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Abstract 

Wearables have become widely used tools in ambulatory psychophysiological research 

and stress research. However, concerns remain about their accuracy in measuring stress-

related responses, especially electrodermal activity (EDA), since the wrist placement can 

hinder accurate measurements due to a lower density of sweat glands. Therefore, multiple 

studies have tried to validate these devices, finding issues in the sensitivity for smaller 

stressors. Using Virtual Reality (VR) for this validation offers a safe, standardised way to test 

stress responses, especially when using more acute stressors. Therefore, this study aims to 

validate the accuracy of the Embrace Plus in measuring EDA compared to a golden standard 

using the three-level framework from Van Lier et al. (2019) including the signal level (overall 

shape and timing), the parameter level (accuracy of measured parameters) and the event level 

(across scenarios). The participants were exposed to the VR version of the TSST and a virtual 

height exposure scenario. As expected, at the signal level, agreement between the devices was 

low (M=0.05). At the parameter level, the Embrace Plus underestimated all three parameters, 

with the number of SCRs being the most accurate, with a moderate agreement, against 

previous expectations. For the event-level, responses for the phases were detected by the 

wearable, but the responses were significantly less prominent. All in all, the results suggest 

that the Embrace Plus consistently underestimates EDA and cannot accurately detect all 

trends. These results may be caused by a misalignment of the devices, caused by a temporal 

difference between the two.   
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Validating Accuracy of Embrace Plus in Measuring Electrodermal Activity During VR 

Stress Induction. 

Over the past few years, emotional stress has increased worldwide, with around 30-

50% of the population reportedly experiencing psychological stress (Piao et al., 2024). These 

numbers highlight the urgent need to address this global issue. One advancement in this field 

is the development of wearable devices that measure physiological and behavioural stress 

responses (Roos & Slavich, 2023). Monitoring physiological activities like electrodermal 

activity (EDA) can improve individuals' stress management skills by improving their ability 

to control certain stress responses (De Witte et al., 2019; Dillon et al., 2016).  While these 

wearables can measure multiple stress responses, EDA is one of the most reliable 

physiological parameters to measure when looking at stress responses (Hanshans et al., 2024) 

and is seen as a valuable biomarker for stress management (Klimek et al., 2023). However, 

the increasing use of wearable technology raises the question of whether these devices are 

similarly accurate in measuring stress as gold-standard devices, which are validated in 

accuracy. Studies have found that wrist-worn wearable devices might suffer from a reduced 

quality due to fewer responses, a lower number of sweat glands on the wrist, and potential 

movement artefacts (Menghini et al., 2019; Van Lier et al., 2019). Therefore, testing the 

accuracy of these devices in controlled settings is essential. Virtual reality (VR) is a 

technology able to create stress-inducing scenarios that simulate real-life experiences while 

being standardizable and controllable (Halbig & Latoschik, 2021; Van Dammen et al., 2022).  

While stress is a natural human response to challenges or threats, and can even be 

helpful in small amounts, too much of it can cause both physical and mental health problems 

such as anxiety, depression, heart diseases and high blood pressure (World Health 

Organization [WHO], n.d.; Mayo Clinic, n.d.). There has been some research into 

interventions that are effectively able to improve stress management by using biofeedback 

from EDA (De Witte et al., 2019). An invention with smartphone games applying biofeedback 

to teach users stress management skills showed that monitoring one’s EDA level makes it 

easier for individuals to control their stress responses and can help teach relaxation techniques 

(Dillon et al., 2016).  

EDA refers to fluctuations in the electrical conductance of the skin caused by sweat 

gland activity, influenced by the sympathetic nervous system (SNS) (Texas Instruments [TI], 

2023). Activity in the SNS is an important indicator of stress levels (De Geus & Gevonden, 

2024), and to analyse the activity in the SNS, Boucsein (2012) defines two activities that are 
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measured in EDA. The slow tonic shifts in the basal skin conductance level (SCL) and faster 

phasic transient events are both influenced by emotional stress. They argue that, firstly, from 

the tonic shifts, the mean SCL of a certain defined period is often looked at for analysing the 

general arousal state. Secondly, for the phasic component, the focus lies on the skin 

conductance responses (SCR). For this component, commonly analysed features include the 

number of SCRs and the total SCR amplitude. The number of SCRs analysed in a given time 

window acts as a frequency-based measure of activity in the sympathetic nervous system, 

providing insights about how often responses are triggered in a certain condition. The total 

SCR amplitude sums the amplitudes of all detected SCRs in a certain period and integrates 

both the frequency and the size of responses. This parameter is a quantification of the overall 

magnitude of phasic activity and can be used to compare the overall reactivity across 

conditions or devices. Both components of EDA are widely used in studies measuring 

emotional arousal (Lang et al., 1993). 

Since the development of wearable devices, interventions aiming to improve stress 

management have become even more accessible and with only low costs (De Witte et al., 

2019). Due to easier accessibility and generally larger acceptance of participants, wearables 

like watches are very prominent on the market (De Geus & Gevonden, 2024). Wearable 

technology has shown to be an innovation for research in psychophysiology, especially in 

assessing stress reactivity (Van der Mee et al., 2021).  If wearable EDA sensors could achieve 

similar accuracy comparable to other measurement techniques, they could potentially improve 

our ability to monitor chronic stress in daily life (Klimek et al., 2023).  Another advantage of 

these devices could be to make monitoring of patients easier and improve stress management 

techniques (Cahill et al., 2007, as cited in Klimek et al., 2023).  

However, the accuracy of these devices is still questionable (Mühlen et al., 2021). De 

Geus and Gevonden (2024) list several issues with EDA recording of wearable devices, 

including a smaller sweat gland density at the wrist, leading to a limited level of electrodermal 

activity and a more prominent thermoregulatory sweating than emotional sweating. 

Additionally, sensor placement remains a critical factor, as even slightly different placements 

could already disturb the signal processing (Klimek et al., 2023). There is, however, not 

enough validation of wearables to date, and therefore, it is very important to accurately 

validate wrist-worn EDA sensors and make their usage as easy as possible. 

Van Lier et al. (2019) developed a framework to validate wearable devices using a 

comprehensive protocol at three levels. Firstly, the Signal level determines whether the 
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overall shape and timing of the EDA signals from the wearable match that of the gold 

standard device. Next, the Parameter Level aims to assess agreement between the obtained 

parameters and is used to check whether the data from the wearable is useful in measuring 

stress responses. Lastly, the event level is used to determine whether the device can 

distinguish between different conditions. Van Lier et al. (2019) used their framework to 

validate the accuracy of the Embrace Plus and found that the total amplitude of skin 

conductance responses was valid at the event level. This was particularly true when assessing 

strong, sustained stressors. However, there were also some limitations of the wearable found 

such as  the limited sensitivity of the devices causing them to not reliably detect minor 

stressors. Additionally, the application of the framework found that there are multiple factors 

that can affect the accuracy of the measures, such as the placement of the sensor and 

environmental factors.  

Secondly, van der Mee et al. (2021) used wrist-worn devices with dry electrodes and 

compared the measurement with traditional palm-based wet electrodes using multilevel 

modelling. The findings indicate that wrist-based EDA measurements are feasible, but these 

devices tend to show lower absolute skin conductance levels (SCL) and non-specific skin 

conductance response (ns.SCR) frequencies than palm-based measures (Van der Mee et al., 

2021). Moreover, when comparing the within-subject correlations, correlations between the 

two measures were only modestly significant (Van der Mee et al., 2021). This indicates that 

wrist-worn devices may have limitations in accurately capturing rather subtle changes in 

sympathetic nervous system activity (Van der Mee et al., 2021). This outlines the need to 

compare different levels of stress. 

While the aforementioned studies were able to test the accuracy of wearable devices in 

experimental conditions, Klimek et al. (2023) argue that lab data and outcomes are often not 

translatable to daily life situations. Combined with the aforementioned issue of sensitivity, 

this suggests a need for more immersive and acute stress scenarios to simulate real-world 

stress responses to better assess the accuracy of wearables. Virtual reality (VR) offers a 

promising solution because it can create a measurable, stress-inducing environment that helps 

comparative validation of wearable and traditional EDA measures (Van Dammen et al., 2022). 

The advantages of a VR setting lie in the variability of possible stressful situations to place 

the participant in (Van Dammen et al., 2022). Using VR instead of regular, lab-based stress 

induction ensures that one can follow ethical guidelines when putting people in stressful or 

life-threatening situations, which are acute stressors that are deeply rooted in our physiology 

(Shirtcliff et al., 2024). Depending on the reaction that is to be measured, one can tailor the 
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experience in the VR setting to get the most accurate results and ensure standardizability of 

these stress measures (Van Dammen et al., 2022 

This research uses VR-based stress simulation to assess the Embrace Plus watch’s 

accuracy in measuring EDA. VR will simulate diverse stress scenarios, including social 

pressure and height-induced fear, as well as baseline and relaxation recordings. Signals from 

the Embrace Plus will be compared to a gold standard reference device using the three-level 

validation protocol of van Lier et al. (2019). The primary research question guiding this study 

is: How accurately does the Embrace Plus watch measure the physiological stress response 

EDA compared to gold-standard laboratory measures across signal, parameter and event 

levels, as outlined by van Lier et al. (2019) in VR-based stress experiments?   

