)

4 Results

For the results we make distinction between four different methods in the same way as described in Section
3.3. Again, they are:

• A baseline algorithm using only adaptive thresholding (only the steps described in Section 3.2.1 and
3.2.2) that also uses a manual length estimation method instead of the one described in Section 3.2.2,
where the estimation is made by multiplying the image dimensions with a manually determined refer-
ence length. (AT-est).

• An algorithm using only adaptive thresholding with the ground truth mask (AT).

• An algorithm that also uses the template matching steps described in sections 3.2.3 and 3.2.4 (TM).

• An algorithm that uses adaptive thresholding with the mask predictions instead of the ground truth
masks (AT-pred).

In Table 1 we see that the sensor length detection algorithm is able to estimate the rough size of the sensors,
with an average error of 5.75 ± 4.79 pixels or 1.43 ± 1.13 mm when using the ground truth mask. The results
are very similar when using the mask predictions with an average error of 1.43 ± 1.12 mm. We also see that
the error in the centres of the correctly identified sensors (IoU ≥ 0.5) are fairly small, with an average of
1.08 ± 0.58 mm for the ground truth masks and 1.39 ± 0.73 mm for the predicted masks. The template
matching algorithm performs worse in this aspect with an average error of 3.70 ± 2.35 mm. The same is
true for the sensor count accuracy where AT and AT-pred perform relatively equally with an accuracy of
94.02 ± 7.40% and 92.51 ± 9.48% respectively but TM only has an accuracy of 83.90 ± 19.41%.

Table 1: The error in the estimated sensor length, accuracy of the number of detected sensors, and the
average distance between the centres of the true positive detected sensors (IoU ≥ 0.5) and ground truth.

Method Sensor Length Er-
ror (pixels)

Sensor Length Er-
ror (mm)

Sensor Count Accu-
racy (%)

Sensor Centre Er-
ror (mm)

AT 5.75 ± 4.79 1.43 ± 1.13 94.02 ± 7.40 1.08 ± 0.58
TM ” ” 83.90 ± 19.41 3.70 ± 2.35
AT-pred 5.71 ± 4.83 1.43 ± 1.12 92.51 ± 9.48 1.39 ± 0.73

Table 2 shows the precision, recall, and F1-score for different IoU thresholds for each method. The
performance of the adaptive thresholding is very similar to the algorithm using manual length estimation
with an F1-score of 88.21 ± 13.02% and 88.20 ± 12.32% respectively when IoU ≥ 0.5. The algorithm using
the mask predictions instead of the ground truth masks has a slightly lower F1-score of 86.18 ± 14.48 when
IoU ≥ 0.5. The template matching performs much lower than all other algorithms with an F1-score of 65.35
± 37.11 for IoU ≥ 0.5. This pattern persists trough all IoU thresholds.
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Table 2: Precision, recall and F1-score for different IoU thresholds organised per method.
Method IoU Threshold Precision (%) Recall (%) F1-Score (%)

AT Manual 0.50 88.79 ± 11.68 87.95 ± 13.65 88.20 ± 12.32
Length 0.55 84.94 ± 13.65 84.14 ± 15.18 84.38 ± 14.13
Estimation 0.60 77.93 ± 15.57 77.22 ± 16.74 77.43 ± 15.94
(AT-est) 0.65 66.28 ± 17.97 65.73 ± 18.79 65.88 ± 18.21

0.70 53.81 ± 19.20 53.44 ± 19.80 53.52 ± 19.36
0.75 38.73 ± 18.59 38.54 ± 19.07 38.57 ± 18.75

Adaptive 0.50 88.72 ± 12.90 88.04 ± 13.91 88.21 ± 13.02
Thresholding 0.55 85.16 ± 14.36 84.51 ± 15.22 84.67 ± 14.46
(AT) 0.60 78.45 ± 15.65 77.87 ± 16.36 78.02 ± 15.75

0.65 67.70 ± 17.08 67.25 ± 17.72 67.35 ± 17.19
0.70 55.11 ± 18.30 54.80 ± 18.85 54.86 ± 18.42
0.75 39.50 ± 18.16 39.33 ± 18.41 39.35 ± 18.19

Template 0.50 63.90 ± 37.38 65.35 ± 37.11 64.40 ± 37.06
Matching 0.55 60.79 ± 36.86 62.10 ± 36.44 61.24 ± 36.47
(TM) 0.60 55.89 ± 35.20 56.99 ± 34.83 56.27 ± 34.85

0.65 49.61 ± 32.83 50.48 ± 32.52 49.90 ± 32.54
0.70 40.66 ± 28.60 41.25 ± 28.34 40.85 ± 28.36
0.75 30.51 ± 23.14 30.94 ± 22.95 30.64 ± 22.96

AT Mask 0.50 86.29 ± 14.81 86.79 ± 15.08 86.18 ± 14.48
Prediction 0.55 82.80 ± 15.67 83.45 ± 16.15 82.80 ± 15.60
(AT-pred) 0.60 76.25 ± 17.05 76.74 ± 17.32 76.21 ± 16.98