Based on the aforementioned findings in previous studies, it is hypothesised that the 

Embrace watch may not measure more subtle stress responses accurately, but strong changes 

in the sympathetic nervous system and can report only intense stressors. Additionally, it is 

suggested that the smart watch underestimates SCL and ns.SCR frequency, while the 

measurement of the total amplitude of the SCRs will be the most accurate when compared to 

the BIOPAC. 

Methods 

Design 

This study has a within-subject experimental design and tests the accuracy of the 

Embrace Plus in measuring EDA using a three-level validation framework as proposed by van 

Lier et al. (2019). For an overview of the protocol, see Figure 1. The participants were 

exposed to two different VR-based stress-inducing scenarios introduced in a random order 

and a relaxation scenario. During these scenarios, their EDA responses were measured using 

the Embrace Plus watch and the BIOPAC MP160 System as a gold-standard lab device 

(Empatica, 2019; BIOPAC Systems, Inc., 1989). These signals were later analysed across the 

signal, parameter and event level to assess the validity of the wearable device. 

Figure 1 

Overview of the analysis protocol by Van Lier et al. (2019) 
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Participants 

Participants were recruited using convenience sampling and were directly approached 

by the researchers or took part using the Sona system, from which they gained 3 Sona credits. 

One of the inclusion criteria was for them to be above the age of 18. Additionally, the 

participants had to be able to speak and understand English fluently. Participants had to satisfy 

some relevant health criteria because otherwise, the physiological responses could interfere 

with the data. They were excluded if they had a diagnosed heart disease or if they were taking 

medication that influences the autonomic nervous system. These medications include Beta-

blockers, anti-sweating medications (acetylcholine blockers), heart rhythm stabilisers, 

tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors or selective serotonin 

reuptake inhibitors. Anti-sweating medications, for example, could change the EDA response 

of the participant and therefore affect the data and hinder the detection of stressors.  

Materials 

Wearable 

In this study, the Embrace Plus watch was used as the main wearable data collecting 

device. The Embrace Plus watch is a wearable device that measures Electrodermal activity 

(EDA), skin temperature, heart rate and heart rate variability using a photoplethysmogram 

(PPG), and physical activity using an accelerometer (Empatica, 2019). This paper focusses on 

the measures of EDA only.  
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Gold standard 

The BIOPAC MP160 system was used to measure an accurate, gold standard signal of 

EDA, ICG, ECG and movement (BIOPAC Systems, Inc., 1989). These values are compared 

to those of the wearable devices. For this paper, however, only the EDA signals are relevant. 

EDA was measured using Bionomadix EDA sensors and a PPGED-R receiver (BIOPAC 

Systems, Inc., 2010). The software AcqKnowledge was used to collect and save the data from 

the BIOPAC.  

Virtual Reality (VR) 

In this study, the Meta Quest 3 headset was used to put the participant in different VR 

scenarios (Meta, 2023). Meta Link was used to connect the VR headset to the computer so 

that the researchers could tailor the scenario that the participant is put in. Moreover, Unity 

was used to synchronise the VR scenarios with the Acqknowledge program. It did automatic 

timestamps for every part of the study. 

Procedure 

As beforementioned, this paper was part of a bigger study, and for a concise and clear 

overview of this part of the study, only the relevant parts are mentioned. Before coming to the 

lab, participants were asked to sign the informed consent form and to fill in a brief 

questionnaire about some background information, including gender, age and ethnicity, and 

their dominant hand.  When arriving at the lab, participants were asked if they had any more 

questions about the informed consent form or the study itself. After that, they were informed 

that they could at any point stop the experiment in case they were getting uncomfortable. To 

start with the study, the Embrace Plus watch was placed on the non-dominant wrist above the 

wrist joint. Next, the BIOPAC EDA electrodes were attached to their non-dominant hand on 

the middle and ring fingers. These were dry EDA electrodes, and isotonic gel was applied to 

them to ensure a good signal. The electrodes were attached to the intermediate phalanges and 

secured using tape (see Figure 2). In order to build up some sweat so that the electrodes work 

better, the participants were asked to go up and down the stairs five times. Once all measures 

were attached to the participant, the participant was asked to do a set of movements for data 

synchronisation. These included putting the arms five times up and down and bending them 

from side to side.  

Baseline measures 



9 
 

After that, baseline measures were taken. The participant was asked to read aloud a 

neutral text for three minutes and to fill out some additional questionnaires about sleep and 

physical activity; however, these were not relevant for this study. Next, the participant was 

asked to stand, sit and lie down still for two minutes, also regarded as a baseline recording. 

Once the participant was done with the baseline measures, they were placed in VR, and again, 

there were baseline measures taken while standing and sitting while wearing the VR headset 

for two minutes. After these measures, the participant was exposed to two different stress-

inducing scenarios in VR. The order of these scenarios was randomised.  

Trier Social Stress Test (TSST) 

One of them was to resemble social stress. For this, a VR version of the Trier Social 

Stress Test (TSST) (Kirschbaum et al., 1993) was used. This test is used as the gold standard 

for assessing acute stress in a laboratory setting (Allen et al., 2017). The TSST was previously 

tested in a VR setting and was able to ensure greater efficiency and standardisation of this test 

(Shiban et al., 2016). Both the in vivo and the VR version of this TSST are proven to reliably 

evoke physiological stress responses (Shiban et al., 2016). The TSST is done by initiating a 

job interview scenario in which the person is asked to prepare for five minutes to hold a five-

minute speech for their dream job, talking about their strengths and weaknesses. The 

participant is then asked to hold this five-minute speech in front of three judges. After the five 

minutes, the participant is asked to continuously subtract the number 7 from 1022 for five 

minutes, in which every mistake or if they are too slow leads to them having to start over from 

1022. During both the speech part and the math portion, the experimenter was able to trigger 

prerecorded audio phrases that the VR character then said to the participant. These included 

phrases like “incorrect, start over from 1022”. These recordings made sure that the 

experimenter could somewhat guide the interaction to make sure that the participant 

continued speaking and generate more stress in the participant.  

Plank task 

The other stress-inducing scenario aimed to induce fear of height. The participant was 

asked to step into an elevator that went up a couple of floors, where they were asked to step 

onto a plank that was at the side of the building at a height equivalent to 80 meters. The 

participant was then asked to stand at the end of the plank for two minutes and look down at 

the road underneath. After these two minutes, the participant was told to go back to the 

elevator. Previous studies suggest that these kinds of fear-of-height-inducing scenarios are 

efficient in the induction of stress responses (Finseth et al., 2018). Before the first stress-
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inducing scenario and after each of the stressors, the participant was asked to stand or sit still 

for two minutes as part of a recovery and to rate their stress level from 1-10 on a Likert-like 

scale slider. This ranking was also done after the first sitting baseline measure. 

Relaxation Scenario 

After the stress-inducing scenarios, the participant was put in a relaxation, nature 

scenario during which they were asked to touch butterflies on the ground for five minutes. 

This exercise is done in order to include movements to test the wearables' accuracy in 

measuring EDA when movement is introduced. Once the exercise was completed, the 

participant was asked one last time to rate their stress level and was taken out of VR. Lastly, 

the participant had to repeat the set of synchronisation movements. If the participant was 

interested in their data, the EDA signal was shown and explained to them in relation to the 

different tasks they underwent. 

Figure 2 

Attachment EDA electrodes  

 

 

Data Analysis 

To test how accurately the Embrace Plus watch measures EDA compared to a gold 

standard device, the validation analysis protocol by Van Lier et al. (2019) was used, which 

advises to assess validity on the signal, parameter and event level for the most optimal 
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validity overview. At first, the data was visually checked to see whether there were any failed 

measures for both the Embrace Plus watch and the BIOPAC.  

Signal Level 

For the signal level, a cross-correlation analysis was used in order to compare the EDA 

measures from the wearable device with the gold-standard device in terms of whether the 

shape and timing of the two match. First, the data of the BIOPAC was down-sampled from 

2000 Hz, and the data of the Embrace Plus was up-sampled from 4 Hz so that they have the 

same frequency of 16 Hz. Next, the data was normalised so that it is better comparable 

without losing any important information. Moreover, the data was detrended to ensure that the 

focus is on shape and not long-term shifts, making it stationary. For this step, the slow 

baseline drifts were removed. After that, the actual cross-correlation was computed across a 

range of lags from -8 to +8. Each of the lags is representative of a delay of ± 0.5 seconds. 

Lastly, the highest cross-correlation for all participants was identified, and these were plotted 

in a histogram. This was done in order to have an overview of the optimal cross-correlations.  

Parameter level 

The Parameter level was analysed by looking at the key values extracted from the 

EDA signal. These include the mean of the skin conductance level (SCL), the number of Skin 

Conductance responses per minute (SCR count), and the total SCR amplitude. All of these 

measures were compared between the wearable and the gold-standard device to see how 

closely they match. For this, the parameters were calculated over defined time windows for 

both devices, starting from the Baseline Reading until after the nature task. Additionally, log 

Bland-Altman plots were generated in order to visualise any agreement and to detect potential 

biases between the two measures. The boundaries for the Bland-Altman plots were set based 

on the paper from van Lier et al. (2019). For the mean SCL, the boundary is ± 0.96, for the 

SCR count ±1.25 and for the SCR total amplitude ±0.47. 

Event level 

Lastly, the event level checks whether the Embrace Plus can detect any physiological 

changes across different scenarios or events, similarly to the BIOPAC. These include, for 

example, stress and relaxation. First, the different scenarios were defined, including the TSST 

part, which includes a Baseline seated, the TSST anticipation phase, the TSST speech phase, 

the mental arithmetic and lastly the recovery from the TSST. Secondly, the plank task 

included a standing baseline, the plank anticipation phase, the walk on the plank, the baseline 
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of standing on the plank and the recovery phase. The mean SCL was chosen as the stress 

parameter due to its easy comparability. Next, it was checked for normality and any missing 

data. Lastly, the effect was visualised by creating event difference plots of the data. Firstly, a 

line plot with the log means and the SE per task, including a line through the zero y-axis, with 

each individual represented in a line. And secondly, a line plot including the log differences 

between the Embrace Plus and BIOPAC for each person represented by a line. Both the mean 

and the SE were included per task.  

Results 

There were 20 participants taking part in this study, of which 2 were excluded because 

data was missing due to technical issues for participant 1, and participant 9 was feeling 

nauseous before entering VR. Additionally, participants 2 and 10 were removed from the data 

set due to errors in data collection. Lastly, participants 14 and 16 were excluded because of 

data from the BIOPAC close to 0 or even negative and participants 3, 8 and 18 due to missing 

data from the Embrace Plus. All of these were removed from the data set, resulting in 11 final 

participants (male=7; female=4). The age of the participants ranged from 20 to 26 (M=23.27; 

SD=2.1). Most participants were white (10), and one participant was East Asian.  

Signal level 

For 10 of the participants, the correlation is considered very low, below 0.25, and only 

for one participant the correlation was high, above 0.8 (see Figure 3). Out of all participants, 

seven even had a negative correlation. Therefore, the mean maximum cross-correlation 

coefficient between the signals from the Embrace Plus watch and the BIOPAC was r = 0.05 

(SD = 0.27). This suggests very low average agreement (>0.25) in signal and timing between 

the two devices. For the optimal lag, there was also only one participant, who had the optimal 

lag at 0, with all other participants at -8 or 8. The average for an optimal lag was 2.91 samples 

(SD = 7,4), which corresponds to a delay of about 0.18 seconds (SD = 0.46). For a histogram 

of optimal lags across participants, see Figure 4. For a visual representation of the cross-

correlation in Figure 5, the raw data from Participant 7 with the highest correlation (r = 0.80) 

is plotted. It is visible that while the levels are lower, there is some agreement in the temporal 

patterns and shape of the signal. Figure 6 shows participant 20 with the lowest correlation (r 

= -0.15).  
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Figure 3 

Histogram of maximum cross-correlations 

 

 

Figure 4 

Histogram of Optimal Lags (in samples) 
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Figure 5 

Cross-correlation plot based on the raw signals of the participant with the highest correlation 

(Participant 7, r=0.80) 

 

Figure 6 

Cross-correlation plot based on the raw signals of the participant with the lowest correlation 

(Participant 20, r=-0.15) 

 

Parameter level 

For the Parameter level, log Bland-Altman plots were computed for the mean SCL 

(Figure 7), the number of SCRs (Figure 8) and the total SCR amplitude (Figure 9). In order to 
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only use data in which the participant was exposed to stress-related scenarios, the data was 

only considered from the beginning of the baseline reading until the end of the Nature task, 

excluding the preparation and ending. The plot for the mean SCL shows a mean difference of 

around -1.7, indicating that the Embrace Plus watch underestimates the SCL levels (see 

Figure 7). The 95% limits of agreement (LoA) ranged from -3.04 to -0.38. This exceeds the 

predefined acceptable range of ±0.96. Only 18.2% (n=2) of participants fell within this range, 

suggesting a poor agreement. In general, all participants lay below zero, which indicates an 

overall underestimation of SCL values of the Embrace Plus compared to BIOPAC. When 

looking at the number of SCRs, the Embrace watch detects fewer SCRs than the BIOPAC (see 

Figure 8). The mean difference is around -2.3 with a 95% LoA from +1.71 to -6.32. 

Therefore, the Embrace Plus underestimates the number of SCRs when compared to BIOPAC. 

However, about 50% (n=6) of the participants lay within the predefined limits of agreement, 

indicating moderate agreement. Lastly, the total SCR amplitude shows a consistent 

underestimation by the Embrace Plus watch with a bias of around -2.7, with all data points 

lying below 0 (see Figure 9). This indicates that the Embrace Plus reports much smaller total 

amplitudes than BIOPAC. For an overview of the raw mean and standard deviation for each 

parameter per device, see Table 1. 

Figure 7 

Bland-Altman plot for the log difference of the mean SCL between BIOPAC and the Embrace 

Plus 
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Figure 8 

Bland-Altman plot for the log difference of the number of SCRs between BIOPAC and the 

Embrace Plus 

  

 

 

Figure 9 

Bland-Altman plot for the log difference of the total SCR amplitude between BIOPAC and the 

Embrace Plus 
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Table 1 

Mean and SD values of raw signals for all participants from BIOPAC and Embrace Plus 

between the start of Baselines until the end of the Nature task 

Parameter Mean BIOPAC SD BIOPAC Mean Embrace 

Plus 

SD Embrace 

Pus 

Mean SCL (μS) 10.5 3.37 1.39 1.61 

Number of 

SCRs 

1238 201 345 306 

Total SCR 

amplitude (μS) 

159 69.3 21.6 21.7 

 

Event level 

When looking at the event level, the average SCL recorded by the BIOPAC during the 

TSST task show that there is a slight incline starting from the anticipation phase with the peak 

during the mental arithmetic phase of the task (Figure 10). However, this incline is relatively 

small, and the confidence intervals overlap (Table 2). The Figure also shows a drop for the 

TSST recovery phase. For a summary of the mean, SD and Confidence Interval for both 

devices, see Table 2. The same measures from the Embrace Plus watch show a larger peak 

during the mental arithmetic task with similarly high levels for the recovery phase, indicating 

that there might be a time delay in measurements (Figure 11). The Figure shows clearly that 

there are multiple participants showing very low mean SCL when measuring with the watch. 

The data shows very large standard deviations when compared to the mean and large 

differences between participants (Table 2). For the speech phase of the study, the Embrace 

data even has a negative lower CI, which is very unusual. According to Empatica, these 

negative values are possible to be seen as very low physiological skin conductance signals 

and can occur rarely in the range [-0.5µS,0µS] (Empatica, n.d.). 
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Figure 10 

TSST: Biopac Average SCL per Phase 

 

 

Figure 11 

TSST: Embrace Plus Average SCL per Phase 
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Table 2 

TSST summary of Mean, SD and Confidence Intervals (CI) from SCL per Phase for BIOPAC 

and Embrace Plus 

 BIOPAC Embrace Plus 

Phase Mean SD CI Mean SD  CI 

Baseline 

seated 

9.91 3.24 7.85/12.0 0.934 1.16 0.197/1.67 

Anticipation 

phase TSST 

10.1 3.4 7.97/12.3 0.929 1.21 0.161/1.7 

Speech phase 10.4 3.42 7.99/12.9 1.06 1.69 -0.151/2.27 

Mental 

Arithmetic 

10.6 3.2 7.99/12.6 1.59 1.91 0.381/2.8 

TSST 

Recovery 

9.33 2.9 7.49/11.2 1.48 1.77 0.353/2.6 

 

For the Plank task, the BIOPAC data shows an increase starting from the anticipation 

phase, with the highest average at the stage when walking the plank (Figure 12). The mean 

SCL levels decrease from the plank baseline until the recovery phase. However, the 

confidence intervals overlap largely, indicating that this increase is not true for every 

participant (Table 3). The Embrace Plus plot shows an increase in SCL levels for the 

anticipation phase, which afterwards decreases slightly (Figure 13). However, again, the CI 

overlaps through all phases, which shows that there is not necessarily a large increase for all 

participants (Table 3). In general, the plots for the Embrace Plus do not show a comparable 

large increase in stress response to the BIOPAC plots. For a summary of the Mean, SD and 

Confidence Interval per device, see Table 3. 
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Figure 12 

Plank: Biopac Average SCL per Phase 

 

Figure 13 

Plank: Embrace Plus Average SCL per Phase 
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Table 3 

Plank task summary of Mean, SD and Confidence Intervals (CI) from SCL per Phase for 