0.65 65.19 ± 18.10 65.72 ± 18.56 65.21 ± 18.14
0.70 51.89 ± 17.22 52.46 ± 17.95 51.98 ± 17.44
0.75 35.12 ± 16.72 35.48 ± 17.34 35.17 ± 16.91

Figure 19 shows the same precision, recall and F1-scores as Table 2 plotted against their respective IoU
thresholds. Additionally, this figure shows a histogram of the relative counts each F1-score is measured for
IoU ≥ 0.5. For AT and AT-pred the F1-score drop below 0.80 when the IoU threshold becomes greater than
0.55. For all methods, we see that the precision, recall and F1-scores drop-off significantly when the IoU
threshold becomes greater than 0.6. The histogram of AT shows that most F1-scores seem to accumulate
above 0.80 and it shows the peak value at being in the 0.99-1.00 range when IoU ≥ 0.5. The same is true
for AT-pred. For template, matching however, we stull see some accumulation above the 0.80 range but the
peak value is instead in the 0.00-0.01 range.
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Figure 19: Column 1 shows the precision, recall and F1-score plotted against different IoU thresholds with the
standard deviation plotted for the F1-scores for the adaptive threshold algorithm (AT), template matching
algorithm (TM) and adaptive thresholding with mask predictions (AT-pred). Column 2 shows a histogram
with the normalised counts of each F1-score for IoU ≥ 0.5 for each method.

The results of sensor localisation is shown for some example frames in Figure 20. In Figure 20a, we see an
example of very good sensor localisation with an F1-score of 1.0 for both adaptive thresholding and template
matching when IoU ≥ 0.5. Figure 20b contains some mistakes for both algorithms: AT misses one sensor
and TM has some misaligned sensors. Sensors are also being detected outside the region of interest in both
cases. Regardless performance is still relatively good with an F1-score of 0.82 for AT and 0.70 for TM when
IoU ≥ 0.5. In Figure 20c, we see that, while the rest of the sensors are identified correctly, the first sensor
is misaligned for AT resulting in an F1-score of 0.95 when IoU ≥ 0.5. This error is not present in TM but
the F1-score is still 0.95 when IoU ≥ 0.5.
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Figure 20: Some examples of segmented images. The first two columns show the results for adaptive
thresholding and the latter two columns the results for template matching. The first column of both methods
show the original VFSS frame with ground truth bounding boxes in green, the detected sensors in red and
the reference sensor, which is part of the ground truth, in blue.

Some more examples of sensor localisation is shown in Figure 21, where the performance of the different
algorithms is shown under different conditions. Figure 21a shows the sensor localisation in a frame with high
levels of motion blur, Figure 21b shows the localisation for a frame where the bolus obstructs a large part
of the HRIM catheter and Figure 21c shows the localisation for a frame where a foreign object obstructs
a part of the catheter. In Figure 21a, the adaptive thresholding algorithm makes a minor mistake around
a part of the catheter where there is some bolus residue but this mistake is not present when using the
mask predictions or template matching. AT does detect some false positives, however. All algorithms seem
to struggle at the around the bolus in Figure 21b but the other sensors in this frame are mostly identified
correctly by AT and AT-pred. In Figure 21c, some errors are present but none near the implant.
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Figure 21: Some examples showing the sensor localisation of the algorithm using adaptive thresholding (AT),
template matching (TM), and AT with mask predictions (AT-pred) under different different conditions. A)
A frame with heavy motion blur artifacts. B) A frame where a the bolus obscures a large part of the catheter.
C) A frame where a jaw implant obscures part of the catheter.

22



5 Discussion

The objective of this study was to develop an algorithm capable of reliably locating HRIM sensors from a
VFSS video frame. The AT algorithm alone managed to achieve an F1-score of 88.21 ± 13.02 when IoU ≥
0.5 (see Table 2) which indicates that the outlined algorithm can locate these sensors a majority of the time.
Furthermore we tested this same algorithm using the predictions of the catheter mask from the paper by
Rocha et al. [30] instead of the ground truth mask and it still performed roughly the same with an F1-score
of 86.18 ± 14.48, meaning that the algorithm still performs well when this mask is imperfect. These results
are comparable to those achieved by Geiger et al. [19], who used an algorithm based on template matching
to localise sensors. We also tested an approach using template matching which uses templates extracted
using the adaptive thresholding algorithm. This approach yielded much lower results, however. Achieving
an F1-score of merely 65.35 ± 37.11 when IoU ≥ 0.5 (Table 2). A major contributor to this is the fact
that no sensors are being detected at all in most frames (see Figure 19). This is most likely caused by a
combination of an overly simple sensor detection method and a flawed scoring system (see Section 3.2.4).