BIOPAC and Embrace Plus 

 BIOPAC Embrace Plus 

Phase Mean SD CI Mean SD  CI 

Baseline 

Standing 

9.95 3.28 7.86/12.0 0.931 1.16 0.194/1.67 

Plank 

Anticipation 

11.4 3.61 9.07/13.7 1.25 1.66 0.2/2.3 

Plank Walk 12.4 4.31 9.66/15.1 1.22 1.63 0.181/2.25 

Plank Baseline 11.4 3.85 8.95/13.8 1.15 1.54 0.176/2.13 

Plank 

Recovery 

9.07 2.98 7.17/11.0 1.09 1.44 0.174/2.01 

 

When looking at the difference between the two devices, it is visible that the BIOPAC 

records consistently higher SCL values than the Embrace Plus watch (Figures 14, 15). The 

difference between the devices is higher than the considered acceptable range of ± 50%, 

following van Lier et al. (2019). This indicates that the Embrace watch does not accurately 

measure SCL data. The red line indicates the average between participants and shows that 

there is no large change in the level of disagreement across phases. 
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Figure 14 

TSST: Log Ratio Difference in SCL between BIOPAC and Embrace 

 

Figure 15 

Plank task: Log Ratio Difference in SCL between BIOPAC and Embrace Plus 

 

Discussion 

This study aimed to evaluate the accuracy of the Embrace Plus watch in measuring 

EDA compared to a gold-standard device across signal, parameter and event levels, using VR-

based stress-inducing scenarios. The results show that while the watch captures some trends 

in physiological changes, it consistently underestimates EDA values across all levels. This 
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underestimation was found in low-cross correlation with the gold-standard device, the lower 

mean SCL, and lower counts and amplitudes of SCRs. Previous studies found similar 

underestimations, and it was commonly attributed to factors like a slower sweat gland density 

and greater thermoregulatory sweating than emotional sweating on the wrist, and possible 

movement-related artefacts (Van Lier et al., 2019; De Geus & Gevonden, 2024; Menghini et 

al., 2019). 

 The signal-level analysis revealed a poor agreement in the overall shape and timing of 

EDA signals between the two devices. The maximum cross-correlation was very low. Seven 

participants even had a negative cross-correlation. Only one of the participants showed a high 

cross-correlation, indicating that signal synchrony is not achieved. These findings align with 

previous findings about the limited temporal resolution and sensitivity of wrist-worn sensors 

(Van der Mee et al., 2021). This may be due to wrong sensor placement, a limited sensitivity 

of the Embrace Plus or the lack of inducing severe stressors from the experiment (Klimek et 

al., 2023; Van der Mee et al., 2021).  Additionally, most optimal lags were far from zero, 

suggesting a temporal misalignment or phase shift. This means that the Embrace Plus signal 

reached its peaks or changes in EDA several seconds before or after the BIOPAC. Van Lier et 

al. (2019) found similar trends across participants showing both positive and negative optimal 

lags. This may be due to the large difference in frequency of the two devices when measuring 

EDA (Menghini et al., 2019). The lower sampling rate of the Embrace Plus may have caused 

this misalignment. 

When looking at the Parameter level, the Embrace Plus significantly underestimated 

the mean skin conductance level (SCL) compared to the BIOPAC. The number of skin 

conductance responses (SCRs) was also lower on the Embrace Plus than BIOPAC; however, 

the underestimation was less severe, indicating moderate agreement. Lastly, the total SCR 

amplitude was again underestimated by the Embrace Plus. These patterns mostly align with 

previous findings that wearable EDA sensors tend to detect lower mean SCL and number of 

SCRs (Van Lier et al., 2019; Van der Mee et al., 2021). These findings, however, do not align 

with the hypothesis posed at the beginning of this study of the total amplitude being the most 

accurate measurement of the Embrace Plus (Van Lier et al., 2019). Research suggests that this 

underestimation may be caused by emotional sweating being less pronounced on the wrist (De 

Geus & Gevonden, 2024). 

 At the event level, both the TSST and the Plank task were not able to induce 

significant increases in physiological responses. There seemed to be a slight increase in SCL  
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during stress phases and decreases during recovery; however, due to the error bars 

overlapping, this finding is not significant. The Embrace Plus was able to reflect some of 

these trends, while it still reported lower values, especially during peak stress phases. The log 

ratio difference plots confirmed a systematic underestimation across all phases, and the 

differences often exceeded the acceptable range. These results suggest that there is a need for 

more acute stress-inducing scenarios in order to test the expected accuracy under more acute 

stressors (Van Lier et al., 2019). 

 Some additional factors may account for the large differences in measured data 

between the two devices.  Another reason could be that the filtering of the signal may have 

attenuated peaks and reduced response counts. Lastly, the data between the two watches may 

be completely misaligned, leading to a mismatch between the results of both devices. One 

possibility of checking for a misalignment would be to realign based on the data from the 

accelerometer of both devices. 

Strengths of the study 

 One of the key strengths of this study is the exposure to multiple different conditions, 

including not just stress and relaxation scenarios, but multiple baselines and especially the 

inclusion of movement and speaking in the different parts of this study. In general, the 

relatively long duration of this study ensured a variety of data for each participant that can 

give a clear picture of different levels of stress. Additionally, the use of VR ensured an 

immersive and stress-inducing environment, ensuring consistent and controllable exposure 

across participants. 

Limitations 

Despite the strengths of this study, it also faced some limitations. For one, the sample 

size is relatively small, especially after having to exclude multiple participants due to 

technical difficulties or not getting accurate signals, especially from the Embrace Plus (N=11). 

When compared to the advised sample size of 55 by Van Lier et al. (2019), the small sample 

size can limit generalizability. Additionally, the large exclusion of ‘nonresponders’ may 

introduce certain biases and an underestimation of the variability. Lastly, the scenarios may 

not have induced strong stress responses in the participants.  

Future Research 

While the Embrace Plus watch does show potential for detecting broad trends in 

physiological responses related to stress, it lacks the accuracy and sensitivity required for 
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clinical or detailed psychological research. It might therefore be suitable for within-person 

general stress tracking, but not for measuring absolute values. For future research, it would be 

good to have a larger study with a larger sample size. It might also be helpful to check for 

reliability when performing the same tasks multiple times per participant.  

Conclusion 

 In conclusion, the Embrace Plus does not accurately measure the physiological stress 

response EDA. While it might pick up trends for some individuals, it is not accurate in giving 

exact measurements. Therefore, future research should continue to validate wearables to 

receive a general level of accuracy that these devices need to achieve to ensure sufficient 

measurements of EDA to use in inventions and clinical settings or at home. If the devices 

achieve this accuracy, they may help to improve stress management skills for individuals in a 

cost-efficient and accessible way.  
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Appendix 

Appendix 1 

AI statement 

During the preparation of this work, I used ChatGPT to improve and understand code for the 

data analysis. After using this tool/service, we thoroughly reviewed and edited the content as 

needed, taking full responsibility for the final outcome. 

Appendix 2 

R code 

#load packages 

library(dplyr) 

library(ggplot2) 

library(signal) 

library(readr) 

library(tidyr) 

library(ggpubr) 

library(tidyverse) 

library(purrr) 

library(vroom) 

 

#open data 

setwd("C:\\Users\\there\\Documents\\Data Bachelor Thesis") 

 

# Resamples a signal to 16 Hz using linear interpolation 

resample_signal <- function(signal, timestamps, target_hz = 16) { 

  time_seq <- seq(from = min(timestamps), to = max(timestamps), by = 1 / target_hz) 

  interpolated <- approx(timestamps, signal, xout = time_seq, method = "linear", rule = 2)$y 

  return(tibble(time = time_seq, signal = interpolated)) 

} 

 

# Detrend a signal to remove slow drifts and focus on shape 
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# Important for correlation analysis 

detrend_signal <- function(x) { 

  return(resid(lm(x ~ seq_along(x)))) 

} 

 

# Extract Skin Conductance Responses from the phasic signal 

# Uses a threshold of 0.01 µS 

extract_scrs <- function(signal, threshold = 0.01) { 

  peaks <- which(diff(sign(diff(signal))) == -2) + 1 

  valid_peaks <- signal[peaks] > threshold 

  amplitudes <- signal[peaks[valid_peaks]] 

  return(list(count = sum(valid_peaks), amp = mean(amplitudes), total = sum(amplitudes))) 

} 

 

# --- Main Analysis Loop --- 

 

results <- list() 

corr_values <- c() 

lag_values <- c() 

signal_results <- list() 

 

 

# Load all CSV files in the working directory 

files <- list.files(pattern = "\\.csv$") 

 

 

# Define plot function ONCE outside loop 

plot_raw_tonic_eda <- function(file) { 

  df <- read_csv(file, show_col_types = FALSE) 

  df$timestamps <- as.POSIXct(df$timestamps) 
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  ggplot(df, aes(x = timestamps)) + 

    geom_line(aes(y = EDA_biopac_tonic, color = "Biopac")) + 

    geom_line(aes(y = EDA_embrace_tonic, color = "Embrace")) + 

    labs( 

      title = paste("Tonic EDA: Raw Signals for", file), 

      x = "Time", y = "EDA (µS)", color = "Device" 

    ) + 

    theme_minimal() 

} 

 

corr_filenames <- c() 

 

# MAIN LOOP 

for (f in files) { 

  df <- read_csv(f, show_col_types = FALSE) 

  df$timestamps <- as.POSIXct(df$timestamps) 

  ts <- as.numeric(difftime(df$timestamps, min(df$timestamps), units = "secs")) 

   

  print(paste("Processed:", f)) 

   

  # Skip files with insufficient or problematic data 

  valid_biopac <- sum(!is.na(df$EDA_biopac_tonic)) >= 2 

  valid_embrace <- sum(!is.na(df$EDA_embrace_tonic)) >= 2 

  valid_time <- sum(!is.na(ts)) >= 2 && length(unique(ts)) >= 2 

   

  if (!valid_biopac | !valid_embrace | !valid_time) { 

    warning(paste("Skipped", f, "- invalid data for interpolation")) 

    next 

  } 
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  # --- SCR Extraction --- 

  scr_embrace <- extract_scrs(df$EDA_embrace_phasic) 

  scr_biopac <- extract_scrs(df$EDA_biopac_phasic) 

   

  # --- Resample and Align --- 

  biopac <- resample_signal(df$EDA_biopac_tonic, ts) 

  embrace <- resample_signal(df$EDA_embrace_tonic, ts) 

   

  common_time <- intersect(biopac$time, embrace$time) 

  biopac_interp <- dplyr::filter(biopac, time %in% common_time) 

  embrace_interp <- dplyr::filter(embrace, time %in% common_time) 

   

  # --- Normalize and Detrend --- 

  b_sig <- detrend_signal(scale(biopac_interp$signal)[,1]) 

  e_sig <- detrend_signal(scale(embrace_interp$signal)[,1]) 

   

  # --- Cross-Correlation --- 

  lags <- -8:8 

  cors <- sapply(lags, function(lag) { 

    if (lag < 0) { 

      cor(e_sig[1:(length(e_sig)+lag)], b_sig[(1-lag):length(b_sig)]) 

    } else { 

      cor(e_sig[(1+lag):length(e_sig)], b_sig[1:(length(b_sig)-lag)]) 

    } 

  }) 

   

  mean_corr <- mean(cors, na.rm = TRUE) 

  max_corr <- max(cors, na.rm = TRUE) 
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  best_lag <- lags[which.max(cors)] 

   

  print(paste("Best lag:", best_lag, "Max corr:", max_corr)) 

   

  # Collect data 

  corr_values <- c(corr_values, mean_corr) 

  corr_filenames <- c(corr_filenames, f) 

  lag_values <- c(lag_values, best_lag) 

   

  signal_results[[f]] <- tibble( 

    file = f, 

    max_cross_correlation = max_corr, 

    optimal_lag_samples = best_lag, 

    optimal_lag_seconds = best_lag / 16 

  ) 

   

  results[[f]] <- tibble( 

    file = f, 

    scr_count_embrace = scr_embrace$count, 

    scr_count_biopac = scr_biopac$count, 

    scr_amp_embrace = scr_embrace$amp, 

    scr_amp_biopac = scr_biopac$amp, 

    scr_total_embrace = scr_embrace$total, 

    scr_total_biopac = scr_biopac$total 

  ) 

} 

  # --- Store Results --- 

  results[[f]] <- tibble( 

    file = f, 

    scr_count_embrace = scr_embrace$count, 
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    scr_count_biopac = scr_biopac$count, 

    scr_amp_embrace = scr_embrace$amp, 

    scr_amp_biopac = scr_biopac$amp, 

    scr_total_embrace = scr_embrace$total, 

    scr_total_biopac = scr_biopac$total 

  ) 

 

 

# Combine results 

signal_summary_df <- bind_rows(signal_results) %>% 

  arrange(desc(max_cross_correlation)) 

 

print(signal_summary_df) 

write_csv(signal_summary_df, "max_cross_correlation_per_participant.csv") 

 

# Summary stats 

cat("Number of participants with lag values:", length(lag_values), "\n") 

cat("Mean lag:", mean(lag_values), "\n") 

cat("SD lag:", sd(lag_values), "\n") 

cat("Mean lag (sec):", mean(lag_values)/16, "\n") 

cat("SD lag (sec):", sd(lag_values)/16, "\n") 

 

# Histogram 

ggplot(data.frame(lag = lag_values), aes(x = lag)) + 

  geom_histogram(binwidth = 1, fill = "steelblue", color = "black") + 

  labs( 

    title = "Histogram of Optimal Lags (All Participants)", 

    x = "Lag (samples)", 

    y = "Frequency" 

  ) + 
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  theme_minimal() 

 

# Combine and filter results 

df_results <- bind_rows(results) 

df_results$nonresponder <- df_results$scr_count_embrace < 1 | 

is.na(df_results$scr_amp_embrace) 

filtered_results <- dplyr::filter(df_results, !nonresponder) 

filtered_corr_values <- corr_values[!df_results$nonresponder] 

 

 

mean(filtered_corr_values)   

sd(filtered_corr_values)    

 

# Find best/worst files using the correct matched filenames 

best_idx <- which.max(corr_values) 

worst_idx <- which.min(corr_values) 

 

best_file <- corr_filenames[best_idx] 

worst_file <- corr_filenames[worst_idx] 

 

cat("Highest mean cross-correlation:", corr_values[best_idx], "from", best_file, "\n") 

cat("Lowest mean cross-correlation:", corr_values[worst_idx], "from", worst_file, "\n") 

 

#--------different axis----- 

library(patchwork) 

 

plot_raw_tonic_eda <- function(file) { 

  df <- read_csv(file, show_col_types = FALSE) 

  df$timestamps <- as.POSIXct(df$timestamps) 
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  p1 <- ggplot(df, aes(x = timestamps, y = EDA_biopac_tonic)) + 

    geom_line(color = "steelblue") + 

    labs(title = paste("Biopac Tonic EDA —", file), x = NULL, y = "EDA (µS)") + 

    theme_minimal() 

   

  p2 <- ggplot(df, aes(x = timestamps, y = EDA_embrace_tonic)) + 

    geom_line(color = "darkorange") + 

    labs(title = "Embrace Tonic EDA", x = "Time", y = "EDA (µS)") + 

    theme_minimal() 

   

  # Combine vertically 

  p1 / p2 

} 

# Plot best 

plot_raw_tonic_eda(best_file) 

 

# Plot worst 

plot_raw_tonic_eda(worst_file) 

 

#-------plot all raw data----- 

# Loop over only the files that were actually used in analysis 

for (f in corr_filenames) { 

  plot <- plot_raw_tonic_eda(f) 

   

  ggsave( 

    filename = paste0(gsub(".csv", "", f), "_stacked_tonic_plot.png"), 

    plot = plot, 

    width = 10, 

    height = 6 

  ) 
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  cat("Saved stacked plot for", f, "\n") 

} 

 

# --- SUMMARY ANALYSIS --- 

 

# Combine all participant results into one data frame 

df_results <- bind_rows(results) 

 

# Include everyone — no nonresponder filtering 

filtered_results <- df_results 

filtered_corr_values <- corr_values 

 

# Plot a histogram of the maximum cross-correlation values across valid participants 

# Interpretation: High values mean good signal-level agreement 

ggplot(data.frame(correlation = filtered_corr_values), aes(x = correlation)) + 

  geom_histogram(bins = 10, fill = "steelblue", color = "black") + 

  labs( 

    title = "Max Cross-Correlations (All Participants)", 

    x = "Correlation", 

    y = "Frequency" 

  ) 

#--------plot all participants in one plot------ 

library(tidyverse) 

 

# Store results per participant 

biopac_phase_list <- list() 

embrace_phase_list <- list() 

 

for (f in corr_filenames) { 
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  df <- read_csv(f, show_col_types = FALSE) 

  df$timestamps <- as.POSIXct(df$timestamps) 

  df$time_relative <- as.numeric(difftime(df$timestamps, min(df$timestamps), units = 

"secs")) 

   

  participant_id <- gsub("_eda_data_aligned_with.*", "", f) 

   

  # Keep only valid rows 

  # Skip participant if Event_Phases is missing or only NA 

  if (!("Event_Phases" %in% colnames(df)) || all(is.na(df$Event_Phases))) { 

    warning(paste("Skipped", f, "- Event_Phases missing or all NA")) 

    next 

  } 

   

  # Ensure Event_Phases is treated as character 

  df$Event_Phases <- as.character(df$Event_Phases) 

   

  # Mean EDA per phase 

  biopac_means <- df %>% 

    group_by(Event_Phases) %>% 

    summarise(mean_eda = mean(EDA_biopac_tonic, na.rm = TRUE), .groups = "drop") %>% 

    mutate(participant = participant_id) 

   

  embrace_means <- df %>% 

    group_by(Event_Phases) %>% 

    summarise(mean_eda = mean(EDA_embrace_tonic, na.rm = TRUE), .groups = "drop") 

%>% 

    mutate(participant = participant_id) 

   

  biopac_phase_list[[f]] <- biopac_means 
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  embrace_phase_list[[f]] <- embrace_means 