The scoring system that is in place now gets rid of all or too many sensors for most frames making
inter/extrapolation impossible or unreliable, due to the increased number of sensors that need to be in-
ter/extrapolated. Furthermore, the method for obtaining the points used for this inter/extrapolation is
flawed as well. The current algorithm uses a simple threshold over the normalised result matrix after tem-
plate matching. This works alright in some cases but fails in others (see Figure 20) but we believe an
approach similar to that used by Geiger et al. [19] would work better: They detect the highest intensity
point and look for the next highest point within a certain distance. We suggest an approach that follows the
same basic principle: Look for the highest intensity point and look for a local maximum around the same
distance away as the estimated sensor length. This could be further enhanced by weighting these points by
their distance to points found in the adaptive thresholding phase of the algorithm.

That being said, the adaptive thresholding step also has room for improvement. The backbone of the
entire algorithm are the adaptive thresholding and the following morphological operations. The current
algorithm applies morphological operations globally on all segments but an approach that applies open-
ing/closing on segments individually until they are the right size, based on the estimated sensor length. This
could prevent sensors splitting in half, merging with other sensors or being removed entirely. This would
also ease the reliance on the splitting/merging step of the AT algorithm, which is one of the main points of
error during this step. Namely problems occur when a short (half) segment is followed by a large (merged)
segment. This would imply that the other half of the segment is merged with the other segment but the
current algorithm fails to account for this, ignoring the smaller segment and mistaking the larger segment
for a single sensor.

These types of mistakes can also cause problems further down the catheter. The merging of segments
during the adaptive thresholding step (see Section 3.2.2) only considers the length of the sensors and not
their relative position to other sensors. This means that it is possible for the algorithm to merge the end of
one sensor with the start of another when these types of mistakes occur. Implementing this adaptive way of
executing morphological operations would also improve the length estimation algorithm since there would
be fewer shorter or longer segments (cf Figure 14) that throw off the mean/median. This could also prevent
cases like shown in Figure 20c where the first sensor is offset. This happens when the first sensor is split
in the thresholded because the algorithm assumes this is the latter half of a sensor due to the large space
without sensors before this first segment.

Although these issues should be resolved before any serious clinical application, the AT algorithm proves
promising as a way to locate sensors even in suboptimal conditions such as high levels of motion blur (cf.
Figure 21). The algorithm does struggle when large obstructions, such as those caused by the bolus, are
present but it is expected that a similar template matching methodology to that of Geiger et al. [19] could
help resolve this issue, as demonstrated by the authors. The AT algorithm is still important, since it allows
for the extraction of templates from the image itself, allowing for sensor localisation in a wider variety of
conditions, such as different HRIM measurement devices.

This research has tested the algorithm on multiple random frames from different videos but in a real-
world context, we would need to locate sensors throughout an entire video. This would make it possible
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to compare each frame to past and future frames to further improve sensor localisation. This research has
also exclusively focussed on traditional segmentation techniques. Although research on the segmentation
of individual HRIM sensors in VFSS videos is not widespread, the paper by Xi et al. [31] about detecting
catheters and electrodes in X-rays of the heart demonstrates that locating sensors using deep-learning is a
viable option and should be explored further. An approach using a YOLO or U-net network, for example,
could prove successful [32, 33].

Still, the algorithm described in this study provides a promising way of HRIM sensor localisation in
VFSS frames. Although there are still some issues, the algorithm is accurately able to detect the size of
these sensors with both the ground truth mask and mask predictions with an average error of 1.43 ± 1.13
mm and 1.43 ± 1.12 mm respectively. This algorithm also is able to detect the location of the sensors very
well with an average error in the centre of the sensors locations of 1.08 ± 0.58 mm for the ground truth
mask and 1.39 ± 0.73 mm for the mask predictions. This proves that the algorithm described in this study
could prove very successful if the problems described here are solved.

6 Conclusion

In this study we aimed to develop an algorithm to locate the individual sensors of a HRIM manometer from
a VFSS video frame. We developed an algorithm based on adaptive thresholding and expanded on this same
algorithm by implementing template matching. The adaptive thresholding algorithm was able to locate the
sensors in a majority of cases (F1-score = 87.08 ± 15.55 for IoU ≥ 0.5). Although template matching seems
to be a promising way to improve on this algorithm further, our approach to extracting sensor locations
from the response map was proved to be flawed resulting in lower performance (F1-score = 63.28 ± 36.67
for IoU ≥ 0.5). A new way locating sensors from the template matching response map should be found and
implemented. Numerous improvements should also be made to the adaptive thresholding algorithm. Most
notably, a more adaptive way of executing morphological opening/closing should be implemented during
this step. We also suggest comparing each frame with past and future frames to more accurately determine
sensor locations. Furthermore we suggest that research be done in implementing a deep-learning based
approach to sensor localisation. Still, the algorithm described here was able to accurately determine the
sensor length with an average error of 1.43 ± 1.13 mm and the sensor centres with an average error of 1.08
± 0.58 mm. This suggests that the algorithm described by this study has the potential to be very successful
if the suggestions described are implemented.
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