} 

 

# Combine across participants 

biopac_df <- bind_rows(biopac_phase_list) 

embrace_df <- bind_rows(embrace_phase_list) 

 

# Biopac 

ggplot(biopac_df, aes(x = Event_Phases, y = mean_eda, group = participant, color = 

participant)) + 

  geom_line(alpha = 0.8) + 

  geom_point() + 

  labs( 

    title = "Biopac Tonic EDA by Event Phase", 

    x = "Event Phase", 

    y = "Mean Biopac EDA (µS)" 

  ) + 

  theme_minimal() + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

# Embrace 

ggplot(embrace_df, aes(x = Event_Phases, y = mean_eda, group = participant, color = 

participant)) + 

  geom_line(alpha = 0.8) + 

  geom_point() + 

  labs( 

    title = "Embrace Tonic EDA by Event Phase", 

    x = "Event Phase", 

    y = "Mean Embrace EDA (µS)" 

  ) + 
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  theme_minimal() + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

 

 

 

# Create Bland-Altman plots for each SCR parameter using filtered data with range 

# Acceptable log-transformed boundaries  

acceptable_bounds <- list( 

  scr_mean_scl = log1p(1.6),   # ≈ 0.96 

  scr_count    = log1p(2.5),   # ≈ 1.25 

  scr_total    = log1p(0.6)    # ≈ 0.47 

) 

 

# Function to extract SCR features 

extract_scrs <- function(signal, threshold = 0.01) { 

  peaks <- which(diff(sign(diff(signal))) == -2) + 1 

  valid_peaks <- signal[peaks] > threshold 

  amplitudes <- signal[peaks[valid_peaks]] 

  list( 

    count = sum(valid_peaks), 

    total = sum(amplitudes) 

  ) 

} 

 

# Loop through all participant files 

files <- list.files(pattern = "eda_data_aligned.*\\.csv$") 

results <- list() 

 

for (f in files) { 
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  df <- read_csv(f, show_col_types = FALSE) 

  if (!"event_marker" %in% names(df)) next 

   

  # Define the time window: Baseline Start to Nature Scene End 

  i_start <- which(grepl("Baseline Reading Start", df$event_marker, ignore.case = TRUE))[1] 

  i_end   <- which(grepl("Nature Task end", df$event_marker, ignore.case = TRUE))[1] 

   

  if (is.na(i_start) || is.na(i_end) || i_end <= i_start) { 

    warning(paste("Skipping", f, "- invalid markers")) 

    next 

  } 

   

  segment <- df[i_start:i_end, ] 

   

  # Calculate mean SCL from tonic signal 

  mean_scl_embrace <- mean(segment$EDA_embrace_tonic, na.rm = TRUE) 

  mean_scl_biopac  <- mean(segment$EDA_biopac_tonic, na.rm = TRUE) 

   

  # Extract SCR parameters 

  scr_e <- extract_scrs(segment$EDA_embrace_phasic) 

  scr_b <- extract_scrs(segment$EDA_biopac_phasic) 

   

  results[[f]] <- tibble( 

    file = f, 

    scr_mean_scl_embrace = mean_scl_embrace, 

    scr_mean_scl_biopac  = mean_scl_biopac, 

    scr_count_embrace    = scr_e$count, 

    scr_count_biopac     = scr_b$count, 

    scr_total_embrace    = scr_e$total, 

    scr_total_biopac     = scr_b$total 
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  ) 

} 

 

# Combine all results 

df_results <- bind_rows(results) %>% 

  dplyr::filter(!is.na(scr_count_embrace), !is.na(scr_count_biopac), 

         !is.na(scr_total_embrace), !is.na(scr_total_biopac), 

         !is.na(scr_mean_scl_embrace), !is.na(scr_mean_scl_biopac)) 

 

# Plot each parameter with Bland–Altman plot (log1p-transformed) 

params <- c("scr_mean_scl", "scr_count", "scr_total") 

 

for (param in params) { 

  x <- log1p(df_results[[paste0(param, "_embrace")]]) 

  y <- log1p(df_results[[paste0(param, "_biopac")]]) 

   

  df_ba <- tibble( 

    mean_value = (x + y) / 2, 

    difference = x - y 

  ) %>% drop_na() 

   

  mean_diff <- mean(df_ba$difference) 

  sd_diff   <- sd(df_ba$difference) 

  upper     <- mean_diff + 1.96 * sd_diff 

  lower     <- mean_diff - 1.96 * sd_diff 

  acc_bound <- acceptable_bounds[[param]] 

  pct_within <- mean(abs(df_ba$difference) <= acc_bound) * 100 

   

  p <- ggplot(df_ba, aes(x = mean_value, y = difference)) + 

    geom_point(size = 2, alpha = 0.8) + 
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    geom_hline(yintercept = mean_diff, linetype = "dashed", color = "blue") + 

    geom_hline(yintercept = upper, linetype = "dotted", color = "red") + 

    geom_hline(yintercept = lower, linetype = "dotted", color = "red") + 

    geom_hline(yintercept = acc_bound, color = "darkgreen") + 

    geom_hline(yintercept = -acc_bound, color = "darkgreen") + 

    annotate("text", x = max(df_ba$mean_value), y = upper, 

             label = sprintf("Upper LoA = %.2f", upper), 

             hjust = 1.1, vjust = -0.5, size = 3.5, color = "red") + 

    annotate("text", x = max(df_ba$mean_value), y = lower, 

             label = sprintf("Lower LoA = %.2f", lower), 

             hjust = 1.1, vjust = 1.2, size = 3.5, color = "red") + 

    annotate("text", x = mean(range(df_ba$mean_value)), y = min(df_ba$difference), 

             label = sprintf("%.1f%% within ±%.2f", pct_within, acc_bound), 

             size = 4.2, color = "black", vjust = 2) + 

    labs( 

      title = paste("Bland–Altman (log1p) –", param), 

      x = "Mean of log1p(Embrace + Biopac)", 

      y = "Difference: log1p(Embrace) - log1p(Biopac)" 

    ) + 

    coord_cartesian(ylim = c(min(df_ba$difference, -acc_bound, lower), 

                             max(df_ba$difference, acc_bound, upper))) + 

    theme_minimal() 

   

  print(p) 

} 

# Filter to time from "Baseline" through the full "Nature Scene" 

# We'll assume data is ordered in time, so we take all rows between first "Baseline" and last 

"Nature Scene" 

 

# Parameters 
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scr_threshold <- 0.01  # Minimum SCR amplitude (µS) 

sampling_rate <- 16     # Hz 

data_path <- "C:/Users/there/Documents/Data Bachelor Thesis"   

 

# Get list of CSV files 

file_list <- list.files(path = data_path, pattern = "eda_data_aligned_.*\\.csv", full.names = 

TRUE) 

 

# Peak detection function 

get_scr_total_amplitude <- function(signal, threshold) { 

  peaks <- findpeaks(signal, minpeakheight = threshold, minpeakdistance = sampling_rate) 

  if (is.null(peaks)) return(0) 

  sum(peaks[, 1])  # Sum of peak amplitudes 

} 

 

# Initialize results table 

results <- data.frame( 

  participant = character(), 

  biopac_total_amplitude = numeric(), 

  embrace_total_amplitude = numeric(), 

  stringsAsFactors = FALSE 

) 

 

# Loop over all files 

for (file in file_list) { 

  # Load data 

  eda_df <- tryCatch(read_csv(file), error = function(e) return(NULL)) 

  if (is.null(eda_df)) { 

    warning(paste("Skipping file due to read error:", file)) 

    next 
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  } 

   

  # Check for required event markers 

  start_idx <- which(eda_df$Event_Phases == "Baseline Reading")[1] 

  end_idx   <- tail(which(eda_df$Event_Phases == "Nature Task"), 1) 

   

  if (is.na(start_idx) || is.na(end_idx)) { 

    warning(paste("Skipping file due to missing event markers:", file)) 

    next 

  } 

   

  # Extract signals 

  analysis_window <- start_idx:end_idx 

  biopac_phasic   <- eda_df$EDA_biopac_phasic[analysis_window] 

  embrace_phasic  <- eda_df$EDA_embrace_phasic[analysis_window] 

   

  # Compute amplitudes 

  biopac_amp  <- get_scr_total_amplitude(biopac_phasic, scr_threshold) 

  embrace_amp <- get_scr_total_amplitude(embrace_phasic, scr_threshold) 

   

  # Extract participant ID from filename 

  participant_id <- gsub(".*eda_data_aligned_(p[0-9]+)\\.csv", "\\1", file) 

   

  # Append results 

  results <- rbind(results, data.frame( 

    participant = participant_id, 

    biopac_total_amplitude = biopac_amp, 

    embrace_total_amplitude = embrace_amp, 

    stringsAsFactors = FALSE 

  )) 
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} 

 

# Show summary table 

print(results) 

 

 

#total SCR amplitude revised 

#------Bland Altman Amplitude-------- 

library(tidyverse) 

library(ggplot2) 

 

# Set your data folder path 

folder_path <- "C:/Users/there/Documents/Data Bachelor Thesis"   

# Acceptable limit  

acceptable_limit <- 0.5 

 

# Load and combine all CSVs, harmonize timestamps 

file_list <- list.files(path = folder_path, pattern = "\\.csv$", full.names = TRUE) 

 

eda_data <- file_list %>% 

  set_names() %>% 

  map_dfr(~ read_csv(.x, col_types = cols(.default = col_guess(), timestamps = 

col_character())), 

          .id = "file") %>% 

  mutate(participant_id = tools::file_path_sans_ext(basename(file))) 

 

 

results_clean <- results %>% 

  filter(embrace_total_amplitude > 0 & biopac_total_amplitude > 0) 

# Add log(S-AMPL + 1) transformation 
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results_clean <- results %>% 

  filter(biopac_total_amplitude > 0, embrace_total_amplitude > 0) %>% 

  mutate( 

    log_biopac   = log(biopac_total_amplitude + 1), 

    log_embrace  = log(embrace_total_amplitude + 1), 

    mean_log     = (log_biopac + log_embrace) / 2, 

    diff_log     = log_embrace - log_biopac 

  ) 

 

# Compute Bland–Altman stats 

mean_diff <- mean(results_clean$diff_log) 

sd_diff   <- sd(results_clean$diff_log) 

loa_upper <- mean_diff + 1.96 * sd_diff 

loa_lower <- mean_diff - 1.96 * sd_diff 

 

# Define green boundaries based on van Lier  

acc_upper <- 0.47 

acc_lower <- -0.47 

 

within_accept <- mean(results_clean$diff_log >= acc_lower & results_clean$diff_log <= 

acc_upper) * 100 

 

# Plot 

ggplot(results_clean, aes(x = mean_log, y = diff_log)) + 

  geom_point(size = 2) + 

  geom_hline(yintercept = mean_diff, color = "blue", linetype = "dashed") + 

  geom_hline(yintercept = c(loa_upper, loa_lower), color = "red", linetype = "dotted") + 

  geom_hline(yintercept = c(acc_upper, acc_lower), color = "darkgreen") + 

  labs( 

    title = "Bland-Altman plot total SCR amplitude", 
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    x = "Mean log(S-AMPL + 1) (µS)", 

    y = "Difference log(S-AMPL + 1) (Embrace − Biopac)", 

    caption = paste0(round(within_accept, 1), "% of values within green boundaries") 

  ) + 

  theme_minimal() 

 

 

#table for mean and sd before log 

df_results <- bind_rows(results) 

 

# Create summary table 

summary_table <- tibble( 

  Parameter = c("Mean SCL (μS)", "SCR count", "Total SCR amplitude (μS)"), 

  `Embrace Mean` = c( 

    mean(df_results$scr_mean_scl_embrace, na.rm = TRUE), 

    mean(df_results$scr_count_embrace, na.rm = TRUE), 

    mean(df_results$scr_total_embrace, na.rm = TRUE) 

  ), 

  `Embrace SD` = c( 

    sd(df_results$scr_mean_scl_embrace, na.rm = TRUE), 

    sd(df_results$scr_count_embrace, na.rm = TRUE), 

    sd(df_results$scr_total_embrace, na.rm = TRUE) 

  ), 

  `Biopac Mean` = c( 

    mean(df_results$scr_mean_scl_biopac, na.rm = TRUE), 

    mean(df_results$scr_count_biopac, na.rm = TRUE), 

    mean(df_results$scr_total_biopac, na.rm = TRUE) 

  ), 

  `Biopac SD` = c( 

    sd(df_results$scr_mean_scl_biopac, na.rm = TRUE), 
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    sd(df_results$scr_count_biopac, na.rm = TRUE), 

    sd(df_results$scr_total_biopac, na.rm = TRUE) 

  ) 

) 

 

# Print it 

print(summary_table) 

 

 

 

#------Event analysis---- 

# Set working directory 

setwd("C:/Users/there/Documents/Data Bachelor Thesis") 

 

 

# 2. Load all files and add participant ID 

file_list <- list.files(pattern = "_with_phases\\.csv$") 

 

all_data <- file_list %>% 

  map_df(~ read_csv(.x, col_types = cols(timestamps = col_character())) %>% 

           mutate(participant = str_remove(.x, "_with_phases\\.csv$"))) 

 

TSST <- c("Baseline Seated", "Anticipation Phase", "Speech Phase", 

                 "Mental Arithmetic", "TSST Recovery") 

 

# Convert wide to long format 

eda_long <- all_data %>% 

  select(participant, Event_Phases, EDA_biopac_tonic, EDA_embrace_tonic) %>% 

  pivot_longer(cols = c(EDA_biopac_tonic, EDA_embrace_tonic), 

               names_to = "device", 
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               values_to = "tonic_eda") %>% 

  mutate(device = case_when( 

    device == "EDA_biopac_tonic" ~ "Biopac", 

    device == "EDA_embrace_tonic" ~ "Embrace Plus" 

  )) 

 

eda_long <- eda_long %>% 

  mutate(condition = case_when( 

    Event_Phases %in% c("Baseline Seated", "Anticipation Phase", "Speech Phase", 

                        "Mental Arithmetic", "TSST Recovery") ~ "TSST", 

    Event_Phases %in% c("Baseline Standing", "Plank Anticipation", "Plank Walk", 

                        "Plank Baseline", "Plank Recovery") ~ "Plank", 

    TRUE ~ "Other" 

  )) 

# Filter to just TSST and calculate mean SCL per phase × person × device 

eda_mean_scl <- eda_long %>% 

  dplyr::filter(condition == "TSST") %>% 

  group_by(participant, Event_Phases, device) %>% 

  summarise(mean_scl = mean(tonic_eda, na.rm = TRUE), .groups = "drop") %>% 

  mutate(Event_Phases = factor(Event_Phases, levels = c( 

    "Baseline Seated", "Anticipation Phase", "Speech Phase", 

    "Mental Arithmetic", "TSST Recovery" 

  ))) 

 

eda_mean_scl %>% 

  dplyr::filter(device == "Biopac") %>% 

  ggplot(aes(x = Event_Phases, y = mean_scl, group = participant)) + 

  geom_line(color = "gray70", alpha = 0.6, linewidth = 0.6) + 

  stat_summary(fun = mean, geom = "line", aes(group = 1), color = "red", linewidth = 1.2) + 
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  stat_summary(fun.data = mean_se, geom = "errorbar", aes(group = 1), color = "red", width = 

0.2, linewidth = 0.8) + 

  geom_hline(yintercept = 0, linetype = "dashed") + 

  labs(title = "TSST: Biopac Average SCL per Phase", 

       x = "Phase", y = "Skin Conductance Level (µS)") + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

eda_mean_scl %>% 

  dplyr::filter(device == "Embrace Plus") %>% 

  ggplot(aes(x = Event_Phases, y = mean_scl, group = participant)) + 

  geom_line(color = "gray70", alpha = 0.6, linewidth = 0.6) + 

  stat_summary(fun = mean, geom = "line", aes(group = 1), color = "red", linewidth = 1.2) + 

  stat_summary(fun.data = mean_se, geom = "errorbar", aes(group = 1), color = "red", width = 

0.2, linewidth = 0.8) + 

  geom_hline(yintercept = 0, linetype = "dashed")+ 

labs(title = "TSST: Embrace Average SCL per Phase", 

     x = "Phase", y = "Skin Conductance Level (µS)") + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

              

file_list <- list.files(pattern = "_with_phases\\.csv$") 

 

all_data <- file_list %>% + 

  labs(title = "TSST: Embrace Plus Average SCL per Phase", 

       x = "Phase", y = "Skin Conductance Level (µS)") + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

#find the outlier in biopac 
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# 2. List and read all files 

 

  map_df(~ read_csv(.x, col_types = cols(timestamps = col_character())) %>% 

           mutate(participant = str_remove(.x, "_with_phases\\.csv$"))) 

 

# 3. Define TSST phases 

tsst_phases <- c("Baseline Seated", "Anticipation Phase", "Speech Phase", 

                 "Mental Arithmetic", "TSST Recovery") 

 

# 4. Filter for TSST and compute average Biopac tonic per participant 

biopac_outliers <- all_data %>% 

  dplyr::filter(Event_Phases %in% tsst_phases, !is.na(EDA_biopac_tonic)) %>% 

  group_by(participant) %>% 

  summarise(mean_biopac_tonic = mean(EDA_biopac_tonic, na.rm = TRUE)) %>% 

  arrange(mean_biopac_tonic) 

 

# 5. View the lowest values 

print(biopac_outliers) 

 

#Plank part  

 

all_data <- file_list %>% 

  map_df(~ read_csv(.x, col_types = cols(timestamps = col_character())) %>% 

           mutate(participant = str_remove(.x, "_with_phases\\.csv$"))) 

 

# Define Plank phases 

plank_phases <- c("Baseline Standing", "Plank Anticipation", "Plank Walk", 

                  "Plank Baseline", "Plank Recovery") 
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# Filter & summarise for Plank only 

eda_plank <- all_data %>% 

  dplyr::filter(Event_Phases %in% plank_phases, !is.na(EDA_biopac_tonic), 

!is.na(EDA_embrace_tonic)) %>% 

  mutate(Event_Phases = factor(Event_Phases, levels = plank_phases)) 

  

#plot biopac 

eda_biopac_plank <- eda_plank %>% 

  group_by(participant, Event_Phases) %>% 

  summarise(mean_scl = mean(EDA_biopac_tonic, na.rm = TRUE), .groups = "drop") 

 

ggplot(eda_biopac_plank, aes(x = Event_Phases, y = mean_scl, group = participant)) + 

  geom_line(color = "gray70", alpha = 0.6, linewidth = 0.6) + 

  stat_summary(fun = mean, geom = "line", aes(group = 1), color = "red", linewidth = 1.2) + 

  stat_summary(fun.data = mean_se, geom = "errorbar", aes(group = 1), 

               width = 0.2, color = "red", linewidth = 0.8) + 

  geom_hline(yintercept = 0, linetype = "dashed") + 

  labs(title = "Plank: Biopac Average SCL per Phase", 

       x = "Phase", y = "Skin Conductance Level (µS)") + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

#plot Embrace 

eda_embrace_plank <- eda_plank %>% 

  group_by(participant, Event_Phases) %>% 

  summarise(mean_scl = mean(EDA_embrace_tonic, na.rm = TRUE), .groups = "drop") 

 

ggplot(eda_embrace_plank, aes(x = Event_Phases, y = mean_scl, group = participant)) + 

  geom_line(color = "gray70", alpha = 0.6, linewidth = 0.6) + 

  stat_summary(fun = mean, geom = "line", aes(group = 1), color = "red", linewidth = 1.2) + 
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  stat_summary(fun.data = mean_se, geom = "errorbar", aes(group = 1), 

               width = 0.2, color = "red", linewidth = 0.8) + 

  geom_hline(yintercept = 0, linetype = "dashed") + 

  labs(title = "Plank: Embrace Plus Average SCL per Phase", 

       x = "Phase", y = "Skin Conductance Level (µS)") + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

 

 

#log difference plot TSST 

# Prepare log differences per participant and phase 

eda_log_diff <- all_data %>% 

  dplyr::filter(Event_Phases %in% c("Baseline Seated", "Anticipation Phase", "Speech 

Phase", 

                             "Mental Arithmetic", "TSST Recovery")) %>% 

  group_by(participant, Event_Phases) %>% 

  summarise( 

    log_biopac = mean(log(EDA_biopac_tonic), na.rm = TRUE), 

    log_embrace = mean(log(EDA_embrace_tonic), na.rm = TRUE), 

    .groups = "drop" 

  ) %>% 

  mutate( 

    log_diff = log_biopac - log_embrace, 

    Event_Phases = factor(Event_Phases, levels = c( 

      "Baseline Seated", "Anticipation Phase", "Speech Phase",  

      "Mental Arithmetic", "TSST Recovery" 

    )) 

  ) 
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# Plot with green boundaries (±log(1.5)) 

ggplot(eda_log_diff, aes(x = Event_Phases, y = log_diff)) + 

  geom_line(aes(group = participant), color = "steelblue", alpha = 0.6) + 

  stat_summary(fun = mean, geom = "line", aes(group = 1), color = "red", linewidth = 1.2) + 

  stat_summary(fun.data = mean_se, geom = "errorbar", aes(group = 1), 

               width = 0.2, color = "red", linewidth = 0.8) + 

  geom_hline(yintercept = 0, linetype = "dashed", color = "black") + 

  geom_hline(yintercept = log(1.5), linetype = "dotted", color = "green3") + 

  geom_hline(yintercept = -log(1.5), linetype = "dotted", color = "green3") + 

  labs( 

    title = "TSST: Log Ratio Difference in SCL (Biopac – Embrace Plus)", 

    x = "Phase", 

    y = "Log(Biopac) − Log(Embrace Plus)" 

  ) + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

#log difference plot Plank task 

# Define Plank phases 

plank_phases <- c("Baseline Standing", "Plank Anticipation", "Plank Walk", 

                  "Plank Baseline", "Plank Recovery") 

 

# Calculate log differences per participant and phase 

eda_log_diff_plank <- all_data %>% 

  dplyr::filter(Event_Phases %in% plank_phases) %>% 

  group_by(participant, Event_Phases) %>% 

  summarise( 

    log_biopac = mean(log(EDA_biopac_tonic), na.rm = TRUE), 

    log_embrace = mean(log(EDA_embrace_tonic), na.rm = TRUE), 

    .groups = "drop" 
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  ) %>% 

  mutate( 

    log_diff = log_biopac - log_embrace, 

    Event_Phases = factor(Event_Phases, levels = plank_phases) 

  ) 

 

#plot 

ggplot(eda_log_diff_plank, aes(x = Event_Phases, y = log_diff)) + 

  geom_line(aes(group = participant), color = "steelblue", alpha = 0.6) + 

  stat_summary(fun = mean, geom = "line", aes(group = 1), color = "red", linewidth = 1.2) + 

  stat_summary(fun.data = mean_se, geom = "errorbar", aes(group = 1), 

               width = 0.2, color = "red", linewidth = 0.8) + 

  geom_hline(yintercept = 0, linetype = "dashed", color = "black") + 

  geom_hline(yintercept = log(1.5), linetype = "dotted", color = "green3") + 

  geom_hline(yintercept = -log(1.5), linetype = "dotted", color = "green3") + 

  labs( 

    title = "Plank: Log Ratio Difference in SCL (Biopac – Embrace Plus)", 

    x = "Phase", 

    y = "Log(Biopac) − Log(Embrace Plus)" 

  ) + 

  theme_minimal(base_size = 12) + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

#--------table for event level---------- 

# Define TSST phases 

tsst_phases <- c("Baseline Seated", "Anticipation Phase", "Speech Phase", 

                 "Mental Arithmetic", "TSST Recovery") 

 

# Filter for TSST and valid data 

eda_tsst <- all_data %>% 
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  dplyr:: filter(Event_Phases %in% tsst_phases, 

         !is.na(EDA_biopac_tonic), !is.na(EDA_embrace_tonic)) %>% 

  mutate(Event_Phases = factor(Event_Phases, levels = tsst_phases)) 

 

# Reuse the same summary function as before 

summarise_scl <- function(df, scl_col) { 

  df %>% 

    group_by(participant, Event_Phases) %>% 

    summarise(mean_scl = mean({{scl_col}}, na.rm = TRUE), .groups = "drop") %>% 

    group_by(Event_Phases) %>% 

    summarise( 

      Mean     = mean(mean_scl), 

      SD       = sd(mean_scl), 

      N        = n(), 

      CI_Lower = Mean - qt(0.975, df = N - 1) * SD / sqrt(N), 

      CI_Upper = Mean + qt(0.975, df = N - 1) * SD / sqrt(N) 

    ) %>% 

    arrange(factor(Event_Phases, levels = tsst_phases)) 

} 

 

# Summary table for Biopac (TSST) 

tsst_biopac_summary <- summarise_scl(eda_tsst, EDA_biopac_tonic) 

print("TSST Biopac SCL Summary:") 

print(tsst_biopac_summary) 

 

# Summary table for Embrace Plus (TSST) 

tsst_embrace_summary <- summarise_scl(eda_tsst, EDA_embrace_tonic) 

print("TSST Embrace Plus SCL Summary:") 

print(tsst_embrace_summary) 
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# Define Plank phases 

plank_phases <- c("Baseline Standing", "Plank Anticipation", "Plank Walk", 

                  "Plank Baseline", "Plank Recovery") 

 

# Filter for plank task and valid data 

eda_plank <- all_data %>% 

  dplyr::filter(Event_Phases %in% plank_phases, 

         !is.na(EDA_biopac_tonic), !is.na(EDA_embrace_tonic)) %>% 

  mutate(Event_Phases = factor(Event_Phases, levels = plank_phases)) 

 

# Function to calculate summary statistics per phase 

summarise_scl <- function(df, scl_col) { 

  df %>% 

    group_by(participant, Event_Phases) %>% 

    summarise(mean_scl = mean({{scl_col}}, na.rm = TRUE), .groups = "drop") %>% 

    group_by(Event_Phases) %>% 

    summarise( 

      Mean     = mean(mean_scl), 

      SD       = sd(mean_scl), 

      N        = n(), 

      CI_Lower = Mean - qt(0.975, df = N - 1) * SD / sqrt(N), 

      CI_Upper = Mean + qt(0.975, df = N - 1) * SD / sqrt(N) 

    ) %>% 

    arrange(factor(Event_Phases, levels = plank_phases)) 

} 

 

# Summary table for Biopac 

biopac_summary <- summarise_scl(eda_plank, EDA_biopac_tonic) 

print("Biopac SCL Summary:") 

print(biopac_summary) 
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# Summary table for Embrace Plus 

embrace_summary <- summarise_scl(eda_plank, EDA_embrace_tonic) 

print("Embrace Plus SCL Summary:") 

print(embrace_summary) 

 


